Sample records for anaerobically digested sludge

  1. Treating an aged pentachlorophenol- (PCP-) contaminated soil through three sludge handling processes, anaerobic sludge digestion, post-sludge digestion and sludge land application.

    PubMed

    Chen, S T; Berthouex, P M

    2001-01-01

    The extensive pentachlorophenol (PCP) contamination and its increasing treatment costs motivate the search for a more competitive treatment alternative. In a municipal wastewater treatment plant, anaerobic sludge-handling processes comprises three bio-processes, namely the anaerobic sludge digestion, post-sludge digestion and sludge land application, which reduce sludge organic content and make sludge a good fertilizer for land application. Availability and effectiveness make the anaerobic sludge handling processes potential technologies to treat PCP-contaminated soil. The technical feasibility of using anaerobic sludge bioprocesses was studied by treating PCP soil in two pilot digesters to simulate the primary sludge digestion, in serum bottles to mimic the post-sludge digestion, and in glass pans to represent the on-site sludge application. For primary digestion, the results showed that up to 0.98 and 0.6 mM of chemical and soil PCP, respectively, were treated at nearly 100% and 97.5% efficiencies. The PCP was transformed 95% to 3-MCP, 4.5% to 3,4-DCP, and 0.5% to 3,5-DCP. For post-digestion, 100% pure chemical PCP and greater than 95% soil PCP were removed in less than 6 months with no chlorophenol residues of any kind. Complete removal of PCP by-products makes this process a good soil cleanup method. For on-site treatment, PCP was efficiently treated by multiple sludge application; however, the PCP residue was observed due to the high initial PCP content in soil. Overall, more mass PCP per unit sludge per day was processed using the primary sludge digestion than the on-site soil treatment or post-sludge digestion. And, sludge acclimation resulted in better PCP treatment efficiencies with all three processes.

  2. Enhancement of anaerobic sludge digestion by high-pressure homogenization.

    PubMed

    Zhang, Sheng; Zhang, Panyue; Zhang, Guangming; Fan, Jie; Zhang, Yuxuan

    2012-08-01

    To improve anaerobic sludge digestion efficiency, the effects of high-pressure homogenization (HPH) conditions on the anaerobic sludge digestion were investigated. The VS and TCOD were significantly removed with the anaerobic digestion, and the VS removal and TCOD removal increased with increasing the homogenization pressure and homogenization cycle number; correspondingly, the accumulative biogas production also increased with increasing the homogenization pressure and homogenization cycle number. The optimal homogenization pressure was 50 MPa for one homogenization cycle and 40 MPa for two homogenization cycles. The SCOD of the sludge supernatant significantly increased with increasing the homogenization pressure and homogenization cycle number due to the sludge disintegration. The relationship between the biogas production and the sludge disintegration showed that the accumulative biogas and methane production were mainly enhanced by the sludge disintegration, which accelerated the anaerobic digestion process and improved the methane content in the biogas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Aged refuse enhances anaerobic digestion of waste activated sludge.

    PubMed

    Zhao, Jianwei; Gui, Lin; Wang, Qilin; Liu, Yiwen; Wang, Dongbo; Ni, Bing-Jie; Li, Xiaoming; Xu, Rui; Zeng, Guangming; Yang, Qi

    2017-10-15

    In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Alkaline treatment of high-solids sludge and its application to anaerobic digestion.

    PubMed

    Li, Chenchen; Li, Huan; Zhang, Yuyao

    2015-01-01

    High-solids anaerobic digestion is a promising new process for sludge reduction and bioenergy recovery, requiring smaller digestion tanks and less energy for heating, but a longer digestion time, than traditional low-solids anaerobic digestion. To accelerate this process, alkaline sludge disintegration was tested as a pretreatment method for anaerobic digestion of high-solids sludge. The results showed that alkaline treatment effectively disintegrated both low-solids sludge and high-solids sludge, and treatment duration of 30 min was the most efficient. The relation between sludge disintegration degree and NaOH dose can be described by a transmutative power function model. At NaOH dose lower than 0.2 mol/L, sludge disintegration degree remained virtually unchanged when sludge total solids (TS) content increased from 2.0 to 11.0%, and decreased only slightly when sludge TS increased to 14.2%. Although high-solids sludge required a slightly higher molarity of NaOH to reach the same disintegration level of low-solids sludge, the required mass of NaOH actually decreased due to sludge thickening. From the view of NaOH consumption, sludge TS of 8-12% and a NaOH dose of 0.05 mol/L were optimum conditions for alkaline pretreatment, which resulted in a slight increase in accumulative biogas yield, but a decrease by 24-29% in digestion time during the subsequent anaerobic digestion.

  5. Modified anaerobic digestion elutriated phased treatment for the anaerobic co-digestion of sewage sludge and food wastewater.

    PubMed

    Mo, Kyung; Lee, Wonbae; Kim, Moonil

    2017-02-01

    A modified anaerobic digestion elutriated phased treatment (MADEPT) process was developed for investigating anaerobic co-digestion of sewage sludge and food wastewater. The anaerobic digestion elutriated phased treatment (ADEPT) process is similar to a two-phase system, however, in which the effluent from a methanogenic reactor recycles into an acidogenic reactor to elutriate mainly dissolved organics. Although ADEPT could reduce reactor volume significantly, the unsolubilized solids should be wasted from the system. The MADEPT process combines thermo-alkali solubilization with ADEPT to improve anaerobic performance and to minimize the sludge disposal. It was determined that the optimal volume mixing ratio of sewage sludge and food wastewater was 4 : 1 for the anaerobic co-digestion. The removal efficiencies of total chemical oxygen demand, volatile solids, and volatile suspended solids in the MADEPT process were 73%, 70%, and 64%, respectively. However, those in the ADEPT process were only 48%, 37%, and 40%, respectively, at the same hydraulic retention time (HRT) of 7 days. The gas production of MADEPT was two times higher than that of ADEPT. The thermo-alkali solubilization increased the concentration of dissolved organics so that they could be effectively degraded in a short HRT, implying that MADEPT could improve the performance of ADEPT in anaerobic co-digestion.

  6. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendes, Carlos, E-mail: carllosmendez@gmail.com; Esquerre, Karla, E-mail: karlaesquerre@ufba.br; Matos Queiroz, Luciano, E-mail: lmqueiroz@ufba.br

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present studymore » focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.« less

  7. Effect of acid detergent fiber in hydrothermally pretreated sewage sludge on anaerobic digestion process

    NASA Astrophysics Data System (ADS)

    Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki

    2017-10-01

    Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.

  8. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    PubMed

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P < 0.05). Notably, the ampicillin and cephalothin resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P < 0.05). The distribution of ARB in the sewage sludge had seasonal change characteristics. Except for chlorotetracycline resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05).

  9. Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion.

    PubMed

    Braguglia, C M; Gianico, A; Mininni, G

    2012-03-01

    This paper deals with the comparison of ultrasound (mechanical) and ozone (chemical) pre-treatment on the performances of excess sludge semi-continuous digestion. Sludge solubilisation has been investigated by varying specific energy input. For each pre-treatment, long anaerobic digestion tests were carried out by two parallel digesters: one reactor, as control unit, was fed with untreated waste activated sludge, and the other one was fed with disintegrated sludge. To evaluate and compare the efficacy of both pre-treatments, the specific energy was maintained approximately the same. The digestion tests were carried out to investigate the feasibility of anaerobic digestion performance (total biogas production, volatile solids removal, sludge dewaterability) and to assess the heat balance. Results obtained from the digestion of sonicated sludge at 4% disintegration degree (≈ 2500 kJ/kg TS) showed that the ultrasound pre-treatment may be effective both in increasing VS destruction (+19%) and cumulative biogas production (+26%). On the contrary, the digestion test with ozonized sludge (ozone dose of 0.05 g O(3)/g TS corresponding to ≈ 2000 kJ/kg TS) did not indicate a significant improvement on the digestion performances. By doubling the ozone dose an improvement in the organics removal and cumulative biogas production was observed. Relevant differences in terms of colloidal charge and filterability were discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    PubMed

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  11. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron.

    PubMed

    Feng, Yinghong; Zhang, Yaobin; Quan, Xie; Chen, Suo

    2014-04-01

    Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Use of hydrodynamic disintegration to accelerate anaerobic digestion of surplus activated sludge.

    PubMed

    Grübel, Klaudiusz; Machnicka, Alicja

    2009-12-01

    Hydrodynamic disintegration of activated sludge resulted in organic matter and polymers transfer from the solid phase into the liquid phase. Disintegration by hydrodynamic cavitation had a positive effect on the degree and rate of excess sludge anaerobic digestion. Also, addition of a part of anaerobic digested sludge containing adapted microorganisms resulted in acceleration of the process. The disruption of cells of foam microorganisms and addition to the digestion process led to an increase of biogas production.

  13. Phylogenetic diversity and in situ detection of eukaryotes in anaerobic sludge digesters.

    PubMed

    Matsubayashi, Miri; Shimada, Yusuke; Li, Yu-You; Harada, Hideki; Kubota, Kengo

    2017-01-01

    Eukaryotic communities in aerobic wastewater treatment processes are well characterized, but little is known about them in anaerobic processes. In this study, abundance, diversity and morphology of eukaryotes in anaerobic sludge digesters were investigated by quantitative real-time PCR (qPCR), 18S rRNA gene clone library construction and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Samples were taken from four different anaerobic sludge digesters in Japan. Results of qPCR of rRNA genes revealed that Eukarya accounted from 0.1% to 1.4% of the total number of microbial rRNA gene copy numbers. The phylogenetic affiliations of a total of 251 clones were Fungi, Alveolata, Viridiplantae, Amoebozoa, Rhizaria, Stramenopiles and Metazoa. Eighty-five percent of the clones showed less than 97.0% sequence identity to described eukaryotes, indicating most of the eukaryotes in anaerobic sludge digesters are largely unknown. Clones belonging to the uncultured lineage LKM11 in Cryptomycota of Fungi were most abundant in anaerobic sludge, which accounted for 50% of the total clones. The most dominant OTU in each library belonged to either the LKM11 lineage or the uncultured lineage A31 in Alveolata. Principal coordinate analysis indicated that the eukaryotic and prokaryotic community structures were related. The detection of anaerobic eukaryotes, including the members of the LKM11 and A31 lineages in anaerobic sludge digesters, by CARD-FISH revealed their sizes in the range of 2-8 μm. The diverse and uncultured eukaryotes in the LKM11 and the A31 lineages are common and ecologically relevant members in anaerobic sludge digester.

  14. Anaerobic co-digestion of sewage sludge and food waste.

    PubMed

    Prabhu, Meghanath S; Mutnuri, Srikanth

    2016-04-01

    Anaerobic co-digestion of organic matter improves digester operating characteristics and its performance. In the present work, food waste was collected from the institute cafeteria. Two types of sludge (before centrifuge and after centrifuge) were collected from the fluidised bed reactor of the institute treating sewage wastewater. Food waste and sludge were studied for their physico-chemical characteristics, such as pH, chemical oxygen demand, total solids, volatile solids, ammoniacal nitrogen, and total nitrogen. A biomethane potential assay was carried out to find out the optimum mixing ratio of food waste and sludge for anaerobic co-digestion. Results indicated that food waste mixed with sludge in the ratio of 1:2 produced the maximum biogas of 823 ml gVS(-1)(21 days) with an average methane content of 60%. Batch studies were conducted in 5 L lab-glass reactors at a mesophilic temperature. The effect of different substrate loading rates on biogas production was investigated. The mixing ratio of food waste and sludge was 1:2. A loading rate of 1 gVS L d(-1)gave the maximum biogas production of 742 ml g(-1)VS L d(-1)with a methane content of 50%, followed by 2 gVS L d(-1)with biogas of 539 ml g(-1)VS L d(-1) Microbial diversity of the reactor during fed batch studies was investigated by terminal restriction fragment length polymorphism. A pilot-scale co-digestion of food waste and sludge (before centrifuge) indicated the process stability of anaerobic digestion. © The Author(s) 2016.

  15. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs

    PubMed Central

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  16. Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell.

    PubMed

    Zhao, Zisheng; Zhang, Yaobin; Quan, Xie; Zhao, Huimin

    2016-01-01

    Increase of methanogenesis in methane-producing microbial electrolysis cells (MECs) is frequently believed as a result of cathodic reduction of CO2. Recent studies indicated that this electromethanogenesis only accounted for a little part of methane production during anaerobic sludge digestion. Instead, direct interspecies electron transfer (DIET) possibly plays an important role in methane production. In this study, anaerobic digestion of sludge were investigated in a single-chamber MEC reactor, a carbon-felt supplemented reactor and a common anaerobic reactor to evaluate the effects of DIET on the sludge digestion. The results showed that adding carbon felt into the reactor increased 12.9% of methane production and 17.2% of sludge reduction. Imposing a voltage on the carbon felt further improved the digestion. Current calculation showed that the cathodic reduction only contributed to 27.5% of increased methane production. Microbial analysis indicated that DIET played an important role in the anaerobic sludge digestion in the MEC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment.

    PubMed

    Liu, Jibao; Yu, Dawei; Zhang, Jian; Yang, Min; Wang, Yawei; Wei, Yuansong; Tong, Juan

    2016-07-01

    The rheological behavior of sludge is of serious concern in anaerobic digestion. This study investigated the rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment (MW-H2O2). The results showed that MW-H2O2 pretreatment resulted in the improvement of sludge flowability and weakening of its viscoelastic properties. Further positive effects on the rheological properties of digested sludge during anaerobic digestion were observed. The flowability was improved with a low level of apparent viscosity. The decrease of the consistency index and increase of the flow behavior index indicated that the strength of the inner structures and non-Newtonian flow characteristics of digested sludge weakened. Both the storage modulus (G') and loss modulus (G″) decreased, indicating that the viscoelastic behavior became weak. These effects were possibly attributed to the changes of the digested sludge micro-structures, such as extracellular polymeric substances (EPS). This study concluded that anaerobic digestion for treating sewage sludge combined with pretreatment is a more favorable option than single anaerobic digestion from the perspective of rheology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    PubMed

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-01-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.

  19. Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability.

    PubMed

    Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong

    2016-10-01

    The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sequential anaerobic/aerobic digestion for enhanced sludge stabilization: comparison of the process performance for mixed and waste sludge [corrected].

    PubMed

    Tomei, M Concetta; Carozza, Nicola Antonello

    2015-05-01

    Sequential anaerobic-aerobic digestion has been demonstrated as a promising alternative for enhanced sludge stabilization. In this paper, a feasibility study of the sequential digestion applied to real waste activated sludge (WAS) and mixed sludge is presented. Process performance is evaluated in terms of total solid (TS) and volatile solid (VS) removal, biogas production, and dewaterability trend in the anaerobic and double-stage digested sludge. In the proposed digestion lay out, the aerobic stage was operated with intermittent aeration to reduce the nitrogen load recycled to the wastewater treatment plant (WWTP). Experimental results showed a very good performance of the sequential digestion process for both waste and mixed sludge, even if, given its better digestibility, higher efficiencies are observed for mixed sludge. VS removal efficiencies in the anaerobic stage were 48 and 50% for waste and mixed sludge, respectively, while a significant additional improvement of the VS removal of 25% for WAS and 45% for mixed sludge has been obtained in the aerobic stage. The post-aerobic stage, operated with intermittent aeration, was also efficient in nitrogen removal, providing a significant decrease of the nitrogen content in the supernatant: nitrification efficiencies of 90 and 97% and denitrification efficiencies of 62 and 70% have been obtained for secondary and mixed sludges, respectively. A positive effect due to the aerobic stage was also observed on the sludge dewaterability in both cases. Biogas production, expressed as Nm(3)/(kgVSdestroyed), was 0.54 for waste and 0.82 for mixed sludge and is in the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days.

  1. Energy recovery from wastewater treatment plants through sludge anaerobic digestion: effect of low-organic-content sludge.

    PubMed

    Zhang, Yuyao; Li, Huan

    2017-09-18

    During anaerobic digestion, low-organic-content sludge sometimes is used as feedstock, resulting in deteriorated digestion performance. The operational experience of conventional anaerobic digestion cannot be applied to this situation. To investigate the feature of low-organic-content sludge digestion and explain its intrinsic mechanism, batch experiments were conducted using designed feedstock having volatile solids (VS) contents that were 30-64% of total solids (TS). The results showed that the accumulative biogas yield declined proportionally from 173.7 to 64.8 ml/g VS added and organic removal rate decreased from 34.8 to 11.8% with decreasing VS/TS in the substrate. The oligotrophic environment resulting from low-organic-content substrates led to decreased microbial activity and a switch from butyric fermentation to propionic fermentation. A first-order model described the biogas production from the batch experiments very well, and the degradation coefficient decreased from 0.159 to 0.069 day -1 , exhibiting a positive relation with organic content in substrate. The results observed here corroborated with data from published literature on anaerobic digestion of low-organic-content sludge and showed that it may not be feasible to recover energy from sludge with an organic content lower than 50% through mono digestion.

  2. Anaerobic digestibility of beef hooves with swine manure or slaughterhouse sludge.

    PubMed

    Xia, Yun; Wang, Ding-Kang; Kong, Yunhong; Ungerfeld, Emilio M; Seviour, Robert; Massé, Daniel I

    2015-04-01

    Anaerobic digestion is an effective method for treating animal by-products, generating at the same time green energy as methane (CH4). However, the methods and mechanisms involved in anaerobic digestion of α-keratin wastes like hair, nails, horns and hooves are still not clear. In this study we investigated the feasibility of anaerobically co-digesting ground beef hooves in the presence of swine manure or slaughterhouse sludge at 25 °C using eight 42-L Plexiglas lab-scale digesters. Our results showed addition of beef hooves statistically significantly increased the rate of CH4 production with swine manure, but only increased it slightly with slaughterhouse sludge. After 90-day digestion, 73% of beef hoof material added to the swine manure-inoculated digesters had been converted into CH4, which was significantly higher than the 45% level achieved in the slaughterhouse sludge inoculated digesters. BODIPY-Fluorescent casein staining detected proteolytic bacteria in all digesters with and without added beef hooves, and their relative abundances corresponded to the rate of methanogenesis of the digesters with the different inocula. Fluorescence in situ hybridization in combination with BODIPY-Fluorescent casein staining identified most proteolytic bacteria as members of genus Alkaliphilus in the subfamily Clostridiaceae 2 of family Clostridiaceae. They thus appear to be the bacteria mainly responsible for digestion of beef hooves. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  3. Performance of sequential anaerobic/aerobic digestion applied to municipal sewage sludge.

    PubMed

    Tomei, M Concetta; Rita, Sara; Mininni, Giuseppe

    2011-07-01

    A promising alternative to conventional single phase processing, the use of sequential anaerobic-aerobic digestion, was extensively investigated on municipal sewage sludge from a full scale wastewater treatment plant. The objective of the work was to evaluate sequential digestion performance by testing the characteristics of the digested sludge in terms of volatile solids (VS), Chemical Oxygen Demand (COD) and nitrogen reduction, biogas production, dewaterability and the content of proteins and polysaccharides. VS removal efficiencies of 32% in the anaerobic phase and 17% in the aerobic one were obtained, and similar COD removal efficiencies (29% anaerobic and 21% aerobic) were also observed. The aerobic stage was also efficient in nitrogen removal providing a decrease of the nitrogen content in the supernatant attributable to nitrification and simultaneous denitrification. Moreover, in the aerobic phase an additional marked removal of proteins and polysaccharides produced in the anaerobic phase was achieved. The sludge dewaterability was evaluated by determining the Optimal Polymer Dose (OPD) and the Capillary Suction Time (CST) and a significant positive effect due to the aerobic stage was observed. Biogas production was close to the upper limit of the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. From a preliminary analysis it was found that the energy demand of the aerobic phase was significantly lower than the recovered energy in the anaerobic phase and the associated additional cost was negligible in comparison to the saving derived from the reduced amount of sludge to be disposed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge.

    PubMed

    Wang, Dongbo; Liu, Xuran; Zeng, Guangming; Zhao, Jianwei; Liu, Yiwen; Wang, Qilin; Chen, Fei; Li, Xiaoming; Yang, Qi

    2018-03-01

    Previous investigations showed that cationic polyacrylamide (cPAM), a flocculant widely used in wastewater pretreatment and waste activated sludge dewatering, deteriorated methane production during anaerobic digestion of sludge. However, details of how cPAM affects methane production are poorly understood, hindering deep control of sludge anaerobic digestion systems. In this study, the mechanisms of cPAM affecting sludge anaerobic digestion were investigated in batch and long-term tests using either real sludge or synthetic wastewaters as the digestion substrates. Experimental results showed that the presence of cPAM not only slowed the process of anaerobic digestion but also decreased methane yield. The maximal methane yield decreased from 139.1 to 86.7 mL/g of volatile suspended solids (i.e., 1861.5 to 1187.0 mL/L) with the cPAM level increasing from 0 to 12 g/kg of total suspended solids (i.e., 0-236.7 mg/L), whereas the corresponding digestion time increased from 22 to 26 d. Mechanism explorations revealed that the addition of cPAM significantly restrained the sludge solubilization, hydrolysis, acidogenesis, and methanogenesis processes. It was found that ∼46% of cAPM was degraded in the anaerobic digestion, and the degradation products significantly affected methane production. Although the theoretically biochemical methane potential of cPAM is higher than that of protein and carbohydrate, only 6.7% of the degraded cPAM was transformed to the final product, methane. Acrylamide, acrylic acid, and polyacrylic acid were found to be the main degradation metabolites, and their amount accounted for ∼50% of the degraded cPAM. Further investigations showed that polyacrylic acid inhibited all the solubilization, hydrolysis, acidogenesis, and methanogenesis processes while acrylamide and acrylic acid inhibited the methanogenesis significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Predicting the apparent viscosity and yield stress of mixtures of primary, secondary and anaerobically digested sewage sludge: Simulating anaerobic digesters.

    PubMed

    Markis, Flora; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam; Slatter, Paul; Eshtiaghi, Nicky

    2016-09-01

    Predicting the flow behaviour, most notably, the apparent viscosity and yield stress of sludge mixtures inside the anaerobic digester is essential because it helps optimize the mixing system in digesters. This paper investigates the rheology of sludge mixtures as a function of digested sludge volume fraction. Sludge mixtures exhibited non-Newtonian, shear thinning, yield stress behaviour. The apparent viscosity and yield stress of sludge mixtures prepared at the same total solids concentration was influenced by the interactions within the digested sludge and increased with the volume fraction of digested sludge - highlighted using shear compliance and shear modulus of sludge mixtures. However, when a thickened primary - secondary sludge mixture was mixed with dilute digested sludge, the apparent viscosity and yield stress decreased with increasing the volume fraction of digested sludge. This was caused by the dilution effect leading to a reduction in the hydrodynamic and non-hydrodynamic interactions when dilute digested sludge was added. Correlations were developed to predict the apparent viscosity and yield stress of the mixtures as a function of the digested sludge volume fraction and total solids concentration of the mixtures. The parameters of correlations can be estimated using pH of sludge. The shear and complex modulus were also modelled and they followed an exponential relationship with increasing digested sludge volume fraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. An examination of the treatment of iron-dosed waste activated sludge by anaerobic digestion.

    PubMed

    Johnson, D K; Carliell-Marquet, C M; Forster, C F

    2003-08-01

    Anaerobic digestion is an important sludge treatment process enabling stabilisation of the organic fraction of sewage sludge prior to land application. Any practice which might retard the anaerobic digestion process will jeopardize the stability of the resulting digested sludge. This paper reports on an investigation into the relative digestibility of iron-dosed waste activated sludge (WAS) from a sewage treatment works (STW) with chemical phosphorus removal (CPR), in comparison to WAS from a works without phosphorus removal. Two laboratory scale anaerobic digesters (51) were fed initially with non iron-dosed WAS (Works M) at a solids retention time of 19 days. After 2 months the iron-dosed CPR sludge (Works R) was introduced into the second digester, resulting in a 32% decrease in biogas production and an increase in the methane content of the biogas from an average of 74% to 81%. Pre-treatment of the CPR sludge with sodium sulphide and shear, both alone and in combination, caused the gas production to deteriorate further. Pre-acidification and pre-treatment with EDTA did result in an enhanced gas production but it was still not comparable with that of the digester being fed with non-iron-dosed sludge. The daily gas production was found to be linearly related to the amount of bound iron in the sludge.

  7. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  8. Enhanced dewaterability of sludge during anaerobic digestion with thermal hydrolysis pretreatment: New insights through structure evolution.

    PubMed

    Zhang, Jingsi; Li, Ning; Dai, Xiaohu; Tao, Wenquan; Jenkinson, Ian R; Li, Zhuo

    2017-12-19

    Comprehensive insights into the sludge digestate dewaterability were gained through porous network structure of sludge. We measured the evolution of digestate dewaterability, represented by the solid content of centrifugally dewatered cake, in high-solids sequencing batch digesters with and without thermal hydrolysis pretreatment (THP). The results show that the dewaterability of the sludge after digestion was improved by 3.5% (±0.5%) for unpretreated sludge and 5.1% (±0.4%) for thermally hydrolyzed sludge. Compared to the unpretreated sludge digestate, thermal hydrolysis pretreatment eventually resulted in an improvement of dewaterability by 4.6% (±0.5%). Smaller particle size and larger surface area of sludge were induced by thermal hydrolysis and anaerobic digestion treatments. The structure strength and compactness of sludge, represented by elastic modulus and fractal dimension respectively, decreased with increase of digestion time. The porous network structure was broken up by thermal hydrolysis pretreatment and was further weakened during anaerobic digestion, which correspondingly improved the dewaterability of digestates. The logarithm of elastic modulus increased linearly with fractal dimension regardless of the pretreatment. Both fractal dimension and elastic modulus showed linear relationship with dewaterability. The rheological characterization combined with the analysis of fractal dimension of sewage sludge porous network structure was found applicable in quantitative evaluation of sludge dewaterability, which depended positively on both thermal hydrolysis and anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Review of enhanced processes for anaerobic digestion treatment of sewage sludge

    NASA Astrophysics Data System (ADS)

    Liu, Xinyuan; Han, Zeyu; Yang, Jie; Ye, Tianyi; Yang, Fang; Wu, Nan; Bao, Zhenbo

    2018-02-01

    Great amount of sewage sludge had been produced each year, which led to serious environmental pollution. Many new technologies had been developed recently, but they were hard to be applied in large scales. As one of the traditional technologies, anaerobic fermentation process was capable of obtaining bioenergy by biogas production under the functions of microbes. However, the anaerobic process is facing new challenges due to the low fermentation efficiency caused by the characteristics of sewage sludge itself. In order to improve the energy yield, the enhancement technologies including sewage sludge pretreatment process, co-digestion process, high-solid digestion process and two-stage fermentation process were widely studied in the literatures, which were introduced in this article.

  10. Ultrasonic sludge disintegration for enhanced methane production in anaerobic digestion: effects of sludge hydrolysis efficiency and hydraulic retention time.

    PubMed

    Kim, Dong-Jin; Lee, Jonghak

    2012-01-01

    Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.

  11. A multi-criteria decision analysis of management alternatives for anaerobically digested kraft pulp mill sludge

    PubMed Central

    Eikelboom, Martijn; Lopes, Alice do Carmo Precci; Silva, Claudio Mudadu; Rodrigues, Fábio de Ávila; Zanuncio, José Cola

    2018-01-01

    The Multi-Criteria Decision Analysis (MCDA) procedure was used to compare waste management options for kraft pulp mill sludge following its anaerobic digestion. Anaerobic digestion of sludge is advantageous because it produces biogas that may be used to generate electricity, heat and biofuels. However, adequate management of the digested sludge is essential. Landfill disposal is a non-sustainable waste management alternative. Kraft pulp mill digested sludge applied to land may pose risks to the environment and public health if the sludge has not been properly treated. This study is aimed to compare several recycling alternatives for anaerobically digested sludge from kraft pulp mills: land application, landfill disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae. The MCDA procedure considered nine criteria into three domains to compare digested sludge recycling alternatives in a kraft pulp mill: environmental (CO2 emission, exposure to pathogens, risk of pollution, material and energy recovery), economic (overall costs, value of products) and technical (maintenance and operation, feasibility of implementation). The most suitable management options for digested sludge from kraft pulp mills were found to be composting and incineration (when the latter was coupled with recycling ash to the cement industry). Landfill disposal was the worst option, presenting low performance in feasibility of implementation, risk of pollution, material and energy recovery. PMID:29298296

  12. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste.

    PubMed

    Zuliani, Luca; Frison, Nicola; Jelic, Aleksandra; Fatone, Francesco; Bolzonella, David; Ballottari, Matteo

    2016-10-10

    Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO₂, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB) was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates.

  13. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste

    PubMed Central

    Zuliani, Luca; Frison, Nicola; Jelic, Aleksandra; Fatone, Francesco; Bolzonella, David; Ballottari, Matteo

    2016-01-01

    Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO2, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB) was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates. PMID:27735859

  14. Anaerobic digestion of municipal wastewater sludges using anaerobic fluidized bed bioreactor.

    PubMed

    Mustafa, Nizar; Elbeshbishy, Elsayed; Nakhla, George; Zhu, Jesse

    2014-11-01

    The anaerobic digestion of primary sludge (PS) and thickened waste activated sludge (TWAS) using an anaerobic fluidized bed bioreactor (AnFBR) employing zeolite particles as the carrier media was investigated at different organic loading rates (OLRs). PS was tested at OLRs from 4.2 to 39kgCOD/m(3)-d corresponding to hydraulic retention times (HRTs) from 1.0 to 8.9days. The highest COD removal and VSS destruction efficiencies for primary sludge of 85% and 88%, respectively, were achieved at an HRT of 8.9days and OLR of 4.2kgCOD/m(3)-d. For TWAS, VSS destruction efficiencies varied from 42% at an HRT of 2.6days and OLR of 13.1kgCOD/m(3)-d to 69% at an HRT of 8.8days and an OLR of 4.2kgCOD/m(3)-d. The first-order COD biodegradation rates in the AnFBR for PS and TWAS were 0.4d(-1) and 0.1d(-1), respectively, almost double the rates in conventional high-rate digesters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion.

    PubMed

    Peng, Hong; Zhang, Yaobin; Tan, Dongmei; Zhao, Zhiqiang; Zhao, Huimin; Quan, Xie

    2018-02-01

    Granular activated carbon (GAC) or magnetite could promote methane production from organic wastes, but their roles in enhancing anaerobic sludge digestion have not been clarified. GAC, magnetite and their combination were complemented into sludge digesters, respectively. Experimental results showed that average methane production increased by 7.3% for magnetite, 13.1% for GAC, and 20% for the combination of magnetite and GAC, and the effluent TCOD of the control, magnetite, GAC and magnetite-GAC digesters on day 56 were 53.2, 49.6, 48.0 and 46.6 g/L, respectively. Scanning electron microscope (SEM), nitrogen adsorption, Fourier transform infrared spectroscopy (FTIR) and microbial analysis indicated that magnetite enriched iron-reducing bacteria responsible for sludge hydrolysis while GAC enhanced syntrophic metabolism between iron-reducing bacteria and methanogens due to its high electrical conductivity and large surface area. Supplementing magnetite and GAC together into an anaerobic digester simultaneously accelerated sludge hydrolysis and methane production, resulting in better sludge digestion performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion.

    PubMed

    Mu, Hui; Chen, Yinguang

    2011-11-01

    The increasing use of zinc oxide nanoparticles (ZnO NPs) raises concerns about their environmental impacts, but the potential effect of ZnO NPs on sludge anaerobic digestion remains unknown. In this paper, long-term exposure experiments were carried out to investigate the influence of ZnO NPs on methane production during waste activated sludge (WAS) anaerobic digestion. The presence of 1 mg/g-TSS of ZnO NPs did not affect methane production, but 30 and 150 mg/g-TSS of ZnO NPs induced 18.3% and 75.1% of inhibition respectively, which showed that the impact of ZnO NPs on methane production was dosage dependant. Then, the mechanisms of ZnO NPs affecting sludge anaerobic digestion were investigated. It was found that the toxic effect of ZnO NPs on methane production was mainly due to the release of Zn(2+) from ZnO NPs, which may cause the inhibitory effects on the hydrolysis and methanation steps of sludge anaerobic digestion. Further investigations with enzyme and fluorescence in situ hybridization (FISH) assays indicated that higher concentration of ZnO NPs decreased the activities of protease and coenzyme F(420), and the abundance of methanogenesis Archaea. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Parasite ova in anaerobically digested sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arther, R.G.; Fitzgerald, P.R.; Fox, J.C.

    The Metropolitan Sanitary District of Greater Chicago produces anaerobically digested wastewater sludge from a 14-day continuous-flow process maintained at 35 degrees Celcius. Some of the sludge is ultimately applied to strip-mined lands in Central Illinois (Fulton County) as a soil conditioner and fertilizer. Parasitic nematode ova were isolated from freshly processed samples, as well as from samples collected from storage lagoons, using a system of continuous sucrose solution gradients. The mean number of ova per 100 g of dry sludge was 203 Ascaris spp., 173 Toxocara spp., 48 Toxascaris leonina, and 36 Trichuris spp. An assessment of the viability ofmore » these ova was determined by subjecting the ova to conditions favorable for embryonation. Recovered ova were placed in 1.5% formalin and aerated at 22 degrees Celcius for 21 to 28 days. Development of ova isolated from freshly digested sludge occurred in 64% of the Ascaris spp., 53% of the Toxocara, 63% of the Toxascaris leonina, and 20% of the Trichuris spp. Viability was also demonstrated in ova recovered from sludge samples held in storage lagoons for a period of up to 5 years; embryonation occurred in 24% of the Ascaris spp., 10% of the Toxocara spp., 43% of the Toxascaris leonina, and 6% of the Trichuris spp. (Refs. 24).« less

  18. Anaerobic digestion of soft drink beverage waste and sewage sludge.

    PubMed

    Wickham, Richard; Xie, Sihuang; Galway, Brendan; Bustamante, Heriberto; Nghiem, Long D

    2018-08-01

    Soft drink beverage waste (BW) was evaluated as a potential substrate for anaerobic co-digestion with sewage sludge to increase biogas production. Results from this study show that the increase in biogas production is proportional to the increase in organic loading rate (OLR) rate due to BW addition. The OLR increase of 86 and 171% corresponding to 10 and 20% BW by volume in the feed resulted in 89 and 191% increase in biogas production, respectively. Under a stable condition, anaerobic co-digestion with BW did not lead to any significant impact on digestate quality (in terms of COD removal and biosolids odour) and biogas composition. The results suggest that existing nutrients in sewage sludge can support an increase in OLR by about 2 kg COD/m 3 /d from a carbon rich substrate such as soft drink BW without inhibition or excessive impact on subsequent handling of the digestate. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  19. Control of C/N ratio for butyric acid production from textile wastewater sludge by anaerobic digestion.

    PubMed

    Fu, Bo; Zhang, Jingjing; Fan, Jinfeng; Wang, Jin; Liu, He

    2012-01-01

    Increasing textile wastewaters and their biotreatment byproduct-waste activated sludge are serious pollution problems. Butyric acid production from textile wastewater sludge by anaerobic digestion at different C/N ratios was investigated. Adding starch to textile wastewater sludge with a C/N ratio of 30 increased the butyric acid concentration and percentage accounting for total volatile fatty acids (TVFAs) to 21.42 g/L and 81.5%, respectively, as compared with 21.42 g/L and 10.6% of textile wastewater sludge alone. The maximum butyric acid yield (0.45 g/g VS), conversion rate (0.74 g/g VS(digest)) and production rate (2.25 g/L d) was achieved at a C/N ratio of 30. The biological toxicity of textile wastewater sludge also significantly decreased after the anaerobic digestion. The study indicated that the anaerobic co-digestion of textile wastewater sludge and carbohydrate-rich waste with appropriate C/N ratio is possible for butyric acid production.

  20. Biotransformation of tetrabromobisphenol A (TBBPA) in anaerobic digester sludge, soils, and freshwater sediments.

    PubMed

    McAvoy, Drew C; Pittinger, Charles A; Willis, Alison M

    2016-09-01

    The biotransformation of tetrabromobisphenol A (TBBPA) was evaluated in anaerobic digester sludge, soils, and freshwater sediments. In anaerobic digester sludge, TBBPA biotransformed rapidly with a 50% disappearance time (DT50) of 19 days, though little mineralization (1.1%) was observed. In aerobic soils, mineralization of TBBPA ranged from 17.5% to 21.6% with 55.3-83.6% of the TBBPA incorporated into the soils as a non-extractable bound residue. The DT50 for TBBPA in aerobic soils ranged from 5.3 to 7.7 days. In anaerobic soils, 48.3-100% of the TBBPA was incorporated into the soils as non-extractable bound residue with <4% mineralized. The soil fate studies demonstrated extensive incorporation of TBBPA into the solid matrix and this association was related to the amount of organic carbon in the soils (i.e., greater association of TBBPA with soil at higher organic carbon content). In anaerobic sediments the DT50 for TBBPA ranged from 28 to 42 days, whereas in aerobic sediments the DT50 for TBBPA ranged from 48 to 84 days and depended on the initial dose concentration. Most of the TBBPA in the sediment studies was incorporated as a non-extractable bound residue with little mineralization observed. Sediment extracts revealed three unknown biotransformation products and bisphenol A (BPA). These results were consistent with previously published studies where TBBPA biotransformed in anaerobic environments (digester sludge and sediments) by debromination and slowly mineralized in the test environments (anaerobic digester sludge, soils, and freshwater sediments). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process.

    PubMed

    Grübel, Klaudiusz; Suschka, Jan

    2015-05-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (soluble chemical oxygen demand (SCOD)) to the liquid sludge phase compared with the effects of processes conducted separately. The total SCOD after alkalization at 9 pH (pH in the range of 8.96-9.10, SCOD = 600 mg O2/L) and after hydrodynamic (SCOD = 1450 mg O2/L) disintegration equaled to 2050 mg/L. However, due to the synergistic effect, the obtained SCOD value amounted to 2800 mg/L, which constitutes an additional chemical oxygen demand (COD) dissolution of about 35 %. Similarly, the synergistic effect after alkalization at 10 pH was also obtained. The applied hybrid pre-hydrolysis technology resulted in a disintegration degree of 28-35%. The experiments aimed at selection of the most appropriate procedures in terms of optimal sludge digestion results, including high organic matter degradation (removal) and high biogas production. The analyzed soft hybrid technology influenced the effectiveness of mesophilic/thermophilic anaerobic digestion in a positive way and ensured the sludge minimization. The adopted pre-treatment technology (alkalization + hydrodynamic cavitation) resulted in 22-27% higher biogas production and 13-28% higher biogas yield. After two stages of anaerobic digestion (mesophilic conditions (MAD) + thermophilic anaerobic digestion (TAD)), the highest total solids (TS) reduction amounted to 45.6% and was received for the following sample at 7 days MAD + 17 days TAD. About 7% higher TS reduction was noticed compared with the sample after 9

  2. Plant available nitrogen from anaerobically digested sludge and septic tank sludge applied to crops grown in the tropics.

    PubMed

    Sripanomtanakorn, S; Polprasert, C

    2002-04-01

    Agricultural land is an attractive alternative for the disposal of biosolids since it utilises the recyclable nutrients in the production of crops. In Thailand and other tropical regions, limited field-study information exists on the effect of biosolids management strategies on crop N utilisation and plant available N (PAN) of biosolids. A field study was conducted to quantify the PAN of the applied biosolids, and to evaluate the N uptake rates of some tropical crops. Sunflower (Helianthus annuus) and tomato (Lycopersicon esculentum) were chosen in this study. Two types of biosolids used were: anaerobically digested sludge and septic tank sludge. The soil is acid sulfate and is classified as Sulfic Tropaquepts with heavy clay in texture. The anaerobically digested sludge applied rates were: 0, 156 and 312 kg N ha(-1) for the sunflower plots, and 0, 586, and 1172 kg N ha(-1) for the tomato plots. The septic tank sludge applied rates were: 0, 95 and 190 kg N ha(-1) for the sunflower plots, and 0, 354 and 708 kg N ha(-1) for the tomato plots, respectively. The results indicated the feasibility of applying biosolids to grow tropical crops. The applications of the anaerobically digested sludge and the septic tank sludge resulted in the yields of sunflower seeds and tomato fruits and the plant N uptakes comparable or better than that applied with only the chemical fertiliser. The estimated PAN of the anaerobically digested sludge was about 27-42% of the sludge organic N during the growing season. For the septic tank sludge, the PAN was about 15-58% of the sludge organic N. It is interesting to observe that an increase of the rate of septic tank sludge incorporated into this heavy clay soil under the cropping system resulted in the decrease of N mineralisation rate. This situation could cause the reduction of yield and N uptake of crops.

  3. Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: Synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment.

    PubMed

    Alagöz, B Aylin; Yenigün, Orhan; Erdinçler, Ayşen

    2015-12-01

    This study investigates the effect of ultrasonic and microwave pre-treatment on biogas production from the anaerobic co-digestion of olive pomace and wastewater sludges. It was found that co-digestion of wastewater sludge with olive pomace yielded around 0.21 L CH4/g VS added, whereas the maximum methane yields from the mono-digestion of olive pomace and un-pretreated wastewater sludges were 0.18 and 0.16L CH4/g VS added. In the same way, compared to mono-digestion of these substrates, co-digestion increased methane production by 17-31%. The microwave and ultrasonic pre-treatments applied to sludge samples prior to co-digestion process led to further increase in the methane production by 52% and 24%, respectively, compared to co-digestion with un-pretreated wastewater sludge. The highest biogas and methane yields were obtained from the co-digestion of 30 min microwave pre-treated wastewater sludges and olive pomace to be 0.46 L/g VS added and 0.32 L CH4/g VS added, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Inactivation of Clostridium difficile in sewage sludge by anaerobic thermophilic digestion.

    PubMed

    Xu, Changyun; Salsali, Hamidreza; Weese, Scott; Warriner, Keith

    2016-01-01

    There has been an increase in community-associated Clostridium difficile infections with biosolids derived from wastewater treatment being identified as one potential source. The current study evaluated the efficacy of thermophilic digestion in decreasing levels of C. difficile ribotype 078 associated with sewage sludge. Five isolates of C. difficile 078 were introduced (final density of 5 log CFU/g) into digested sludge and subjected to anaerobic digestion at mesophilic (36 or 42 °C) or thermophilic (55 °C) temperatures for up to 60 days. It was found that mesophilic digestion at 36 °C did not result in a significant reduction in C. difficile spore levels. In contrast, thermophilic sludge digestion reduced endospore levels at a rate of 0.19-2.68 log CFU/day, depending on the strain tested. The mechanism of lethality was indirect - by stimulating germination then inactivating the resultant vegetative cells. Acidification of sludge by adding acetic acid (6 g/L) inhibited the germination of spores regardless of the sludge digestion temperature. In conclusion, thermophilic digestion can be applied to reduce C. difficile in biosolids, thereby reducing the environmental burden of the enteric pathogen.

  5. Evaluation of different types of anaerobic seed sludge for the high rate anaerobic digestion of pig slurry in UASB reactors.

    PubMed

    Rico, Carlos; Montes, Jesús A; Rico, José Luis

    2017-08-01

    Three different types of anaerobic sludge (granular, thickened digestate and anaerobic sewage) were evaluated as seed inoculum sources for the high rate anaerobic digestion of pig slurry in UASB reactors. Granular sludge performance was optimal, allowing a high efficiency process yielding a volumetric methane production rate of 4.1LCH 4 L -1 d -1 at 1.5days HRT (0.248LCH 4 g -1 COD) at an organic loading rate of 16.4gCODL -1 d -1 . The thickened digestate sludge experimented flotation problems, thus resulting inappropriate for the UASB process. The anaerobic sewage sludge reactor experimented biomass wash-out, but allowed high process efficiency operation at 3days HRT, yielding a volumetric methane production rate of 1.7LCH 4 L -1 d -1 (0.236LCH 4 g -1 COD) at an organic loading rate of 7.2gCODL -1 d -1 . To guarantee the success of the UASB process, the settleable solids of the slurry must be previously removed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system.

    PubMed

    Kheradmand, S; Karimi-Jashni, A; Sartaj, M

    2010-06-01

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25g COD/L/d and 93% at loading rate of 3.37g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD(rem) for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheradmand, S.; Karimi-Jashni, A., E-mail: akarimi@shirazu.ac.i; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d.more » The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.« less

  8. Enhancing post aerobic digestion of full-scale anaerobically digested sludge using free nitrous acid pretreatment.

    PubMed

    Wang, Qilin; Zhou, Xu; Peng, Lai; Wang, Dongbo; Xie, Guo-Jun; Yuan, Zhiguo

    2016-05-01

    Post aerobic digestion of anaerobically digested sludge (ADS) has been extensively applied to the wastewater treatment plants to enhance sludge reduction. However, the degradation of ADS in the post aerobic digester itself is still limited. In this work, an innovative free nitrous acid (HNO2 or FNA)-based pretreatment approach is proposed to improve full-scale ADS degradation in post aerobic digester. The post aerobic digestion was conducted by using an activated sludge to aerobically digest ADS for 4 days. Degradations of the FNA-treated (treated at 1.0 and 2.0 mg N/L for 24 h) and untreated ADSs were then determined and compared. The ADS was degraded by 26% and 32%, respectively, in the 4-day post aerobic digestion period while being pretreated at 1.0 and 2.0 mg HNO2-N/L. In comparison, only 20% of the untreated ADS was degraded. Economic analysis demonstrated that the implementation of FNA pretreatment can be economically favourable or not depending on the sludge transport and disposal cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Energy self-sufficient sewage wastewater treatment plants: is optimized anaerobic sludge digestion the key?

    PubMed

    Jenicek, P; Kutil, J; Benes, O; Todt, V; Zabranska, J; Dohanyos, M

    2013-01-01

    The anaerobic digestion of primary and waste activated sludge generates biogas that can be converted into energy to power the operation of a sewage wastewater treatment plant (WWTP). But can the biogas generated by anaerobic sludge digestion ever completely satisfy the electricity requirements of a WWTP with 'standard' energy consumption (i.e. industrial pollution not treated, no external organic substrate added)? With this question in mind, we optimized biogas production at Prague's Central Wastewater Treatment Plant in the following ways: enhanced primary sludge separation; thickened waste activated sludge; implemented a lysate centrifuge; increased operational temperature; improved digester mixing. With these optimizations, biogas production increased significantly to 12.5 m(3) per population equivalent per year. In turn, this led to an equally significant increase in specific energy production from approximately 15 to 23.5 kWh per population equivalent per year. We compared these full-scale results with those obtained from WWTPs that are already energy self-sufficient, but have exceptionally low energy consumption. Both our results and our analysis suggest that, with the correct optimization of anaerobic digestion technology, even WWTPs with 'standard' energy consumption can either attain or come close to attaining energy self-sufficiency.

  10. Behaviour of emerging contaminants in sewage sludge after anaerobic digestion.

    PubMed

    Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F

    2016-11-01

    Nowadays, there is an increasing concern over the presence of contaminants in the aquatic environment, where they can be introduced from wastewater after their incomplete removal in the treatment plants. In this work, degradation of selected emerging pollutants in the aqueous and solid phases of sewage sludge has been investigated after anaerobic digestion using two different digesters: mesophilic and thermophilic. Initially, sludge samples were screened by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) for identification of emerging contaminants in the samples. In a second step, a target quantitative method based on LC coupled to tandem MS was applied for selected pollutants identified in the previous screening. The behaviour of the compounds under anaerobic conditions was studied estimating the degradation efficiency and distribution of compounds between both sludge phases. Irbesartan and benzoylecgonine seemed to be notably degraded in both phases of the sludge. Venlafaxine showed a significant concentration decrease in the aqueous phase in parallel to an increase in the solid phase. The majority of the compounds showed an increase of their concentrations in both phases after the digestion. Concentrations in the solid phase were commonly higher than in the aqueous for most contaminants, indicating that they were preferentially adsorbed onto the solid particles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature.

    PubMed

    Shao, Liming; Wang, Tianfeng; Li, Tianshui; Lü, Fan; He, Pinjing

    2013-07-01

    Aerobic and anaerobic digestion are popular methods for the treatment of waste activated sludge. However, the differences in degradation of sludge during aerobic and anaerobic digestion remain unclear. In this study, the sludge degradation during aerobic and anaerobic digestion was investigated at mesophilic temperature, focused on protein based on the degradation efficiency and degree of humification. The duration of aerobic and anaerobic digestion was about 90 days. The final degradation efficiency of volatile solid was 66.1 ± 1.6% and 66.4 ± 2.4% under aerobic and anaerobic conditions, respectively. The final degradation efficiency of protein was 67.5 ± 1.4% and 65.1 ± 2.6% under aerobic and anaerobic conditions, respectively. The degradation models of volatile solids were consistent with those of protein under both aerobic and anaerobic conditions. The solubility of protein under aerobic digestion was greater than that under anaerobic digestion. Moreover, the humification index of dissolved organic matter of aerobic digestion was greater than that during anaerobic digestion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    PubMed

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p < 0.05) at the conditions of C/N ratio 26:1, moisture content 80 %, and natural initial pH. Although high concentrations of ammonia-nitrogen (NH4-N, 1500 mg/kg wet weight) were formed during thermophilic digestion, there was no obvious inhibition occurred. The results indicated that rice straw can be used as carbon source for the dry co-digestion of sewage sludge under mesophilic and thermophilic conditions.

  13. Occurrence and Fate of Trace Contaminants during Aerobic and Anaerobic Sludge Digestion and Dewatering.

    PubMed

    Guerra, Paula; Kleywegt, Sonya; Payne, Michael; Svoboda, M Lewina; Lee, Hing-Biu; Reiner, Eric; Kolic, Terry; Metcalfe, Chris; Smyth, Shirley Anne

    2015-07-01

    Digestion of municipal wastewater biosolids is a necessary prerequisite to their beneficial use in land application, in order to protect public health and the receiving environment. In this study, 13 pharmaceuticals and personal care products (PPCPs), 11 musks, and 17 polybrominated diphenyl ethers were analyzed in 84 samples including primary sludge, waste activated sludge, digested biosolids, dewatered biosolids, and dewatering centrate or filtrate collected from five wastewater treatment plants with aerobic or anaerobic digestion. Aerobic digestion processes were sampled during both warm and cold temperatures to analyze seasonal differences. Among the studied compounds, triclosan, triclocarban, galaxolide, and BDE-209 were the substances most frequently detected under different treatment processes at levels up to 30,000 ng/g dry weight. Comparing aerobic and anaerobic digestion, it was observed that the levels of certain PPCPs and musks were significantly higher in anaerobically digested biosolids, relative to the residues from aerobic digestion. Therefore, aerobic digestion has the potential advantage of reducing levels of PPCPs and musks. On the other hand, anaerobic digestion has the advantage of recovering energy from the biosolids in the form of combustible gases while retaining the nutrient and soil conditioning value of this resource. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Survival rates of parasite eggs in sludge during aerobic and anaerobic digestion.

    PubMed Central

    Black, M I; Scarpino, P V; O'Donnell, C J; Meyer, K B; Jones, J V; Kaneshiro, E S

    1982-01-01

    The effects of mesothermic anaerobic or aerobic sludge digestion on survival of eggs from the roundworms Ascaris suum, toxocara canis, Trichuris vulpis, and Trichuris suis and from the rat tapeworm Hymenolepis diminuta were studied. Destruction of eggs throughout a 15-day treatment period, as well as their viabilities after reisolation, was analyzed. The laboratory model digesters used in this study were maintained at a 15-day retention schedule, partially simulating a continuously operating system. Ascaris eggs were destroyed in the anaerobic (23%) or aerobic (38%) digesters, and 11% Trichuris eggs were destroyed in the aerobic digesters. Trichuris eggs in anaerobic digesters and Toxocara eggs in either anaerobic or aerobic digesters were not destroyed. Destruction of eggs in digesters was correlated with the state of the eggs before subjection to the treatment processes; i.e., some Ascaris and Trichuris eggs were already embryonated in host intestinal contents or feces and hence past their most resistant stage. The viabilities of Ascaris and Toxocara eggs that survived the digestion processes were greater in anaerobically treated than in aerobically treated material. Eggs from Hymenolepis were nonviable before use in the experiments. However, they were more effectively destroyed in aerobic digesters than in anaerobic digesters. PMID:6891199

  15. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization.

    PubMed

    Fang, Wei; Zhang, Panyue; Zhang, Guangming; Jin, Shuguang; Li, Dongyi; Zhang, Meixia; Xu, Xiangzhe

    2014-09-01

    To improve anaerobic digestion efficiency, combination pretreatment of alkaline and high pressure homogenization was applied to pretreat sewage sludge. Effect of alkaline dosage on anaerobic sludge digestion was investigated in detail. SCOD of sludge supernatant significantly increased with the alkaline dosage increase after the combined pretreatment because of sludge disintegration. Organics were significantly degraded after the anaerobic digestion, and the maximal SCOD, TCOD and VS removal was 73.5%, 61.3% and 43.5%, respectively. Cumulative biogas production, methane content in biogas and biogas production rate obviously increased with the alkaline dosage increase. Considering both the biogas production and alkaline dosage, the optimal alkaline dosage was selected as 0.04 mol/L. Relationships between biogas production and sludge disintegration showed that the accumulative biogas was mainly enhanced by the sludge disintegration. The methane yield linearly increased with the DDCOD increase as Methane yield (ml/gVS)=4.66 DDCOD-9.69. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Drying or anaerobic digestion of fish sludge: Nitrogen fertilisation effects and logistics.

    PubMed

    Brod, Eva; Oppen, Johan; Kristoffersen, Annbjørg Øverli; Haraldsen, Trond Knapp; Krogstad, Tore

    2017-12-01

    Application of fish sludge as fertiliser to agricultural land can contribute to closing nutrient cycles in fish farming. The effect of different treatment technologies on the nitrogen fertilisation effects of fish sludge was studied by a bioassay with barley (Hordeum vulgare), an incubation and a field experiment. Dried fish sludge resulted in relative agronomic efficiency of 50-80% compared with mineral fertiliser. The anaerobic digestate based on fish sludge (20 vol%) and dairy manure did not increase nitrogen uptake in barley. Increasing the ratio of fish sludge in the digestate increased the fertilisation effect, but requires optimisation of the biogas process. A simple logistics analysis conducted for a case hatchery showed that on-site drying and co-digestion of fish sludge in a central biogas plant can be regarded as equal in terms of costs. Norway can become an exporter of fish sludge-based recycling fertilisers if current regulations are modified to facilitate nutrient recycling.

  17. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  18. Survey of the Anaerobic Biodegradation Potential of Organic Chemicals in Digesting Sludge

    PubMed Central

    Battersby, Nigel S.; Wilson, Valerie

    1989-01-01

    The degradation potential of 77 organic chemicals under methanogenic conditions was examined with an anaerobic digesting sludge from the United Kingdom. Degradation was assessed in terms of net total gas (CH4 plus CO2) produced, expressed as a percentage of the theoretical production (ThGP). The compounds tested were selected from various chemical groups and included substituted phenols and benzoates, pesticides, phthalic acid esters, homocyclic and heterocyclic ring compounds, glycols, and monosubstituted benzenes. The results obtained were in good agreement with published surveys of biodegradability in U.S. digesting sludges and other methanogenic environments. In general, the presence of chloro or nitro groups inhibited anaerobic gas production, while carboxyl and hydroxyl groups facilitated biodegradation. The relationship between substituent position and susceptibility to methanogenic degradation was compound dependent. The following chemicals were completely degraded (≥80% ThGP) at a concentration of 50 mg of carbon per liter: phenol, 2-aminophenol, 4-cresol, catechol, sodium benzoate, 4-aminobenzoic acid, 3-chlorobenzoic acid, phthalic acid, ethylene glycol, diethylene glycol, triethylene glycol, sodium stearate, and quinoline. 3-Cresol, 4-chlorobenzoic acid, dimethyl phthalate, and pyridine were partially degraded. Although the remaining chemicals tested were either persistent or toxic, their behavior may differ at more environmentally realistic chemical-to-biomass ratios. Our findings suggest that biodegradability assessments made with sludge from one source can be extrapolated to sludge from another source with a reasonable degree of confidence and should help in predicting the fate of an organic chemical during the anaerobic digestion of sewage sludge. PMID:16347851

  19. Comparative Analysis of Performance and Microbial Characteristics Between High-Solid and Low-Solid Anaerobic Digestion of Sewage Sludge Under Mesophilic Conditions.

    PubMed

    Lu, Qin; Yi, Jing; Yang, Dianhai

    2016-01-01

    High-solid anaerobic digestion of sewage sludge achieves highly efficient volatile solid reduction, and production of volatile fatty acid (VFA) and methane compared with conventional low-solid anaerobic digestion. In this study, the potential mechanisms of the better performance in high-solid anaerobic digestion of sewage sludge were investigated by using 454 high-throughput pyrosequencing and real-time PCR to analyze the microbial characteristics in sewage sludge fermentation reactors. The results obtained by 454 high-throughput pyrosequencing revealed that the phyla Chloroflexi, Bacteroidetes, and Firmicutes were the dominant functional microorganisms in high-solid and low-solid anaerobic systems. Meanwhile, the real-time PCR assays showed that high-solid anaerobic digestion significantly increased the number of total bacteria, which enhanced the hydrolysis and acidification of sewage sludge. Further study indicated that the number of total archaea (dominated by Methanosarcina) in a high-solid anaerobic fermentation reactor was also higher than that in a low-solid reactor, resulting in higher VFA consumption and methane production. Hence, the increased key bacteria and methanogenic archaea involved in sewage sludge hydrolysis, acidification, and methanogenesis resulted in the better performance of high-solid anaerobic sewage sludge fermentation.

  20. Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion.

    PubMed

    Wei, Wei; Wang, Qilin; Zhang, Liguo; Laloo, Andrew; Duan, Haoran; Batstone, Damien J; Yuan, Zhiguo

    2018-03-01

    Previous work has demonstrated that pre-treatment of waste activated sludge (WAS) with free nitrous acid (FNA i.e. HNO 2 ) enhances the biodegradability of WAS, identified by a 20-50% increase in specific methane production in biochemical methane potential (BMP) tests. This suggests that FNA pre-treatment would enhance the destruction of volatile solids (VS) in an anaerobic sludge digester, and reduce overall sludge disposal costs, provided that the dewaterability of the digested sludge is not negatively affected. This study experimentally evaluates the impact of FNA pre-treatment on the VS destruction in anaerobic sludge digestion and on the dewaterability of digested sludge, using continuously operated bench-scale anaerobic digesters. Pre-treatment of full-scale WAS for 24 h at an FNA concentration of 1.8 mg NN/L enhanced VS destruction by 17 ± 1% (from 29.2 ± 0.9% to 34.2 ± 1.1%) and increased dewaterability (centrifuge test) from 12.4 ± 0.4% to 14.1 ± 0.4%. Supporting the VS destruction data, methane production increased by 16 ± 1%. Biochemical methane potential tests indicated that the final digestate stability was also improved with a lower potential from FNA treated digestate. Further, a 2.1 ± 0.2 log improvement in pathogen reduction was also achieved. With inorganic solids representing 15-22% of the full-scale WAS used, FNA pre-treatment resulted in a 16-17% reduction in the volume of dewatered sludge for final disposal. This results in significantly reduced costs as assessed by economic analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge.

    PubMed

    Appels, Lise; Van Assche, Ado; Willems, Kris; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2011-03-01

    Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Degradation properties of protein and carbohydrate during sludge anaerobic digestion.

    PubMed

    Yang, Guang; Zhang, Panyue; Zhang, Guangming; Wang, Yuanyuan; Yang, Anqi

    2015-09-01

    Degradation of protein and carbohydrate is vital for sludge anaerobic digestion performance. However, few studies focused on degradation properties of protein and carbohydrate. This study investigated detailed degradation properties of sludge protein and carbohydrate in order to gain insight into organics removal during anaerobic digestion. Results showed that carbohydrate was more efficiently degraded than protein and was degraded prior to protein. The final removal efficiencies of carbohydrate and protein were 49.7% and 32.2%, respectively. The first 3 days were a lag phase for protein degradation since rapid carbohydrate degradation in this phase led to repression of protease formation. Kinetics results showed that, after initial lag phase, protein degradation followed the first-order kinetic with rate constants of 0.0197 and 0.0018 d(-1) during later rapid degradation phase and slow degradation phase, respectively. Carbohydrate degradation also followed the first-order kinetics with a rate constant of 0.007 d(-1) after initial quick degradation phase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge.

    PubMed

    Borowski, Sebastian; Domański, Jarosław; Weatherley, Laurence

    2014-02-01

    The anaerobic digestion of municipal sewage sludge (SS) with swine manure (SM) and poultry manure (PM) was undertaken. It was found that a mixture of sewage sludge with a 30% addition of swine manure gave around 400 dm(3)/kg VS of biogas, whereas the maximal biogas yield from ternary mixture (SS:SM:PM=70:20:10 by weight) was only 336 dm(3)/kg VS. An inhibition of methanogenesis by free ammonia was observed in poultry manure experiments. The anaerobic digestion was inefficient in pathogen inactivation as the reduction in the number of E. coli an Enterobacteriaceae was only by one logarithmic unit. A substantial portion of pathogens was also released into the supernatant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion.

    PubMed

    Zhao, Zhiqiang; Zhang, Yaobin; Wang, Liying; Quan, Xie

    2015-06-09

    Direct interspecies electron transfer (DIET) between Geobacter species and Methanosaeta species is an alternative to interspecies hydrogen transfer (IHT) in anaerobic digester, which however has not been established in anaerobic sludge digestion as well as in bioelectrochemical systems yet. In this study, it was found that over 50% of methane production of an electric-anaerobic sludge digester was resulted from unknown pathway. Pyrosequencing analysis revealed that Geobacter species were significantly enriched with electrodes. Fluorescence in situ hybridization (FISH) further confirmed that the dominant Geobacter species enriched belonged to Geobacter metallireducens. Together with Methanosaeta species prevailing in the microbial communities, the direct electron exchange between Geobacter species and Methanosaeta species might be an important reason for the "unknown" increase of methane production. Conductivity of the sludge in this electric-anaerobic digester was about 30% higher than that of the sludge in a control digester without electrodes. This study not only revealed for the first time that DIET might be the important mechanism on the methanogenesis of bioelectrochemical system, but also provided a new method to enhance DIET by means of bioelectric enrichment of Geobacter species.

  5. Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion

    PubMed Central

    Zhao, Zhiqiang; Zhang, Yaobin; Wang, Liying; Quan, Xie

    2015-01-01

    Direct interspecies electron transfer (DIET) between Geobacter species and Methanosaeta species is an alternative to interspecies hydrogen transfer (IHT) in anaerobic digester, which however has not been established in anaerobic sludge digestion as well as in bioelectrochemical systems yet. In this study, it was found that over 50% of methane production of an electric-anaerobic sludge digester was resulted from unknown pathway. Pyrosequencing analysis revealed that Geobacter species were significantly enriched with electrodes. Fluorescence in situ hybridization (FISH) further confirmed that the dominant Geobacter species enriched belonged to Geobacter metallireducens. Together with Methanosaeta species prevailing in the microbial communities, the direct electron exchange between Geobacter species and Methanosaeta species might be an important reason for the “unknown” increase of methane production. Conductivity of the sludge in this electric-anaerobic digester was about 30% higher than that of the sludge in a control digester without electrodes. This study not only revealed for the first time that DIET might be the important mechanism on the methanogenesis of bioelectrochemical system, but also provided a new method to enhance DIET by means of bioelectric enrichment of Geobacter species. PMID:26057581

  6. On-Site Fecal Sludge Treatment with the Anaerobic Digestion Pasteurization Latrine.

    PubMed

    Forbis-Stokes, Aaron A; O'Meara, Patrick F; Mugo, Wangare; Simiyu, Gelas M; Deshusses, Marc A

    2016-11-01

    The Anaerobic Digestion Pasteurization Latrine (ADPL) is a self-contained and energy neutral on-site sanitation system using anaerobic digestion of fecal sludge to generate biogas and then uses the biogas to pasteurize the digester effluent at 65-75°C to produce a safe effluent that can be reused locally as a fertilizer. Two ADPL systems were installed on residential plots with 17 and 35 residents in a peri-urban area outside of Eldoret, Kenya. Each system comprised three toilets built above a floating dome digester and one heat pasteurization system to sanitize the digested effluent. ADPLs are simple systems, with no moving parts and relying on gravity-induced flows. Adoption at the two sites was successful, and residents reported that the systems had little to no odor or flies. ADPLs were monitored for biogas production and temperatures in the pasteurization system. ADPLs serving 17 and 35 residents produced on average 16 and 11 L biogas /person/day (maximum of 20 and 15 L biogas /p/d), respectively. The temperature in the sterilization system was greater than 65°C on 58% and 87% of sampling days during the most stable period of operation. Treated effluent was analyzed periodically for chemical oxygen demand (COD), biochemical oxygen demand (BOD), total ammonia nitrogen (TAN), pH, and fecal coliform (FC). On average, the effluent at the two locations contained 4,540 and 6,450 mg COD/L (an 85% or 89% reduction of the estimated input), 2,050 and 3,970 mg BOD/L, and 2,420 and 4,760 mg NH 3 -N, respectively, and greater than 5 log reductions of FC (nondetectable) in the sterilization tank. Results from this field study show that anaerobic digestion of minimally diluted fecal sludge can provide enough energy to pasteurize digester effluent and that the ADPL may be a suitable option for on-site fecal sludge treatment.

  7. On-Site Fecal Sludge Treatment with the Anaerobic Digestion Pasteurization Latrine

    PubMed Central

    Forbis-Stokes, Aaron A.; O'Meara, Patrick F.; Mugo, Wangare; Simiyu, Gelas M.; Deshusses, Marc A.

    2016-01-01

    Abstract The Anaerobic Digestion Pasteurization Latrine (ADPL) is a self-contained and energy neutral on-site sanitation system using anaerobic digestion of fecal sludge to generate biogas and then uses the biogas to pasteurize the digester effluent at 65–75°C to produce a safe effluent that can be reused locally as a fertilizer. Two ADPL systems were installed on residential plots with 17 and 35 residents in a peri-urban area outside of Eldoret, Kenya. Each system comprised three toilets built above a floating dome digester and one heat pasteurization system to sanitize the digested effluent. ADPLs are simple systems, with no moving parts and relying on gravity-induced flows. Adoption at the two sites was successful, and residents reported that the systems had little to no odor or flies. ADPLs were monitored for biogas production and temperatures in the pasteurization system. ADPLs serving 17 and 35 residents produced on average 16 and 11 Lbiogas/person/day (maximum of 20 and 15 Lbiogas/p/d), respectively. The temperature in the sterilization system was greater than 65°C on 58% and 87% of sampling days during the most stable period of operation. Treated effluent was analyzed periodically for chemical oxygen demand (COD), biochemical oxygen demand (BOD), total ammonia nitrogen (TAN), pH, and fecal coliform (FC). On average, the effluent at the two locations contained 4,540 and 6,450 mg COD/L (an 85% or 89% reduction of the estimated input), 2,050 and 3,970 mg BOD/L, and 2,420 and 4,760 mg NH3-N, respectively, and greater than 5 log reductions of FC (nondetectable) in the sterilization tank. Results from this field study show that anaerobic digestion of minimally diluted fecal sludge can provide enough energy to pasteurize digester effluent and that the ADPL may be a suitable option for on-site fecal sludge treatment. PMID:27924135

  8. Anaerobic co-digestion of sewage sludge and food waste using temperature-phased anaerobic digestion process.

    PubMed

    Kim, H W; Han, S K; Shin, H S

    2004-01-01

    This study was performed to overcome the low efficiency of anaerobic digestion of sewage sludge and food waste by combining temperature-phased digestion, sequencing batch operation, and co-digestion technology. It was demonstrated that the temperature-phased anaerobic sequencing batch reactor (TPASBR) system for the co-digestion of sewage sludge and food waste resulted in enhanced volatile solids (VS) reduction and methane production rate. At the organic loading rate (OLR) of 2.7 g VS/l/d, the TPASBR system showed the higher VS reduction (61.3%), CH4 yield (0.28 l/g VS(added)) and CH4 production rate (0.41 l CH4/l/d) than those (0.29 l CH4/l/d) of the mesophilic two-stage ASBR (MTSASBR). In the specific methanogenic activity (SMA) tests on thermophilic biomass of the TPASBR system, the average SMA of acetate (93 ml CH4/gVSS/d) was much higher than those of propionate (46 ml CH4/g VSS/d) and butyrate (76 ml CH4/g VSS/d). Also, higher specific hydrolytic activity (SHA, 217 mg COD/g VSS/d) of the biomass supported fast hydrolysis under thermophilic conditions. The track study revealed that the most active period of the 24 h cycle was between 6 and 12 h. The enhanced performance of the TPASBR system could be attributed to longer solids retention time, fast hydrolysis, higher CH4 conversion rate, and balanced nutrient condition of co-substrate. It was verified that this combination could be a promising and practical alternative for the simultaneous recycling of two types of organic fraction of municipal solid waste (OFMSW) with high stability.

  9. Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: A review.

    PubMed

    Veluchamy, C; Kalamdhad, Ajay S

    2017-12-01

    Pulp and paper industry is one of the most polluting, energy and water intensive industries in the world. Produced pulp and paper mill sludge (PPMS) faces a major problem for handling and its management. An anaerobic digestion has become an alternative source. This review provides a detailed summary of anaerobic digestion of PPMS - An overview of the developments and improvement opportunities. This paper explores the different pretreatment methods to enhance biogas production from the PPMS. First, the paper gives an overview of PPMS production, and then it reviews PPMS as a substrate for anaerobic digestion with or without pretreatment. Finally, it discuss the optimal condition and concentration of organic and inorganic compounds required for the anaerobic metabolic activity. Future research should focus on the combination of different pretreatment technologies, relationship between sludge composition, reactor design and its operation, and microbial community dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Combined mesophilic anaerobic and thermophilic aerobic digestion process: effect on sludge degradation and variation of sludge property.

    PubMed

    Cheng, Jiehong; Ji, Yuehong; Kong, Feng; Chen, Xian

    2013-12-01

    One-stage autothermal thermophilic aerobic digestion (ATAD) is effective for the reduction of volatile solids (VSs) and pathogen in sewage sludges. A novel process of combining mesophilic (<35 °C) anaerobic digestion with a thermophilic (55 °C) aerobic digestion process (AN/TAD) occurred in a one-stage digester, which was designed for aeration energy savings. The efficiency of sludge degradation and variation of sludge properties by batch experiments were evaluated for the AN/TAD digester with an effective volume of 23 L for 30 days compared with conventional thermophilic aerobic digestion (TAD). The AN/TAD system can efficiently achieve sludge stabilization on the 16th day with a VS removal rate of 38.1 %. The AN/TAD system was operated at lower ORP values in a digestion period with higher contents of total organic compounds, volatile fatty acids, protein, and polysaccharide in the soluble phase than those of the TAD system, which can rapidly decreased and had low values in the late period of digestion for the AN/TAD system. In the AN/TAD system, intracellular substances had lysis because of initial hydrolytic acidification.

  11. High-rate anaerobic co-digestion of kraft mill fibre sludge and activated sludge by CSTRs with sludge recirculation.

    PubMed

    Ekstrand, Eva-Maria; Karlsson, Marielle; Truong, Xu-Bin; Björn, Annika; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2016-10-01

    Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for the biogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibre sludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation. Two lab-scale reactors (4L) were run for 800days, one on fibre sludge (R1), and the other on fibre sludge and activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, the Ca:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abated by short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robust conditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4g volatile solids (VS)L(-1)day(-1), a hydraulic retention time of 4days and a methane production of 230±10NmL per g VS. Copyright © 2016. Published by Elsevier Ltd.

  12. Anaerobic co-digestion of aircraft deicing fluid and municipal wastewater sludge.

    PubMed

    Zitomer, D; Ferguson, N; McGrady, K; Schilling, J

    2001-01-01

    At many airports, aircraft deicing fluid and precipitation mix, becoming aircraft deicing runoff having a 5-day biochemical oxygen demand (BOD5) of 10(2) to 10(6) mg/L. Publicly owned treatment works can be used for aerobic biological treatment; however, it may be more economical to use anaerobic digesters to codigest a mixture of aircraft deicing fluid and sludge. The objectives of this investigation were to determine benefits and appropriate propylene glycol aircraft deicing fluid loadings to anaerobic codigesters. Results demonstrate aircraft deicing fluid can be successfully codigested to produce methane; supernatant BOD5 and Kjeldahl nitrogen concentration were not higher in codigesters compared to a conventional digester. Aircraft deicing fluid loadings as high as 1.6 g chemical oxygen demand (COD)/L x d were sustainable in codigesters, whereas system fed only aircraft deicing fluid with nutrients and alkalinity achieved a loading of 0.65 g COD/L x d. The sludge used increased digester alkalinity and provided nitrogen, iron, nickel, cobalt, and biomass required for methanogenesis. The deicer provides organics for increased methane production.

  13. Anaerobic digestion of chicken feather with swine manure or slaughterhouse sludge for biogas production.

    PubMed

    Xia, Yun; Massé, Daniel I; McAllister, Tim A; Beaulieu, Carole; Ungerfeld, Emilio

    2012-03-01

    Biogas production from anaerobic digestion of chicken feathers with swine manure or slaughterhouse sludge was assessed in two separate experiments. Ground feathers without any pre-treatment were added to 42-L digesters inoculated with swine manure or slaughterhouse sludge, representing 37% and 23% of total solids, respectively and incubated at 25°C in batch mode. Compared to the control without feather addition, total CH(4) production increased by 130% (P<0.001) and 110% (P=0.09) in the swine manure and the slaughterhouse sludge digesters, respectively. Mixed liquor NH(4)N concentration increased (P<0.001) from 4.8 and 3.1g/L at the beginning of the digestion to 6.9 and 3.5 g/L at the end of digestion in the swine manure and the slaughterhouse sludge digesters, respectively. The fraction of proteolytic microorganisms increased (P<0.001) during the digestion from 12.5% to 14.5% and 11.3% to 13.0% in the swine manure and the slaughterhouse sludge digesters with feather addition, respectively, but decreased in the controls. These results are reflective of feather digestion. Feather addition did not affect CH(4) yields of the swine manure digesters (P=0.082) and the slaughterhouse sludge digesters (P=0.21), indicating that feathers can be digested together with swine manure or slaughterhouse sludge without negatively affecting the digestion of swine manure and slaughterhouse sludge. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    NASA Astrophysics Data System (ADS)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  15. Anaerobic sludge digestion in the presence of lactobacillus additive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Klass, D.L.

    1980-01-01

    A laboratory evaluation of a lactobacillus fermentation product was performed to study its effects as an additive on the anaerobic digestion of sewage sludge under conventional and overloaded high-rate conditions. The overloaded conditions were those experienced in commercial municipal digesters. It was concluded from this work that the use of the additive at low concentrations permits digester operation at least up to double the loading of untreated digesters and at higher methane yields and volatile solids reductions without affecting effluent quality. The additive also imparts iproved digester stability and rapid response to loading rate and detention time excursions and upsets.more » The beneficial effets of the additive observed in the laboratory remain to be established with other feeds such as biomass, and in large-scale commercial digestion tests that are now in progress.« less

  16. Microbial Insight into a Pilot-Scale Enhanced Two-Stage High-Solid Anaerobic Digestion System Treating Waste Activated Sludge.

    PubMed

    Wu, Jing; Cao, Zhiping; Hu, Yuying; Wang, Xiaolu; Wang, Guangqi; Zuo, Jiane; Wang, Kaijun; Qian, Yi

    2017-11-30

    High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process "thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)". Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H₂ and CO₂ to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance.

  17. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    PubMed Central

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-01-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538

  18. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    NASA Astrophysics Data System (ADS)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-12-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  19. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron.

    PubMed

    Zhang, Yaobin; Feng, Yinghong; Yu, Qilin; Xu, Zibin; Quan, Xie

    2014-05-01

    Anaerobic digestion of waste activated sludge usually requires pretreatment procedure to improve the bioavailability of sludge, which involves considerable energy and high expenditures. This study proposes a cost-effective method for enhanced anaerobic digestion of sludge without a pretreatment by directly adding iron into the digester. The results showed that addition of Fe(0) powder could enhance 14.46% methane yield, and Fe scrap (clean scrap) could further enhance methane yield (improving rate 21.28%) because the scrap has better mass transfer efficiency with sludge and liquid than Fe(0) powder. The scrap of Fe with rust (rusty scrap) could induce microbial Fe(III) reduction, which resulted in achieving the highest methane yield (improving rate 29.51%), and the reduction rate of volatile suspended solids (VSS) was also highest (48.27%) among Fe powder, clean scrap and rusty scrap. PCR-DGGE proved that the addition of rusty scrap could enhance diversity of acetobacteria and enrich iron-reducing bacteria to enhance degradation of complex substrates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    PubMed Central

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-01-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS. PMID:27725704

  1. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    NASA Astrophysics Data System (ADS)

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-10-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS.

  2. Anaerobic sludge digestion with a biocatalytic additive. [Lactobacillus acidophilus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Henry, M.P.; Fedde, P.A.

    1982-01-01

    Aimed at improving the process operating characteristics of anaerobic digestion for sludge stabilization and SNG production, this study evaluates the effects of a lactobacillus additive under normal, variable, and overload conditions. This whey fermentation product of an acid-tolerant strain of L. acidophilus fortified with CoCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. Data indicate that the biochemical additive increases methane yield, gas production rate, and volatile solids reduction; decreases volatile acids accumulation; enhances the digester buffer capacity; and improves the fertilizer value andmore » dewatering characteristics of the digested residue. Digester capacities could be potentially doubled when the feed is so treated. Results of field tests with six full-scale digesters confirm observations made with bench-scale digesters.« less

  3. Microwave Thermal Hydrolysis Of Sewage Sludge As A Pretreatment Stage For Anaerobic Digestion

    NASA Astrophysics Data System (ADS)

    Qiao, W.; Wang, W.; Xun, R.

    2008-02-01

    This article focuses on the effects of microwave thermal hydrolysis on sewage sludge anaerobic digestion. Volatile suspended solid (VSS) and COD solubilization of treated sludge were investigated. It was found that the microwave hydrolysis provided a rapid and efficient process to release organics from sludge. The increase of organic dissolution ratio was not obvious when holding time was over 5 min. The effect of the VSS solubilization was mainly dependent on temperature. The highest value of VSS dissolving ratio, 36.4%, was obtained at 170 °C for 30 min. COD dissolving ratio was about 25% at 170 °C. BMP test of excess sludge and mixture of primary and excess sludge proved the increase of methane production. Total biogas production of microwave treated mixture sludge increased by 12.9% to 20.2% over control after 30 days digestion. For excess sludge, biogas production was 11.1% to 25.9% higher than untreated sludge.

  4. Effects of stabilization and sludge properties in a combined process of anaerobic digestion and thermophilic aerobic digestion.

    PubMed

    Cheng, Jiehong; Kong, Feng; Zhu, Jun; Wu, Xiao

    2015-01-01

    A novel process of combining mesophilic (<35°C) anaerobic digestion with the thermophilic (55°C) aerobic digestion process (AN-TAD) was designed to stabilize sludge and economize aeration energy. Effects of stabilization and sludge properties for AN-TAD process were evaluated by batch experiments during a 25 d digestion period. The sludges digested by AN-TAD process achieved the requirements for Class-A sludge standard. The sludge at total solid (TS) 5.4% had the highest value of decay coefficient K(d(55)) at 0.1851 d(-1) among the three TS contents according to the first-order kinetics equation. Oxidation reduction potential at below 0 mV remained for sludges at TSs of 6.5%, 5.4%, and 4.6% for at least 15 d because of initial hydrolytic-acidification. Concentrations of nitrogen and phosphorus in sludges at TSs of 6.5%, 5.4%, and 4.6% gradually increased up to the highest values in the supernatant during the initial 13 d, causing low utilized value in land application as a fertilizer. Prolonging the retention time for more than 15 d was considered because soluble phosphorus precipitated in the solid phase. High content of soluble organic matters of the soluble chemical oxygen demand, protein, and polysaccharide in the supernatant caused deterioration in sludge dewaterability rates.

  5. Sequential anaerobic/aerobic digestion of waste activated sludge: analysis of the process performance and kinetic study.

    PubMed

    Tomei, M Concetta; Rita, Sara; Mininni, Giuseppe

    2011-12-15

    Sequential anaerobic-aerobic digestion was applied to waste activated sludge (WAS) of a full scale wastewater treatment plant. The study was performed with the objective of testing the sequential digestion process on WAS, which is characterized by worse digestibility in comparison with the mixed sludge. Process performance was evaluated in terms of biogas production, volatile solids (VS) and COD reduction, and patterns of biopolymers (proteins and polysaccharides) in the subsequent digestion stages. VS removal efficiency of 40%, in the anaerobic phase, and an additional removal of 26%, in the aerobic one, were observed. For total COD removal efficiencies of 35% and 25% for anaerobic and aerobic stage respectively, were obtained. Kinetics of VS degradation process was analyzed by assuming a first order equation with respect to VS concentration. Evaluated kinetic parameters were 0.44 ± 0.20 d(-1) and 0.25 ± 0.15 d(-1) for the anaerobic stage and aerobic stage, respectively. With regard to biopolymers, in the anaerobic phase the content of proteins and polysaccharides increased to 50% and 69%, respectively, whereas in the subsequent aerobic phase, a decrease of 71% for proteins and 67% for polysaccharides was observed. The average specific biogas production 0.74 m(3)/(kg VS destroyed), was in the range of values reported in the specialized literature for conventional anaerobic mesophilic WAS digestion. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Comparative evaluation of anaerobic digestion for sewage sludge and various organic wastes with simple modeling.

    PubMed

    Hidaka, Taira; Wang, Feng; Tsumori, Jun

    2015-09-01

    Anaerobic co-digestion of sewage sludge and other organic wastes, such as kitchen garbage, food waste, and agricultural waste, at a wastewater treatment plant (WWTP) is a promising method for both energy and material recovery. Substrate characteristics and the anaerobic digestion performance of sewage sludge and various organic wastes were compared using experiments and modeling. Co-digestion improved the value of digested sewage sludge as a fertilizer. The relationship between total and soluble elemental concentrations was correlated with the periodic table: most Na and K (alkali metals) were soluble, and around 20-40% of Mg and around 10-20% of Ca (alkaline earth metals) were soluble. The ratio of biodegradable chemical oxygen demand of organic wastes was 65-90%. The methane conversion ratio and methane production rate under mesophilic conditions were evaluated using a simplified mathematical model. There was reasonably close agreement between the model simulations and the experimental results in terms of methane production and nitrogen concentration. These results provide valuable information and indicate that the model can be used as a pre-evaluation tool to facilitate the introduction of co-digestion at WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Partition and fate analysis of fluoroquinolones in sewage sludge during anaerobic digestion with thermal hydrolysis pretreatment.

    PubMed

    Li, Ning; Liu, Huajie; Xue, Yonggang; Wang, Hongyang; Dai, Xiaohu

    2017-03-01

    Fluoroquinolones (FQs) are broad-spectrum synthetic antibiotics that play an important role in the treatment of serious bacterial infections. FQs can reach wastewater treatment plants from different routes, and eventually accumulate in activated sludge. In this study, a solid-phase extraction (SPE) with HPLC-FLD detection method was utilized to investigate the partition and fate of FQs in digested sludge when thermal hydrolysis was used as pretreatment. As a result, thermal hydrolysis showed minor effects on the fate of FQs in batch anaerobic digestion processes, while anaerobic digestion alone removed >60% FQs and finally assisted in the mitigation of the inhibitory effects to microbial communities. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: Analysis of process performance and hygienization potential.

    PubMed

    Tomei, M Concetta; Mosca Angelucci, Domenica; Levantesi, Caterina

    2016-03-01

    Sequential anaerobic-aerobic digestion has been demonstrated to be effective for enhanced sludge stabilization, in terms of increased solid reduction and improvement of sludge dewaterability. In this study, we propose a modified version of the sequential anaerobic-aerobic digestion process by operating the aerobic step under mesophilic conditions (T=37 °C), in order to improve the aerobic degradation kinetics of soluble and particulate chemical oxygen demand (COD). Process performance has been assessed in terms of "classical parameters" such as volatile solids (VS) removal, biogas production, COD removal, nitrogen species, and polysaccharide and protein fate. The aerobic step was operated under intermittent aeration to achieve nitrogen removal. Aerobic mesophilic conditions consistently increased VS removal, providing 32% additional removal vs. 20% at 20 °C. Similar results were obtained for nitrogen removal, increasing from 64% up to 99% at the higher temperature. Improved sludge dewaterability was also observed with a capillary suction time decrease of ~50% during the mesophilic aerobic step. This finding may be attributable to the decreased protein content in the aerobic digested sludge. The post-aerobic digestion exerted a positive effect on the reduction of microbial indicators while no consistent improvement of hygienization related to the increased temperature was observed. The techno-economic analysis of the proposed digestion layout showed a net cost saving for sludge disposal estimated in the range of 28-35% in comparison to the single-phase anaerobic digestion. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    PubMed Central

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-01-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464

  10. Microbial Insight into a Pilot-Scale Enhanced Two-Stage High-Solid Anaerobic Digestion System Treating Waste Activated Sludge

    PubMed Central

    Wu, Jing; Cao, Zhiping; Hu, Yuying; Wang, Xiaolu; Wang, Guangqi; Zuo, Jiane; Wang, Kaijun; Qian, Yi

    2017-01-01

    High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process “thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)”. Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H2 and CO2 to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance. PMID:29189754

  11. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example.

    PubMed

    Guo, Qia; Dai, Xiaohu

    2017-11-01

    With the popularization of municipal sewage treatment facilities, the improvement of sewage treatment efficiency and the deepening degree of sewage treatment, the sludge production of sewage plant has been sharply increased. Carbon emission during the process of municipal sewage treatment and disposal has become one of the important sources of greenhouse gases that cause greenhouse effect. How to reduce carbon dioxide emissions during sewage treatment and disposal process is of great significance for reducing air pollution. Kitchen waste and excess sludge, as two important organic wastes, once uses anaerobic synergetic digestion technology in the treatment process can on the one hand, avoid instability of sludge individual anaerobic digestion, improve sludge degradation rate and marsh gas production rate, and on the other hand, help increase the reduction of carbon dioxide emissions to a great extent. The paper uses material balance method, analyzes and calculates the carbon dioxide emissions from kitchen waste and sludge disposed by the anaerobic synergetic digestion technology, compares the anaerobic synergetic digestion technology with traditional sludge sanitary landfill technology and works out the carbon dioxide emission reductions after synergetic digestion. It takes the kitchen waste and sludge synergetic digestion engineering project of Zhenjiang city in Jiangsu province as an example, makes material balance analysis using concrete data and works out the carbon dioxide daily emission reductions. The paper analyzes the actual situation of emission reduction by comparing the data, and found that the synergetic digestion of kitchen waste and sludge can effectively reduce the carbon dioxide emission, and the reduction is obvious especially compared with that of sludge sanitary landfill, which has a certain effect on whether to promote the use of the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Bacterial survival and association with sludge flocs during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions.

    PubMed Central

    Farrah, S R; Bitton, G

    1983-01-01

    The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant. PMID:6401978

  13. Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment.

    PubMed

    Serrano, A; Siles, J A; Martín, M A; Chica, A F; Estévez-Pastor, F S; Toro-Baptista, E

    2016-07-15

    Sewage sludge generated in the activated sludge process is a polluting waste that must be treated adequately to avoid important environmental impacts. Traditional management methods, such as landfill disposal or incineration, are being ruled out due to the high content in heavy metal, pathogens, micropolluting compounds of the sewage sludge and the lack of use of resources. Anaerobic digestion could be an interesting treatment, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A microwave pre-treatment at pilot scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. The operational variables of microwave pre-treatment (power and specific energy applied) were optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) under different pre-treatment conditions. According to the variation in the sCOD and TN concentration, the optimal operation variables of the pre-treatment were fixed at 20,000 J/g TS and 700 W. A subsequent anaerobic digestion test was carried out with raw and pre-treated sewage sludge under different conditions (20,000 J/g TS and 700 W; 20,000 J/g TS and 400 W; and 30,000 J/g TS and 400 W). Although stability was maintained throughout the process, the enhancement in the total methane yield was not high (up to 17%). Nevertheless, very promising improvements were determined for the kinetics of the process, where the rG and the OLR increased by 43% and 39%, respectively, after carrying out a pre-treatment at 20,000 J/g TS and 700 W. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems.

    PubMed

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-03-15

    Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be

  15. Characterization of Hydrolysis Kinetics in Staged Anaerobic Digestion of Wastewater Treatment Sludge.

    PubMed

    Zamanzadeh, Mirzaman; Parker, Wayne J

    2018-01-01

      The hydrolysis of mixed primary and secondary sludges in two-stage anaerobic digestion was evaluated and compared with conventional single-stage digestion, using various temperature-phased configurations of M1-M2, M1-T3, T1-T2, and T1-M3. A dual hydrolysis model best described the hydrolysis in all tests. This model was also able to consistently estimate the readily and slowly fractions of particulate chemical oxygen demand (COD) of raw sludge used in the tests. The hydrolysis kinetic coefficients (Khyd_s and Khyd_r) estimated for the mesophilic digesters were significantly greater in the short hydraulic retention time (HRT) M1 digester than those of the extended HRT digesters. Conversely, at thermophilic temperatures only Khyd_r was greater in short HRT T1 digester when compared to the extended HRT digesters. The increased Khyd_r and reduced Khyd_s values due to staging effect were explained with surface reaction models and endogenous decay. The temperature dependency of Khyd_s and Khyd_r was also explored in the staged digesters.

  16. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    PubMed

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Anaerobic digestion of sewage sludge with grease trap sludge and municipal solid waste as co-substrates.

    PubMed

    Grosser, A; Neczaj, E; Singh, B R; Almås, Å R; Brattebø, H; Kacprzak, M

    2017-05-01

    The feasibility of simultaneous treatment of multiple wastes via co-digestion was studied in semi-continuous mode at mesophilic conditions. The obtained results indicated that sewage sludge, organic fraction of municipal waste (OFMSW) and grease trap sludge (GTS) possess complementary properties that can be combined for successful anaerobic digestion. During the co-digestion period, methane yield and VS removal were significantly higher in comparison to digestion of sewage sludge alone. Addition of GTS to digesters treating sewage sludge resulted in increased VS removal and methane yield up to 13% (from 50 to 56.4) and 52% (from 300 to 456,547m 3 /Mg VS add ), respectively. While the use of OFMSW as the next co-substrate in the feedstock, can boost methane yield and VS removal up to 82% (300-547m 3 /Mg VS add ) and approximately 29% (from 50% to 64.7%), respectively. Moreover, the results of the present laboratory study revealed that the addition of co-substrates to the feedstock had a significant influence on biogas composition. During the experiment methane content in biogas ranged from 67% to 69%. While, the concentration of LCFAs was increasing with the gradual increase in the share of co-substrates in the mixtures, wherein only the oleic acid was higher than some inhibition concentrations which have been reported in the literature. However, it did not significantly affect the efficiency of the co-digestion process. Copyright © 2017. Published by Elsevier Inc.

  18. Assessing Methanogenic Archaeal Community in Full Scale Anaerobic Sludge Digester Systems in Dubai, United Arab Emirates

    PubMed Central

    Khan, Munawwar A.; Patel, Poojabahen G.; Ganesh, Arpitha G.; Rais, Naushad; Faheem, Sultan M.; Khan, Shams T.

    2018-01-01

    Introduction: Anaerobic digestion for methane production comprises of an exceptionally diverse microbial consortium, a profound understanding about which is still constrained. In this study, the methanogenic archaeal communities in three full-scale anaerobic digesters of a Municipal Wastewater Treatment Plant were analyzed by Fluorescence in situ hybridization and quantitative real-time Polymerase Chain Reaction (qPCR) technique. Methods & Materials: Fluorescence in situ hybridization (FISH) was performed to detect and quantify the methanogenic Archaea in the sludge samples whereas qPCR was carried out to support the FISH analysis. Multiple probes targeting domain archaea, different orders and families of Archaea were used for the studies. Results and Discussion: In general, the aceticlastic organisms (Methanosarcinaceae & Methanosaetaceae) were more abundant than the hydrogenotrophic organisms (Methanobacteriales, Methanomicrobiales, Methanobacteriaceae & Methanococcales). Both FISH and qPCR indicated that family Methanosaetaceae was the most abundant suggesting that aceticlastic methanogenesis is probably the dominant methane production pathway in these digesters. Conclusion: Future work involving high-throughput sequencing methods and correlating archaeal communities with the main operational parameters of anaerobic digesters will help to obtain a better understanding of the dynamics of the methanogenic archaeal community in wastewater treatment plants in United Arab Emirates (UAE) which in turn would lead to improved performance of anaerobic sludge digesters. PMID:29785219

  19. Quantification of viable but nonculturable Salmonella spp. and Shigella spp. during sludge anaerobic digestion and their reactivation during cake storage.

    PubMed

    Fu, B; Jiang, Q; Liu, H-B; Liu, H

    2015-10-01

    The presence of viable but nonculturable (VBNC) bacterial pathogens which often fail to be detected by cultivation and can regain the cultivability if the living conditions improve were reported. The objective of this study was to determine the occurrence of VBNC Salmonella spp. and Shigella spp. in the biosolids during anaerobic digestion and its reactivation during the cake storage. The occurrence of VBNC Salmonella spp. and Shigella spp. during mesophilic, temperature-phased, thermophilic anaerobic digestion of sewage sludge and the subsequent storage were studied by RT-qPCR and most probable number (MPN) method. The VBNC incidence of Salmonella spp. and Shigella spp. during thermophilic digestion was four orders of magnitude higher than those of mesophilic digestion. Accordingly, higher resuscitation ratio of VBNC pathogens was also achieved in thermophilic digested sludge. As a result, the culturable Salmonella typhimurium contents in thermophilic digested sludge after cake storage were two orders of magnitude higher than mesophilic digestion. Both quantitative PCR and reverse transcription quantitative PCR assay results showed the two bacterial counting numbers remained stable throughout the cake storage. The results indicate that the increase in the culturable Salmonella spp. and Shigella spp. after centrifugal dewatering was attributed to the resuscitation from the VBNC state to the culturable state. Thermophilic anaerobic digestion mainly induced Salmonella spp. and Shigella spp. into VBNC state rather than killed them, suggesting that the biological safety of sewage sludge by temperature-phased anaerobic digestion should be carefully assessed. © 2015 The Society for Applied Microbiology.

  20. Anaerobic digestion of ultrasonicated sludge at different solids concentrations - Computation of mass-energy balance and greenhouse gas emissions.

    PubMed

    Pilli, Sridhar; Yan, S; Tyagi, R D; Surampalli, R Y

    2016-01-15

    Two cases of anaerobic digestion (AD) of sludge, namely (i) with pre-treatment and (ii) without pre-treatment, were assessed using mass-energy balance and the corresponding greenhouse gas (GHG) emissions. For a digestion period of 30 days, volatile solids degradation of the control sludge and the ultrasonicated secondary sludge was 51.4% and 60.1%, respectively. Mass balance revealed that the quantity of digestate required for dewatering, transport and land application was the lowest (20.2 × 10(6) g dry sludge/day) for ultrasonicated secondary sludge at 31.4 g TS/L. Furthermore, for ultrasonicated secondary sludge at 31.4 g TS/L, the maximum net energy (energy output - energy input) of total dry solids (TDS) was 7.89 × 10(-6) kWh/g and the energy ratio (output/input) was 1.0. GHG emissions were also reduced with an increase in the sludge solids concentration (i.e., 40.0 g TS/L < 30.0 g TS/L < 20.0 g TS/L). Ultrasonication pre-treatment proved to be efficient and beneficial for enhancing anaerobic digestion efficiency of the secondary sludge when compared to the primary and mixed sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Process performance of high-solids batch anaerobic digestion of sewage sludge.

    PubMed

    Liao, Xiaocong; Li, Huan; Cheng, Yingchao; Chen, Nan; Li, Chenchen; Yang, Yuning

    2014-01-01

    The characteristics of high-solids anaerobic digestion (AD) of sewage sludge were investigated by comparison with conventional low-solids processes. A series of batch experiments were conducted under mesophilic condition and the initial solid contents were controlled at four levels of 1.79%, 4.47%, 10.28% and 15.67%. During these experiments, biogas production, organic degradation and intermediate products were monitored. The results verified that high-solids batch AD of sewage sludge was feasible. Compared with the low-solids AD with solid contents of 1.79% or 4.47%, the high-solids processes decreased the specific biogas yield per gram of sludge volatile solids slightly, achieved the same organic degradation rate of about 40% within extended degradation time, but increased the volumetric biogas production rate and the treatment capability of digesters significantly. The blocked mass and energy transfer, the low substrate to inoculum rate and the excessive cumulative free ammonia were the main factors impacting the performance of high-solids batch AD.

  2. Hydrogen sulfide formation control and microbial competition in batch anaerobic digestion of slaughterhouse wastewater sludge: Effect of initial sludge pH.

    PubMed

    Yan, Li; Ye, Jie; Zhang, Panyue; Xu, Dong; Wu, Yan; Liu, Jianbo; Zhang, Haibo; Fang, Wei; Wang, Bei; Zeng, Guangming

    2018-07-01

    High sulfur content in excess sludge impacts the production of biomethane during anaerobic digestion, meanwhile leads to hydrogen sulfide (H 2 S) formation in biogas. Effect of initial sludge pH on H 2 S formation during batch mesophilic anaerobic digestion of slaughterhouse wastewater sludge was studied in this paper. The results demonstrated that when the initial sludge pH increased from 6.5 to 8.0, the biogas production increased by 10.1%, the methane production increased by 64.1%, while the H 2 S content in biogas decreased by 44.7%. The higher initial sludge pH inhibited the competition of sulfate-reducing bacteria with methane-producing bacteria, and thus benefitted the growth of methanogens. Positive correlation was found between the relative abundance of Desulfomicrobium and H 2 S production, as well as the relative abundance of Methanosarcina and methane production. More sulfates and organic sulfur were transferred to solid and liquid rather than H 2 S formation at a high initial pH. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.

    2013-05-15

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be moremore » appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.« less

  4. Anaerobic sludge digestion with a biocatalytic additive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Henry, M.P.; Fedde, P.A.

    1982-01-01

    The objective of this research was to evaluate the effects of a lactobacillus additive an anaerobic sludge digestion under normal, variable, and overload operating conditions. The additive was a whey fermentation product of an acid-tolerant strain of Lactobacillus acidophilus fortified with CaCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid. The lactobacillus additive is multifunctional in nature and provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. The experimental work consisted of several pairs of parallel mesophilic (35/sup 0/C) digestion runs (control and test) conducted in five experimental phases. Baseline runs without themore » additive showed that the two experimental digesters had the same methane content, gas production rate (GPR), and ethane yield. The effect of the additive was to increase methane yield and GPR by about 5% (which was statistically significant) during digester operation at a loading rate (LR) of 3.2 kg VS/m/sup 3/-day and a hydraulic retention time (HRT) of 14 days. Data collected from the various experimental phases showed that the biochemical additive increased methane yield, gas production rate, and VS reduction, and decreased volatile acids accumulation. In addition, it enhanced digester buffer capacity and improved the fertilizer value and dewatering characteristics of the digested residue.« less

  5. Investigating the fate of activated sludge extracellular proteins in sludge digestion using sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    PubMed

    Park, Chul; Helm, Richard F; Novak, John T

    2008-12-01

    The fate of activated sludge extracellular proteins in sludge digestion was investigated using three different cation-associated extraction methods and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Extraction methods used were the cation exchange resin (CER) method for extracting calcium (Ca2+) and magnesium (Mg2+), sulfide extraction for removing iron, and base treatment (pH 10.5) for dissolving aluminum. Extracellular polymeric substances extracted were then subjected to SDS-PAGE, and the resultant protein profiles were examined before and after sludge digestion. The SDS-PAGE results showed that three methods led to different SDS-PAGE profiles for both undigested and digested sludges. The results further revealed that CER-extracted proteins remained mainly undegraded in anaerobic digestion, but were degraded in aerobic digestion. While the fate of sulfide- and base-extracted proteins was not clear for aerobic digestion, their changes in anaerobic digestion were elucidated. Most sulfide-extracted proteins were removed by anaerobic digestion, while the increase in protein band intensity and diversity was observed for base-extracted proteins. These results suggest that activated sludge flocs contain different fractions of proteins that are distinguishable by their association with certain cations and that each fraction undergoes different fates in anaerobic and aerobic digestion. The proteins that were resistant to degradation and generated during anaerobic digestion were identified by liquid chromatography tandem mass spectrometry. Protein identification results and their putative roles in activated sludge and anaerobic digestion are discussed in this study.

  6. Effects of titanium dioxide and zinc oxide nanoparticles on methane production from anaerobic co-digestion of primary and excess sludge.

    PubMed

    Zheng, Xiong; Wu, Lijuan; Chen, Yinguang; Su, Yinglong; Wan, Rui; Liu, Kun; Huang, Haining

    2015-01-01

    Anaerobic co-digestion of primary and excess sludge is regarded as an efficient way to reuse sludge organic matter to produce methane. In this study, short-term and long-term exposure experiments were conducted to investigate the possible effects of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) on methane production from anaerobic co-digestion of primary and excess sludge. The data showed that TiO2 NPs had no measurable impact on methane production, even at a high concentration (150 mg/g total suspended solids (TSS)). However, short-term (8 days) exposure to 30 or 150 mg/g-TSS of ZnO NPs significantly decreased methane production. More importantly, these negative effects of ZnO NPs on anaerobic sludge co-digestion were not alleviated by increasing the adaptation time to 105 days. Further studies indicated that the presence of ZnO NPs substantially decreased the abundance of methanogenic archaea, which reduced methane production. Meanwhile, the activities of some key enzymes involved in methane production, such as protease, acetate kinase, and coenzyme F420, were remarkably inhibited by the presence of ZnO NPs, which was also an important reason for the decreased methane production. These results provide a better understanding of the potential risks of TiO2 and ZnO NPs to methane production from anaerobic sludge co-digestion.

  7. Enhancement of anaerobic digestibility of waste activated sludge using photo-Fenton pretreatment.

    PubMed

    Heng, Gan Chin; Isa, Mohamed Hasnain; Lim, Jun-Wei; Ho, Yeek-Chia; Zinatizadeh, Ali Akbar Lorestani

    2017-12-01

    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H 2 O 2 dosage, H 2 O 2 /Fe 2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H 2 O 2 /kg TS, H 2 O 2 /Fe 2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m 3 /kg VS fed ·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m 3 /kg VS fed ·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.

  8. Enhancement of waste activated sludge anaerobic digestion by a novel chemical free acid/alkaline pretreatment using electrolysis.

    PubMed

    Charles, W; Ng, B; Cord-Ruwisch, R; Cheng, L; Ho, G; Kayaalp, A

    2013-01-01

    Anaerobic digestion of waste activated sludge (WAS) is relatively poor due to hydrolysis limitations. Acid and alkaline pretreatments are effective in enhancing hydrolysis leading to higher methane yields. However, chemical costs often prohibit full-scale application. In this study, 12 V two-chamber electrolysis using an anion exchange membrane alters sludge pH without chemical dosing. pH dropped from 6.9 to 2.5 in the anode chamber and increased to 10.1 in the cathode chamber within 15 h. The volatile suspended solids solubilisation of WAS was 31.1% in the anode chamber and 34.0% in the cathode chamber. As a result, dissolved chemical oxygen demand increased from 164 to 1,787 mg/L and 1,256 mg/L in the anode and cathode chambers, respectively. Remixing of sludge from the two chambers brought the pH back to 6.5, hence no chemical neutralisation was required prior to anaerobic digestion. Methane yield during anaerobic digestion at 20 d retention time was 31% higher than that of untreated sludge. An energy balance assessment indicated that the non-optimised process could approximately recover the energy (electricity) expended in the electrolysis process. With suitable optimisation of treatment time and voltages, significant energy savings would be expected in addition to the benefit of decreased sludge volume.

  9. Influence of ultrasonication on anaerobic bioconversion of sludge.

    PubMed

    Mao, Taohong; Show, Kuan-Yeow

    2007-04-01

    The influence of ultrasonication on hydrolysis, acidogenesis, and methanogenesis in anaerobic decomposition of sludge was investigated. The sonicated sludge exhibited prehydrolysis and preacidogenesis effects in the anaerobic decomposition process. First-order hydrolysis rates increased from 0.0384 day(-1) in the control digester to 0.0672 day(-1) in the digester fed, with sludge sonicated at 0.52 W/mL. The sonication appeared to be ineffective in relation to acidogenesis reaction rates, but it provided a better buffering capacity to diminish the adverse effect of acidification. Digesters fed with sonicated sludge demonstrated enhanced methanogenesis over the control unit. Determination by coenzyme F420 verified that sonication is able to promote the growth of methanogenic biomass and facilitate a positive methanogenic microbial development in suppressing the initial methanogenesis limitation. The results suggest that ultrasonication could enhance anaerobic decomposition of sludge, resulting in an accelerated bioconversion, improved organics degradation, improved biogas production, and increased methane content.

  10. Factors affecting decay of Salmonella Birkenhead and coliphage MS2 during mesophilic anaerobic digestion and air drying of sewage sludge.

    PubMed

    Mondal, Tania; Rouch, Duncan A; Thurbon, Nerida; Smith, Stephen R; Deighton, Margaret A

    2015-06-01

    Factors affecting the decay of Salmonella Birkenhead and coliphage, as representatives of bacterial and viral pathogens, respectively, during mesophilic anaerobic digestion (MAD) and air drying treatment of anaerobically digested sewage sludge were investigated. Controlled concentrations of S. Birkenhead were inoculated into non-sterile, autoclaved, γ-irradiated and nutrient-supplemented sludge and cultures were incubated at 37 °C (MAD sludge treatment temperature) or 20 °C (summer air drying sludge treatment temperature). Nutrient limitation caused by microbial competition was the principal mechanism responsible for the decay of S. Birkenhead by MAD and during air drying of digested sludge. The effects of protease activity in sludge on MS2 coliphage decay in digested and air dried sludge were also investigated. MS2 coliphage showed a 3.0-3.5 log10 reduction during incubation with sludge-protease extracts at 37 °C for 25 h. Proteases produced by indigenous microbes in sludge potentially increase coliphage inactivation and may therefore have a significant role in the decay of enteric viruses in sewage sludge. The results help to explain the loss of viability of enteric bacteria and viral pathogens with treatment process time and contribute to fundamental understanding of the various biotic inactivation mechanisms operating in sludge treatment processes at mesophilic and ambient temperatures.

  11. Simultaneous addition of zero-valent iron and activated carbon on enhanced mesophilic anaerobic digestion of waste-activated sludge.

    PubMed

    Wang, Tongyu; Qin, Yujie; Cao, Yan; Han, Bin; Ren, Junyi

    2017-10-01

    The performance of biogas generation and sludge degradation was studied under different zero-valent iron/activated carbon (ZVI/AC) ratios in detail in mesophilic anaerobic digestion of sludge. A good enhancement of methane production was obtained at the 10:1 ZVI/AC ratio, and the cumulative methane production was 132.1 mL/g VS, 37.6% higher than the blank. The methane content at the 10:1 ZVI/AC ratio reached 68.8%, which was higher than the blank (55.2%) and the sludge-added AC alone (59.6%). For sludge degradation, the removal efficiencies of total chemical oxygen demand (TCOD), proteins, and polysaccharides were all the highest at the 10:1 ZVI/AC ratio. The concentration of available phosphorus (AP) decreased after anaerobic digestion process. On the other hand, the concentrations of available nitrogen (AN) and available potassium (AK) increased after the anaerobic digestion process and showed a gradually decreasing trend with increasing ZVI/AC ratio. The concentrations of AN and AK were 2303.1-4200.3 and 274.7-388.3 mg/kg, showing a potential for land utilization.

  12. Batch anaerobic co-digestion of waste activated sludge and microalgae (Chlorella sorokiniana) at mesophilic temperature.

    PubMed

    Beltrán, Carolina; Jeison, David; Fermoso, Fernando G; Borja, Rafael

    2016-08-23

    The microalgae Chlorella sorokiniana are used as co-substrate for waste activated sludge (WAS) anaerobic digestion. The specific objective of this research was to evaluate the feasibility of improving methane production from anaerobic digestion of WAS in co-digestion with this microalga, based on an optimized mixture percentage. Thus, the anaerobic co-digestion of both substrates aims to overcome the drawbacks of the anaerobic digestion of single WAS, simultaneously improving its management. Different co-digestion mixtures (0% WAS-100% microalgae; 25% WAS-75% microalgae; 50% WAS-50% microalgae; 75% WAS-25% microalgae; 100% WAS-0% microalgae) were studied. The highest methane yield (442 mL CH4/g VS) was obtained for the mixture with 75% WAS and 25% microalgae. This value was 22% and 39% higher than that obtained in the anaerobic digestion of the sole substrates WAS and microalgae, respectively, as well as 16% and 25% higher than those obtained for the co-digestion mixtures with 25% WAS and 75% microalgae and 50% WAS and 50% microalgae, respectively. The kinetic constant of the process increased 42%, 42% and 12%, respectively, for the mixtures with 25%, 50% and 75% of WAS compared to the substrate without WAS. Anaerobic digestion of WAS, together with C. sorokiniana, has been clearly improved by ensuring its viability, suitability and efficiency.

  13. Up-to-date modification of the anaerobic sludge digestion process introducing a separate sludge digestion mode.

    PubMed

    Sato, K; Ochi, S; Mizuochi, M

    2001-01-01

    Sewage treatment plants in Japan are subjected to advanced treatment to remove nutrients and hence control eutrophication problems in lakes and bays. This paper discusses the advantages and disadvantages of the separate digestion treatment mode for sludge generated from advanced wastewater treatment. In the separate digestion only primary sludge is digested and the excess activated sludge is directly dewatered. Separate digestion can reduce the return load of nutrients to approximately one third, and has major potential for the beneficial use of sludge.

  14. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    PubMed Central

    Gebreeyessus, Getachew D.; Jenicek, Pavel

    2016-01-01

    During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs) is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD) of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH). In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so as to optimize

  15. Model assisted startup of anaerobic digesters fed with thermally hydrolysed activated sludge.

    PubMed

    Batstone, D J; Balthes, C; Barr, K

    2010-01-01

    This paper presents the use of the IWA ADM1 to predict and interpret results from two full-scale anaerobic digesters fed with thermal hyrolysate (waste activated sludge with a long upstream sludge age) from a Cambi hydrolysis process operating at 165°C and 6 bar-g. The first digester was fed conventionally-though intermittently, while the second was heavily diluted through a substantial component of the evaluation period (110 days). There were a number of important outcomes-related to both model application, and model predictions. Input and inert COD: mass ratio was very important, and was considerably higher than the 1.42 g g⁻¹ used for biomass throughout the IWA activated sludge and anaerobic digestion models. Input COD: VS ratio was 1.6 g g⁻¹, and inert COD: VS ratio was 1.7 g g⁻¹. The model succeeded on a number of levels, including effective prediction of important outputs (degradability, gas flow and composition, and final solids), clarification of the substantial data scatter, prediction of recovery times during operationally poor periods, and cross-validation of the results between digester 1 and digester 2. Key failures in model performance were related to an early incorrect assumption of the COD: VS ratio of 1.42 g g⁻¹, and intermittent high acetate levels, most likely caused by inhibition, and rapid acclimatisation to ammonia. The acute free ammonia limit was found to be 0.008 M NH(3)-N, while the chronic inhibition constant (K(I,NH₃,ac)) was 0.007 ± 0.001 M NH₃-N. Overall, this is a complex system, and application of the model added significant confidence to the initial operational decisions during an aggressive startup on an atypical feed.

  16. Enhancement of Anaerobic Digestion to Treat Saline Sludge from Recirculating Aquaculture Systems

    PubMed Central

    Luo, Guo-zhi; Ma, Niannian; Li, Ping; Tan, Hong-xin; Liu, Wenchang

    2015-01-01

    The effectiveness of carbohydrate addition and the use of ultrasonication as a pretreatment for the mesophilic anaerobic digestion of saline aquacultural sludge was assessed. Analyses were conducted using an anaerobic sequencing batch reactor (ASBR), which included stopped gas production attributed to the saline inhibition. After increasing the C : N ratio, gas production was observed, and the total chemical oxygen demand (TCOD) removal efficiency increased from 75% to 80%. The TCOD removal efficiency of the sonication period was approximately 85%, compared to 75% for the untreated waste. Ultrasonication of aquaculture sludge was also found to enhance the gas production rate and the TCOD removal efficiency. The average volatile fatty acid (VFA) to alkalinity ratios ranged from 0.1 to 0.05, confirming the stability of the digesters. Furthermore, soluble chemical oxygen demand (SCOD), VFA, and PO4 3− concentrations increased in the effluents. There was a 114% greater gas generation during the ultrasonication period, with an average production of 0.08 g COD/L·day−1. PMID:26301258

  17. Combined anaerobic and aerobic digestion for increased solids reduction and nitrogen removal.

    PubMed

    Novak, John T; Banjade, Sarita; Murthy, Sudhir N

    2011-01-01

    A unique sludge digestion system consisting of anaerobic digestion followed by aerobic digestion and then a recycle step where thickened sludge from the aerobic digester was recirculated back to the anaerobic unit was studied to determine the impact on volatile solids (VS) reduction and nitrogen removal. It was found that the combined anaerobic/aerobic/anaerobic (ANA/AER/ANA) system provided 70% VS reduction compared to 50% for conventional mesophilic anaerobic digestion with a 20 day SRT and 62% for combined anaerobic/aerobic (ANA/AER) digestion with a 15 day anaerobic and a 5 day aerobic SRT. Total Kjeldahl nitrogen (TKN) removal for the ANA/AER/ANA system was 70% for sludge wasted from the aerobic unit and 43.7% when wasted from the anaerobic unit. TKN removal was 64.5% for the ANA/AER system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Anaerobic co-digestion of fruit and vegetable wastes and primary sewage sludge.

    PubMed

    Velmurugan, B; Arathy, E C; Hemalatha, R; Philip, Jerry Elsa; Alwar Ramanujam, R

    2010-01-01

    Anaerobic co-digestion of fruit and vegetable wastes (FVW) and primary sewage sludge was carried out in a fed-batch reactor having a volume of 21 under ambient temperature conditions. Three different proportions (25:75, 50:50 and 75:25 in terms ofVS) of fruit and vegetable wastes and primary sewage sludge were studied for an organic loading rate (OLR) of 1.0 g VS/ l.d and with a hydraulic retention time (HRT) of 25 days. The reactor with 75% FVW and 25% sewage sludge (in terms of VS) showed better performance in terms of VS reduction and biogas yield when compared to other two proportions.

  19. Effect of hydraulic retention time on deterioration/restarting of sludge anaerobic digestion: Extracellular polymeric substances and microbial response.

    PubMed

    Wei, Liangliang; An, Xiaoyan; Wang, Sheng; Xue, Chonghua; Jiang, Junqiu; Zhao, Qingliang; Kabutey, Felix Tetteh; Wang, Kun

    2017-11-01

    In this study, the transformation of the sludge-related extracellular polymeric substances (EPS) during mesophilic anaerobic digestion was characterized to assess the effect of hydraulic retention time (HRT) on reactor deterioration/restarting. Experimental HRT variations from 20 to 15 and 10d was implemented for deterioration, and from 10 to 20d for restarting. Long-term digestion at the lowest HRT (10d) resulted in significant accumulation of hydrolyzed hydrophobic materials and volatile fatty acids in the supernatants. Moreover, less efficient hydrolysis of sludge EPS, especially of proteins related substances which contributed to the deterioration of digester. Aceticlastic species of Methanosaetaceae decreased from 36.3% to 27.6% with decreasing HRT (20-10d), while hydrogenotrophic methanogens (Methanomicrobiales and Methanobacteriales) increased from 30.4% to 38.3%. Proteins and soluble microbial byproducts related fluorophores in feed sludge for the anaerobic digester changed insignificantly at high HRT, whereas the fluorescent intensity of fulvic acid-like components declined sharply once the digestion deteriorated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Continuous thermal hydrolysis and anaerobic digestion of sludge. Energy integration study.

    PubMed

    Pérez-Elvira, S I; Fdz-Polanco, F

    2012-01-01

    Experimental data obtained from the operation in a pilot plant are used to perform mass and energy balances to a global process combining units of thermal hydrolysis (TH) of secondary sludge, anaerobic digestion (AD) of hydrolysed secondary sludge together with fresh primary sludge, and cogeneration from biogas by using a gas engine in which the biogas produces electricity and heat from the exhaust gases. Three scenarios were compared, corresponding to the three digesters operated: C (conventional AD, 17 days residence time), B (combined TH + AD, same time), and A (TH + AD at half residence time). The biogas production of digesters B and A was 33 and 24% better, respectively when compared with C. In the case of the combined TH + AD process (scenarios A and B), the key factors in the energy balance were the recovery of heat from hot streams, and the concentration of sludge. The results of the balances showed that for 8% DS concentration of the secondary sludge tested in the pilot plant, the process can be energetically self-sufficient, but a fraction of the biogas must by-pass the gas engine to be directly burned. From an economic point of view, scenario B is more profitable in terms of green energy and higher waste removal, while scenario A reduces the digester volume required by a half. Considering a population of 100,000 inhabitants, the economic benefit is 87,600 €/yr for scenario A and 132,373 €/yr for B. This value can be increased to 223,867 €/yr by increasing the sludge concentration of the feeding to the TH unit to a minimum value that allows use of all the biogas to produce green energy. This concentration is 13% DS, which is still possible from a practical point of view. Additional benefits gained with the combined TH + AD process are the enhancement of the digesters rheology and the possibility of getting Class A biosolids. The integration study presented here set the basis for the scale-up to a demonstration plant.

  1. Correlation between Organic Matter Degradation and the Rheological Performance of Waste Sludge During Anaerobic Digestion

    NASA Astrophysics Data System (ADS)

    Morel, Evangelina S.; Hernández-Hernándes, José A.; Méndez-Contreras, Juan M.; Cantú-Lozano, Denis

    2008-07-01

    Anaerobic digestion has demonstrated to be a good possibility to reduce the organic matter contents in waste activated sludge resulting in the effluents treatment. An anaerobic digestion was carried out in a 3.5 L reactor at 35 °C for a period of 20 days. An electronic thermostat controlled the temperature. The reactor was agitated at a rate of 200 rpm. The study of the rheological behavior of the waste activated sludge was done with an Anton Paar™ rheometer model MCR301 with a peltier plate for temperature control. Four-blade vane geometry was used with samples of 37 mL for determining rheological properties. Sampling (two samples) was taken every four days of anaerobic digestion through a peristaltic pump. The samples behavior was characterized by the Herschel-Bulkley model, with R2>0.99 for most cases. In all samples were found an apparent viscosity (ηap) and yield stress (τo) decrement when organic matter content diminishes. This demonstrates a relationship between rheological properties and organic matter concentration (% volatile solids). Also the flow activation energy (Ea) was calculated using the Ahrrenius correlation and samples of waste activated sludge before anaerobic digestion. In this case, samples were run in the rheometer at 200 rpm and a temperature range of 25 to 75 °C with an increment rate of 2 °C per minute. The yield stress observed was in a range of 0.93-0.18 Pa, the apparent viscosity was in a range of 0.0358-0.0010 Pa.s, the reduction of organic matter was in a range of 62.57-58.43% volatile solids and the average flow activation energy was 1.71 Calṡg-mol-1.

  2. Experimental continuous sludge microwave system to enhance dehydration ability and hydrogen production from anaerobic digestion of sludge.

    PubMed

    Zhou, Cuihong; Huang, Xintong; Zeng, Meng

    2018-05-01

    Dehydrating large amounts of sludge produced by sewage treatment plants is difficult. Microwave pretreatment can effectively and significantly improve the dewaterability and hydrogen production of sludge subjected to anaerobic digestion. The aim of this study was to investigate the effects of different microwave conditions on hydrogen production from anaerobic digestion and dewaterability of sludge. Based on an analysis of the electric field distribution, a spiral reactor was designed and a continuous microwave system was built to conduct intermittent and continuous experiments under different conditions. Settling Volume, Capillary Suction Time, particle size, and moisture content of the sludge were measured. The results show that sludge pretreatment in continuous experiments has equally remarkable dehydration performance as in intermittent experiments; the minimum moisture content was 77.29% in the intermittent experiment under a microwave power of 300W and an exposure time of 60sec, and that in the continuous experiment was 77.56% under a microwave power of 400W and an exposure time of 60sec. The peak measured by Differential Scanning Calorimeter appeared earliest under a microwave power of 600W and an exposure time of 180sec. The heat flux at the peak was 4.343W/g, which is relatively small. This indicates that microwave pretreatment induced desirable effects. The maximum yield of hydrogen production was 7.967% under the conditions of microwave power of 500W, exposure time of 120sec, and water bath at 55°C. This research provides a theoretical and experimental basis for the development of a continuous microwave sludge-conditioning system. Copyright © 2017. Published by Elsevier B.V.

  3. Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge.

    PubMed

    Ge, Huoqing; Jensen, Paul D; Batstone, Damien J

    2011-02-01

    It is well established that waste activated sludge with an extended sludge age is inherently slow to degrade with a low extent of degradation. Pre-treatment methods can be used prior to anaerobic digestion to improve the efficiency of activated sludge digestion. Among these pre-treatment methods, temperature phased anaerobic digestion (TPAD) is one promising method with a relatively low energy input and capital cost. In this study, an experimental thermophilic (50-70 °C)-mesophilic system was compared against a control mesophilic-mesophilic system. The thermophilic-mesophilic system achieved 41% and 48% volatile solids (VS) destruction during pre-treatment of 60 °C and 65 °C (or 70 °C) respectively, compared to 37% in the mesophilic-mesophilic TPAD system. Solubilisation in the first stage was enhanced during thermophilic pre-treatment (15% at 50 °C and 27% at 60 °C, 65 °C and 70 °C) over mesophilic pre-treatment (7%) according to a COD balance. This was supported by ammonia-nitrogen measurements. Model based analysis indicated that the mechanism for increased performance was due to an increase in hydrolysis coefficient under thermophilic pre-treatment of 60 °C (0.5 ± 0.1 d(-1)), 65 °C (0.7 ± 0.2 d(-1)) and 70 °C (0.8 ± 0.2 d(-1)) over mesophilic pre-treatment (0.2 ± 0.1 d(-1)), and thermophilic pre-treatment at 50 °C (0.12 ± 0.06 d(-1)). © 2010 Elsevier Ltd. All rights reserved.

  4. Development of an efficient anaerobic co-digestion process for garbage, excreta, and septic tank sludge to create a resource recycling-oriented society.

    PubMed

    Sun, Zhao-Yong; Liu, Kai; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2017-03-01

    In order to develop a resource recycling-oriented society, an efficient anaerobic co-digestion process for garbage, excreta and septic tank sludge was studied based on the quantity of each biomass waste type discharged in Ooki machi, Japan. The anaerobic digestion characteristics of garbage, excreta and 5-fold condensed septic tank sludge (hereafter called condensed sludge) were determined separately. In single-stage mesophilic digestion, the excreta with lower C/N ratios yielded lower biogas volumes and accumulated higher volumes of volatile fatty acid (VFA). On the other hand, garbage allowed for a significantly larger volatile total solid (VTS) digestion efficiency as well as biogas yield by thermophilic digestion. Thus, a two-stage anaerobic co-digestion process consisting of thermophilic liquefaction and mesophilic digestion phases was proposed. In the thermophilic liquefaction of mixed condensed sludge and household garbage (wet mass ratio of 2.2:1), a maximum VTS loading rate of 24g/L/d was achieved. In the mesophilic digestion of mixed liquefied material and excreta (wet mass ratio of 1:1), biogas yield reached approximately 570ml/g-VTS fed with a methane content of 55% at a VTS loading rate of 1.0g/L/d. The performance of the two-stage process was evaluated by comparing it with a single-stage process in which biomass wastes were treated separately. Biogas production by the two-stage process was found to increase by approximately 22.9%. These results demonstrate the effectiveness of a two-stage anaerobic co-digestion process in enhancement of biogas production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Environmental assessment of anaerobically digested sludge reuse in agriculture: potential impacts of emerging micropollutants.

    PubMed

    Hospido, Almudena; Carballa, Marta; Moreira, Maite; Omil, Francisco; Lema, Juan M; Feijoo, Gumersindo

    2010-05-01

    Agricultural application of sewage sludge has been emotionally discussed in the last decades, because the latter contains organic micropollutants with unknown fate and risk potential. In this work, the reuse of anaerobically digested sludge in agriculture is evaluated from an environmental point of view by using Life Cycle Assessment methodology. More specifically, the potential impacts of emerging micropollutants, such as pharmaceuticals and personal care products, present in the sludge have been quantified. Four scenarios were considered according to the temperature of the anaerobic digestion (mesophilic or thermophilic) and the sludge retention time (20 or 10d), and they have been compared with the non-treated sludge. From an environmental point of view, the disposal of undigested sludge is not the most suitable alternative, except for global warming due to the dominance (65-85%) of the indirect emissions associated to the electricity use. Nutrient-related direct emissions dominate the eutrophication category impact in all the scenarios (>71.4%), although a beneficial impact related to the avoidance of industrial fertilisers production is also quantified (up to 6.7%). In terms of human and terrestrial toxicity, the direct emissions of heavy metals to soil dominate these two impact categories (>70%), and the contribution of other micropollutants is minimal. Moreover, only six (Galaxolide, Tonalide, Diazepam, Ibuprofen, Sulfamethoxazole and 17alpha-ethinyloestradiol) out of the 13 substances considered are really significant since they account for more than 95% of the overall micropollutants impact.

  6. Model development and evaluation of methane potential from anaerobic co-digestion of municipal wastewater sludge and un-dewatered grease trap waste.

    PubMed

    Yalcinkaya, Sedat; Malina, Joseph F

    2015-06-01

    The performance of anaerobic co-digestion of municipal wastewater sludge with un-dewatered grease trap waste was assessed using modified biochemical methane potential tests under mesophilic conditions (35°C). Methane potentials, process inhibition and chemical behavior of the process were analyzed at different grease trap waste feed ratios on volatile solids basis. Nonlinear regression analyses of first order reaction and modified Gompertz equations were performed to assist in interpretation of the experimental results. Methane potential of un-dewatered grease trap waste was measured as 606 mL CH4/g VS(added), while methane potential of municipal wastewater sludge was only 223 mL CH4/g VS(added). The results indicated that anaerobic digestion of grease trap waste without dewatering yields less methane potential than concentrated/dewatered grease trap waste because of high wastewater content of un-dewatered grease trap waste. However, anaerobic co-digestion of municipal wastewater sludge and grease trap waste still yields over two times more methane potential and approximately 10% more volatile solids reduction than digestion of municipal wastewater sludge alone. The anaerobic co-digestion process inhibitions were reported at 70% and greater concentrated/dewatered grease trap waste additions on volatile solids basis in previous studies; however, no inhibition was observed at 100% un-dewatered grease trap waste digestion in the present study. These results indicate that anaerobic co-digestion of un-dewatered grease trap waste may reduce the inhibition risk compared to anaerobic co-digestion of concentrated/dewatered grease trap waste. In addition, a mathematical model was developed in this study for the first time to describe the relationship between grease trap waste feed ratio on volatile solids basis and resulting methane potential. Experimental data from the current study as well as previous biochemical methane potential studies were successfully fit to this

  7. Winery waste recycling through anaerobic co-digestion with waste activated sludge.

    PubMed

    Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

    2014-11-01

    In this study biogas and high quality digestate were recovered from winery waste (wine lees) through anaerobic co-digestion with waste activated sludge both in mesophilic and thermophilic conditions. The two conditions studied showed similar yields (0.40 m(3)/kgCODfed) but different biological process stability: in fact the mesophilic process was clearly more stable than the thermophilic one in terms of bioprocess parameters. The resulting digestates showed good characteristics for both the tested conditions: heavy metals, dioxins (PCDD/F), and dioxin like bi-phenyls (PCBs) were concentred in the effluent if compared with the influent because of the important reduction of the solid dry matter, but remained at levels acceptable for agricultural reuse. Pathogens in digestate decreased. Best reductions were observed in thermophilic condition, while at 37°C the concentration of Escherichia coli was at concentrations level as high as 1000 UFC/g. Dewatering properties of digestates were evaluated by means of the capillary suction time (CST) and specific resistance to filtration (SRF) tests and it was found that a good dewatering level was achievable only when high doses of polymer (more than 25 g per kg dry solids) were added to sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Modified ADM1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge.

    PubMed

    Ramirez, Ivan; Mottet, Alexis; Carrère, Hélène; Déléris, Stéphane; Vedrenne, Fabien; Steyer, Jean-Philippe

    2009-08-01

    Anaerobic digestion disintegration and hydrolysis have been traditionally modeled according to first-order kinetics assuming that their rates do not depend on disintegration/hydrolytic biomass concentrations. However, the typical sigmoid-shape increase in time of the disintegration/hydrolysis rates cannot be described with first-order models. For complex substrates, first-order kinetics should thus be modified to account for slowly degradable material. In this study, a slightly modified IWA ADM1 model is presented to simulate thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Contois model is first included for disintegration and hydrolysis steps instead of first-order kinetics and Hill function is then used to model ammonia inhibition of aceticlastic methanogens instead of a non-competitive function. One batch experimental data set of anaerobic degradation of a raw waste activated sludge is used to calibrate the proposed model and three additional data sets from similar sludge thermally pretreated at three different temperatures are used to validate the parameters values.

  9. Efficiency of autothermal thermophilic aerobic digestion and thermophilic anaerobic digestion of municipal wastewater sludge in removing Salmonella spp. and indicator bacteria.

    PubMed

    Zábranská, J; Dohányos, M; Jenícek, P; Růziciková, H; Vránová, A

    2003-01-01

    The study is focused on the comparison of autothermal thermophilic aerobic digestion, thermophilic and mesophilic anaerobic digestion, based on long-term monitoring of all processes in full-scale wastewater treatment plants, with an emphasis on the efficiency in destroying pathogens. The hygienisation effect was evaluated as a removal of counts of indicator bacteria, thermotolerant coliforms and enterococci as CFU/g total sludge solids and a frequency of a positive Salmonella spp. detection. Both thermophilic technologies of municipal wastewater sludge stabilisation had the capability of producing sludge A biosolids suitable for agricultural land application when all operational parameters (mainly temperature, mixing and retention time) were stable and maintained at an appropriate level.

  10. Influence of feeding mixture composition in batch anaerobic co-digestion of stabilized municipal sludge and waste from dairy farms.

    PubMed

    Trulli, Ettore; Torretta, Vincenzo

    2015-01-01

    Waste anaerobic co-digestion applications are particularly useful in Southern Mediterranean areas where large quantities of agricultural waste materials and waste from agro-industries are produced. This waste can be added to urban waste together with the sludge produced by wastewater treatment processes, which, when combined, guarantee the supply of organic matrixes for treatment throughout the year. The implementation of facilities to service vast areas of the agricultural economy and which are heterogeneous in terms of production can provide a good solution. We present an experimental investigation into the anaerobic co-digestion of municipal sludge and bio-waste produced in the Mediterranean area. We conducted anaerobic treatability tests, with measures of biogas production and pH of the mixture in digestion. Our main aims were to identify an optimal mix of substrates for the production of biogas, and to analyse the influence on the composition of biogas and the variation in pH values of the substrates. This analysis was conducted considering the variation of the input, in particular due to the addition of waste acids, such as biological sewage sludge.

  11. Enhancing the anaerobic digestion potential of dairy waste activated sludge by two step sono-alkalization pretreatment.

    PubMed

    Rani, R Uma; Kumar, S Adish; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2014-05-01

    High efficiency resource recovery from dairy waste activated sludge (WAS) has been a focus of attention. An investigation into the influence of two step sono-alkalization pretreatment (using different alkaline agents, pH and sonic reaction times) on sludge reduction potential in a semi-continuous anaerobic reactor was performed for the first time in literature. Firstly, effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. At optimized condition (4172 kJ/kg TS of supplied energy for NaOH - pH 10), COD solubilization, suspended solids reduction and biogas production was 59%, 46% and 80% higher than control. In order to clearly describe the hydrolysis of waste activated sludge during sono-alkalization pretreatment by a two step process, concentrations of ribonucleic acid (RNA) and bound extracellular polymeric substance (EPS) were also measured. Secondly, semi-continuous process performance was studied in a lab-scale semi-continuous anaerobic reactor (5L), with 4 L working volume. With three operated SRTs, the SRT of 15 d was found to be most appropriate for economic operation of the reactor. Combining pretreatment with anaerobic digestion led to 58% and 62% of suspended solids and volatile solids reduction, respectively, with an improvement of 83% in biogas production. Thus, two step sono-alkalization pretreatment laid the basis in enhancing the anaerobic digestion potential of dairy WAS. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Effect of chemo-mechanical disintegration on sludge anaerobic digestion for enhanced biogas production.

    PubMed

    Kavitha, S; Pray, S Saji; Yogalakshmi, K N; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh

    2016-02-01

    The effect of combined surfactant-dispersion pretreatment on dairy waste activated sludge (WAS) reduction in anaerobic digesters was investigated. The experiments were performed with surfactant, Sodium dodecyl sulfate (SDS) in the range of 0.01 to 0.1 g/g suspended solids (SS) and disperser with rpm of 5000-25,000. The COD (chemical oxygen demand) solubilization, suspended solids reduction, and biogas generation increased for an energy input of 7377 kJ/kg total solids (TS) (12,000 rpm, 0.04 g/g SS, and 30 min) and were found to be 38, 32, and 75 %, higher than that of control. The pretreated sludge improved the performance of semicontinuous anaerobic digesters of 4 L working volume operated at four different SRTs (sludge retention time). SRT of 15 days was found to be appropriate showing 49 and 51 % reduction in SS and volatile solids (VS), respectively. The methane yield of the pretreated sample was observed to be 50 mL/g VS removed which was observed to be comparatively higher than the control (12 mL/g VS removed) at optimal SRT of 15 days. To the best of the authors' knowledge, this study is the first to be reported and not yet been documented in literature.

  13. Combined thermophilic aerobic process and conventional anaerobic digestion: effect on sludge biodegradation and methane production.

    PubMed

    Dumas, C; Perez, S; Paul, E; Lefebvre, X

    2010-04-01

    The efficiency of hyper-thermophilic (65 degrees Celsius) aerobic process coupled with a mesophilic (35 degrees Celsius) digester was evaluated for the activated sludge degradation and was compared to a conventional mesophilic digester. For two Sludge Retention Time (SRT), 21 and 42 days, the Chemical Oxygen Demand (COD) solubilisation and biodegradation processes, the methanisation yield and the aerobic oxidation were investigated during 180 days. The best results were obtained at SRT of 44 days; the COD removal yield was 30% higher with the Mesophilic Anaerobic Digestion/Thermophilic Aerobic Reactor (MAD-TAR) co-treatment. An increase of the sludge intrinsic biodegradability is also observed (20-40%), showing that the unbiodegradable COD in mesophilic conditions becomes bioavailable. However, the methanisation yield was quite similar for both processes at a same SRT. Finally, such a process enables to divide by two the volume of digester with an equivalent efficiency. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Effect of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions.

    PubMed

    Diak, James; Örmeci, Banu; Kennedy, Kevin J

    2013-04-01

    Micro-aeration, which refers to the addition of very small amounts of air, is a simple technology that can potentially be incorporated in septic tanks to improve the digestion performance. The purpose of this study was to investigate and compare the effects of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions. 1.6 L batch reactor experiments were carried out in duplicate using raw primary sludge, with 4.1 % total solids, and diluted primary sludge, with 2.1 % total solids. Reactors were operated for 5 weeks at room temperature to simulate septic tank conditions. Micro-aeration rate of 0.00156 vvm effectively solubilised chemical oxygen demand (COD) and improved the subsequent degradation of COD. Micro-aeration also increased the generation of ammonia and soluble proteins, but did not improve the reduction in total and volatile solids, or the reduction in carbohydrates. Experiments using diluted sludge samples showed similar trends as the experiments with raw sludge, which suggest that initial solids concentration did not have a significant effect on the degradation of primary sludge under septic tank conditions.

  15. Characteristics of dissolved organic matter formed in aerobic and anaerobic digestion of excess activated sludge.

    PubMed

    Du, Haixia; Li, Fusheng

    2017-02-01

    The characteristics of dissolved organic matter (DOM) formed in aerobic and anaerobic digestion of excess activated sludge (EAS) was investigated for three total solid (TS) concentrations (1.2, 2.3 and 5.2%) and three temperatures (5, 20 and 35 °C). The results on the overall concentration of DOM evaluated by TOC showed significantly higher values in anaerobic than aerobic digestion (2.8-6.9 times for TS 1.2-5.2% at 20 °C). Data analysis with a first-order sequential reaction model revealed that higher occurrence of DOM in anaerobic digestion was a result of comparatively faster hydrolysis (1.3-5.5 times for TS 1.2-5.2% at 20 °C; 1.4-49.3 times for temperatures 5-35 °C with TS 1.2%) and slower degradation (0.3-1.0 times for TS 1.2-5.2% at 20 °C; 0.5-8.3 times for temperatures 5-35 °C with TS 1.2%). In aerobic digestion, more humic substances were formed; while, in anaerobic digestion, proteins and aromatic amino acids were the major constituents. For both digestions, except for a few exceptions, proteins and humic substances increased as the TS concentration increased; and increasing the temperature led to a decrease in the content of proteins formed in both aerobic and anaerobic digestion, and an increase in the content of humic substances in the aerobic digestion. The UV-absorbing DOM constituents were highly heterogeneous, and were comparatively larger in anaerobic digestion; and did not change significantly with the TS concentrations and temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Identification and quantification of microbial populations in activated sludge and anaerobic digestion processes.

    PubMed

    Reyes, M; Borrás, L; Seco, A; Ferrer, J

    2015-01-01

    Eight different phenotypes were studied in an activated sludge process (AeR) and anaerobic digester (AnD) in a full-scale wastewater treatment plant by means of fluorescent in situ hybridization (FISH) and automated FISH quantification software. The phenotypes were ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, denitrifying bacteria, phosphate-accumulating organisms (PAO), glycogen-accumulating organisms (GAO), sulphate-reducing bacteria (SRB), methanotrophic bacteria and methanogenic archaea. Some findings were unexpected: (a) Presence of PAO, GAO and denitrifiers in the AeR possibly due to unexpected environmental conditions caused by oxygen deficiencies or its ability to survive aerobically; (b) presence of SRB in the AeR due to high sulphate content of wastewater intake and possibly also due to digested sludge being recycled back into the primary clarifier; (c) presence of methanogenic archaea in the AeR, which can be explained by the recirculation of digested sludge and its ability to survive periods of high oxygen levels; (d) presence of denitrifying bacteria in the AnD which cannot be fully explained because the nitrate level in the AnD was not measured. However, other authors reported the existence of denitrifiers in environments where nitrate or oxygen was not present suggesting that denitrifiers can survive in nitrate-free anaerobic environments by carrying out low-level fermentation; (e) the results of this paper are relevant because of the focus on the identification of nearly all the significant bacterial and archaeal groups of microorganisms with a known phenotype involved in the biological wastewater treatment.

  17. Foaming phenomenon in bench-scale anaerobic digesters.

    PubMed

    Siebels, Amanda M; Long, Sharon C

    2013-04-01

    The Madison Metropolitan Sewerage District (The District) in Madison, Wisconsin has been experiencing seasonal foaming in their anaerobic biosolids digesters, which has occurred from mid-November to late June for the past few years. The exact cause(s) of foaming is unknown. Previous research findings are unclear as to whether applications of advanced anaerobic digestion processes reduce the foaming potential of digesters. The object of this study was to investigate how configurations of thermophilic and acid phase-thermophilic anaerobic digestion would affect foaming at the bench-scale level compared to single stage mesophilic digestion for The District. Bench-scale anaerobic digesters were fed with a 4 to 4.5% by dry weight of solids content blend of waste activated sludge (WAS) and primary sludge from The District. Foaming potential was monitored using Alka-Seltzer and aeration foaming tests. The bench-scale acid phase-thermophilic digester had a higher foaming potential than the bench-scale mesophilic digester. These results indicate that higher temperatures increase the foaming potential of the bench-scale anaerobic digesters. The bench-scale acid phase-thermophilic digesters had a greater percent (approximately 5 to 10%) volatile solids destruction and a greater percent (approximately 5 to 10%) total solids destruction when compared to the bench-scale mesophilic digester. Overall, for the full-scale foaming experienced by The District, it appears that adding an acid phase or switching to thermophilic digestion would not alleviate The District's foaming issues.

  18. Assessment of microbial viability in municipal sludge following ultrasound and microwave pretreatments and resulting impacts on the efficiency of anaerobic sludge digestion.

    PubMed

    Cella, Monica Angela; Akgul, Deniz; Eskicioglu, Cigdem

    2016-03-01

    A range of ultrasonication (US) and microwave irradiation (MW) sludge pretreatments were compared to determine the extent of cellular destruction in micro-organisms within secondary sludge and how this cellular destruction translated to anaerobic digestion (AD). Cellular lysis/inactivation was measured using two microbial viability assays, (1) Syto 16® Green and Sytox® Orange counter-assay to discern the integrity of cellular membranes and (2) a fluorescein diacetate assay to understand relative enzymatic activity. A range of MW intensities (2.17-6.48 kJ/g total solids or TS, coinciding temperatures of 60-160 °C) were selected for comparison via viability assays; a range of corresponding US intensities (2.37-27.71 kJ/g TS, coinciding sonication times of 10-60 min at different amplitudes) were also compared to this MW range. The MW pretreatment of thickened waste activated sludge (tWAS) caused fourfold to fivefold greater cell death than non-pretreated and US-pretreated tWAS. The greatest microbial destruction occurred at MW intensities greater than 2.62 kJ/g TS of sludge, after which increased energy input via MW did not appear to cause greater microbial death. In addition, the optimal MW pretreatment (80 °C, 2.62 kJ/g TS) and corresponding US pretreatment (10 min, 60 % amplitude, 2.37 kJ/g TS) were administered to the tWAS of a mixed sludge and fed to anaerobic digesters over sludge retention times (SRTs) of 20, 14, and 7 days to compare effects of feed pretreatment on AD efficiency. The digester utilizing MW-pretreated tWAS (80 °C, 2.62 kJ/g TS) had the greatest fecal coliform removal (73.4 and 69.8 % reduction, respectively), greatest solids removal (44.2 % TS reduction), and highest overall methane production (248.2 L CH4/kg volatile solids) at 14- and 7-day SRTs. However, despite the fourfold to fivefold increases in cell death upon pretreatment, improvements from the digester fed MW-pretreated sludge were marginal (i.e., increases in efficiency of less

  19. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    PubMed Central

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. PMID:22489140

  20. Co-digestion of sewage sludge from external small WWTP's in a large plant

    NASA Astrophysics Data System (ADS)

    Miodoński, Stanisław

    2017-11-01

    Improving energy efficiency of WWTPs (Waste Water Treatment Plants) is crucial action of modern wastewater treatment technology. Technological treatment process optimization is important but the main goal will not be achieved without increasing production of renewable energy from sewage sludge in anaerobic digestion process which is most often used as sludge stabilization method on large WWTP's. Usually, anaerobic digestion reactors used for sludge digestion were designed with reserve and most of them is oversized. In many cases that reserve is unused. On the other hand, smaller WWTPs have problem with management of sewage sludge due to lack of adequately developed infrastructure for sludge stabilization. Paper shows an analysis of using a technological reserve of anaerobic digestion reactors at large WWTP (1 million P.E.) for sludge stabilization collected from smaller WWTP in a co-digestion process. Over 30 small WWTPs from the same region as the large WWTP were considered in this study. Furthermore, performed analysis included also evaluation of potential sludge disintegration pre-treatment for co-digestion efficiency improvement.

  1. Implementation and process analysis of pilot scale multi-phase anaerobic fermentation and digestion of faecal sludge in Ghana

    PubMed Central

    Shih, Justin; Fanyin-Martin, Ato; Taher, Edris; Chandran, Kartik

    2017-01-01

    Background.  In Ghana, faecal sludge (FS) from on-site sanitation facilities is often discharged untreated into the environment, leading to significant insults to environmental and human health. Anaerobic digestion offers an attractive pathway for FS treatment with the concomitant production of energy in the form of methane. Another innovative option includes separating digestion into acidogenesis (production of volatile fatty acids (VFA)) and methanogenesis (production of methane), which could ultimately facilitate the production of an array of biofuels and biochemicals from the VFA. This work describes the development, implementation and modeling based analysis of a novel multiphase anaerobic fermentation-digestion process aimed at FS treatment in Kumasi, Ghana.  Methods.  A pilot-scale anaerobic fermentation process was implemented at the Kumasi Metropolitan Assembly’s Oti Sanitary Landfill Site at Adanse Dompoase.  The process consisted of six 10 m reactors in series, which were inoculated with bovine rumen and fed with fecal sludge obtained from public toilets.  The performance of the fermentation process was characterized in terms of both aqueous and gaseous variables representing the conversion of influent organic carbon to VFA as well as CH 4.  Using the operating data, the first-ever process model for FS fermentation and digestion was developed and calibrated, based on the activated sludge model framework. Results and Conclusions.  This work represents one of the first systematic efforts at integrated FS characterization and process modeling to enable anaerobic fermentation and digestion of FS. It is shown that owing to pre-fermentation of FS in public septage holding tanks, one could employ significantly smaller digesters (lower capital costs) or increased loading capabilities for FS conversion to biogas or VFA. Further, using the first-ever calibrated process model for FS fermentation and digestion presented herein, we expect improved and more

  2. Implementation and process analysis of pilot scale multi-phase anaerobic fermentation and digestion of faecal sludge in Ghana.

    PubMed

    Shih, Justin; Fanyin-Martin, Ato; Taher, Edris; Chandran, Kartik

    2017-11-06

    Background.  In Ghana, faecal sludge (FS) from on-site sanitation facilities is often discharged untreated into the environment, leading to significant insults to environmental and human health. Anaerobic digestion offers an attractive pathway for FS treatment with the concomitant production of energy in the form of methane. Another innovative option includes separating digestion into acidogenesis (production of volatile fatty acids (VFA)) and methanogenesis (production of methane), which could ultimately facilitate the production of an array of biofuels and biochemicals from the VFA. This work describes the development, implementation and modeling based analysis of a novel multiphase anaerobic fermentation-digestion process aimed at FS treatment in Kumasi, Ghana.  Methods.  A pilot-scale anaerobic fermentation process was implemented at the Kumasi Metropolitan Assembly's Oti Sanitary Landfill Site at Adanse Dompoase.  The process consisted of six 10 m reactors in series, which were inoculated with bovine rumen and fed with fecal sludge obtained from public toilets.  The performance of the fermentation process was characterized in terms of both aqueous and gaseous variables representing the conversion of influent organic carbon to VFA as well as CH 4 .  Using the operating data, the first-ever process model for FS fermentation and digestion was developed and calibrated, based on the activated sludge model framework. Results and Conclusions.  This work represents one of the first systematic efforts at integrated FS characterization and process modeling to enable anaerobic fermentation and digestion of FS. It is shown that owing to pre-fermentation of FS in public septage holding tanks, one could employ significantly smaller digesters (lower capital costs) or increased loading capabilities for FS conversion to biogas or VFA. Further, using the first-ever calibrated process model for FS fermentation and digestion presented herein, we expect improved and more

  3. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization.

    PubMed

    Tiehm, A; Nickel, K; Zellhorn, M; Neis, U

    2001-06-01

    The pretreatment of waste activated sludge by ultrasonic disintegration was studied in order to improve the anaerobic sludge stabilization. The ultrasound frequency was varied within a range from 41 to 3217 kHz. The impact of different ultrasound intensities and treatment times was examined. Sludge disintegration was most significant at low frequencies. Low-frequency ultrasound creates large cavitation bubbles which upon collapse initiate powerful jet streams exerting strong shear forces in the liquid. The decreasing sludge disintegration efficiency observed at higher frequencies was attributed to smaller cavitation bubbles which do not allow the initiation of such strong shear forces. Short sonication times resulted in sludge floc deagglomeration without the destruction of bacteria cells. Longer sonication brought about the break-up of cell walls, the sludge solids were distintegrated and dissolved organic compounds were released. The anaerobic digestion of waste activated sludge following ultrasonic pretreatment causing microbial cell lysis was significantly improved. There was an increase in the volatile solids degradation as well as an increase in the biogas production. The increase in digestion efficiency was proportional to the degree of sludge disintegration. To a lesser degree the deagglomeration of sludge flocs also augmented the anaerobic volatile solids degradation.

  4. [Effect of Ce3+ on volatile fatty acid concentrations during anaerobic granular sludge digestion].

    PubMed

    Liang, Rui; Xia, Qing; Ding, Li-Li; Shi, Xiao-Lei; Zhao, Ming-Yu; Ren, Hong-Qiang

    2009-04-15

    Batch experiments were conducted to investigate the effect of Ce3+ on volatile fatty acid(VFA) concentrations by anaerobic granular sludge digestion using D-Glucose and acetic sodium as substrate in the state of stabilization and restart-up. Results show that when the concentration of Ce3+ is lower than 1 mg/L, VFA concentration decreases, which suggests the transformation of butyric acid to acetic acid and acetic acid to methane is promoted. When the concentration of Ce3+ is 1-10 mg/L, the bacterial activity decreases and decomposition of the acetic acid and butyric acid becomes more difficult compared with the control. Adding Ce3+ brings little change in the constitution of VFA: 96% of VFA is acetic acid and butyric acid, while the propionic acid accounts for less than 3%. With the acetic sodium as the sole carbon and energy source, adding 0.05 mg/L Ce3+ could accelerate acetate degradation. After being conserved for 4 months, the activity of the Ce-containing anaerobic granular sludge is higher than that of the Ce-free sludge. The present of Ce contributes to the restart-up of anaerobic reactors.

  5. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Caixia; Zhou Quancheng; Fu Guiming

    2011-08-15

    Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64%more » of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.« less

  6. A field study of lignite as a drying aid in the superheated steam drying of anaerobically digested sludge.

    PubMed

    Hoadley, A F A; Qi, Y; Nguyen, T; Hapgood, K; Desai, D; Pinches, D

    2015-10-01

    Dried sludge is preferred when the sludge is either to be incinerated or used as a soil amendment. This paper focuses on superheated steam drying which has many benefits, because the system is totally enclosed, thereby minimising odours and particulate emissions. This work reports on field trials at a wastewater treatment plant where anaerobically digested sludge is dried immediately after being dewatered by belt press. The trials showed that unlike previous off-site tests, the sludge could be dried without the addition of a filter aid at a low production rate. However, the trials also confirmed that the addition of the lignite (brown coal) into the anaerobically digested sludge led to a more productive drying process, improved product quality and a greater fraction of the product being in the desired product size range. It is concluded that these results were achieved because the lignite helped to control the granule size in the dryer. Furthermore neither Salmonella spp or E coli were detected in the dried samples. Tests on spontaneous combustion show that this risk is increased in proportion to the amount of lignite used as a drying aid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge.

    PubMed

    Gagliano, M C; Braguglia, C M; Gallipoli, A; Gianico, A; Rossetti, S

    2015-05-01

    Anaerobic digestion (AD) is one of the few sustainable technologies that both produce energy and treat waste streams. Driven by a complex and diverse community of microbes, AD may be affected by different factors, many of which also influence the composition and activity of the microbial community. In this study, the biodiversity of microbial populations in innovative mesophilic/thermophilic temperature-phased AD of sludge was evaluated by means of fluorescence in situ hybridization (FISH). The increase of digestion temperature drastically affected the microbial composition and selected specialized biomass. Hydrogenotrophic Methanobacteriales and the protein fermentative bacterium Coprothermobacter spp. were identified in the thermophilic anaerobic biomass. Shannon-Weaver diversity (H') and evenness (E) indices were calculated using FISH data. Species richness was lower under thermophilic conditions compared with the values estimated in mesophilic samples, and it was flanked by similar trend of the evenness indicating that thermophilic communities may be therefore more susceptible to sudden changes and less prompt to adapting to operative variations.

  8. Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: electrical variables analysis.

    PubMed

    Citeau, M; Olivier, J; Mahmoud, A; Vaxelaire, J; Larue, O; Vorobiev, E

    2012-09-15

    Pressurised electro-osmotic dewatering (PEOD) of two sewage sludges (activated and anaerobically digested) was studied under constant electric current (C.C.) and constant voltage (C.V.) with a laboratory chamber simulating closely an industrial filter. The influence of sludge characteristics, process parameters, and electrode/filter cloth position was investigated. The next parameters were tested: 40 and 80 A/m², 20, 30, and 50 V-for digested sludge dewatering; and 20, 40 and 80 A/m², 20, 30, and 50 V-for activated sludge dewatering. Effects of filter cloth electric resistance and initial cake thickness were also investigated. The application of PEOD provides a gain of 12 points of dry solids content for the digested sludge (47.0% w/w) and for the activated sludge (31.7% w/w). In PEOD processed at C.C. or at C.V., the dewatering flow rate was similar for the same electric field intensity. In C.C. mode, both the electric resistance of cake and voltage increase, causing a temperature rise by ohmic effect. In C.V. mode, a current intensity peak was observed in the earlier dewatering period. Applying at first a constant current and later on a constant voltage, permitted to have better control of ohmic heating effect. The dewatering rate was not significantly affected by the presence of filter cloth on electrodes, but the use of a thin filter cloth reduced remarkably the energy consumption compared to a thicker one: 69% of reduction energy input at 45% w/w of dry solids content. The reduction of the initial cake thickness is advantageous to increase the final dry solids content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Using mechanisms of hydrolysis and sorption to reduce siloxanes occurrence in biogas of anaerobic sludge digesters.

    PubMed

    Gatidou, Georgia; Arvaniti, Olga S; Stasinakis, Athanasios S; Thomaidis, Nikolaos S; Andersen, Henrik R

    2016-12-01

    Hydrolysis of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6) and dodecamethylcyclohexasilane (D6_silane) and their sorption to digested sludge was studied in batch experiments. Hydrolysis was affected by the type of the compound and the applied temperature, while the relevant half-life values ranged between 0.07±0.01d (D3, 55°C) and 48.4±17.1d (D6_silane, 4°C). D5 showed the greatest affinity for sorption to digested sludge (logK d : 3.84±3.42), the lowest LogK d value was found for D3 (1.46±0.95). Prediction of investigated compounds' fate in a single-stage anaerobic digestion system indicated that volatilization seems to be the major fate in both mesophilic and thermophilic conditions. The addition of a pre-digester with 3d retention time would significantly decrease the expected concentrations of all siloxanes in biogas, enhancing their removal through hydrolysis and sorption to sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge.

    PubMed

    Mustapha, Nurul Asyifah; Hu, Anyi; Yu, Chang-Ping; Sharuddin, Siti Suhailah; Ramli, Norhayati; Shirai, Yoshihito; Maeda, Toshinari

    2018-06-01

    Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.

  11. The role of zero valent iron on the fate of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic co-digestion of waste sludge and kitchen waste.

    PubMed

    Gao, Pin; Gu, Chaochao; Wei, Xin; Li, Xiang; Chen, Hong; Jia, Hanzhong; Liu, Zhenhong; Xue, Gang; Ma, Chunyan

    2017-03-15

    Activated sludge has been identified as a potential significant source of antibiotic resistance genes (ARGs) to the environment. Anaerobic digestion is extensively used for sludge stabilization and resource recovery, and represents a crucial process for controlling the dissemination of ARGs prior to land application of digested sludge. The objective of this study is to investigate the effect of zero valent iron (Fe 0 ) on the attenuation of seven representative tetracycline resistance genes (tet, tet(A), tet(C), tet(G), tet(M), tet(O), tet(W), and tet(X)), and the integrase gene intI1 during thermophilic anaerobic co-digestion of waste sludge and kitchen waste. Significant decrease (P < 0.05) in the quantities of tet (except tet(W)) and intI1 genes was observed at Fe 0 dosage of 5 g/L, whereas no significant differences (P > 0.05) were found for all gene targets between digesters with Fe 0 dosages of 5 and 60 g/L. A first-order kinetic model favorably described the trends in concentrations of tet and intI1 gene targets during thermophilic anaerobic digestion with or without Fe 0 . Notably, tet genes encoding different resistance mechanisms behaved distinctly in anaerobic digesters, although addition of Fe 0 could enhance their reduction. The overall results of this research suggest that thermophilic anaerobic digestion with Fe 0 can be a potential alternative technology for the attenuation of tet and intI1 genes in waste sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Biogas potential from anaerobic co-digestion of faecal sludge with food waste and garden waste

    NASA Astrophysics Data System (ADS)

    Afifah, Ukhtiy; Priadi, Cindy Rianti

    2017-03-01

    The limited faecal sludge management can be optimized by converting the sludge into biogas. This study purposed to optimize the biogas potential of faecal sludge with food waste and garden waste. The system using Anaerobic Co-digestion on the variation 25% and 50% concentration of faecal sludge based on Volatile Solids (VS). Inoculum used was cow's rumen. The study was operated using lab-scale batch reactor 51 L for 42 days. Biogas produced at 25% concentration of faecal sludge is 0,30 m3CH4/kg with 71,93% VS and 72,42% COD destruction. Meanwhile, at 50% concentration of faecal sludge produce 0,56 m3CH4/kg VS biogas with 92,43% VS and 87,55% COD destruction. This study concludes that biogas potential of 50% concentration greater than 25% concentration of faecal sludge.

  13. Enhanced methane yield by co-digestion of sewage sludge with micro-algae and catering waste leachate.

    PubMed

    2018-04-04

    The co-digestion of different wastes is a promising concept to improve methane generation during anaerobic process. However, the anaerobic co-digestion of catering waste leachate with algal biomass and sewage sludge has not been studied to date. This work investigated the methane generation by the anaerobic co-digestion of different mixtures of catering waste leachate, micro-algal biomass, and sewage sludge. Co-digestion of waste mixture containing equal ratios of three substrates had 39.31% higher methane yield than anaerobic digestion of raw sludge. This was possibly due to a proliferation of methanogens during the co-digestion period induced by multi-phase digestion of different wastes with different degrees of digestibility. Therefore, co-digestion of catering waste leachate, micro-algal biomass, and sewage sludge appears to be an efficient technology for energy conversion from waste resources. The scientific application of this co-digestion technology with these three substrates may play a role in solving important environmental issues of waste management.

  14. Effect of domestication on microorganism diversity and anaerobic digestion of food waste.

    PubMed

    Bi, S J; Hong, X J; Wang, G X; Li, Y; Gao, Y M; Yan, L; Wang, Y J; Wang, W D

    2016-08-19

    To accomplish the rapid start-up and stable operation of biogas digesters, an efficient inoculum is required. To obtain such an inoculum for food waste anaerobic digestion, we domesticated dairy manure anaerobic digestion residue by adding food waste every day. After 36 days, the pH and biogas yield stabilized signifying the completion of domestication. During domestication, the microbial communities in the inocula were investigated by constructing 16S rDNA clone libraries. We evaluated the effect of the domesticated inoculum by testing batch food waste anaerobic digestion with a non-domesticated inoculum as a control. The pH and methane yield of the digestion systems were determined as measurement indices. Domestication changed the composition and proportion of bacteria and archaea in the inocula. Of the bacteria, Clostridia (49.3%), Bacteroidales (19.5%), and Anaerolinaceae (8.1%) species were dominant in the seed sludge; Anaerolinaceae (49.0%), Clostridia (28.4%), and Bacteroidales (9.1%), in domestication sludge. Methanosaeta was the dominant genus in both of the seed (94.3%) and domestication (74.3%) sludge. However, the diversity of methanogenic archaea was higher in the domestication than in seed sludge. Methanoculleus, which was absent from the seed sludge, appeared in the domestication sludge (21.7%). When the domesticated inoculum was used, the digestion system worked stably (organic loading rate: 20 gVS/L; methane yield: 292.2 ± 9.8 mL/gVS; VS = volatile solids), whereas the digestion system inoculated with seed sludge failed to generate biogas. The results indicate that inoculum domestication ensures efficient and stable anaerobic digestion by enriching the methanogenic strains.

  15. Effect of Cambi Thermal Hydrolysis Process-Anaerobic digestion treatment on concentrations on phthalate plasticisers in wastewater sludge

    USDA-ARS?s Scientific Manuscript database

    The impact of the recently implemented Cambi Thermal Hydrolysis Process™-Anaerobic Digestion (TH-AD) solids treatment method on concentrations of 4 phthalate plasticisers in wastewater sludge samples was explored in this study. Samples were analysed for diisononyl phthalate (DiNP), diisodecyl phthal...

  16. Aged-engineered nanoparticles effect on sludge anaerobic digestion performance and associated microbial communities.

    PubMed

    Eduok, Samuel; Ferguson, Robert; Jefferson, Bruce; Villa, Raffaella; Coulon, Frédéric

    2017-12-31

    To investigate the potential effect of aged engineered nanoparticles (a-ENPs) on sludge digestion performance, 150L pilot anaerobic digesters (AD) were fed with a blend of primary and waste activated sludge spiked either with a mixture of silver oxide, titanium dioxide and zinc oxide or a mixture of their equivalent bulk metal salts to achieve a target concentration of 250, 2000, and 2800mgkg -1 dry weight, respectively. Volatile fatty acids (VFA) were 1.2 times higher in the spiked digesters and significantly different (p=0.05) from the control conditions. Specifically, isovaleric acid concentration was 2 times lower in the control digester compared to the spiked digesters, whereas hydrogen sulfide was 2 times lower in the ENPs spiked digester indicating inhibitory effect on sulfate reducing microorganisms. Based on the ether-linked isoprenoids concentration, the total abundance of methanogens was 1.4 times lower in the ENPs spiked digester than in the control and metal salt spiked digesters. Pyrosequencing indicated 80% decrease in abundance and diversity of methanogens in ENPs spiked digester compared to the control digester. Methanosarcina acetivorans and Methanosarcina barkeri were identified as nano-tolerant as their relative abundance increased by a factor of 6 and 11, respectively, compared to the other digesters. The results further provide compelling evidence on the resilience of Fusobacteria, Actinobacteria and the Trojan horse-like effect of ENPs which offered a competitive advantage to some organisms while reducing microbial abundance and diversity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Influence of fluid dynamics on anaerobic digestion of food waste for biogas production.

    PubMed

    Wang, Fengping; Zhang, Cunsheng; Huo, Shuhao

    2017-05-01

    To enhance the stability and efficiency of an anaerobic process, the influences of fluid dynamics on the performance of anaerobic digestion and sludge granulation were investigated using computational fluid dynamics (CFD). Four different propeller speeds (20, 60, 100, 140 r/min) were adopted for anaerobic digestion of food waste in a 30 L continuously stirred tank reactor (CSTR). Experimental results indicated that the methane yield increased with increasing the propeller speed within the experimental range. Results from CFD simulation and sludge granulation showed that the optimum propeller speed for anaerobic digestion was 100 r/min. Lower propeller speed (20 r/min) inhibited mass transfer and resulted in the failure of anaerobic digestion, while higher propeller speed (140 r/min) would lead to higher energy loss and system instability. Under this condition, anaerobic digestion could work effectively with higher efficiency of mass transfer which facilitated sludge granulation and biogas production. The corresponding mean liquid velocity and shear strain rate were 0.082 m/s and 10.48 s -1 , respectively. Moreover, compact granular sludge could be formed, with lower energy consumption. CFD was successfully used to study the influence of fluid dynamics on the anaerobic digestion process. The key parameters of the optimum mixing condition for anaerobic digestion of food waste in a 30 L CSTR including liquid velocity and shear strain rate were obtained using CFD, which were of paramount significance for the scale-up of the bioreactor. This study provided a new way for the optimization and scale-up of the anaerobic digestion process in CSTR based on the fluid dynamics analysis.

  18. How does free ammonia-based sludge pretreatment improve methane production from anaerobic digestion of waste activated sludge.

    PubMed

    Wang, Dongbo; Liu, Bowen; Liu, Xuran; Xu, Qiuxiang; Yang, Qi; Liu, Yiwen; Zeng, Guangming; Li, Xiaoming; Ni, Bing-Jie

    2018-09-01

    Previous studies reported that free ammonia (FA) pretreatment could improve methane production from anaerobic digestion of waste activated sludge (WAS) effectively. However, details of how FA pretreatment improves methane production are poorly understood. This study therefore aims to reveal the underlying mechanisms of FA pretreatment affecting anaerobic digestion of WAS through a series of batch tests using either real sludge or synthetic media as the digestion substrates at different pH values. At pH 8.5 level, with an increase of FA level from 18.5 to 92.5 mg/L (i.e., NH+ 4-N: 100-500 mg/L; pH 8.5) the maximum methane yield varied between 194.0 ± 3.9 and 196.9 ± 7.7 mL/g of VSS (25 °C, 1 atm). At pH 9.5 or 10 level, however, with an increase of initial FA level from 103.2 to 516.2 mg/L, the maximal methane yield increased linearly. The mechanism studies revealed that FA pretreatment at high levels not only accelerated the disintegration of WAS but also enhanced the biodegradability of WAS. Although pH in the digesters was adjusted to 7.0 ± 0.1, the high levels of NH+ 4-N added or released led to substantial levels of residual FA ranging from 4.4 to 11.6 mg/L. It was found that this level of FA inhibited homoacetogenesis and methanogenesis significantly, though hydrolysis, acidogenesis, and acetogenesis processes were unaffected largely. Further analyses showed that the inhibition constant of FA to substrate degradation was in the sequence of dextran > glucose > hydrogen > acetate, indicating the methanogenesis process was more sensitive to FA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Ultrasound pre-treatment for anaerobic digestion improvement.

    PubMed

    Pérez-Elvira, S; Fdz-Polanco, M; Plaza, F I; Garralón, G; Fdz-Polanco, F

    2009-01-01

    Prior research indicates that ultrasounds can be used in batch reactors as pre-treatment before anaerobic digestion, but the specific energy required at laboratory-scale is too high. This work evaluates both the continuous ultrasound device performance (efficiency and solubilisation) and the operation of anaerobic digesters continuously fed with sonicated sludge, and presents energy balance considerations. The results of sludge solubilisation after the sonication treatment indicate that, applying identical specific energy, it is better to increase the power than the residence time. Working with secondary sludge, batch biodegradability tests show that by applying 30 kWh/m3 of sludge, it is possible to increase biogas production by 42%. Data from continuous pilot-scale anaerobic reactors (V=100 L) indicate that operating with a conventional HRT=20 d, a reactor fed with pre-treated sludge increases the volatile solids removal and the biogas production by 25 and 37% respectively. Operating with HRT=15 d, the removal efficiency is similar to the obtained with a reactor fed with non-hydrolysed sludge at HTR=20 d, although the specific biogas productivity per volume of reactor is higher for the pretreated sludge. Regarding the energy balance, although for laboratory-scale devices it is negative, full-scale suppliers state a net generation of 3-10 kW per kW of energy used.

  20. Use of solid residue from thermal power plant (fly ash) for enhancing sewage sludge anaerobic digestion: Influence of fly ash particle size.

    PubMed

    Montalvo, S; Cahn, I; Borja, R; Huiliñir, C; Guerrero, L

    2017-11-01

    The influence of fly ash particle size on methane production and anaerobic biodegradability was evaluated. Assays with different fly ash particle sizes (0.8-2.36mm) at a concentration of 50mg/L were ran under mesophilic conditions. In anaerobic processes operating with fly ash, greater removal of both volatile total and suspended solids, chemical oxygen demand (total and soluble) was achieved, with an increase of methane production between 28% and 96% compared to the control reactors. The highest increase occurred at ash particles sizes of 1.0-1.4mm. The metal concentrations in the digestates obtained after anaerobic digestion of sewage sludge are far below those considered as limiting for the use of sludge in soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia stripping.

    PubMed

    Yabu, Hironori; Sakai, Chikako; Fujiwara, Tomoko; Nishio, Naomichi; Nakashimada, Yutaka

    2011-03-01

    To avoid the inhibition of methane production by ammonia that occurs during the degradation of garbage, anaerobic digestion with prior ammonia production and subsequent stripping was investigated. In the ammonia production phase, the maximum ammonia concentration was approximately 2800 mg N/kg of total wet sludge in the range of 4 days of sludge retention time, indicating that only 43% of total nitrogen in the model garbage was converted to ammonia. The model garbage from which ammonia was produced and stripped was subjected to semi-continuous thermophilic dry anaerobic digestion over 180 days. The gas yield was in the range of 0.68 to 0.75 Nm(3)/kg volatile solid, and it decreased with the decrease of the sludge retention time. The ammonia-nitrogen concentration in the sludge was kept below 3000 mg N/kg total wet sludge. Microbial community structure analysis revealed that the phylum Firmicutes dominated in the ammonia production, but the community structure changed at different sludge retention times. In dry anaerobic digestion, the dominant bacteria shifted from the phylum Thermotogae to Firmicutes. The dominant archaeon was the genus Methanothermobacter, but the ratio of Methanosarcina increased during the process of dry anaerobic digestion. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Anaerobic treatment of sludge from a nitrification-denitrification landfill leachate plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maranon, E.; Castrillon, L.; Fernandez, Y.

    2006-07-01

    The viability of anaerobic digestion of sludge from a MSW landfill leachate treatment plant, with COD values ranging between 15,000 and 19,400 mg O{sub 2} dm{sup -3}, in an upflow anaerobic sludge blanket reactor was studied. The reactor employed had a useful capacity of 9 l, operating at mesophilic temperature. Start-up of the reactor was carried out in different steps, beginning with diluted sludge and progressively increasing the amount of sludge fed into the reactor. The study was carried out over a period of 7 months. Different amounts of methanol were added to the feed, ranging between 6.75 and 1more » cm{sup 3} dm{sup -3} of feed in order to favour the growth of methanogenic flora. The achieved biodegradation of the sludge using an upflow anaerobic sludge blanket Reactor was very high for an HRT of 9 days, obtaining decreases in COD of 84-87% by the end of the process. Purging of the digested sludge represented {approx}16% of the volume of the treated sludge.« less

  3. Microbial examination of anaerobic sludge adaptation to animal slurry.

    PubMed

    Moset, V; Cerisuelo, A; Ferrer, P; Jimenez, A; Bertolini, E; Cambra-López, M

    2014-01-01

    The objective of this study was to evaluate changes in the microbial population of anaerobic sludge digesters during the adaptation to pig slurry (PS) using quantitative real-time polymerase chain reaction (qPCR) and qualitative scanning electron microscopy (SEM). Additionally, the relationship between microbial parameters and sludge physicochemical composition and methane yield was examined. Results showed that the addition of PS to an unadapted thermophilic anaerobic digester caused an increase in volatile fatty acids (VFA) concentration, a decrease in removal efficiency and CH4 yield. Additionally, increases in total bacteria and total archaea were observed using qPCR. Scanning electron micrographs provided a general overview of the sludge's cell morphology, morphological diversity and degree of organic matter degradation. A change in microbial morphotypes from homogeneous cell morphologies to a higher morphological diversity, similar to that observed in PS, was observed with the addition of PS by SEM. Therefore, the combination of qPCR and SEM allowed expanding the knowledge about the microbial adaptation to animal slurry in thermophilic anaerobic digesters.

  4. Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production.

    PubMed

    Torres-Lozada, Patricia; Díaz-Granados, José Sánchez; Parra-Orobio, Brayan Alexis

    2015-01-01

    Water purification and wastewater treatment generate sludge, which must be adequately handled to prevent detrimental effects to the environment and public health. In this study, we examined the influence of the application of settled sludge from a drinking water treatment plant (S(DWTP)) on the anaerobic digestion (AD) of the thickened primary sludge from a municipal wastewater treatment plant (S(WWTP)) which uses chemically assisted primary treatment (CAPT). On both plants the primary coagulant is ferric chloride. The study was performed at laboratory scale using specific methanogenic activity (SMA) tests, in which mixtures of S(WWTP)-S(DWTP) with the ratios 100:00, 80:20, 75:25, 70:30 and 00:100 were evaluated. Methane detection was also performed by gas chromatography for a period of 30 days. Our results show that all evaluated ratios that incorporate S(DWTP), produce an inhibitory effect on the production of methane. The reduction in methane production ranged from 26% for the smallest concentration of S(DWTP) (20%) to more than 70% for concentrations higher than 25%. The results indicated that the hydrolytic stage was significantly affected, with the hydrolysis constant Kh also reduced by approximately 70% (0.24-0.26 day(-1) for the different ratios compared with 0.34 day(-1) for the S(WWTP) alone). This finding demonstrates that the best mixtures to be considered for anaerobic co-digestion must contain a fraction of S(DWTP) below 20%.

  5. Evaluation and characterization during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor.

    PubMed

    Xiao, Xiaolan; Huang, Zhenxing; Ruan, Wenquan; Yan, Lintao; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing

    2015-10-01

    The anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor (AnMBR) was investigated at two different operational modes, including no sludge discharge and daily sludge discharge of 20 L. The AnMBR provided excellent and reliable permeate quality with high COD removal efficiencies over 99%. The obvious accumulations of long chain fatty acids (LCFAs) and Ca(2+) were found in the anaerobic digester by precipitation and agglomeration. Though the physicochemical process contributed to attenuating the free LCFAs toxicity on anaerobic digestion, the digestion efficiency was partly influenced for the low bioavailability of those precipitates. Moreover, higher organic loading rate (OLR) of 5.8 kg COD/(m(3) d) and digestion efficiency of 78% were achieved as the AnMBR was stably operated with sludge discharge, where the membrane fouling propensity was also alleviated, indicating the crucial significance of SRT control on the treatment of high-strength kitchen waste slurry via AnMBRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Kinetics and advanced digester design for anaerobic digestion of water hyacinth and primary sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chynoweth, D.P.; Dolenc, D.A.; Ghosh, S.

    1982-01-01

    A research program centered around a facility located at Walt Disney World (WDW) is in progress to evaluate the use of water hyacinth (WH) for secondary and tertiary wastewater treatment, to optimize growth of WH under these conditions, and to convert the resultant primary sludge (PS) and WH to methane via anaerobic digestion. This article describes the status of the biogasification component of this program, which includes baseline and advanced digestion experiments with individual feeds and blends and the design of an experimental test unit (ETU) to be installed at WDW. Experiments with several blends demonstrated that methane yields canmore » be predicted from the fractional content and methane yield of each component. The process was found to adhere to the Monod kinetic model for microbial growth, and associated kinetic parameters were developed for various feed combinations. A novel upflow digester is achieving significantly higher conversion than a stirred-tank digester. Of several pretreatment techniques used, only alkaline treatment resulted in increased biodegradability. A larger scale (4.5 m/sup 3/) experimental test unit is being designed for installation at WDW in 1982. 13 figures, 4 tables.« less

  7. Predicting the apparent viscosity and yield stress of digested and secondary sludge mixtures.

    PubMed

    Eshtiaghi, Nicky; Markis, Flora; Zain, Dwen; Mai, Kiet Hung

    2016-05-15

    The legal banning of conventional sludge disposal methods such as landfill has led to a global movement towards achieving a sustainable sludge management strategy. Reusing sludge for energy production (biogas production) through the anaerobic digestion of sludge can provide a sustainable solution. However, for the optimum performance of digesters with minimal use of energy input, operating conditions must be regulated in accordance with the rheological characteristics of the sludge. If it is assumed that only secondary sludge enters the anaerobic digesters, an impact of variations to the solids concentration and volume fraction of each sludge type must be investigated to understand how the apparent viscosity and yield stress of the secondary and digested sludge mixture inside the digesters changes. In this study, five different total solids concentration of secondary and digested sludge were mixed at different digested sludge volume fractions ranging from 0 to 1. It was found that if secondary sludge was mixed with digested sludge at the same total solids concentration, the apparent viscosity and the yield stress of the mixture increased exponentially by increasing the volume fraction of digested sludge. However, if secondary sludge was added to digested sludge with a different solids concentration, the apparent viscosity and yield stress of the resulting mixed sludge was controlled by the concentrated sludge regardless of its type. Semi - empirical correlations were proposed to predict the apparent viscosity and yield stress of the mixed digested and secondary sludge. A master curve was also developed to predict the flow behaviour of sludge mixtures regardless of the total solid concentration and volume fraction of each sludge type within the studied solids concentration range of 1.4 and 7%TS. This model can be used for digesters optimization and design by predicting the rheology of sludge mixture inside digester. Copyright © 2016 Elsevier Ltd. All rights

  8. Continuous thermal hydrolysis and energy integration in sludge anaerobic digestion plants.

    PubMed

    Fdz-Polanco, F; Velazquez, R; Perez-Elvira, S I; Casas, C; del Barrio, D; Cantero, F J; Fdz-Polanco, M; Rodriguez, P; Panizo, L; Serrat, J; Rouge, P

    2008-01-01

    A thermal hydrolysis pilot plant with direct steam injection heating was designed and constructed. In a first period the equipment was operated in batch to verify the effect of sludge type, pressure and temperature, residence time and solids concentration. Optimal operation conditions were reached for secondary sludge at 170 degrees C, 7 bar and 30 minutes residence time, obtaining a disintegration factor higher than 10, methane production increase by 50% and easy centrifugation In a second period the pilot plant was operated working with continuous feed, testing the efficiency by using two continuous anaerobic digester operating in the mesophilic and thermophilic range. Working at 12 days residence time, biogas production increases by 40-50%. Integrating the energy transfer it is possible to design a self-sufficient system that takes advantage of this methane increase to produce 40% more electric energy. (c) IWA Publishing 2008.

  9. The effect of different mesophilic temperatures during anaerobic digestion of sludge on the overall performance of a WWTP in Sweden.

    PubMed

    Moestedt, J; Rönnberg, J; Nordell, E

    2017-12-01

    This project was initiated to evaluate the effect of alternative process temperatures to 38 °C at the anaerobic digestion step in a Swedish wastewater treatment plant (WWTP) treating mixed sludge. The efficiency of the different temperatures was evaluated with respect to biogas production, volume of sludge produced and nutrient content in the reject water to find the optimum temperature for the WWTP as a whole. Three temperatures, 34 °C, 38 °C and 42 °C, were compared in laboratory scale. Increasing the process temperature to 42 °C resulted in process instability, reduced methane yield, accumulation of volatile fatty acids and higher treatment costs of the reject water. By decreasing the temperature to 34 °C, slightly higher sludge mass was observed and a lower gas production rate, while the specific methane produced remained unchanged compared to 38 °C but foaming was observed at several occasions. In summary 38 °C was proved to be the most favourable temperature for the anaerobic digestion process treating mixed sludge when the evaluation included effects such as foaming, sludge mass and quality of the reject water.

  10. Two-phase anaerobic digestion of partially acidified sewage sludge: a pilot plant study for safe sludge disposal in developing countries.

    PubMed

    Passio, Luca; Rizzoa, Luigi; Fuchs, Stephan

    2012-09-01

    The unsafe disposal of wastewater and sludge in different areas of developing countries results in significant environmental pollution, particularly for groundwater, thus increasing the risk of waterborne diseases spreading. In this work, a two-phase anaerobic digestion process for post-treatment of partially acidified sewage sludge was investigated to evaluate its feasibility as a safe sludge disposal system. Pilot tests showed that an effective sludge stabilization can be achieved (total volatile solids content <65%, organic acid concentration <200 mg/L at flow rate = 50 L/d and hydraulic residence time = 18 d) as well as a relative low faecal coliform density (<1000 most probable number per g total solids), showing that land application of the sludge without restrictions is possible according to US Environmental Protection Agency criteria for safe sludge disposal. A biogas production as high as 390 L/d with a 60% methane content by volume was achieved, showing that energy production from biogas may be achieved as well.

  11. Fate of antibiotic and metal resistance genes during two-phase anaerobic digestion of residue sludge revealed by metagenomic approach.

    PubMed

    Wu, Ying; Cui, Erping; Zuo, Yiru; Cheng, Weixiao; Chen, Hong

    2018-05-01

    The prevalence and persistence of antibiotic resistance genes in wastewater treatment plants (WWTPs) is of growing interest, and residual sludge is among the main sources for the release of antibiotic resistance genes (ARGs). Moreover, heavy metals concentrated in dense microbial communities of sludge could potentially favor co-selection of ARGs and metal resistance genes (MRGs). Residual sludge treatment is needed to limit the spread of resistance from WWTPs into the environment. This study aimed to explore the fate of ARGs and MRGs during thermophilic two-phase (acidogenic/methanogenic phase) anaerobic digestion by metagenomic analysis. The occurrence and abundance of mobile genetic elements were also determined based on the SEED database. Among the 27 major ARG subtypes detected in feed sludge, large reductions (> 50%) in 6 ARG subtypes were achieved by acidogenic phase (AP), while 63.0% of the ARG subtypes proliferated in the following methanogenic phase (MP). In contrast, a 2.8-fold increase in total MRG abundance was found in AP, while the total abundance during MP decreased to the same order of magnitude as in feed sludge. The distinct dynamics of ARGs and MRGs during the two-phase anaerobic digestion are noteworthy, and more specific treatments are required to limit their proliferation in the environment.

  12. Effects of disintegration on anaerobic degradation of sewage excess sludge in downflow stationary fixed film digesters.

    PubMed

    Engelhart, M; Krüger, M; Kopp, J; Dichtl, N

    2000-01-01

    The effects of mechanical disintegration on anaerobic digestibility of sewage excess sludge in downflow stationary fixed film (DSFF) digesters were investigated on laboratory scale. Mechanical pretreatment using a high pressure homogenizer led to significantly enhanced concentrations of soluble proteins and carbohydrates in the feed sludge. Using DSFF digesters with two different tubular plastic media as support material it was shown that a stable digestion process could be achieved at hydraulic retention times (HRT) down to 5 days. Compared to conventional digesters at 10 d and 15 d HRT respectively, the degradation of volatile solids was enhanced up to 25%, also resulting in a higher specific biogas production. Further investigations on degradation of soluble proteins and carbohydrates showed that a slowly degradable fraction of carbohydrates was released via disintegration. Using the distribution of chain length and the concentrations of volatile fatty acids as process parameters, the dependability on the HRT and the degree of disintegration (the release of soluble COD) predominated the effects of specific surface area of the support media.

  13. Rapid startup of thermophilic anaerobic digester to remove tetracycline and sulfonamides resistance genes from sewage sludge.

    PubMed

    Xu, Rui; Yang, Zhao-Hui; Wang, Qing-Peng; Bai, Yang; Liu, Jian-Bo; Zheng, Yue; Zhang, Yan-Ru; Xiong, Wei-Ping; Ahmad, Kito; Fan, Chang-Zheng

    2018-01-15

    Spread of antibiotic resistance genes (ARGs) originating from sewage sludge is highlighted as an eminent health threat. This study established a thermophilic anaerobic digester using one-step startup strategy to quickly remove tetracycline and sulfonamides resistance genes from sewage sludge. At least 20days were saved in the startup period from mesophilic to thermophilic condition. Based on the results of 16S rDNA amplicons sequencing and predicted metagenomic method, the successful startup largely relied on the fast colonization of core thermophilic microbial population (e.g. Firmicutes, Proteobacteria, Actinobacteria). Microbial metabolic gene pathways for substrate degradation and methane production was also increased by one-step mode. In addition, real-time quantitative PCR approach revealed that most targeted tetracycline and sulfonamides resistance genes ARGs (sulI, tetA, tetO, tetX) were substantially removed during thermophilic digestion (removal efficiency>80%). Network analysis showed that the elimination of ARGs was attributed to the decline of their horizontal (intI1 item) and vertical (potential hosts) transfer-related elements under high-temperature. This research demonstrated that rapid startup thermophilic anaerobic digestion of wastewater solids would be a suitable technology for reducing quantities of various ARGs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Anaerobic digestion of water hyacinth and sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biljetina, R.; Srivastava, V.J.; Chynoweth, D.P.

    1986-01-01

    The Institute of Gas Technology (IGT) has been operating an experimental test unit (ETU) at the Walt Disney World (WDW) wastewater treatment plant to demonstrate the conversion of water hyacinth and sludge to methane in a solids concentrating (SOLCON) digester. Results from 2 years to operation have confirmed earlier laboratory observations that this digester achieves higher methane yields and solids conversion than those observed in continuous stirred tank reactors. Methane yields as high as 0.49 m/sup 3/ kg/sup -1/ (7.9 SCF/lb) volatile solids added have been obtained during steady-state operation on a blend of water hyacinth and sludge. 9 refs.,more » 5 figs., 5 tabs.« less

  15. Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste: Effect on methane yields, dewaterability and solids reduction.

    PubMed

    Svensson, Kine; Kjørlaug, Oda; Higgins, Matthew J; Linjordet, Roar; Horn, Svein J

    2018-04-01

    Post-anaerobic digestion (PAD) treatment technologies have been suggested for anaerobic digestion (AD) to improve process efficiency and assure hygenization of organic waste. Because AD reduces the amount of organic waste, PAD can be applied to a much smaller volume of waste compared to pre-digestion treatment, thereby improving efficiency. In this study, dewatered digestate cakes from two different AD plants were thermally hydrolyzed and dewatered, and the liquid fraction was recirculated to a semi-continuous AD reactor. The thermal hydrolysis was more efficient in relation to methane yields and extent of dewaterability for the cake from a plant treating waste activated sludge, than the cake from a plant treating source separated food waste (SSFW). Temperatures above 165 °C yielded the best results. Post-treatment improved volumetric methane yields by 7% and the COD-reduction increased from 68% to 74% in a mesophilic (37 °C) semi-continuous system despite lowering the solid retention time (from 17 to 14 days) compared to a conventional system with pre-treatment of feed substrates at 70 °C. Results from thermogravimetric analysis showed an expected increase in maximum TS content of dewatered digestate cake from 34% up to 46% for the SSFW digestate cake, and from 17% up to 43% in the sludge digestate cake, after the PAD thermal hydrolysis process (PAD-THP). The increased dewatering alone accounts for a reduction in wet mass of cake leaving the plant of 60% in the case of sludge digestate cake. Additionaly, the increased VS-reduction will contribute to further reduce the mass of wet cake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process.

    PubMed

    Syutsubo, K; Nagaya, Y; Sakai, S; Miya, A

    2005-01-01

    Previously, we found that the newly isolated Clostridium sp. strain JC3 became the dominant cellulose-degrading bacterium in thermophilic methanogenic sludge. In the present study, the behavior of strain JC3 in the thermophilic anaerobic digestion process was investigated quantitatively by molecular biological techniques. A cellulose-degrading experiment was conducted at 55 degrees C with a 9.5 L of anaerobic baffled reactor having three compartments (Nos. 1, 2, 3). Over 80% of the COD input was converted into methane when 2.5 kgCOD m(-3) d(-1) was loaded for an HRT of 27 days. A FISH probe specific for strain JC3 was applied to sludge samples harvested from the baffled reactor. Consequently, the ratio of JC3 cells to DAPI-stained cells increased from below 0.5% (undetectable) to 9.4% (compartment 1), 13.1% (compartment 2) and 21.6% (compartment 3) at day 84 (2.5 kgCOD m(-3)d(-1)). The strain JC3 cell numbers determined by FISH correlated closely with the cellulose-degrading methanogenic activities of retained sludge. A specific primer set targeting the cellulase gene (cellobiohydrolaseA: cbhA) of strain JC3 was designed and applied to digested sludge for treating solid waste such as coffee grounds, wastepaper, garbage, cellulose and so on. The strain JC3 cell numbers determined by quantitative PCR correlated closely with the cellulose-sludge loading of the thermophilic digester. Strain JC3 is thus important in the anaerobic hydrolysis of cellulose in thermophilic anaerobic digestion processes.

  17. Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae.

    PubMed

    Lee, Eunyoung; Cumberbatch, Jewel; Wang, Meng; Zhang, Qiong

    2017-03-01

    Anaerobic co-digestion has a potential to improve biogas production, but limited kinetic information is available for co-digestion. This study introduced regression-based models to estimate the kinetic parameters for the co-digestion of microalgae and Waste Activated Sludge (WAS). The models were developed using the ratios of co-substrates and the kinetic parameters for the single substrate as indicators. The models were applied to the modified first-order kinetics and Monod model to determine the rate of hydrolysis and methanogenesis for the co-digestion. The results showed that the model using a hyperbola function was better for the estimation of the first-order kinetic coefficients, while the model using inverse tangent function closely estimated the Monod kinetic parameters. The models can be used for estimating kinetic parameters for not only microalgae-WAS co-digestion but also other substrates' co-digestion such as microalgae-swine manure and WAS-aquatic plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Anaerobic Digestion Model No. 1 Simulation of High Solids Anaerobic Digestion with Feasibility Study for El Gabal El Asfar Water Resource Recovery Facility.

    PubMed

    Aboulfotoh, Ahmed M

    2018-03-01

      Performance of continuous mesophilic high solids anaerobic digestion (HSAD) was simulated using Anaerobic Digestion Model No. 1 (ADM1), under different conditions (solids concentrations, sludge retention time (SRT), organic loading rate (OLR), and type of sludge). Implementation of ADM1, using the proposed biochemical parameters, proved to be a useful tool for the prediction and control of HSAD as the model predicted the behavior of the tested sets of data with considerable accuracy, especially for SRT more than 13 days. The model was then used to investigate the possibility of changing the existing conventional anaerobic digestion (CAD) units in Gabal El Asfar water resource recovery facility into HSAD, instead of establishing new CAD units, and results show that the system will be feasible. HSAD will produce the same bioenergy combined with a decrease in capital, operational, and maintenance costs.

  19. Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment.

    PubMed

    Choi, Jae-Min; Han, Sun-Kee; Lee, Chae-Young

    2018-07-01

    This study was performed to optimize thermal hydrolysis pretreatment (THP) of sewage sludge for enhanced anaerobic digestion (AD). Using the response surface methodology (RSM), the optimal conditions were found 180 °C of reaction temperature and 76 min of reaction time. Through THP under optimal conditions, high molecular substances in sewage sludge such as soluble microbial by-products (SMPs) and extracellular polymeric substances (EPSs) were hydrolyzed into low molecular ones without the generation of refractory compounds. The microbial community analysis revealed that relative abundances of Methanomicrobia such as Methanosarcina, Methanosaeta (acetoclastic methanogens), and Methanoculleus (hydrogenotrophic methanogens) in AD with THP were higher than those in conventional AD. Copyright © 2018. Published by Elsevier Ltd.

  20. Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids.

    PubMed

    Novak, John T; Sadler, Mary E; Murthy, Sudhir N

    2003-07-01

    Laboratory anaerobic and aerobic digestion studies were conducted using waste activated sludges from two municipal wastewater treatment plants in order to gain insight into the mechanisms of floc destruction that account for changes in sludge conditioning and dewatering properties when sludges undergo anaerobic and aerobic digestion. Batch digestion studies were conducted at 20 degrees C and the dewatering properties, solution biopolymer concentration and conditioning dose requirements measured. The data indicated that release of biopolymer from sludges occurred under both anaerobic and aerobic conditions but that the release was much greater under anaerobic conditions. In particular, the release of protein into solution was 4-5 times higher under anaerobic than under aerobic conditions. Both the dewatering rate, as characterized by the specific resistance to filtration and the amount of polymer conditioning chemicals required was found to depend directly on the amount of biopolymer (protein + polysaccharide) in solution. Little difference in dewatering properties and conditioning doses was seen between the two activated sludges from different plants. Differences in the cations released between anaerobic and aerobic digestion suggest that the digestion mechanisms differ for the two types of processes. Enzyme activity data showed that during aerobic digestion, polysaccharide degradation activity decreased to near zero and this was consistent with the accumulation of polysaccharides in aerobic digesters.

  1. Anaerobic digestion of thermal pre-treated sludge at different solids concentrations--Computation of mass-energy balance and greenhouse gas emissions.

    PubMed

    Pilli, Sridhar; More, Tanaji; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2015-07-01

    The effect of thermal pre-treatment on sludge anaerobic digestion (AD) efficiency was studied at different total solids (TS) concentrations (20.0, 30.0 and 40.0 g TS/L) and digestion times (0, 5, 10, 15, 20 and 30 days) for primary, secondary and mixed wastewater sludge. Moreover, sludge pre-treatment, AD and disposal processes were evaluated based on a mass-energy balance and corresponding greenhouse gas (GHG) emissions. Mass balance revealed that the least quantity of digestate was generated by thermal pre-treated secondary sludge at 30.0 g TS/L. The net energy (energy output-energy input) and energy ratio (energy output/energy input) for thermal pre-treated sludge was greater than control in all cases. The reduced GHG emissions of 73.8 × 10(-3) g CO2/g of total dry solids were observed for the thermal pre-treated secondary sludge at 30.0 g TS/L. Thermal pre-treatment of sludge is energetically beneficial and required less retention time compared to control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Biomethanation of Sewage Sludge with Food Waste Leachate Via Co-Digestion.

    PubMed

    Shin, Jingyeong; Kim, Young Beom; Jeon, Jong Hun; Choi, Sangki; Park, In Kyu; Kim, Young Mo

    2017-08-28

    Anaerobic mono- and co-digestion of sewage sludge and food waste leachate (FWL) were performed by assessing methane production and characterizing microbial communities. Anaerobic digestion (AD) of waste activated sludge (WAS) alone produced the lowest methane (281 ml CH 4 ), but an approximately 80% increase in methane production was achieved via co-digestion of WAS and FWL (506 ml CH 4 ). There were less differences in the diversity of bacterial communities in anaerobic digesters, while archaeal (ARC) and bacterial (BAC) amounts reflected AD performance. Compared with the total ARC and BAC amounts in the mono-digestion of WAS, the ARC and BAC amounts increased two and three times, respectively, during co-digestion of FWL and WAS. In characterized archaeal communities, the dominant ratio of hydrogenotrophic methanogens in the mono-digestion of WAS approached nearly a 1:1 ratio of the two acetoclastic and hydrogenotrophic methanogens in the co-digestion of FWL and WAS. The ARC/BAC ratio in the digesters varied in the range of 5.9% to 9.1%, indicating a positive correlation with the methane production of AD.

  3. Analysis of the stability of high-solids anaerobic digestion of agro-industrial waste and sewage sludge.

    PubMed

    Aymerich, E; Esteban-Gutiérrez, M; Sancho, L

    2013-09-01

    The pilot-scale high-solids anaerobic digestion (HS-AD) of agro-industrial wastes and sewage sludge was analysed in terms of stability by monitoring the most common parameters used to check the performance of anaerobic digesters, i.e. Volatile Fatty Acids (VFA), ammonia nitrogen, pH, alkalinity and methane production. The results reflected similar evolution for the parameters analysed, except for an experiment that presented an unsuccessful start-up. The rest of the experiments ran successfully, although the threshold values proposed in the literature for the detection of an imbalance in wet processes were exceeded, proving the versatility of HS-AD to treat different wastes. The results evidence the need for understanding the dynamics of a high-solids system so as to detect periods of imbalance and to determine inhibitory levels for different compounds formed during anaerobic decomposition. Moreover, the findings presented here could be useful in developing an experimental basis to construct new control strategies for HS-AD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Anaerobic digestion potential of urban organic waste: a case study in Malmö.

    PubMed

    Davidsson, Asa; Jansen, Jes la Cour; Appelqvist, Björn; Gruvberger, Christopher; Hallmer, Martin

    2007-04-01

    A study of existing organic waste types in Malmö, Sweden was performed. The purpose was to gather information about organic waste types in the city to be able to estimate the potential for anaerobic treatment in existing digesters at the wastewater treatment plan (WWTP). The urban organic waste types that could have a significant potential for anaerobic digestion amount to about 50 000 tonnes year(-1) (sludge excluded). Some of the waste types were further evaluated by methane potential tests and continuous pilot-scale digestion. Single-substrate digestion and co-digestion of pre-treated, source-sorted organic fraction of municipal solid waste, wastewater sludge, sludge from grease traps and fruit and vegetable waste were carried out. The experiments showed that codigestion of grease sludge and WWTP sludge was a better way of making use of the methane potential in the grease trap sludge than single-substrate digestion. Another way of increasing the methane production in sludge digesters is to add source-sorted organic fraction of municipal solid waste (SSOFMSW). Adding SSOFMSW (20% of the total volatile solids) gave a 10-15% higher yield than could be expected by comparison with separate digestion of sludge respective SSOFMSW. Co-digestion of sludge and organic waste is beneficial not just for increasing gas production but also for stabilizing the digestion process. This was seen when co-digesting fruit and vegetable waste and sludge. When co-digested with sludge, this waste gave a better result than the separate digestion of fruit and vegetable waste. Considering single-substrate digestion, SSOFMSW is the only waste in the study which makes up a sufficient quantity to be suitable as the base substrate in a full-scale digester that is separated from the sludge digestion. The two types of SSOFMSW tested in the pilot-scale digestion were operated successfully at mesophilic temperature. By adding SSOFMSW, grease trap sludge and fruit and vegetables waste to sludge

  5. Disintegration impact on sludge digestion process.

    PubMed

    Dauknys, Regimantas; Rimeika, Mindaugas; Jankeliūnaitė, Eglė; Mažeikienė, Aušra

    2016-11-01

    The anaerobic sludge digestion is a widely used method for sludge stabilization in wastewater treatment plant. This process can be improved by applying the sludge disintegration methods. As the sludge disintegration is not investigated enough, an analysis of how the application of thermal hydrolysis affects the sludge digestion process based on full-scale data was conducted. The results showed that the maximum volatile suspended solids (VSS) destruction reached the value of 65% independently on the application of thermal hydrolysis. The average VSS destruction increased by 14% when thermal hydrolysis was applied. In order to have the maximum VSS reduction and biogas production, it is recommended to keep the maximum defined VSS loading of 5.7 kg VSS/m(3)/d when the thermal hydrolysis is applied and to keep the VSS loading between 2.1-2.4 kg VSS/m(3)/d when the disintegration of sludge is not applied. The application of thermal hydrolysis leads to an approximately 2.5 times higher VSS loading maintenance comparing VSS loading without the disintegration; therefore, digesters with 1.8 times smaller volume is required.

  6. Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan

    2013-01-14

    The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as amore » result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.« less

  7. [Anaerobic biodegradation of phthalic acid esters (Paes) in municipal sludge].

    PubMed

    Liang, Zhi-Feng; Zhou, Wen; Lin, Qing-Qi; Yang, Xiu-Hong; Wang, Shi-Zhong; Cai, Xin-De; Qiu, Rong-Liang

    2014-04-01

    Phthalic acid esters (PAEs), a class of organic pollutants with potent endocrine-disrupting properties, are widely present in municipal sludge. Study of PAEs biodegradation under different anaerobic biological treatment processes of sludge is, therefore, essential for a safe use of sludge in agricultural practice. In this study, we selected two major sludge PAEs, i.e. di-n-butyl phthalate (DBP) and di-(2-enthylhexyl) phthalate (DEHP), to investigate their biodegradation behaviors in an anaerobic sludge digestion system and a fermentative hydrogen production system. The possible factors influencing PAEs biodegradation in relation to changes of sludge properties were also discussed. The results showed that the biodegradation of DBP reached 99.6% within 6 days, while that of DEHP was 46.1% during a 14-day incubation period in the anaerobic digestion system. By comparison, only 19.5% of DBP was degraded within 14 days in the fermentative hydrogen production system, while no degradation was detected for DEHP. The strong inhibition of the degradation of both PAEs in the fermentative hydrogen production system was ascribed to the decreases in microbial biomass and ratios of gram-positive bacteria/gram-negative bacteria and fungi/ bacteria, and the increase of concentrations of volatile fatty acids (e. g. acetic acid, propionic acid and butyric acid) during the fermentative hydrogen-producing process.

  8. Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor.

    PubMed

    Romano, Rowena T; Zhang, Ruihong

    2008-02-01

    The co-digestion of onion juice and aerobic wastewater sludge produced from an onion processor using an anaerobic mixed biofilm reactor (AMBR) was investigated for biogas energy production potential and waste treatment. Two experiments were conducted to study the performance of an AMBR at different organic loading rates (OLRs) using different mixtures of onion juice and aerobic sludge. In the first experiment, the OLR was increased from 1.24 to 4.37 gVS/L/d by increasing the amount of onion juice in the feed mixture while maintaining a constant amount of aerobic sludge. When the OLR reached 4.37 gVS/L/d, the AMBR failed as indicated by decreased biogas production and pH. Increase of carbon to nitrogen ratio (C/N) from 13.7 to 20.3 and lack of proper alkalinity were suspected to be the causes for the failure. In the second experiment, the C/N of the feed mixture was maintained at about 15 while the OLR was increased from 1.40 to 3.60 gVS/L/d. The digester showed stable performance. The average biogas and methane yields of the two experiments were 0.62 +/- 0.05 L/gVS and 0.37 +/- 0.08 L/gVS, respectively. It was concluded that the C/N of about 15 was recommended for treating the mixture of onion juice and aerobic sludge.

  9. Comparison of thermophilic bacteria and alkyl polyglucose pretreatment on two-stage anaerobic digestion with waste sludge: Biogas production potential and substrate metabolism process.

    PubMed

    Guo, Liang; Zhang, Zengshuai; Gao, Mengchun; She, Zonglian; Zhao, Yangguo; Guo, Yiding; Sun, Jian

    2018-02-01

    To gain a better understanding of the influence on two-stage anaerobic digestion of waste sludge with thermophilic bacteria (TB) and alkyl polyglucose (APG) pretreatment, changing of soluble chemical oxygen demand (SCOD), carbohydrate and protein in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) were analyzed. The excitation-emission matrix (EEM) with fluorescence regional integration (FRI) was also used to investigate compositional and structural characteristics of DOM. The highest hydrogen and methane yield of TB pretreated sludge was 12.2 ml/g VS (volatile suspended solid) and 124.7 ml/g VS, and that of APG pretreated sludge was 28.3 ml/g VS and 19.9 ml/g VS. The VS removal of TB pretreated sludge (36.7%) was higher than APG pretreated sludge (27.1%) in the two-stage anaerobic digestion. The APG pretreatment could inhibit the activity of methanogens and the substrate (such as volatile fatty acids (VFAs), protein and soluble microbial materials) was accumulated compared with TB pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Partial nitritation of raw anaerobic sludge digester liquor by swim-bed and swim-bed activated sludge processes and comparison of their sludge characteristics.

    PubMed

    Qiao, Sen; Kawakubo, Yuki; Koyama, Toichiro; Furukawa, Kenji

    2008-11-01

    This study evaluated performance of swim-bed (SB) reactors packed with a novel acrylic fiber carrier (BF) and swim-bed activated sludge (SBAS) reactor for partial nitritation of anaerobic sludge digester liquor from a municipal wastewater treatment plant. Comparison of characteristics of sludge obtained from both the reactors was also made. The average conversion rates of ammonium to nitrite were 52.3% and 40.0% under relatively high nitrogen loading rates over 3.0 kg-N/m(3)/d, respectively in two reactors. The average BOD(5) removal efficiencies were 74.3% and 64.4%, respectively in the two reactors. The size of the sludge pellets taken from SB and SBAS reactors was found to be approximately three times (229 mum versus 88 mum) of that of the seed sludge. This sludge also had relatively high extracellular proteins levels indicating better sludge settling capability as compared to the sludge taken from SBAS reactor. Although the effluent nitrite/ammonium ratios had fluctuated in both reactor in some extent, the low dissolved oxygen concentration (average of 2.5 versus 0.35 mg/l), low suspended solids (average of 33.3 versus 33.5 mg/l), and about 50% ammonium conversion to nitrite demonstrated the application potential of anammox process for nitrogen removal.

  11. Investigation of bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR) to decrease the generation of excess sludge.

    PubMed

    Kim, Young Mo; Chon, Dong-Hyun; Kim, Hee-Sik; Park, Chul

    2012-09-01

    The goal of this study was to investigate the bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR), a process permitting significant decrease in sludge production during wastewater treatment. The study operated five activated sludge systems with different sludge treatment schemes serving as various controls for the activated sludge with ASSR. Bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE), sequencing and construction of phylogenetic relationships of the identified bacteria. The DGGE data showed that activated sludge incorporating ASSR contained higher diversity of bacteria, resulting from long solids retention time and recirculation of sludge under aerobic and anaerobic conditions. The similarity of DGGE profiles between ASSR and separate anaerobic digester (control) was high indicating that ASSR is primarily related to conventional anaerobic digesters. Nevertheless, there was also unique bacteria community appearing in ASSR. Interestingly, sludge in the main system and in ASSR showed considerably different bacterial composition indicating that ASSR allowed enriching its own bacterial community different than that from the aeration basin, although two reactors were connected via sludge recirculation. In activated sludge with ASSR, sequences represented by predominant DGGE bands were affiliated with Proteobacteria. The remaining groups were composed of Spirochaetes, Clostridiales, Chloroflexi, and Actinobacteria. Their putative role in the activated sludge with ASSR is also discussed in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    PubMed Central

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-01-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them. PMID:27166174

  13. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  14. Sequential Anaerobic/Aerobic Digestion for Enhanced Carbon/Nitrogen Removal and Cake Odor Reduction.

    PubMed

    Ahmad, Muneer; Denee, Marco Abel; Jiang, Hao; Eskicioglu, Cigdem; Kadota, Paul; Gregonia, Theresa

    2016-12-01

    Anaerobic digestion (AD) has been proven to be an effective process for the treatment of wastewater sludge. However, it produces high levels of ammonia in the digester effluent, which may jeopardize meeting stringent nutrient discharge limits. In this study, the effect of a sequential anaerobic/aerobic (AN/AERO) digestion and a single-stage conventional AN digestion (as control) was investigated on mixed (primary + secondary) sludge generated by the Annacis Island wastewater treatment plant (WWTP) (BC, Canada). An overall sludge retention time (SRT) of 22.5 days under three different scenarios was chosen based on the current operational SRT of the digesters at the Annacis Island WWTP. The steady state results have shown that sequential AN/AERO digestion configurations achieved up to 11% higher volatile solids (VS) removal and 72% lower ammonia generation over single-stage conventional AN digestion. Furthermore, sequential AN/AERO system also showed enhanced dewaterability, improved fecal coliform destruction and reduced digested cake odors over control digesters.

  15. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion.

    PubMed

    Ge, Huoqing; Batstone, Damien J; Keller, Jurg

    2013-11-01

    Conventional abattoir wastewater treatment processes for carbon and nutrient removal are typically designed and operated with a long sludge retention time (SRT) of 10-20 days, with a relatively high energy demand and physical footprint. The process also generates a considerable amount of waste activated sludge that is not easily degradable due to the long SRT. In this study, an innovative high-rate sequencing batch reactor (SBR) based wastewater treatment process with short SRT and hydraulic retention time (HRT) is developed and characterised. The high-rate SBR process was shown to be most effective with SRT of 2-3 days and HRT of 0.5-1 day, achieving >80% reduction in chemical oxygen demand (COD) and phosphorus and approximately 55% nitrogen removal. A majority of carbon removal (70-80%) was achieved by biomass assimilation and/or accumulation, rather than oxidation. Anaerobic degradability of the sludge generated in the high-rate SBR process was strongly linked to SRT, with measured degradability extent being 85% (2 days SRT), 73% (3 days), and 63% (4 days), but it was not influenced by digestion temperature. However, the rate of degradation for 3 and 4 days SRT sludge was increased by 45% at thermophilic conditions compared to mesophilic conditions. Overall, the treatment process provides a very compact and energy efficient treatment option for highly degradable wastewaters such as meat and food processing, with a substantial space reduction by using smaller reactors and a considerable net energy output through the reduced aerobic oxidation and concurrent increased methane production potential through the efficient sludge digestion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effect of microwave hydrolysis on transformation of steroidal hormones during anaerobic digestion of municipal sludge cake.

    PubMed

    Hamid, Hanna; Eskicioglu, Cigdem

    2013-09-15

    Fate and removal of 16 steroidal (estrogenic, androgenic and progestogenic) hormones were studied during advanced anaerobic digestion of sludge cake using microwave (MW) pretreatment. Effect of pretreatment temperature (80, 120, 160 °C), operating temperature (mesophilic at 35 ± 2 °C, thermophilic at 55 ± 2 °C) and sludge retention time (SRT: 20, 10, 5 days) were studied employing eight lab-scale semi-continuously fed digesters. To determine the potential effect of MW hydrolysis, hormones were quantified in total (sorbed + soluble) and supernatant (soluble) phases of the digester influent and effluent streams. Seven of 16 hormones were above the method reporting limit (RL) in one or more of the samples. Hormone concentrations in total phase of un-pretreated (control) and pretreated digester feeds ranged in <157-2491 ng/L and <157-749 ng/L, respectively. The three studied factors were found to be statistically significant (95% confidence level) in removal of one or more hormones from soluble and/or total phase. MW hydrolysis of the influent resulted in both release (from sludge matrix) and attenuation of hormones in the soluble phase. Accumulation of estrone (E1) as well as progesterone (Pr) and androstenedione (Ad) in most of the digesters indicated possible microbial transformations among the hormones. Compared to controls, all pretreated digesters had lower total hormone concentrations in their influent streams. At 20 days SRT, highest total removal (E1+E2+Ad +Pr) was observed for the thermophilic control digester (56%), followed by pretreated mesophilic digesters at 120 °C and 160 °C with around 48% efficiency. In terms of conventional performance parameters, relative (to control) improvements of MW pretreated digesters at a 5-d SRT ranged in 98-163% and 57-121%, for volatile solids removal and methane production, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge.

    PubMed

    Mehdizadeh, Seyedeh Neda; Eskicioglu, Cigdem; Bobowski, Jake; Johnson, Thomas

    2013-09-15

    Microwave (2.45 GHz, 1200 W) and conventional heating (custom pressure vessel) pretreatments were applied to dewatered municipal waste sludge (18% total solids) using identical heating profiles that span a wide range of temperatures (80-160 °C). Fourteen lab-scale semi-continuous digesters were set up to optimize the energy (methane) output and sludge retention time (SRT) requirements of untreated (control) and thermally pretreated anaerobic digesters operated under mesophilic and thermophilic temperatures. Both pretreatment methods indicated that in the pretreatment range of 80-160 °C, temperature was a statistically significant factor (p-value < 0.05) for increasing solubilization of chemical oxygen demand and biopolymers (proteins, sugars, humic acids) of the waste sludge. However, the type of pretreatment method, i.e. microwave versus conventional heating, had no statistically significant effect (p-value >0.05) on sludge solubilization. With the exception of the control digesters at a 5-d SRT, all control and pretreated digesters achieved steady state at all three SRTs, corresponding to volumetric organic loading rates of 1.74-6.96 g chemical oxygen demand/L/d. At an SRT of 5 d, both mesophilic and thermophilic controls stopped producing biogas after 20 d of operation with total volatile fatty acids concentrations exceeding 1818 mg/L at pH <5.64 for mesophilic and 2853 mg/L at pH <7.02 for thermophilic controls, while the pretreated digesters continued producing biogas. Furthermore, relative (to control) organic removal efficiencies dramatically increased as SRT was shortened from 20 to 10 and then 5 d, indicating that the control digesters were challenged as the organic loading rate was increased. Energy analysis showed that, at an elevated temperature of 160 °C, the amount of methane recovered was not enough to compensate for the energy input. Among the digesters with positive net energy productions, control and pretreated digesters at 80 °C were more

  18. Anaerobic co-digestion of sludge with other organic wastes in small wastewater treatment plants: an economic considerations evaluation.

    PubMed

    Pavan, P; Bolzonella, D; Battistoni, E; Cecchi, F

    2007-01-01

    This paper deals with an economic comparison between costs and incomes in small wastewater treatment plants where the anaerobic co-digestion process of sludge and biowaste with energy recovery is operated. Plants in the size range 1,000-30,000 persons equivalent (pe) were considered in the study: typical costs, comprehensive of capital and operating costs, were in the range euro69-105 per person per year depending on the plant size: the smaller the size the higher the specific cost. The incomes deriving from taxes and fees for wastewater treatment are generally in the range euro36-54 per person per year and can only partially cover costs in small wastewater treatment plants. However, the co-treatment of biowaste and the use of produced energy for extra credits (green certificates) determine a clear improvement in the possible revenues from the plant. These were calculated to be euro23-25 per person per year; as a consequence the costs and incomes can be considered comparable for wastewater treatment plants (WWTPs) with size larger than 10,000 pe. Therefore, anaerobic co-digestion of biowaste and sludge can also be considered a sustainable solution for small wastewater treatment plants in rural areas where several different kinds of biowaste are available to enhance biogas production in anaerobic reactors.

  19. Anaerobic Digestion.

    PubMed

    Liebetrau, Jan; Sträuber, Heike; Kretzschmar, Jörg; Denysenko, Velina; Nelles, Michael

    2017-04-09

    The term anaerobic digestion usually refers to the microbial conversion of organic material to biogas, which mainly consists of methane and carbon dioxide. The technical application of the naturally-occurring process is used to provide a renewable energy carrier and - as the substrate is often waste material - to reduce the organic matter content of the substrate prior to disposal.Applications can be found in sewage sludge treatment, the treatment of industrial and municipal solid wastes and wastewaters (including landfill gas utilization), and the conversion of agricultural residues and energy crops.For biorefinery concepts, the anaerobic digestion (AD) process is, on the one hand, an option to treat organic residues from other production processes. Concomitant effects are the reduction of organic carbon within the treated substance, the conversion of nitrogen and sulfur components, and the production of an energy-rich gas - the biogas. On the other hand, the multistep conversion of complex organic material offers the possibility of interrupting the conversion chain and locking out intermediates for utilization as basic material within the chemical industry.

  20. Biological hydrogen production by anaerobic digestion of food waste and sewage sludge treated using various pretreatment technologies.

    PubMed

    Kim, Seungjin; Choi, Kwangkeun; Kim, Jong-Oh; Chung, Jinwook

    2013-11-01

    The purpose of this study was to enhance the efficiency of anaerobic co-digestion with sewage sludge using pretreatment technologies and food waste. We studied the effects of various pretreatment methods (thermal, chemical, ultrasonic, and their combination) on hydrogen production and the characteristics of volatile fatty acids (VFAs) using sewage sludge alone and a mixture of sewage sludge and food waste. The pretreatment combination of alkalization and ultrasonication performed best, effecting a high solubilization rate and high hydrogen production (13.8 mL H2/g VSSconsumed). At a food waste:pretreated sewage sludge ratio of 2:1 in the mixture, the peak hydrogen production value was 5.0 L H2/L/d. As the production of hydrogen increased, propionate levels fell but butyrate concentrations rose gradually.

  1. Microbial and nutritional regulation of high-solids anaerobic mono-digestion of fruit and vegetable wastes.

    PubMed

    Mu, Hui; Li, Yan; Zhao, Yuxiao; Zhang, Xiaodong; Hua, Dongliang; Xu, Haipeng; Jin, Fuqiang

    2018-02-01

    The anaerobic digestion of single fruit and vegetable wastes (FVW) can be easily interrupted by rapid acidogenesis and inhibition of methanogen, and the digestion system tends to be particularly unstable at high solid content. In this study, the anaerobic digestion of FVW in batch experiments under mesophilic condition at a high solid concentration of 10% was successfully conducted to overcome the acidogenesis problem through several modifications. Firstly, compared with the conventional anaerobic sludge (CAS), the acclimated anaerobic granular sludge (AGS) was found to be a better inoculum due to its higher Archaea abundance. Secondly, waste activated sludge (WAS) was chosen to co-digest with FVW, because WAS had abundant proteins that could generate intermediate ammonium. The ammonium could neutralize the accumulated volatile fatty acids (VFAs) and prevent the pH value of the digestion system from rapidly decreasing. Co-digestion of FVW and WAS with TS ratio of 60:40 gave the highest biogas yield of 562 mL/g-VS and the highest methane yield of 362 mL/g-VS. Key parameters in the digestion process, including VFAs concentration, pH, enzyme activity, and microbial activity, were also examined.

  2. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge.

    PubMed

    Liu, Can; Li, Huan; Zhang, Yuyao; Si, Dandan; Chen, Qingwu

    2016-09-01

    High-solids anaerobic digestion (HSAD), a promising method with smaller reactor and less heating energy consumption, showed relatively lower digestion efficiency sometimes and higher tolerance to some inhibitors. To investigate the phenomena, the archaeal and bacterial communities in four anaerobic digesters treating sewage sludge with total solids (TS) of 10-19% were investigated. Although acetoclastic methanogenesis conducted mainly by genus Methanosarcina was still the main pathway producing methane, the total ratio of acetoclastic methanogens decreased along with the increased TS. In contrary, the relative abundance of hydrogenotrophic methanogens increased from 6.8% at TS 10% to 22.3% at TS 19%, and methylotrophic methanogens from 10.4% to 20.9%. The bacterial community was dominated by five phyla. Acidogenic and acetogenic bacteria affiliated to Firmicutes decreased following the increase of TS; while the proteolysis phylum Bacteroidetes increased, with a tolerant family ST-12K33 notably existing in the digesters at TS 17% and 19%. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Utilisation of energy from digester gas and sludge incineration at Hamburg's Köhlbrandhöft WWTP.

    PubMed

    Thierbach, R D; Hanssen, H

    2002-01-01

    At Hamburg's Köhlbrandhöft WWTP the demand for external energy supply is minimised by state of the art sludge treatment. The sludge is subjected to thickening, anaerobic digestion, dewatering, drying and incineration. The digester gas is used in a combined gas and steam turbine process. The sludge incineration also produces steam, which is also used in the steam turbine that follows the gas turbine. The turbines produce electricity, partially expanded steam is used for the sludge drying process. Heat from the condensation of vapours from sludge drying is used to heat the anaerobic digesters. The overall process requires no external heat or fuel and produces 60% of the WWTP's electricity demand.

  4. Activated sludge mass reduction and biodegradability of the endogenous residues by digestion under different aerobic to anaerobic conditions: Comparison and modeling.

    PubMed

    Martínez-García, C G; Fall, C; Olguín, M T

    2016-03-01

    This study was performed to identify suitable conditions for the in-situ reduction of excess sludge production by intercalated digesters in recycle-activated sludge (RAS) flow. The objective was to compare and model biological sludge mass reduction and the biodegradation of endogenous residues (XP) by digestion under hypoxic, aerobic, anaerobic, and five intermittent-aeration conditions. A mathematical model based on the heterotrophic endogenous decay constant (bH) and including the biodegradation of XP was used to fit the long-term data from the digesters to identify and estimate the parameters. Both the bH constant (0.02-0.05 d(-1)) and the endogenous residue biodegradation constant (bP, 0.001-0.004 d(-1)) were determined across the different mediums. The digesters with intermittent aeration cycles of 12 h-12 h and 5 min-3 h (ON/OFF) were the fastest, compared to the aerobic reactor. The study provides a basis for rating RAS-digester volumes to avoid the accumulation of XP in aeration tanks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Investigations into Improving Dewaterability at a Bio-P/Anaerobic Digestion Plant.

    PubMed

    Alm, Rebecca; Sealock, Adam W; Nollet, Yabing; Sprouse, George

    2016-11-01

      Metropolitan Council Environmental Services has observed poorer than expected dewatering performance at its Empire Plant. This plant has both anaerobic digestion and enhanced biological phosphorus removal in its treatment train. A research program using pilot-scale anaerobic digesters investigated potential solutions to the plant's poor dewaterability. The dewaterability goal was to increase the cake solids from 12% total solids (TS) to 16% TS or higher. This research investigated 20 different reactor conditions including chemical, feed sludge, and digested sludge treatments. At the pilot scale, unaerated storage of waste activated sludge prior to thickening and addition of ferric chloride to digestion was found to achieve dewatered cake solids of nearly 17% TS with the added benefit of reducing polymer demand. Issues including the amount of chemical required and the resulting volatile solids destruction influence the viability of the process change, so a full-scale pilot and financial analysis is recommended before making permanent process changes.

  6. Mesophilic batch anaerobic co-digestion of fruit-juice industrial waste and municipal waste sludge: process and cost-benefit analysis.

    PubMed

    Hosseini Koupaie, E; Barrantes Leiva, M; Eskicioglu, C; Dutil, C

    2014-01-01

    The feasibility of anaerobic co-digestion of two juice-based beverage industrial wastes, screen cake (SC) and thickened waste activated sludge (TWAS), along with municipal sludge cake (MC) was investigated. Experiments were conducted in twenty mesophilic batch 160 ml serum bottles with no inhibition occurred. The statistical analysis proved that the substrate type had statistically significant effect on both ultimate biogas and methane yields (P=0.0003<0.05). The maximum and minimum ultimate cumulative methane yields were 890.90 and 308.34 mL/g-VSremoved from the digesters containing only TWAS and SC as substrate. First-order reaction model well described VS utilization in all digesters. The first 2-day and 10-day specific biodegradation rate constants were statistically higher in the digesters containing SC (P=0.004<0.05) and MC (P=0.0005<0.05), respectively. The cost-benefit analysis showed that the capital, operating and total costs can be decreased by 21.5%, 29.8% and 27.6%, respectively using a co-digester rather than two separate digesters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Combined anaerobic/aerobic digestion: effect of aerobic retention time on nitrogen and solids removal.

    PubMed

    Kim, Jongmin; Novak, John T

    2011-09-01

    A combined anaerobic/aerobic sludge digestion system was studied to determine the effect of aerobic solids retention time (SRT) on its solids and nitrogen removal efficiencies. After the anaerobic digester reached steady state, effluent from the anaerobic digester was fed to aerobic digesters that were operated at 2- to 5-day SRTs. The anaerobic system was fed with a mixture of primary and secondary sludge from a local municipal wastewater treatment plant. Both systems were fed once per a day. The aerobic reactor was continuously aerated with ambient air, maintaining dissolved oxygen level at 1.1 +/- 0.3 mg/L. At a 4-day or longer SRT, more than 11% additional volatile solids and 90% or greater ammonia were removed in the aerobic digester, while 32.8 mg-N/L or more nitrite/nitrate also was measured. Most total Kjeldahl nitrogen removal was via ammonia removal, while little organic nitrogen was removed in the aerobic digester.

  8. Anaerobic digestion of glycerol derived from biodiesel manufacturing.

    PubMed

    Siles López, José Angel; Martín Santos, María de Los Angeles; Chica Pérez, Arturo Francisco; Martín Martín, Antonio

    2009-12-01

    The anaerobic digestion of glycerol derived from biodiesel manufacturing, in which COD was found to be 1010 g/kg, was studied in batch laboratory-scale reactors at mesophilic temperature using granular and non-granular sludge. Due to the high KOH concentration of this by-product, H(3)PO(4) was added to recover this alkaline catalyst as agricultural fertilizer (potassium phosphates). Although it would not be economically viable, a volume of glycerol was distilled and utilised as reference substrate. The anaerobic revalorisation of glycerol using granular sludge achieved a biodegradability of around 100%, while the methane yield coefficient was 0.306 m(3) CH(4)/kg acidified glycerol. Anaerobic digestion could be a good option for revalorising this available, impure and low priced by-product derived from the surplus of biodiesel companies. The organic loading rate studied was 0.21-0.38 g COD/g VSS d, although an inhibition phenomenon was observed at the highest load.

  9. Enhanced Versus Conventional Sludge Anaerobic Processes: Performances and Techno-Economic Assessment.

    PubMed

    Gianico, Andrea; Bertanza, Giorgio; Braguglia, Camilla M; Canato, Matteo; Gallipoli, Agata; Laera, Giuseppe; Levantesi, Caterina; Mininni, Giuseppe

    2016-05-01

    Sewage sludge processing is a key issue in water resource recovery facilities due to the inefficacy of conventional treatments to produce high quality biosolids to be safely used in agriculture. Under this framework, the performances of several enhanced stabilization processes, namely ultrasound-pretreated Mesophilic Anaerobic Digestion (US+MAD), thermophilic anaerobic digestion (TAD), thermal-pretreated TAD (TH+TAD) and ultrasound-pretreated inverse Temperature Phased Anaerobic Digestion (US+iTPAD) have been investigated. Such enhanced processes resulted in higher biogas yields and higher destruction of pathogens with respect to conventional MAD process, thus suggesting their feasibility in full-scale implementation perspectives. A procedure for technical-economic comparison of new sludge processing lines against conventional ones (benchmarking) was developed, based on the definition of technical issues (e.g. reliability, complexity, etc.) which are rated for each situation. Moreover, capital and operating costs were estimated. The enhanced processes analyzed in this work showed some potentially critical items, mainly related to energy balance and reagent consumption.

  10. Anaerobic co-digestion of sewage sludge and molasses

    NASA Astrophysics Data System (ADS)

    Kalemba, Katarzyna; Barbusiński, Krzysztof

    2017-11-01

    The efficiency of simultaneous digestion of sewage sludge and by-product of refining sugar beets (molasses) was investigated. The study was conducted for 28 days under mesophilic conditions. 0.5%, 1%, 1.5%, 2% and 3% (m/m) of molasses was added to the mixture of sludge. The result of the study showed that addition of molasses had positive effect the biogas production. The biggest biogas yield was achieved in sample with 0.5% of molasses (95.69 mL/g VS). In this sample biogas production increased by 21% in comparison with reference sample (without molasses). The biggest methane content (73%) was also observed in the sample with 0.5% of molasses. For comparison in reference sample was produced biogas with 70% content of methane. The dose over 0.5% of molasses caused inhibition of fermentation process. The minimal degree (38%) of degradation of organic matter was achieved in reference sample (38.53%) and in sample with 0.5% of molasses (39.71%) but in other samples was in the range of 35.61-36.76 % (from 3% to 1%, respectively). Digestion process have adverse effect on dewatering properties of sludge. Before co-digestion capillary suction time was from 31 s to 55 s, and after process increased from 36 s to 556 s (from 0% to 3% of molasses, respectively).

  11. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge?

    PubMed

    Gonzalez-Gil, L; Papa, M; Feretti, D; Ceretti, E; Mazzoleni, G; Steimberg, N; Pedrazzani, R; Bertanza, G; Lema, J M; Carballa, M

    2016-10-01

    The occurrence of emerging organic micropollutants (OMPs) in sewage sludge has been widely reported; nevertheless, their fate during sludge treatment remains unclear. The objective of this work was to study the fate of OMPs during mesophilic and thermophilic anaerobic digestion (AD), the most common processes used for sludge stabilization, by using raw sewage sludge without spiking OMPs. Moreover, the results of analytical chemistry were complemented with biological assays in order to verify the possible adverse effects (estrogenic and genotoxic) on the environment and human health in view of an agricultural (re)use of digested sludge. Musk fragrances (AHTN, HHCB), ibuprofen (IBP) and triclosan (TCS) were the most abundant compounds detected in sewage sludge. In general, the efficiency of the AD process was not dependent on operational parameters but compound-specific: some OMPs were highly biotransformed (e.g. sulfamethoxazole and naproxen), while others were only slightly affected (e.g. IBP and TCS) or even unaltered (e.g. AHTN and HHCB). The MCF-7 assay evidenced that estrogenicity removal was driven by temperature. The Ames test did not show point mutation in Salmonella typhimurium while the Comet test exhibited a genotoxic effect on human leukocytes attenuated by AD. This study highlights the importance of combining chemical analysis and biological activities in order to establish appropriate operational strategies for a safer disposal of sewage sludge. Actually, it was demonstrated that temperature has an insignificant effect on the disappearance of the parent compounds while it is crucial to decrease estrogenicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Bioaccumulation of metals in ryegrass (Lolium perenne L.) following the application of lime stabilised, thermally dried and anaerobically digested sewage sludge.

    PubMed

    Healy, M G; Ryan, P C; Fenton, O; Peyton, D P; Wall, D P; Morrison, L

    2016-08-01

    The uptake and accumulation of metals in plants is a potential pathway for the transfer of environmental contaminants in the food chain, and poses potential health and environmental risks. In light of increased population growth and urbanisation, the safe disposal of sewage sludge, which can contain significant levels of toxic contaminants, remains an environmental challenge globally. The aims of this experiment were to apply municipal sludge, having undergone treatment by thermal drying, anaerobic digestion, and lime stabilisation, to permanent grassland in order to assess the bioaccumulation of metals (B, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Nb, Mo, Sb, Ba, W, Pb, Fe, Cd) by perennial ryegrass over a period of up to 18 weeks after application. The legislation currently prohibits use of grassland for fodder or grazing for at least three weeks after application of treated sewage sludge (biosolids). Five treatments were used: thermally dried (TD), anaerobically digested (AD) and lime stabilised (LS) sludge all from one wastewater treatment plant (WWTP), AD sludge from another WWTP, and a study control (grassland only, without application of biosolids). In general, there was no significant difference in metal content of the ryegrass between micro-plots that received treated municipal sludge and the control over the study duration. The metal content of the ryegrass was below the levels at which phytotoxicity occurs and below the maximum levels specified for animal feeds. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Heterotrophic denitrification plays an important role in N₂O production from nitritation reactors treating anaerobic sludge digestion liquor.

    PubMed

    Wang, Qilin; Jiang, Guangming; Ye, Liu; Pijuan, Maite; Yuan, Zhiguo

    2014-10-01

    Nitrous oxide (N2O) emissions from nitritation reactors receiving real anaerobic sludge digestion liquor have been reported to be substantially higher than those from reactors receiving synthetic digestion liquor. This study aims to identify the causes for the difference, and to develop strategies to reduce N2O emissions from reactors treating real digestion liquor. Two sequencing batch reactors (SBRs) performing nitritation, fed with real (SBR-R) and synthetic (SBR-S) digestion liquors, respectively, were employed. The N2O emission factors for SBR-R and SBR-S were determined to be 3.12% and 0.80% of the NH4(+)-N oxidized, respectively. Heterotrophic denitrification supported by the organic carbon present in the real digestion liquor was found to be the key contributor to the higher N2O emission from SBR-R. Heterotrophic nitrite reduction likely stopped at N2O (rather than N2), with a hypothesised cause being free nitrous acid inhibition. This implies that all nitrite reduced by heterotrophic bacteria was converted to and emitted as N2O. Increasing dissolved oxygen (DO) concentration from 0.5 to 1.0 mg/L, or above, decreased aerobic N2O production from 2.0% to 0.5% in SBR-R, whereas aerobic N2O production in SBR-S remained almost unchanged (at approximately 0.5%). We hypothesised that DO at 1 mg/L or above suppressed heterotrophic nitrite reduction thus reduced aerobic heterotrophic N2O production. We recommend that DO in a nitritation system receiving anaerobic sludge digestion liquor should be maintained at approximately 1 mg/L to minimise N2O emission. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Anaerobic digestion as a waste disposal option for American Samoa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C

    1993-01-01

    Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

  15. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure.

    PubMed

    Murto, M; Björnsson, L; Mattiasson, B

    2004-02-01

    The performance of an anaerobic digestion process is much dependent on the type and the composition of the material to be digested. The effects on the degradation process of co-digesting different types of waste were examined in two laboratory-scale studies. In the first investigation, sewage sludge was co-digested with industrial waste from potato processing. The co-digestion resulted in a low buffered system and when the fraction of starch-rich waste was increased, the result was a more sensitive process, with process overload occurring at a lower organic loading rate (OLR). In the second investigation, pig manure, slaughterhouse waste, vegetable waste and various kinds of industrial waste were digested. This resulted in a highly buffered system as the manure contributed to high amounts of ammonia. However, it is important to note that ammonia might be toxic to the micro-organisms. Although the conversion of volatile fatty acids was incomplete the processes worked well with high gas yields, 0.8-1.0 m3 kg(-1) VS.

  16. Biodegradation of pulp and paper mill effluent using anaerobic followed by aerobic digestion.

    PubMed

    Bishnoi, Narsi R; Khumukcham, R K; Kumar, Rajender

    2006-05-01

    An experimental study was carried to find out the degradability of black liquor of pulp and paper mill wastewater for biomethanogenesis in continuous stirred tank reactor (CSTR) and followed by activated sludge process (ASP). Continuous stirred tank reactor was used in present study for anaerobic digestion of black liquor, while completely mixed activated sludge system was used for aerobic digestion. A maximum methane production was found up to 430 ml/day, chemical oxygen demand was reduced up to 64% and total volatile fatty acid increased up to 1500 mg/l from 975 mg/l at 7.3 pH, 37 degrees C temperature and 8 days hydraulic retention time during anaerobic digestion. In activated sludge process (aerobic digestion) chemical oxygen demand and biological oxygen demand reduction were 81% and 86% respectively at 72 hr hydraulic retention time.

  17. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yanwen; Linville, Jessica L.; Ignacio-de Leon, Patricia Anne A.

    This study presents an integrated waste-to-energy process, using two waste streams, sludge generated from the municipal wastewater treatment plants (WWTPs) and biochar generated from the biomass gasification systems, to produce fungible biomethane and nutrient-rich digestate with fertilizer value. Two woody biochar, namely pinewood (PBC) and white oak biochar (WOBC) were used as additives during anaerobic digestion (AD) of WWTP sludge to enhance methane production at mesophilic and thermophilic temperatures. The PBC and WOBC have porous structure, large surface area and desirable chemical properties to be used as AD amendment material to sequester CO2 from biogas in the digester. The biochar-amendedmore » digesters achieved average methane content in biogas of up to 92.3% and 79.0%, corresponding to CO2 sequestration by up to 66.2% and 32.4% during mesophilic and thermophilic AD, respectively. Biochar addition enhanced process stability by increasing the alkalinity, but inhibitory effects were observed at high dosage. It also alleviated free ammonia inhibition by up to 10.5%. The biochar-amended digesters generated digestate rich in macro- and micronutrients including K (up to 300 m/L), Ca (up to 750 mg/L), Mg (up to 1800 mg/L) and Fe (up to 390 mg/L), making biochar-amended digestate a potential alternative used as agricultural lime fertilizer.« less

  18. Anaerobic co-digestion of food waste and chemically enhanced primary-treated sludge under mesophilic and thermophilic conditions.

    PubMed

    Obulisamy, Parthiba Karthikeyan; Chakraborty, Debkumar; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-12-01

    Anaerobic co-digestion of food waste with primary sewage sludge is beneficial for urban centers, while the optimized conditions reported in the literature are not locally suitable for Hong Kong. Therefore, the present study was aimed to develop an optimized mixing ratio of food waste to chemically enhanced primary-treated sewer sludge (CEPT) for co-digestion using batch tests under mesophilic (37°C) and thermophilic (55°C) conditions. The mixing ratios of 1:1, 1:2, 1:3, 2:1 and 3:1 (v v(-1)) of food waste to CEPT sludge was tested under the following conditions: temperature - 35°C and 55°C; pH - not regulated; agitation - 150 rpm and time - 20 days. The thermophilic incubations led a good hydrolysis rate and 2-12-fold higher enzyme activities than in mesophilic incubations for different mixing ratios. While the acidogenesis were found retarded that leading to 'sour and stuck' digestion for all mixing ratio of food waste to CEPT sludge from thermophilic incubations. The measured zeta potential was most favourable (-5 to -16.8 mV) for methane production under thermophilic incubations; however the CH4 recovery was less than that in mesophilic incubations. The results suggested that the quick hydrolysis and subsequent acid accumulation under thermophilic incubation lead to inhibited methanogenesis at the early stage than in mesophilic systems. It is concluded that buffer addition is therefore required for any mixing ratio of food waste to CEPT sludge for improved CH4 recovery for both mesophilic and thermophilic operations.

  19. Anaerobic co-digestion of winery waste and waste activated sludge: assessment of process feasibility.

    PubMed

    Da Ros, C; Cavinato, C; Cecchi, F; Bolzonella, D

    2014-01-01

    In this study the anaerobic co-digestion of wine lees together with waste activated sludge in mesophilic and thermophilic conditions was tested at pilot scale. Three organic loading rates (OLRs 2.8, 3.3 and 4.5 kgCOD/m(3)d) and hydraulic retention times (HRTs 21, 19 and 16 days) were applied to the reactors, in order to evaluate the best operational conditions for the maximization of the biogas yields. The addition of lee to sludge determined a higher biogas production: the best yield obtained was 0.40 Nm(3)biogas/kgCODfed. Because of the high presence of soluble chemical oxygen demand (COD) and polyphenols in wine lees, the best results in terms of yields and process stability were obtained when applying the lowest of the three organic loading rates tested together with mesophilic conditions.

  20. Innovative ammonia stripping with an electrolyzed water system as pretreatment of thermally hydrolyzed wasted sludge for anaerobic digestion.

    PubMed

    Park, Seyong; Kim, Moonil

    2015-01-01

    In this study, the anaerobic digestion of thermally hydrolyzed wasted sludge (THWS) with a high concentration of ammonia was carried out through combining with an ammonia stripping and an electrolyzed water system (EWS). The EWS produced acidic water (pH 2-3) at the anode and alkaline water (pH 11-12) at the cathode with an electro-diaphragm between the electrodes that could be applied to ammonia stripping. The ammonia stripping efficiency was strongly dependent on the pH and aeration rate, and the ammonium ion removal rate followed pseudo-first-order kinetics. From the BMP test, the methane yield of THWS after ammonia stripping using the EWS was 2.8 times higher than that of the control process (raw THWS without ammonia stripping). Furthermore, both methane yield and ammonium removal efficiency were higher in this study than in previous studies. Since ammonia stripping with the EWS does not require any chemicals for pH control, no precipitated sludge is produced and anaerobic microorganisms are not inhibited by cations. Therefore, ammonia stripping using the EWS could be an effective method for digestion of wastewater with a high concentration of ammonium nitrogen.

  1. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    PubMed

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Anaerobic digestion of thermal pre-treated emulsified slaughterhouse wastes (TESW): Effect of trace element limitation on process efficiency and sludge metabolic properties.

    PubMed

    Eftaxias, Alexandros; Diamantis, Vasileios; Aivasidis, Alexandros

    2018-06-01

    Slaughterhouse solid wastes, characterized by a high lipid content, are considered a valuable resource for energy production by means of anaerobic digestion technologies. Aim of this study was to examine the effect of trace element limitation on the mesophilic anaerobic digestion of thermally pre-treated emulsified slaughterhouse wastes (TESW). Under two distinct experimental periods (Period I - low and Period II - high trace element dosage respectively) a CSTR with sludge recirculation was operated at increasing organic loading rate (OLR) from 1.5 to 10 g L -1  d -1 . Under optimum conditions, COD removal was higher than 96%, biogas yield equal to 0.53 L g -1  COD feed and the biogas methane content 77%. Trace element limitation however, resulted in a dramatic decline in process efficiency, with VFA accumulation and events of extreme sludge flotation, despite that the soluble concentration of Ni, Co and Mo were between 12 and 28 μg L -1 . This is indicative of mass transfer limitations caused by lipids adsorption onto the anaerobic biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?

    PubMed

    Wang, Dongbo; Zhao, Jianwei; Zeng, Guangming; Chen, Yinguang; Bond, Philip L; Li, Xiaoming

    2015-10-20

    Recent studies demonstrate that, besides being used for production of biodegradable plastics, poly(hydroxyalkanoate) (PHA) that is accumulated in heterotrophic microorganisms during wastewater treatment has another novel application direction, i.e., being utilized for enhancing methane yield during the anaerobic digestion of waste-activated sludge (WAS). To date, however, the underlying mechanism of how PHA affects methane production remains largely unknown, and this limits optimization and application of the strategy. This study therefore aims to fill this knowledge gap. Experimental results showed that with the increase of sludge PHA levels from 21 to 184 mg/g of volatile suspended solids (VSS) the methane yield linearly increased from 168.0 to 246.1 mL/g of VSS (R(2) = 0.9834). Compared with protein and carbohydrate (the main components of a cell), PHA exhibited a higher biochemical methane potential on a unit VSS basis. It was also found that the increased PHA not only enhanced cell disruption of PHA cells but also benefited the soluble protein conversion of both PHA- and non-PHA cells. Moreover, the reactor fed with higher PHA sludge showed greater sludge hydrolysis and acidification than those fed with the lower PHA sludges. Further investigations using fluorescence in situ hybridization and enzyme analysis revealed that the increased PHA enhanced the abundance of methanogenic Archaea and increased the activities of protease, acetate kinase, and coenzyme F420, which were consistent with the observed methane yield. This work provides insights into PHA-involved WAS digestion systems and may have important implications for future operation of wastewater treatment plants.

  4. Methane production from wheat straw with anaerobic sludge by heme supplementation.

    PubMed

    Xi, Yonglan; Chang, Zhizhou; Ye, Xiaomei; Xu, Rong; Du, Jing; Chen, Guangyin

    2014-11-01

    Wheat straw particles were directly used as substrate for batch anaerobic digestion with anaerobic sludge under 35°C to evaluate the effects of adding heme on methane production. When 1mg/l heme was added to the fermentation process with no agitated speed, a maximum cumulative methane production of 12227.8ml was obtained with cumulative methane yield of wheat straw was 257.4ml/g-TS (total solid), which was increased by 20.6% compared with 213.5ml/g-TS of no heme was added in the reactor. Meanwhile, oxido-reduction potential (ORP) level was decreased, the activity of coenzyme F420 was significantly improved and NADH/NAD(+) ratio were the highest than other experimental groups. These results suggest that heme-supplemented anaerobic sludge with no agitated speed may be providing a more reductive environment, which is a cost-effective method of anaerobic digestion from biomass waste to produce methane with less energy consuming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Utilization of vegetable dumplings waste from industrial production by anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Pilarska, Agnieszka A.; Pilarski, Krzysztof; Ryniecki, Antoni; Tomaszyk, Kamila; Dach, Jacek; Wolna-Maruwka, Agnieszka

    2017-01-01

    This paper provides the analysis of results of biogas and methane yield for vegetable dumplings waste: dough with fat, vegetable waste, and sludge from the clarifier. Anaerobic digestion of food waste used in the experiments was stable after combining the substrates with a digested pulp composed of maize silage and liquid manure (as inoculum), at suitable ratios. The study was carried out in a laboratory scale using anaerobic batch reactors, at controlled (mesophilic) temperature and pH conditions. The authors present the chemical reactions accompanying biodegradation of the substrates and indicate the chemical compounds which may lead to acidification during the anaerobic digestion. An anaerobic digestion process carried out with the use of a dough-and-fat mixture provided the highest biogas and methane yields. The following yields were obtained in terms of fresh matter: 242.89 m3 Mg-1 for methane and 384.38 m3 Mg-1 for biogas, and in terms of volatile solids: 450.73 m3 Mg-1 for methane and 742.40 m3 Mg-1 for biogas. Vegetables and sludge from the clarifier (as fresh matter) provided much lower yields.

  6. Effect of hydrothermal pre-treatment (HTP) on poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion.

    PubMed

    Park, Seyong; Yoon, Young-Man; Han, Seong Kuk; Kim, Daegi; Kim, Ho

    2017-06-01

    This study is an assessment of the hydrothermal pre-treatment (HTP) of poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion. This assessment was carried out to ascertain the optimal HTP temperature. The solubilization and physical properties efficacy was investigated by capillary suction time (CST), time to filter (TTF), and particle size. In addition, the anaerobic digestion was investigated through biochemical methane potential (BMP) tests and subsequent statistical analysis using the modified Gompertz model. HTP was found to have improved the solubilization of the PSW sludge with increasing HTP temperature. In addition, the results of the CST, TTF, and particle size decreased with increasing HTP temperature. These results of the assessment that was conducted in this study confirm that the HTP process indeed modifies the physical properties of PSWs to enhance the solubilization of organic solids. Nevertheless, the results of the BMP tests and the modified Gompertz model analysis show that the optimal HTP temperature of PSWs for anaerobic digestion is 190°C. These findings show that to achieve high conversion efficiency, an accurately designed pre-treatment step must be included in the overall anaerobic digestion process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The efficiency of concentration methods used to detect enteric viruses in anaerobically digested sludge

    PubMed Central

    Prado, Tatiana; Guilayn, Wilma de Carvalho Pereira Bonet; Gaspar, Ana Maria Coimbra; Miagostovich, Marize Pereira

    2013-01-01

    The presence of enteric viruses in biosolids can be underestimated due to the inefficient methods (mainly molecular methods) used to recover the viruses from these matrices. Therefore, the goal of this study was to evaluate the different methods used to recover adenoviruses (AdV), rotavirus species A (RVA), norovirus genogroup II (NoV GII) and the hepatitis A virus (HAV) from biosolid samples at a large urban wastewater treatment plant in Brazil after they had been treated by mesophilic anaerobic digestion. Quantitative polymerase chain reaction (PCR) was used for spiking experiments to compare the detection limits of feasible methods, such as beef extract elution and ultracentrifugation. Tests were performed to detect the inhibition levels and the bacteriophage PP7 was used as an internal control. The results showed that the inhibitors affected the efficiency of the PCR reaction and that beef extract elution is a suitable method for detecting enteric viruses, mainly AdV from biosolid samples. All of the viral groups were detected in the biosolid samples: AdV (90%), RVA, NoV GII (45%) and HAV (18%), indicating the viruses' resistance to the anaerobic treatment process. This is the first study in Brazil to detect the presence of RVA, AdV, NoV GII and HAV in anaerobically digested sludge, highlighting the importance of adequate waste management. PMID:23440119

  8. Effect of thermal hydrolysis and ultrasounds pretreatments on foaming in anaerobic digesters.

    PubMed

    Alfaro, N; Cano, R; Fdz-Polanco, F

    2014-10-01

    Foam appears regularly in anaerobic digesters producing operational and safety problems. In this research, based on the operational observation at semi-industrial pilot scale where sludge pretreatment mitigated foaming in anaerobic digesters, this study aimed at evaluating any potential relationship between foaming tools applied to activated sludge at lab-scale (foam potential, foam stability and Microthrix parvicella abundance) and the experimental behavior observed in pilot scale and full-scale anaerobic digesters. The potential of thermal hydrolysis and ultrasounds for reducing foaming capacity was also evaluated. Filamentous bacteria abundance was directly linked to foaming capacity in anaerobic processes. A maximum reduction of M.parvicella abundance (from 5 to 2) was reached using thermal hydrolysis with steam explosion at 170°C and ultrasounds at 66.7kWh/m(3), showing both good anti-foaming properties. On the other hand, foam potential and stability determinations showed a lack of consistency with the bacteria abundance results and experimental evidences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester.

    PubMed

    Tian, Zhe; Zhang, Yu; Li, Yuyou; Chi, Yongzhi; Yang, Min

    2015-02-01

    The purpose of this study was to explore how fast the thermophilic anaerobic microbial community could be established during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Stable thermophilic anaerobic digestion was achieved within 20 days from a mesophilic digester treating sewage sludge by adopting the one-step startup strategy. The succession of archaeal and bacterial populations over a period of 60 days after the temperature increment was followed by using 454-pyrosequencing and quantitative PCR. After the increase of temperature, thermophilic methanogenic community was established within 11 days, which was characterized by the fast colonization of Methanosarcina thermophila and two hydrogenotrophic methanogens (Methanothermobacter spp. and Methanoculleus spp.). At the same time, the bacterial community was dominated by Fervidobacterium, whose relative abundance rapidly increased from 0 to 28.52 % in 18 days, followed by other potential thermophilic genera, such as Clostridium, Coprothermobacter, Anaerobaculum and EM3. The above result demonstrated that the one-step startup strategy could allow the rapid establishment of the thermophilic anaerobic microbial community. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Inter-stage thermophilic aerobic digestion may increase organic matter removal from wastewater sludge without decreasing biogas production.

    PubMed

    Hafner, Sasha D; Madsen, Johan T; Pedersen, Johanna M; Rennuit, Charlotte

    2018-02-01

    Combining aerobic and anaerobic digestion in a two-stage system can improve the degradation of wastewater sludge over the use of either technology alone. But use of aerobic digestion as a pre-treatment before anaerobic digestion generally reduces methane production due to loss of substrate through oxidation. An inter-stage configuration may avoid this reduction in methane production. Here, we evaluated the use of thermophilic aerobic digestion (TAD) as an inter-stage treatment for wastewater sludge using laboratory-scale semi-continuous reactors. A single anaerobic digester was compared to an inter-stage system, where a thermophilic aerobic digester (55 °C) was used between two mesophilic anaerobic digesters (37 °C). Both systems had retention times of approximately 30 days, and the comparison was based on measurements made over 97 days. Results showed that the inter-stage system provided better sludge destruction (52% volatile solids (VS) removal vs. 40% for the single-stage system, 44% chemical oxygen demand (COD) removal vs. 34%) without a decrease in total biogas production (methane yield per g VS added was 0.22-0.24 L g -1 for both systems).

  11. Effect of Recycle Sludge on Anaerobic Digestion of Palm Oil Mill Effluent in A Thermophilic Continuous Digester

    NASA Astrophysics Data System (ADS)

    Irvan; Trisakti, B.; Tomiuchi, Y.; Harahap, U.; Daimon, H.

    2017-06-01

    The objective of this research is to maintain short retention time and high degradation of palm oil mill effluent (POME) to biogas by applying recycle sludge. Fresh POME from Rambutan Mill without further treatment was used as feed. Two lab-scale digesters supported from Metawater Co. Ltd. have been applied to treat POME at thermophilic (55°C) condition. Both digesters were operated under intermittent operation mode. Experiments were performed in two methods: with and without recycle sludge. Hydraulic retention time (HRT) of both methods was maintained at 6 days, while sludge retention time (SRT) was maintained at various days. The result showed that by extending SRT in return sludge process where 25% of digested slurry recycled to the digester, improvement of volatile solid (VS) decomposition was obtained around 84% at HRT of 6 days and SRT of 21 days. Then, chemical oxygen demand (COD) removal efficiency could be reached until 85% by using recycle sludge.

  12. Development of an advanced anaerobic digester design and a kinetic model for biogasification of water hyacinth/sludge blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, V.; Fannin, K.F.; Biljetina, R.

    1986-07-01

    The Institute of Gas Technology (IGT) conducted a comprehensive laboratory-scale research program to develop and optimize the anaerobic digestion process for producing methane from water hyacinth and sludge blends. This study focused on digester design and operating techniques, which gave improved methane yields and production rates over those observed using conventional digesters. The final digester concept and the operating experience was utilized to design and operate a large-scale experimentla test unit (ETU) at Walt Disney World, Florida. This paper describes the novel digester design, operating techniques, and the results obtained in the laboratory. The paper also discusses a kinetic modelmore » which predicts methane yield, methane production rate, and digester effluent solids as a function of retention time. This model was successfully utilized to predict the performance of the ETU. 15 refs., 6 figs., 6 tabs.« less

  13. Effect of energy grass on methane production and heavy metal fractionation during anaerobic digestion of sewage sludge.

    PubMed

    Zhang, Min; Yang, Changming; Jing, Yachao; Li, Jianhua

    2016-12-01

    Anaerobic digestion (AD) is one of the most widely used processes to stabilize waste sewage sludge and produce biogas as renewable energy. The relatively low organic matter content and high heavy metal concentrations in sewage sludge have severely restricted the application and development of AD technology in China. In this study, the effect of energy grass (Pennisetum alopecuroides) addition on methane production and heavy metal fractionation during the AD of sewage sludge was evaluated. Methane production was enhanced by 11.2% by the addition of P. alopecuroides. The addition of P. alopecuroides significantly reduced the percentages of the water-soluble and exchangeable fractions of the target heavy metals in the sewage sludge after AD, and the dominant species were concentrated in Fe-Mn oxide-bound and organic- and sulfide-bound fractions of the digested sludge. The addition of P. alopecuroides at a dosage of 0.3kg significantly (P<0.05) decreased the mobility factors (MFs) of the target heavy metals after AD. In particular, the MFs of Cr and Ni were 61% and 32% lower, respectively, relative to the control. The increase in the added dose did not necessarily lead to further decreases in the MFs of the heavy metals. These results demonstrate that an appropriate addition of energy grass could enhance AD, decrease the mobility of heavy metals and promote heavy metal stabilization in sewage sludge during AD, which is beneficial for the subsequent land application of sewage sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system.

    PubMed

    Fu, Shan-Fei; Ding, Jian-Nan; Zhang, Yun; Li, Yi-Fei; Zhu, Rong; Yuan, Xian-Zheng; Zou, Hua

    2018-06-01

    In this study, impacts of nanoplastic on the pure and mixed anaerobic digestion systems were investigated. Results showed the growth and metabolism of Acetobacteroides hydrogenigenes were partly inhibited by nanoplastic existed in the pure anaerobic digestion system. The anaerobic digestion of sewage sludge was also obviously inhibited by nanoplastic existed in the mixed anaerobic digestion system. Both the methane yield and methane production rate of the mixed anaerobic digestion system showed negative correlation with the nanoplastic concentration. Compared with anaerobic digestion system without nanoplastic, methane yield and maximum daily methane yield at the nanoplastic concentration of 0.2g/L decreased for 14.4% and 40.7%, respectively. In addition, the start-up of mixed anaerobic digestion system was prolonged by addition of nanoplastic. Microbial community structure analysis indicated the microbial community structures were also affected by nanoplastic existed in the system. At the nanoplastic concentration of 0.2g/L, the relative abundances of family Cloacamonaceae, Porphyromonadaceae, Anaerolinaceae and Gracilibacteraceae decreased partly. Conversely, the relative abundances of family Anaerolinaceae, Clostridiaceae, Geobacteraceae, Dethiosulfovibrionaceae and Desulfobulbaceae improved partly. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xiao, E-mail: liuxiao07@mails.tsinghua.edu.cn; Wang Wei; Shi Yunchun

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practicalmore » approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.« less

  16. Intensification of anaerobic digestion efficiency with use of mechanical excess sludge disintegration in the context of increased energy production in wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Żubrowska-Sudoł, Monika; Podedworna, Jolanta; Bisak, Agnieszka; Sytek-Szmeichel, Katarzyna; Krawczyk, Piotr; Garlicka, Agnieszka

    2017-11-01

    The main goal of the study was to evaluate the effects of mechanical sludge disintegration for enhancing full scale anaerobic digestion of municipal sludge. Batch disintegration tests and lab dewatering tests were also performed aiming at determining the release of organic compounds and assessing the impact of disintegration of excess sludge before the fermentation process of mixed sludge on the dewaterability of post-fermented sludge, respectively. In the study a disc disintegrator driven by a motor with a power of 30 kW, revolutions n = 2950 rpm has been used. It was shown that with increase of energy consumed in the disintegration, the increased amounts of organic compounds were released from the sludge. It was also documented that the introduction of the excess sludge disintegration prior to fermentation tank, resulted in a significant increase in biogas production (by an average of 33.9%) and in increase in volatile total solids reduction in the fermented sludge (by an average of 22.7%). Moreover, the obtained results indicate the possibility of obtaining a higher degree of sludge dewatering, which was subjected to anaerobic stabilization with using disintegrated excess sludge.

  17. Chemically coupled microwave and ultrasonic pre-hydrolysis of pulp and paper mill waste-activated sludge: effect on sludge solubilisation and anaerobic digestion.

    PubMed

    Tyagi, Vinay Kumar; Lo, Shang-Lien; Rajpal, Ankur

    2014-05-01

    The effects of alkali-enhanced microwave (MW; 50-175 °C) and ultrasonic (US) (0.75 W/mL, 15-60 min) pretreatments, on solubilisation and subsequent anaerobic digestion efficiency of pulp and paper mill waste-activated sludge, were investigated. Improvements in total chemical oxygen demand and volatile suspended solids (VSS) solubilisation were limited to 33 and 39 % in MW pretreatment only (175 °C). It reached 78 and 66 % in combined MW-alkali pretreatment (pH 12 + 175 °C), respectively. Similarly, chemical oxygen demand and VSS solubilisation were 58 and 37 % in US pretreatment alone (60 min) and it improved by 66 and 49 % after US-alkali pretreatment (pH 12 + 60 min), respectively. The biogas yield for US 60 min-alkali (pH 12)-pretreated sludge was significantly improved by 47 and 20 % over the control and US 60 reactors, respectively. The biogas generation for MW (150 °C)-alkali (pH 12)-pretreated sludge was only 6.3 % higher than control; however, it was 8.3 % lower than the MW (150 °C) reactor, which was due to the inhibition of anaerobic activity under harsh thermal-alkali treatment condition.

  18. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance.

    PubMed

    Dai, Xiaohu; Duan, Nina; Dong, Bin; Dai, Lingling

    2013-02-01

    System stability and performance of high-solids anaerobic co-digestion of dewatered sludge (DS) and food waste (FW) in comparison with mono digestions were investigated. System stability was improved in co-digestion systems with co-substrate acting as a diluting agent to toxic chemicals like ammonia or Na(+). For high-solids digestion of DS, the addition of FW not only improved system stability but also greatly enhanced volumetric biogas production. For high-solids digestion of FW, the addition of DS could reduce Na(+) concentration and help maintain satisfactory stability during the conversion of FW into biogas. System performances of co-digestion systems were mainly determined by the mixing ratios of DS and FW. Biogas production and volatile solids (VSs) reduction in digestion of the co-mixture of DS and FW increased linearly with higher ratios of FW. A kinetic model, which aimed to forecast the performance of co-digestion and to assist reactor design, was developed from long-term semi-continuous experiments. Maximum VS reduction for DS and FW was estimated to be 44.3% and 90.3%, respectively, and first order constant k was found to be 0.17d(-1) and 0.50 d(-1), respectively. Experimental data of co-digestion were in good conformity to the predictions of the model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Improved anaerobic digestion of a thermally pretreated mixture of physicochemical sludge; broiler excreta and sugar cane wastes (SCW): Effect on organic matter solubilization, biodegradability and bioenergy production.

    PubMed

    Nava-Valente, Noemí; Alvarado-Lassman, Alejandro; Nativitas-Sandoval, Liliana S; Mendez-Contreras, Juan M

    2016-01-01

    Thermal pretreatment effect of a mixture of organic wastes (physicochemical sludge, excreta of broiler chickens and sugarcane wastes (SCW)) in the solubilization and biodegradability organic matter as well as bioenergy production by anaerobic digestion was evaluated. Two different mixtures of physicochemical sludge, excreta of broiler chickens and SCW (70%, 15%, 15% and 60%, 20%, 20% of VS, respectively) were treated at different temperatures (80 °C, 85 °C and 90 °C) and contact time (30, 60 and 90 min). Results indicate that, organic matter solubilization degree increased from 1.14 to 6.56%; subsequently, in the anaerobic digestion process, an increase of 50% in the volatile solids removal and 10% in biogas production was observed, while, retention time decreased from 23 up to 9 days. The results obtained were similar to pilot-scale. In both experimental scales it showed that the synergy produced by the simultaneous anaerobic digestion of different substrates could increase bioenergy production up to 1.3 L bio g(-1) VS removed and 0.82 L CH4 g(-1) VS removed. The treatment conditions presented in this study allow for large residue quantities to be treated and large bioenergy quantities to be produced (10% higher than during conventional treatment) without increasing the anaerobic digester volume.

  20. Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance.

    PubMed

    Xiao, Benyi; Qin, Yu; Zhang, Wenzhe; Wu, Jing; Qiang, Hong; Liu, Junxin; Li, Yu-You

    2018-02-01

    The temperature-phased anaerobic digestion (TPAD) of food waste was studied for the purpose of comparing with single-stage mesophilic and thermophilic anaerobic digestion. The biogas and methane yields in the TPAD during the steady period were 0.759 ± 0.115 L/g added VS and 0.454 ± 0.201 L/g added VS, which were lower than those in the two single-stage anaerobic digestion. The improper sludge retention time may be the reason for the lower biogas and methane production in TPAD. The removal of volatile solids in the TPAD was 78.55 ± 4.59% and the lowest among the three anaerobic digestion processes. The reaction ratios of the four anaerobic digestion steps in the TPAD were all lower than those in the two single-stage anaerobic digestion. The energy conversion efficiency of the degraded substrate in the TPAD was similar with those in single-stage mesophilic and thermophilic anaerobic digestion systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Do anaerobic digestates promote dispersion, acidification and water repellency in soils?

    NASA Astrophysics Data System (ADS)

    Voelkner, Amrei; Holthusen, Dörthe; Horn, Rainer

    2014-05-01

    Digestates are used as organic fertilizer on agricultural land due to their high amounts of nutrients (e.g. potassium, sodium). It is commonly expected that the application of sludge derived from anaerobic digestion can influence the soil structure and soil stability. Due to the fact that digestates contain large quantities of monovalent salts and long-chained fatty acids, the consequence of sludge amendment can be soil degradation caused by acidification, dispersion and increased water-repellency. Thus, water infiltration can be impeded which results in a preservation of stable soil aggregates. However, a diminished water infiltration can support water erosion and preferential flow of easy soluble nutrients into the groundwater. Our research was conducted with different digestates derived from maize, wheat and sugar beet to examine occurring processes in soils of two different textures after the application of anaerobic sludges. Particularly, we focused on the wetting properties of the soil. For this purpose, the wetting behavior was investigated by determining the sorptivity-based Repellency Index with moist samples and the contact angle with homogenized, air-dried soil material. Further surveys were carried out to assess the flow behavior of digestates application and the deformation of the particle-to-particle association by microscaled shearing. Additionally, the acidification process in the soil as a result of sludge application was investigated. To account for the dispersive impact of digestates, the turbidity of soil suspensions was ascertained. We summarize from the results that the digestates have a clear impact on the water repellency of the soil. We recognized a shift to more hydrophobic conditions. Partially, the pH remains on a high level due to the alkaline digestate, but several samples show a decline of pH, depending on the soil texture, respectively. However, soil structure was weakened as was shown by an increase of turbidity. As a conclusion, we

  2. Influence on anaerobic digestion by intermediate thermal hydrolysis of waste activated sludge and co-digested wheat straw.

    PubMed

    Bjerg-Nielsen, Michael; Ward, Alastair James; Møller, Henrik Bjarne; Ottosen, Lars Ditlev Mørck

    2018-02-01

    This paper analyses time (30 and 60 min) and temperature (120-190 °C) effects of intermediate thermal hydrolysis (ITHP) in a two-step anaerobic digestion of waste activated sludge (WAS) with and without wheat straw as a co-substrate. Effects were analyzed by measuring biochemical methane potential for 60 days and assessing associated kinetic and chemical data. Compared to non-treatment, ITHP increased the secondary step methane yield from 52 to 222 L CH 4  kg VS -1 and from 147 to 224 L CH 4  kg VS -1 for pre-digested WAS and pre-co-digested WAS respectively at an optimum of 170 °C and 30 min. The hydrolysis coefficients (k hyd ) increased by up to 127% following treatment. Increasing ITHP time from 30 to 60 min showed ambiguous results regarding methane yields, whilst temperature had a clear and proportional effect on the concentrations of acetic acid. The energy balances were found to be poor and dewatering to increase total solids above the values tested here is necessary for this process to be energetically feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Electron beam inactivation of selected microbial pathogens and indicator organisms in aerobically and anaerobically digested sewage sludge.

    PubMed

    Praveen, Chandni; Jesudhasan, Palmy R; Reimers, Robert S; Pillai, Suresh D

    2013-09-01

    Microbial pathogens in municipal sewage sludges need to be inactivated prior to environmental disposal. The efficacy of high energy (10 MeV) e-beam irradiation to inactivate a variety of selected microbial pathogens and indicator organisms in aerobically and anaerobically digested sewage sludge was evaluated. Both bacterial and viral pathogens and indicator organisms are susceptible to e-beam irradiation. However, as expected there was a significant difference in their respective e-beam irradiation sensitivity. Somatic coliphages, bacterial endospores and enteric viruses were more resistant compared to bacterial pathogens. The current US EPA mandated 10 kGy minimum dose was capable of achieving significant reduction of both bacterial and viral pathogens. Somatic coliphages can be used as a microbial indicator for monitoring e-beam processes in terms of pathogen inactivation in sewage sludges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Monitoring of microbial communities in anaerobic digestion sludge for biogas optimisation.

    PubMed

    Lim, Jun Wei; Ge, Tianshu; Tong, Yen Wah

    2018-01-01

    This study characterised and compared the microbial communities of anaerobic digestion (AD) sludge using three different methods - (1) Clone library; (2) Pyrosequencing; and (3) Terminal restriction fragment length polymorphism (T-RFLP). Although high-throughput sequencing techniques are becoming increasingly popular and affordable, the reliance of such techniques for frequent monitoring of microbial communities may be a financial burden for some. Furthermore, the depth of microbial analysis revealed by high-throughput sequencing may not be required for monitoring purposes. This study aims to develop a rapid, reliable and economical approach for the monitoring of microbial communities in AD sludge. A combined approach where genetic information of sequences from clone library was used to assign phylogeny to T-RFs determined experimentally was developed in this study. In order to assess the effectiveness of the combined approach, microbial communities determined by the combined approach was compared to that characterised by pyrosequencing. Results showed that both pyrosequencing and clone library methods determined the dominant bacteria phyla to be Proteobacteria, Firmicutes, Bacteroidetes, and Thermotogae. Both methods also found that sludge A and B were predominantly dominated by acetogenic methanogens followed by hydrogenotrophic methanogens. The number of OTUs detected by T-RFLP was significantly lesser than that detected by the clone library. In this study, T-RFLP analysis identified majority of the dominant species of the archaeal consortia. However, many of the more highly diverse bacteria consortia were missed. Nevertheless, the combined approach developed in this study where clone sequences from the clone library were used to assign phylogeny to T-RFs determined experimentally managed to accurately predict the same dominant microbial groups for both sludge A and sludge B, as compared to the pyrosequencing results. Results showed that the combined approach of

  5. Mesophilic anaerobic co-digestion of the organic fraction of municipal solid waste with the liquid fraction from hydrothermal carbonization of sewage sludge.

    PubMed

    De la Rubia, M A; Villamil, J A; Rodriguez, J J; Borja, R; Mohedano, A F

    2018-06-01

    In the present study, the influence of substrate pre-treatment (grinding and sieving) on batch anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) was first assessed, then followed by co-digestion experiments with the liquid fraction from hydrothermal carbonization (LFHTC) of dewatered sewage sludge (DSS). The methane yield of batch anaerobic digestion after grinding and sieving (20 mm diameter) the OFMSW was considerably higher (453 mL CH 4 STP g -1 VS added ) than that of untreated OFMSW (285 mL CH 4 STP g -1 VS added ). The modified Gompertz model adequately predicted process performance. The maximum methane production rate, R m , for ground and sieved OFMSW was 2.4 times higher than that of untreated OFMSW. The anaerobic co-digestion of different mixtures of OFMSW and LFHTC of DSS did not increase the methane yield above that of the anaerobic digestion of OFMSW alone, and no synergistic effects were observed. However, the co-digestion of both wastes at a ratio of 75% OFMSW-25% LFHTC provides a practical waste management option. The experimental results were adequately fitted to a first-order kinetic model showing a kinetic constant virtually independent of the percentage of LFHTC (0.52-0.56 d -1 ) and decreasing slightly for 100% LFHTC (0.44 d -1 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Start-Up of an Anaerobic Dynamic Membrane Digester for Waste Activated Sludge Digestion: Temporal Variations in Microbial Communities

    PubMed Central

    Yu, Hongguang; Wang, Qiaoying; Wang, Zhiwei; Sahinkaya, Erkan; Li, Yongli; Ma, Jinxing; Wu, Zhichao

    2014-01-01

    An anaerobic dynamic membrane digester (ADMD) was developed to digest waste sludge, and pyrosequencing was used to analyze the variations of the bacterial and archaeal communities during the start-up. Results showed that bacterial community richness decreased and then increased over time, while bacterial diversity remained almost the same during the start-up. Proteobacteria and Bacteroidetes were the major phyla. At the class level, Betaproteobacteria was the most abundant at the end of start-up, followed by Sphingobacteria. In the archaeal community, richness and diversity peaked at the end of the start-up stage. Principle component and cluster analyses demonstrated that archaeal consortia experienced a distinct shift and became stable after day 38. Methanomicrobiales and Methanosarcinales were the two predominant orders. Further investigations indicated that Methanolinea and Methanosaeta were responsible for methane production in the ADMD system. Hydrogenotrophic pathways might prevail over acetoclastic means for methanogenesis during the start-up, supported by specific methanogenic activity tests. PMID:24695488

  7. Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge.

    PubMed

    Ennouri, Hajer; Miladi, Baligh; Diaz, Soraya Zahedi; Güelfo, Luis Alberto Fernández; Solera, Rosario; Hamdi, Moktar; Bouallagui, Hassib

    2016-08-01

    The effect of thermal pre-treatment on the microbial populations balance and biogas production was studied during anaerobic digestion of waste activated sludge (WAS) coming from urban (US: urban sludge) and industrial (IS: industrial sludge) wastewater treatment plants (WWTP). The highest biogas yields of 0.42l/gvolatile solid (VS) removed and 0.37l/gVS removed were obtained with urban and industrial sludge pre-treated at 120°C, respectively. Fluorescent in situ hybridization (FISH) was used to quantify the major Bacteria and Archaea groups. Compared to control trails without pretreatment, Archaea content increased from 34% to 86% and from 46% to 83% for pretreated IS and US, respectively. In fact, the thermal pre-treatment of WAS enhanced the growth of hydrogen-using methanogens (HUMs), which consume rapidly the H2 generated to allow the acetogenesis. Therefore, the stable and better performance of digesters was observed involving the balance and syntrophic associations between the different microbial populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Anaerobic digestion of slaughterhouse waste with UF-membrane separation and recycling of permeate after free ammonia stripping.

    PubMed

    Siegrist, H; Hunziker, W; Hofer, H

    2005-01-01

    Anaerobic digestion can adapt to free ammonia to a certain extent. During the anaerobic digestion of slaughterhouse waste, however, an ammonia concentration of up to 15 g Nl(-1) can be reached in the sludge liquid and this will even inhibit adapted sludge. To lower this concentration, a fraction of the digester liquid must therefore be continuously separated from the digested sludge and the free ammonia stripped before the liquid is recycled to the digester. A mesophilic laboratory digester was successfully operated with an ammonium concentration of 4-5g l(-1) and a pH of 8.0-8.4. After free ammonia stripping, the excess liquid was treated in a laboratory SBR for nitrogen and phosphorus removal before being added to the receiving water. The effluent had no toxic effect on daphnia and algae.

  9. New insights into the enhanced performance of high solid anaerobic digestion with dewatered sludge by thermal hydrolysis: Organic matter degradation and methanogenic pathways.

    PubMed

    Chen, Sisi; Li, Ning; Dong, Bin; Zhao, Wentao; Dai, Lingling; Dai, Xiaohu

    2018-01-15

    Two lab-scale high solid anaerobic digesters fed with untreated sludge (R1) and thermally hydrolyzed sludge (R2) were operated to investigate the influence of thermal hydrolysis pretreatment (THP) on the degradation of individual macromolecular organic components (MOCs), as well as the functional and metabolic responses of microbes during anaerobic digestion (AD). The degradation of MOCs was improved by THP at different rates, in which improved degradation of proteins (by 49.0%) and hemicelluloses (by 25.0%) were the main factors contributing to the increase in volatile solids (VS) reduction. However, no enhancement of final degradation extent of MOCs was observed. With a more densified microbial population, R2 was also enriched in genes involved in amino acid and carbohydrate metabolism, reflected in the enhanced degradation of proteins and carbohydrates. After THP, the methanogenic pathway shifted from strict acetoclastic methanogenesis to acetoclastic/hydrogenotrophic methanogenesis, consistent with the enhanced methane production and the increase of methane content. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Degradation of organophosphate esters in sewage sludge: Effects of aerobic/anaerobic treatments and bacterial community compositions.

    PubMed

    Pang, Long; Ge, Liming; Yang, Peijie; He, Han; Zhang, Hongzhong

    2018-05-01

    In this study, the degradation of organophosphate esters (OPEs) in sewage sludge with aerobic composting and anaerobic digestion was investigated. The total concentrations of six OPEs (ΣOPEs) in the whole treatment process reduced in the order of anaerobic digestion combined with pig manure (T3) > aerobic composting combined with pig manure (T1) > aerobic composting (T2) > anaerobic digestion (T4). The addition of pig manure significantly enhanced the removal rate of OPEs in both aerobic and anaerobic treatments. The abundance and diversity of bacterial community reduced after the treatment process. Shannon index, principal component analysis, network analysis, and heat map further confirmed the variation of bacterial community compositions among different treatments. Five genera (i.e., Flavobacterium, Bacillus, Alcaligene, Pseudomonas, and Bacillus megaterium) might be responsible for the degradation of OPE compounds in sewage sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover.

    PubMed

    Xu, Fuqing; Shi, Jian; Lv, Wen; Yu, Zhongtang; Li, Yebo

    2013-01-01

    Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5L/kg VS(feed), while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6L/kg VS(feed). The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3g CaCO(3)/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Efficiency of a pilot-scale integrated sludge thickening and digestion reactor in treating low-organic excess sludge.

    PubMed

    He, Qiang; Li, Jiang; Liu, Hongxia; Tang, Chuandong; de Koning, Jaap; Spanjers, Henri

    2012-06-01

    The sludge production from medium- and small-scale wastewater treatment plants in the Three Gorges Reservoir Region is low and non-stable; especially, the organic content in this sludge is low (near 40% of VS/TS). An integrated thickening and digestion (ISTD) reactor was developed to treat this low-organic excess sludge. After a flow test and start-up experiment of the reactor, a running experiment was used to investigate the excess sludge treatment efficiency under five different excess sludge inflows: 200, 300, 400, 500 and 400 L/d (a mixture of excess sludge and primary sludge in a volume ratio of 9:1). This trial was carried out in the wastewater treatment plant in Chongqing, which covers 80% of the Three Gorges Reservoir Region, under the following conditions: (1) sludge was heated to 38-40 degrees C using an electrical heater to maintain anaerobic mesophilic digestion; (2) the biogas produced was recirculated to mix raw sludge with anaerobic sludge in the reactor under the flow rate of 12.5 L/min. There were three main results. Firstly, the flow pattern of the inner reactor was almost completely mixed under the air flow of 12.0 L/min using clear water. Secondly, under all the different sludge inflows, the water content in the outlet sludge was below 93%. Thirdly, the organic content in the outlet sludge was decreased from 37% to 30% and from 24% to 20%, whose removal ratio was in relation to the organic content of the inlet sludge. The excess sludge treatment capacity of the ISTD reactor was according to the organic content in the excess sludge.

  13. Stable thermophilic anaerobic digestion of dissolved air flotation (DAF) sludge by co-digestion with swine manure.

    PubMed

    Creamer, K S; Chen, Y; Williams, C M; Cheng, J J

    2010-05-01

    Environmentally sound treatment of by-products in a value-adding process is an ongoing challenge in animal agriculture. The sludge produced as a result of the dissolved air flotation (DAF) wastewater treatment process in swine processing facilities is one such low-value residue. The objective of this study was to determine the fundamental performance parameters for thermophilic anaerobic digestion of DAF sludge. Testing in a semi-continuous stirred tank reactor and in batch reactors was conducted to determine the kinetics of degradation and biogas yield. Stable operation could not be achieved using pure DAF sludge as a substrate, possibly due to inhibition by long-chain fatty acids or to nutrient deficiencies. However, in a 1:1 ratio (w/w, dry basis) with swine manure, operation was both stable and productive. In the semi-continuous stirred reactor at 54.5 degrees Celsius, a hydraulic residence time of 10 days, and an organic loading rate of 4.68 gVS/day/L, the methane production rate was 2.19 L/L/day and the specific methane production rate was 0.47 L/gVS (fed). Maximum specific methanogenic activity (SMA) in batch testing was 0.15 mmoles CH(4) h(-1) gVS(-1) at a substrate concentration of 6.9 gVS L(-1). Higher substrate concentrations cause an initial lag in methane production, possibly due to long-chain fatty acid or nitrogen inhibition. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Influence of Continuous Flow Microwave Pre-Treatment on Anaerobic Digestion of Secondary Thickened Sludge for Sustainable Energy Recovery in Sewage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Hephzibah, D.; Kumaran, P.; Saifuddin, N. M.

    2016-03-01

    This work elucidates the effects of pre-treatment of secondary thickened sludge (STS) for enhancement of biogas production that has great potential to generate energy for the utilization of the sewage treatment plant (STP) itself. Microwave pre-treatment has been adopted for this study. Experiment works have been designed and conducted to examine the effectiveness of continuous flow microwave pre-treatment on the solubility of STS, digestibility of STS and biogas production at a power level of 80 W for 5, 10 and 15 minutes. A few characteristics of the sewage sludge were monitored daily to identify the effect of pre-treatment on the sludge. The soluble chemical oxygen demand (SCOD)/total chemical oxygen demand (TCOD) ratio increased by 0.1, 1.0 and 1.8%, while the volatile fatty acids (VFA) concentration of the pre-treated sludge improved by 4.4, 5.1, 5.9% at the irradiation time of 5, 10 and 15 minutes, respectively at a microwave power level of 80 W. Besides that, the digestate also indicates that the pre-treated sludge undergoes efficient VS removal and TCOD removal after anaerobic digestion compared to the untreated sludge. Moreover, the biogas quantity increased by an average of 19.2, 24.1 and 32.2% in 5, 10 and 15 minutes irradiation time respectively compared to the untreated sludge. The additional quantity of biogas generated has shown a great potential for sustainable energy generation that can be utilized internally by the STP.

  15. Effects of solids retention time on methanogenesis in anaerobic digestion of thickened mixed sludge.

    PubMed

    Lee, Il-Su; Parameswaran, Prathap; Rittmann, Bruce E

    2011-11-01

    When a bench-scale digester fed thickened mixed sludge was operated over an SRT range of 4-20 days, removal efficiencies for total chemical oxygen demand and volatile suspended solids declined with decreasing SRT (especially <10 days), but methanogenesis was stable for SRT as low as 5 days. Quantitative PCR analyses showed that methanogens declined steadily for SRT<10 days, with the acetate-cleaving Methanosaetaceae becoming more dominant. Clone-library analyses indicated significant shifts in bacterial population from 20 to 4 day SRT: declining Chloroflexi (28 to 4.5%) and Syntrophomonas (9 to 0%), but increasing Bacteroidetes (12.5 to 20%) and two acetogenic genera belonging to the phyla Firmicutes and Spirochaetales (6.3 to 12%). Thus, the decrease in the apparent hydrolysis constant (khyd-app) with higher SRT and the process limiting size of Methanosaetaceae with the lower SRT are proactive signs for defining rate limitation in anaerobic digestion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Enhancement of dewatering performance of digested paper mill sludge by chemical pretreatment

    NASA Astrophysics Data System (ADS)

    Lin, Y. Q.; Zeng, C.; Wu, H. H.; Zeng, B. X.

    2016-08-01

    The wide application of anaerobic digestion (AD) for waste sludge results in a huge amount of digested sludge, while the appropriate reuse of digested sludge depends on effective solid-liquid separation. Thus, chemical (acid/alkali) pretreatment effects on dewaterability of digested paper mill sludge (DPMS) for better downstream reuse based on enhanced solid- liquid separation were investigated in this research. The dewatering properties of paper mill sludge (PMS) were also investigated to elucidate the impact of AD on sludge dewaterability. The results indicated that a higher DPMS dewaterability was noted with acid pretreatment (pH5). A 41.37% moisture content and 74.41% dewatering efficiency were determined for DPMS after acid (pH5) pretreatment within 25 min. In addition, a 7.13 mg•g-1 VSS of extracellular polymeric substances (EPS) and 101.50 μm of average particle size were observed. It was also observed that both EPS concentrations and particle sizes were key parameters influencing DPMS dewaterability. Lower EPS concentrations with larger average particle sizes contributed to enhanced sludge dewaterability. Moreover, dewaterability of PMS was higher than that of DPMS, which illustrated that AD would decrease the sludge dewaterability.

  17. Anaerobic co-digestion of steam-treated Quercus serrata chips and sewage sludge under mesophilic and thermophilic conditions.

    PubMed

    Wang, Feng; Hidaka, Taira; Sakurai, Kensuke; Tsumori, Jun

    2014-08-01

    The biodegradation of Quercus serrata chips was evaluated by anaerobic digestion under various steam explosion conditions. In continuous experiments, untreated chips (W₀) and chips steam-treated at less than 1.0 MPa (W₁) and 2.0 MPa (W₄) were co-digested with sewage sludge (S₁ and S₂) taken from two different wastewater treatment plants. The apparent methane yield of W₁ and W₄ co-digested with S₁ (thermophilic) was 261 dm(3)/kgVS (volatile solids) and 248 dm(3)/kgVS, respectively. The apparent methane yield of W₄ co-digested with S₂ was 258 dm(3)/kgVS (mesophilic) and 271 dm(3)/kgVS (thermophilic). Methane production was inhibited by W₀ due to components released during hydrolysis. The methane conversion ratio of pretreated chips obtained in batch experiments varied from 40.5% to 53.8% (mesophilic) and from 49.0% to 63.7% (thermophilic). The methane conversion ratio increased with decreasing acid-soluble lignin content in the chips. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste.

    PubMed

    Silvestre, G; Rodríguez-Abalde, A; Fernández, B; Flotats, X; Bonmatí, A

    2011-07-01

    The feasibility of sewage sludge co-digestion using intermediate waste generated inside a wastewater treatment plant, i.e. trapped grease waste from the dissolved air flotation unit, has been assessed in a continuous stirred lab reactor operating at 35°C with a hydraulic retention time of 20 days. Three different periods of co-digestion were carried out as the grease waste dose was increased. When the grease waste addition was 23% of the volatile solids fed (organic loading rate 3.0 kg(COD)m(-3)d(-1)), an increase in methane yield of 138% was reported. Specific activity tests suggested that anaerobic biomass had adapted to the co-substrate. The adapted inoculum showed higher acetoclastic methanogenic and β-oxidation synthrophic acetogenic activities but lower hydrogenotrophic methanogenic activity. The results indicate that a slow increase in the grease waste dose could be a strategy that favours biomass acclimation to fat-rich co-substrate, increases long chain fatty acid degradation and reduces the latter's inhibitory effect. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Effect of anaerobic digestion and liming on plant availability of phosphorus in iron- and aluminium-precipitated sewage sludge from primary wastewater treatment plants.

    PubMed

    Alvarenga, Emilio; Øgaard, Anne Falk; Vråle, Lasse

    2017-04-01

    More efficient plant utilisation of the phosphorus (P) in sewage sludge is required because rock phosphate is a limited resource. To meet environmental legislation thresholds for P removal from wastewater (WW), primary treatment with iron (Fe) or aluminium (Al) coagulants is effective. There is also a growing trend for WW treatment plants (WWTPs) to be coupled to a biogas process, in order to co-generate energy. The sludge produced, when stabilised, is used as a soil amendment in many countries. This study examined the effects of anaerobic digestion (AD), with or without liming as a post-treatment, on P release from Fe- and Al-precipitated sludges originating from primary WWTPs. Plant uptake of P from Fe- and Al-precipitated sludge after lime treatment but without AD was also compared. Chemical characterisation with sequential extraction of P and a greenhouse experiment with barley (Hordeum vulgare) were performed to assess the treatment effects on plant-available P. Liming increased the P-labile fraction in all cases. Plant P uptake increased from 18.5 mg pot -1 to 53 mg P pot -1 with liming of Fe-precipitated sludge and to 35 mg P pot -1 with liming of the digestate, while it increased from 18.7 mg pot -1 to 39 and 29 mg P pot -1 for the Al-precipitated substrate and digestate, respectively. Thus, liming of untreated Fe-precipitated sludge and its digestate resulted in higher P uptake than liming its Al-precipitated counterparts. AD had a negative impact on P mobility for both sludges.

  20. Vermiconversion of wastewater sludge from textile mill mixed with anaerobically digested biogas plant slurry employing Eisenia foetida.

    PubMed

    Garg, V K; Kaushik, Priya; Dilbaghi, Neeraj

    2006-11-01

    Vermicomposting is commonly used for the management of organic wastes. We have investigated the potential of an epigeic earthworm, Eisenia foetida, to transform solid textile mill sludge (STMS) spiked with anaerobically digested biogas plant slurry (BPS) into vermicompost to evaluate the feasibility of vermicomposting in industries for waste management. The growth and reproduction of E. foetida was monitored in a range of different feed mixtures for 15 weeks in laboratory under controlled experimental conditions. E. foetida did not survive in fresh STMS. But worms grew and reproduced in STMS spiked with BPS feed mixtures. A greater percentage of STMS in feed mixture affected biomass gain and cocoon production by earthworms. The maximum growth was recorded in 100% BPS. The net weight gain by E. foetida in 100% BPS was two-four-fold higher than STMS-containing feed mixtures. After 15 weeks, maximum cocoons (78) were counted in 100% BPS and minimum (26) in 60% BPS+40% STMS feed. Vermicomposting resulted in pH shift toward acidic, significant reduction in C:N ratio, and increase in nitrogen, phosphorus, and potassium contents. Microbial activity measured as dehydrogenase activity increased with time up to day 75 but decreased on day 90, indicating the exhaustion of feed and decrease in microbial activity. These experiments demonstrate that vermicomposting can be an alternate technology for the recycling and environmentally safe disposal/management of textile mill sludge using an epigeic earthworm, E. foetida, if mixed with anaerobically digested BPS in appropriate ratios.

  1. Modelling anaerobic digestion acclimatisation to a biodegradable toxicant: application to cyanide.

    PubMed

    Zaher, U; Moussa, M S; Widyatmika, I N; van Der Steen, P; Gijzen, H J; Vanrolleghem, P A

    2006-01-01

    The observed acclimatisation to biodegradable toxicants in anaerobic cassava wastewater treatment is explained by modelling anaerobic cyanide degradation. A complete degradation pathway is proposed for cyanide. Cyanide degradation is modelled as enzymatic hydrolysis to formate and ammonia. Ammonia is added to the inorganic nitrogen content of the digester while formate is degraded by the hydrogenotrophic methanogens. Cyanide irreversible enzyme inhibition is modelled as an inhibition factor to acetate uptake processes. Cyanide irreversible toxicity is modelled as a decay factor to the acetate degraders. Cyanide as well as added phosphorus buffer solution were considered in the chemical equilibrium calculations of pH. The observed reversible effect after acclimatisation of sludge is modelled by a population shift between two aceticlastic methanogens that have different tolerance to cyanide toxicity. The proposed pathway is added to the IWA Anaerobic Digestion Model no.1 (ADM1). The ADM1 model with the designed extension is validated by an experiment using three lab-scale upflow anaerobic sludge bed reactors which were exposed to different cyanide loadings.

  2. Anaerobic Digestion I. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    This lesson is the first of a two-part series on anaerobic digestion. Topics discussed include the five basic functions of an anaerobic digester, basic theory of the biological processes involved, basic equipment necessary for digestion, and the products of digestion. The lesson includes an instructor's guide and student workbook. The instructor's…

  3. Effect of mild-temperature H2O2 oxidation on solubilization and anaerobic digestion of waste activated sludge.

    PubMed

    Junga, Heejung; Kim, Jaai; Lee, Seungyong; Lee, Changsoo

    2014-08-01

    Efficient sludge management is among the most challenging issues in wastewater treatment today, and anaerobic digestion is regarded as a viable solution. Mild-temperature H202 oxidation was examined for enhanced solubilization and biogas production of waste activated sludge (WAS). The effects of pretreatment factors (i.e. temperature and H202 concentration) on the degree of WAS disintegration (DD) and biogas yield (BY) were assessed by response surface analysis within the design space of 60-90 degrees C and 0-200mM H202. Significant sludge disintegration (up to 23.0% DD) and visibly enhanced BY (up to 26.9%) were shown in the pretreatment trials. Two response surface models to describe how DD and BY respond to changes in the pretreatment conditions were successfully constructed (R2 > 0.95, p < 0.05). The models showed totally different response surface shapes, indicating the DD and BY were influenced by pretreatment conditions in very different ways. DD was dominantly affected by temperature and showed higher model responses at the high-temperature region, while the BY response peaked in the low-temperature and mid-level H2O2 region. This observation implies that the enhanced solubilization of WAS was not directly translated into an increase in biogas production. Our results showed that WAS can be efficiently disintegrated by H202 oxidation under mild-temperature conditions for enhanced anaerobic digestibility. Within the explored region of pretreatment conditions, the maximum BY was estimated to be 82.1 mL/gCODadded (32.8% greater than the untreated control) at (60.0 degrees C, 74.2 mM H2O2).

  4. Co-digestion of municipal sewage sludge and solid waste: modelling of carbohydrate, lipid and protein content influence.

    PubMed

    Nielfa, A; Cano, R; Pérez, A; Fdez-Polanco, M

    2015-03-01

    Solid wastes from industrial, commercial and community activities are of growing concern as the total volume of waste produced continues to increase. The knowledge of the specific composition and characteristics of the waste is an important tool in the correct development of the anaerobic digestion process. The problems derived from the anaerobic digestion of sole substrates with high lipid, carbohydrate or protein content lead to the co-digestion of these substrates with another disposed waste, such as sewage sludge. The kinetic of the anaerobic digestion is especially difficult to explain adequately, although some mathematical models are able to represent the main aspects of a biological system, thus improving understanding of the parameters involved in the process. The aim of this work is to evaluate the experimental biochemical methane potential on the co-digestion of sewage sludge with different solid wastes (grease; spent grain and cow manure) through the implementation of four kinetic models. The co-digestion of grease waste and mixed sludge obtained the best improvements from the sole substrates, with additional positive synergistic effects. The Gompertz model fits the experimental biochemical methane potential to an accuracy of 99%, showing a correlation between the percentage of lipid in the substrates and co-digestions and the period of lag phase. © The Author(s) 2015.

  5. Decomposition of fresh and anaerobically digested plant biomass in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorhead, K.K.; Graetz, D.A.; Reddy, K.R.

    Using water hyacinth (Eichhornia crassipes (Mart.) Solms) for waste water renovation produces biomass that must be disposed of. This biomass may be anaerobically digested to produce CH/sub 4/ or added to soil directly as an amendment. In this study, fresh and anaerobically digested water hyacinth biomass, with either low or high N tissue content, were added to soil to evaluate C and N mineralization characteristics. The plant biomass was labeled with /sup 15/N before digestion. The fresh plant biomass and digested biomass sludge were freeze-dried and ground to pass a 0.84-mm sieve. The materials were thoroughly mixed with a Kindrickmore » fine sand at a rate of 5 g kg/sup -1/ soil and incubated for 90 d at 27/sup 0/C at a moisture content adjusted to 0.01 MPa. Decomposition was evaluated by CO/sub 2/ evolution and /sup 15/N mineralization. After 90 d, approximately 20% of the added C of the digested sludges had evolved as CO/sub 2/ compared to 39 and 50% of the added C of the fresh plant biomass with a low and high N content, respectively. First-order kinetics were used to describe decomposition stages. Mineralization of organic /sup 15/N to /sup 15/NO/sub 3//sup -/-N accounted for 8% of applied N for both digested sludges at 90 d. Nitrogen mineralization accounted for 3 and 33% of the applied organic N for fresh plant biomass with a low and high N content, respectively.« less

  6. An efficient method to improve the production of methane from anaerobic digestion of waste activated sludge.

    PubMed

    Li, Xiaolan; Xu, Xueqin; Huang, Shansong; Zhou, Yun; Jia, Haijiang

    2017-10-01

    Methane production from waste activated sludge (WAS) anaerobic digestion is always low due to slow hydrolysis rate and inappropriate ratio of carbon to nitrogen (C/N). In this work, a novel approach, i.e., co-digestion of WAS and tobacco waste (TW) using ozone pretreatment, to greatly enhance the production of methane is reported. Experimental results showed the optimal C/N and ozone dosage for methane production was 24:1 and 90 mg/g suspended solids, and the corresponding methane production was 203.6 mL/g volatile suspended solids, which was 1.3-fold that in mono-WAS digestion. Further investigation showed the co-digestion of WAS and TW was beneficial to the consumptions of protein and cellulose; also, the presence of ozone enhanced the disruption of organic substrates and production of short chain fatty acids, which provided sufficient digestion substrates for methane generation. Analysis of microbial community structure suggested that members of the phyla Bacteroidetes and Firmicutes were the dominant species when ozone pretreatment was applied. The findings obtained in this work might be of great importance for the treatment of WAS and TW.

  7. Anaerobic Digestion Analysis. Training Module 5.120.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with alkalinity, volatile acids and carbon dioxide determinations for an anaerobic sludge digester. Included are objectives, instructor guides, student handouts and transparency masters. This module considers total and bicarbonate…

  8. Recovery of viruses from field samples of raw, digested, and lagoon-dried sludges*

    PubMed Central

    Sattar, Syed A.; Westwood, J. C. N.

    1979-01-01

    In a 22-month study, viruses were detected in 84% (62/74) of raw, 53% (19/36) of anaerobically digested, and 39% (11/28) of lagoon-dried sludge samples. Lagoon sludge contained detectable viruses (reovirus and enterovirus groups) even after 8 months of retention. Because of such prolonged virus survival in sludge, care must be taken in its disposal or utilization. PMID:311705

  9. Increased biogas production in a wastewater treatment plant by anaerobic co-digestion of fruit and vegetable waste and sewer sludge - a full scale study.

    PubMed

    Park, Nathan D; Thring, Ronald W; Garton, Randy P; Rutherford, Michael P; Helle, Steve S

    2011-01-01

    Anaerobic digestion is a well established technology for the reduction of organic matter and stabilization of wastewater. Biogas, a mixture of methane and carbon dioxide, is produced as a useful by-product of the process. Current solid waste management at the city of Prince George is focused on disposal of waste and not on energy recovery. Co-digestion of fresh fruit and vegetable waste with sewer sludge can improve biogas yield by increasing the load of biodegradable material. A six week full-scale project co-digesting almost 15,000 kg of supermarket waste was completed. Average daily biogas production was found to be significantly higher than in previous years. Digester operation remained stable over the course of the study as indicated by the consistently low volatile acids-to-alkalinity ratio. Undigested organic material was visible in centrifuged sludge suggesting that the waste should have been added to the primary digester to prevent short circuiting and to increase the hydraulic retention time of the freshly added waste.

  10. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge.

    PubMed

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-12-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with (14)C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with (13)C(6)-glucose and (13)C(3)-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with (13)C-glucose and (13)C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with (14)C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high K(m) for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5-10  mM). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta.

  11. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge

    PubMed Central

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-01-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with 14C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with 13C6-glucose and 13C3-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with 13C-glucose and 13C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with 14C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high Km for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5–10 m). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta. PMID:21562600

  12. Anaerobic co-digestion of cyanide containing cassava pulp with pig manure.

    PubMed

    Glanpracha, Naraporn; Annachhatre, Ajit P

    2016-08-01

    Anaerobic co-digestion of cyanide-containing cassava pulp with pig manure was evaluated using laboratory scale mesophilic digester. The digester was operated in a semi-continuous mode with the mixed feedstock having C/N ratio of 35:1. Digester startup was accomplished in 60days with loading of 0.5-1kgVS/m(3)d. Subsequently, the loading to digester was increased step-wise from 2 to 9kgVS/m(3)d. Digester performance was stable at loading between 2 and 6kgVS/m(3)d with an average volatile solid removal and methane yield of 82% and 0.38m(3)/kgVSadded, respectively. However, beyond loading of 7kgVS/m(3)d, solubilization of particulate matter did not take place efficiently. Cyanide present in cassava pulp was successfully degraded indicating that anaerobic sludge in the digester was well acclimatized to cyanide. The results show that cassava pulp can be successfully digested anaerobically with pig manure as co-substrate without any inhibitory effect of cyanide present in the cassava pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Pilot plant study of the effects of quebracho and wattle on anaerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eye, J.D.; Ficker, C.F.

    1982-01-01

    Quebracho and wattle tannin adversely affected the operational control required for the systems as well as CH4 production. The anaerobic organisms however degraded the tannins and the characteristic red color was effectively removed from the supernatant (liquid phase of digested sludge) during digestion.

  14. Structures of microbial communities found in anaerobic batch runs that produce methane from propionic acid--Seeded from full-scale anaerobic digesters above a certain threshold.

    PubMed

    Kim, Woong; Shin, Seung Gu; Han, Gyuseong; Cho, Kyungjin; Hwang, Seokhwan

    2015-11-20

    The volatile fatty acid propionate inhibits anaerobic digestion during organic waste treatments. To examine potential microbial interactions that accelerate propionate oxidation, anaerobic digestion systems seeded with various types of anaerobic sludge were analyzed. Seed samples were collected from 10 different full-scale anaerobic reactors in South Korea. Propionate oxidation was estimated as the methane production rate per gram of propionate used per day. Two domestic sewage sludge showed the highest methane production rate values, 109.1 ± 4.2 and 74.5 ± 8.6 mL CH4/(g propionate ∙ d). A food waste recycling wastewater source exhibited the lowest methane production rate, 33.2 ± 2.6 mL CH4/(g propionate ∙ d). To investigate how the microbial community structure affected propionate oxidation, qualitative molecular analyses were carried out using denaturing gradient gel electrophoresis. Methanosaeta concilii, an aceticlastic methanogen, was detected in most batch runs. Smithella propionica, a unique propionate oxidizer and simultaneous producer of acetate, was found in domestic sewage sludge sources showing the highest methane production rate; in contrast, Desulfobulbus rhabdoformis, a sulfate reducer coupled with the consumption of acetate to be used as a precursor of methane, was observed in food waste recycling wastewater sludge source showing the lowest methane production rate. Thus, we propose that S. propionica, a syntrophic acetate producer using propionate, might cooperate with aceticlastic methanogens for high methane production during anaerobic digestion that included propionate. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Upflow anaerobic sludge blanket reactor--a review.

    PubMed

    Bal, A S; Dhagat, N N

    2001-04-01

    Biological treatment of wastewater basically reduces the pollutant concentration through microbial coagulation and removal of non-settleable organic colloidal solids. Organic matter is biologically stabilized so that no further oxygen demand is exerted by it. The biological treatment requires contact of the biomass with the substrate. Various advances and improvements in anaerobic reactors to achieve variations in contact time and method of contact have resulted in development of in suspended growth systems, attached growth or fixed film systems or combinations thereof. Although anaerobic systems for waste treatment have been used since late 19th century, they were considered to have limited treatment efficiencies and were too slow to serve the needs of a quickly expanding wastewater volume, especially in industrialized and densely populated areas. At present aerobic treatment is the most commonly used process to reduce the organic pollution level of both domestic and industrial wastewaters. Aerobic techniques, such as activated sludge process, trickling filters, oxidation ponds and aerated lagoons, with more or less intense mixing devices, have been successfully installed for domestic wastewater as well as industrial wastewater treatment. Anaerobic digestion systems have undergone modifications in the last two decades, mainly as a result of the energy crisis. Major developments have been made with regard to anaerobic metabolism, physiological interactions among different microbial species, effects of toxic compounds and biomass accumulation. Recent developments however, have demonstrated that anaerobic processes might be an economically attractive alternative for the treatment of different types of industrial wastewaters and in (semi-) tropical areas also for domestic wastewaters. The anaerobic degradation of complex, particulate organic matter has been described as a multistep process of series and parallel reactions. It involves the decomposition of organic and

  16. The effects of anionic and non-ionic surfactant on anaerobic co-digestion of sludge, food wastes and green wastes.

    PubMed

    Sun, Jian; Zhang, Yuchi; Pan, Xiaofang; Zhu, Gefu

    2018-03-05

    Surfactants are widely used and discharged into wastewater treatment plants, which might influence the anaerobic digestion (AD) treatment of municipal waste. In this study, the effects of typical anionic surfactants sodium dodecyl benzene6 sulfonate (SDBS) and non-ionic surfactants APG, on mesophilic anaerobic co-digestion of sludge, food waste, and green waste were investigated. Results indicated that at 5 mg/g, the biogas production was inhibited in SDBS supplemented systems while stimulated in APG-added reactors, with the methane yield of 146.58 L/g VS consumed. At 15 mg/g, the biogas production in both SDBS and APG supplemented reactors was both inhibited. It means the negative or positive effect of APG on AD depends on the dose of APG supplementation. The 16S rRNA gene analysis demonstrated the microbial community structure in the digester was changed due to the addition of surfactant. Bacteroidia significantly increased with the addition of APG and SBDS, while the increase of Clostridia only occurred in APG-added system. The variation of microbial Communities' structure in APG and SDBS-added digesters might give an explanation for the different efficiencies in these two systems. Thus, the effects of surfactants on the efficiency of AD should be considered during the disposal of municipal organic waste.

  17. Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste.

    PubMed

    Bajón Fernández, Y; Soares, A; Villa, R; Vale, P; Cartmell, E

    2014-05-01

    The increasing concentration of carbon dioxide (CO2) in the atmosphere and the stringent greenhouse gases (GHG) reduction targets, require the development of CO2 sequestration technologies applicable for the waste and wastewater sector. This study addressed the reduction of CO2 emissions and enhancement of biogas production associated with CO2 enrichment of anaerobic digesters (ADs). The benefits of CO2 enrichment were examined by injecting CO2 at 0, 0.3, 0.6 and 0.9 M fractions into batch ADs treating food waste or sewage sludge. Daily specific methane (CH4) production increased 11-16% for food waste and 96-138% for sewage sludge over the first 24h. Potential CO2 reductions of 8-34% for sewage sludge and 3-11% for food waste were estimated. The capacity of ADs to utilise additional CO2 was demonstrated, which could provide a potential solution for onsite sequestration of CO2 streams while enhancing renewable energy production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolzonella, David, E-mail: david.bolzonella@univr.it; Cavinato, Cristina, E-mail: cavinato@unive.it; Fatone, Francesco, E-mail: francesco.fatone@univr.it

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 +more » 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and

  19. Identity and diversity of archaeal communities during anaerobic co-digestion of chicken feathers and other animal wastes.

    PubMed

    Xia, Yun; Massé, Daniel I; McAllister, Tim A; Kong, Yunhong; Seviour, Robert; Beaulieu, Carole

    2012-04-01

    Digestion of raw feathers in anaerobic digesters inoculated with adapted swine manure, slaughterhouse sludge or dairy manure was investigated using twelve 42-L anaerobic digesters at 25°C. After 120days 74%, 49% and 40% added feathers were converted to methane in swine manure, dairy manure and slaughterhouse sludge anaerobic digesters respectively. 16S rRNA gene clone library analyses identified twenty-one operational taxonomic units containing clone sequences from 5 genera, 5 families and 2 phyla of members of the Archaea from 158 sequenced clones. Fluorescence insitu hybridization revealed that methanogens from the Methanomicrobiales, Methanosarcinales and Methanobacteriales constituted a major fraction (>78%) of these Archaea. A high correlation was seen between the distribution of functional archaeal groups and the NH(3)-N levels of digester mixed liquors. The compositions of archaeal communities fed different substrates were statistically significantly different (P<0.05). Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Anaerobic stabilization of waste activated sludge at different temperatures and solid retention times: Evaluation by sludge reduction, soluble chemical oxygen demand release and dehydration capability.

    PubMed

    Li, Xiyao; Peng, Yongzhen; He, Yuelan; Wang, Shuying; Guo, Siyu; Li, Lukai

    2017-03-01

    Anaerobic treatment is the most widely used method of waste activated sludge (WAS) stabilization. Using a semi-continuous stirring tank with condensed WAS, we investigated effects of decreasing the solid retention time (SRT) from 32days to 6.4days on sludge reduction, soluble chemical oxygen demand (SCOD) release and dehydration capability, along with anaerobic digestion operated at medium temperature (MT-AD) or anaerobic digestion operated at room temperature (RT-AD). Results showed that effects of temperature on SCOD release were greater at SRT of 32d and 6.4d. When SRT was less than 8d, total solids (TS), volatile solids (VS) and capillary suction time (CST) did not change significantly. CST was lowest at SRT of 10.7days, indicating best condition for sludge dehydration. Principal component analysis (PCA) showed that the most optimum SRT was higher than 10.7d both in MT-AD or RT-AD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Combining high-rate aerobic wastewater treatment with anaerobic digestion of waste activated sludge at a pulp and paper mill.

    PubMed

    Magnusson, Björn; Ekstrand, Eva-Maria; Karlsson, Anna; Ejlertsson, Jörgen

    2018-05-01

    The activated sludge process within the pulp and paper industry is generally run to minimize the production of waste activated sludge (WAS), leading to high electricity costs from aeration and relatively large basin volumes. In this study, a pilot-scale activated sludge process was run to evaluate the concept of treating the wastewater at high rate with a low sludge age. Two 150 L containers were used, one for aeration and one for sedimentation and sludge return. The hydraulic retention time was decreased from 24 hours to 7 hours, and the sludge age was lowered from 12 days to 2-4 days. The methane potential of the WAS was evaluated using batch tests, as well as continuous anaerobic digestion (AD) in 4 L reactors in mesophilic and thermophilic conditions. Wastewater treatment capacity was increased almost four-fold at maintained degradation efficiency. The lower sludge age greatly improved the methane potential of the WAS in batch tests, reaching 170 NmL CH 4 /g VS at a sludge age of 2 days. In addition, the continuous AD showed a higher methane production at thermophilic conditions. Thus, the combination of high-rate wastewater treatment and AD of WAS is a promising option for the pulp and paper industry.

  2. Effect of ultrasonic and ozone pre-treatments on pharmaceutical waste activated sludge's solubilisation, reduction, anaerobic biodegradability and acute biological toxicity.

    PubMed

    Pei, Jin; Yao, Hong; Wang, Hui; Shan, Dan; Jiang, Yichen; Ma, Lanqianya; Yu, Xiaohua

    2015-09-01

    Ultrasonic and ozone pre-treatment technologies were employed in this study to improve the anaerobic digestion efficiency of pharmaceutical waste activated sludge. The sludge solubilisation achieved 30.01% (150,000 kJ/kg TS) and 28.10% (0.1g O3/g TS) after ultrasonic treatment and ozone treatment. The anaerobic biodegradability after ultrasonic treatment was higher compared to ozonation due to the higher cumulative methane volume observed after 6 days (249 ml vs 190 ml). The ozonated sludge released the highest concentration of Cu(2+) into the liquid phase (6.640 mg L(-1)) compared to 0.530 mg/L for untreated sludge and 0.991 mg/L for sonicated sludge. The acute toxicity test measured by luminescent bacteria showed that anaerobic digestion could degrade toxic compounds and result in a reduction in toxicity. The main mechanism of action led to some differences in the treated sludge exhibiting higher potential for methane production from pharmaceutical waste sludge with ultrasonic treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio.

    PubMed

    Dai, Xiaohu; Li, Xiaoshuai; Zhang, Dong; Chen, Yinguang; Dai, Lingling

    2016-09-01

    It is necessary to find an appropriate strategy to simultaneously enhance the methane production and methane content in biogas from waste activated sludge (WAS) and grass co-digestion. In this study an efficient strategy, i.e., adjusting the initial pH 12 and C/N ratio 17/1, for simultaneous enhancement of methane production and methane content in biogas from WAS and perennial ryegrass co-digestion was reported. Experimental results indicated that the maximal methane production was 310mL/gVSadd at the optimum conditions after 30-d anaerobic digestion, which was, respectively, about 1.5- and 3.8-fold of the sole WAS and sole perennial ryegrass anaerobic digestion. Meanwhile, the methane content in biogas was about 74%, which was much higher than that of sole WAS (64%) or sole perennial ryegrass (54%) anaerobic digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The use of the core-shell structure of zero-valent iron nanoparticles (NZVI) for long-term removal of sulphide in sludge during anaerobic digestion.

    PubMed

    Su, Lianghu; Zhen, Guangyin; Zhang, Longjiang; Zhao, Youcai; Niu, Dongjie; Chai, Xiaoli

    2015-12-01

    A core-shell structure results in zero-valent iron nanoparticles (NZVI) with manifold functional properties. In this study, the long-term effects of NZVI on hydrogen sulphide removal in an anaerobic sludge digester were investigated. Within 20 days, the average hydrogen sulphide content in the biogas was successfully reduced from 300 (or 3620 of sulphate-rich sludge) mg Nm(-3) to 6.1 (121), 0.9 (3.3) and 0.5 (1.3) mg Nm(-3) in the presence of 0.05, 0.10 and 0.20% (wt) NZVI, respectively. Methane yield was enhanced at the low NZVI dose (0.05-0.10%) but decreased at the elevated dose (0.20%). Methane production and volatile solid degradation analyses implied that doses of 0.5-0.10% NZVI could accelerate sludge stabilization during anaerobic digestion. The phosphorus fractionation profile suggested that methane production could be inhibited at the elevated NZVI dose, partly due to the limited availability of soluble phosphorus due to the immobilization of bioavailable-P through the formation of vivianite. An analysis of the reducible inorganic sulphur species revealed that the elimination of hydrogen sulphide occurred via the reaction between hydrogen sulphide and the oxide shell of NZVI, which mainly formed FeS and some FeS2 and S(0).

  5. Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge.

    PubMed

    Suanon, Fidèle; Sun, Qian; Mama, Daouda; Li, Jiangwei; Dimon, Biaou; Yu, Chang-Ping

    2016-01-01

    Anaerobic digestion (AD) is one of the most widely used processes to stabilize waste sewage sludge and produce biogas renewable energy. In this study, two different iron nanoparticles [nanoscale zero-valent iron (nZVI) and magnetite (Fe3O4)] were used in the mesophilic AD processes (37 ± 1 °C) to improve biogas production. In addition, changes of heavy metal (Cd, Co, Cu, Zn, Ni and Cr) speciation during AD of sludge with and without iron nanoparticles have been investigated. Concentrations of metals in the initial sludge were as follows: 63.1, 73.4, 1102.2, 2060.3, 483.9 and 604.1 mg kg(-1) (dry sludge basis) for Cd, Co, Cu, Zn, Ni and Cr, respectively. Sequential fractionation showed that metals were predominantly bonded to organic matter and carbonates in the initial sludge. Compared with AD without iron nanoparticles, the application of iron nanoparticles (at dose of 0.5% in this study) showed positive impact not only on biogas production, but also on improvement of metals stabilization in the digestate. Metals were found concentrated in Fe-Mn bound and residual fractions and little was accumulated in the liquid digestate and most mobile fractions of solid digestate (water soluble, exchangeable and carbonates bound). Therefore, iron nanoparticles when properly used, could improve not only biogas yield, but also regulate and control the mobilization of metals during AD process. However, our study also observed that iron nanoparticles could promote the immobilization of phosphorus within the sludge during AD, and more research is needed to fully address the mechanism behind this phenomenon and the impact on future phosphorus reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Assessment of hydrogen metabolism in commercial anaerobic digesters.

    PubMed

    Kern, Tobias; Theiss, Juliane; Röske, Kerstin; Rother, Michael

    2016-05-01

    Degradation of biomass in the absence of exogenous electron acceptors via anaerobic digestion involves a syntrophic association of a plethora of anaerobic microorganisms. The commercial application of this process is the large-scale production of biogas from renewable feedstock as an alternative to fossil fuels. After hydrolysis of polymers, monomers are fermented to short-chain fatty acids and alcohols, which are further oxidized to acetate. Carbon dioxide, molecular hydrogen (H2), and acetate generated during the process are converted to methane by methanogenic archaea. Since many of the metabolic pathways as well as the syntrophic interactions and dependencies during anaerobic digestion involve formation, utilization, or transfer of H2, its metabolism and the methanogenic population were assessed in various samples from three commercial biogas plants. Addition of H2 significantly increased the rate of methane formation, which suggested that hydrogenotrophic methanogenesis is not a rate-limiting step during biogas formation. Methanoculleus and Methanosarcina appeared to numerically dominate the archaeal population of the three digesters, but their proportion and the Bacteria-to-Archaea ratio did not correlate with the methane productivity. Instead, hydrogenase activity in cell-free extracts from digester sludge correlated with methane productivity in a positive fashion. Since most microorganisms involved in biogas formation contain this activity, it approximates the overall anaerobic metabolic activity and may, thus, be suitable for monitoring biogas reactor performance.

  7. Fate and toxicity of aircraft deicing fluid additives through anaerobic digestion.

    PubMed

    Gruden, C L; Dow, S M; Hernandez, M T

    2001-01-01

    Benzotriazole derivatives are widely used corrosion inhibitors and their fate during wastewater treatment processes is unknown. The purpose of this research was to study the toxic effects and fate of the two commercially significant benzotriazole isomers used in aircraft deicing fluids (4-, and 5-, methylbenzotriazole [MeBT]) during anaerobic digestion. Experiments were executed in microcosms using mesophilic anaerobic biomass co-digesting wastewater sludge and propylene glycol. Sorption of MeBT to digesting solids could be approximated with a Freundlich model, and no anaerobic breakdown of either MeBT isomer was detected. Digesters fed more than 300 mg/L MeBT responded with a significant decrease in methanogenic microbial activity and volatile solids production and a concomitant increase in accumulation of volatile fatty acids. Direct microscopic measurements using fluorescent phylogenetic probes applied to digesting biomass revealed that members of both Archaea and Bacteria domains were sensitive to MeBT. Granular activated carbon (GAC) (volatile solids: GAC = 10%) reduced the apparent toxic effects of MeBT; GAC addition nearly restored the baseline activity of digesters fed MeBT (500 to 1000 mg/L).

  8. Anaerobic Digestion and its Applications

    EPA Science Inventory

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  9. Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Jia; Fan, Hao-Xiang; Dai, Xiao-Hu; Yuan, Shi-Jie

    2018-04-01

    Digested sludge, as the main by-product of the sewage sludge anaerobic digestion process, still contains considerable organic compounds. In this protocol, we report a facile method for preparing digested sludge-derived self-doped porous carbon material for high-performance supercapacitor electrodes via a sustainable pyrolysis/activation process. The obtained digested sludge-derived carbon material (HPDSC) exhibits versatile O-, N-doped hierarchical porous framework, high specific surface area (2103.6 m2 g-1) and partial graphitization phase, which can facilitate ion transport, provide more storage sites for electrolyte ions and enhance the conductivity of active electrode materials. The HPDSC-based supercapacitor electrodes show favourable energy storage performance, with a specific capacitance of 245 F g-1 at 1.0 A g-1 in 0.5 M Na2SO4; outstanding cycling stability, with 98.4% capacitance retention after 2000 cycles; and good rate performance (211 F g-1 at 11 A g-1). This work provides a unique self-doped three-dimensional hierarchical porous carbon material with a favourable charge storage capacity and at the same time finds a high value-added and environment-friendly strategy for disposal and recycling of digested sludge.

  10. Implementation of the anaerobic digestion model (ADM1) in the PHREEQC chemistry engine.

    PubMed

    Huber, Patrick; Neyret, Christophe; Fourest, Eric

    2017-09-01

    Anaerobic digestion is state-of-the-art technology to treat sludge and effluents from various industries. Modelling and optimisation of digestion operations can be advantageously performed using the anaerobic digestion model (ADM1) from the International Water Association. The ADM1, however, lacks a proper physico-chemical framework, which makes it difficult to consider wastewater of complex ionic composition and supersaturation phenomena. In this work, we present a direct implementation of the ADM1 within the PHREEQC chemistry engine. This makes it possible to handle ionic strength effects and ion-pairing. Thus, multiple mineral precipitation phenomena can be handled while resolving the ADM1. All these features can be accessed with very little programming effort, while retaining the full power and flexibility of PHREEQC. The distributed PHREEQC code can be easily interfaced with process simulation software for future plant-wide simulation of both wastewater and sludge treatment.

  11. Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology.

    PubMed

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2013-09-17

    Syngas is produced by thermal gasification of both nonrenewable and renewable sources including biomass and coal, and it consists mainly of CO, CO2, and H2. In this paper we aim to bioconvert CO in the syngas to CH4. A novel technology for simultaneous sewage sludge treatment and CO biomethanation in an anaerobic reactor was presented. Batch experiments showed that CO was inhibitory to methanogens, but not to bacteria, at CO partial pressure between 0.25 and 1 atm under thermophilic conditions. During anaerobic digestion of sewage sludge supplemented with CO added through a hollow fiber membrane (HFM) module in continuous thermophilic reactors, CO did not inhibit the process even at a pressure as high as 1.58 atm inside the HFM, due to the low dissolved CO concentration in the liquid. Complete consumption of CO was achieved with CO gas retention time of 0.2 d. Results from high-throughput sequencing analysis showed clear differences of the microbial community structures between the samples from liquid and biofilm on the HFM in the reactor with CO addition. Species close to Methanosarcina barkeri and Methanothermobacter thermautotrophicus were the two main archaeal species involved in CO biomethanation. However, the two species were distributed differently in the liquid phase and in the biofilm. Although the carboxidotrophic activities test showed that CO was converted by both archaea and bacteria, the bacterial species responsible for CO conversion are unknown.

  12. Microthrix parvicella and Gordona amarae in mesophilic and thermophilic anaerobic digestion systems.

    PubMed

    Marneri, Matina; Mamais, Daniel; Koutsiouki, Efi

    2009-04-14

    The scope of the study presented in this paper is to determine the fate of the filamentous bacteria Gordona amarae and Microthrix parvicella in anaerobic digestion operating under mesophilic and thermophilic conditions. In order to detect and quantify foaming bacteria in the anaerobic digesters, a fluorescent in situ hybridization (FISH) method was developed and applied. This paper presents the results of a laboratory-scale study that involved the operation of four lab-scale anaerobic digestion systems operating in the mesophilic (35 degrees C) and thermophilic (55 degrees C) temperature ranges at 20 days' detention time. According to the FISH counts of G. amarae and M. parvicella, it appears that thermophilic conditions resulted in a higher destruction of both filamentous bacteria, averaging approximately 97% and 94% for the single thermophilic digester and the dual thermophilic/mesophilic system, respectively. Within the context of this study, the overall performance of the four different anaerobic digestion systems was evaluated in terms of biogas production per mass of volatile solids destroyed, COD destruction, sludge dewaterability and foaming characteristics. The dual stage systems used in this study outperformed the single stage digesters.

  13. Long-term effect of the antibiotic cefalexin on methane production during waste activated sludge anaerobic digestion.

    PubMed

    Lu, Xueqin; Zhen, Guangyin; Liu, Yuan; Hojo, Toshimasa; Estrada, Adriana Ledezma; Li, Yu-You

    2014-10-01

    Long-term experiments herein were conducted to investigate the effect of cefalexin (CLX) on methane production during waste activated sludge (WAS) anaerobic digestion. CLX exhibited a considerable inhibition in methane production during the initial 25 days while the negative effect attenuated subsequently and methane production recovered depending on CLX doses used (600 and 1000 mg/L). The highest methane yield reached 450 mL at 1000 mg-CLX/L after 157 days of digestion, 63.8% higher than CLX-free one. Stimulated excretion of extracellular polymeric substances (EPS) by CLX served as microbial protecting layers, creating a suitable environment for microbes' growth and fermentation. Further examination via ultraviolet visible (UV-Vis) spectra also verified the elevated slime EPS, LB-EPS and TB-EPS indicated by UV-254 in the presence of CLX. Unlike the commonly accepted adverse effect, this study demonstrated the beneficial role of CLX in methane production, providing new insights into its true environmental impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Evaluation of nano zero valent iron effects on fermentation of municipal anaerobic sludge and inducing biogas production

    NASA Astrophysics Data System (ADS)

    Amen, Tareq W. M.; Eljamal, Osama; Khalil, Ahmed M. E.; Matsunaga, Nobuhiro

    2017-05-01

    The application of nano size materials on wastewater is going extensive because its high reactivity compared with other materials. As a result, numerous research studies investigated the effectiveness of dosing nano zero valent iron (nZVI) or micro zero valent iron (mZVI) on anaerobic digestion (AD) of sludge and production of biogas as promising renewable energy but inconsistent outcomes have appeared. In this paper, different dosing concentrations of nZVI were applied on anaerobic activated municipal sludge to examine the impact of nZVI on sludge fermentation, biogas generation, and methane (CH4) content stimulation. The results showed that addition 250 mg/L nZVI nanoparticles could enhance 25.23% biogas production and the methane content reached 94.05% after one week of digestion compared with 62.67% without adding iron nanoparticles.

  15. Effects of co-inoculating rice straw with ruminal microbiota and anaerobic sludge: digestion performance and spatial distribution of microbial communities.

    PubMed

    Deng, Yuying; Huang, Zhenxing; Zhao, Mingxing; Ruan, Wenquan; Miao, Hengfeng; Ren, Hongyan

    2017-07-01

    Ruminal microbiota (RM) were co-inoculated with anaerobic sludge (AS) at different ratios to study the digestion of rice straw in batch experiments. The CH 4 yield reached 273.64 mL/g volatile solid (VS) at a co-inoculum ratio of 1:1. The xylanase and cellulase activities were 198.88-212.88 and 24.51-29.08 U/mL in co-inoculated samples, respectively, and were significantly different compared to the results for single inoculum (p < 0.05). Higher ratios of AS enhanced acetoclastic methanogenesis, and propionate accumulation could be the main reason for the longer lag phase observed in samples with a higher RM ratio. The microbial compositions were clearly altered after digestion. Fibrobacter, Ruminococcus and Butyrivibrio from the rumen did not settle in the co-inoculated system, whereas Clostridiales members became the main polysaccharide degraders. Microbial interactions involving hydrolytic bacteria and acetoclastic methanogens in the residue were considered to be significant for hydrolysis activities and methane production. Syntrophy involving propionate oxidizers with associated methanogens occurred in the liquid phase. Our findings provide a better understanding of the anaerobic digestion of rice straw that is driven by specific microbial populations.

  16. Methanosarcinaceae and Acetate-Oxidizing Pathways Dominate in High-Rate Thermophilic Anaerobic Digestion of Waste-Activated Sludge

    PubMed Central

    Ho, Dang P.; Jensen, Paul D.

    2013-01-01

    This study investigated the process of high-rate, high-temperature methanogenesis to enable very-high-volume loading during anaerobic digestion of waste-activated sludge. Reducing the hydraulic retention time (HRT) from 15 to 20 days in mesophilic digestion down to 3 days was achievable at a thermophilic temperature (55°C) with stable digester performance and methanogenic activity. A volatile solids (VS) destruction efficiency of 33 to 35% was achieved on waste-activated sludge, comparable to that obtained via mesophilic processes with low organic acid levels (<200 mg/liter chemical oxygen demand [COD]). Methane yield (VS basis) was 150 to 180 liters of CH4/kg of VSadded. According to 16S rRNA pyrotag sequencing and fluorescence in situ hybridization (FISH), the methanogenic community was dominated by members of the Methanosarcinaceae, which have a high level of metabolic capability, including acetoclastic and hydrogenotrophic methanogenesis. Loss of function at an HRT of 2 days was accompanied by a loss of the methanogens, according to pyrotag sequencing. The two acetate conversion pathways, namely, acetoclastic methanogenesis and syntrophic acetate oxidation, were quantified by stable carbon isotope ratio mass spectrometry. The results showed that the majority of methane was generated by nonacetoclastic pathways, both in the reactors and in off-line batch tests, confirming that syntrophic acetate oxidation is a key pathway at elevated temperatures. The proportion of methane due to acetate cleavage increased later in the batch, and it is likely that stable oxidation in the continuous reactor was maintained by application of the consistently low retention time. PMID:23956388

  17. Effect of low solids retention time and focused pulsed pre-treatment on anaerobic digestion of waste activated sludge.

    PubMed

    Lee, Il-Su; Rittmann, Bruce E

    2011-02-01

    The interacting effects of Focused Pulsed (FP) treatment and solids retention time (SRT) were evaluated in laboratory-scale digesters operated at SRTs of 2-20 days. Anaerobic digestion and methanogenesis of waste activated sludge (WAS) were stable for SRT ≥ 5 days, but the effluent soluble organic compounds increased significantly for SRT=2 days due to a combination of faster hydrolysis kinetics and washout of methanogens. FP treatment increased the CH(4) production rate and TCOD removal efficiency by up to 33% and 18%, respectively, at a SRT of 20 days. These effects were the result of an increase in the hydrolysis rate, since the concentrations of soluble components remained low for SRT ≥ 5 days. Alternately, FP pre-treatment of WAS allowed the same conversion of TCOD to CH(4) with a smaller SRT and digester size: e.g., 40% size savings with a CH(4) conversion of 0.23 g CH(4)-COD/g COD(in). Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu Dongjie, E-mail: niudongjie@tongji.edu.cn; UNEP-Tongji Institute of Environment for Sustainable Development, 1239 Siping Road, Shanghai 200092; Huang Hui

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the followingmore » years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.« less

  19. Hydroxylation and hydrolysis: two main metabolic ways of spiramycin I in anaerobic digestion.

    PubMed

    Zhu, Pei; Chen, Daijie; Liu, Wenbin; Zhang, Jianbin; Shao, Lei; Li, Ji-an; Chu, Ju

    2014-02-01

    The anaerobic degradation behaviors of five macrolides including spiramycin I, II, III, midecamycin and josamycin by sludge were investigated. Within 32days, 95% of spiramycin I, II or III was degraded, while the remove rate of midecamycin or josamycin was 75%. SPM I degradation was much higher in nutrition supplementation than that just in sludge. The degradation products and processes of spiramycin I were further characterized. Three molecules, designated P-1, P-2 and P-3 according to their order of occurrence, were obtained and purified. Structural determination was then performed by nuclear magnetic resonance and MS/MS spectra, and data indicated that hydroxylation and hydrolysis were main reactions during the anaerobic digestion of spiramycin I. P-1 is the intermediate of hydroxylation, and P-2 is the intermediate of hydrolysis. P-3 is the final product of the both reaction. This study revealed a hydroxylation and hydrolysis mechanism of macrolide in anaerobic digestion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Combined mesophilic anaerobic and thermophilic aerobic digestion process for high-strength food wastewater to increase removal efficiency and reduce sludge discharge.

    PubMed

    Jang, H M; Park, S K; Ha, J H; Park, J M

    2014-01-01

    In this study, a process that combines the mesophilic anaerobic digestion (MAD) process with thermophilic aerobic digestion (TAD) for high-strength food wastewater (FWW) treatment was developed to examine the removal of organic matter and methane production. All effluent discharged from the MAD process was separated into solid and liquid portions. The liquid part was discarded and the sludge part was passed to the TAD process for further degradation. Then, the digested sludge from the TAD process was recycled back to the MAD unit to achieve low sludge discharge from the combined process. The reactor combination was operated in two phases: during Phase I, 40 d of total hydraulic retention time (HRT) was applied; during Phase II, 20 d was applied. HRT of the TAD process was fixed at 5 d. For a comparison, a control process (single-stage MAD) was operated with the same HRTs of the combined process. Our results indicated that the combined process showed over 90% total solids, volatile solids and chemical oxygen demand removal efficiencies. In addition, the combined process showed a significantly higher methane production rate than that of the control process. Consequently, the experimental data demonstrated that the combined MAD-TAD process was successfully employed for high-strength FWW treatment with highly efficient organic matter reduction and methane production.

  1. Influence of thermal hydrolysis pretreatment on organic transformation characteristics of high solid anaerobic digestion.

    PubMed

    Han, Yun; Zhuo, Yang; Peng, Dangcong; Yao, Qian; Li, Huijuan; Qu, Qiliang

    2017-11-01

    The study evaluated the influence of thermal hydrolysis pretreatment (THP) on anaerobic digestion (AD) ability of high solid sludge. The transformation characteristics of organics during the THP+AD process of dewatering sludge from wastewater treatment plant was investigated using a lab-scale THP reactor and four anaerobic digesters. The reduction efficiency of volatile suspended solids using THP+AD exceeded 49%. The acceleration of biogas production during AD was due to the enhancement of protein hydrolysis and acidogenesis by THP. THP had only minimal influence on the improvement of carbohydrate acidogenesis. The hydrolysis of poly phosphates was likely the main reaction of phosphorus transformation. Biochemical generation of sulfide and ammonia nitrogen occurred during the acidogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    PubMed

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.

  3. Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste.

    PubMed

    Liu, Chuanyang; Li, Huan; Zhang, Yuyao; Liu, Can

    2016-11-01

    Anaerobic co-digestion of sewage sludge and food waste was tested at two different total solid (TS) concentrations. In the low-solids group with TS 4.8%, the biogas production increased linearly as the ratio of food waste in substrate increased from 0 to 100%, but no synergetic effect was found between the two substrates. Moreover, the additive food waste resulted in the accumulation of volatile fatty acids and decelerated biogas production. Thus, the blend ratio of food waste should be lower than 50%. While in the high-solids group with TS 14%, the weak alkaline environment with pH 7.5-8.5 avoided excessive acidification but high concentration of free ammonia was a potential risk. However, good synergetic effect was found between the two substrates because the added food waste improved mass transfer in sludge cake. Thus, 50% was recommended as the optimum ratio of food waste in substrate because of the best synergetic effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sludge stabilization through aerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, R.B.; Smith, D.G.; Bennett, E.R.

    1979-10-01

    The aerobic digestion process with certain modifications is evaluated as an alternative for sludge processing capable of developing a product with characteristics required for land application. Environmental conditions, including temperature, solids concentration, and digestion time, that affect the aerobic digestion of a mixed primary sludge-trickling filter humus are investigated. Variations in these parameters that influence the characteristics of digested sludge are determined, and the parameters are optimized to: provide the maximum rate of volatile solids reduction; develop a stable, nonodorous product sludge; and provide the maximum rate of oxidation of the nitrogenous material present in the feed sludge. (3 diagrams,more » 9 graphs, 15 references, 3 tables)« less

  5. Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge.

    PubMed

    Ebenezer, A Vimala; Kaliappan, S; Adish Kumar, S; Yeom, Ick-Tae; Banu, J Rajesh

    2015-06-01

    In the present study, the potential benefits of deflocculation on microwave pretreatment of waste activated sludge were investigated. Deflocculation in the absence of cell lysis was achieved through the removal of extra polymeric substances (EPS) by sodium citrate (0.1g sodium citrate/g suspended solids), and DNA was used as a marker for monitoring cell lysis. Subsequent microwave pretreatment yielded a chemical oxygen demand (COD) solubilisation of 31% and 21%, suspended solids (SS) reduction of 37% and 22%, for deflocculated and flocculated sludge, respectively, with energy input of 14,000kJ/kg TS. When microwave pretreated sludge was subjected to anaerobic fermentation, greater accumulation of volatile fatty acid (860mg/L) was noticed in deflocculated sludge, indicating better hydrolysis. Among the samples subjected to BMP (Biochemical methane potential test), deflocculated microwave pretreated sludge showed better amenability towards anaerobic digestion with high methane production potential of 0.615L (gVS)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Biogas production from anaerobic digestion of food waste and relevant air quality implications.

    PubMed

    Kuo, Jeff; Dow, Jason

    2017-09-01

    Biopower can diversify energy supply and improve energy resiliency. Increases in biopower production from sustainable biomass can provide many economic and environmental benefits. For example, increasing biogas production through anaerobic digestion of food waste would increase the use of renewable fuels throughout California and add to its renewables portfolio. Although a biopower project will produce renewable energy, the process of producing bioenergy should harmonize with the goal of protecting public health. Meeting air emission requirements is paramount to the successful implementation of any biopower project. A case study was conducted by collecting field data from a wastewater treatment plant that employs anaerobic codigestion of fats, oils, and grease (FOG), food waste, and wastewater sludge, and also uses an internal combustion (IC) engine to generate biopower using the biogas. This research project generated scientific information on (a) quality and quantity of biogas from anaerobic codigestion of food waste and municipal wastewater sludge, (b) levels of contaminants in raw biogas that may affect beneficial uses of the biogas, (c) removal of the contaminants by the biogas conditioning systems, (d) emissions of NO x , SO 2 , CO, CO 2 , and methane, and (e) types and levels of air toxics present in the exhausts of the IC engine fueled by the biogas. The information is valuable to those who consider similar operations (i.e., co-digestion of food waste with municipal wastewater sludge and power generation using the produced biogas) and to support rulemaking decisions with regards to air quality issues for such applications. Full-scale operation of anaerobic codigestion of food waste with municipal sludge is viable, but it is still new. There is a lack of readily available scientific information on the quality of raw biogas, as well as on potential emissions from power generation using this biogas. This research developed scientific information with regard to

  7. Process performance assessment of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment.

    PubMed

    Neumann, Patricio; Barriga, Felipe; Álvarez, Claudia; González, Zenón; Vidal, Gladys

    2018-03-15

    The aim of this study was to evaluate the performance and digestate quality of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment. Both stages of pre-treatment contributed to chemical oxygen demand (COD) solubilization, with an overall factor of 11.4 ± 2.2%. Pre-treatment led to 19.1, 24.0 and 29.9% increased methane yields at 30, 15 and 7.5 days solid retention times (SRT), respectively, without affecting process stability or accumulation of intermediates. Pre-treatment decreased up to 4.2% water recovery from the digestate, but SRT was a more relevant factor controlling dewatering. Advanced digestion showed 2.4-3.1 and 1.5 logarithmic removals of coliforms and coliphages, respectively, and up to a 58% increase in the concentration of inorganics in the digestate solids compared to conventional digestion. The COD balance of the process showed that the observed increase in methane production was proportional to the pre-treatment solubilization efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    PubMed

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  9. Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode.

    PubMed

    Zhang, Jia-Jia; Fan, Hao-Xiang; Dai, Xiao-Hu; Yuan, Shi-Jie

    2018-04-01

    Digested sludge, as the main by-product of the sewage sludge anaerobic digestion process, still contains considerable organic compounds. In this protocol, we report a facile method for preparing digested sludge-derived self-doped porous carbon material for high-performance supercapacitor electrodes via a sustainable pyrolysis/activation process. The obtained digested sludge-derived carbon material (HPDSC) exhibits versatile O-, N-doped hierarchical porous framework, high specific surface area (2103.6 m 2  g -1 ) and partial graphitization phase, which can facilitate ion transport, provide more storage sites for electrolyte ions and enhance the conductivity of active electrode materials. The HPDSC-based supercapacitor electrodes show favourable energy storage performance, with a specific capacitance of 245 F g -1 at 1.0 A g -1 in 0.5 M Na 2 SO 4 ; outstanding cycling stability, with 98.4% capacitance retention after 2000 cycles; and good rate performance (211 F g -1 at 11 A g -1 ). This work provides a unique self-doped three-dimensional hierarchical porous carbon material with a favourable charge storage capacity and at the same time finds a high value-added and environment-friendly strategy for disposal and recycling of digested sludge.

  10. Composting of sewage sludge with solid fraction of digested pulp from agricultural biogas plant

    NASA Astrophysics Data System (ADS)

    Czekała, Wojciech; Dach, Jacek; Przybył, Jacek; Mazurwiekiwcz, Jakub; Janczak, Damian; Lewicki, Andrzej; Smurzyńska, Anna; Kozłowski, Kamil

    2018-02-01

    Sewage sludge management is an important element of environmental protection. Composting and anaerobic digestion are the biological conversion methods for sewage sludge management. Mass and volume reduction is a result of a properly composted process. Solid fraction of digested pulp can be use as co-substrate, because it is good structural material. The aim of the study was to determine the possibility of composting sewage sludge with a solid fraction of digestate. The compost mix consisted of 25 kilograms of sewage sludge and 20 kilograms solid fraction of digestate in fresh mass. The experiment was carried out in laboratory conditions. Bioreactors of 165 dm3 volume were used. The experiment included two stages. Stage I took place in bioreactors and lasted until the cooling phase of the compost was complete. Stage II included compost maturation for a period of eight months (to 287 day of composting). The reduction of mass obtained at the end of Stage I amounted 30.2%. At the end of Stage II, it was 86.7% relative to the initial weight of the compost. The maximum value of temperature was 75.1°C. Studies have shown that sludge with a solid fraction of digestate can be a suitable substrate for composting with sewage sludge.

  11. Predicting the degradability of waste activated sludge.

    PubMed

    Jones, Richard; Parker, Wayne; Zhu, Henry; Houweling, Dwight; Murthy, Sudhir

    2009-08-01

    The objective of this study was to identify methods for estimating anaerobic digestibility of waste activated sludge (WAS). The WAS streams were generated in three sequencing batch reactors (SBRs) treating municipal wastewater. The wastewater and WAS properties were initially determined through simulation of SBR operation with BioWin (EnviroSim Associates Ltd., Flamborough, Ontario, Canada). Samples of WAS from the SBRs were subsequently characterized through respirometry and batch anaerobic digestion. Respirometry was an effective tool for characterizing the active fraction of WAS and could be a suitable technique for determining sludge composition for input to anaerobic models. Anaerobic digestion of the WAS revealed decreasing methane production and lower chemical oxygen demand removals as the SRT of the sludge increased. BioWin was capable of accurately describing the digestion of the WAS samples for typical digester SRTs. For extended digestion times (i.e., greater than 30 days), some degradation of the endogenous decay products was assumed to achieve accurate simulations for all sludge SRTs.

  12. Inoculum selection is crucial to ensure operational stability in anaerobic digestion.

    PubMed

    De Vrieze, Jo; Gildemyn, Sylvia; Vilchez-Vargas, Ramiro; Jáuregui, Ruy; Pieper, Dietmar H; Verstraete, Willy; Boon, Nico

    2015-01-01

    Anaerobic digestion is considered a key technology for the future bio-based economy. The microbial consortium carrying out the anaerobic digestion process is quite complex, and its exact role in terms of "elasticity", i.e., the ability to rapidly adapt to changing conditions, is still unknown. In this study, the role of the initial microbial community in terms of operational stability and stress tolerance was evaluated during a 175-day experiment. Five different inocula from stable industrial anaerobic digesters were fed a mixture of waste activated sludge and glycerol. Increasing ammonium pulses were applied to evaluate stability and stress tolerance. A different response in terms of start-up and ammonium tolerance was observed among the different inocula. Methanosaetaceae were the dominant acetoclastic methanogens, yet, Methanosarcinaceae increased in abundance at elevated ammonium concentrations. A shift from a Firmicutes to a Proteobacteria dominated bacterial community was observed in failing digesters. Methane production was strongly positively correlated with Methanosaetaceae, but also with Bacteria related to Anaerolinaceae, Clostridiales, and Alphaproteobacteria. Volatile fatty acids were strongly positively correlated with Betaproteobacteria and Bacteroidetes, yet ammonium concentration only with Bacteroidetes. Overall, these results indicate the importance of inoculum selection to ensure stable operation and stress tolerance in anaerobic digestion.

  13. Comparison of ozone and thermal hydrolysis combined with anaerobic digestion for municipal and pharmaceutical waste sludge with tetracycline resistance genes.

    PubMed

    Pei, Jin; Yao, Hong; Wang, Hui; Ren, Jia; Yu, Xiaohua

    2016-08-01

    Biosolids from wastewater treatment plant (WWTP) are environmental reservoirs of antibiotic resistance genes, which attract great concerns on their efficient treatments. Anaerobic digestion (AD) is widely used for sewage sludge treatment but its effectiveness is limited due to the slow hydrolysis. Ozone and thermal hydrolysis pre-treatment were employed to improve AD efficiency and reduce antibiotic-resistant genes in municipal and pharmaceutical waste sludge (MWS and PWS, respectively) in this study. Sludge solubilization achieved 15.75-25.09% and 14.85-33.92% after ozone and thermal hydrolysis, respectively. Both pre-treatments improved cumulative methane production and the enhancements were greater on PWS than MWS. Five tetracycline-resistant genes (tet(A), tet(G), tet(Q), tet(W), tet(X)) and one mobile element (intI1) were qPCR to assess pre-treatments. AD of pre-treated sludge reduced more tet genes than raw sludge for both ozonation and thermal hydrolysis in PWS and MWS. Thermal hydrolysis pre-treatment was more efficient than ozone for reduction after AD. Results of this study help support management options for reducing the spread of antibiotic resistance from biosolids. Copyright © 2016. Published by Elsevier Ltd.

  14. State of the art and future perspectives of thermophilic anaerobic digestion.

    PubMed

    Ahring, B K; Mladenovska, Z; Iranpour, R; Westermann, P

    2002-01-01

    The state of the art of thermophilic digestion is discussed. Thermophilic digestion is a well established technology in Europe for treatment of mixtures of waste in common large scale biogas plants or for treatment of the organic fraction of municipal solid waste. Due to a large number of failures over time with thermophilic digestion of sewage sludge this process has lost its appeal in the USA. New demands on sanitation of biosolids before land use will, however, bring the attention back to the use of elevated temperatures during sludge stabilization. In the paper we show how the use of a start-up strategy based on the actual activity of key microbes can be used to ensure proper and fast transfer of mesophilic digesters into thermophilic operation. Extreme thermophilic temperatures of 65 degrees C or more may be necessary in the future to meet the demands for full sanitation of the waste material before final disposal. We show data of anaerobic digestion at extreme thermophilic temperatures.

  15. Anaerobic biodegradation of phenolic compounds in digested sludge.

    PubMed Central

    Boyd, S A; Shelton, D R; Berry, D; Tiedje, J M

    1983-01-01

    We examined the anaerobic degradation of phenol and the ortho, meta, and para isomers of chlorophenol, methoxyphenol, methylphenol (cresol), and nitrophenol in anaerobic sewage sludge diluted to 10% in a mineral salts medium. Of the 12 monosubstituted phenols studied, only p-chlorophenol and o-cresol were not significantly degraded during an 8-week incubation period. The phenol compounds degraded and the time required for complete substrate disappearance (in weeks) were: phenol (2), o-chlorophenol (3), m-chlorophenol (7), o-methoxyphenol (2), m- and p-methoxyphenol (1), m-cresol (7), p-cresol (3), and o-, m-, and p-nitrophenol (1). Complete mineralization of phenol, o-chlorophenol, m-cresol, p-cresol, o-nitrophenol, p-nitrophenol, and o-, m-, and p-methoxyphenol was observed. In general, the presence of Cl and NO2 groups on phenols inhibited methane production. Elimination or transformation of these substituents was accompanied by increased methane production, o-Chlorophenol was metabolized to phenol, which indicated that dechlorination was the initial degradation step. The methoxyphenols were transformed to the corresponding dihydroxybenzene compounds, which were subsequently mineralized. PMID:6614908

  16. Novel online monitoring and alert system for anaerobic digestion reactors.

    PubMed

    Dong, Fang; Zhao, Quan-Bao; Li, Wen-Wei; Sheng, Guo-Ping; Zhao, Jin-Bao; Tang, Yong; Yu, Han-Qing; Kubota, Kengo; Li, Yu-You; Harada, Hideki

    2011-10-15

    Effective monitoring and diagnosis of anaerobic digestion processes is a great challenge for anaerobic digestion reactors, which limits their stable operation. In this work, an online monitoring and alert system for upflow anaerobic sludge blanket (UASB) reactors is developed on the basis of a set of novel evaluating indexes. The two indexes, i.e., stability index S and auxiliary index a, which incorporate both gas- and liquid-phase parameters for UASB, enable a quantitative and comprehensive evaluation of reactor status. A series of shock tests is conducted to evaluate the response of the monitoring and alert system to organic overloading, hydraulic, temperature, and toxicant shocks. The results show that this system enables an accurate and rapid monitoring and diagnosis of the reactor status, and offers reliable early warnings on the potential risks. As the core of this system, the evaluating indexes are demonstrated to be of high accuracy and sensitivity in process evaluation and good adaptability to the artificial intelligence and automated control apparatus. This online monitoring and alert system presents a valuable effort to promote the automated monitoring and control of anaerobic digestion process, and holds a high promise for application.

  17. Co-digestion of manure with grass silage and pulp and paper mill sludge using nutrient additions.

    PubMed

    Hagelqvist, Alina; Granström, Karin

    2016-08-01

    There is an increasing worldwide demand for biogas. Anaerobic co-digestion involves the treatment of different substrates with the aim of improving the production of biogas and the stability of the process. This study evaluates how methane production is affected by the co-digestion of pig and dairy manure with grass silage and pulp and paper mill sludge and assesses whether methane production is affected by factors other than nutrient deficiency, low buffering capacity, inadequate dilution, and an insufficient activity and amount of microorganism culture. Anaerobic digestion was performed in batch reactors under mesophilic conditions for 20 days. The season of grass silage and manure collection proved to be an important factor affecting methane production. Spring grass silage produced a maximum of 250 mL/VSadded and spring manure 150 mL/VSadded, whereas autumn grass silage produced at most 140 ml/VSadded and autumn manure 45 mL/VSadded. The pulp mill sludge used is comprised of both primary and secondary sludge and produced at most 50 mL/VSadded regardless of season; this substrate benefitted most from co-digestion.

  18. Effect of enzymes on anaerobic digestion of primary sludge and septic tank performance.

    PubMed

    Diak, James; Örmeci, Banu; Kennedy, Kevin J

    2012-11-01

    Enzyme additives are believed to improve septic tank performance by increasing the hydrolysis and digestion rates and maintaining a healthy microbial population. Previous studies reported mixed results on the effectiveness of enzymes on mesophilic and thermophilic digestion, and it is not clear whether enzymes would be effective under septic tank conditions where there is no heating or mixing, quantities of enzymes added are small, and they can be washed out quickly. In this study, batch reactors and continuous-flow reactors designed and operated as septic tanks were used to evaluate whether enzymatic treatment would increase the hydrolysis and digestion rates in primary sludge. Total solids, volatile solids, total suspended solids, total and soluble chemical oxygen demand, concentrations of protein, carbohydrate, ammonia and volatile acids in sludge and effluent samples were measured to determine the differences in digestion rates in the presence and absence of enzymes. Overall, no significant improvement was observed in enzyme-treated reactors compared with the control reactors.

  19. Effect of low temperature thermal pre-treatment on the solubilization of organic matter, pathogen inactivation and mesophilic anaerobic digestion of poultry sludge.

    PubMed

    Ruiz-Espinoza, Juan E; Méndez-Contreras, Juan M; Alvarado-Lassman, Alejandro; Martínez-Delgadillo, Sergio A

    2012-01-01

    Treatment of poultry industry effluents produces wastewater sludge with high levels of organic compounds and pathogenic microorganisms. In this research, the thermal pre-treatment of poultry slaughterhouse sludge (PSS) was evaluated for low temperatures in combination with different exposure times as a pre-hydrolysis strategy to improve the anaerobic digestion process. Organic compounds solubilization and inactivation of pathogenic microorganisms were evaluated after treatment at 70, 80 or 90°C for 30, 60 or 90 min. The results showed that 90°C and 90 min were the most efficient conditions for solubilization of the organic compounds (10%). In addition, the bacteria populations and the more resistant structures, such as helminth eggs (HE), were completely inactivated. Finally, the thermal pre-treatment applied to the sludge increased methane yield by 52% and reduced hydraulic retention time (HRT) by 52%.

  20. [Anaerobic digestion of lignocellulosic biomass with animal digestion mechanisms].

    PubMed

    Wu, Hao; Zhang, Pan-Yue; Guo, Jian-Bin; Wu, Yong-Jie

    2013-02-01

    Lignocellulosic material is the most abundant renewable resource in the earth. Herbivores and wood-eating insects are highly effective in the digestion of plant cellulose, while anaerobic digestion process simulating animal alimentary tract still remains inefficient. The digestion mechanisms of herbivores and wood-eating insects and the development of anaerobic digestion processes of lignocellulose were reviewed for better understanding of animal digestion mechanisms and their application in design and operation of the anaerobic digestion reactor. Highly effective digestion of lignocellulosic materials in animal digestive system results from the synergistic effect of various digestive enzymes and a series of physical and biochemical reactions. Microbial fermentation system is strongly supported by powerful pretreatment, such as rumination of ruminants, cellulase catalysis and alkali treatment in digestive tract of wood-eating insects. Oxygen concentration gradient along the digestive tract may stimulate the hydrolytic activity of some microorganisms. In addition, the excellent arrangement of solid retention time, digesta flow and end product discharge enhance the animal digestion of wood cellulose. Although anaerobic digestion processes inoculated with rumen microorganisms based rumen digestion mechanisms were developed to treat lignocellulose, the fermentation was more greatly limited by the environmental conditions in the anaerobic digestion reactors than that in rumen or hindgut. Therefore, the anaerobic digestion processes simulating animal digestion mechanisms can effectively enhance the degradation of wood cellulose and other organic solid wastes.

  1. Impact of trace element additives on anaerobic digestion of sewage sludge with in-situ carbon dioxide sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linville, Jessica L.; Shen, Yanwen; Schoene, Robin P.

    Anaerobic digestion (AD) of sludge at wastewater treatment plants can benefit from addition of essential trace metals such as iron, nickel and cobalt to increase biogas production for utilization in combined heat and power systems, fed into natural gas pipelines or as a vehicle fuel. This study evaluated the impact and benefits of Ni/Co and olivine addition to the digester at mesophilic temperatures. These additions supplement previously reported research in which iron-rich olivine (MgSiO4) was added to sequester CO2 in-situ during batch AD of sludge. Trace element addition has been shown to stimulate and stabilize biogas production and have amore » synergistic effect on the mineral carbonation process. AD with 5% w/v olivine and 1.5 mg/L Ni/Co addition had a 17.3% increase in methane volume, a 6% increase in initial exponential methane production rate and a 56% increase in methane yield (mL CH4/g CODdegraded) compared to the control due to synergistic trace element and olivine addition while maintaining 17.7% CO2 sequestration from olivine addition. Both first-order kinetic modeling and response surface methodology modeling confirmed the combined benefit of the trace elements and olivine addition. These results were significantly higher than previously reported results with olivine addition alone [1].« less

  2. Chronic impacts of oxytetracycline on mesophilic anaerobic digestion of excess sludge: Inhibition of hydrolytic acidification and enrichment of antibiotic resistome.

    PubMed

    Tian, Zhe; Zhang, Yu; Yang, Min

    2018-07-01

    We evaluated the chronic impact of oxytetracycline (OTC) on performance and antibiotic resistance development during the mesophilic anaerobic digestion (AD) of antibiotic-containing biomass. Mesophilic AD was conducted in a completely stirred tank reactor by constantly feeding municipal excess sludge spiked with increasing concentrations of OTC (0-1000 mg L -1 ) under a solid retention time of 20 days over a period of 265 days. Results showed that methane generation of mesophilic AD was inhibited when the OTC concentration in digested sludge was increased to around 18,000 mg kg -1 (OTC dose, 1000 mg L -1 ), due to the inhibition of fermenting and acidogenic bacteria. Metagenomic sequencing and high-throughput quantitative PCR analysis demonstrated that tetracycline resistance genes were the most dominant type (38.47-43.76%) in the resistome, with tetG, tetX, tetM, tetR, tetQ, tetO, and tetL as the dominant resistant subtypes throughout the whole experimental period. The relative abundance of these tet genes increased from 2.10 × 10 -1 before spiking OTC (OTC concentration in digested sludge, 8.97 mg kg -1 ) to 2.83 × 10 -1 (p < 0.05) after spiking OTC at a dose of 40 mg L -1 (OTC concentration in digested sludge, 528.52 mg kg -1 ). Furthermore, mobile genetic elements, including integrons, transposons, and plasmids, were also enriched with the increase in OTC dose. Based on partial canonical correspondence analysis, the contributions of horizontal (mobile element alteration) and vertical (bacterial community shift) gene transfer to antibiotic resistome variation were 29.35% and 21.51%, respectively. Thus, considering the inhibition of hydrolytic acidification and enrichment of antibiotic resistome, mesophilic AD is not suggested to directly treat the biomass containing OTC concentration higher than 200 mg L -1 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China.

    PubMed

    Niu, Dong-jie; Huang, Hui; Dai, Xiao-hu; Zhao, You-cai

    2013-01-01

    About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening+anaerobic digestion+dewatering+residue land application in China. Fossil CO(2), biogenic CO(2), CH(4,) and avoided CO(2) as the main objects is discussed respectively. The results show that the total CO(2)-eq is about 1133 kg/t DM (including the biogenic CO(2)), while the net CO(2)-eq is about 372 kg/t DM (excluding the biogenic CO(2)). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO(2)-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO(2)-eq reduction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes.

    PubMed

    Zhang, Jingxin; Mao, Feijian; Loh, Kai-Chee; Gin, Karina Yew-Hoong; Dai, Yanjun; Tong, Yen Wah

    2018-02-01

    The effects of activated carbon (AC) on methane production and the fate of antibiotic resistance genes (ARGs) were evaluated through comparing the anaerobic digestion performance and transformation of ARGs among anaerobic mono-digestion of food waste, co-digestion of food waste and chicken manure, and co-digestion of food waste and waste activated sludge. Results showed that adding AC in anaerobic digesters improved methane yield by at least double through the enrichment of bacteria and archaea. Conventional digestion process showed ability in removing certain types of ARGs, such as tetA, tetX, sul1, sul2, cmlA, floR, and intl1. Supplementing AC in anaerobic digester enhanced the removal of most of the ARGs in mono-digestion of food waste. The effects tended to be minimal in co-digestion of co-substrates such as chicken manure and waste activated sludge, both of which contain a certain amount of antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Anaerobic digestion for sustainable development: a natural approach.

    PubMed

    Gljzen, H J

    2002-01-01

    After the discovery of methane gas by Alessandro Volta in 1776, it took about 100 years before anaerobic processes for the treatment of wastewater and sludges were introduced. The development of high rate anaerobic digesters for the treatment of sewage and industrial wastewater took until the nineteen-seventies and for solid waste even till the nineteen-eighties. All digesters have in common that they apply natural anaerobic consortia of microorganisms for degradation and transformation processes. In view of this, it could be rewarding to evaluate the efficiency of natural ecosystems for their possible application. Examples of high rate anaerobic natural systems include the forestomach of ruminants and the hindgut of certain insects, such as termites and cockroaches. These 'natural reactors' exhibit volumetric methane production rates as high as 35 l/l.d. The development of anaerobic reactors based on such natural anaerobic systems could produce eco-technologies for the effective management of a wide variety of solid wastes and industrial wastewater. Important limitations of anaerobic treatment of domestic sewage relate to the absence of nutrient and pathogen removal. A combination of anaerobic pre-treatment followed by photosynthetic posttreatment is proposed for the effective recovery of energy and nutrients from sewage. This eco-technology approach is based on the recognition that the main nutrient assimilating capacity is housed in photosynthetic plants. The proposed anaerobic-photosynthetic process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions. a natural systems approach towards waste management could generate affordable eco-technologies for effective treatment and resource recovery.

  6. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

    PubMed

    Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2014-01-01

    In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Waste biorefineries - integrating anaerobic digestion and microalgae cultivation for bioenergy production.

    PubMed

    Chen, Yi-di; Ho, Shih-Hsin; Nagarajan, Dillirani; Ren, Nan-Qi; Chang, Jo-Shu

    2018-04-01

    Commercialization of microalgal cultivation has been well realized in recent decades with the use of effective strains that can yield the target products, but it is still challenged by the high costs arising from mass production, harvesting, and further processing. Recently, more interest has been directed towards the utilization of waste resources, such as sludge digestate, to enhance the economic feasibility and sustainability of microalgae production. Anaerobic digestion for waste disposal and phototrophic microalgal cultivation are well-characterized technologies in both fields. However, integration of anaerobic digestion and microalgal cultivation to achieve substantial economic and environmental benefits is extremely limited, and thus deserves more attention and research effort. In particular, combining these two makes possible an ideal 'waste biorefinery' model, as the C/N/P content in the anaerobic digestate can be used to produce microalgal biomass that serves as feedstock for biofuels, while biogas upgrading can simultaneously be performed by phototrophic CO 2 fixation during microalgal growth. This review is thus aimed at elucidating recent advances as well as challenges and future directions with regard to waste biorefineries associated with the integration of anaerobic waste treatment and microalgal cultivation for bioenergy production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Occurrence of antibiotic resistance genes and mobile genetic elements in enterococci and genomic DNA during anaerobic digestion of pharmaceutical waste sludge with different pretreatments.

    PubMed

    Tong, Juan; Lu, XueTing; Zhang, JunYa; Sui, Qianwen; Wang, Rui; Chen, Meixue; Wei, Yuansong

    2017-07-01

    Pharmaceutical waste sludge harbors large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), and it is necessary to study the reduction of ARGs and MGEs during sludge treatment. Therefore, the antibiotic resistance phenotypes and genotypes of enterococci, and the ARGs and MGEs in genomic DNA were investigated during anaerobic digestion (AD) with microwave (MW), thermal hydrolysis (TH) and ozone pretreatment. Results showed that sludge pretreatment increased the occurrence of the resistance phenotypes and genotypes of enterococci. During AD, the resistance of enterococci to macrolides decreased, except for in the MW-pretreated sludge. Horizontal gene transfer and co-occurrence of ermB and tetM in enterococci resulted in increased tetracycline resistance of enterococci throughout the sludge treatment. MGEs such as intI1, ISCR1 and Tn916/1545 had a significant effect on the distribution of ARGs. AD with pretreatment, especially TH pretreatment, resulted in greater ARGs and MGEs reduction and improved methane production. Copyright © 2017. Published by Elsevier Ltd.

  9. Evaluation of the biomethane potential from multiple waste streams for a proposed community scale anaerobic digester.

    PubMed

    Browne, James D; Allen, Eoin; Murphy, Jerry D

    2013-01-01

    This paper examines the biomethane potential from organic waste for a proposed community scale anaerobic digester in a rural town. The biomethane potential test is used to assess the suitability of waste streams for biomethane production and to examine the variation in biomethane potential between waste sub-streams. A methodology for accurately estimating the biomethane potential from multiple heterogeneous organic waste substrates is sought. Five main waste streams were identified as possible substrates for biogas production, namely Abattoir waste (consisting of paunch and de-watered activated sludge); cheese factory effluent; commercial and domestic food waste; pig slurry and waste water treatment sludge. The biomethane potential of these waste streams ranged from as low as 99 L CH4 kg VS(-1) for pig slurry to as high as 787 L CH4 kg VS(-1) for dissolved air floatation (DAF) sludge from a cheese effluent treatment plant. The kinetic behaviour of the biomethane production in the batch test is also examined. The objective of the paper is to suggest an optimum substrate mix in terms of biomethane yield per unit substrate for the proposed anaerobic digester. This should maximize the yield of biomethane per capital investment. Food waste displayed the highest biomethane yield (128 m(n)(3) t(-1)) followed by cheese waste (38 m(n)(3) t(-1)) and abattoir waste (36 m(n)(3) t(-1)). It was suggested that waste water sludge (16 m(n)(3) t(-1)) and pig slurry (4 m(n)(3) t(-1)) should not be digested. However, the biomethane potential test does not give information on the continuous operation of an anaerobic digester.

  10. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    PubMed

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to <35 %, after four turnovers of operation. Prevailing existence of putative iron-reducing bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD.

  11. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size.

    PubMed

    Silvestre, Gracia; Bonmatí, August; Fernández, Belén

    2015-09-01

    The effect of organic fraction of municipal solid waste (OFMSW) loading rate and particulate size on the sewage sludge (SS) mesophilic anaerobic co-digestion was assessed in continuous stirred tank reactor at hydraulic retention time of 20days. The SS-OFMSW mixture composed by 54% of the volatile solids fed (inlet-VS), at OLR of 3.1kgCODm(-3)d(-1) (1.9kgVSm(-3)d(-1)), showed the highest increment on the volumetric methane production and yield of +200% and +59% respectively, under stable conditions. The effect of particulate size was assessed with the same mixture and same operational conditions but reducing the OFMSW particulate size from 20mm to 8mm with the aim to improve the hydrolysis step, but the results showed any influence in the OFMSW particulate size range analysed. In addition, specific biomass activity was assessed at the end of each co-digestion period. Results showed that OFMSW promoted β-oxidation syntrophic acetogens and the acetoclastic methanogens activity; although the last increase of the OFMSW percentage (from 47% to 54% inlet-VS) affected negatively the specific substrate activity, but not inhibitory effect was observed. Therefore, the results obtained in the continuous experiment could be related with some inhibitory or toxic effect and not due to hydrolysis limitation. The specific biomass activity test was demonstrated to be an interesting tool to evaluate and control the co-digestion process, especially when conventional parameters did not explain the behaviour of the biological system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal

    PubMed Central

    Dai, Xiaohu; Luo, Fan; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dong, Bin

    2015-01-01

    During the anaerobic digestion of dewatered sludge, polyacrylamide (PAM), a chemical conditioner, can usually be consumed as a carbon and nitrogen source along with other organic matter (e.g., proteins and carbohydrates in the sludge). However, a significant accumulation of acrylamide monomers (AMs) was observed during the PAM biodegradation process. To improve the anaerobic hydrolysis of PAM, especially the amide hydrolysis process, and to avoid the generation of the intermediate product AM, a new strategy is reported herein that uses an initial pH of 9, 200 mg COD/L of PAM and a fermentation time of 17 d. First, response surface methodology (RSM) was applied to optimize PAM removal in the anaerobic digestion of the sludge. The biological hydrolysis of PAM reached 86.64% under the optimal conditions obtained from the RSM. Then, the mechanisms for the optimized parameters that significantly improved the biological hydrolysis of PAM were investigated by the synergistic effect of the main organic compounds in the sludge, the floc size distribution, and the enzymatic activities. Finally, semi-continuous-flow experiments for a microbial community study were investigated based on the determination of key microorganisms involved in the biological hydrolysis of PAM. PMID:26144551

  13. Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal.

    PubMed

    Dai, Xiaohu; Luo, Fan; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dong, Bin

    2015-07-06

    During the anaerobic digestion of dewatered sludge, polyacrylamide (PAM), a chemical conditioner, can usually be consumed as a carbon and nitrogen source along with other organic matter (e.g., proteins and carbohydrates in the sludge). However, a significant accumulation of acrylamide monomers (AMs) was observed during the PAM biodegradation process. To improve the anaerobic hydrolysis of PAM, especially the amide hydrolysis process, and to avoid the generation of the intermediate product AM, a new strategy is reported herein that uses an initial pH of 9, 200 mg COD/L of PAM and a fermentation time of 17 d. First, response surface methodology (RSM) was applied to optimize PAM removal in the anaerobic digestion of the sludge. The biological hydrolysis of PAM reached 86.64% under the optimal conditions obtained from the RSM. Then, the mechanisms for the optimized parameters that significantly improved the biological hydrolysis of PAM were investigated by the synergistic effect of the main organic compounds in the sludge, the floc size distribution, and the enzymatic activities. Finally, semi-continuous-flow experiments for a microbial community study were investigated based on the determination of key microorganisms involved in the biological hydrolysis of PAM.

  14. Economic viability of anaerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellinger, A.

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs ofmore » an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.« less

  15. Life cycle assessment comparison of activated sludge, trickling filter, and high-rate anaerobic-aerobic digestion (HRAAD).

    PubMed

    Postacchini, Leonardo; Lamichhane, Krishna M; Furukawa, Dennis; Babcock, Roger W; Ciarapica, F E; Cooney, Michael J

    2016-01-01

    This paper conducts a comparative assessment of the environmental impacts of three methods of treating primary clarifier effluent in wastewater treatment plants (WWTPs) through life cycle assessment methodology. The three technologies, activated sludge (AS), high rate anaerobic-aerobic digestion (HRAAD), and trickling filter (TF), were assessed for treatment of wastewater possessing average values of biochemical oxygen demand and total suspended solids of 90 mg L(-1) and 70 mg L(-1), respectively. The operational requirements to process the municipal wastewater to effluent that meets USEPA regulations have been calculated. The data for the AS system were collected from the East Honolulu WWTP (Hawaii, USA) while data for the HRAAD system were collected from a demonstration-scale system at the same plant. The data for the TF system were estimated from published literature. Two different assessment methods have been used in this study: IMPACT 2002+ and TRACI 2. The results show that TF had the smallest environmental impacts and that AS had the largest, while HRAAD was in between the two but with much reduced impacts compared with AS. Additionally, the study shows that lower sludge production is the greatest advantage of HRAAD for reducing environmental impacts compared with AS.

  16. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment.

    PubMed

    Aylin Alagöz, B; Yenigün, Orhan; Erdinçler, Ayşen

    2018-01-01

    This study investigates the effect of ultrasonication and microwave sludge disintegration/pre-treatment techniques on the anaerobic co-digestion efficiency of wastewater sludges with olive and grape pomaces. The effects of both co-digestion and sludge pre-treatment techniques were evaluated in terms of the organic removal efficiency and the biogas production. The "co-digestion" of wastewater sludge with both types of pomaces was revealed to be a much more efficient way for the biogas production compared to the single (mono) sludge digestion. The ultrasonication and microwave pre-treatments applied to the sludge samples caused to a further increase in biogas and methane yields. Based on applied specific energies, ultrasonication pre-treatment was found much more effective than microwave irradiation. The specific energy applied in microwave pre-treatment (87,000kj/kgTS) was almost 9 times higher than that of used in ultrasonication (10,000kj/kgTS), resulting only 10-15% increases in biogas/methane yield. Co-digestion of winery and olive industry residues with pre-treated wastewater sludges appears to be a suitable technique for waste management and energy production. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Livestock Anaerobic Digester Database

    EPA Pesticide Factsheets

    The Anaerobic Digester Database provides basic information about anaerobic digesters on livestock farms in the United States, organized in Excel spreadsheets. It includes projects that are under construction, operating, or shut down.

  18. Effects and fate of TiO2 nanoparticles in the anaerobic treatment of wastewater and waste sludge.

    PubMed

    Cervantes-Avilés, Pabel; Ida, Junichi; Toda, Tatsuki; Cuevas-Rodríguez, Germán

    2018-05-29

    The increasing use of TiO 2 nanoparticles (NPs) in customer products has also increased the concerns about their effects in the environment. Anaerobic digestion is a process probably exposed to high concentrations of TiO 2 NPs due to its application for wastewater and waste sludge treatment. In this work, it was studied the anaerobic digestion performance and the extracellular polymeric substances (EPS) production in presence of TiO 2 NPs, as well as the fate of TiO 2 NPs in anaerobic reactors. Results showed that methane production enhanced an average of 14.9% in presence TiO 2 NPs, which is considered a positive effect. A strong affinity between TiO 2 NPs and EPS was found, especially for proteins (PRO) and polysaccharides (PS) in the loosely and tightly bound EPS layers of microorganisms (LB-EPS and TB-EPS). Ti quantification indicated that 92% of the TiO 2 NPs are removed by anaerobic sludge, while 8% remain in the treated effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion.

    PubMed

    Popat, Sudeep C; Yates, Marylynn V; Deshusses, Marc A

    2010-12-01

    Thermophilic anaerobic sludge digestion is a promising process to divert waste to beneficial use, but an important question is the required temperature and holding time to achieve a given degree of pathogen inactivation. In this study, the kinetics of inactivation of Ascaris suum and vaccine strain poliovirus type 1 (PVS-1), selected as indicators for helminth ova and enteric viruses respectively, were determined during anaerobic digestion at temperatures ranging from 51 to 56 °C. Inactivation of both indicator organisms was fast with greater than two log reductions achieved within 2 h for A. suum and three log reductions for PVS-1, suggesting that the current U.S. regulations are largely conservative. The first-order inactivation rate constants k followed Arrhenius relationship with activation energies of 105 and 39 KJ mol(-1) for A. suum and PVS-1, respectively indicating that A. suum was more sensitive to temperature. Although inactivation was fast, the presence of compounds in the sludge that are known to be protective of pathogen inactivation was observed, suggesting that composition-dependent time-temperature relationships are necessary. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion.

    PubMed

    Jin, Yiying; Li, Huan; Mahar, Rasool Bux; Wang, Zhiyu; Nie, Yongfeng

    2009-01-01

    Alkaline and ultrasonic sludge disintegration can be used as the pretreatment of waste activated sludge (WAS) to promote the subsequent anaerobic or aerobic digestion. In this study, different combinations of these two methods were investigated. The evaluation was based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the subsequent aerobic digestion. For WAS samples with combined pretreatment, the released COD levels were higher than those with ultrasonic or alkaline pretreatment alone. When combined with the ultrasonic treatment, NaOH treatment was more efficient than Ca(OH)2 for WAS solubilization. The COD levels released in various sequential options of combined NaOH and ultrasonic treatments were in the the following descending order: simultaneous treatment > NaOH treatment followed by ultrasonic treatment > ultrasonic treatment followed by NaOH treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7500 kJ/kg dry solid) were suitable for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with optimal parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than that with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.

  1. Enhancing anaerobic digestion of waste activated sludge by the combined use of NaOH and Mg(OH)2: Performance evaluation and mechanism study.

    PubMed

    Huang, Cheng; Lai, Jia; Sun, Xiuyun; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2016-11-01

    In this study, the combination treatment of NaOH and Mg(OH)2 was applied to anaerobic digestion of waste activated sludge (WAS) for simultaneously enhancement of volatile fatty acids (VFAs) production, nutrients removal and sludge dewaterability. The maximum VFAs production (461mg COD/g VSS) was obtained at the NaOH/Mg(OH)2 ratio of 75:25, which was much higher than that of the blank or sole NaOH. Moreover, nutrients removal and sludge dewaterability were improved by the combined using of NaOH and Mg(OH)2. Mechanism investigations revealed that the presence of Mg(OH)2 could maintain alkaline environment, which contributed to inhibit the activity of methanogens. Also, the bridging between Mg(2+) and extracellular polymeric substances (EPS) plays an important role in the solubilization and dewatering of sludge. High-throughput sequencing analysis demonstrated that the abundance of bacteria involved in sludge hydrolysis and VFAs accumulation was greatly enriched with the mixtures of NaOH and Mg(OH)2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Sequential ultrasound and low-temperature thermal pretreatment: Process optimization and influence on sewage sludge solubilization, enzyme activity and anaerobic digestion.

    PubMed

    Neumann, Patricio; González, Zenón; Vidal, Gladys

    2017-06-01

    The influence of sequential ultrasound and low-temperature (55°C) thermal pretreatment on sewage sludge solubilization, enzyme activity and anaerobic digestion was assessed. The pretreatment led to significant increases of 427-1030% and 230-674% in the soluble concentrations of carbohydrates and proteins, respectively, and 1.6-4.3 times higher enzymatic activities in the soluble phase of the sludge. Optimal conditions for chemical oxygen demand solubilization were determined at 59.3kg/L total solids (TS) concentration, 30,500kJ/kg TS specific energy and 13h thermal treatment time using response surface methodology. The methane yield after pretreatment increased up to 50% compared with the raw sewage sludge, whereas the maximum methane production rate was 1.3-1.8 times higher. An energy assessment showed that the increased methane yield compensated for energy consumption only under conditions where 500kJ/kg TS specific energy was used for ultrasound, with up to 24% higher electricity recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate.

    PubMed

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-21

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d(-1)) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  4. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    PubMed Central

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d−1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery. PMID:26791952

  5. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    NASA Astrophysics Data System (ADS)

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d-1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  6. New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer.

    PubMed

    Ma, Yingqun; Yin, Yao; Liu, Yu

    2017-10-01

    This study explored two holistic approaches for co-digestion of activated sludge and food waste. In Approach 1, mixed activated sludge and food waste were first hydrolyzed with fungal mash, and produced hydrolysate without separation was directly subject to anaerobic digestion. In Approach 2, solid generated after hydrolysis of food waste by fungal mash was directly converted to biofertilizer, while separated liquid with high soluble COD concentration was further co-digested with activated sludge for biomethane production. Although the potential energy produced from Approach 1 was about 1.8-time higher than that from Approach 2, the total economic revenue generated from Approach 2 was about 1.9-fold of that from Approach 1 due to high market value of biofertilizer. It is expected that this study may lead to a paradigm shift in biosolid management towards environmental and economic sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The effect of Fe2NiO4 and Fe4NiO4Zn magnetic nanoparticles on anaerobic digestion activity.

    PubMed

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2018-06-11

    Two types of magnetic nanoparticles (MNPs), i.e. Ni ferrite nanoparticles (Fe 2 NiO 4 ) and Ni Zn ferrite nanoparticles (Fe 4 NiO 4 Zn) containing the trace metals Ni and Fe, were added to the anaerobic digestion of synthetic municipal wastewater at concentrations between 1 and 100 mg Ni L -1 in order to compare their effects on biogas (methane) production and sludge activity. Using the production of methane over time as a measure, the assays revealed that anaerobic digestion was stimulated by the addition of 100 mg Ni L -1 in Fe 2 NiO 4 NPs, while it was inhibited by the addition of 1-100 mg Ni L -1 in Fe 4 NiO 4 Zn NPs. Especially at 100 mg Ni L -1 , Fe 4 NiO 4 Zn NPs resulted in a total inhibition of anaerobic digestion. The metabolic activity of the anaerobic sludge was tested using the resazurin reduction assay, and the assay clearly revealed the negative effect of Fe 4 NiO 4 Zn NPs and the positive effect of Fe 2 NiO 4 NPs. Re-feeding fresh synthetic medium reactivated the NPs added to the anaerobic sludge, except for the experiment with 100 mg Ni L -1 addition of Fe 4 NiO 4 Zn NPs. The findings in this present study indicate a possible new strategy for NPs design to enhance anaerobic digestion. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  8. Anaerobic Digestion Performance in the Energy Recovery of Kiwi Residues

    NASA Astrophysics Data System (ADS)

    Martins, Ramiro; Boaventura, Rui; Paulista, Larissa

    2017-12-01

    World production and trade of fruits generate losses in the harvest, post-harvest, handling, distribution and consumption phases, corresponding to 6.8% of total production. These residues present high potential as a substrate for the anaerobic digestion process and biogas generation. Thus, the energy valuation of the agro-industrial residues of kiwi production was evaluated by anaerobic digestion, aiming at optimizing the biogas production and its quality. Ten assays were carried out in a batch reactor (500 mL) under mesophilic conditions and varying a number of operational factors: different substrate/inoculum ratios; four distinct values for C: N ratio; inoculum from different digesters; and inoculum collected at different times of the year. The following parameters were used to control and monitor the process: pH, alkalinity, volatile fatty acids (VFA), volatile solids (VS) and chemical oxygen demand (COD). Among the tests performed, the best result obtained for the biogas production corresponded to the use of 2 g of substrate and 98 mL of inoculum of the anaerobic digester of the Wastewater Treatment Plant (WWTP) of Bragança, with addition of 150 mg of bicarbonate leading to a production of 1628 L biogas.kg-1 VS (57% methane). In relation to the biogas quality, the best result was obtained with 20 g of substrate and 380 mL of inoculum from the anaerobic digester sludge of WWTP of Ave (with addition 600 mg of sodium bicarbonate), presenting a value of 85% of CH4, with a production of 464 L biogas.kg-1 VS.

  9. Kinetic modeling of the effect of solids retention time on methanethiol dynamics in anaerobic digestion.

    PubMed

    Zhang, Dian; Strawn, Mary; Novak, John T; Wang, Zhi-Wu

    2018-07-01

    The highly volatile methanethiol (MT) with an extremely low odor threshold and distinctive putrid smell is often identified as a major odorous compound generated under anaerobic conditions. As an intermediate compound in the course of anaerobic digestion, the extent of MT emission is closely related to the time of anaerobic reaction. In this study, lab-scale anaerobic digesters were operated at solids retention time (SRTs) of 15, 20, 25, 30, 40 and 50 days to investigate the effect of SRT on MT emission. The experimental results demonstrated a bell-shaped curve of MT emission versus SRT with a peak around 20 days SRT. In order to understand this SRT effect, a kinetic model was developed to describe MT production and utilization dynamics in the course of anaerobic digestion and calibrated with the experimental results collected from this study. The model outcome revealed that the high protein content in the feed sludge together with the large maintenance coefficient of MT fermenters are responsible for the peak MT emission emergence in the range of typical SRT used for anaerobic digestion. A further analysis of the kinetic model shows that it can be extensively simplified with reasonable approximation to a form that anaerobic digestion practitioners could easily use to predict the MT and SRT relationship. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells.

    PubMed

    Lee, Beom; Park, Jun-Gyu; Shin, Won-Beom; Tian, Dong-Jie; Jun, Hang-Bae

    2017-06-01

    Microbial electrolysis cells (MECs) are being studied to improve the efficiency of anaerobic digesters and biogas production. In the present study, we investigated the effects of electrochemical reactions in AD-MEC (anaerobic digester combined with MECs) on changes in the microbial communities of bulk sludge through 454-pyrosequencing analysis, as well as the effect of these changes on anaerobic digestion. Methanobacterium beijingense and Methanobacterium petrolearium were the dominant archaeal species in AD, while Methanosarcina thermophila and Methanobacterium formicicum were dominant in AD-MEC at steady-state. There were no substantial differences in dominant bacterial species. Clostridia class was more abundant than Bacteroidia class in both reactors. Compared to AD, AD-MEC showed a 40% increase in overall bacterial population, increasing the removal of organic matters and the conversion of volatile fatty acids (VFAs). Thus, the MEC reaction more effectively converts organic matters to VFAs and activates microbial communities favorable for methane production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Co-digestion of sewage sludge with crude or pretreated glycerol to increase biogas production.

    PubMed

    Dos Santos Ferreira, Janaína; Volschan, Isaac; Cammarota, Magali Christe

    2018-05-23

    Anaerobic co-digestion of sewage sludge and glycerol from the biodiesel industry was evaluated in three experimental stages. In the first step, the addition of higher proportions of crude glycerol (5-20% v/v) to the sludge was evaluated, and the results showed a marked decrease in pH and inhibition of methane production. In the second step, co-digestion of sludge with either a lower proportion (1% v/v) of crude glycerol or glycerol pretreated to remove salinity resulted in volatile acid accumulation and low methane production. The accumulation of volatile acids due to the rapid degradation of glycerol in the mixture was more detrimental to methanogenesis than the salinity of the crude glycerol. In the third step, much lower amounts of crude glycerol were added to the sludge (0.3, 0.5, 0.7% v/v), resulting in buffering of the reaction medium and higher methane production than in the control (pure sludge). The best condition for co-digestion was with the addition of 0.5% (v/v) crude glycerol to the sewage sludge, which equals 0.6 g glycerol/g volatile solids applied. Under this condition, the specific methane production (mL CH 4 /g volatile solids applied) was 1.7 times higher than in the control.

  12. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition.

    PubMed

    Bouallagui, H; Lahdheb, H; Ben Romdan, E; Rachdi, B; Hamdi, M

    2009-04-01

    The effect of fish waste (FW), abattoir wastewater (AW) and waste activated sludge (WAS) addition as co-substrates on the fruit and vegetable waste (FVW) anaerobic digestion performance was investigated under mesophilic conditions using four anaerobic sequencing batch reactors (ASBR) with the aim of finding the better co-substrate for the enhanced performance of co-digestion. The reactors were operated at an organic loading rate of 2.46-2.51 g volatile solids (VS)l(-1)d(-1), of which approximately 90% were from FVW, and a hydraulic retention time of 10 days. It was observed that AW and WAS additions with a ratio of 10% VS enhanced biogas yield by 51.5% and 43.8% and total volatile solids removal by 10% and 11.7%, respectively. However FW addition led to improvement of the process stability, as indicated by the low VFAs/Alkalinity ratio of 0.28, and permitted anaerobic digestion of FVW without chemical alkali addition. Despite a considerable decrease in the C/N ratio from 34.2 to 27.6, the addition of FW slightly improved the gas production yield (8.1%) compared to anaerobic digestion of FVW alone. A C/N ratio between 22 and 25 seemed to be better for anaerobic co-digestion of FVW with its co-substrates. The most significant factor for enhanced FVW digestion performance was the improved organic nitrogen content provided by the additional wastes. Consequently, the occurrence of an imbalance between the different groups of anaerobic bacteria which may take place in unstable anaerobic digestion of FVW could be prevented.

  13. Isolation, identification and utilization of thermophilic strains in aerobic digestion of sewage sludge.

    PubMed

    Liu, Shugen; Zhu, Nanwen; Li, Loretta Y; Yuan, Haiping

    2011-11-15

    Two representative thermophilic bacterial strains (T1 and T2) were isolated from a one-stage autothermal thermophilic aerobic digestion pilot-scale reactor. 16S rRNA gene analysis indicated that they were Hydrogenophilaceae and Xanthomonodaceae. These isolated strains were inoculated separately and/or jointly in sewage sludge, to investigate their effects on sludge stabilization under thermophilic aerobic digestion condition. Four digestion conditions were tested for 480 h. Digestion without inoculation and inoculation with strain T2, as well as joint- inoculation with strains T1 and T2, achieved 32.6%, 43.0%, and 38.2% volatile solids (VS) removal, respectively. Removal in a digester inoculated with stain T1 only reached 27.2%. For the first 144 h, the three inoculated digesters all experienced higher VS removal than the digester without inoculations. Both specific thermophilic strains and micro-environment significantly affected the VS removal. DGGE profiles revealed that the isolated strains T1 and T2 can successfully establish in the thermophilic digesters. Other viable bacteria (including anaerobic or facultative microbes) also appeared in the digestion system, enhancing the microbial activity. Copyright © 2011. Published by Elsevier Ltd.

  14. Enteric bacteria in aerobically digested sludge.

    PubMed Central

    Farrah, S R; Bitton, G

    1984-01-01

    Indicator bacteria, Salmonella spp., and total aerobic bacteria were determined in samples of undigested sludge and sludge that had been treated by one or two stages of aerobic digestion. Aerobic sludge digestion reduced the level of indicator bacteria by 1 to 2 log10 per g. The level of Salmonella spp. was also reduced during aerobic treatment of sludge. In general, aerobic treatment of sludge reduced, but did not eliminate, indicator bacteria and Salmonella spp. PMID:6721492

  15. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Fuqing; Shi Jian; Lv Wen

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of cornmore » stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.« less

  16. Previously unclassified bacteria dominate during thermophilic and mesophilic anaerobic pre-treatment of primary sludge.

    PubMed

    Pervin, Hasina M; Batstone, Damien J; Bond, Philip L

    2013-06-01

    Thermophilic biological pre-treatment enables enhanced anaerobic digestion for treatment of wastewater sludges but, at present, there is limited understanding of the hydrolytic-acidogenic microbial composition and its contribution to this process. In this study, the process was assessed by comparing the microbiology of thermophilic (50-65 °C) and mesophilic (35 °C) pre-treatment reactors treating primary sludge. A full-cycle approach for the 16S rRNA genes was applied in order to monitor the diversity of bacteria and their abundance in a thermophilic pre-treatment reactor treating primary sludge. For the thermophilic pre-treatment (TP), over 90% of the sequences were previously undetected and these had less than 97% sequence similarity to cultured organisms. During the first 83 days, members of the Betaproteobacteria dominated the community sequences and a newly designed probe was used to monitor a previously unknown bacterium affiliated with the genus Brachymonas. Between days 85 and 183, three phylotypes that affiliated with the genera Comamonas, Clostridium and Lysobacter were persistently dominant in the TP community, as revealed by terminal-restriction fragment length polymorphism (T-RFLP). Hydrolytic and fermentative functions have been speculated for these bacteria. Mesophilic pre-treatment (MP) and TP communities were different but they were both relatively dynamic. Statistical correlation analysis and the function of closely allied reference organisms indicated that previously unclassified bacteria dominated the TP community and may have been functionally involved in the enhanced hydrolytic performance of thermophilic anaerobic pre-treatment. This study is the first to reveal the diversity and dynamics of bacteria during anaerobic digestion of primary sludge. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Long-Term Enrichment on Cellulose or Xylan Causes Functional and Taxonomic Convergence of Microbial Communities from Anaerobic Digesters

    PubMed Central

    Jia, Yangyang; Wilkins, David; Lu, Hongyuan; Cai, Mingwei

    2015-01-01

    Cellulose and xylan are two major components of lignocellulosic biomass, which represents a potentially important energy source, as it is abundant and can be converted to methane by microbial action. However, it is recalcitrant to hydrolysis, and the establishment of a complete anaerobic digestion system requires a specific repertoire of microbial functions. In this study, we maintained 2-year enrichment cultures of anaerobic digestion sludge amended with cellulose or xylan to investigate whether a cellulose- or xylan-digesting microbial system could be assembled from sludge previously used to treat neither of them. While efficient methane-producing communities developed under mesophilic (35°C) incubation, they did not under thermophilic (55°C) conditions. Illumina amplicon sequencing results of the archaeal and bacterial 16S rRNA genes revealed that the mature cultures were much lower in richness than the inocula and were dominated by single archaeal (genus Methanobacterium) and bacterial (order Clostridiales) groups, although at finer taxonomic levels the bacteria were differentiated by substrates. Methanogenesis was primarily via the hydrogenotrophic pathway under all conditions, although the identity and growth requirements of syntrophic acetate-oxidizing bacteria were unclear. Incubation conditions (substrate and temperature) had a much greater effect than inoculum source in shaping the mature microbial community, although analysis based on unweighted UniFrac distance found that the inoculum still determined the pool from which microbes could be enriched. Overall, this study confirmed that anaerobic digestion sludge treating nonlignocellulosic material is a potential source of microbial cellulose- and xylan-digesting functions given appropriate enrichment conditions. PMID:26712547

  18. Pretreatment of high solid microbial sludges

    DOEpatents

    Rivard, C.J.; Nagle, N.J.

    1998-07-28

    A process and apparatus are disclosed for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion. 1 fig.

  19. Pretreatment of high solid microbial sludges

    DOEpatents

    Rivard, Christopher J.; Nagle, Nicholas J.

    1998-01-01

    A process and apparatus for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion.

  20. Isolation of digested sludge-assimilating fungal strains and their potential applications.

    PubMed

    Fujii, K; Kai, Y; Matsunobu, S; Sato, H; Mikami, A

    2013-09-01

    Digested sludge (DS) is a major waste product of anaerobic digestion of sewage sludge and is resistant to biodegradation. In this study, we isolated and characterized DS-assimilating fungi from soil. We tried to isolate DS-assimilating strains by enrichment culture using DS as the nutrient source, but microbial growth was not observed in any culture. To eliminate the inhibitory effect of metals in DS on microbial growth, acid-treated DS was subsequently used for enrichment, and eight fungal strains were isolated from the subcultures. At least 10-30% reduction in sludge was observed after 1-week cultivation, and prolonged cultivation led to further sludge reduction. All isolates produced xylanase, chitinase and keratinase. Phylogenetic analysis revealed that the isolates were Penicillium, Fusarium, Chaetomium, Cunninghamella, Neosartorya and Umbelopsis. Some isolates were suggested novel species. To the best of our knowledge, our study is the first to report the isolation of DS-assimilating strains. These isolates may be useful for commercial production of microbial enzymes using DS as the substrate. Because xylan, chitin and keratin in sludge-hyphae complexes are considered to be partially depolymerized, this material could also be utilized as a readily available fertilizer. © 2013 The Society for Applied Microbiology.

  1. Anaerobic digestion of amine-oxide-based surfactants: biodegradation kinetics and inhibitory effects.

    PubMed

    Ríos, Francisco; Lechuga, Manuela; Fernández-Arteaga, Alejandro; Jurado, Encarnación; Fernández-Serrano, Mercedes

    2017-08-01

    Recently, anaerobic degradation has become a prevalent alternative for the treatment of wastewater and activated sludge. Consequently, the anaerobic biodegradability of recalcitrant compounds such as some surfactants require a thorough study to avoid their presence in the environment. In this work, the anaerobic biodegradation of amine-oxide-based surfactants, which are toxic to several organisms, was studied by measuring of the biogas production in digested sludge. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R 12 ), Myristamine oxide (AO-R 14 ) and Cocamidopropylamine oxide (AO-cocoamido). Results show that AO-R 12 and AO-R 14 inhibit biogas production, inhibition percentages were around 90%. AO-cocoamido did not cause inhibition and it was biodegraded until reaching a percentage of 60.8%. Otherwise, we fitted the production of biogas to two kinetic models, to a pseudo first-order model and to a logistic model. Production of biogas during the anaerobic biodegradation of AO-cocoamido was pretty good adjusted to the logistics model. Kinetic parameters were also determined. This modelling is useful to predict their behaviour in wastewater treatment plants and under anaerobic conditions in the environment.

  2. Dynamics of selected pre-existing polybrominated diphenylethers (PBDEs) in municipal wastewater sludge under anaerobic conditions.

    PubMed

    Shin, Mari; Duncan, Brigitte; Seto, Peter; Falletta, Patricia; Lee, Dae-Young

    2010-03-01

    Despite the rapid, widespread accumulation of polybrominated diphenylethers (PBDEs) in our surroundings, their environmental fate has been largely unknown. In the present study, most common congeners (BDE 47, 99, 100, 138, 153, 154, 183 and 209) were investigated for their dynamics in municipal sewage sludge under mesophilic condition (37 degrees C). In anaerobic batch cultures, the concentrations of BDE 47, 99, 100 and 209, exhibited significant decreases (by 22-40% from their initial concentration), whereas the levels of the other congeners, BDE 138, 153, 154 and 183, remained stable during a 238-d incubation. However, in a parallel study conducted in a pilot-scale anaerobic sludge digester, loss of all eight congeners was observed. The present study indicates that certain PBDE congeners undergo a significant mass decrease under anaerobic conditions. Crown Copyright (c) 2010. Published by Elsevier Ltd. All rights reserved.

  3. Moorella stamsii sp. nov., a new anaerobic thermophilic hydrogenogenic carboxydotroph isolated from digester sludge.

    PubMed

    Alves, J I; van Gelder, A H; Alves, M M; Sousa, D Z; Plugge, C M

    2013-11-01

    A novel anaerobic, thermophilic, carbon monoxide-utilizing bacterium, strain E3-O(T), was isolated from anaerobic sludge from a municipal solid waste digester. Cells were straight rods, 0.6-1 µm in diameter and 2-3 µm in length and grew as single cells or in pairs. Cells formed round terminal endospores. The temperature range for growth was 50-70 °C, with an optimum at 65 °C. The pH range for growth was 5.7-8.0, with an optimum at 7.5. Strain E3-O(T) had the ability to ferment various sugars, such as fructose, galactose, glucose, mannose, raffinose, ribose, sucrose and xylose, producing mainly H2 and acetate. In addition, the isolate was able to grow with CO as the sole carbon and energy source. CO oxidation was coupled to H2 and CO2 formation. The G+C content of the genomic DNA was 54.6 mol%. Based on 16S rRNA gene sequence analysis, this bacterium is most closely related to Moorella glycerini (97 % sequence identity). Based on the physiological features and phylogenetic analysis, it is proposed that strain E3-O(T) should be classified in the genus Moorella as a representative of a novel species, Moorella stamsii. The type strain of Moorella stamsii is E3-O(T) ( = DSM 26271(T) = CGMCC 1.5181(T)).

  4. Toxicity of nonylphenol diethoxylate in lab-scale anaerobic digesters.

    PubMed

    Bozkurt, Hande; Sanin, F Dilek

    2014-06-01

    Nonylphenol compounds have high commercial, industrial and domestic uses owing to their surface active properties. In addition to their toxic, carcinogenic and persistent characteristics; they have drawn the attention of scientists lately due to their endocrine disrupting properties. Their widespread use and disposal cause them to enter wastewater treatment systems at high concentrations. Since they are highly persistent and hydrophobic, they accumulate mostly on sludge. In this study using Anaerobic Toxicity Assay (ATA) tests, the toxicity of a model nonylphenol compound, nonylphenol diethoxylate (NP2EO), for anaerobic digestion of sludge was determined. The test bottles were dosed with NP2EO in acetone, with concentrations ranging from 1 mg L(-1) to 30 mg L(-1). During the tests, gas productions and compositions in terms of methane and carbon dioxide were monitored. To be able to judge about the fate, the target compounds were extracted from water and sludge and analyzed using GC/MS. The sludge samples used for assembling the reactors were found to contain NP and NP1EO but no NP2EO. After the assay was completed, all the NP2EO spiked into the live reactors was found to disappear. The increase seen in NP1EO and NP and further accumulation of NP in the system, indicated the conversion of NP2EO to these metabolites. On the other hand, no conversion was observed in abiotic reactors. Inhibition of NP2EO for anaerobic microorganisms was not observed throughout the tests considering the biogas production of the test reactors in comparison to the control reactors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion.

    PubMed

    Fagbohungbe, Michael O; Herbert, Ben M J; Hurst, Lois; Ibeto, Cynthia N; Li, Hong; Usmani, Shams Q; Semple, Kirk T

    2017-03-01

    Biochar, like most other adsorbents, is a carbonaceous material, which is formed from the combustion of plant materials, in low-zero oxygen conditions and results in a material, which has the capacity to sorb chemicals onto its surfaces. Currently, research is being carried out to investigate the relevance of biochar in improving the soil ecosystem, digestate quality and most recently the anaerobic digestion process. Anaerobic digestion (AD) of organic substrates provides both a sustainable source of energy and a digestate with the potential to enhance plant growth and soil health. In order to ensure that these benefits are realised, the anaerobic digestion system must be optimized for process stability and high nutrient retention capacity in the digestate produced. Substrate-induced inhibition is a major issue, which can disrupt the stable functioning of the AD system reducing microbial breakdown of the organic waste and formation of methane, which in turn reduces energy output. Likewise, the spreading of digestate on land can often result in nutrient loss, surface runoff and leaching. This review will examine substrate inhibition and their impact on anaerobic digestion, nutrient leaching and their environmental implications, the properties and functionality of biochar material in counteracting these challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Renewable Biochemical Methane Potential through Anaerobic Co-digestion from Selective Feed Stocks

    NASA Astrophysics Data System (ADS)

    Thara, K.; Navis Karthika, Ignatius; Dheenadayalan, M. S., Dr

    2017-08-01

    Biochemical Methane Potential (BMP) analysis provides a measure of the anaerobic biodegradability of a given substrate. BMP test is also used to evaluate the potential biogas (methane) production between various Co-digestion substrates. This test is also used to determine the amount of organic carbon in a given material that can be an aerobically converted to methane-Biogas. Studies were carried out for the production of biogas from the leather solid waste. Co-digestion (simultaneous digestion of two or more substrates) studies were carried out in batch reactor using the fleshing (a solid waste generated during the processing of raw hides or skins into finished leather) along with the fruit and vegetable waste at mesophilic condition 35° C). The anaerobic methanogenic seed sludge prepared separately followed by standard BMP test, which was used as the seed inoculums. Recent research on this topic is reviewed in this current paper.

  7. A new method for the simultaneous enhancement of methane yield and reduction of hydrogen sulfide production in the anaerobic digestion of waste activated sludge.

    PubMed

    Dai, Xiaohu; Hu, Chongliang; Zhang, Dong; Chen, Yinguang

    2017-11-01

    The biogas generated from anaerobic digestion (AD) also includes undesirable by-product such as hydrogen sulfide (H 2 S), which must be removed before the biogas can be used as a clean energy source. Therefore, it is necessary to find an appropriate strategy to simultaneously enhance the methane yield and reduce H 2 S production. An efficient strategy-pretreating sludge at pH 10 for 8d and adjusting the system at neutral pH to produce methane for 20d-is reported for the synchronous enhancement of methane production and reduction of H 2 S production during AD. The experimental results showed that the cumulative methane yield was 861.2±6.1mL/g volatile solids (VS) of sludge pretreated at pH 10 in semi-continuous stirred anaerobic reactors for 84d, an increase of 49.6% over the yield in the control. Meanwhile, the cumulative production of H 2 S was 144.1×10 -4 mL/g VS, 54.2% lower than that in the control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups.

    PubMed

    McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; McIlroy, Bianca; Nierychlo, Marta; Kristensen, Jannie Munk; Karst, Søren Michael; Albertsen, Mads; Nielsen, Per Halkjær

    2017-01-01

    Wastewater is increasingly viewed as a resource, with anaerobic digester technology being routinely implemented for biogas production. Characterising the microbial communities involved in wastewater treatment facilities and their anaerobic digesters is considered key to their optimal design and operation. Amplicon sequencing of the 16S rRNA gene allows high-throughput monitoring of these systems. The MiDAS field guide is a public resource providing amplicon sequencing protocols and an ecosystem-specific taxonomic database optimized for use with wastewater treatment facility samples. The curated taxonomy endeavours to provide a genus-level-classification for abundant phylotypes and the online field guide links this identity to published information regarding their ecology, function and distribution. This article describes the expansion of the database resources to cover the organisms of the anaerobic digester systems fed primary sludge and surplus activated sludge. The updated database includes descriptions of the abundant genus-level-taxa in influent wastewater, activated sludge and anaerobic digesters. Abundance information is also included to allow assessment of the role of emigration in the ecology of each phylotype. MiDAS is intended as a collaborative resource for the progression of research into the ecology of wastewater treatment, by providing a public repository for knowledge that is accessible to all interested in these biotechnologically important systems. http://www.midasfieldguide.org. © The Author(s) 2017. Published by Oxford University Press.

  9. MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups

    PubMed Central

    McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; McIlroy, Bianca; Nierychlo, Marta; Kristensen, Jannie Munk; Karst, Søren Michael; Albertsen, Mads

    2017-01-01

    Abstract Wastewater is increasingly viewed as a resource, with anaerobic digester technology being routinely implemented for biogas production. Characterising the microbial communities involved in wastewater treatment facilities and their anaerobic digesters is considered key to their optimal design and operation. Amplicon sequencing of the 16S rRNA gene allows high-throughput monitoring of these systems. The MiDAS field guide is a public resource providing amplicon sequencing protocols and an ecosystem-specific taxonomic database optimized for use with wastewater treatment facility samples. The curated taxonomy endeavours to provide a genus-level-classification for abundant phylotypes and the online field guide links this identity to published information regarding their ecology, function and distribution. This article describes the expansion of the database resources to cover the organisms of the anaerobic digester systems fed primary sludge and surplus activated sludge. The updated database includes descriptions of the abundant genus-level-taxa in influent wastewater, activated sludge and anaerobic digesters. Abundance information is also included to allow assessment of the role of emigration in the ecology of each phylotype. MiDAS is intended as a collaborative resource for the progression of research into the ecology of wastewater treatment, by providing a public repository for knowledge that is accessible to all interested in these biotechnologically important systems. Database URL: http://www.midasfieldguide.org PMID:28365734

  10. Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load.

    PubMed

    Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G

    2013-09-01

    The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load. Copyright © 2013. Published by Elsevier Ltd.

  11. Effect of oxygen dosing point and mixing on the microaerobic removal of hydrogen sulphide in sludge digesters.

    PubMed

    Díaz, I; Pérez, S I; Ferrero, E M; Fdz-Polanco, M

    2011-02-01

    Limited oxygen supply to anaerobic sludge digesters to remove hydrogen sulphide from biogas was studied. Micro-oxygenation showed competitive performance to reduce considerably the additional equipment necessary to perform biogas desulphurization. Two pilot-plant digesters with an HRT of ∼ 20 d were micro-oxygenated at a rate of 0.25 NL per L of feed sludge with a removal efficiency higher than 98%. The way of mixing (sludge or biogas recirculation) and the point of oxygen supply (headspace or liquid phase) played an important role on hydrogen sulphide oxidation. While micro-oxygenation with sludge recirculation removed only hydrogen sulphide from the biogas, dissolved sulphide was removed if micro-oxygenation was performed with biogas recirculation. Dosage in the headspace resulted in a more stable operation. The result of the hydrogen sulphide oxidation was mostly elemental sulphur, partially accumulated in the headspace of the digester, where different sulphide-oxidising bacteria were found. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Anaerobic Digestion II. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    This lesson is the second of a two-part series on anaerobic digestion. Topics discussed include classification of digester by function, roof design, and temperature range, mixing systems, gas system components, operational control basics, and general safety considerations. The lesson includes an instructor's guide and student workbook. The…

  13. Prediction of anaerobic biodegradability and bioaccessibility of municipal sludge by coupling sequential extractions with fluorescence spectroscopy: towards ADM1 variables characterization.

    PubMed

    Jimenez, Julie; Gonidec, Estelle; Cacho Rivero, Jesús Andrés; Latrille, Eric; Vedrenne, Fabien; Steyer, Jean-Philippe

    2014-03-01

    Advanced dynamic anaerobic digestion models, such as ADM1, require both detailed organic matter characterisation and intimate knowledge of the involved metabolic pathways. In the current study, a methodology for municipal sludge characterization is investigated to describe two key parameters: biodegradability and bioaccessibility of organic matter. The methodology is based on coupling sequential chemical extractions with 3D fluorescence spectroscopy. The use of increasingly strong solvents reveals different levels of organic matter accessibility and the spectroscopy measurement leads to a detailed characterisation of the organic matter. The results obtained from testing 52 municipal sludge samples (primary, secondary, digested and thermally treated) showed a successful correlation with sludge biodegradability and bioaccessibility. The two parameters, traditionally obtained through the biochemical methane potential (BMP) lab tests, are now obtain in only 5 days compared to the 30-60 days usually required. Experimental data, obtained from two different laboratory scale reactors, were used to validate the ADM1 model. The proposed approach showed a strong application potential for reactor design and advanced control of anaerobic digestion processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge.

    PubMed

    Steinberg, Lisa M; Regan, John M

    2008-11-01

    Methanogens play a critical role in the decomposition of organics under anaerobic conditions. The methanogenic consortia in saturated wetland soils are often subjected to large temperature fluctuations and acidic conditions, imposing a selective pressure for psychro- and acidotolerant community members; however, methanogenic communities in engineered digesters are frequently maintained within a narrow range of mesophilic and circumneutral conditions to retain system stability. To investigate the hypothesis that these two disparate environments have distinct methanogenic communities, the methanogens in an oligotrophic acidic fen and a mesophilic anaerobic digester treating municipal wastewater sludge were characterized by creating clone libraries for the 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes. A quantitative framework was developed to assess the differences between these two communities by calculating the average sequence similarity for 16S rRNA genes and mcrA within a genus and family using sequences of isolated and characterized methanogens within the approved methanogen taxonomy. The average sequence similarities for 16S rRNA genes within a genus and family were 96.0 and 93.5%, respectively, and the average sequence similarities for mcrA within a genus and family were 88.9 and 79%, respectively. The clone libraries of the bog and digester environments showed no overlap at the species level and almost no overlap at the family level. Both libraries were dominated by clones related to uncultured methanogen groups within the Methanomicrobiales, although members of the Methanosarcinales and Methanobacteriales were also found in both libraries. Diversity indices for the 16S rRNA gene library of the bog and both mcrA libraries were similar, but these indices indicated much lower diversity in the 16S digester library than in the other three libraries.

  15. Pilot plant experience on anaerobic codigestion of source selected OFMSW and sewage sludge.

    PubMed

    Cabbai, Valentina; De Bortoli, Nicola; Goi, Daniele

    2016-03-01

    Anaerobic codigestion of source selected organic fraction of municipal solid waste (SS-OFMSW) and sewage sludge may be one of the most viable solutions to optimize oversized digesters efficiency in wastewater treatment plants. Based on results of BMP tests obtained for sewage sludge and SS-OFMSW, pilot plant tests were carried out by 3.4 m(3) CSTR reactor at mesophilic temperature. A mix of fruit and vegetable waste from wholesale market and canteen waste was used as SS-OFMSW substrate. Tests were conducted applying an OLR (organic loading rate) ramp with 6 different phases until a value of 3.2 kgVS/m(3) d. Feedstock and digestate characteristics, efficiency and process parameters were monitored. The anaerobic codigestion development was stable in each phase: early indicators like VFA (volatile fatty acids) and FOS/TAC ratio were always below instability threshold values. The maximum OLR tested determined a GPR (gas production rate) of 0.95 N m(3)/m(3) d and SGP (specific gas production) of 0.49 N m(3)/kgVS with a VS abatement of 67.3%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Improved utilization of fish waste by anaerobic digestion following omega-3 fatty acids extraction.

    PubMed

    Nges, Ivo Achu; Mbatia, Betty; Björnsson, Lovisa

    2012-11-15

    Fish waste is a potentially valuable resource from which high-value products can be obtained. Anaerobic digestion of the original fish waste and the fish sludge remaining after enzymatic pre-treatment to extract fish oil and fish protein hydrolysate was evaluated regarding the potential for methane production. The results showed high biodegradability of both fish sludge and fish waste, giving specific methane yields of 742 and 828 m(3)CH(4)/tons VS added, respectively. However, chemical analysis showed high concentrations of light metals which, together with high fat and protein contents, could be inhibitory to methanogenic bacteria. The feasibility of co-digesting the fish sludge with a carbohydrate-rich residue from crop production was thus investigated, and a full-scale process outlined for converting odorous fish waste to useful products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Hemicellulose conversion by anaerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Henry, M.P.; Christopher, R.W.

    1982-01-01

    The digestibility of an aquatic biomass (water hyacinth), a land-based biomass (Coastal Bermuda grass), and a biomass-waste blend (a mixture of hyacinth, grass, MSW, and sludge) under various digestion conditions was studied. Anaerobic digestion of hemicellulose consists of the steps of enzymatic hydrolysis of hemicellulose to glucans, mannans, galactans, xylans, and arabans, and then to simple hexose and pentose sugars; production of C/sub 2/ and higher fatty acids from the simple sugars; conversion of higher fatty acids to acetate; and finally, production of methane and CO/sub 2/ from acetate, and CO/sub 2/ and hydrogen. The conversion of hemicellulose was highermore » under mesophilic conditions than those of cellulose or protein for all biomass test feeds, probably because the hemicellulose structure was more vulnerable to enzymatic attack than that of the lignocellulosic component. Cellulose conversion efficiencies at the mesophilic and thermophilic temperatures were about the same. However, hemicellulose was converted at a much lower efficiency than cellulose during thermophilic digestion - a situation that was the reverse of that observed at the mesophilic temperature. Cellulose was utilized in preference to hemicellulose during mesophilic digestion of nitrogen-supplemented Bermuda grass. It was speculated that Bermuda grass cellulose was converted at a higher efficiency than hemicellulose in the presence of external nitrogen because the metabolism of the breakdown product (glucose) of cellulose requires the least investment of enzymes and energy.« less

  18. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations.

    PubMed

    Fux, C; Siegrist, H

    2004-01-01

    In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

  19. REACTIVATION AND REGROWTH OF INDICATOR ORGANISMS ASSOCIATED WITH ANAEROBICALLY DIGESTED AND DEWATERED BIOSOLIDS: EPA’S PERSPECTIVE

    EPA Science Inventory

    The Water Environment Research Foundation (WERF) recently published a report titled Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bacte...

  20. Digestion of high rate activated sludge coupled to biochar formation for soil improvement in the tropics.

    PubMed

    Nansubuga, Irene; Banadda, Noble; Ronsse, Frederik; Verstraete, Willy; Rabaey, Korneel

    2015-09-15

    High rate activated sludge (HRAS) is well-biodegradable sludge enabling energy neutrality of wastewater treatment plants via anaerobic digestion. However, even through successful digestion a notable residue still remains. Here we investigated whether this residue can be converted to biochar, for its use as a fertilizer or as a solid fuel, and assessed its characteristics and overall process efficiency. In a first phase, HRAS was anaerobicaly digested under mesophilic conditions at a sludge retention time of 20 days. HRAS digested well (57.9 ± 6.2% VS degradation) producing on average 0.23 ± 0.04 L CH4 per gram VS fed. The digestate particulates were partially air-dried to mimic conditions used in developing countries, and subsequently converted to biochar by fixed-bed slow pyrolysis at a residence time of 15 min and at highest heating temperatures (HHT) of 300 °C, 400 °C and 600 °C. Subsequently, the produced chars were characterized by proximate analysis, CHN-elemental analysis, pH in solution and bomb calorimetry for higher heating value. The yield and volatile matter decreased with increasing HHT while ash content and fixed carbon increased with increasing HHT. The produced biochar showed properties optimal towards soil amendment when produced at a temperature of 600 °C with values of 5.91 wt%, 23.75 wt%, 70.35% on dry basis (db) and 0.44 for volatile matter, fixed carbon, ash content and H/C ratio, respectively. With regard to its use for energy purposes, the biochar represented a lower calorific value than the dried HRAS digestate likely due to high ash content. Based on these findings, it can be concluded that anaerobic digestion of HRAS and its subsequent biochar formation at HHT of 600 °C represents an attractive route for sludge management in tropic settings like in Uganda, coupling carbon capture to energy generation, carbon sequestration and nutrient recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Microbial dynamics in anaerobic digestion reactors for treating organic urban residues during the start-up process.

    PubMed

    Alcántara-Hernández, R J; Taş, N; Carlos-Pinedo, S; Durán-Moreno, A; Falcón, L I

    2017-06-01

    Anaerobic digestion of organic residues offers economic benefits via biogas production, still methane (CH 4 ) yield relies on the development of a robust microbial consortia for adequate substrate degradation, among other factors. In this study, we monitor biogas production and changes in the microbial community composition in two semi-continuous stirred tank reactors during the setting process under mesophilic conditions (35°C) using a 16S rDNA high-throughput sequencing method. Reactors were initially inoculated with anaerobic granular sludge from a brewery wastewater treatment plant, and gradually fed organic urban residues (4·0 kg VS m -3  day -1 ) . The inocula and biomass samples showed changes related to adaptations of the community to urban organic wastes including a higher relative proportion of Clostridiales, with Ruminococcus spp. and Syntrophomonas spp. as recurrent species. Candidatus Cloacamonas spp. (Spirochaetes) also increased from ~2·2% in the inoculum to >10% in the reactor biomass. The new community consolidated the cellulose degradation and the propionate and amino acids fermentation processes. Acetoclastic methanogens were more abundant in the reactor, where Methanosaeta spp. was found as a key player. This study demonstrates a successful use of brewery treatment plant granular sludge to obtain a robust consortium for methane production from urban organic solid waste in Mexico. This study describes the selection of relevant bacteria and archaea in anaerobic digesters inoculated with anaerobic granular sludge from a brewery wastewater treatment plant. Generally, these sludge granules are used to inoculate reactors digesting organic urban wastes. Though, it is still not clearly understood how micro-organisms respond to substrate variations during the reactor start-up process. After feeding two reactors with organic urban residues, it was found that a broader potential for cellulose degradation was developed including Bacteroidetes

  2. Minimisation of costs by using disintegration at a full-scale anaerobic digestion plant.

    PubMed

    Winter, A

    2002-01-01

    Various half-scale and lab-scale investigations have already shown that the disintegration of excess sludge is a possible pre-treatment to optimise anaerobic digestion. To control these results different methods of disintegration were investigated at a full-scale plant. Two stirred ball mills and a plant for oxidation with ozone were applied. A positive influence of disintegration on the anaerobic biodegradability can be established with application of a stirred ball mill. Biogas production as well as the degree of degradation were increased by about 20%. Laboratory investigations also validate that disintegration increases the polymer demand and leads to a lower solid content after dewatering. A higher pollution level of process water after dewatering even with ammonia and COD corroborates the results of the anaerobic degradation. Capital costs for the stirred ball mill, costs for energy, manpower and maintenance can be covered if the specific costs for disposal are high. If the development of costs in future and the current discussion about sludge disposal are taken into account sewage sludge disintegration can be a suitable technique to minimise costs at waste water treatment plants.

  3. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity

    NASA Astrophysics Data System (ADS)

    Mei, Ran; Narihiro, Takashi; Nobu, Masaru K.; Kuroda, Kyohei; Liu, Wen-Tso

    2016-09-01

    Anaerobic digestion is a common technology to biologically stabilize wasted solids produced in municipal wastewater treatment. Its efficiency is usually evaluated by calculating the reduction in volatile solids, which assumes no biomass growth associated with digestion. To determine whether this assumption is valid and further evaluate digestion efficiency, this study sampled 35 digester sludge from different reactors at multiple time points together with the feed biomass in a full-scale water reclamation plant at Chicago, Illinois. The microbial communities were characterized using Illumina sequencing technology based on 16S rRNA and 16S rRNA gene (rDNA). 74 core microbial populations were identified and represented 58.7% of the entire digester community. Among them, active populations were first identified using the ratio of 16S rRNA and 16S rDNA (rRNA/rDNA) for individual populations, but this approach failed to generate consistent results. Subsequently, a recently proposed mass balance model was applied to calculate the specific growth rate (μ), and this approach successfully identified active microbial populations in digester (positive μ) that could play important roles than those with negative μ. It was further estimated that 82% of microbial populations in the feed sludge were digested in comparison with less than 50% calculated using current equations.

  4. Solid anaerobic digestion: State-of-art, scientific and technological hurdles.

    PubMed

    André, Laura; Pauss, André; Ribeiro, Thierry

    2018-01-01

    In this paper, a state-of-art about solid anaerobic digestion (AD), focused on recent progress and trends of research is proposed. Solid anaerobic digestion should be the most appropriate process for degradation of by-products with high total solid (TS) content, especially lignocellulosic materials like agricultural waste (straw, manure), household waste and food waste. Solid AD is already widely used in waste water treatment plant for treating plant for sewage sludge but could be more developed for lignocellulosic materials with high TS content. Many research works were carried out in Europe on solid AD, focused on current hurdles (BMP, codigestion, inhibition, microbial population, rheology, water transfers, inoculum, etc.) in order to optimize the solid AD process. In conclusion, hurdles of solid AD process should and must be solved in order to propose better productivity and profitability of such system operating with high TS content (>15%), favouring reliable industrial processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Characterization of a Methanogenic Community within an Algal Fed Anaerobic Digester

    PubMed Central

    Ellis, Joshua T.; Tramp, Cody; Sims, Ronald C.; Miller, Charles D.

    2012-01-01

    The microbial diversity and metabolic potential of a methanogenic consortium residing in a 3785-liter anaerobic digester, fed with wastewater algae, was analyzed using 454 pyrosequencing technology. DNA was extracted from anaerobic sludge material and used in metagenomic analysis through PCR amplification of the methyl-coenzyme M reductase α subunit (mcrA) gene using primer sets ML, MCR, and ME. The majority of annotated mcrA sequences were assigned taxonomically to the genera Methanosaeta in the order Methanosarcinales. Methanogens from the genus Methanosaeta are obligate acetotrophs, suggesting this genus plays a dominant role in methane production from the analyzed fermentation sample. Numerous analyzed sequences within the algae fed anaerobic digester were unclassified and could not be assigned taxonomically. Relative amplicon frequencies were determined for each primer set to determine the utility of each in pyrosequencing. Primer sets ML and MCR performed better quantitatively (representing the large majority of analyzed sequences) than primer set ME. However, each of these primer sets was shown to provide a quantitatively unique community structure, and thus they are of equal importance in mcrA metagenomic analysis. PMID:23724331

  6. Aerobic sludge digestion under low dissolved oxygen concentrations.

    PubMed

    Arunachalam, RaviSankar; Shah, Hemant K; Ju, Lu-Kwang

    2004-01-01

    Low dissolved oxygen (DO) concentrations occur commonly in aerobic digesters treating thickened sludge, with benefits of smaller digester size, much reduced aeration cost, and higher digestion temperature (especially important for plants in colder areas). The effects of low DO concentrations on digestion kinetics were studied using the sludge from municipal wastewater treatment plants in Akron, Ohio, and Los Lunas, New Mexico. The experiments were conducted in both batch digestion and a mixed mode of continuous, fed-batch, and batch operations. The low DO condition was clearly advantageous in eliminating the need for pH control because of the simultaneous occurrence of nitrification and denitrification. However, when compared with fully aerobic (high DO) systems under constant pH control (rare in full-scale plants), low DO concentrations and a higher solids loading had a negative effect on the specific volatile solids (VS) digestion kinetics. Nonetheless, the overall (volumetric) digestion performance depends not only on the specific digestion kinetics, but also the solids concentration, pH, and digester temperature. All of the latter factors favor the low DO digestion of thickened sludge. The significant effect of temperature on low DO digestion was confirmed in the mixed-mode study with the Akron sludge. When compared with the well-known empirical correlation between VS reduction and the product (temperature x solids retention time), the experimental data followed the same trend, but were lower than the correlation predictions. The latter was attributed to the lower digestible VS in the Akron sludge, the slower digestion at low DO concentrations, or both. Through model simulation, the first-order decay constant (kd) was estimated as 0.004 h(-1) in the mixed-mode operations, much lower than those (0.011 to 0.029 h(-1)) obtained in batch digestion. The findings suggested that the interactions among sludges with different treatment ages may have a substantially

  7. Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process.

    PubMed

    Yang, Xiaoyi; Wang, Xin; Wang, Lei

    2010-04-01

    For a better sewage sludge disposal and more efficient energy reclamation, transforming of components and energy in sludge by thermal and WAO pretreatment followed by two-phase anaerobic UASB process were studied in the pilot scale. Biogas outputs and the qualities and quantities of the effluent and solid residue were compared with a traditional anaerobic sludge digestion. Sludge components, including carbon, nitrogen, phosphorus, sulphur, were observed and mass balances were discussed throughout the process. The input and output energy balance was also studied. Results showed different trait to compare with biogas outputs in terms of COD added and raw sludge added. Pretreatment improved the transformation of carbon substances into biogas production with higher carbon removal and higher VSS removal. Comparing the energy obtained from biogas production with energy inputs required for pretreatment, energy output in the whole process decreased with higher pretreatment temperature. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta).

    PubMed

    Sode, Sidsel; Bruhn, Annette; Balsby, Thorsten J S; Larsen, Martin Mørk; Gotfredsen, Annemarie; Rasmussen, Michael Bo

    2013-10-01

    Phosphorus and biologically active nitrogen are valuable nutrient resources. Bioremediation with macroalgae is a potential means for recovering nutrients from waste streams. In this study, reject water from anaerobically digested sewage sludge was successfully tested as nutrient source for cultivation of the green macroalgae Ulva lactuca. Maximal growth rates of 54.57±2.16% FW d(-1) were achieved at reject water concentrations equivalent to 50 μM NH4(+). Based on the results, the growth and nutrient removal was parameterised as function of NH4(+) concentration a tool for optimisation of any similar phycoremediation system. Maximal nutrient removal rates of 22.7 mg N g DW(-1) d(-1) and 2.7 mg P g DW(-1) d(-1) were achieved at reject water concentrations equivalent to 80 and 89 μM NH4(+), respectively. A combined and integrated use of the produced biomass in a biorefinery is thought to improve the feasibility of using Ulva for bioremediation of reject water. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. The anaerobic digestion process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.; Boone, D.R.

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited rangemore » of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.« less

  10. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants.

    PubMed

    Maragkaki, A E; Fountoulakis, M; Gypakis, A; Kyriakou, A; Lasaridi, K; Manios, T

    2017-01-01

    Due to low degradability of dry solids, most of the digesters at wastewater treatment plants (WWTP) operate at low loading rates resulting in poor biogas yields. In this study, co-digestion of sewage sludge (SS) with olive mill wastewater (OMW), cheese whey (CW) and crude glycerol (CG) was studied in an attempt to improve biogas production of existing digesters at WWTPs. The effect of agro-industrial by-products in biogas production was investigated using a 220L pilot-scale (180L working volume) digester under mesophilic conditions (35°C) with a total feeding volume of 7.5L daily and a 24-day hydraulic retention time. The initial feed was sewage sludge and the bioreactor was operated using this feed for 40days. Each agro-industrial by-product was then added to the feed so that the reactor was fed continuously with 95% sewage sludge and 5% (v/v) of each examined agro-industrial by-product. The experiments showed that a 5% (v/v) addition of OMW, CG or CW to sewage sludge significantly increased biogas production by nearly 220%, 350% and 86% as values of 34.8±3.2L/d, 185.7±15.3L/d and 45.9±3.6L/d respectively, compared to that with sewage sludge alone (375ml daily, 5% v/v in the feed). The average removal of dissolved chemical oxygen demand (d-COD) ranged between 72 and 99% for organic loading rates between 0.9 and 1.5kgVSm -3 d -1 . Reduction in the volatile solids ranged between 25 and 40%. This work suggests that methane can be produced very efficiently by adding a small concentration (5%) of agro-industrial by-products and especially CG in the inlet of digesters treating sewage sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Accelerated anaerobic release of K, Mg and P from surplus activated sludge for element recovery and struvite formation inhibition.

    PubMed

    Ito, A; Kawakami, H; Ishikawa, N; Ito, M; Oikawa, T; Sato, A; Umita, T

    2017-05-01

    Accelerated release of potassium (K), magnesium (Mg) and phosphorus (P) from surplus activated sludge (SAS) was investigated to develop a new system for the recovery of the elements. Anaerobic cultivation of SAS during 24 h released 78% of K and about 50% of Mg and P from SAS more effectively compared to aerobic cultivation (K: 40%, Mg: 15%, P: 15%). Furthermore, the addition of sodium acetate as an organic carbon source remarkably accelerated the release of K, Mg and P from SAS under anaerobic condition. However, no increase in the maximum release efficiencies was observed. The elements released from SAS could be transferred to separate liquid with the existing mechanical thickener and be recovered as MgKPO 4 by some additional process. Furthermore, the removal of the elements from SAS would inhibit the formation of struvite causing the blockage of sludge transport pipe after anaerobic digestion process of thickened sludge.

  12. Heat inactivation of poliovirus in wastewater sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.L.; Ashley, C.S.; Moseley, R.H.

    1976-09-01

    The effect of raw and anaerobically digested sludge on heat inactivation of poliovirus was investigated. Raw sludge was found to be very protective of poliovirus plaque-forming ability at all temperatures studied, but digested sludge had variable effects that were highly dependent upon the experimental conditions. In low concentrations and at relatively low inactivation temperatures, digested sludge is nearly as protective of poliovirus as raw sludge. However, at higher temperatures and concentrations, digested sludge caused a significant acceleration of poliovirus inactivation. The difference between the protective capability of raw and digested sludge is not due to loss of protective material, becausemore » this component is present in the solids of digested sludge as well as in those of raw sludge. Instead, the difference is due to a virucidal agent acquired during digestion. Addition of this agent to the solids of either raw or digested sludge reverses the protective potential of these solids during heat treatment of poliovirus.« less

  13. Utilization of urban sewage sludge: Chinese perspectives.

    PubMed

    Chen, H; Yan, S-H; Ye, Z-L; Meng, H-J; Zhu, Y-G

    2012-06-01

    Urbanization and industrialization in China has resulted in a dramatic increase in the volume of wastewater and sewage sludge produced from wastewater treatment plants. Problems associated with sewage sludge have attracted increasing attention from the public and urban planners. How to manage sludge in an economically and environmentally acceptable manner is one of the critical issues that modern societies are facing. Sludge treatment systems consist of thickening, dewatering, and several different alternative main treatments (anaerobic digestion, aerobic digestion, drying, composting, and incineration). Agricultural application, landfill, and incineration are the principal disposal methods for sewage sludge in China. However, sewage sludge disposal in the future should focus on resource recovery, reducing environmental impacts and saving economic costs. The reuse of biosolids in all scenarios can be environmentally beneficial and cost-effective. Anaerobic digestion followed by land application is the preferable options due to low economic and energy costs and material reuse. It is necessary to formulate a standard suitable for the utilization of sewage sludge in China.

  14. Impact of Coagulant and Flocculant Addition to an Anaerobic Dynamic Membrane Bioreactor (AnDMBR) Treating Waste-Activated Sludge.

    PubMed

    Kooijman, Guido; Lopes, Wilton; Zhou, Zhongbo; Guo, Hongxiao; de Kreuk, Merle; Spanjers, Henri; van Lier, Jules

    2017-03-23

    In this work, we investigated the effects of flocculation aid (FA) addition to an anaerobic dynamic membrane bioreactor (AnDMBR) (7 L, 35 °C) treating waste-activated sludge (WAS). The experiment consisted of three distinct periods. In period 1 (day 1-86), the reactor was operated as a conventional anaerobic digester with a solids retention time (SRT) and hydraulic retention time (HRT) of 24 days. In period 2 (day 86-303), the HRT was lowered to 18 days with the application of a dynamic membrane while the SRT was kept the same. In period 3 (day 303-386), a cationic FA in combination with FeCl₃ was added. The additions led to a lower viscosity, which was expected to lead to an increased digestion performance. However, the FAs caused irreversible binding of the substrate, lowering the volatile solids destruction from 32% in period 2 to 24% in period 3. An accumulation of small particulates was observed in the sludge, lowering the average particle size by 50%. These particulates likely caused pore blocking in the cake layer, doubling the trans-membrane pressure. The methanogenic consortia were unaffected. Dosing coagulants and flocculants into an AnDMBR treating sludge leads to a decreased cake layer permeability and decreased sludge degradation.

  15. Effects of shearing on biogas production and microbial community structure during anaerobic digestion with recuperative thickening.

    PubMed

    Yang, Shufan; Phan, Hop V; Bustamante, Heriberto; Guo, Wenshan; Ngo, Hao H; Nghiem, Long D

    2017-06-01

    Recuperative thickening can intensify anaerobic digestion to produce more biogas and potentially reduce biosolids odour. This study elucidates the effects of sludge shearing during the thickening process on the microbial community structure and its effect on biogas production. Medium shearing resulted in approximately 15% increase in biogas production. By contrast, excessive or high shearing led to a marked decrease in biogas production, possibly due to sludge disintegration and cell lysis. Microbial analysis using 16S rRNA gene amplicon sequencing showed that medium shearing increased the evenness and diversity of the microbial community in the anaerobic digester, which is consistent with the observed improved biogas production. By contrast, microbial diversity decreased under either excessive shearing or high shearing condition. In good agreement with the observed decrease in biogas production, the abundance of Bacteroidales and Syntrophobaterales (which are responsible for hydrolysis and acetogenesis) decreased due to high shearing during recuperative thickening. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. [Ultrasonic sludge treatment and its application on aerobic digestion].

    PubMed

    Li, Huan; Jin, Yi-ying; Nie, Yong-feng; Li, Lei; Yang, Hai-ying

    2007-07-01

    In order to enhance the degradation efficiency of waste activated sludge (WAS) in conventional aerobic digestion, various ultrasonic assisted treatment methods were investigated including ultrasonic disintegration of influent sludge, ultrasonic improvement of influent sludge activity and ultrasonic disintegration of return sludge. Firstly the effects of ultrasonic sludge treatment were studied to choose appropriate ultrasonic parameters, and then the experiments of aerobic digestion with different ultrasonic treatments were carried out. The results show that 1.0 W/mL, 10 minutes ultrasonic treatment can increase soluble chemical oxygen demand (SCOD) in the supernatant phase of sludge sample by 5.4 times and decrease total suspended solid (TSS) by 16%; 0.05 W/mL, 10 min ultrasonic treatment can increase the specific oxygen uptake rate (SOUR) of sludge sample by 29%. The two kinds of ultrasonic influent sludge pretreatment can't improve aerobic digestion effectively. Ultrasonic return sludge disintegration can enhance the volatile suspended solid (VSS) degradation ratio by 15%. Furthermore, the settlement performance of digested sludge is still good and the pollutant concentrations of supernatant phase increase slightly. So ultrasonic return sludge disintegration is considered as the most appropriate assisted treatment mode for aerobic digestion.

  17. Modified ADM1 for modeling free ammonia inhibition in anaerobic acidogenic fermentation with high-solid sludge.

    PubMed

    Bai, Jie; Liu, He; Yin, Bo; Ma, Huijun; Chen, Xinchun

    2017-02-01

    Anaerobic acidogenic fermentation with high-solid sludge is a promising method for volatile fatty acid (VFA) production to realize resource recovery. In this study, to model inhibition by free ammonia in high-solid sludge fermentation, the anaerobic digestion model No. 1 (ADM1) was modified to simulate the VFA generation in batch, semi-continuous and full scale sludge. The ADM1 was operated on the platform AQUASIM 2.0. Three kinds of inhibition forms, e.g., simple inhibition, Monod and non-inhibition forms, were integrated into the ADM1 and tested with the real experimental data for batch and semi-continuous fermentation, respectively. The improved particle swarm optimization technique was used for kinetic parameter estimation using the software MATLAB 7.0. In the modified ADM1, the K s of acetate is 0.025, the k m,ac is 12.51, and the K I_NH3 is 0.02, respectively. The results showed that the simple inhibition model could simulate the VFA generation accurately while the Monod model was the better inhibition kinetics form in semi-continuous fermentation at pH10.0. Finally, the modified ADM1 could successfully describe the VFA generation and ammonia accumulation in a 30m 3 full-scale sludge fermentation reactor, indicating that the developed model can be applicable in high-solid sludge anaerobic fermentation. Copyright © 2016. Published by Elsevier B.V.

  18. Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment.

    PubMed

    Abelleira-Pereira, Jose M; Pérez-Elvira, Sara I; Sánchez-Oneto, Jezabel; de la Cruz, Roberto; Portela, Juan R; Nebot, Enrique

    2015-03-15

    Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process. ATH is a novel AD pretreatment based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H2O2) addition that takes advantage of a peroxidation/direct steam injection synergistic effect. The main goal of the present research was to compare the performance of TH and ATH, conducted at a wide range of operating conditions, as pretreatments of mesophilic AD with an emphasis on methane production enhancement as a key parameter and its connection with the sludge solubilization. Results showed that both TH and ATH patently improved methane production in subsequent mesophilic BMP (biochemical methane potential) tests in comparison with BMP control tests (raw secondary sewage sludge). Besides other interesting results and discussions, a promising result was obtained since ATH, operated at temperature (115 °C), pretreatment time (5 min) and pressure (1 bar) considerably below those typically used in TH (170 °C, 30 min, 8 bar), managed to enhance the methane production in subsequent mesophilic BMP tests [biodegradability factor (fB) = cumulative CH4production/cumulative CH4production (Control) = 1.51 ± 0.01] to quite similar levels than conventional TH pretreatment [fB = 1.52 ± 0.03]. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Modeling microbial diversity in anaerobic digestion through an extended ADM1 model.

    PubMed

    Ramirez, Ivan; Volcke, Eveline I P; Rajinikanth, Rajagopal; Steyer, Jean-Philippe

    2009-06-01

    The anaerobic digestion process comprises a whole network of sequential and parallel reactions, of both biochemical and physicochemical nature. Mathematical models, aiming at understanding and optimization of the anaerobic digestion process, describe these reactions in a structured way, the IWA Anaerobic Digestion Model No. 1 (ADM1) being the most well established example. While these models distinguish between different microorganisms involved in different reactions, to our knowledge they all neglect species diversity between organisms with the same function, i.e. performing the same reaction. Nevertheless, available experimental evidence suggests that the structure and properties of a microbial community may be influenced by process operation and on their turn also determine the reactor functioning. In order to adequately describe these phenomena, mathematical models need to consider the underlying microbial diversity. This is demonstrated in this contribution by extending the ADM1 to describe microbial diversity between organisms of the same functional group. The resulting model has been compared with the traditional ADM1 in describing experimental data of a pilot-scale hybrid Upflow Anaerobic Sludge Filter Bed (UASFB) reactor, as well as in a more detailed simulation study. The presented model is further shown useful in assessing the relationship between reactor performance and microbial community structure in mesophilic CSTRs seeded with slaughterhouse wastewater when facing increasing levels of ammonia.

  20. A novel approach of anaerobic co-digestion between organic fraction of food waste and waste sludge from municipal wastewater treatment plant: Effect of mixing ratio

    NASA Astrophysics Data System (ADS)

    Nga, Dinh Thi; Ngoc, Tran Thi Minh; Van Ty, Nguyen; Thuan, Van Tan

    2017-09-01

    The aim of this study was to investigate the effect of mixing ratio of co-anaerobic digestion between dewatered waste sludge from municipal wastewater treatment plant (DS) and organic fraction of food waste (FW). The experiment was carried out in 3L reactors for 16 days at ambient temperature. Four mixing ratios of DW and FW was investigated including 100 % DS : 0 % FW (Run S100); 75% DS : 25 % FW (Run S75); 50% DS : 50% FW (Run S50); and 25% DS : 75% FW (Run S25) in term of VS concentration. As a result, the Run S50 achieved best performance among the four funs indicated in biogas accumulation of 32.48 L biogas and methane yield of 358.9 400ml CH4/g VS removal after 16 days operation at ambient temperature. Biogas accumulation of Run S25 was higher than that of Run S75. Run S100 produced the lowest of biogas of all runs. It is concluded that co-anaerobic digestion of different organic sources could enhance the performance of methane fermentation.

  1. Study on Release Characteristics and Recovery of Nitrogen and Phosphorus during the Anaerobic Fermentation of Excess Sludge

    NASA Astrophysics Data System (ADS)

    Qin, Yuqian; Hu, Shulong

    2018-01-01

    Ammonia nitrogen and phosphate are produced from activated excess sludge under anaerobic conditions,and will cause eutrophication upon release to the environment. A study of sludge from a eutrophication was carried out, to obtain knowledge of the nitrogen and phosphorus release patterns of the excess sludge during anaerobic fermentation and the recycling efficiency of both nitrogen and phosphorus, by adding magnesium salt and alkali solution to the supernatant liquors. The results showed that the concentration of ammonia nitrogen and phosphate of the supernatant liquors continued to increase during the process of anaerobic digestion, and both reached a maximum in 12 days, at 41.56mg / L and 47.02 mg / L respectively. By adding magnesium salt to the supernatant with c(Mg): c(P) = 1.1:1, adjusting pH value to 9.0 ∼ 9.5, phosphorus recovery rate reached up to 95.0%, while the recovery rate of ammonia was 47.4%, resulting in the formation of a sediment of magnesium ammonium phosphate, or MAP, which may he used as a high-quality fertilizer.

  2. Potential use of the organic fraction of municipal solid waste in anaerobic co-digestion with wastewater in submerged anaerobic membrane technology.

    PubMed

    Moñino, P; Jiménez, E; Barat, R; Aguado, D; Seco, A; Ferrer, J

    2016-10-01

    Food waste was characterized for its potential use as substrate for anaerobic co-digestion in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater (WW). 90% of the particles had sizes under 0.5mm after grinding the food waste in a commercial food waste disposer. COD, nitrogen and phosphorus concentrations were 100, 2 and 20 times higher in food waste than their average concentrations in WW, but the relative flow contribution of both streams made COD the only pollutant that increased significantly when both substrates were mixed. As sulphate concentration in food waste was in the same range as WW, co-digestion of both substrates would increase the COD/SO4-S ratio and favour methanogenic activity in anaerobic treatments. The average methane potential of the food waste was 421±15mLCH4g(-1)VS, achieving 73% anaerobic biodegradability. The anaerobic co-digestion of food waste with WW is expected to increase methane production 2.9-fold. The settleable solids tests and the particle size distribution analyses confirmed that both treatment lines of a conventional WWTP (water and sludge lines) would be clearly impacted by the incorporation of food waste into its influent. Anaerobic processes are therefore preferred over their aerobic counterparts due to their ability to valorise the high COD content to produce biogas (a renewable energy) instead of increasing the energetic costs associated with the aeration process for aerobic COD oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Role of oxidants in enhancing dewaterability of anaerobically digested sludge through Fe (II) activated oxidation processes: hydrogen peroxide versus persulfate

    PubMed Central

    Song, Kang; Zhou, Xu; Liu, Yiqi; Gong, Yanyan; Zhou, Beibei; Wang, Dongbo; Wang, Qilin

    2016-01-01

    Improving dewaterability of sludge is important for the disposal of sludge in wastewater treatment plants (WWTPs). This study, for the first time, investigated the Fe(II) activated oxidization processes in improving anaerobically digested sludge (ADS) dewaterability. The combination of Fe(II) (0–100 mg/g total solids (TS)) and persulfate (0–1,000 mg/g TS) under neutral pH as well as the combination of Fe(II) (0–100 mg/g TS) and hydrogen peroxide (HP) (0–1,000 mg/g TS) under pH 3.0 were used to examine and compare their effect on the ADS dewaterability enhancement. The highest ADS dewaterability enhancement was attained at 25 mg Fe(II)/g TS and 50 mg HP/g TS, when the CST (CST: the capillary suction time, a sludge dewaterability indicator) was reduced by 95%. In contrast, the highest CST reduction in Fe(II)-persulfate conditioning was 90%, which was obtained at 50 mg Fe(II)/g TS and 250 mg persulfate/g TS. The results showed that Fe(II)-HP conditioning was comparable with Fe(II)-persulfate conditioning in terms of highest CST reduction. Economic analysis suggested that the Fe(II)-HP conditioning was more promising for improving ADS dewaterability compared with Fe(II)-persulfate conditioning, with the saving being up to $65,000 per year in a WWTP with a population equivalent of 100,000. PMID:27109500

  4. The effect of thermal hydrolysis pretreatment on the anaerobic degradation of nonylphenol and short-chain nonylphenol ethoxylates in digested biosolids.

    PubMed

    McNamara, P J; Wilson, C A; Wogen, M T; Murthy, S N; Novak, J T; Novak, P J

    2012-06-01

    The presence of micropollutants can be a concern for land application of biosolids. Of particular interest are nonylphenol diethoxylate (NP(2)EO), nonylphenol monoethoxylate (NP(1)EO), and nonylphenol (NP), collectively referred to as NPE, which accumulate in anaerobically digested biosolids and are subject to regulation based on the environmental risks associated with them. Because biosolids are a valuable nutrient resource, it is essential that we understand how various treatment processes impact the fate of NPE in biosolids. Thermal hydrolysis (TH) coupled with mesophilic anaerobic digestion (MAD) is an advanced digestion process that destroys pathogens in biosolids and increases methane yields and volatile solids destruction. We investigated the impact of thermal hydrolysis pretreatment on the subsequent biodegradation of NPE in digested biosolids. Biosolids were treated with TH, anaerobic digestion, and aerobic digestion in laboratory-scale reactors, and NPE were analyzed in the influent and effluent of the digesters. NP(2)EO and NP(1)EO have been observed to degrade to the more estrogenic NP under anaerobic conditions; therefore, changes in the ratio of NP:NPE were of interest. The increase in NP:NPE following MAD was 56%; the average increase of this ratio in four sets of TH-MAD samples, however, was only 24.6 ± 3.1%. In addition, TH experiments performed in pure water verified that, during TH, the high temperature and pressure alone did not directly destroy NPE; TH experiments with NP added to sludge also showed that NP was not destroyed by the high temperature and pressure of TH when in a more complex sludge matrix. The post-aerobic digestion phases removed NPE, regardless of whether TH pretreatment occurred. This research indicates that changes in biosolids processing can have impacts beyond just gas production and solids destruction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Recent development of anaerobic digestion processes for energy recovery from wastes.

    PubMed

    Nishio, Naomichi; Nakashimada, Yutaka

    2007-02-01

    Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters.

  6. Dynamics of changes in coplanar and indicator PCB in sewage sludge during mesophilic methane digestion.

    PubMed

    Rosińska, A; Karwowska, B

    2017-02-05

    Research was conducted, which aim was to evaluate the influence of mesophilic methane digestion on degradation of coplanar and indicator PCB in sewage sludge, and on dynamics of changes of these congeners during the process. For the research, sewage sludge from a municipal wastewater treatment plant were used. Mesophilic digestion was conducted at the temperature of 36°C±1°C. The anaerobic stabilization processes of sewage sludge occurred correctly what was confirmed by appropriate values of pH, content of volatile fatty acids (VFA) and ratio of VFA to alkalinity. Biodegradation of organic compounds in sewage sludge was confirmed by the decrease in total solids (by 26%) and volatile solids (by 36%). Up to the 3rd day of the digestion process no statistically significant differences in concentration of both coplanar and indicator PCB was observed. During the following days of the process, an increase in lower chlorinated PCB concentration was demonstrated and a decrease in concentration of higher chlorinated congeners (penta-, hexa-, and heptachlorobiphenyls). After the digestion, a decrease in higher chlorinated congener concentration was found. Significant degradation was demonstrated for coplanar PCB 169 (from 77.8 to 80.5%), and indicator PCB 180 (from 57.1 to 90.3%) and PCB 153 (from 60.4 to 79.2%). Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvestre, Gracia; Ainia, Departamento de Medio Ambiente, Bioenergía e Higiene Industrial, Paterna, Valencia; Bonmatí, August

    2015-09-15

    Highlights: • Methane production rate increased between 56% and 208% during OFMSW–SS codigestion. • The OFMSW particle size reduction from 20 to 8 mm did not affect the methane yield. • OFMSW–SS codigestion promoted β-oxidation and acetoclastic methanogenic activity. • The evolution of specific activity was a feasible tool to control the process. - Abstract: The effect of organic fraction of municipal solid waste (OFMSW) loading rate and particulate size on the sewage sludge (SS) mesophilic anaerobic co-digestion was assessed in continuous stirred tank reactor at hydraulic retention time of 20 days. The SS–OFMSW mixture composed by 54% of themore » volatile solids fed (inlet-VS), at OLR of 3.1 kg{sub COD} m{sup −3} d{sup −1} (1.9 kg{sub VS} m{sup −3} d{sup −1}), showed the highest increment on the volumetric methane production and yield of +200% and +59% respectively, under stable conditions. The effect of particulate size was assessed with the same mixture and same operational conditions but reducing the OFMSW particulate size from 20 mm to 8 mm with the aim to improve the hydrolysis step, but the results showed any influence in the OFMSW particulate size range analysed. In addition, specific biomass activity was assessed at the end of each co-digestion period. Results showed that OFMSW promoted β-oxidation syntrophic acetogens and the acetoclastic methanogens activity; although the last increase of the OFMSW percentage (from 47% to 54% inlet-VS) affected negatively the specific substrate activity, but not inhibitory effect was observed. Therefore, the results obtained in the continuous experiment could be related with some inhibitory or toxic effect and not due to hydrolysis limitation. The specific biomass activity test was demonstrated to be an interesting tool to evaluate and control the co-digestion process, especially when conventional parameters did not explain the behaviour of the biological system.« less

  8. Similar PAH Fate in Anaerobic Digesters Inoculated with Three Microbial Communities Accumulating Either Volatile Fatty Acids or Methane

    PubMed Central

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10 % to 30 %, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH

  9. Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane.

    PubMed

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal

  10. Net positive energy wastewater treatment plant via thermal pre-treatment of sludge: A theoretical case study.

    PubMed

    Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky

    2017-04-16

    In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.

  11. Mesophilic and thermophilic anaerobic co-digestion of winery wastewater sludge and wine lees: An integrated approach for sustainable wine production.

    PubMed

    Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

    2017-12-01

    In this work, winery wastes generated by a cellar producing approximately 300,000 hL of wine per year was monitored for a period of one year. On average, 196 L of wastewater, 0.1 kg of waste activated sludge (dry matter) and 1.6 kg of wine lees were produced per hectoliter of wine produced. Different winery wastes, deriving from different production steps, namely waste activated sludge from wastewater treatment and wine lees, were co-treated using an anaerobic digestion process. Testing was conducted on a pilot scale for both mesophilic and thermophilic conditions. The process was stable for a long period at 37 °C, with an average biogas production of 0.386 m 3 /kg COD fed . On the other hand, for thermophilic conditions, volatile fatty acids accumulated in the reactor and the process failed after one hydraulic retention time (23 days). In order to fix the biological process, trace elements (iron, cobalt and nickel) were added to the feed of the thermophilic reactor. Metals augmentation improved process stability and yields at 55 °C. The pH ranged between 7.8 and 8.0, and specific gas production was 0.450 m 3 /kg COD fed , which corresponded to dry matter and COD removals of 34% and 88%, respectively. Although the observed performances in terms of biogas production were good, the thermophilic process exhibited some limitations related to both the necessity of metals addition and the worse dewaterability properties. In fact, while the mesophilic digestates reached a good dewatering quality via the addition of 6.5 g of polymer per kg of dry matter, the required dosage for the thermophilic sludge was greater than 10 g/kg of dry matter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Application of Methanobrevibacter acididurans in anaerobic digestion.

    PubMed

    Savant, D V; Ranade, D R

    2004-01-01

    To operate anaerobic digesters successfully under acidic conditions, hydrogen utilizing methanogens which can grow efficiently at low pH and tolerate high volatile fatty acids (VFA) are desirable. An acid tolerant hydrogenotrophic methanogen viz. Methanobrevibacter acididurans isolated from slurry of an anaerobic digester running on alcohol distillery wastewater has been described earlier by this lab. This organism could grow optimally at pH 6.0. In the experiments reported herein, M. acididurans showed better methanogenesis under acidic conditions with high VFA, particularly acetate, than Methanobacterium bryantii, a common hydrogenotrophic inhabitant of anaerobic digesters. Addition of M. acididurans culture to digesting slurry of acidogenic as well as methanogenic digesters running on distillery wastewater showed increase in methane production and decrease in accumulation of volatile fatty acids. The results proved the feasibility of application of M. acididurans in anaerobic digesters.

  13. Anaerobic digestion foaming causes--a review.

    PubMed

    Ganidi, Nafsika; Tyrrel, Sean; Cartmell, Elise

    2009-12-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water companies due to significant impacts on process efficiency and operational costs. Several foaming causes have been identified over the past few years by researchers. However, the supporting experimental information is limited and in some cases absent. The present report aims to provide a detailed review of the current anaerobic digestion foaming problem and to identify gaps in knowledge regarding the theory of foam formation in anaerobic digesters.

  14. Anaerobic co-digestion of spent coffee grounds with different waste feedstocks for biogas production.

    PubMed

    Kim, Jaai; Kim, Hakchan; Baek, Gahyun; Lee, Changsoo

    2017-02-01

    Proper management of spent coffee grounds has become a challenging problem as the production of this waste residue has increased rapidly worldwide. This study investigated the feasibility of the anaerobic co-digestion of spent coffee ground with various organic wastes, i.e., food waste, Ulva, waste activated sludge, and whey, for biomethanation. The effect of co-digestion was evaluated for each tested co-substrate in batch biochemical methane potential tests by varying the substrate mixing ratio. Co-digestion with waste activated sludge had an apparent negative effect on both the yield and production rate of methane. Meanwhile, the other co-substrates enhanced the reaction rate while maintaining methane production at a comparable or higher level to that of the mono-digestion of spent coffee ground. The reaction rate increased with the proportion of co-substrates without a significant loss in methanation potential. These results suggest the potential to reduce the reaction time and thus the reactor capacity without compromising methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Anaerobic digestion of municipal solid waste: Utility of process residues as a soil amendment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.; Nagle, N.J.; Kay, B.D.

    1995-12-31

    Tuna processing wastes (sludges high in fat, oil, and grease [FOG]) and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal challenge. The biological conversion of the organic fraction of these wastes to useful products, including methane and fertilizer-grade residue, through anaerobic high-solids digestion is currently in scale-up development. The suitability of the anaerobic digestion residues as a soil amendment was evaluated through extensive chemical analysis and greenhouse studies using corn as an indicator crop. Additionally, native Samoan soil was used to evaluate the specific application rates for the compost. Experiments established that anaerobic residuesmore » increase crop yields in direct proportion to increases in the application rate. Additionally, nutrient saturation was not demonstrated within the range of application rates evaluated for the Samoan soil. Beyond nutrient supplementation, organic residue amendment to Samoan soil imparts enhanced water and nutrient-binding capacities.« less

  16. [Anaerobic digestion of animal manure contaminated by tetracyclines].

    PubMed

    Tong, Zi-Lin; Liu, Yuan-Lu; Hu, Zhen-Hu; Yuan, Shou-Jun

    2012-03-01

    Anaerobic digestion of pig manure spiked with tetracycline (TC) and chlortetracycline (CTC) and the degradation of the two antibiotics during the anaerobic digestion at 35 degrees C were investigated. The results indicate that propionate was the main volatile fatty acid produced during the anaerobic digestion followed by acetate. Compared with the CTC addition, TC + CTC addition showed obvious inhibitory effect on the hydrolysis and acidification of easily digestible organic components of pig manure. The cumulative methane production of TC, CTC, TC + CTC and CK2 during anaerobic digestion was 386.4 mL, 406.0 mL, 412.1 mL and 464.6 mL, respectively. Degradation of TC and CTC followed the first-order kinetic equation. The half-life of TC and CTC was 14-18 days and 10 days, respectively. After the treatment of 45-day anaerobic digestion, the degradation efficiency of TC was 88.6%-91.6% with 97.7%-98.2% of CTC. Therefore, anaerobic digestion shows the benefit on the management of animal manures contaminated by tetracyclines.

  17. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste.

    PubMed

    Nagao, Norio; Tajima, Nobuyuki; Kawai, Minako; Niwa, Chiaki; Kurosawa, Norio; Matsuyama, Tatsushi; Yusoff, Fatimah Md; Toda, Tatsuki

    2012-08-01

    Anaerobic digestion of food waste was conducted at high OLR from 3.7 to 12.9 kg-VS m(-3) day(-1) for 225 days. Periods without organic loading were arranged between the each loading period. Stable operation at an OLR of 9.2 kg-VS (15.0 kg-COD) m(-3) day(-1) was achieved with a high VS reduction (91.8%) and high methane yield (455 mL g-VS-1). The cell density increased in the periods without organic loading, and reached to 10.9×10(10) cells mL(-1) on day 187, which was around 15 times higher than that of the seed sludge. There was a significant correlation between OLR and saturated TSS in the sludge (y=17.3e(0.1679×), r(2)=0.996, P<0.05). A theoretical maximum OLR of 10.5 kg-VS (17.0 kg-COD) m(-3) day(-1) was obtained for mesophilic single-stage wet anaerobic digestion that is able to maintain a stable operation with high methane yield and VS reduction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.

    PubMed

    Elmitwalli, Tarek A; Otterpohl, Ralf

    2007-03-01

    Feasibility of grey water treatment in an upflow anaerobic sludge blanket (UASB) reactor operated at different hydraulic retention time (HRT) of 16, 10 and 6h and controlled temperature of 30 degrees C was investigated. Moreover, the maximum anaerobic biodegradability without inoculum addition and maximum removal of chemical oxygen demand (COD) fractions in grey water were determined in batch experiments. High values of maximum anaerobic biodegradability (76%) and maximum COD removal in the UASB reactor (84%) were achieved. The results showed that the colloidal COD had the highest maximum anaerobic biodegradability (86%) and the suspended and dissolved COD had similar maximum anaerobic biodegradability of 70%. Furthermore, the results of the UASB reactor demonstrated that a total COD removal of 52-64% was obtained at HRT between 6 and 16 h. The UASB reactor removed 22-30% and 15-21% of total nitrogen and total phosphorous in the grey water, respectively, mainly due to the removal of particulate nutrients. The characteristics of the sludge in the UASB reactor confirmed that the reactor had a stable performance. The minimum sludge residence time and the maximum specific methanogenic activity of the sludge ranged between 27 and 93 days and 0.18 and 0.28 kg COD/(kg VS d).

  19. Co-digestion of pig slaughterhouse waste with sewage sludge.

    PubMed

    Borowski, Sebastian; Kubacki, Przemysław

    2015-06-01

    Slaughterhouse wastes (SHW) are potentially very attractive substrates for biogas production. However, mono-digestion of these wastes creates great technological problems associated with the inhibitory effects of ammonia and fatty acids on methanogens as well as with the foaming in the digesters. In the following study, the co-digestion of slaughterhouse wastes with sewage sludge (SS) was undertaken. Batch and semi-continuous experiments were performed at 35°C with municipal sewage sludge and pig SHW composed of meat tissue, intestines, bristles and post-flotation sludge. In batch assays, meat tissue and intestinal wastes gave the highest methane productions of 976 and 826 dm(3)/kg VS, respectively, whereas the methane yield from the sludge was only 370 dm(3)/kg VS. The co-digestion of sewage sludge with 50% SHW (weight basis) provided the methane yield exceeding 600 dm(3)/kg VS, which was more than twice as high as the methane production from sewage sludge alone. However, when the loading rate exceeded 4 kg VS/m(3) d, a slight inhibition of methanogenesis was observed, without affecting the digester stability. The experiments showed that the co-digestion of sewage sludge with large amount of slaughterhouse wastes is feasible, and the enhanced methane production does not affect the digester stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Stimulation and Inhibition of Anaerobic Digestion by Nickel and Cobalt: A Rapid Assessment Using the Resazurin Reduction Assay.

    PubMed

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2016-10-03

    Stimulation of anaerobic digestion by essential trace metals is beneficial from a practical point of view to enhance the biodegradability and degradation rate of wastes. Hence, a quick method to determine which metal species, and at what concentration, can optimize anaerobic digestion is of great interest to both researchers and operators. In this present study, we investigated the effect of nickel(II), cobalt(II), and their mixture, on the anaerobic digestion of synthetic municipal wastewater. Using a volumetric method, that is, measuring methane production over time, revealed that anaerobic digestion was stimulated by the addition of 5 mg L -1 nickel(II), and cobalt(II), and their mixture in day(s). However, using a novel resazurin reduction assay, and based on its change in rate over time, we evaluated both inhibition at 250 mg L -1 nickel(II) and cobalt(II), and also the stimulatory effect of 5 mg L -1 nickel(II), and cobalt(II), and their mixture, in just 6 h. By investigating the dynamic distribution of these metals in the liquid phase of the anaerobic system and kinetics of resazurin reduction by nickel spiked anaerobic sludge, the concentration of nickel(II) on anaerobic digestion performance was profiled. Three critical concentrations were determined; stimulation starting (around 1 mg L -1 ), stimulation ending (around 100 mg L -1 ) and stimulation maximizing (around 10 mg L -1 ). Hence, we propose that the resazurin reduction assay is a novel and quick protocol for studying the stimulation of anaerobic bioprocesses by bioavailable essential trace metals.

  1. Mathematical modelling of disintegration-limited co-digestion of OFMSW and sewage sludge.

    PubMed

    Esposito, G; Frunzo, L; Panico, A; d'Antonio, G

    2008-01-01

    This paper presents a mathematical model able to simulate under dynamic conditions the physical, chemical and biological processes prevailing in a OFMSW and sewage sludge anaerobic digestion system. The model proposed is based on differential mass balance equations for substrates, products and bacterial groups involved in the co-digestion process and includes the biochemical reactions of the substrate conversion and the kinetics of microbial growth and decay. The main peculiarity of the model is the surface based kinetic description of the OFMSW disintegration process, whereas the pH determination is based on a nine-order polynomial equation derived by acid-base equilibria. The model can be applied to simulate the co-digestion process for several purposes, such as the evaluation of the optimal process conditions in terms of OFMSW/sewage sludge ratio, temperature, OFMSW particle size, solid mixture retention time, reactor stirring rate, etc. Biogas production and composition can also be evaluated to estimate the potential energy production under different process conditions. In particular, model simulations reported in this paper show the model capability to predict the OFMSW amount which can be treated in the digester of an existing MWWTP and to assess the OFMSW particle size diminution pre-treatment required to increase the rate of the disintegration process, which otherwise can highly limit the co-digestion system. Copyright IWA Publishing 2008.

  2. Biohydrogen and methane production by co-digestion of cassava stillage and excess sludge under thermophilic condition.

    PubMed

    Wang, Wen; Xie, Li; Chen, Jinrong; Luo, Gang; Zhou, Qi

    2011-02-01

    Thermophilic anaerobic hydrogen and methane production by co-digestion of cassava stillage (CS) and excess sludge (ES) was investigated in this study. The improved hydrogen and subsequent methane production were observed by co-digestion of CS with certain amount of ES in batch experiments. Compared with one phase anaerobic digestion, two phase anaerobic digestion offered an attractive alternative with more abundant biogas production and energy yield, e.g., the total energy yield in two phase obtained at VS(CS)/VS(ES) of 3:1 was 25% higher than the value of one phase. Results from continuous experiments further demonstrated that VS(CS)/VS(ES) of 3:1 was optimal for hydrogen production with the highest hydrogen yield of 74 mL/gtotal VS added, the balanced nutrient condition with C/N ratio of 1.5 g carbohydrate-COD/gprotein-COD or 11.9 g C/gN might be the main reason for such enhancement. VS(CS)/VS(ES) of 3:1 was also optimal for continuous methane production considering the higher methane yield of 350 mL/gtotal VS added and the lower propionate concentration in the effluent. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Food waste co-digestion with slaughterhouse waste and sewage sludge: Digestate conditioning and supernatant quality.

    PubMed

    Borowski, Sebastian; Boniecki, Paweł; Kubacki, Przemysław; Czyżowska, Agata

    2018-04-01

    In this study, the anaerobic mesophilic co-digestion of food waste (FW) with municipal sewage sludge (MSS) and slaughterhouse waste (SHW) was undertaken in 3-dm 3 laboratory reactors as well as in 50-dm 3 reactors operated in semi-continuous conditions. The highest methane yield of around 0.63 m 3 CH 4 /kgVS fed was achieved for the mixture of FW and SHW treated in the laboratory digester operated at solids retention time (SRT) of 30 days, whereas the co-digestion of FW with MSS under similar operating conditions produced 0.46 m 3 of methane from 1 kgVS fed . No significant differences between methane yields from laboratory digesters and large-scale reactors were reported. The conditioning tests with the digestates from reactor experiments revealed the highest efficiency of inorganic coagulants among all investigated chemicals, which applied in a dose of 10 g/kg allowed to reduce capiliary suction time (CST) of the digestate below 20 s. The combined conditioning with coagulants and bentonite did not further reduce the CST value but improved the quality of the digestate supernatant. In particular, the concentrations of suspended solids, COD as well as metals in the supernatant were considerably lowered. Copyright © 2017. Published by Elsevier Ltd.

  4. Complete genome sequence of Methanolinea tarda NOBI-1 T, a hydrogenotrophic methanogen isolated from methanogenic digester sludge

    DOE PAGES

    Yamamoto, Kyosuke; Tamaki, Hideyuki; Cadillo-Quiroz, Hinsby; ...

    2014-09-04

    In this study, we report a 2.0-Mb complete genome sequence of Methanolinea tarda NOBI-1 T, a methanogenic archaeon isolated from an anaerobic digested sludge. This is the first genome report of the genus Methanolinea isolate belonging to the family Methanoregulaceae, a recently proposed novel family within the order Methanomicrobiales.

  5. Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion.

    PubMed

    Dapelo, Davide; Alberini, Federico; Bridgeman, John

    2015-11-15

    A novel Euler-Lagrangian (EL) computational fluid dynamics (CFD) finite volume-based model to simulate the gas mixing of sludge for anaerobic digestion is developed and described. Fluid motion is driven by momentum transfer from bubbles to liquid. Model validation is undertaken by assessing the flow field in a labscale model with particle image velocimetry (PIV). Conclusions are drawn about the upscaling and applicability of the model to full-scale problems, and recommendations are given for optimum application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production.

    PubMed

    Wei, Wei; Zhou, Xu; Wang, Dongbo; Sun, Jing; Wang, Qilin

    2017-07-01

    Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH 3 ) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH 3 -N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH 3 -N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B 0 ) and hydrolysis rate (k) was achieved at FA concentrations of 420-680 mg NH 3 -N/L, and was determined as approximately 22% (from 160 to 195 L CH 4 /kg VS added) and 140% (from 0.22 to 0.53 d -1 ) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B 0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from 'linear economy' to 'circular economy'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Anaerobic digestion of municipal solid wastes containing variable proportions of waste types.

    PubMed

    Akunna, J C; Abdullahi, Y A; Stewart, N A

    2007-01-01

    In many parts of the world there are significant seasonal variations in the production of the main organic wastes, food and green wastes. These waste types display significant differences in their biodegradation rates. This study investigated the options for ensuring process stability during the start up and operation of thermophilic high-solids anaerobic digestion of feedstock composed of varying proportions of food and green wastes. The results show that high seed sludge to feedstock ratio (or low waste loading rate) is necessary for ensuring process pH stability without chemical addition. It was also found that the proportion of green wastes in the feedstock can be used to regulate process pH, particularly when operating at high waste loading rates (or low seed sludge to feedstock ratios). The need for chemical pH correction during start-up and digestion operation decreased with increase in green wastes content of the feedstock. Food wastes were found to be more readily biodegradable leading to higher solids reduction while green wastes brought about pH stability and higher digestate solid content. Combining both waste types in various proportions brought about feedstock with varying buffering capacity and digestion performance. Thus, careful selection of feedstock composition can minimise the need for chemical pH regulation as well as reducing the cost for digestate dewatering for final disposal.

  8. Enhancement of sludge anaerobic biodegradability by combined microwave-H2O2 pretreatment in acidic conditions.

    PubMed

    Eswari, Parvathy; Kavitha, S; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2016-07-01

    The aim of this study was to increase the sludge disintegration and reduce the cost of microwave (MW) pretreatment. Thermodynamic analysis of MW hydrolysis revealed the best fit with a first-order kinetic model at a specific energy of 18,600 kJ/kg total solids (TS). Combining H2O2 with MW resulted in a significant increment in solubilization from 30 to 50 % at 18,600 kJ/kg TS. The pH of H2O2-assisted MW-pretreated sludge (MW + H2O2) was in the alkaline range (pH 9-10), and it made the sludge unfavorable for subsequent anaerobic digestion and inhibits methane production. In order to nullify the alkaline effect caused by the MW + H2O2 combination, the addition of acid was considered for pH adjustment. H2O2-assisted MW-pretreated sludge in acidic conditions (MW + H2O2 + acid) showed a maximum methane production of 323 mL/g volatile solids (VS) than others during anaerobic biodegradability. A cost analysis of this study reveals that MW + H2O2 + acid was the most economical method with a net profit of 59.90 €/t of sludge.

  9. Pyrosequencing of mcrA and Archaeal 16S rRNA Genes Reveals Diversity and Substrate Preferences of Methanogen Communities in Anaerobic Digesters

    PubMed Central

    Wilkins, David; Lu, Xiao-Ying; Shen, Zhiyong; Chen, Jiapeng

    2014-01-01

    Methanogenic archaea play a key role in biogas-producing anaerobic digestion and yet remain poorly taxonomically characterized. This is in part due to the limitations of low-throughput Sanger sequencing of a single (16S rRNA) gene, which in the past may have undersampled methanogen diversity. In this study, archaeal communities from three sludge digesters in Hong Kong and one wastewater digester in China were examined using high-throughput pyrosequencing of the methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Methanobacteriales, Methanomicrobiales, and Methanosarcinales were detected in each digester, indicating that both hydrogenotrophic and acetoclastic methanogenesis was occurring. Two sludge digesters had similar community structures, likely due to their similar design and feedstock. Taxonomic classification of the mcrA genes suggested that these digesters were dominated by acetoclastic methanogens, particularly Methanosarcinales, while the other digesters were dominated by hydrogenotrophic Methanomicrobiales. The proposed euryarchaeotal order Methanomassiliicoccales and the uncultured WSA2 group were detected with the 16S rRNA gene, and potential mcrA genes for these groups were identified. 16S rRNA gene sequencing also recovered several crenarchaeotal groups potentially involved in the initial anaerobic digestion processes. Overall, the two genes produced different taxonomic profiles for the digesters, while greater methanogen richness was detected using the mcrA gene, supporting the use of this functional gene as a complement to the 16S rRNA gene to better assess methanogen diversity. A significant positive correlation was detected between methane production and the abundance of mcrA transcripts in digesters treating sludge and wastewater samples, supporting the mcrA gene as a biomarker for methane yield. PMID:25381241

  10. An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal-alkaline treatment and sludge recirculation.

    PubMed

    Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-15

    Lab-scale High Efficiency Digestion (HED) systems containing a Mesophilic Anaerobic Reactor (MAR), Thermophilic Aerobic Reactor (TAR), liquid/solid separation unit, and thermal-alkaline treatment were developed to evaluate the efficiencies of sludge reduction and methane production. The HED process was divided into three phases to examine the influence of sludge pretreatment and pretreated sludge recirculation using TCOD and VSS reduction, COD solubilization, and methane production. The VSS removal with a solid/liquid separation unit, sludge recirculation, and thermal-alkaline treatment drastically increased up to 95% compared to the feed concentration. In addition, the results of COD solubilization and VSS/TSS showed that the solubilization of cells and organic matters by the thermal-alkaline treatment was highly increased, which was also consistent with the SEM images. In particular, the methane production rate increased 24-fold when the feed sludge and recirculated sludge were pretreated together. Collectively, the HED experiments performed with sludge recirculation and thermal-alkaline treatment demonstrated that the HED systems can be successfully employed for highly efficient sewage sludge reduction and methane gas production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Studies on the toxic effects of pentachlorophenol on the biological activity of anaerobic granular sludge.

    PubMed

    Liu, Xin-Wen; He, Ruo; Shen, Dong-Sheng

    2008-09-01

    In order to explore the pathway of the anaerobic biotreatment of the wastewater containing pentachlorophenol (PCP) and ensure the normal operation of Upflow Anaerobic Sludge Blanket (UASB) reactor, the anaerobic sludge under different acclimation conditions were selected to seed and start up UASB reactors. Anaerobic toxicity assays were employed to study the biological activity, the tolerance and the capacity to degrade PCP of different anaerobic granular sludge from UASB reactors. Results showed that the anaerobic granular sludge acclimated to chlorophenols (CPs) could degrade PCP more quickly (up to 9.50mg-PCP g(-1)TVS d(-1)). And the anaerobic granular sludge without acclimation to CPs had only a little activity of degrading PCP (less than 0.07 mg-PCP g(-1)TVS d(-1)). Different PCP concentrations (2, 4, 6, 8 mg L(-1)) had different inhibition effects on glucose utilization, volatile fatted acidity (VFA)-degrading and methanogens activity of PCP degradation anaerobic granular sludge, and the biological activity declined with the increase in PCP concentration. The methanogens activity suffered inhibition from PCP more easily. The different acclimation patterns of seeded sludge had distinctly different effects on biological activity of the degradation of PCP of anaerobic granular sludge from UASB reactors. The biological activity of the anaerobic granular sludge acclimated to PCP only was also inhibited. This inhibition was weak compared to that of anaerobic granular sludge acclimated to CPs, further, the activity could recover more quickly in this case. In the same reactor, the anaerobic granular sludge from the mid and base layers showed higher tolerance to PCP than that from super layer or if the sludge is unacclimated to CPs, and the corresponding recovery time of the biological activity in the mid and base layers were short. Acetate-utilizing methanogens and syntrophic propinate degraders were sensitive to PCP, compared to syntrophic butyrate degraders.

  12. [Municipal biowaste thermal-hydrolysis and ASBR anaerobic digestion].

    PubMed

    Hou, Hua-hua; Wang, Wei; Hu, Song; Xu, Yi-xian

    2010-02-01

    Thermal-hydrolysis can remarkably improve the solid organics dissolving efficiency of urban biomass waste, and anaerobic sequencing batch reactor (ASBR) was used to improve the efficiency of urban biomass waste anaerobic digestion. The optimum thermal-hydrolysis temperature and holding time was 175 degrees C and 60 min, the volatile suspended solid (VSS) dissolving ratio of kitchen waste, fruit-and-vegetable waste and sludge were 31.3%, 31.9% and 49.7%, respectively. Two ASBR and one continuous-flow stirred tank reactor (CSTR) were started at hydraulic retention time (HRT) = 20 d, COD organic loading rate (OLR) = 3.2-3.6 kg/(m3 x d). The biogas production volumes were 5656 mL/d(A1), 6335 mL/d(A2) and 3 103 mL/d(CSTR), respectively; VSS degradation ratios were 45.3% (A1), 50.87% (A2), 20.81% (CSTR), and the total COD (TCOD) removal rates were 88.1% (A1), 90% (A2), 72.6% (CSTR). In ASBR, organic solid and anaerobic microorganism were remained in the reactor during settling period. When HRT was 20 d, the solid retention time (SRT) was over 130 d, which made ASBR higher efficiency than CSTR.

  13. Hydrogen production from the dissolution of nano zero valent iron and its effect on anaerobic digestion.

    PubMed

    Huang, Yu-Xi; Guo, Jialiang; Zhang, Chunyang; Hu, Zhiqiang

    2016-01-01

    Nano zero valent iron (NZVI) has shown inhibition on methanogenesis in anaerobic digestion due to its reductive decomposition of cell membrane. The inhibition was accompanied by the accumulation of hydrogen gas due to rapid NZVI dissolution. It is not clear whether and how rapid hydrogen release from NZVI dissolution directly affects anaerobic digestion. In this study, the hydrogen release kinetics from NZVI (average size = 55 ± 11 nm) dissolution in deionized water under anaerobic conditions was first evaluated. The first-order NZVI dissolution rate constant was 2.62 ± 0.26 h(-1) with its half-life of 0.26 ± 0.03 h. Two sets of anaerobic digestion experiments (i.e., in the presence of glucose or without any substrate but at different anaerobic sludge concentrations) were performed to study the impact of H2 release from rapid NZVI dissolution, in which H2 was generated in a separate water bottle containing NZVI (i.e., ex situ H2 or externally supplied from NZVI dissolution) before hydrogen gas was introduced to anaerobic digestion. The results showed that the H2 partial pressure in the headspace of the digestion bottle reached as high as 0.27 atm due to rapid NZVI dissolution, resulting in temporary inhibition of methane production. Nevertheless, the 5-d cumulative methane volume in the group with ex situ H2 production due to NZVI dissolution was actually higher than that of control, suggesting NZVI inhibition on methanogenesis is solely due to the reductive decomposition of cell membrane after direct contact with NZVI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    PubMed

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-06-15

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge.

    PubMed

    Quiroga, G; Castrillón, L; Fernández-Nava, Y; Marañón, E; Negral, L; Rodríguez-Iglesias, J; Ormaechea, P

    2014-02-01

    This paper presents a study of the effect of applying ultrasound pre-treatment in the production of methane when co-digesting mixtures of cattle manure with food waste and sludge. A series of experiments were carried out under mesophilic and thermophilic conditions in continuously stirred-tank reactors containing 70% cattle manure, 20% food waste and 10% sewage sludge. Ultrasound pre-treatment allows operating at lower HRT, achieving higher volumetric methane yields: 0.85 L CH4/L day at 36°C and 0.82 CH4/L day at 55°C, when cattle manure and sewage sludge were sonicated. With respect to the non-sonicated waste, these values represent increases of up to 31% and 67% for mesophilic and thermophilic digestion, respectively. Copyright © 2014. Published by Elsevier Ltd.

  16. The effects of temperature, organic matter and time-dependency on rheological properties of dry anaerobic digested swine manure.

    PubMed

    Liu, Gang-Jin; Liu, Yi; Wang, Zhi-Yong; Lei, Yun-Hui; Chen, Zi-Ai; Deng, Liang-Wei

    2015-04-01

    An efficient way to avoid the pollution of swine wastewater is the application of dry anaerobic digestion, which needs rheological parameter for stirring and pipe designing. The rheological properties of this kind of sludge have been studied for many decades, yet their effects only solid concentration has been investigated widely. In this paper, the influences of temperature, organic and time-dependency on the efficiency of anaerobic digested swine manure were studied. The viscosity decreased with temperature arranged from 10 to 60 °C which caused increase in protein from 7.18 to 8.49 g/kg. 60 °C can make the digested swine manure with TS from 16.6% to 21.5% reach to the same rheology state. The added peptone decreased the viscosity because of its function of water-reducing admixture and air entraining mixture. Time-dependent experiment showed the decrease of shear stress over time. The first and the second yield stress of dry anaerobic digested swine manure were evaluated through time-dependent model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Direct Interspecies Electron Transfer in Anaerobic Digestion: A Review.

    PubMed

    Dubé, Charles-David; Guiot, Serge R

    2015-01-01

    Direct interspecies electrons transfer (DIET) is a syntrophic metabolism in which free electrons flow from one cell to another without being shuttled by reduced molecules such as molecular hydrogen or formate. As more and more microorganisms show a capacity for electron exchange, either to export or import them, it becomes obvious that DIET is a syntrophic metabolism that is much more present in nature than previously thought. This article reviews literature related to DIET, specifically in reference to anaerobic digestion. Anaerobic granular sludge, a biofilm, is a specialized microenvironment where syntrophic bacterial and archaeal organisms grow together in close proximity. Exoelectrogenic bacteria degrading organic substrates or intermediates need an electron sink and electrotrophic methanogens represent perfect partners to assimilate those electrons and produce methane. The granule extracellular polymeric substances by making the biofilm matrix more conductive, play a role as electrons carrier in DIET.

  18. Anaerobic biodegradability of Category 2 animal by-products: methane potential and inoculum source.

    PubMed

    Pozdniakova, Tatiana A; Costa, José C; Santos, Ricardo J; Alves, M M; Boaventura, Rui A R

    2012-11-01

    Category 2 animal by-products that need to be sterilized with steam pressure according Regulation (EC) 1774/2002 are studied. In this work, 2 sets of experiments were performed in mesophilic conditions: (i) biomethane potential determination testing 0.5%, 2.0% and 5.0% total solids (TS), using sludge from the anaerobic digester of a wastewater treatment plant as inoculum; (ii) biodegradability tests at a constant TS concentration of 2.0% and different inoculum sources (digested sludge from a wastewater treatment plant; granular sludge from an upflow anaerobic sludge blanket reactor; leachate from a municipal solid waste landfill; and sludge from the slaughterhouse wastewater treatment anaerobic lagoon) to select the more adapted inoculum to the substrate in study. The higher specific methane production was of 317 mL CH(4)g(-1) VS(substrate) for 2.0% TS. The digested sludge from the wastewater treatment plant led to the lowest lag-phase period and higher methane potential rate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle.

    PubMed

    Detman, Anna; Mielecki, Damian; Pleśniak, Łukasz; Bucha, Michał; Janiga, Marek; Matyasik, Irena; Chojnacka, Aleksandra; Jędrysek, Mariusz-Orion; Błaszczyk, Mieczysław K; Sikora, Anna

    2018-01-01

    Anaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaerobic digestion of biomass in the environment and biogas plants. Effective utilization of lactate has been observed in many experimental approaches used to study anaerobic digestion. Interestingly, anaerobic lactate oxidation and lactate oxidizers as a physiological group in methane-yielding microbial communities have not received enough attention in the context of the acetogenic step of anaerobic digestion. This study focuses on metabolic transformation of lactate during the acetogenic and methanogenic steps of anaerobic digestion in methane-yielding bioreactors. Methane-yielding microbial communities instead of pure cultures of acetate producers were used to process artificial lactate-rich media to methane and carbon dioxide in up-flow anaerobic sludge blanket reactors. The media imitated the mixture of acidic products found in anaerobic environments/digesters where lactate fermentation dominates in acidogenesis. Effective utilization of lactate and biogas production was observed. 16S rRNA profiling was used to examine the selected methane-yielding communities. Among Archaea present in the bioreactors, the order Methanosarcinales predominated. The acetoclastic pathway of methane formation was further confirmed by analysis of the stable carbon isotope composition of methane and carbon dioxide. The domain Bacteria was represented by Bacteroidetes , Firmicutes , Proteobacteria , Synergistetes , Actinobacteria , Spirochaetes , Tenericutes , Caldithrix , Verrucomicrobia , Thermotogae , Chloroflexi , Nitrospirae, and Cyanobacteria. Available genome sequences of species and/or genera identified in the microbial communities were searched for genes encoding the lactate

  20. Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge.

    PubMed

    Park, Junghoon; Park, Seyong; Kim, Moonil

    2014-01-01

    The anaerobic degradation of each amino acid that could be generated through the hydrolysis of sewage sludge was evaluated. Stickland reaction as an intermediate reaction between two kinds of amino acids was restricted in order to evaluate each amino acid. Changes in the chemical oxygen demand (COD), T-N, NH4(+)-N, biogas, and CH4 were analysed for the anaerobic digestion process. The initial nitrogen concentration of all amino acids is adjusted as 1000 mg/L. The degradation rate of the amino acids was determined based on the ammonia form of nitrogen, which is generated by the deamination of amino acids. Among all amino acids, such as alpha-alanine, beta-alanine, lysine, arginine, glycine, histidine, cysteine, methionine, and leucine, deamination rates of cysteine, leucine, and methionine were just 61.55%, 54.59%, and 46.61%, respectively, and they had low removal rates of organic matter and showed very low methane production rates of 13.55, 71.04, and 80.77 mL CH4/g CODin, respectively. Especially for cysteine, the methane content was maintained at approximately 7% during the experiment. If wastewater contains high levels of cysteine, leucine, and methionine and Stickland reaction is not prepared, these amino acids may reduce the efficiency of the anaerobic digestion.

  1. Study of the recovery of phosphorus from struvite precipitation in supernatant line from anaerobic digesters of sludge.

    PubMed

    Xavier, Luciano Dias; Cammarota, Magali Christe; Yokoyama, Lídia; Volschan Junior, Isaac

    2014-01-01

    The goal of this work was to study the effective recovery of phosphorus from the supernatant of anaerobic digestion of sewage sludge by precipitation as struvite. The formation of struvite is envisioned as a promising process for nutrient removal and subsequent recovery, thus providing a strong incentive for its implementation, since the sewage is a renewable source of phosphorus. Struvite precipitation was obtained by controlled addition of Mg(OH)2 or MgCl2. We evaluated the removal of ammonia and phosphate under equimolar conditions of magnesium and magnesium stoichiometric excess of 100 to 200% relative to the limiting reagent, under a stirring speed of 300 rpm at pH 8, 9 and 10. The best condition was MgCl2 in 1:1 molar ratio to phosphate, considering the stoichiometric ratio [PO4(3-)]:[NH4(+)] of 0.13 (presented by raw sample). The results show the best cost-benefit ratio, removal of phosphate of 90.6% and ammonium removal of 29%, resulting in 23 mg l(-1) PO4(3-) and 265 mg l(-1) NH4(+) concentration in effluent.

  2. A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes.

    PubMed

    Karagiannidis, A; Perkoulidis, G

    2009-04-01

    This paper describes a conceptual framework and methodological tool developed for the evaluation of different anaerobic digestion technologies suitable for treating the organic fraction of municipal solid waste, by introducing the multi-criteria decision support method Electre III and demonstrating its related applicability via a test application. Several anaerobic digestion technologies have been proposed over the last years; when compared to biogas recovery from landfills, their advantage is the stability in biogas production and the stabilization of waste prior to final disposal. Anaerobic digestion technologies also show great adaptability to a broad spectrum of different input material beside the organic fraction of municipal solid waste (e.g. agricultural and animal wastes, sewage sludge) and can also be used in remote and isolated communities, either stand-alone or in conjunction to other renewable energy sources. Main driver for this work was the preliminary screening of such methods for potential application in Hellenic islands in the municipal solid waste management sector. Anaerobic digestion technologies follow different approaches to the anaerobic digestion process and also can include production of compost. In the presented multi-criteria analysis exercise, Electre III is implemented for comparing and ranking 5 selected alternative anaerobic digestion technologies. The results of a performed sensitivity analysis are then discussed. In conclusion, the performed multi-criteria approach was found to be a practical and feasible method for the integrated assessment and ranking of anaerobic digestion technologies by also considering different viewpoints and other uncertainties of the decision-making process.

  3. Anaerobic storage as a pretreatment for enhanced biodegradability of dewatered sewage sludge.

    PubMed

    Xu, Huacheng; He, Pinjing; Wang, Guanzhao; Shao, Liming; Lee, Duujong

    2011-01-01

    Dewatered sewage sludge is often stored still before further processing and final disposal. This study showed that anaerobic storage of dewatered sewage sludge could hydrolyze organic matter from the sludge matrix, and increase soluble organic acid content from 90 to 2400 mg/L and soluble organic carbon content from 220 to 1650 mg/L. Correspondingly, the contents of proteins, celluloses and hemicelluloses were reduced by 2-9%. Applying anaerobic storage markedly enhanced the efficiency of the subsequent bio-drying process on stored sludge. Correspondingly, biogas and odor gas were produced immediately after commencing the sludge storage. Anaerobic storage with odor control can be applied as a pretreatment process for dewatered sewage sludge in wastewater treatment plants. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Anaerobic bioassay of methane potential of microalgal biomass

    NASA Astrophysics Data System (ADS)

    Yen, Hong-Wei

    This study was undertaken to investigate the feasibility of using anaerobic digestion as a technique to recover solar energy embodied in excess algal biomass production harvested from Clemson University's high rate algal based Partitioned Aquaculture System (PAS) as an energy source to support PAS operations. In this study, four different organic substrates were loaded to anaerobic digesters in eight experimental trials, to ascertain the optimal combination of operational variables and effect of algal, or modified algal substrate upon methane production rate. The four substrates used in this study were: (1) a synthetic feedstock consisting of molasses and dog food, (2) a commercially obtained, readily degradable algal biomass (Spirulina ) in dry form, (3) PAS harvested and dewatered algal sludge, and (4) algal biomass blended with shredded waste paper or molasses as a carbon supplement for the adjustment of algal C/N ratio. Eight experimental trials using combinations of the four substrates were conducted in 15 liter digesters to investigate the effects of controlled digester parameters upon digester performance. Digesters operating at 20 days HRT, mesophilic digestion (35°C), and twice per day mixing at maximal loading rates produced maximal methane gas using PAS algal sludge. However, under these conditions overall methane production was less than 1000 ml CH4/l day. This low level of energy recovery from the fermentation of algal biomass (alone) is not energetically or economically favorable. Co-digestion of algal sludge and waste paper was investigated as a way to increase methane production. The data obtained from these trials suggest an optimum C/N ratio for co-digestion of algal sludge and waste paper in the range of 20--25/l. A balanced C/N ratio along with the stimulated increase in cellulase activity is suggested as likely reasons for increased methane production seen in co-digestion of algal sludge and waste paper. Yeast extract addition to anaerobic

  5. Fate of Trace Metals in Anaerobic Digestion.

    PubMed

    Fermoso, F G; van Hullebusch, E D; Guibaud, G; Collins, G; Svensson, B H; Carliell-Marquet, C; Vink, J P M; Esposito, G; Frunzo, L

    2015-01-01

    A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments--often agricultural lands receiving discharge waters from anaerobic digestion processes--simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.

  6. Quick-start of full-scale anaerobic digestion (AD) using aeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerkvist, Anders, E-mail: al@ltu.se; Pelkonen, Markku; Wikström, Tommy

    Highlights: • A fast, and original, start up procedure for anaerobic digestors has been applied at full scale. • The development of a methanogenic culture has been documented using fluorescent in situ hybridization. • The technique can be widely applied. - Abstract: A conventional 1300 m{sup 3} continuously stirred anaerobic tank reactor at the city of Boden, north Sweden, which was receiving a feed of both sewage sludge and food waste, was put out of operation due to the build-up of a float phase. The reactor was emptied and cleaned. At start-up there was no methanogenic sludge available, so anmore » unconventional start-up procedure was applied: The reactor was rapidly (8 days with 1200 kg of total solids (TS) added daily) filled with thickened, and slightly acidic sewage sludge, showing only slight methane generation, which was subsequently heated to 55 °C. Then compressed air was blown into the digester and within a month a fully functional methanogenic culture was established. The transfer from acidogenic to methanogenic conditions happened in about one week. As a start-up technique this is fast and cost efficient, it only requires the access of a compressor, electricity and a source of air. In total, about 16 tonnes of oxygen were used. It is proposed that this method may also be used as an operational amendment technique, should a reactor tend to acidify.« less

  7. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    EPA Science Inventory

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  8. Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste.

    PubMed

    Liotta, Flavia; Chatellier, Patrice; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco

    2015-01-01

    The role of total solids (TS) content in anaerobic digestion of selected complex organic matter, e.g. rice straw and food waste, was investigated. A range of TS from wet (4.5%) to dry (23%) was evaluated. A modified version of the Anaerobic Digestion Model No.1 for a complex organic substrate is proposed to take into account the effect of the TS content on anaerobic digestion. A linear function that correlates the kinetic constants of three specific processes (i.e. disintegration, acetate and propionate up-take) was included in the model. Results of biomethanation and volatile fatty acids production tests were used to calibrate the proposed model. Model simulations showed a good agreement between numerical and observed data.

  9. Enhanced primary treatment of concentrated black water and kitchen residues within DESAR concept using two types of anaerobic digesters.

    PubMed

    Kujawa-Roeleveld, K; Elmitwalli, T; Zeeman, G

    2006-01-01

    Anaerobic digestion of concentrated domestic wastewater streams--black or brown water, and solid fraction of kitchen waste is considered as a core technology in a source separation based sanitation concept (DESAR--decentralised sanitation and reuse). A simple anaerobic digester can be implemented for an enhanced primary treatment or, in some situations, as a main treatment. Two reactor configurations were extensively studied; accumulation system (AC) and UASB septic tank at 15, 20 and 25 degrees C. Due to long retention times in an AC reactor, far stabilisation of treated medium can be accomplished with methanisation up to 60%. The AC systems are the most suitable to apply when the volume of waste to be treated is minimal and when a direct reuse of a treated medium in agriculture is possible. Digested effluent contains both liquid and solids. In a UASB septic tank, efficient separation of solids and liquid is accomplished. The total COD removal was above 80% at 25 degrees C. The effluent contains COD and nutrients, mainly in a soluble form. The frequency of excess sludge removal is low and sludge is well stabilised due to a long accumulation time.

  10. Hygienization performances of innovative sludge treatment solutions to assure safe land spreading.

    PubMed

    Levantesi, C; Beimfohr, C; Blanch, A R; Carducci, A; Gianico, A; Lucena, F; Tomei, M C; Mininni, G

    2015-05-01

    The present research aims at the evaluation of the hygienization performances of innovative sludge treatment processes applied for the separated treatment of secondary sludge. Namely, two digestion pretreatments (sonication and thermal hydrolysis) and two sequential biological processes (mesophilic/thermophilic and anaerobic/aerobic digestion) were compared to the mesophilic (MAD) and thermophilic anaerobic digestion (TAD). Microbial indicators (Escherichia coli, somatic coliphages and Clostridium perfringens spores) and pathogens (Salmonella and enteroviruses), which show different resistances to treatment processes, were monitored in untreated and treated sludge. Overall, microbial load in secondary sludge was shown to be similar or lower than previously reported in literature for mixed sludge. Notably, the anaerobic/aerobic digestion process increased the removal of E. coli and somatic coliphages compared to the simple MAD and always achieved the hygienization requirement (2-log-unit removal of E. coli) proposed by EU Commission in the 3rd Working Document on sludge (April 2000) for the use of treated sludges in agriculture with restriction on their application. The microbial quality limits for the unrestricted use of sludge in agriculture (no Salmonella in 50 g wet weight (WW) and E. coli <500 CFU/g) were always met when thermal digestion or pretreatment was applied; however, the required removal level (6-log-unit removal of E. coli) could not be assessed due to the low level of this microorganism in raw sludge. Observed levels of indicator removal showed a higher resistance of viral particles to thermal treatment compared with bacterial cells and confirmed the suitability of somatic coliphages as indicators in thermal treatment processes.

  11. Modeling of Anaerobic Digestion with a Focus on Estimation of Hydrolysis Constants at 35, 55, and 60 °C.

    PubMed

    Haghighatafshar, Salar; Ossiansson, Elin; Koch, Konrad; Kjerstadius, Hamse; Jansen, Jes la Cour; Davidsson, Åsa

    2015-07-01

    Hydrolysis constants of mixed sludge at 35, 55, and 60 °C were found to be 0.32, 0.44, and 0.50 1/d, respectively, in pilot-scale, semicontinuously operated anaerobic digesters. The hydrolysis constants and estimated chemical oxygen demand fractions in the feed were introduced to a mathematical model for anaerobic digestion published by Siegrist et al. (2002), which is similar to Anaerobic Digestion Model No. 1. First-order and Monod-type kinetics were tested for estimation of hydrolysis constants. The applied kinetics were found to affect the outcome of the regression study. Moreover, the free ammonia inhibition model was excluded for both propionate oxidation and acetate conversion, thanks to the apparent acclimatized biomass. No substantial accumulation of volatile fatty acids was observed in the reactors at 35, 55, and 60 °C, corresponding to free ammonia nitrogen concentrations of about 20, 110, and 130 g N/m³, respectively.

  12. Spectroscopic characterization of digestates obtained from sludge mixed to increasing amounts of fruit and vegetable wastes

    NASA Astrophysics Data System (ADS)

    Provenzano, Maria Rosaria; Cavallo, Ornella; Malerba, Anna Daniela; Di Maria, Francesco; Ricci, Anna; Gigliotti, Giovanni

    2015-04-01

    Anaerobic digestion (AD) represents an efficient waste-treatment technology during which microorganisms break down biodegradable material in absence of oxygen yielding a biogas containing methane. The aim of this work was to investigate the transformations occurring in the organic matter during the co-digestion of waste mixed sludge (WMS) with an increasing amount of fruit and vegetable wastes (FVW) in a pilot scale apparatus reproducing a full-scale digester in an existing wastewater treatment plant. Samples comprised: sludge, FVW, sludge mixed with 10-20-30-40% FVW. Ingestates and digestates were analyzed by means of emission fluorescence spectroscopy and FTIR associated to Fourier self deconvolution (FSD) of spectra. With increasing the amount of FVW from 10% to 20% at which percentage biogas production reached the maximum value, FTIR spectra and FSD traces of digestates exhibited a decrease of intensity of peaks assigned to polysaccharides and aliphatics and an increase of peak assigned to aromatics as a result of the biodegradation of rapidly degradable materials and concentration of aromatic recalcitrant compounds. Digestates with 30 and 40% FVW exhibited a relative increase of intensity of peaks assigned to aliphatics likely as a result of the increasing amount of rapidly degradable materials and the consequent reduction of the hydraulic retention time. This may cause inhibition of methanogenesis and accumulation of volatile fatty acids. The highest emission fluorescence intensity was observed for the digestate with 20% FVW confirming the concentration of aromatic recalcitrant compounds in the substrate obtained at the highest biogas production.

  13. Influence of the size reduction of organic waste on their anaerobic digestion.

    PubMed

    Palmowski, L M; Müller, J A

    2000-01-01

    The rate-limiting step in anaerobic digestion of organic solid waste is generally their hydrolysis. A size reduction of the particles and the resulting enlargement of the available specific surface can support the biological process in two ways. Firstly, in case of substrates with a high content of fibres and a low xegradability, their comminution yields to an improved digester gas production. This leads to a decreased amount of residues to be disposed of and to an increased quantity of useful digester gas. The second effect of the particle size reduction observed with all the substrates but particularly with those of low degradability is a reduction of the technical digestion time. Furthermore, the particle size of organic waste has an influence on the dewaterability after codigestion with sewage sludge. The presence of organic waste residues improves the dewaterability measured as specific resistance to filtration but this positive effect is attenuated if the particle size of the solids is reduced.

  14. Anaerobic Co-digestion for Enhanced Renewable Energy and Green House Gas Emission Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navaratnam, Navaneethan; Zitomer, Daniel

    2012-05-01

    The need to develop renewable energy is important for replacing fossil fuel, which is limited in quantity and also tends to increase in price over time. The addition of high strength organic wastes in municipal anaerobic digesters is growing and tends to increase renewable energy production. In addition, conversion of wastes to energy significantly reduces uncontrolled greenhouse gas emissions. Co-digestion of municipal sludge with any combination of wastes can result in synergistic, antagonistic or neutral outcomes. The objectives of this study were to identify potential co-digestates, determine synergistic, antagonistic and neutral effects, determine economic benefits, quantify performance of bench scalemore » co-digesters, identify influence of co-digestion on microbial communities and implement appropriate co-digestion, if warranted, after full-scale testing. A market study was used to identify promising co-digestates. Most promising wastes were determined by biochemical methane potential (BMP) and other testing followed by a simple economic analysis. Performance was investigated using bench-scale digesters receiving synthetic primary sludge with and without co-digestates. Denaturing gradient gel electrophoresis (DGGE) and quantitative polymerase chain reaction (qPCR) analyses were performed on the gene encoding the α subunit of methyl coenzyme M reductase (mcrA) to compare methanogen communities among the digesters. One significant band contributing to the greatest difference in banding patterns was excised, cloned, amplified and sequenced. Full- scale co-digestion was conducted using the most promising co-digestate at South Shore Wastewater Reclamation Facility (Oak Creek, WI). Over 80 wastes were identified from 54 facilities within 160 km of an existing municipal digester. A simple economic comparison identified the greatest benefits for seven co-digestates. Methane production rates of two co- digester systems increased by 105% and 66% in comparison to a

  15. Redundancy in Anaerobic Digestion Microbiomes during Disturbances by the Antibiotic Monensin

    PubMed Central

    Spirito, Catherine M.; Daly, Sarah E.; Werner, Jeffrey J.

    2018-01-01

    ABSTRACT The antibiotic monensin is fed to dairy cows to increase milk production efficiency. A fraction of this monensin is excreted into the cow manure. Previous studies have found that cow manure containing monensin can negatively impact the performance of anaerobic digesters, especially upon first introduction. Few studies have examined whether the anaerobic digester microbiome can adapt to monensin during the operating time. Here, we conducted a long-term time series study of four lab-scale anaerobic digesters fed with cow manure. We examined changes in both the microbiome composition and function of the anaerobic digesters when subjected to the dairy antibiotic monensin. In our digesters, monensin was not rapidly degraded under anaerobic conditions. The two anaerobic digesters that were subjected to manure from monensin feed-dosed cows exhibited relatively small changes in microbiome composition and function due to relatively low monensin concentrations. At higher concentrations of monensin, which we dosed directly to control manure (from dairy cows without monensin), we observed major changes in the microbiome composition and function of two anaerobic digesters. A rapid introduction of monensin to one of these anaerobic digesters led to the impairment of methane production. Conversely, more gradual additions of the same concentrations of monensin to the other anaerobic digester led to the adaptation of the anaerobic digester microbiomes to the relatively high monensin concentrations. A member of the candidate OP11 (Microgenomates) phylum arose in this anaerobic digester and appeared to be redundant with certain Bacteroidetes phylum members, which previously were dominating. IMPORTANCE Monensin is a common antibiotic given to dairy cows in the United States and is partly excreted with dairy manure. An improved understanding of how monensin affects the anaerobic digester microbiome composition and function is important to prevent process failure for farm

  16. Excess sludge disruption and pollutant removal from tannery effluent by upgraded activated sludge system.

    PubMed

    Sodhi, Vijay; Bansal, Ajay; Jha, Mithilesh Kumar

    2018-04-30

    This study proposed a maintenance metabolism based upgraded activated sludge as MANODOX system that restricts excess biosludge generation from high strength real tannery effluent. The MANODOX experimental demonstration has been done using a sequenced operational arrangement of a MBBR, anaerobic digester, and oxidation ditch connected to CAS reactor, discussed in detail manner. Experimental trends revealed a prominently lower sludge yield upto 0.271 gVSS/gCOD (72% overall sludge reduction) that corresponds to parallel run CAS (0.92 gVSS/gCOD). MANODOX implementation confirmed high quality treated effluent with prominent COD and suspended solids reduction upto 97.1% and 96% respectively. The biodegradability observation was further supported by anaerobic and aerobic batch digestion analysis. The variation of soluble component turbidity analysis reflects the enriched non-flocculating predatory microbial population appears to may have been responsible for sludge reduction. MANODOX system provided a sustainable practical alternative for under capacity activated sludge based treatment facilities for a variety of wastewater types. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Occurrence and risk assessment of nonylphenol and nonylphenol ethoxylates in sewage sludge from different conventional treatment processes.

    PubMed

    González, M M; Martín, J; Santos, J L; Aparicio, I; Alonso, E

    2010-01-01

    In the present work, the concentrations of the organic pollutants nonylphenol (NP) and nonylphenol mono- and diethoxylates (NP1EO and NP2EO, respectively) in primary, secondary, mixed, aerobically-digested, anaerobically-digested, dehydrated, compost and lagoon sludge samples from different sludge treatments have been evaluated. Toxicological risk assessment of these compounds in sludge and sludge-amended soil has also been reported. NP, NP1EO and NP2EO were monitored in sludge samples obtained from treatment plants located in Andalusia (south of Spain) based on anaerobic treatments (11 anaerobic-digestion wastewater treatment plants and 3 anaerobic wastewater stabilization ponds) or on aerobic treatments (3 aerobic-digestion wastewater treatment plants, 1 dehydration treatment plant and 2 composting plants). The sum of NP, NP1EO and NP2EO (NPE) concentrations has been evaluated in relation to the limit value of 50 mg/kg set by the European Union Sludge Directive draft published in April 2000 (Working Document on Sludge). In most of the samples, NP was present at higher concentration levels (mean value 88.0 mg/kg dm) than NP1EO (mean value 33.8 mg/kg dm) and NP2EO (mean value 14.0 mg/kg dm). The most contaminated samples were compost, anaerobically-digested sludge, lagoon sludge and aerobically-digested sludge samples, which contained NPE concentrations in the ranges 44-962 mg/kg dm, 8-669 mg/kg dm, 27-319 mg/kg dm and 61-282 mg/kg dm, respectively. Risk quotients, expressed as the ratios between environmental concentrations and the predicted no-effect concentrations, were higher than 1 for NP, NP1EO and NP2EO in the 99%, 92% and 36% of the studied samples, respectively; and higher than 1 in the 86%, 6% and 2%, respectively, after sludge application to soil, leading to a significant ecotoxicological risk mainly due to the presence of NP.

  18. A novel free ammonia based pretreatment technology to enhance anaerobic methane production from primary sludge.

    PubMed

    Wei, Wei; Zhou, Xu; Xie, Guo-Jun; Duan, Haoran; Wang, Qilin

    2017-10-01

    This study proposed a novel free ammonia (FA, i.e., NH 3 ) pretreatment technology to enhance anaerobic methane production from primary sludge for the first time. The solubilization of primary sludge was substantially enhanced following 24 h FA pretreatment (250-680 mg NH 3 -N/L), by which the release of soluble chemical oxygen demand (SCOD) (i.e., 0.4 mg SCOD/mg VS added; VS: volatile solids) was approximately 10 times as much as that without pretreatment (i.e., 0.03 mg SCOD/mg VS added). Then, biochemical methane potential (BMP) tests demonstrated that FA pretreatment of 250-680 mg NH 3 -N/L was capable of enhancing anaerobic methane production while the digestion time was more than 7 days. Model based analysis indicated that the improved anaerobic methane production was due to an increased biochemical methane potential (B 0 ) of 8-17% (i.e., from 331 to 357-387 L CH 4 /kg VS added), with the highest B 0 achieved at 420 mg NH 3 -N/L pretreatment. However, FA pretreatment of 250-680 mg NH 3 -N/L decreased hydrolysis rate (k) by 24-38% compared with control (i.e., from 0.29 d -1 to 0.18-0.22 d -1 ), which explained the lower methane production over the first 7 days' digestion period. Economic analysis and environmental evaluation demonstrated that FA pretreatment technology was environmentally friendly and economically favorable. Biotechnol. Bioeng. 2017;114: 2245-2252. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors.

    PubMed

    Aangelidaki, I; Ahrin, B K; Deng, H; Schmidt, J E

    2002-01-01

    Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process. Furthermore, it was found that methane productions rates during digestion of either swine manure alone or OME alone were much lower than the rates achieved when OME and manure were digested together. Admixing OME with manure at a concentration of 5 to 10% OME resulted in the highest methane production rates. Using upflow anaerobic sludge blanket (UASB) reactors, it was shown that codigestion of OME with swine manure (up to 50% OME) was successful with a COD reduction up to 75%. The process was adapted for degradation of OME with stepwise increase of the OME load to the UASB reactor. The results showed that the high content of ammonia in swine manure, together with content of other nutrients, make it possible to degrade OME without addition of external alkalinity and without addition of external nitrogen source. Anaerobic treatment of OME in UASB reactors resulted in reduction of simple phenolic compounds such as mequinol, phenyl ethyl alcohol and ethyl methyl phenol. After anaerobic treatment the concentration of these compounds was reduced between 75 and 100%. However, the concentration of some degradation products such as methyl phenol and ethyl phenol were detected in significantly higher concentrations after treatment, indicating that the process has to be further optimised to achieve satisfactory removal of all xenobiotic compounds.

  20. Neutral fat hydrolysis and long-chain fatty acid oxidation during anaerobic digestion of slaughterhouse wastewater.

    PubMed

    Masse, L; Massé, D I; Kennedy, K J; Chou, S P

    2002-07-05

    Neutral fat hydrolysis and long-chain fatty acid (LCFA) oxidation rates were determined during the digestion of slaughterhouse wastewater in anaerobic sequencing batch reactors operated at 25 degrees C. The experimental substrate consisted of filtered slaughterhouse wastewater supplemented with pork fat particles at various average initial sizes (D(in)) ranging from 60 to 450 microm. At the D(in) tested, there was no significant particle size effect on the first-order hydrolysis rate. The neutral fat hydrolysis rate averaged 0.63 +/- 0.07 d(-1). LCFA oxidation rate was modelled using a Monod-type equation. The maximum substrate utilization rate (kmax) and the half-saturation concentration (Ks) averaged 164 +/- 37 mg LCFA/L/d and 35 +/- 31 mg LCFA/L, respectively. Pork fat particle degradation was mainly controlled by LCFA oxidation rate and, to a lesser extent, by neutral fat hydrolysis rate. Hydrolysis pretreatment of fat-containing wastewaters and sludges should not substantially accelerate their anaerobic treatment. At a D(in) of 450 microm, fat particles were found to inhibit methane production during the initial 20 h of digestion. Inhibition of methane production in the early phase of digestion was the only significant effect of fat particle size on anaerobic digestion of pork slaughterhouse wastewater. Soluble COD could not be used to determine the rate of lipid hydrolysis due to LCFA adsorption on the biomass.

  1. Kinetic modelling of methane production during bio-electrolysis from anaerobic co-digestion of sewage sludge and food waste.

    PubMed

    Prajapati, Kalp Bhusan; Singh, Rajesh

    2018-05-10

    In present study batch tests were performed to investigate the enhancement in methane production under bio-electrolysis anaerobic co-digestion of sewage sludge and food waste. The bio-electrolysis reactor system (B-EL) yield more methane 148.5 ml/g COD in comparison to reactor system without bio-electrolysis (B-CONT) 125.1 ml/g COD. Whereas bio-electrolysis reactor system (C-EL) Iron Scraps amended yield lesser methane (51.2 ml/g COD) in comparison to control bio-electrolysis reactor system without Iron scraps (C-CONT - 114.4 ml/g COD). Richard and Exponential model were best fitted for cumulative methane production and biogas production rates respectively as revealed modelling study. The best model fit for the different reactors was compared by Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC). The bioelectrolysis process seems to be an emerging technology with lesser the loss in cellulase specific activity with increasing temperature from 50 to 80 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Anaerobic Codigestion of Sludge: Addition of Butcher's Fat Waste as a Cosubstrate for Increasing Biogas Production.

    PubMed

    Martínez, E J; Gil, M V; Fernandez, C; Rosas, J G; Gómez, X

    2016-01-01

    Fat waste discarded from butcheries was used as a cosubstrate in the anaerobic codigestion of sewage sludge (SS). The process was evaluated under mesophilic and thermophilic conditions. The codigestion was successfully attained despite some inhibitory stages initially present that had their origin in the accumulation of volatile fatty acids (VFA) and adsorption of long-chain fatty acids (LCFA). The addition of a fat waste improved digestion stability and increased biogas yields thanks to the higher organic loading rate (OLR) applied to the reactors. However, thermophilic digestion was characterized by an effluent of poor quality and high VFA content. Results from spectroscopic analysis suggested the adsorption of lipid components onto the anaerobic biomass, thus disturbing the complete degradation of substrate during the treatment. The formation of fatty aggregates in the thermophilic reactor prevented process failure by avoiding the exposure of biomass to the toxic effect of high LCFA concentrations.

  3. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application.

    PubMed

    Carrere, Hélène; Antonopoulou, Georgia; Affes, Rim; Passos, Fabiana; Battimelli, Audrey; Lyberatos, Gerasimos; Ferrer, Ivet

    2016-01-01

    When properly designed, pretreatments may enhance the methane potential and/or anaerobic digestion rate, improving digester performance. This paper aims at providing some guidelines on the most appropriate pretreatments for the main feedstocks of biogas plants. Waste activated sludge was firstly investigated and implemented at full-scale, its thermal pretreatment with steam explosion being most recommended as it increases the methane potential and digestion rate, ensures sludge sanitation and the heat needed is produced on-site. Regarding fatty residues, saponification is preferred for enhancing their solubilisation and bioavailability. In the case of animal by-products, this pretreatment can be optimised to ensure sterilisation, solubilisation and to reduce inhibition linked to long chain fatty acids. With regards to lignocellulosic biomass, the first goal should be delignification, followed by hemicellulose and cellulose hydrolysis, alkali or biological (fungi) pretreatments being most promising. As far as microalgae are concerned, thermal pretreatment seems the most promising technique so far. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosey, F.E.

    1996-01-01

    This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors thatmore » efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.« less

  5. Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement.

    PubMed

    Karray, Raida; Karray, Fatma; Loukil, Slim; Mhiri, Najla; Sayadi, Sami

    2017-03-01

    Ulva rigida is a green macroalgae, abundantly available in the Mediterranean which offers a promising source for the production of valuable biomaterials, including methane. In this study, anaerobic digestion assays in a batch mode was performed to investigate the effects of various inocula as a mixture of fresh algae, bacteria, fungi and sediment collected from the coast of Sfax, on biogas production from Ulva rigida. The results revealed that the best inoculum to produce biogas and feed an anaerobic reactor is obtained through mixing decomposed macroalgae with anaerobic sludge and water, yielding into 408mL of biogas. The process was then investigated in a sequencing batch reactor (SBR) which led to an overall biogas production of 375mL with 40% of methane. Further co-digestion studies were performed in an anaerobic up-flow bioreactor using sugar wastewater as a co-substrate. A high biogas production yield of 114mL g -1 VS added was obtained with 75% of methane. The co-digestion proposed in this work allowed the recovery of natural methane, providing a promising alternative to conventional anaerobic microbial fermentation using Tunisian green macroalgae. Finally, in order to identify the microbial diversity present in the reactor during anaerobic digestion of Ulva rigida, the prokaryotic diversity was investigated in this bioreactor by the denaturing gradient gel electrophoresis (DGGE) method targeting the 16S rRNA gene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Priority and emerging pollutants in sewage sludge and fate during sludge treatment.

    PubMed

    Mailler, R; Gasperi, J; Chebbo, G; Rocher, V

    2014-07-01

    This paper aims at characterizing the quality of different treated sludges from Paris conurbation in terms of micropollutants and assessing their fate during different sludge treatment processes (STP). To achieve this, a large panel of priority and emerging pollutants (n=117) have been monitored in different STPs from Parisian wastewater treatment plants including anaerobic digestion, thermal drying, centrifugation and a sludge cake production unit. Considering the quality of treated sludges, comparable micropollutant patterns are found for the different sludges investigated (in mg/kg DM - dry matter). 35 compounds were detected in treated sludges. Some compounds (metals, organotins, alkylphenols, DEHP) are found in every kinds of sludge while pesticides or VOCs are never detected. Sludge cake is the most contaminated sludge, resulting from concentration phenomenon during different treatments. As regards treatments, both centrifugation and thermal drying have broadly no important impact on sludge contamination for metals and organic compounds, even if a slight removal seems to be possible with thermal drying for several compounds by abiotic transfers. Three different behaviors can be highlighted in anaerobic digestion: (i) no removal (metals), (ii) removal following dry matter (DM) elimination (organotins and NP) and iii) removal higher than DM (alkylphenols - except NP - BDE 209 and DEHP). Thus, this process allows a clear removal of biodegradable micropollutants which could be potentially significantly improved by increasing DM removal through operational parameters modifications (retention time, temperature, pre-treatment, etc.). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester.

    PubMed

    Uysal, Ayla; Yilmazel, Y Dilsad; Demirer, Goksel N

    2010-09-15

    The formation of struvite (MgNH(4)PO(4).6H(2)O) in wastewater treatment plants can lead to scaling and thus operational problems reducing the treatment efficiency. However, struvite has significant commercial value as an agricultural fertilizer. Therefore, controlled struvite formation in wastewater treatment plants not only presents an opportunity to recover nutrients but also corresponds to the valorization of wastes. NH(4)-N and PO(4)-P removal and recovery from the effluent of a full-scale sewage sludge anaerobic digester via controlled struvite precipitation were investigated in this study. The effect of the residual heavy metal and micropollutant content of the formed struvite on fertilizer quality was also evaluated. Removal efficiencies of NH(4)-N, PO(4)-P and COD were 89.35%, 95% and 39.78% when Mg:N:P molar ratio was 1.5:1:1 and pH was 9.0. Mercury, nickel, zinc and chrome concentrations derived from struvite precipitation were below the regulatory limit for fertilizer usage in Turkey. The precipitate did not contain polychlorinated biphenyls (PCB). X-ray diffraction (XRD) analysis conducted on the precipitate indicated a struvite formation. Copyright 2010 Elsevier B.V. All rights reserved.

  8. The potential of oxygen to improve the stability of anaerobic reactors during unbalanced conditions: results from a pilot-scale digester treating sewage sludge.

    PubMed

    Ramos, I; Fdz-Polanco, M

    2013-07-01

    A well-functioning pilot reactor treating sewage sludge at approximately 4.4 NL/m(3)/d of oxygen supply and 18d of hydraulic retention time (HRT) was subjected to a hydraulic overload to investigate whether oxygen benefits successful operation in stressful circumstances. Only a mild imbalance was caused, which was overcome without deterioration in the digestion performance. Volatile solids (VS) removal was 45% and 43% at 18 and 14 d of HRT, respectively. Biogas productivity remained around 546 NmL/gVS, but it was slightly higher during the period of imbalance. Thereafter, similar performances were achieved. Under anaerobic conditions, VS removal and biogas productivity were respectively 41% and 525 NmL/gVS, hydrogen partial pressure rose, and acetic acid formation became less favourable. Oxygen seemed to form a more stable digestion system, which meant increased ability to deal successfully with overloads. Additionally, it improved the biogas quality; methane concentration was negligibly lower, while hydrogen sulphide and oxygen remained around 0.02 and 0.03%v/v, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Fungal fermentation on anaerobic digestate for lipid-based biofuel production.

    PubMed

    Zhong, Yuan; Liu, Zhiguo; Isaguirre, Christine; Liu, Yan; Liao, Wei

    2016-01-01

    Anaerobic digestate is the effluent from anaerobic digestion of organic wastes. It contains a significant amount of nutrients and lignocellulosic materials, even though anaerobic digestion consumed a large portion of organic matters in the wastes. Utilizing the nutrients and lignocellulosic materials in the digestate is critical to significantly improve efficiency of anaerobic digestion technology and generate value-added chemical and fuel products from the organic wastes. Therefore, this study focused on developing an integrated process that uses biogas energy to power fungal fermentation and converts remaining carbon sources, nutrients, and water in the digestate into biofuel precursor-lipid. The process contains two unit operations of anaerobic digestion and digestate utilization. The digestate utilization includes alkali treatment of the mixture feed of solid and liquid digestates, enzymatic hydrolysis for mono-sugar release, overliming detoxification, and fungal fermentation for lipid accumulation. The experimental results conclude that 5 h and 30 °C were the preferred conditions for the overliming detoxification regarding lipid accumulation of the following fungal cultivation. The repeated-batch fungal fermentation enhanced lipid accumulation, which led to a final lipid concentration of 3.16 g/L on the digestate with 10% dry matter. The mass and energy balance analysis further indicates that the digestate had enough water for the process uses and the biogas energy was able to balance the needs of individual unit operations. A fresh-water-free and energy-positive process of lipid production from anaerobic digestate was achieved by integrating anaerobic digestion and fungal fermentation. The integration addresses the issues that both biofuel industry and waste management encounter-high water and energy demand of biofuel precursor production and few digestate utilization approaches of organic waste treatment.

  10. Should we pretreat solid waste prior to anaerobic digestion? An assessment of its environmental cost.

    PubMed

    Carballa, Marta; Duran, Cecilia; Hospido, Almudena

    2011-12-15

    Many studies have shown the effectiveness of pretreatments prior to anaerobic digestion of solid wastes, but to our knowledge, none analyzes their environmental consequences/costs. In this work, seven different pretreatments applied to two types of waste (kitchen waste and sewage sludge) have been environmentally evaluated by using life cycle assessment (LCA) methodology. The results show that the environmental burdens associated to the application of pretreatments prior to anaerobic digestion cannot be excluded. Among the options tested, the pressurize-depressurize and chemical (acid or alkaline) pretreatments could be recommended on the basis of their beneficial net environmental performance, while thermal and ozonation alternatives require energy efficiency optimization to reduce their environmental burdens. Reconciling operational, economic and environmental aspects in a holistic approach for the selection of the most sustainable option, mechanical (e.g., pressurize-depressurize) and chemical methods appear to be the most appropriate alternatives at this stage.

  11. Archaeal community dynamics and abiotic characteristics in a mesophilic anaerobic co-digestion process treating fruit and vegetable processing waste sludge with chopped fresh artichoke waste.

    PubMed

    Ros, M; Franke-Whittle, I H; Morales, A B; Insam, H; Ayuso, M; Pascual, J A

    2013-05-01

    This study evaluated the feasibility of obtaining methane in anaerobic digestion (AD) from the waste products generated by the processing of fruit and vegetables. During the first phase (0-55 d) of the AD using sludge from fruit and vegetable processing, an average value of 244±88 L kg(-1) dry matter d(-1)of biogas production was obtained, and methane content reached 65% of the biogas. Co-digestion with chopped fresh artichoke wastes in a second phase (55-71 d) enhanced biogas production, and resulted in an average value of 354±68 L kg(-1) dry matter d(-1), with higher methane content (more than 70%). The archaeal community involved in methane production was studied using the ANAEROCHIP microarray and real-time PCR. Results indicated that species of Methanosaeta and Methanosarcina were important during the AD process. Methanosarcina numbers increased after the addition of chopped fresh artichoke, while Methanosaeta numbers decreased. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Nitrous oxide and methane emissions during storage of dewatered digested sewage sludge.

    PubMed

    Willén, Agnes; Rodhe, Lena; Pell, Mikael; Jönsson, Håkan

    2016-12-15

    This study investigated the effect on greenhouse gas emissions during storage of digested sewage sludge by using a cover during storage or applying sanitisation measures such as thermophilic digestion or ammonia addition. In a pilot-scale storage facility, nitrous oxide and methane emissions were measured on average twice monthly for a year, using a closed chamber technique. The thermophilically digested sewage sludge (TC) had the highest cumulative emissions of nitrous oxide (1.30% of initial total N) followed by mesophilically digested sewage sludge stored without a cover (M) (0.34%) and mesophilically digested sewage sludge stored with a cover (MC) (0.19%). The mesophilically digested sewage sludge sanitised with ammonia and stored with a cover (MAC) showed negligible cumulative emissions of nitrous oxide. Emissions of methane were much lower from TC and MAC than from M and MC. These results indicate that sanitisation by ammonia treatment eliminates the production of nitrous oxide and reduces methane emissions from stored sewage sludge, and that thermophilic digestion has the potential to reduce the production of methane during storage compared with mesophilic digestion. The results also indicate a tendency for lower emissions of nitrous oxide and higher emissions of methane from covered sewage sludge compared with non-covered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure.

    PubMed

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA) play key roles in determining the bacterial community structure. The COD: [Formula: see text] (C:N) ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters.

  14. Continuous biohydrogen production from waste bread by anaerobic sludge.

    PubMed

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Using contaminated plants involved in phytoremediation for anaerobic digestion.

    PubMed

    Cao, Zewei; Wang, Shengxiao; Wang, Ting; Chang, Zhizhou; Shen, Zhenguo; Chen, Yahua

    2015-01-01

    This study investigated the anaerobic digestion capability of five plants and the effects of copper (Cu) and S,S'-ethylenediaminedisuccinic acid (EDDS, a chelator widely used in chelant-assisted phytoremediation) on biogas production to determine a feasible disposal method for plants used in remediation. The results showed that in addition to Phytolacca americana L., plants such as Zea mays L., Brassica napus L., Elsholtzia splendens Nakai ex F. Maekawa, and Oenothera biennis L. performed well in biogas production. Among these, O. biennis required the shortest period to finish anaerobic digestion. Compared to normal plants with low Cu content, the plants used in remediation with increased Cu levels (100 mg kg(-1)) not only promoted anaerobic digestion and required a shorter anaerobic digestion time, but also increased the methane content in biogas. When the Cu content in plants increased to 500, 1000, and 5000 mg kg(-1), the cumulative biogas production decreased by 12.3%, 14.6%, and 41.2%, respectively. Studies also found that EDDS conspicuously restrained biogas production from anaerobic digestion. The results suggest that anaerobic digestion has great potential for the disposal of contaminated plants and may provide a solution for the resource utilization of plants used in remediation.

  16. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    PubMed

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of

  17. Effects of inoculum source and co-digestion strategies on anaerobic digestion of residues generated in the treatment of waste vegetable oils.

    PubMed

    Hidalgo, Dolores; Martín-Marroquín, Jesús M

    2014-09-01

    This work aims at selecting a suitable strategy to improve the performance of the anaerobic digestion of residues generated in the treatment of waste vegetable oils (WVO). Biochemical methane potential (BMP) assays were conducted at 35 °C to evaluate the effects of substrate mix ratio between a mixture of WVO residues (M) and pig manure (PM) co-digesting by using different inocula. Inoculum from an industrial digester fed with organic waste from hotels, restaurants and catering leftovers (HORECA) showed higher methanogenic activity (55.5 mLCH4 gVS(-1) d(-1)) than municipal wastewater treatment plant (mWWTP) inoculum (42.6 mL CH4 gVS(-1) d(-1)). Furthermore, the results showed that the resistance to WVO residues toxicity was higher for the HORECA sludge than for the mWWTP sludge. HORECA inoculum produced more biogas in all the assays. Moreover, the resulting biogas was of better quality, containing an average of 71.1% (SD = 1.6) methane compared to an average of 69.5% (SD = 1.2) methane for test with mWWTP sludge. The maximum degradation rate occurred at the higher PM mix ratio (M/PM:1/3), reaching 26.7 ± 4.3 mLCH4 gVS(-1) d(-1) for mWWTP inoculum, versus 42.0 ± 1,5 mLCH4 gVS(-1) d(-1) achieved for HORECA inoculum. A high reduction of volatile solids (between 70% and 81%) was obtained with both inocula at all M/PM ratios assayed (1/0, 1/3, 1/1 and 3/1 v/v) but, bearing in mind the operation of a full-scale anaerobic plant, the optimal scenario assayed corresponds to the ratio M/PM: 1/3 v/v where shorter lag periods will make it possible to operate at lower hydraulic retention times. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Analysing the mechanisms of sludge digestion enhanced by iron.

    PubMed

    Hao, Xiaodi; Wei, Jing; van Loosdrecht, Mark C M; Cao, Daqi

    2017-06-15

    Carbon-neutral operation of wastewater treatment plants (WWTPs) requires enhancing anaerobic digestion (AD) of excess sludge for a higher energy conversion efficiency. Among others, iron has been identified to function on enhancing methane production in AD. As an industrial residual, waste iron scraps (WISs) have been reported as potentially enhancing CH 4 production in AD. With this study, the mechanisms of AD enhanced by WISs are analysed in a two-phase process: acidogenic phase (AP) and methanogenic phase (MP). Semi-continuous tests substantially excluded ORP reduction and hydrogen-evolution corrosion induced by WISs in enhancing CH 4 production, although WISs (10 g Fe/L) could indeed increase CH 4 production by 10.1% and 21.4% when added in AP and MP respectively. Detection on both FISH and enzymatic activities of involved microorganisms revealed that the stimulating effects of WISs on anaerobes (both catabolism and anabolism) could play an important (96.3%) role in enhancing CH 4 production, which would facilitate hydrolysis of refractory organics and improvement of electron transport rate (ETR). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Boosting methane generation by co-digestion of sludge with fruit and vegetable waste: Internal environment of digester and methanogenic pathway.

    PubMed

    Di Maria, Francesco; Barratta, Martino

    2015-09-01

    The effects of anaerobic co-digestion of waste-mixed sludge with fruit and vegetable waste (FVW) on the methane generation of a mesophilic digester was investigated. Organic loading rates (OLR) were 1.46kgVS/m(3)day, 2.1kgVS/m(3)day and 2.8kgVS/m(3)day. Increase in the OLR due to FVW co-digestion caused modification of the internal environment of the digester, mainly in terms of N-NH4 (mg/L). Corresponding microbial populations were investigated by metagenomic high-throughput sequencing. Maximum specific bio-methane generation of 435 NLCH4 per kgVS feed was achieved for an OLR of 2.1kgVS/m(3)day, which corresponded to a biomethane generation per kgVS removed of about 1700 NLCH4. In these conditions the methanogenic pathway was dominated by aceticlastic Methanosaeta and hydrogenotrophic/aceticlastic Methanoscarcinae. Ammonia concentration in the digester resulted a key parameter for enhancing syntrophic acetate oxidation, enabling a balanced aceticlastic and hydrogenotrophic/aceticlastic methanogenic pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community.

    PubMed

    Tale, V P; Maki, J S; Zitomer, D H

    2015-03-01

    Adding beneficial microorganisms to anaerobic digesters for improved performance (i.e. bioaugmentation) has been shown to decrease recovery time after organic overload or toxicity upset. Compared to strictly anaerobic cultures, adding aerotolerant methanogenic cultures may be more practical since they exhibit higher methanogenic activity and can be easily dried and stored in ambient air for future shipping and use. In this study, anaerobic digesters were bioaugmented with both anaerobic and aerated, methanogenic propionate enrichment cultures after a transient organic overload. Digesters bioaugmented with anaerobic and moderately aerated cultures recovered 25 and 100 days before non-bioaugmented digesters, respectively. Increased methane production due to bioaugmentation continued a long time, with 50-120% increases 6 to 12 SRTs (60-120 days) after overload. In contrast to the anaerobic enrichment, the aerated enrichments were more effective as bioaugmentation cultures, resulting in faster recovery of upset digester methane and COD removal rates. Sixty days after overload, the bioaugmented digester archaeal community was not shifted, but was restored to one similar to the pre-overload community. In contrast, non-bioaugmented digester archaeal communities before and after overload were significantly different. Organisms most similar to Methanospirillum hungatei had higher relative abundance in well-operating, undisturbed and bioaugmented digesters, whereas organisms similar to Methanolinea tarda were more abundant in upset, non-bioaugmented digesters. Bioaugmentation is a beneficial approach to increase digester recovery rate after transient organic overload events. Moderately aerated, methanogenic propionate enrichment cultures were more beneficial augments than a strictly anaerobic enrichment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. An assessment of the feasibility of employing biochemical acidogenic potential tests for characterizing anaerobic biodegradability of raw and pretreated waste activated sludge.

    PubMed

    Kianmehr, Peiman; Parker, Wayne; Seto, Peter

    2012-04-01

    The potential to use the results of biochemical acid potential (BAP) tests to predict the ultimate digestibility of raw and pretreated waste activated sludge (WAS) was investigated. The ultimate methane production from biochemical methane potential (BMP) tests on raw and pretreated samples which spanned a range of biodegradability proved linearly related to the volatile fatty acid (VFA) and soluble chemical oxygen demand (COD) production in corresponding BAP tests. In addition, a linear relationship between NH4-N production in the BMP and BAP tests was observed. Despite the linear nature of the relationships, the ratio of the production of methane in the BMP tests to the production of VFAs in the BAP tests varied with the biodegradability of the sludge samples. Waste Activated Sludge samples with low digestibility had ultimate yields of CH4 that were greater than the VFA yields in BAP tests, whereas sludge samples with high digestibility had lower yields of CH4 than the corresponding VFA yields. This trend contrasted with the NH4 results, in which the yields in the BAP tests were consistently less than those observed in the BMP tests. It was hypothesized that the varying relationship between CH4 and VFA yields was because of the inhibition of anaerobic oxidation of long-chain fatty acids (LCFAs) in the BAP tests. Long-chain fatty acids would be converted to CH4 in BMP tests but produced as digestion intermediates in the BAP tests and were not measured as part of the VFA yield. Hydrogen and acetate were identified as the two most likely intermediates that would accumulate in the BAP tests (which would cause inhibition). A stoichiometric model to facilitate the development of an improved understanding of the biodegradation processes in the BAP and BMP tests was assembled. When the model was applied to the BAP tests the anaerobic oxidation of LCFAs and propionate and methanogenesis were excluded from the model. The model was employed to estimate the extent of

  2. Simultaneous Cr(VI) bio-reduction and methane production by anaerobic granular sludge.

    PubMed

    Hu, Qian; Sun, Jiaji; Sun, Dezhi; Tian, Lan; Ji, Yanan; Qiu, Bin

    2018-08-01

    Wastewater containing toxic hexavalent chromium (Cr(VI)) were treated with well-organized anaerobic granular sludge in this study. Results showed that the anaerobic granular sludge rapidly removed Cr(VI), and 2000 µg·L -1 Cr(VI) was completely eliminated within 6 min, which was much faster than the reported duration of removal by reported artificial materials. Sucrose added as a carbon source acted as an initial electron donor to reduce Cr(VI) to Cr(III). This process was considered as the main mechanism of Cr(VI) removal. Methane production by anaerobic granular sludge was improved by the addition of Cr(VI) at a concentration lower than 500 µg·L -1 . Anaerobic granular sludge had a well-organized structure, which presented good resistance against toxic Cr(VI). Trichoccus accelerated the degradation of organic substances to generate acetates with a low Cr(VI) concentration, thereby enhancing methane production by acetotrophic methanogens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Stabilization of waste-activated sludge through the anoxic-aerobic digestion process.

    PubMed

    Hashimoto, S; Fujita, M; Terai, K

    1982-08-01

    During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q(r)/Q(s) ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q(r)/Q(s) ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.

  4. Anaerobic Codigestion of Sludge: Addition of Butcher’s Fat Waste as a Cosubstrate for Increasing Biogas Production

    PubMed Central

    Martínez, E. J.; Gil, M. V.; Fernandez, C.; Rosas, J. G.

    2016-01-01

    Fat waste discarded from butcheries was used as a cosubstrate in the anaerobic codigestion of sewage sludge (SS). The process was evaluated under mesophilic and thermophilic conditions. The codigestion was successfully attained despite some inhibitory stages initially present that had their origin in the accumulation of volatile fatty acids (VFA) and adsorption of long-chain fatty acids (LCFA). The addition of a fat waste improved digestion stability and increased biogas yields thanks to the higher organic loading rate (OLR) applied to the reactors. However, thermophilic digestion was characterized by an effluent of poor quality and high VFA content. Results from spectroscopic analysis suggested the adsorption of lipid components onto the anaerobic biomass, thus disturbing the complete degradation of substrate during the treatment. The formation of fatty aggregates in the thermophilic reactor prevented process failure by avoiding the exposure of biomass to the toxic effect of high LCFA concentrations. PMID:27071074

  5. Microbial population dynamics during startup of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project.

    PubMed

    Ike, Michihiko; Inoue, Daisuke; Miyano, Tomoki; Liu, Tong Tong; Sei, Kazunari; Soda, Satoshi; Kadoshin, Shiro

    2010-06-01

    The microbial community in a full-scale anaerobic digester (2300m3) treating industrial food waste in the Kyoto Eco-Energy Project was analyzed using terminal restriction fragment length polymorphism for eubacterial and archaeal 16S rRNA genes. Both thermophilic and mesophilic sludge of treated swine waste were seeded to the digestion tank. During the 150-day startup period, coffee grounds as a main food waste, along with potato, kelp and boiled beans, tofu, bean curd lees, and deep-fried bean curd were fed to the digestion process step-by-step (max. 40t/d). Finally, the methane yield reached 360m3/t-feed with 40days' retention time, although temporary accumulation of propionate was observed. Eubacterial communities that formed in the thermophilic digestion tank differed greatly from both thermophilic and mesophilic types of seed sludge. Results suggest that the Actinomyces/Thermomonospora and Ralstonia/Shewanella were contributors for hydrolyzation and degradation of food waste into volatile fatty acids. Acetate-utilizing methanogens, Methanosaeta, were dominant in seed sludges of both types, but they decreased drastically during processing in the digestion tank. Methanosarcina and Methanobrevibacter/Methanobacterium were, respectively, possible main contributors for methane production from acetate and H2 plus CO2. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge.

    PubMed

    Tapia-Rodriguez, Aida; Luna-Velasco, Antonia; Field, Jim A; Sierra-Alvarez, Reyes

    2010-04-01

    Uranium has been responsible for extensive contamination of groundwater due to releases from mill tailings and other uranium processing waste. Past evidence has confirmed that certain bacteria can enzymatically reduce soluble hexavalent uranium (U(VI)) to insoluble tetravalent uranium (U(IV)) under anaerobic conditions in the presence of appropriate electron donors. This paper focuses on the evaluation of anaerobic granular sludge as a source of inoculum for the bioremediation of uranium in water. Batch experiments were performed with several methanogenic anaerobic granular sludge samples and different electron donors. Abiotic controls consisting of heat-killed inoculum and non-inoculated treatments confirmed the biological removal process. In this study, unadapted anaerobic granular sludge immediately reduced U(VI), suggesting an intrinsic capacity of the sludge to support this process. The high biodiversity of anaerobic granular sludge most likely accounts for the presence of specific microorganisms capable of reducing U(VI). Oxidation by O(2) was shown to resolubilize the uranium. This observation combined with X-ray diffraction evidence of uraninite confirmed that the removal during anaerobic treatment was due to reductive precipitation. The anaerobic removal activity could be sustained after several respikes of U(VI). The U(VI) removal was feasible without addition of electron donors, indicating that the decay of endogenous biomass substrates was contributing electron equivalents to the process. Addition of electron donors, such as H(2) stimulated the removal of U(VI) to varying degrees. The stimulation was greater in sludge samples with lower endogenous substrate levels. The present work reveals the potential application of anaerobic granular sludge for continuous bioremediation schemes to treat uranium-contaminated water. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  7. A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment.

    PubMed

    Wu, Yuanyuan; Wang, Cuiping; Liu, Xiaoji; Ma, Hailing; Wu, Jing; Zuo, Jiane; Wang, Kaijun

    2016-07-01

    A novel method of two-phase anaerobic digestion where the acid reactor is operated at low pH 4.0 was proposed and investigated. A completely stirred tank acid reactor and an up-flow anaerobic sludge bed methane reactor were operated to examine the possibility of efficient degradation of lactate and to identify their optimal operating conditions. Lactate with an average concentration of 14.8g/L was the dominant fermentative product and Lactobacillus was the predominant microorganism in the acid reactor. The effluent from the acid reactor was efficiently degraded in the methane reactor and the average methane yield was 261.4ml/gCOD removed. Organisms of Methanosaeta were the predominant methanogen in granular sludge of methane reactor, however, after acclimation hydrogenotrophic methanogens enriched, which benefited for the conversion of lactate to acetate. The two-phase AD system exhibited a low hydraulic retention time of 3.56days and high methane yield of 348.5ml/g VS removed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Rapid startup and high rate nitrogen removal from anaerobic sludge digester liquor using a SNAP process.

    PubMed

    Qiao, Sen; Nishiyama, Takashi; Fujii, Tatsuo; Bhatti, Zafar; Furukawa, Kenji

    2012-02-01

    In this study, a single-stage autotrophic nitrogen removal reactor, packed with a novel acrylic fiber biomass carrier material (Biofix), was applied for nitrogen removal from sludge digester liquor. For rapid start-up, conventional activated sludge was added to the reactor soon after the attachment of anammox biomass on the Biofix carriers, which allowed conventional activated sludge to form a protective layer of biofilm around the anammox biomass. The Nitrogen removal efficiency reached 75% within 1 week at a nitrogen loading rate of 0.46 kg-N/m(3)/day for synthetic wastewater treatment. By the end of the synthetic wastewater treatment period, the maximum nitrogen removal rate had increased to 0.92 kg-N/m(3)/day at a nitrogen loading rate of 1.0 kg-N/m(3)/day. High nitrogen removal rate was also achieved during the actual raw digester liquor treatment with the highest nitrogen removal rate being 0.83 kg-N/m(3)/day at a nitrogen loading rate of 0.93 kg-N/m(3)/day. The thick biofilm on Biofix carriers allowed anammox bacteria to survive under high DO concentration of 5-6 mg/l resulting in stable and high nitrogen removal performance. FISH and CLSM analysis demonstrated that anammox bacteria coexisted and surrounded by ammonium oxidizing bacteria.

  9. Microbial community dynamics and biogas production from manure fractions in sludge bed anaerobic digestion.

    PubMed

    Nordgård, A S R; Bergland, W H; Bakke, R; Vadstein, O; Østgaard, K; Bakke, I

    2015-12-01

    To elucidate how granular sludge inoculum and particle-rich organic loading affect the structure of the microbial communities and process performance in upflow anaerobic sludge bed (UASB) reactors. We investigated four reactors run on dairy manure filtrate and four on pig manure supernatant for three months achieving similar methane yields. The reactors fed with less particle rich pig manure stabilized faster and had highest capacity. Microbial community dynamics analysed by a PCR/denaturing gradient gel electrophoresis approach showed that influent was a major determinant for the composition of the reactor communities. Comparisons of pre- and non-adapted inoculum in the reactors run on pig manure supernatant showed that the community structure of the nonadapted inoculum adapted in approximately two months. Microbiota variance partitioning analysis revealed that running time, organic loading rate and inoculum together explained 26 and 31% of the variance in bacterial and archaeal communities respectively. The microbial communities of UASBs adapted to the reactor conditions in treatment of particle rich manure fractions, obtaining high capacity, especially on pig manure supernatant. These findings provide relevant insight into the microbial community dynamics in startup and operation of sludge bed reactors for methane production from slurry fractions, a major potential source of biogas. © 2015 The Society for Applied Microbiology.

  10. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste.

    PubMed

    Gou, Chengliu; Yang, Zhaohui; Huang, Jing; Wang, Huiling; Xu, Haiyin; Wang, Like

    2014-06-01

    Anaerobic co-digestion of waste activated sludge and food waste was investigated semi-continuously using continuously stirred tank reactors. Results showed that the performance of co-digestion system was distinctly influenced by temperature and organic loading rate (OLR) in terms of gas production rate (GPR), methane yield, volatile solids (VS) removal efficiency and the system stability. The highest GPR at 55 °C was 1.6 and 1.3 times higher than that at 35 and 45 °C with the OLR of 1 g VSL(-1)d(-1), and the corresponding average CH₄ yields were 0.40, 0.26 and 0.30 L CH₄ g(-1)VSadded, respectively. The thermophilic system exhibited the best load bearing capacity at extremely high OLR of 7 g VSL(-1)d(-1), while the mesophilic system showed the best process stability at low OLRs (< 5 g VSL(-1)d(-1)). Temperature had a more remarkable effect on the richness and diversity of microbial populations than the OLR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion.

    PubMed

    Solon, Kimberly; Flores-Alsina, Xavier; Mbamba, Christian Kazadi; Volcke, Eveline I P; Tait, Stephan; Batstone, Damien; Gernaey, Krist V; Jeppsson, Ulf

    2015-03-01

    Plant-wide models of wastewater treatment (such as the Benchmark Simulation Model No. 2 or BSM2) are gaining popularity for use in holistic virtual studies of treatment plant control and operations. The objective of this study is to show the influence of ionic strength (as activity corrections) and ion pairing on modelling of anaerobic digestion processes in such plant-wide models of wastewater treatment. Using the BSM2 as a case study with a number of model variants and cationic load scenarios, this paper presents the effects of an improved physico-chemical description on model predictions and overall plant performance indicators, namely effluent quality index (EQI) and operational cost index (OCI). The acid-base equilibria implemented in the Anaerobic Digestion Model No. 1 (ADM1) are modified to account for non-ideal aqueous-phase chemistry. The model corrects for ionic strength via the Davies approach to consider chemical activities instead of molar concentrations. A speciation sub-routine based on a multi-dimensional Newton-Raphson (NR) iteration method is developed to address algebraic interdependencies. The model also includes ion pairs that play an important role in wastewater treatment. The paper describes: 1) how the anaerobic digester performance is affected by physico-chemical corrections; 2) the effect on pH and the anaerobic digestion products (CO2, CH4 and H2); and, 3) how these variations are propagated from the sludge treatment to the water line. Results at high ionic strength demonstrate that corrections to account for non-ideal conditions lead to significant differences in predicted process performance (up to 18% for effluent quality and 7% for operational cost) but that for pH prediction, activity corrections are more important than ion pairing effects. Both are likely to be required when precipitation is to be modelled. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Synergistic co-digestion of solid-organic-waste and municipal-sewage-sludge: 1 plus 1 equals more than 2 in terms of biogas production and solids reduction.

    PubMed

    Aichinger, Peter; Wadhawan, Tanush; Kuprian, Martin; Higgins, Matthew; Ebner, Christian; Fimml, Christian; Murthy, Sudhir; Wett, Bernhard

    2015-12-15

    Making good use of existing water infrastructure by adding organic wastes to anaerobic digesters improves the energy balance of a wastewater treatment plant (WWTP) substantially. This paper explores co-digestion load limits targeting a good trade-off for boosting methane production, and limiting process-drawbacks on nitrogen-return loads, cake-production, solids-viscosity and polymer demand. Bio-methane potential tests using whey as a model co-substrate showed diversification and intensification of the anaerobic digestion process resulting in a synergistical enhancement in sewage sludge methanization. Full-scale case-studies demonstrate organic co-substrate addition of up to 94% of the organic sludge load resulted in tripling of the biogas production. At organic co-substrate addition of up to 25% no significant increase in cake production and only a minor increase in ammonia release of ca. 20% have been observed. Similar impacts were measured at a high-solids digester pilot with up-stream thermal hydrolyses where the organic loading rate was increased by 25% using co-substrate. Dynamic simulations were used to validate the synergistic impact of co-substrate addition on sludge methanization, and an increase in hydrolysis rate from 1.5 d(-1) to 2.5 d(-1) was identified for simulating measured gas production rate. This study demonstrates co-digestion for maximizing synergy as a step towards energy efficiency and ultimately towards carbon neutrality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characterization of changes in floc morphology, extracellular polymeric substances and heavy metals speciation of anaerobically digested biosolid under treatment with a novel chelated-Fe2+ catalyzed Fenton process.

    PubMed

    He, Juanjuan; Yang, Peng; Zhang, Weijun; Cao, Bingdi; Xia, Hua; Luo, Xi; Wang, Dongsheng

    2017-11-01

    A novel chelated-Fe 2+ catalyzed Fenton process (CCFP) was developed to enhance dewatering performance of anaerobically digested biosolid, and changes in floc morphology, extracellular polymeric substances (EPS) and heavy metals speciation were also investigated. The results showed that addition of chelating agents caused EPS solubilization by binding multivalent cations. Like traditional Fenton, CCFP performed well in improving anaerobically digested sludge dewatering property. The highly active radicals (OH, O 2 - ) produced in classical Fenton and CCFP were responsible for sludge flocs destruction and consequently degradation of biopolymers into small molecules. Furthermore, more plentiful pores and channels were presented in cake after Fenton treatment, which was conducive to water drainage under mechanical compression. Additionally, a portion of active heavy metals in the form of oxidizable and reducible states were dissolved under CCFP. Therefore, CCFP could greatly simplify the operating procedure of Fenton conditioning and improve its process adaptability for harmless treatment of biological sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure

    PubMed Central

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA) play key roles in determining the bacterial community structure. The COD: NH4+-N (C:N) ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters. PMID:26648921

  15. Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters.

    PubMed

    Díaz, I; Ramos, I; Fdz-Polanco, M

    2015-09-01

    The application of microaerobic conditions during sludge digestion has been proven to be an efficient method for H2S removal from biogas. In this study, three microaerobic treatments were considered as an alternative to the technique of biogas desulfurization applied (FeCl3 dosing to the digesters) in a WWTP comprising three full-scale anaerobic reactors treating sewage sludge, depending on the reactant: pure O2 from cryogenic tanks, concentrated O2 from PSA generators, and air. These alternatives were compared in terms of net present value (NPV) with a fourth scenario consisting in the utilization of iron-sponge-bed filter inoculated with thiobacteria. The analysis revealed that the most profitable alternative to FeCl3 addition was the injection of concentrated O2 (0.0019 €/m(3) biogas), and this scenario presented the highest robustness towards variations in the price of FeCl3, electricity, and in the H2S concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment.

    PubMed

    Olsson, Jesper; Feng, Xin Mei; Ascue, Johnny; Gentili, Francesco G; Shabiimam, M A; Nehrenheim, Emma; Thorin, Eva

    2014-11-01

    In this study two wet microalgae cultures and one dried microalgae culture were co-digested in different proportions with sewage sludge in mesophilic and thermophilic conditions. The aim was to evaluate if the co-digestion could lead to an increased efficiency of methane production compared to digestion of sewage sludge alone. The results showed that co-digestion with both wet and dried microalgae, in certain proportions, increased the biochemical methane potential (BMP) compared with digestion of sewage sludge alone in mesophilic conditions. The BMP was significantly higher than the calculated BMP in many of the mixtures. This synergetic effect was statistically significant in a mixture containing 63% (w/w VS based) undigested sewage sludge and 37% (w/w VS based) wet algae slurry, which produced 23% more methane than observed with undigested sewage sludge alone. The trend was that thermophilic co-digestion of microalgae and undigested sewage sludge did not give the same synergy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Anaerobic Digestion Alters Copper and Zinc Speciation.

    PubMed

    Legros, Samuel; Levard, Clément; Marcato-Romain, Claire-Emmanuelle; Guiresse, Maritxu; Doelsch, Emmanuel

    2017-09-19

    Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

  18. Isolation, identification of sludge-lysing strain and its utilization in thermophilic aerobic digestion for waste activated sludge.

    PubMed

    Li, Xuesong; Ma, Hongzhi; Wang, Qunhui; Matsumoto, Shoichiro; Maeda, Toshinari; Ogawa, Hiroaki I

    2009-05-01

    A strain of sludge-lysing bacteria was isolated from waste activated sludge (WAS) in this study. The result of 16S rRNA gene analysis demonstrated that it was a species of new genus Brevibacillus (named Brevibacillus sp. KH3). The strain could release the protease with molecule weight of about 40 kDa which could enhance the efficiency of sludge thermophilic aerobic digestion. During the sterilized sludge digestion experiment inoculated with Brevibacillus sp. KH3, the maximum protease activity was 0.41 U/ml at pH 8 and 50 degrees C, and maximum TSS removal ratio achieved 32.8% after 120 h digestion at pH 8 and 50 degrees C. In the case of un-sterilized sludge digestion inoculated with Brevibacillus sp. KH3, TSS removal ratio in inoculated-group was 54.8%, increasing at 11.86% compared with un-inoculation (46.2%). The result demonstrated that inoculation of Brevibacillus sp. KH3 could help to degrade the EPS and promote the collapse of cells and inhibit the growth of certain kinds of microorganisms. It indicated that Brevibacillus sp. KH3 strain had a high potential to enhance WAS-degradation efficiency in thermophilic aerobic digestion.

  19. University of Wisconsin Oshkosh Anaerobic Dry Digestion Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koker, John; Lizotte, Michael

    The University of Wisconsin Oshkosh Anaerobic Dry Digestion Facility is a demonstration project that supported the first commercial-scale use in the United States of high solids, static pile technology for anaerobic digestion of organic waste to generate biogas for use in generating electricity and heat. The research adds to the understanding of startup, operation and supply chain issues for anaerobic digester technology. Issues and performance were documented for equipment installation and modifications, feedstock availability and quality, weekly loading and unloading of digestion chambers, chemical composition of biogas produced, and energy production. This facility also demonstrated an urban industrial ecology approachmore » to siting such facilities near sewage treatment plants (to capture and use excess biogas generated by the plants) and organic yard waste collection sites (a source of feedstock).« less

  20. Methods of ammonia removal in anaerobic digestion: a review.

    PubMed

    Krakat, Niclas; Demirel, Burak; Anjum, Reshma; Dietz, Donna

    2017-10-01

    The anaerobic digestion of substrates with high ammonia content has always been a bottleneck in the methanisation process of biomasses. Since microbial communities in anaerobic digesters are sensitive to free ammonia at certain conditions, the digestion of nitrogen-rich substrates such as livestock wastes may result in inhibition/toxicity eventually leading to process failures, unless appropriate engineering precautions are taken. There are many different options reported in literature to remove ammonia from anaerobic digesters to achieve a safe and stable process so that along with high methane yields, a good quality of effluents can also be obtained. Conventional techniques to remove ammonia include physical/chemical methods, immobilization and adaptation of microorganisms, while novel methods include ultrasonication, microwave, hollow fiber membranes and microbial fuel cell applications. This paper discusses conventional and novel methods of ammonia removal from anaerobic digesters using nitrogen-rich substrates, with particular focus on recent literature available about this topic.