Science.gov

Sample records for anaerobically digested sludge

  1. Improvement of anaerobic digestion of sludge.

    PubMed

    Dohányos, M; Zábranská, J; Kutil, J; Jenícek, P

    2004-01-01

    Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of the process conditions, pretreatment of input sludge and increase of process temperature is frequently used. The thermophilic process brings a higher solids reduction and biogas production, a high resistance to foaming, no problems with odour, better pathogens destruction and an improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in a lysate centrifuge was proved to cause increase of biogas production in full-scale conditions. The rapid thermal conditioning of digested sludge is an acceptable method of particulate matter disintegration and solubilization.

  2. Processing anaerobic sludge for extended storage as anaerobic digester inoculum.

    PubMed

    Li, Jiajia; Zicari, Steven M; Cui, Zongjun; Zhang, Ruihong

    2014-08-01

    Thermophilic anaerobic sludge was processed to reduce the volume and moisture content in order to reduce costs for storing and transporting the sludge as microbial inoculum for anaerobic digester startup. The moisture content of the sludge was reduced from 98.7% to 82.0% via centrifugation and further to 71.5% via vacuum evaporation. The processed sludge was stored for 2 and 4 months and compared with the fresh sludge for the biogas and methane production using food waste and non-fat dry milk as substrates. It was found that fresh unprocessed sludge had the highest methane yield and the yields of both unprocessed and processed sludges decreased during storage by 1-34%, however processed sludges seemed to regain some activity after 4 months of storage as compared to samples stored for only 2 months. Maximum methane production rates obtained from modified Gompertz model application also increased between the 2-month and 4-month processed samples.

  3. Parasite ova in anaerobically digested sludge

    SciTech Connect

    Arther, R.G.; Fitzgerald, P.R.; Fox, J.C.

    1981-08-01

    The Metropolitan Sanitary District of Greater Chicago produces anaerobically digested wastewater sludge from a 14-day continuous-flow process maintained at 35 degrees Celcius. Some of the sludge is ultimately applied to strip-mined lands in Central Illinois (Fulton County) as a soil conditioner and fertilizer. Parasitic nematode ova were isolated from freshly processed samples, as well as from samples collected from storage lagoons, using a system of continuous sucrose solution gradients. The mean number of ova per 100 g of dry sludge was 203 Ascaris spp., 173 Toxocara spp., 48 Toxascaris leonina, and 36 Trichuris spp. An assessment of the viability of these ova was determined by subjecting the ova to conditions favorable for embryonation. Recovered ova were placed in 1.5% formalin and aerated at 22 degrees Celcius for 21 to 28 days. Development of ova isolated from freshly digested sludge occurred in 64% of the Ascaris spp., 53% of the Toxocara, 63% of the Toxascaris leonina, and 20% of the Trichuris spp. Viability was also demonstrated in ova recovered from sludge samples held in storage lagoons for a period of up to 5 years; embryonation occurred in 24% of the Ascaris spp., 10% of the Toxocara spp., 43% of the Toxascaris leonina, and 6% of the Trichuris spp. (Refs. 24).

  4. Anaerobic sludge digestion with a biocatalytic additive

    SciTech Connect

    Ghosh, S.; Henry, M.P.; Fedde, P.A.

    1982-01-01

    The objective of this research was to evaluate the effects of a lactobacillus additive an anaerobic sludge digestion under normal, variable, and overload operating conditions. The additive was a whey fermentation product of an acid-tolerant strain of Lactobacillus acidophilus fortified with CaCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid. The lactobacillus additive is multifunctional in nature and provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. The experimental work consisted of several pairs of parallel mesophilic (35/sup 0/C) digestion runs (control and test) conducted in five experimental phases. Baseline runs without the additive showed that the two experimental digesters had the same methane content, gas production rate (GPR), and ethane yield. The effect of the additive was to increase methane yield and GPR by about 5% (which was statistically significant) during digester operation at a loading rate (LR) of 3.2 kg VS/m/sup 3/-day and a hydraulic retention time (HRT) of 14 days. Data collected from the various experimental phases showed that the biochemical additive increased methane yield, gas production rate, and VS reduction, and decreased volatile acids accumulation. In addition, it enhanced digester buffer capacity and improved the fertilizer value and dewatering characteristics of the digested residue.

  5. Improving products of anaerobic sludge digestion by microaeration.

    PubMed

    Jenicek, P; Celis, C A; Krayzelova, L; Anferova, N; Pokorna, D

    2014-01-01

    Biogas, digested sludge and sludge liquor are the main products of anaerobic sludge digestion. Each of the products is influenced significantly by specific conditions of the digestion process. Therefore, any upgrade of the digestion technology must be considered with regard to quality changes in all products. Microaeration is one of the methods used for the improvement of biogas quality. Recently, microaeration has been proved to be a relatively simple and highly efficient biological method of sulfide removal in the anaerobic digestion of biosolids, but little attention has been paid to comparing the quality of digested sludge and sludge liquor in the anaerobic and microaerobic digestion and that is why this paper primarily deals with this area of research. The results of the long-term monitoring of digested sludge quality and sludge liquor quality in the anaerobic and microaerobic digesters suggest that products of both technologies are comparable. However, there are several parameters in which the 'microaerobic' products have a significantly better quality such as: sulfide (68% lower) and soluble chemical oxygen demand (COD) (33% lower) concentrations in the sludge liquor and the lower foaming potential of the digested sludge.

  6. Balancing hygienization and anaerobic digestion of raw sewage sludge.

    PubMed

    Astals, S; Venegas, C; Peces, M; Jofre, J; Lucena, F; Mata-Alvarez, J

    2012-12-01

    The anaerobic digestion of raw sewage sludge was evaluated in terms of process efficiency and sludge hygienization. Four different scenarios were analyzed, i.e. mesophilic anaerobic digestion, thermophilic anaerobic digestion and mesophilic anaerobic digestion followed by a 60 °C or by an 80 °C hygienization treatment. Digester performance (organic matter removal, process stability and biogas yield) and the hygienization efficiency (reduction of Escherichia coli, somatic coliphages and F-specific RNA phages) were the main examined factors. Moreover, a preliminary economical feasibility study of each option was carried out throughout an energy balance (heat and electricity). The obtained results showed that both thermophilic anaerobic digestion and mesophilic anaerobic digestion followed by a hygienization step were able to produce an effluent sludge that fulfills the American and the European legislation for land application. However, higher removal efficiencies of indicators were obtained when a hygienization post-treatment was present. Regarding the energy balance, it should be noted that all scenarios have a significant energy surplus. Particularly, positive heat balances will be obtained for the thermophilic anaerobic digestion and for the mesophilic anaerobic digestion followed by 60 °C hygienization post-treatment if an additional fresh-sludge/digested sludge heat exchanger is installed for energy recovery.

  7. Enhancing post anaerobic digestion of full-scale anaerobically digested sludge using free nitrous acid treatment.

    PubMed

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Yuan, Zhiguo

    2016-05-01

    In some wastewater treatment plants (WWTPs), the ever increasing production of sludge with the expanding population overloaded the anaerobic digestion which compromises the sludge reduction efficiency. Post anaerobic digestion of anaerobically digested sludge (ADS) has been applied to enhance sludge reduction, however, to a very limited extent. This study verified the effectiveness of free nitrous acid (FNA i.e. HNO2) pre-treatment on enhancing full-scale ADS degradation in post anaerobic digestion. The ADS collected from a full-scale WWTP was subject to FNA treatment at concentrations of 0.77, 1.54, 2.31, 3.08, and 3.85 mg N/L for 24 h followed by biochemical methane potential tests. The FNA treatment at all concentrations resulted in an increase (from 1.5-3.1 % compared to the control) in sludge reduction with the highest improvement achieved at 0.77 mg HNO2-N/L. The FNA treatment at this concentration also resulted in the highest increase in methane production (40 %) compared to the control. The economic analysis indicates that FNA treatment is economically attractive for enhancing post anaerobic digestion of full-scale ADS.

  8. Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion.

    PubMed

    Braguglia, C M; Gianico, A; Mininni, G

    2012-03-01

    This paper deals with the comparison of ultrasound (mechanical) and ozone (chemical) pre-treatment on the performances of excess sludge semi-continuous digestion. Sludge solubilisation has been investigated by varying specific energy input. For each pre-treatment, long anaerobic digestion tests were carried out by two parallel digesters: one reactor, as control unit, was fed with untreated waste activated sludge, and the other one was fed with disintegrated sludge. To evaluate and compare the efficacy of both pre-treatments, the specific energy was maintained approximately the same. The digestion tests were carried out to investigate the feasibility of anaerobic digestion performance (total biogas production, volatile solids removal, sludge dewaterability) and to assess the heat balance. Results obtained from the digestion of sonicated sludge at 4% disintegration degree (≈ 2500 kJ/kg TS) showed that the ultrasound pre-treatment may be effective both in increasing VS destruction (+19%) and cumulative biogas production (+26%). On the contrary, the digestion test with ozonized sludge (ozone dose of 0.05 g O(3)/g TS corresponding to ≈ 2000 kJ/kg TS) did not indicate a significant improvement on the digestion performances. By doubling the ozone dose an improvement in the organics removal and cumulative biogas production was observed. Relevant differences in terms of colloidal charge and filterability were discussed.

  9. Anaerobic digestion of water hyacinth and sludge

    SciTech Connect

    Biljetina, R.; Srivastava, V.J.; Chynoweth, D.P.; Hayes, T.D.

    1986-01-01

    The Institute of Gas Technology (IGT) has been operating an experimental test unit (ETU) at the Walt Disney World (WDW) wastewater treatment plant to demonstrate the conversion of water hyacinth and sludge to methane in a solids concentrating (SOLCON) digester. Results from 2 years to operation have confirmed earlier laboratory observations that this digester achieves higher methane yields and solids conversion than those observed in continuous stirred tank reactors. Methane yields as high as 0.49 m/sup 3/ kg/sup -1/ (7.9 SCF/lb) volatile solids added have been obtained during steady-state operation on a blend of water hyacinth and sludge. 9 refs., 5 figs., 5 tabs.

  10. CFD simulation of anaerobic digester with variable sewage sludge rheology.

    PubMed

    Craig, K J; Nieuwoudt, M N; Niemand, L J

    2013-09-01

    A computational fluid dynamics (CFD) model that evaluates mechanical mixing in a full-scale anaerobic digester was developed to investigate the influence of sewage sludge rheology on the steady-state digester performance. Mechanical mixing is provided through an impeller located in a draft tube. Use is made of the Multiple Reference Frame model to incorporate the rotating impeller. The non-Newtonian sludge is modeled using the Hershel-Bulkley law because of the yield stress present in the fluid. Water is also used as modeling fluid to illustrate the significant non-Newtonian effects of sewage sludge on mixing patterns. The variation of the sewage sludge rheology as a result of the digestion process is considered to determine its influence on both the required impeller torque and digester mixing patterns. It was found that when modeling the fluid with the Hershel-Bulkley law, the high slope of the sewage stress-strain curve at high shear rates causes significant viscous torque on the impeller surface. Although the overall fluid shear stress property is reduced during digestion, this slope is increased with sludge age, causing an increase in impeller torque for digested sludge due to the high strain rates caused by the pumping impeller. Consideration should be given to using the Bingham law to deal with high strain rates. The overall mixing flow patterns of the digested sludge do however improve slightly.

  11. Rheology evolution of sludge through high-solid anaerobic digestion.

    PubMed

    Dai, Xiaohu; Gai, Xin; Dong, Bin

    2014-12-01

    The main purpose of this study was to investigate the rheology evolution of sludge through high-solid anaerobic digestion (AD) and its dependency on sludge retention time (SRT) and temperature of AD reactor. The operation performance of high-solid AD reactors were also studied. The results showed that sludge became much more flowable after high-solid AD. It was found that the sludge from reactors with long SRT exhibited low levels of shear stress, viscosity, yield stress, consistency index, and high value of flow behaviour index. While the flowability of sludge from thermophilic AD reactors were better than that of sludge from mesophilic AD reactors though the solid content of the formers were higher than that of the latters, which could be attributed to the fact that the formers had more amount of free and interstitial moisture. It might be feasible to use sludge rheology as an AD process controlling parameter.

  12. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    SciTech Connect

    Mendes, Carlos Esquerre, Karla Matos Queiroz, Luciano

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.

  13. Predicting the apparent viscosity and yield stress of mixtures of primary, secondary and anaerobically digested sewage sludge: Simulating anaerobic digesters.

    PubMed

    Markis, Flora; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam; Slatter, Paul; Eshtiaghi, Nicky

    2016-09-01

    Predicting the flow behaviour, most notably, the apparent viscosity and yield stress of sludge mixtures inside the anaerobic digester is essential because it helps optimize the mixing system in digesters. This paper investigates the rheology of sludge mixtures as a function of digested sludge volume fraction. Sludge mixtures exhibited non-Newtonian, shear thinning, yield stress behaviour. The apparent viscosity and yield stress of sludge mixtures prepared at the same total solids concentration was influenced by the interactions within the digested sludge and increased with the volume fraction of digested sludge - highlighted using shear compliance and shear modulus of sludge mixtures. However, when a thickened primary - secondary sludge mixture was mixed with dilute digested sludge, the apparent viscosity and yield stress decreased with increasing the volume fraction of digested sludge. This was caused by the dilution effect leading to a reduction in the hydrodynamic and non-hydrodynamic interactions when dilute digested sludge was added. Correlations were developed to predict the apparent viscosity and yield stress of the mixtures as a function of the digested sludge volume fraction and total solids concentration of the mixtures. The parameters of correlations can be estimated using pH of sludge. The shear and complex modulus were also modelled and they followed an exponential relationship with increasing digested sludge volume fraction.

  14. Anaerobic digestion of pulp and paper mill wastewater and sludge.

    PubMed

    Meyer, Torsten; Edwards, Elizabeth A

    2014-11-15

    sludge) and primary sludge is still in its infancy. Current research is mainly focused on developing efficient pretreatment methods that enable fast hydrolysis of complex organic matter, shorter sludge residence times and as a consequence, smaller sludge digesters. Previous experimental studies indicate that the anaerobic digestibility of non-pretreated biosludge from pulp and paper mills varies widely, with volatile solids (VS) removal rates of 21-55% and specific methane yields ranging between 40 and 200 mL g(-1) VS fed. Pretreatment can increase the digestibility to some extent, however in almost all reported cases, the specific methane yield of pretreated biosludge did not exceed 200 mL g(-1) VS fed. Increases in specific methane yield mostly range between 0 and 90% compared to non-pretreated biosludge, whereas larger improvements were usually achieved with more difficult-to-digest biosludge. Thermal treatment and microwave treatment are two of the more effective methods. The heat required for the elevated temperatures applied in both methods may be provided from surplus heat that is often available at pulp and paper mills. Given the large variability in specific methane yield of non-pretreated biosludge, future research should focus on the links between anaerobic digestibility and sludge properties. Research should also involve mill-derived primary sludge. Although biosludge has been the main target in previous studies, primary sludge often constitutes the bulk of mill-generated sludge, and co-digestion of a mixture between both types of sludge may become practical. The few laboratory studies that have included mill primary sludge indicate that, similar to biosludge, the digestibility can range widely. Long-term studies should be conducted to explore the potential of microbial adaptation to lignocellulosic material which can constitute more than half of the organic matter in pulp and paper mill sludge.

  15. Anaerobic co-digestion of sewage sludge and food waste.

    PubMed

    Prabhu, Meghanath S; Mutnuri, Srikanth

    2016-04-01

    Anaerobic co-digestion of organic matter improves digester operating characteristics and its performance. In the present work, food waste was collected from the institute cafeteria. Two types of sludge (before centrifuge and after centrifuge) were collected from the fluidised bed reactor of the institute treating sewage wastewater. Food waste and sludge were studied for their physico-chemical characteristics, such as pH, chemical oxygen demand, total solids, volatile solids, ammoniacal nitrogen, and total nitrogen. A biomethane potential assay was carried out to find out the optimum mixing ratio of food waste and sludge for anaerobic co-digestion. Results indicated that food waste mixed with sludge in the ratio of 1:2 produced the maximum biogas of 823 ml gVS(-1)(21 days) with an average methane content of 60%. Batch studies were conducted in 5 L lab-glass reactors at a mesophilic temperature. The effect of different substrate loading rates on biogas production was investigated. The mixing ratio of food waste and sludge was 1:2. A loading rate of 1 gVS L d(-1)gave the maximum biogas production of 742 ml g(-1)VS L d(-1)with a methane content of 50%, followed by 2 gVS L d(-1)with biogas of 539 ml g(-1)VS L d(-1) Microbial diversity of the reactor during fed batch studies was investigated by terminal restriction fragment length polymorphism. A pilot-scale co-digestion of food waste and sludge (before centrifuge) indicated the process stability of anaerobic digestion.

  16. Behaviour of emerging contaminants in sewage sludge after anaerobic digestion.

    PubMed

    Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F

    2016-11-01

    Nowadays, there is an increasing concern over the presence of contaminants in the aquatic environment, where they can be introduced from wastewater after their incomplete removal in the treatment plants. In this work, degradation of selected emerging pollutants in the aqueous and solid phases of sewage sludge has been investigated after anaerobic digestion using two different digesters: mesophilic and thermophilic. Initially, sludge samples were screened by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) for identification of emerging contaminants in the samples. In a second step, a target quantitative method based on LC coupled to tandem MS was applied for selected pollutants identified in the previous screening. The behaviour of the compounds under anaerobic conditions was studied estimating the degradation efficiency and distribution of compounds between both sludge phases. Irbesartan and benzoylecgonine seemed to be notably degraded in both phases of the sludge. Venlafaxine showed a significant concentration decrease in the aqueous phase in parallel to an increase in the solid phase. The majority of the compounds showed an increase of their concentrations in both phases after the digestion. Concentrations in the solid phase were commonly higher than in the aqueous for most contaminants, indicating that they were preferentially adsorbed onto the solid particles.

  17. Pretreatment of sludge with microwaves for pathogen destruction and improved anaerobic digestion performance.

    PubMed

    Hong, Seung M; Park, Jae K; Teeradej, N; Lee, Y O; Cho, Y K; Park, C H

    2006-01-01

    A new way of generating Class A sludge using microwaves was evaluated through a series of laboratory-scale experiments. Microwaves provide rapid and uniform heating throughout the material. Other benefits of microwave treatment include instant and accurate control and selective and concentrated heating on materials, such as sludge, that have a high dielectric loss factor. Sludge was irradiated with 2450-MHz microwaves, and fecal coliforms were counted. Fecal coliforms were not detected at 65 degrees C for primary sludge and anaerobic digester sludge and at 85 degrees C for waste activated sludge when sludge was irradiated with 2450-MHz microwaves. During the bench-scale anaerobic digester operation, the highest average log reduction of fecal coliforms was achieved by the anaerobic digester fed with microwave-pretreated sludge (> or = 2.66 log removal). The anaerobic digester fed with microwave-irradiated sludge was more efficient in inactivation of fecal coliforms than the other two digesters fed with raw sludge and externally heated sludge, respectively. It took more than three hydraulic retention times for a bench-scale mesophilic anaerobic digester to meet Class A sludge requirements after feeding microwave-irradiated sludge. Class A sludge can be produced consistently with a continuously fed mesophilic anaerobic digester if sludge is pretreated with microwaves to reach 65 degrees C.

  18. Extracellular polymeric substances and dewaterability of waste activated sludge during anaerobic digestion.

    PubMed

    Ye, Fenxia; Liu, Xinwen; Li, Ying

    2014-01-01

    Anaerobic digestion of waste activated sludge was conducted to gain insight into the mechanisms underlying change in sludge dewaterability during its anaerobic digestion. Unexpectedly, the results indicated that sludge dewatering properties measured by capillary suction time only deteriorated after 10 days of anaerobic digestion, after which dewaterability recovered and remained stable. The loosely bound extracellular polymeric substance (LB-EPS) content increased three-fold after 20 days of anaerobic digestion, and did not change significantly during the remaining 30 days. The tightly bound EPS (TB-EPS) content reduced slightly after 20 days of anaerobic digestion, and stabilized during the last 30 days. Polysaccharides (PS) and proteins (PN) content in LB-EPS increased after 10 days of anaerobic digestion. However, PS and PN contents in TB-EPS decreased slightly. The relationship analysis showed that only LB-EPS correlated with dewaterability of the sludge during anaerobic digestion.

  19. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron.

    PubMed

    Feng, Yinghong; Zhang, Yaobin; Quan, Xie; Chen, Suo

    2014-04-01

    Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics.

  20. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    PubMed

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P < 0.05). Notably, the ampicillin and cephalothin resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P < 0.05). The distribution of ARB in the sewage sludge had seasonal change characteristics. Except for chlorotetracycline resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05).

  1. Bioleaching of heavy metals from anaerobically digested sewage sludge.

    PubMed

    Pathak, Ashish; Dastidar, M G; Sreekrishnan, T R

    2008-03-01

    The effects of sulfur concentration, initial pH of the sludge and sludge solid content on metal bioleaching were examined using anaerobically digested sewage sludge procured from a typical sewage treatment plant in Delhi, the capital city of India. Experiments on effect of sulfur concentration were carried out using 0-4 g L(-1) of elemental sulfur to optimize the concentration of elemental sulfur for efficient bioleaching. For the type of sludge (20 g L(-1) solid content) used in the present study, 2 g L(-1) of elemental sulfur was found sufficient in metal bioleaching in the following order: Zn 86%, Cu 71.5%, Mn 70%, Ni 58.3% and Cr 43.8%. Changes in pH, sulfate concentration and oxidation-reduction potential (ORP) as a function of time were experimentally monitored. A rapid change in the above parameters took place in 4-6 days followed by a slow change until the 10th day. The change in pH with time was observed to vary at different initial pH values (pH 7 to pH 3) of the sludge; however, there was not much difference in the final pH achieved and final metal solubilization which ranged from: Cu 83.6-94.2%, Ni 27.7-29.8%, Zn 89-94.8%, Mn 67.5-79% and Cr 34.1-44.1% The results of the present studies strongly indicate that using 2 g L(-1) elemental sulfur, indigenous sulfur oxidizing microorganisms can bring down pH to a value needed for significant metal solubilization. Also, bioleaching can be carried out successfully over a wide range of initial pH values of the sludge. Further, at higher sludge solid concentration than 20 g L(-1), lower metal solubilization was achieved due to the buffering capacity of the sludge.

  2. Thermophilic anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge.

    PubMed

    Bayr, Suvi; Rintala, Jukka

    2012-10-01

    Anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge were studied for the first time in semi-continuously fed continuously stirred tank reactors (CSTR) in thermophilic conditions. Additionally, in batch experiments, methane potentials of 210 and 230 m³CH₄/t volatile solids (VS)(added) were obtained for primary, and 50 and 100 m³CH₄/tVS(added) for secondary sludge at 35 °C and 55 °C, respectively. Anaerobic digestion of primary sludge was shown to be feasible with organic loading rates (OLR) of 1-1.4 kgVS/m³d and hydraulic retention times (HRT) of 16-32 d resulting in methane yields of 190-240 m³CH₄/tVS(fed). Also the highest tested OLR of 2 kgVS/m³d and the shortest HRT of 14-16 d could be feasible, if pH stability is confirmed. Co-digestion of primary and secondary sludge with an OLR of 1 kgVS/m³d and HRTs of 25-31 d resulted in methane yields of 150-170 m³CH₄/tVS(fed). In the digestion processes, cellulose and hemicellulose degraded while lignin did not. pH adjustment and nitrogen deficiency needs to be considered when planning anaerobic digestion of pulp and paper mill wastewater sludges.

  3. Modified anaerobic digestion elutriated phased treatment for the anaerobic co-digestion of sewage sludge and food wastewater.

    PubMed

    Mo, Kyung; Lee, Wonbae; Kim, Moonil

    2017-02-01

    A modified anaerobic digestion elutriated phased treatment (MADEPT) process was developed for investigating anaerobic co-digestion of sewage sludge and food wastewater. The anaerobic digestion elutriated phased treatment (ADEPT) process is similar to a two-phase system, however, in which the effluent from a methanogenic reactor recycles into an acidogenic reactor to elutriate mainly dissolved organics. Although ADEPT could reduce reactor volume significantly, the unsolubilized solids should be wasted from the system. The MADEPT process combines thermo-alkali solubilization with ADEPT to improve anaerobic performance and to minimize the sludge disposal. It was determined that the optimal volume mixing ratio of sewage sludge and food wastewater was 4 : 1 for the anaerobic co-digestion. The removal efficiencies of total chemical oxygen demand, volatile solids, and volatile suspended solids in the MADEPT process were 73%, 70%, and 64%, respectively. However, those in the ADEPT process were only 48%, 37%, and 40%, respectively, at the same hydraulic retention time (HRT) of 7 days. The gas production of MADEPT was two times higher than that of ADEPT. The thermo-alkali solubilization increased the concentration of dissolved organics so that they could be effectively degraded in a short HRT, implying that MADEPT could improve the performance of ADEPT in anaerobic co-digestion.

  4. Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell.

    PubMed

    Zhao, Zisheng; Zhang, Yaobin; Quan, Xie; Zhao, Huimin

    2016-01-01

    Increase of methanogenesis in methane-producing microbial electrolysis cells (MECs) is frequently believed as a result of cathodic reduction of CO2. Recent studies indicated that this electromethanogenesis only accounted for a little part of methane production during anaerobic sludge digestion. Instead, direct interspecies electron transfer (DIET) possibly plays an important role in methane production. In this study, anaerobic digestion of sludge were investigated in a single-chamber MEC reactor, a carbon-felt supplemented reactor and a common anaerobic reactor to evaluate the effects of DIET on the sludge digestion. The results showed that adding carbon felt into the reactor increased 12.9% of methane production and 17.2% of sludge reduction. Imposing a voltage on the carbon felt further improved the digestion. Current calculation showed that the cathodic reduction only contributed to 27.5% of increased methane production. Microbial analysis indicated that DIET played an important role in the anaerobic sludge digestion in the MEC.

  5. Assessing the agricultural reuse of the digestate from microalgae anaerobic digestion and co-digestion with sewage sludge.

    PubMed

    Solé-Bundó, Maria; Cucina, Mirko; Folch, Montserrat; Tàpias, Josefina; Gigliotti, Giovanni; Garfí, Marianna; Ferrer, Ivet

    2017-05-15

    Microalgae anaerobic digestion produces biogas along with a digestate that may be reused in agriculture. However, the properties of this digestate for agricultural reuse have yet to be determined. The aim of this study was to characterise digestates from different microalgae anaerobic digestion processes (i.e. digestion of untreated microalgae, thermally pretreated microalgae and thermally pretreated microalgae in co-digestion with primary sludge). The main parameters evaluated were organic matter, macronutrients and heavy metals content, hygenisation, potential phytotoxicity and organic matter stabilisation. According to the results, all microalgae digestates presented suitable organic matter and macronutrients, especially organic and ammonium nitrogen, for agricultural soils amendment. However, the thermally pretreated microalgae digestate was the least stabilised digestate in comparison with untreated microalgae and co-digestion digestates. In vivo bioassays demonstrated that the digestates did not show residual phytotoxicity when properly diluted, being the co-digestion digestate the one which presented less phytotoxicity. Heavy metals contents resulted far below the threshold established by the European legislation on sludge spreading. Moreover, low presence of E. coli was observed in all digestates. Therefore, agricultural reuse of thermally pretreated microalgae and primary sludge co-digestate through irrigation emerges a suitable strategy to recycle nutrients from wastewater.

  6. [Enhancement for anaerobic digestion of sewage sludge pretreated by microwave and its combined processes ].

    PubMed

    Liu, Ji-bao; Ni, Xiao-tang; Wei, Yuan-song; Tong, Juan; Wang, Ya-wei

    2014-09-01

    To improve anaerobic digestion and dewatering of sludge, impacts of sludge pretreated by microwave (MW) and its combined processes on sludge anaerobic digestion and dewatering were investigated. The results showed that microwave and its combined processes could effectively enhance anaerobic sludge digestion. Not only the cumulative methane production in the test of the MW-H2O2-alkaline (0. 2) was increased by 13. 34% compared with the control, but also its methane production rate was much higher than that of the control. Compared with the single MW process, the addition of both H2O2 and alkaline enhanced the solubilization of particle COD( >0. 45 micron) , indicating that synergistically generated soluble organics were faster to biodegrade which resulted in the enhancement of anaerobic digestion. The MW-acid process was effective in improving sludge dewaterability, e. g. , Capillary Suction Time (CST) at only 9. 85 s. The improvement of sludge dewatering was significantly correlated with sludge physical properties such as zeta potential, surface charge density and particle size. Under different sludge pretreatment conditions, the sludge dewatering after anaerobic digestion was similar, though the difference of sludge dewatering to some degrees was observed for pretreated sludge.

  7. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    PubMed

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  8. The role of anaerobic sludge recycle in improving anaerobic digester performance.

    PubMed

    Young, Michelle N; Krajmalnik-Brown, Rosa; Liu, Wenjun; Doyle, Michael L; Rittmann, Bruce E

    2013-01-01

    Solids retention time (SRT) is a critical parameter for the performance of anaerobic digesters (AD) in wastewater treatment plants. AD SRT should increase when active biomass is input to the AD by recycling anaerobic sludge via the wastewater-treatment tanks, creating a hybrid aerobic/anaerobic system. When 85% of the flow through the AD was recycled in pilot-scale hybrid systems, the AD SRT increased by as much as 9-fold, compared to a parallel system without anaerobic-sludge recycle. Longer AD SRTs resulted in increased hydrolysis and methanogenesis in the AD: net solids yield decreased by 39-96% for overall and 23-94% in the AD alone, and AD methane yield increased 1.5- to 5.5-fold. Microbial community assays demonstrated higher, more consistent Archaea concentrations in all tanks in the wastewater-treatment system with anaerobic-sludge recycle. Thus, multiple lines of evidence support that AD-sludge recycle increased AD SRT, solids hydrolysis, and methane generation.

  9. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs

    PubMed Central

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  10. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost.

    PubMed

    Tambone, Fulvia; Scaglia, Barbara; D'Imporzano, Giuliana; Schievano, Andrea; Orzi, Valentina; Salati, Silvia; Adani, Fabrizio

    2010-10-01

    Digestate, with biogas represents the final products of anaerobic digestion (AD). The methane-rich biogas is used to produce electricity and heat, whereas the digestate could be valorized in agriculture. Contrarily to well-recognized biomasses such as digested sludge and compost, the properties of the digestate are not well known and its agricultural use remains unexplored. In this work, a first attempt to study the agronomic properties of digestates was performed by comparing the chemical, spectroscopic, and biological characteristics of digestates with those of compost and digested sludge, used as reference organic matrices. A total of 23 organic matrices were studied, which include eight ingestates and relative digestates, three composts, and four digested sludges. The analytical data obtained was analyzed using principal component analysis to better show in detail similarities or differences between the organic matrices studied. The results showed that digestates differed from ingestates and also from compost, although the starting organic mix influenced the digestate final characteristics. With respect to amendment properties, it seems that biological parameters, more than chemical characteristics, were more important in describing these features. In this way, amendment properties could be ranked as follows: compost≅digestate>digested sludge≫ingestate. As to fertilizer properties, AD allowed getting a final product (digestate) with very good fertilizing properties because of the high nutrient content (N, P, K) in available form. In this way, the digestate appears to be a very good candidate to replace inorganic fertilizers, also contributing, to the short-term soil organic matter turnover.

  11. The contribution of thermophilic anaerobic digestion to the stable operation of wastewater sludge treatment.

    PubMed

    Zábranská, J; Dohányos, M; Jenícek, P; Zaplatílková, P; Kutil, J

    2002-01-01

    Thermophilic anaerobic digestion of sewage sludge has been successfully operated in full-scale tanks almost three years. The higher loading capacity and specific biogas production rate in comparison with mesophilic digestion was proved. Thermophilic anaerobic sludge is also more resistant against foaming problems. Biogas from thermophilic tanks contains less hydrogen sulphide and other malodorous substances. Pathogens removal rate is apparently more efficient in the thermophilic process.

  12. Removal of helminth eggs and fecal coliforms by anaerobic thermophilic sludge digestion.

    PubMed

    Cabirol, N; Rojas Oropeza, M; Noyola, A

    2002-01-01

    Anaerobic digestion of two types of waste sludge was applied in order to assess the suitability of thermophilic conditions for the stabilization of organic matter and removal of fecal coliforms and helminth eggs. Feeding sludge was taken from an activated sludge municipal facility (BS) and from an enhanced primary treatment municipal plant (EPT). As an accompanying experiment, mesophilic digesters were also operated. The four digesters (M1, M2, T1, T2) had a 5 litre volume and an egg shape. A highly stabilized material was obtained at both temperatures with BS type of sludge, taking the reduction of volatile fraction of suspended solids (%Rvss) as indicator (84% for M1 and 74% for T1). In general, EPT sludge was a more difficult substrate, if compared with BS sludge; thermophilic condition was better adapted than mesophilic for this kind of sludge. Satisfactory reductions on counts of fecal coliforms and helminth eggs were achieved under thermophilic digestion for both types of feeding sludge. T1 digester, fed with biological sludge, removed fecal coliforms below 1000 MPN/gTS and helminth eggs down to 0.28 HELarval/gTS, at an HRT of 20 days. As a general conclusion, anaerobic thermophilic digestion may be an appropriate option for sludge stabilization, in order to meet EPA Class A biosolids final disposal regulations. However, further research is needed in order to consistently remove helminth eggs and fecal coliforms from waste sludge at shorter hydraulic retention times.

  13. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  14. Reversibility of the structure and dewaterability of anaerobic digested sludge.

    PubMed

    Sheng, Yiqi; Wang, Yili; Hu, Wei; Qian, Xu; Zheng, Huaili; Lun, Xiaoxiu

    2016-04-01

    The reversibility of the structure and dewaterability of broken anaerobic digested sludge (ADS) is important to ensure the efficiency of sludge treatment or management processes. This study investigated the effect of continuous strong shear (CSS) and multipulse shear (MPS) on the zeta potential, size (median size, d50), mass fractal dimension (D(F)), and capillary suction time (CST) of ADS aggregates. Moreover, the self-regrowth (SR) of broken ADS aggregates during slow mixing was also analyzed. The results show that raw ADS with d50 of 56.5 μm was insensitive to CSS-SR or MPS-SR, though the size slightly decreased after the breakage phase. For conditioned ADS with d50 larger than 600 μm, the breakage in small-scale surface erosion changed to large-scale fragmentation as the CSS strength increased. In most cases, after CSS or MPS, the broken ADS had a relatively more compact structure than before and d50 is at least 200 μm. The CST of the broken fragments from optimally dosed ADS increased, whereas that corresponding to overdosed ADS decreased. MPS treatment resulted in larger and more compact broken ADS fragments with a lower CST value than CSS. During the subsequent slow mixing, the broken ADS aggregates did not recover their charge, size, and dewaterability to the initial values before breakage. In addition, less than 15% self-regrowth in terms of percentage of the regrowth factor was observed in broken ADS after CSS at average velocity gradient no less than 1905.6 sec(-1).

  15. Hygienization of sludge through anaerobic digestion at 35, 55 and 60 °C.

    PubMed

    Kjerstadius, H; la Cour Jansen, J; De Vrieze, J; Haghighatafshar, S; Davidsson, A

    2013-01-01

    Legislation in Sweden and the European Union concerning the use of sewage sludge in agriculture is under revision and future concentration limits for pathogens in treated sludge are likely to be expected. The aim of this study was to evaluate the hygienization of Salmonella, Escherichia coli, Enterococcus and Clostridium perfringens through continuous anaerobic digestion at 35, 55 or 60 °C, as well as to investigate process stability and methane production at 60 °C. The results indicated that digestion at 55 or 60 °C with a minimum exposure time of 2 h resulted in good reduction of Salmonella, E. coli and Enterococcus and that anaerobic digestion could thus be used to reach the concentration limits suggested for the EU, as well as Sweden. Furthermore, stable continuous anaerobic digestion of sludge was achieved at 60 °C, albeit with 10% less methane production compared to digestion at 35 and 55 °C.

  16. Steam-explosion pretreatment for enhancing anaerobic digestion of municipal wastewater sludge.

    PubMed

    Dereix, Marcela; Parker, Wayne; Kennedy, Kevin

    2006-05-01

    This study evaluated the use of steam explosion as a pretreatment for municipal wastewater treatment sludges and biosolids as a technique for enhancing biogas generation during anaerobic digestion. Samples of dewatered anaerobic digester effluent (biosolids) and a mixture of thickened waste activated sludge (TWAS) and biosolids were steam-exploded under differing levels of intensity in this study. The results indicate that steam explosion can solublize components of these sludge streams. Increasing the intensity of the steam-explosion pressure and temperature resulted in increased solublization. The steam-explosion pretreatment also increased the bioavailability of sludge components under anaerobic digestion conditions. Increasing the steam-explosion intensity increased the ultimate yield of methane during anaerobic digestion. Batch anaerobic digestion tests suggested that pretreatment at 300 psi was the most optimal condition for enhanced biogas generation while minimizing energy input. Semicontinuous anaerobic digestion revealed that the results that were observed in the batch tests were sustainable in prolonged operation. Semicontinuous digestion of the TWAS/biosolids mixture that was pretreated at 300 psi generated approximately 50% more biogas than the controls. Semicontinuous digestion of the pretreated biosolids resulted in a 3-fold increase in biogas compared with the controls. Based on capillary suction test results, steam-explosion pretreatment at 300 psi improved the dewaterability of the final digested sludge by 32 and 45% for the TWAS/ biosolids mixture and biosolids, respectively, compared with controls. The energy requirements of the nonoptimized steam-explosion process were substantially higher than the additional energy produced from enhanced digestion of the pretreated sludge. Substantial improvements in energy efficiency will be required to make the process viable from an energy perspective.

  17. Anaerobic waste-activated sludge digestion - A bioconversion mechanism and kinetic model

    SciTech Connect

    Shimizu, Tatsuo; Kudo, Kenzo; Nasu, Yoshikazu )

    1993-05-01

    The anaerobic bioconversion of raw and mechanically lysed waste-activated sludge was kinetically investigated. The hydrolysis of the biopolymers, such as protein, which leaked out from the biological sludge with ultrasonic lysis, was a first-order reaction in anaerobic digestion and the rate constant was much higher than the decay rate constant of the raw waste activated sludge. An anaerobic digestion model that is capable of evaluating the effect of the mechanical sludge lysis on digestive performance was developed. The present model includes four major biological processes - the release of intracellular matter with sludge lysis; hydrolysis of biopolymers to volatile acids; the degradation of various volatile acids to acetate; and the conversion of acetate and hydrogen to methane. Each process was assumed to follow first-order kinetics. The model approximately simulated the overall process performance of the anaerobic digestion of waste-activated sludge. The model suggested that when the lysed waste-activated sludge was fed, the overall digestive performance remarkably increased in the two-phase system consisting of an acid forming process and a methanogenic process, which ensured the symbiotic growth of acetogenic and methanogenic bacteria.

  18. Determination of greenhouse gas emission reductions from sewage sludge anaerobic digestion in China.

    PubMed

    Liu, H-T; Kong, X-J; Zheng, G-D; Chen, C-C

    2016-01-01

    Sewage sludge is a considerable source of greenhouse gas (GHG) emission in the field of organic solid waste treatment and disposal. In this case study, total GHG emissions from sludge anaerobic digestion, including direct and indirect emissions as well as replaceable emission reduction due to biogas being reused instead of natural gas, were quantified respectively. The results indicated that no GHG generation needed to be considered during the anaerobic digestion process. Indirect emissions were mainly from electricity and fossil fuel consumption on-site and sludge transportation. Overall, the total GHG emission owing to relative subtraction from anaerobic digestion rather than landfill, and replaceable GHG reduction caused by reuse of its product of biogas, were quantified to be 0.7214 (northern China) or 0.7384 (southern China) MgCO2 MgWS(-1) (wet sludge).

  19. Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge.

    PubMed

    Wang, Meng; Sahu, Ashish K; Rusten, Bjørn; Park, Chul

    2013-08-01

    The study investigated the growth characteristics of environmental algal strain, Chlorella, in the modified Zarrouk medium and its anaerobic co-digestion with waste activated sludge (WAS). Analysis of extracellular polymeric substances (EPS) in algal culture and WAS indicated that Chlorella secreted more EPS into the surrounding liquid than formed floc-associated EPS as in activated sludge. Mesophilic anaerobic digestion of algae alone required extended digestion period to produce methane, with biogas yield at 262 mL/gVSfed after 45 days of digestion. When algae was co-digested with varying amounts of WAS, 59-96% in mass, not only biogas yield of microalgae improved but the gas phase was reached more quickly. The dewaterability of co-digestion products were also better than two controls digesting WAS or algae only. These results suggest that anaerobic co-digestion of algae and sludge improves the digestibility of microalgae and could also bring synergistic effects on the dewaterability of digested products for existing anaerobic digesters.

  20. A systematic study of the gaseous emissions from biosolids composting: raw sludge versus anaerobically digested sludge.

    PubMed

    Maulini-Duran, Caterina; Artola, Adriana; Font, Xavier; Sánchez, Antoni

    2013-11-01

    Volatile organic compound (VOC) and ammonia, that contribute to odor pollution, and methane and nitrous oxide, with an important greenhouse effect, are compounds present in gaseous emission from waste treatment installations, including composting plants. In this work, gaseous emissions from the composting of raw (RS) and anaerobically digested sludge (ADS) have been investigated and compared at pilot scale aiming to provide emission factors and to identify the different VOC families present. CH4 and N2O emissions were higher in ADS composting (0.73 and 0.55 kg Mg(-1) sludge, respectively) than in RS composting (0.01 kg Mg(-1) sludge for both CH4 and N2O). NH3 and VOCs emitted were higher during the RS composting process (19.37 and 0.21 kg Mg(-1) sludge, respectively) than in ADS composting (0.16 and 0.04 kg Mg(-1) sludge). Significant differences were found in the VOC compositions emitted in ADS and RS composting, being more diverse in RS than ADS composting.

  1. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%.

  2. Pb(II) biosorption using anaerobically digested sludge.

    PubMed

    Tokcaer, Emre; Yetis, Ulku

    2006-10-11

    Removal of Pb(II) by using resting cells of anaerobically digested sludge (ADS) obtained from a nearby wastewater treatment plant was examined. Firstly, sorption kinetic and equilibrium experiments were conducted using agitated, thermostated (25 degrees C) batch reactors. The maximum Pb(II) sorption capacity was found to be very high (1,750 mg/g dry ADS or 8.45 mmol/g dry ADS). At all initial Pb(II) concentrations tested, sorption resulted in neutralization with an increase in the solution pH from an initial value of 4.0-5.5 to an equilibrium value of 7.0-8.0, at which Pb(II) can precipitate as hydroxide. The removal of Pb(II) by ADS was found to involve bioprecipitation as well as biosorption. FTIR spectrometry highlighted carboxyl groups present on the surface of ADS as the major functional groups responsible for biosorption. Secondly, a three-stage semi-continuous pseudo-counter current reactor system was tested to reduce ADS requirement in comparison to a conventional single-stage batch reactor. At an initial Pb(II) concentration of about 200 mg/L, an effluent Pb(II) concentration of 1.3 mg/L was achieved in the three stage reactor, corresponding to a metal removal capacity of 682.7 mg/g dry ADS (3.30 mmol/g), in comparison to 1.9 mg/L and 644.0 mg/g dry ADS (3.10 mmol/g) for the single-stage batch reactor.

  3. Upgrading of the anaerobic digestion of waste activated sludge by combining temperature-phased anaerobic digestion and intermediate ozonation.

    PubMed

    Kobayashi, T; Li, Y Y; Harada, H; Yasui, H; Noike, T

    2009-01-01

    Upgrading of the anaerobic digestion of waste activated sludge (WAS) by the combination of temperature-phased two-stage digestion and intermediate ozonation was investigated by a continuous experiment with two processes, TM and TOM. The TM process is a temperature-phased two-stage system, which consists of a thermophilic digester and a mesophilic digester in series. The TOM process is a temperature-phased two-stage process with the intermediate ozonation. Two processes were operated at hydraulic retention times of 30 days for over 123 days. Waste activated sludge taken from wastewater treatment plant was fed as a substrate. Microbial community structure in each digester was analysed with molecular tools. Despite of less amount of ozone dose in TOM than ozone pre-treatment process, better effect of ozonation on performance improvement was obtained in TOM. TOM had the highest methane yield and COD(Cr) reduction among comparative processes. Furthermore, flocculation efficiency of TOM followed that of mesophilic digestion. Quality of dewatered supernatant is comparable to mesophilic digestion.

  4. Anaerobic co-digestion of grease sludge and sewage sludge: the effect of organic loading and grease sludge content.

    PubMed

    Noutsopoulos, C; Mamais, D; Antoniou, K; Avramides, C; Oikonomopoulos, P; Fountoulakis, I

    2013-03-01

    The objective of this study was to assess the feasibility of co-digesting grease sludge (GS) originating from domestic wastewater along with sewage sludge (SS) and to assess the effect of organic loading rate (OLR) and GS content on process performance. Three lab-scale semi-continuous fed mesophilic anaerobic digesters were operated under various OLRs and SS-GS mixtures. According to the results, addition of GS up to 60% of the total VS load of feed resulted in a 55% increase of biogas yield (700 vs. 452m(3)/tVSadded) for an OLR of 3.5kg VS/m(3)/d. A stable and satisfactory operation of anaerobic co-digestion units can be achieved for a GS-OLR up to 2.4kg VSGS/m(3)/d. For such values biogas yield is linearly proportional to the applied GS-OLR, whereas biogas yield is minimal for GS-OLR higher than this limit and acidification of the anaerobic digestion units is taking place.

  5. Phylogenetic diversity and in situ detection of eukaryotes in anaerobic sludge digesters

    PubMed Central

    Matsubayashi, Miri; Shimada, Yusuke; Li, Yu-You; Harada, Hideki

    2017-01-01

    Eukaryotic communities in aerobic wastewater treatment processes are well characterized, but little is known about them in anaerobic processes. In this study, abundance, diversity and morphology of eukaryotes in anaerobic sludge digesters were investigated by quantitative real-time PCR (qPCR), 18S rRNA gene clone library construction and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Samples were taken from four different anaerobic sludge digesters in Japan. Results of qPCR of rRNA genes revealed that Eukarya accounted from 0.1% to 1.4% of the total number of microbial rRNA gene copy numbers. The phylogenetic affiliations of a total of 251 clones were Fungi, Alveolata, Viridiplantae, Amoebozoa, Rhizaria, Stramenopiles and Metazoa. Eighty-five percent of the clones showed less than 97.0% sequence identity to described eukaryotes, indicating most of the eukaryotes in anaerobic sludge digesters are largely unknown. Clones belonging to the uncultured lineage LKM11 in Cryptomycota of Fungi were most abundant in anaerobic sludge, which accounted for 50% of the total clones. The most dominant OTU in each library belonged to either the LKM11 lineage or the uncultured lineage A31 in Alveolata. Principal coordinate analysis indicated that the eukaryotic and prokaryotic community structures were related. The detection of anaerobic eukaryotes, including the members of the LKM11 and A31 lineages in anaerobic sludge digesters, by CARD-FISH revealed their sizes in the range of 2–8 μm. The diverse and uncultured eukaryotes in the LKM11 and the A31 lineages are common and ecologically relevant members in anaerobic sludge digester. PMID:28264042

  6. Plant available nitrogen from anaerobically digested sludge and septic tank sludge applied to crops grown in the tropics.

    PubMed

    Sripanomtanakorn, S; Polprasert, C

    2002-04-01

    Agricultural land is an attractive alternative for the disposal of biosolids since it utilises the recyclable nutrients in the production of crops. In Thailand and other tropical regions, limited field-study information exists on the effect of biosolids management strategies on crop N utilisation and plant available N (PAN) of biosolids. A field study was conducted to quantify the PAN of the applied biosolids, and to evaluate the N uptake rates of some tropical crops. Sunflower (Helianthus annuus) and tomato (Lycopersicon esculentum) were chosen in this study. Two types of biosolids used were: anaerobically digested sludge and septic tank sludge. The soil is acid sulfate and is classified as Sulfic Tropaquepts with heavy clay in texture. The anaerobically digested sludge applied rates were: 0, 156 and 312 kg N ha(-1) for the sunflower plots, and 0, 586, and 1172 kg N ha(-1) for the tomato plots. The septic tank sludge applied rates were: 0, 95 and 190 kg N ha(-1) for the sunflower plots, and 0, 354 and 708 kg N ha(-1) for the tomato plots, respectively. The results indicated the feasibility of applying biosolids to grow tropical crops. The applications of the anaerobically digested sludge and the septic tank sludge resulted in the yields of sunflower seeds and tomato fruits and the plant N uptakes comparable or better than that applied with only the chemical fertiliser. The estimated PAN of the anaerobically digested sludge was about 27-42% of the sludge organic N during the growing season. For the septic tank sludge, the PAN was about 15-58% of the sludge organic N. It is interesting to observe that an increase of the rate of septic tank sludge incorporated into this heavy clay soil under the cropping system resulted in the decrease of N mineralisation rate. This situation could cause the reduction of yield and N uptake of crops.

  7. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    PubMed

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-01-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.

  8. Performance of sequential anaerobic/aerobic digestion applied to municipal sewage sludge.

    PubMed

    Tomei, M Concetta; Rita, Sara; Mininni, Giuseppe

    2011-07-01

    A promising alternative to conventional single phase processing, the use of sequential anaerobic-aerobic digestion, was extensively investigated on municipal sewage sludge from a full scale wastewater treatment plant. The objective of the work was to evaluate sequential digestion performance by testing the characteristics of the digested sludge in terms of volatile solids (VS), Chemical Oxygen Demand (COD) and nitrogen reduction, biogas production, dewaterability and the content of proteins and polysaccharides. VS removal efficiencies of 32% in the anaerobic phase and 17% in the aerobic one were obtained, and similar COD removal efficiencies (29% anaerobic and 21% aerobic) were also observed. The aerobic stage was also efficient in nitrogen removal providing a decrease of the nitrogen content in the supernatant attributable to nitrification and simultaneous denitrification. Moreover, in the aerobic phase an additional marked removal of proteins and polysaccharides produced in the anaerobic phase was achieved. The sludge dewaterability was evaluated by determining the Optimal Polymer Dose (OPD) and the Capillary Suction Time (CST) and a significant positive effect due to the aerobic stage was observed. Biogas production was close to the upper limit of the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. From a preliminary analysis it was found that the energy demand of the aerobic phase was significantly lower than the recovered energy in the anaerobic phase and the associated additional cost was negligible in comparison to the saving derived from the reduced amount of sludge to be disposed.

  9. Batchwise mesophilic anaerobic co-digestion of secondary sludge from pulp and paper industry and municipal sewage sludge.

    PubMed

    Hagelqvist, Alina

    2013-04-01

    Residues from forest-industry wastewater-treatment systems are treated as waste at many pulp and paper mills. These organic substances have previously been shown to have potential for production of large quantities of biogas. There is concern, however, that the process would require expensive equipment because of the slow degradation of these substances. Pure non-fibrous sludge from forest industry showed lower specific methane production during mesophilic digestion for 19days, 53±26 Nml/g of volatile solids as compared to municipal sewage sludge, 84±24 Nml/g of volatile solids. This paper explores the possibility of using anaerobic co-digestion with municipal sewage sludge to enhance the potential of methane production from secondary sludge from a pulp and paper mill. It was seen in a batch anaerobic-digestion operation of 19 days that the specific methane production remained largely the same for municipal sewage sludge when up to 50% of the volatile solids were replaced with forest-industry secondary sludge. It was also shown that the solid residue from anaerobic digestion of the forest-industry sludge should be of suitable quality to use for improving soil quality on lands that are not used for food production.

  10. Up-to-date modification of the anaerobic sludge digestion process introducing a separate sludge digestion mode.

    PubMed

    Sato, K; Ochi, S; Mizuochi, M

    2001-01-01

    Sewage treatment plants in Japan are subjected to advanced treatment to remove nutrients and hence control eutrophication problems in lakes and bays. This paper discusses the advantages and disadvantages of the separate digestion treatment mode for sludge generated from advanced wastewater treatment. In the separate digestion only primary sludge is digested and the excess activated sludge is directly dewatered. Separate digestion can reduce the return load of nutrients to approximately one third, and has major potential for the beneficial use of sludge.

  11. Review on the fate of emerging contaminants during sludge anaerobic digestion.

    PubMed

    Stasinakis, Athanasios S

    2012-10-01

    Several research papers have been published during the last years investigating the occurrence, fate and effects of emerging contaminants (ECs) on sludge anaerobic digestion (AD). Literature review revealed that research has been mainly focused on specific groups of compounds (linear alkylbenzene sulphonates, nonylphenol ethoxylates, some pharmaceuticals, estrogens, phthalates), while there are fewer or no data for others (personal care products, perfluorinated compounds, brominated flame retardants, organotins, benzotriazoles, benzothiazoles, nanoparticles). AD operational parameters (sludge residence time, temperature), sludge characteristics (type of sludge, adaptation on the compound), physicochemical properties of ECs and co-metabolic phenomena seem to affect compounds' biodegradation. The use of sludge pretreatment methods does not seem to enhance ECs removal; whereas encouraging results have been reported when AD was combined with other treatment methods. Future efforts should be focused on better understanding of biotransformation processes and sorption phenomena occurred in anaerobic digesters, as well as on identification of (bio)transformation products.

  12. Effect of linear alkylbenzene sulphonates (LAS) on the anaerobic digestion of sewage sludge.

    PubMed

    Garcia, M T; Campos, E; Sánchez-Leal, J; Ribosa, I

    2006-08-01

    Batch anaerobic biodegradation tests with different alkylbenzene sulphonates (LAS) at increasing concentrations were performed in order to investigate the effect of LAS homologues on the anaerobic digestion process of sewage sludge. Addition of LAS homologues to the anaerobic digesters increased the biogas production at surfactant concentrations 5-10 g/kg dry sludge and gave rise to a partial or total inhibition of the methanogenic activity at higher surfactant loads. Therefore, at the usual LAS concentration range in sewage sludge, no adverse effects on the anaerobic digesters functioning of a wastewater treatment plant (WWTP) can be expected. The increase of biogas production at low surfactant concentrations was attributed to an increase of the bioavailability and subsequent biodegradation of organic pollutants associated with the sludge, promoted by the surfactant adsorption at the solid/liquid interface. When the available surfactant fraction in the aqueous phase instead of the nominal surfactant concentration was used to evaluate the toxicity of LAS homologues, a highly significant relationship between toxicity and alkyl chain length was obtained. Taking into account the homologue distribution of commercial LAS in the liquid phase of the anaerobic digesters of a WWTP, an EC(50) value of 14 mg/L can be considered for LAS toxicity on the anaerobic microorganisms.

  13. Anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge and the microbial community structure.

    PubMed

    Ju, Feng; Wang, Yubo; Lau, Frankie T K; Fung, W C; Huang, Danping; Xia, Yu; Zhang, Tong

    2016-10-01

    The effectiveness and treatment conditions of FeCl3- and AlCl3-coagulated municipal sewage sludge from chemically enhanced primary treatment (CEPT) using anaerobic digestion (AD) and the structure of microbial community were investigated. The results based on 297 measurements under different operational conditions demonstrate good average AD performance of CEPT sludge, that is, percent volatile solid reduction of 58 %, specific biogas production (or biogas yield) of 0.92 m(3)/kg volatile solids (VS) destroyed, and methane content of 65.4 %. FeCl3 dosing, organic loading rate, temperature, and hydraulic retention time all significantly affected AD performance. FeCl3 dosing greatly improved specific methane production (methane yield) by 38-54 % and significantly reduced hydrogen sulfide (H2S) content in biogas (from up to 13,250 to <200 ppm), contributing to higher methane recovery and simplified biogas cleaning for power generation. Metagenomic analysis suggested that anaerobic digesters of both CEPT sludge and combined primary and secondary sludge were dominated by Bacteroidetes, Proteobacteria, Firmicutes, Actinobacteria, Thermotogae, and Chloroflexi. However, Methanomicrobia methanogens were better enriched in the anaerobic digesters of CEPT sludge than in the combined sludge. Further, different sources of CEPT sludge with various chemical properties nurtured shared and unique microbial community composition. Combined, this study supports AD as an efficient technology for CEPT sludge treatment and poses first insights into the microbial community structure.

  14. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    PubMed

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p < 0.05) at the conditions of C/N ratio 26:1, moisture content 80 %, and natural initial pH. Although high concentrations of ammonia-nitrogen (NH4-N, 1500 mg/kg wet weight) were formed during thermophilic digestion, there was no obvious inhibition occurred. The results indicated that rice straw can be used as carbon source for the dry co-digestion of sewage sludge under mesophilic and thermophilic conditions.

  15. Anaerobic digestion and gasification coupling for wastewater sludge treatment and recovery.

    PubMed

    Lacroix, Nicolas; Rousse, Daniel R; Hausler, Robert

    2014-07-01

    Sewage sludge management is an energy intensive process. Anaerobic digestion contributes to energy efficiency improvement but is limited by the biological process. A review has been conducted prior to experimentation in order to evaluate the mass and energy balances on anaerobic digestion followed by gasification of digested sludge. The purpose was to improve energy recovery and reuse. Calculations were based on design parameters and tests that are conducted with the anaerobic digester of a local wastewater treatment plant and a small commercial gasification system. Results showed a very significant potential of energy recovery. More than 90% of the energy content from sludge was extracted. Also, approximately the same amount of energy would be transferred in both directions between the digester (biogas) and the gasifier (thermal energy). This extraction resulted in the same use of biogas as the reference scenario but final product was a totally dry biochar, which represented a fraction of the initial mass. Phosphorus was concentrated and significantly preserved. This analysis suggests that anaerobic digestion followed by dehydration, drying and gasification could be a promising and viable option for energy and nutrient recovery from municipal sludge in replacement of conventional paths.

  16. Evaluation of a microwave-heating anaerobic digester treating municipal secondary sludge.

    PubMed

    Jang, Joo-Hyun; Ahn, Johng-Hwa

    2013-01-01

    This work experimentally determined the effect of microwave irradiation on the anaerobic digestion of municipal secondary sludge in semi-continuous mesophilic digesters at hydraulic retention times (HRT) of 15, 10 and 5 days when microwaves were used as a heating source. A microwave-heating anaerobic digester (MHAD) was compared with a water-heating reactor (control). Biogas production increased in both digesters as the HRT decreased except for the control with a HRT of 5 days. Improvement in removal efficiency of volatile solid and biogas production of the MHAD relative to the control increased as the HRT decreased. The results show that the MHAD was more effective than the control in increasing mesophilic anaerobic biodegradability and biogas production treating secondary sludge.

  17. [Enhancement of anaerobic digestion of excess sludge by acid-alkali pretreatment].

    PubMed

    Yuan, Guang-Huan; Zhou, Xing-Qiu; Wu, Jian-Dong

    2012-06-01

    In order to enhance the efficiency of anaerobic digestion of excess sludge, acid-alkali pretreatment method was studied. Three different pretreatment methods (alkali alone,acid-alkali, alkali-acid) were compared to investigate their impacts on hydrolysis and acidification of activated sludge. In addition, their influences on methane-producing in subsequent anaerobic digestion process were also studied. The results showed that the soluble chemical oxygen demand (SCOD) of alkaline treatment alone was about 16% higher than the combining of acid and alkali treatment, SCOD concentration increased to 5406.1 mg x L(-1) after 8 d pretreatment. After treated by acid (pH 4.0, 4 d) and alkali (pH 10.0, 4 d), the acetic acid production and its content in short-chain fatty acids (SCFAs) were higher than other pretreatment methods. And the acetic acid production (as COD/VSS) could reach 74.4 mg x g(-1), accounting for 60.5% of SCFAs. After acid-alkali pretreatment, the C: N ratio of the sludge mixed liquor was about 25, and the C: P ratio was between 35-40, which was more favorable than C: N and C: P ratio of alkali alone and alkali-acid to subsequent anaerobic digestion. The control experiments showed that, after acid-alkali pretreatment, anaerobic digestion cumulative methane yield (CH4/VSS(in)) reached to 136.1 mL x g(-1) at 15 d, which was about 2.5-, 1.6-, and 1.7-fold of the blank (unpretreated), alkali alone pretreatment and alkali-acid pretreatment, respectively. After acid-alkali pretreatment for 8 d and anaerobic digestion for 15 d, the removal efficiency of VSS was about 60.9%, and the sludge reduction effect was better than other pretreatments. It is obvious that the acid-alkali pretreatment method was more favorable to anaerobic digestion and sludge reduction.

  18. Batch anaerobic co-digestion of waste activated sludge and microalgae (Chlorella sorokiniana) at mesophilic temperature.

    PubMed

    Beltrán, Carolina; Jeison, David; Fermoso, Fernando G; Borja, Rafael

    2016-08-23

    The microalgae Chlorella sorokiniana are used as co-substrate for waste activated sludge (WAS) anaerobic digestion. The specific objective of this research was to evaluate the feasibility of improving methane production from anaerobic digestion of WAS in co-digestion with this microalga, based on an optimized mixture percentage. Thus, the anaerobic co-digestion of both substrates aims to overcome the drawbacks of the anaerobic digestion of single WAS, simultaneously improving its management. Different co-digestion mixtures (0% WAS-100% microalgae; 25% WAS-75% microalgae; 50% WAS-50% microalgae; 75% WAS-25% microalgae; 100% WAS-0% microalgae) were studied. The highest methane yield (442 mL CH4/g VS) was obtained for the mixture with 75% WAS and 25% microalgae. This value was 22% and 39% higher than that obtained in the anaerobic digestion of the sole substrates WAS and microalgae, respectively, as well as 16% and 25% higher than those obtained for the co-digestion mixtures with 25% WAS and 75% microalgae and 50% WAS and 50% microalgae, respectively. The kinetic constant of the process increased 42%, 42% and 12%, respectively, for the mixtures with 25%, 50% and 75% of WAS compared to the substrate without WAS. Anaerobic digestion of WAS, together with C. sorokiniana, has been clearly improved by ensuring its viability, suitability and efficiency.

  19. Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion.

    PubMed

    Mu, Hui; Chen, Yinguang

    2011-11-01

    The increasing use of zinc oxide nanoparticles (ZnO NPs) raises concerns about their environmental impacts, but the potential effect of ZnO NPs on sludge anaerobic digestion remains unknown. In this paper, long-term exposure experiments were carried out to investigate the influence of ZnO NPs on methane production during waste activated sludge (WAS) anaerobic digestion. The presence of 1 mg/g-TSS of ZnO NPs did not affect methane production, but 30 and 150 mg/g-TSS of ZnO NPs induced 18.3% and 75.1% of inhibition respectively, which showed that the impact of ZnO NPs on methane production was dosage dependant. Then, the mechanisms of ZnO NPs affecting sludge anaerobic digestion were investigated. It was found that the toxic effect of ZnO NPs on methane production was mainly due to the release of Zn(2+) from ZnO NPs, which may cause the inhibitory effects on the hydrolysis and methanation steps of sludge anaerobic digestion. Further investigations with enzyme and fluorescence in situ hybridization (FISH) assays indicated that higher concentration of ZnO NPs decreased the activities of protease and coenzyme F(420), and the abundance of methanogenesis Archaea.

  20. Effectiveness of phosphate removal during anaerobic digestion of waste activated sludge by dosing iron(III).

    PubMed

    Cheng, Xiang; Wang, Jue; Chen, Bing; Wang, Yu; Liu, Jiaqi; Liu, Lubo

    2017-05-15

    Phosphate-Fe(II) precipitation induced by Fe(III) reduction during the anaerobic digestion of excess activated sludge was investigated for the removal of phosphorus and its possible recovery. The experiments were conducted with three Fe(III) sources at 35 °C and 55 °C. The results show that ferrihydrite-Fe(III) was effectively reduced during the anaerobic sludge digestion by 63% and 96% under mesophilic and thermophilic conditions, respectively. Whereas FeCl3-Fe(III) was only mesophilically reducible and the reduction of hematite-Fe(III) was unnoticeable at either temperature. Efficient precipitation of vivianite was not observed although high saturation index values, e.g., >14 (activity reduction not considered), had been reached. This reveals the complexity of vivianite precipitation in anaerobic digestion systems; for example, Fe(II) complexation and organic interference could not be ignored. With ferrihydrite amendments at a Fe/TP of 1.5, methane production from sludge digestion was reduced by 35.1% at 35 °C, and was unaffected when the digestion temperature went up to 55 °C. But, acidic FeCl3 severely inhibited the methane production and consequently the sludge biomass degradation.

  1. Kinetics and advanced digester design for anaerobic digestion of water hyacinth and primary sludge

    SciTech Connect

    Chynoweth, D.P.; Dolenc, D.A.; Ghosh, S.; Henry, M.P.; Jerger, D.E.; Srivastava, V.J.

    1982-01-01

    A research program centered around a facility located at Walt Disney World (WDW) is in progress to evaluate the use of water hyacinth (WH) for secondary and tertiary wastewater treatment, to optimize growth of WH under these conditions, and to convert the resultant primary sludge (PS) and WH to methane via anaerobic digestion. This article describes the status of the biogasification component of this program, which includes baseline and advanced digestion experiments with individual feeds and blends and the design of an experimental test unit (ETU) to be installed at WDW. Experiments with several blends demonstrated that methane yields can be predicted from the fractional content and methane yield of each component. The process was found to adhere to the Monod kinetic model for microbial growth, and associated kinetic parameters were developed for various feed combinations. A novel upflow digester is achieving significantly higher conversion than a stirred-tank digester. Of several pretreatment techniques used, only alkaline treatment resulted in increased biodegradability. A larger scale (4.5 m/sup 3/) experimental test unit is being designed for installation at WDW in 1982. 13 figures, 4 tables.

  2. A Combined Activated Sludge Anaerobic Digestion Model (CASADM) to understand the role of anaerobic sludge recycling in wastewater treatment plant performance.

    PubMed

    Young, Michelle N; Marcus, Andrew K; Rittmann, Bruce E

    2013-05-01

    The Combined Activated Sludge-Anaerobic Digestion Model (CASADM) quantifies the effects of recycling anaerobic-digester (AD) sludge on the performance of a hybrid activated sludge (AS)-AD system. The model includes nitrification, denitrification, hydrolysis, fermentation, methanogenesis, and production/utilization of soluble microbial products and extracellular polymeric substances (EPS). A CASADM example shows that, while effluent COD and N are not changed much by hybrid operation, the hybrid system gives increased methane production in the AD and decreased sludge wasting, both caused mainly by a negative actual solids retention time in the hybrid AD. Increased retention of biomass and EPS allows for more hydrolysis and conversion to methane in the hybrid AD. However, fermenters and methanogens survive in the AS, allowing significant methane production in the settler and thickener of both systems, and AD sludge recycle makes methane formation greater in the hybrid system.

  3. Inactivation of Clostridium difficile in sewage sludge by anaerobic thermophilic digestion.

    PubMed

    Xu, Changyun; Salsali, Hamidreza; Weese, Scott; Warriner, Keith

    2016-01-01

    There has been an increase in community-associated Clostridium difficile infections with biosolids derived from wastewater treatment being identified as one potential source. The current study evaluated the efficacy of thermophilic digestion in decreasing levels of C. difficile ribotype 078 associated with sewage sludge. Five isolates of C. difficile 078 were introduced (final density of 5 log CFU/g) into digested sludge and subjected to anaerobic digestion at mesophilic (36 or 42 °C) or thermophilic (55 °C) temperatures for up to 60 days. It was found that mesophilic digestion at 36 °C did not result in a significant reduction in C. difficile spore levels. In contrast, thermophilic sludge digestion reduced endospore levels at a rate of 0.19-2.68 log CFU/day, depending on the strain tested. The mechanism of lethality was indirect - by stimulating germination then inactivating the resultant vegetative cells. Acidification of sludge by adding acetic acid (6 g/L) inhibited the germination of spores regardless of the sludge digestion temperature. In conclusion, thermophilic digestion can be applied to reduce C. difficile in biosolids, thereby reducing the environmental burden of the enteric pathogen.

  4. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    SciTech Connect

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  5. Application of acidic thermal treatment for one- and two-stage anaerobic digestion of sewage sludge.

    PubMed

    Takashima, M; Tanaka, Y

    2010-01-01

    The effectiveness of acidic thermal treatment (ATT) was examined in a 106-day continuous experiment, when applied to one- or two-stage anaerobic digestion of sewage sludge (4.3% TS). The ATT was performed at 170 °C and pH 5 for 1 hour (sulfuric acid for lowering pH). The one-stage process was mesophilic at 20 days hydraulic retention time (HRT), and incorporated the ATT as pre-treatment. The two-stage process consisted of a thermophilic digester at 5 days HRT and a mesophilic digester at 15 days HRT, and incorporated the ATT as interstage-treatment. On average, VSS reduction was 48.7% for the one-stage control, 65.8% for the one-stage ATT, 52.7% for the two-stage control and 67.6% for the two-stage ATT. Therefore, VSS reduction was increased by 15-17%, when the ATT was combined in both one- and two-stage processes. In addition, the dewaterability of digested sludge was remarkably improved, and phosphate release was enhanced. On the other hand, total methane production did not differ significantly, and color generation was noted in the digested sludge solutions with the ATT. In conclusion, the anaerobic digestion with ATT can be an attractive alternative for sludge reduction, handling, and phosphorus recovery.

  6. Anaerobic biodegradation of phenolic compounds in digested sludge

    SciTech Connect

    Boyd, S.A.; Shelton, D.R.; Berry, D.; Tiedje, J.M.

    1983-07-01

    The authors examined the anaerobic degradation of phenol and the ortho, meta, and para isomers of chlorophenol, methoxyphenol, methylphenol (cresol),and nitrophenol in anaerobic sewage sludge diluted to 10% in a mineral salts medium. Of the 12 monosubstituted phenols studied, only p-chlorophenol and o-cresol were not significantly degraded during an 8-week incubation period. The phenol compounds degraded and the time required for complete substrate disappearance (in weeks) were: phenol (2), o-chlorophenol (3), m-chlorophenol (7), o-methoxyphenol (2), m- and p-methoxyphenol (1), m-cresol (7), p-cresol (3), and o-, m-, and p-nitrophenol (1). Complete mineralization of phenol, o-chlorophenol, m-cresol, p-cresol, o-nitrophenol, p-nitrophenol, and o-, m-, and p-methoxyphenol was observed. In general, the presence of Cl and NO/sub 2/ groups on phenols inhibited methane production. Elimination or transformation of these substituents was accompanied by increased methane production. o-Chlorophenol was metabolized to phenol, which indicated that dechlorination was the initial degradation step. The methoxyphenols were transformed to the corresponding dihydroxybenzene compounds, which were subsequently mineralized. (Refs. 14).

  7. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities.

    PubMed

    Oshita, Kazuyuki; Okumura, Takuya; Takaoka, Masaki; Fujimori, Takashi; Appels, Lise; Dewil, Raf

    2014-11-01

    Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509±72 mg/m(3)-influent (wastewater) and 7.1±2.6 mg/m(3)-influent, respectively. These values accounted for 22.4±3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.

  8. Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process.

    PubMed

    Rani, R Uma; Kumar, S Adish; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2012-01-01

    An investigation into the influence of low temperature thermo-chemical pretreatment on sludge reduction in a semi-continuous anaerobic reactor was performed. Firstly, effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. At optimized condition (60 °C with pH 12), COD solubilization, suspended solids, reduction and biogas production was 23%, 22% and 51% higher than the control, respectively. Secondly, semi-continuous process performance was studied in a lab-scale semi-continuous anaerobic reactor (5 L), with 4 L working volume. With three operated SRTs, the SRT of 15 days was found to be most appropriate for economic operation of the reactor. Combining pretreatment with anaerobic digestion led to 80.5%, 117% and 90.4% of TS, SS and VS reduction respectively, with an improvement of 103% in biogas production. Thus, low temperature thermo-chemical can play an important role in reducing sludge production.

  9. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste

    PubMed Central

    Zuliani, Luca; Frison, Nicola; Jelic, Aleksandra; Fatone, Francesco; Bolzonella, David; Ballottari, Matteo

    2016-01-01

    Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO2, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB) was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates. PMID:27735859

  10. Increased anaerobic production of methane by co-digestion of sludge with microalgal biomass and food waste leachate.

    PubMed

    Kim, Jungmin; Kang, Chang-Min

    2015-01-01

    The co-digestion of multiple substrates is a promising method to increase methane production during anaerobic digestion. However, limited reliable data are available on the anaerobic co-digestion of food waste leachate with microalgal biomass. This report evaluated methane production by the anaerobic co-digestion of different mixtures of food waste leachate, algal biomass, and raw sludge. Co-digestion of substrate mixture containing equal amounts of three substrates had higher methane production than anaerobic digestion of individual substrates. This was possibly due to a proliferation of methanogens over the entire digestion period induced by multistage digestion of different substrates with different degrees of degradability. Thus, the co-digestion of food waste, microalgal biomass, and raw sludge appears to be a feasible and efficient method for energy conversion from waste resources.

  11. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment.

    PubMed

    Liu, Jibao; Yu, Dawei; Zhang, Jian; Yang, Min; Wang, Yawei; Wei, Yuansong; Tong, Juan

    2016-07-01

    The rheological behavior of sludge is of serious concern in anaerobic digestion. This study investigated the rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment (MW-H2O2). The results showed that MW-H2O2 pretreatment resulted in the improvement of sludge flowability and weakening of its viscoelastic properties. Further positive effects on the rheological properties of digested sludge during anaerobic digestion were observed. The flowability was improved with a low level of apparent viscosity. The decrease of the consistency index and increase of the flow behavior index indicated that the strength of the inner structures and non-Newtonian flow characteristics of digested sludge weakened. Both the storage modulus (G') and loss modulus (G″) decreased, indicating that the viscoelastic behavior became weak. These effects were possibly attributed to the changes of the digested sludge micro-structures, such as extracellular polymeric substances (EPS). This study concluded that anaerobic digestion for treating sewage sludge combined with pretreatment is a more favorable option than single anaerobic digestion from the perspective of rheology.

  12. Biodegradation of PAH and DEHP micro-pollutants in mesophilic and thermophilic anaerobic sewage sludge digestion.

    PubMed

    Benabdallah El-Hadj, T; Dosta, J; Mata-Alvarez, J

    2006-01-01

    Anaerobic digestion for the treatment of sludge in wastewater treatment plants has been reported to produce a low organic loaded effluent with an acceptable economic cost. But in the last years, new regulations and the increasing sludge production invite us to find an alternative and/or to improve the process efficiency. Moreover, the use of the effluent as fertilizer in agriculture imposes more restrictions on digestion process product and its micropollutant contents to protect the environment. In this study, a performance of the anaerobic digestion under mesophilic and thermophilic conditions at different hydraulic retention times (HRT) is assessed and the removal efficiencies of two important compounds or family compounds (Polycyclic Aromatic Hydrocarbons, PAH, and Di-2-(Ethyl-Hexyl)-Phthalate, DEHP) are evaluated. A positive effect of thermophilic temperature was observed on both micropollutants' biodegradation. However, HRT effect also had an important role for DEHP and low molecular weighted PAH removal.

  13. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge.

    PubMed

    Uma Rani, R; Adish Kumar, S; Kaliappan, S; Yeom, Icktae; Rajesh Banu, J

    2013-05-01

    Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  14. The viscoelastic behaviour of raw and anaerobic digested sludge: strong similarities with soft-glassy materials.

    PubMed

    Baudez, Jean-Christophe; Gupta, Rahul K; Eshtiaghi, Nicky; Slatter, Paul

    2013-01-01

    Over the last few decades, municipal and industrial wastewater treatment activities have been confronted with a dramatically increasing flow of sewage sludge. To improve treatment efficiency, process and material parameters are needed but engineers are dealing with vast quantities of fundamentally poorly understood and unpredictable material Thus, accurate prediction of critically important, but analytically elusive process parameters is unattainable and is a matter of grave concern. Because engineers need reliable flow properties to simulate the process, this work is an attempt to approach sludge rheological behaviour with well-known materials which have similar characteristics. Sludge liquid-like behaviour is already well documented so, we have focused mainly on the solid-like behaviour of both raw and digested sludge by performing oscillatory measurements in the linear and non-linear regimes. We have shown that the viscoelastic behaviour of sludge presents strong similarities with soft-glassy materials but differences can be observed between raw and digested sludge. Finally, we confirm that colloidal glasses and emulsions may be used to model the rheological behaviour of raw and anaerobic digested sludge.

  15. Plant uptake of cadmium from acid-extracted anaerobically digested sewage sludge. [Beta vulgaris

    SciTech Connect

    Logan, T.J.; Feltz, R.E.

    1985-01-01

    Approximately 80% of the Cd in an anaerobically digested sewage sludge was removed by acid extraction and dewatering. The acid extracted sludge was treated by (i) neutralization to pH 5.9 with Ca(OH)/sub 2/, (ii) addition of monocalcium phosphate (MCP) followed by Ca(OH)/sub 2/ neutralization to pH 5.9, and, (iii) addition of rock phosphate (RP) followed by Ca(OH)/sub 2/ neutralization to pH 5.9. The three treated sludges and the non acid-extracted sludge were applied to Spinks loamy sand at rates equivalent to 18.7 and 37.4 ..mu..mol Cd kg/sup -1/. Swiss chard (Beta vulgaris) was grown in the greenhouse for 56 d. Cadmium, Fe, Ca, and P were measured in saturation extracts of treated soil after sludge addition. These data indicated that hydroxyapatite was stable throughout the study in the soil receiving MCP treated sludge but not in other soil treatments. Cadmium concentration in saturation extracts of the soil with MCP sludge decreased while Cd concentration in saturation extracts of the other sludge treatments were much higher throughout the study. Chard yields were higher in the control than in any of the sludge treatments, and the difference was attributed to greater N availability in the control. Cadmium concentration in Swiss chard tissue at harvest was significantly lower from the MCP sludge than from the other sludges. Cadmium concentration in chard tissue was also higher from the aerated sludge (11.9 mmol Cd kg/sup -1/) than from the three acid-extracted sludges (2.58-3.29 mmol Cd kg/sup -1/). No significant difference in the Cd concentration of chard was obtained for the 18.7 and 37.4 ..mu..mol Cd kg/sup -1/ rates of the MCP sludge, while Cd concentrations in chard increased linearly with Cd applied by the other sludges.

  16. Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: Synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment.

    PubMed

    Alagöz, B Aylin; Yenigün, Orhan; Erdinçler, Ayşen

    2015-12-01

    This study investigates the effect of ultrasonic and microwave pre-treatment on biogas production from the anaerobic co-digestion of olive pomace and wastewater sludges. It was found that co-digestion of wastewater sludge with olive pomace yielded around 0.21 L CH4/g VS added, whereas the maximum methane yields from the mono-digestion of olive pomace and un-pretreated wastewater sludges were 0.18 and 0.16L CH4/g VS added. In the same way, compared to mono-digestion of these substrates, co-digestion increased methane production by 17-31%. The microwave and ultrasonic pre-treatments applied to sludge samples prior to co-digestion process led to further increase in the methane production by 52% and 24%, respectively, compared to co-digestion with un-pretreated wastewater sludge. The highest biogas and methane yields were obtained from the co-digestion of 30 min microwave pre-treated wastewater sludges and olive pomace to be 0.46 L/g VS added and 0.32 L CH4/g VS added, respectively.

  17. Rate determination of supercritical water gasification of primary sewage sludge as a replacement for anaerobic digestion.

    PubMed

    Wilkinson, Nikolas; Wickramathilaka, Malithi; Hendry, Doug; Miller, Andrew; Espanani, Reza; Jacoby, William

    2012-11-01

    Supercritical water gasification of primary sewage sludge sampled from a local facility was undertaken at different solids content. The performance of the process was compared with the anaerobic digestion system in use at the facility where the samples were taken. The mass and composition of the vapor products documented showed that the process generates more energy per gram of feed while rapidly destroying more volatile solids relative to the anaerobic digestion process. However, the energy input requirements are greater for supercritical water gasification. This study defines parameters for a model of the gasification reaction using the power law and Arrhenius equation. The activation energy was estimated to be 15 kJ/mol, and the reaction order was estimated to be 0.586. This model allows estimation of the size of a supercritical water reactor needed to replace the anaerobic digesters that are currently used at the wastewater treatment plant.

  18. Rheology of sludge from double phase anaerobic digestion of organic fraction of municipal solid waste.

    PubMed

    Battistoni, P; Pavan, P; Mata-Alvarez, J; Prisciandaro, M; Cecchi, F

    2000-01-01

    In this paper experimental results on the anaerobic digestion of sewage sludge and organic fraction of municipal solid waste (OFMSW) by using a double phase process are reported. The long-term experiment has been carried out on a pilot scale plant, performed in different sets of operative conditions, during which granulometric distributions of particles in sludges and rheological properties of sludges were monitored. A significant fluidification of sludge was evidenced in the meso-thermo process, especially taking into account the variation in sludge behaviour from the first to the second phase. In the thermo-thermo process a fluidification higher than that shown in meso-thermo conditions is not observed, this suggesting that better results in terms of sludge conditioning can be obtained in a long time spent in thermophilic anaerobic digestion. Total volatile solids (TVS) and total fixed solids (TFS) become the most important parameters when mathematical modelling is applied to these processes. In the acidogenic phase, hydraulic retention time (HRT) and temperature are used to determine rigidity coefficient (RC), while only temperature is needed for yield stress (YC). Organic loading rate (OLR) and specific gas production (SGP) exert an important role in methanogenic phase description.

  19. Anaerobic digestion of sewage sludge with grease trap sludge and municipal solid waste as co-substrates.

    PubMed

    Grosser, A; Neczaj, E; Singh, B R; Almås, Å R; Brattebø, H; Kacprzak, M

    2017-05-01

    The feasibility of simultaneous treatment of multiple wastes via co-digestion was studied in semi-continuous mode at mesophilic conditions. The obtained results indicated that sewage sludge, organic fraction of municipal waste (OFMSW) and grease trap sludge (GTS) possess complementary properties that can be combined for successful anaerobic digestion. During the co-digestion period, methane yield and VS removal were significantly higher in comparison to digestion of sewage sludge alone. Addition of GTS to digesters treating sewage sludge resulted in increased VS removal and methane yield up to 13% (from 50 to 56.4) and 52% (from 300 to 456,547m(3)/Mg VSadd), respectively. While the use of OFMSW as the next co-substrate in the feedstock, can boost methane yield and VS removal up to 82% (300-547m(3)/Mg VSadd) and approximately 29% (from 50% to 64.7%), respectively. Moreover, the results of the present laboratory study revealed that the addition of co-substrates to the feedstock had a significant influence on biogas composition. During the experiment methane content in biogas ranged from 67% to 69%. While, the concentration of LCFAs was increasing with the gradual increase in the share of co-substrates in the mixtures, wherein only the oleic acid was higher than some inhibition concentrations which have been reported in the literature. However, it did not significantly affect the efficiency of the co-digestion process.

  20. Characteristics of dissolved organic matter formed in aerobic and anaerobic digestion of excess activated sludge.

    PubMed

    Du, Haixia; Li, Fusheng

    2017-02-01

    The characteristics of dissolved organic matter (DOM) formed in aerobic and anaerobic digestion of excess activated sludge (EAS) was investigated for three total solid (TS) concentrations (1.2, 2.3 and 5.2%) and three temperatures (5, 20 and 35 °C). The results on the overall concentration of DOM evaluated by TOC showed significantly higher values in anaerobic than aerobic digestion (2.8-6.9 times for TS 1.2-5.2% at 20 °C). Data analysis with a first-order sequential reaction model revealed that higher occurrence of DOM in anaerobic digestion was a result of comparatively faster hydrolysis (1.3-5.5 times for TS 1.2-5.2% at 20 °C; 1.4-49.3 times for temperatures 5-35 °C with TS 1.2%) and slower degradation (0.3-1.0 times for TS 1.2-5.2% at 20 °C; 0.5-8.3 times for temperatures 5-35 °C with TS 1.2%). In aerobic digestion, more humic substances were formed; while, in anaerobic digestion, proteins and aromatic amino acids were the major constituents. For both digestions, except for a few exceptions, proteins and humic substances increased as the TS concentration increased; and increasing the temperature led to a decrease in the content of proteins formed in both aerobic and anaerobic digestion, and an increase in the content of humic substances in the aerobic digestion. The UV-absorbing DOM constituents were highly heterogeneous, and were comparatively larger in anaerobic digestion; and did not change significantly with the TS concentrations and temperatures.

  1. Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature.

    PubMed

    Shao, Liming; Wang, Tianfeng; Li, Tianshui; Lü, Fan; He, Pinjing

    2013-07-01

    Aerobic and anaerobic digestion are popular methods for the treatment of waste activated sludge. However, the differences in degradation of sludge during aerobic and anaerobic digestion remain unclear. In this study, the sludge degradation during aerobic and anaerobic digestion was investigated at mesophilic temperature, focused on protein based on the degradation efficiency and degree of humification. The duration of aerobic and anaerobic digestion was about 90 days. The final degradation efficiency of volatile solid was 66.1 ± 1.6% and 66.4 ± 2.4% under aerobic and anaerobic conditions, respectively. The final degradation efficiency of protein was 67.5 ± 1.4% and 65.1 ± 2.6% under aerobic and anaerobic conditions, respectively. The degradation models of volatile solids were consistent with those of protein under both aerobic and anaerobic conditions. The solubility of protein under aerobic digestion was greater than that under anaerobic digestion. Moreover, the humification index of dissolved organic matter of aerobic digestion was greater than that during anaerobic digestion.

  2. Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems.

    PubMed

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-03-15

    Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be

  3. Biological pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge.

    PubMed

    Lin Yunqin; Wang Dehan; Wang Lishang

    2010-09-01

    High efficient resource recovery from pulp and paper sludge (PPS) has been the focus of attention. The objective of this research was to develop a bio-pretreatment process prior to anaerobic digestion of PPS to improve the methane productivity. Active and inactive mushroom compost extracts (MCE) were used for pretreating PPS, followed by anaerobic digestion with monosodium glutamate waste liquor (MGWL). Laboratory-scale experiments were carried out in completely mixed bioreactors, 1-L capacity with 700 ml useful capacity. Optimal amount of active MCE for organics' solubilization in the step of pretreatment was 250 A.U./gVS( sludge). Under this condition, the PPS floc structure was well disrupted, resulting in void rate and fibre size diminishment after pretreatment. In addition, SCOD and VS removal were found to be 56% and 43.6%, respectively, after anaerobic digestion, being the peak value of VFA concentration determined as 1198 mg acetic acid L(-1). The anaerobic digestion efficiency of PPS with and without pretreatment was evaluated. The highest methane yield under optimal pretreatment conditions was 0.23 m(3) CH4/kgVS(add), being 134.2% of the control. The results indicated that MCE bio-pretreatment could be a cost-effective and environmentally sound method for producing methane from PPS.

  4. Evaluation of the anaerobic co-digestion of sewage sludge and tomato waste at mesophilic temperature.

    PubMed

    Belhadj, Siham; Joute, Yassine; El Bari, Hassan; Serrano, Antonio; Gil, Aida; Siles, José A; Chica, Arturo F; Martín, M Angeles

    2014-04-01

    Sewage sludge is a hazardous waste, which must be managed adequately. Mesophilic anaerobic digestion is a widely employed treatment for sewage sludge involving several disadvantages such as low methane yield, poor biodegradability, and nutrient imbalance. Tomato waste was proposed as an easily biodegradable co-substrate to increase the viability of the process in a centralized system. The mixture proportion of sewage sludge and tomato waste evaluated was 95:5 (wet weight), respectively. The stability was maintained within correct parameters in an organic loading rate from 0.4 to 2.2 kg total volatile solids (VS)/m(3) day. Moreover, the methane yield coefficient was 159 l/kg VS (0 °C, 1 atm), and the studied mixture showed a high anaerobic biodegradability of 95 % (in VS). Although the ammonia concentration increased until 1,864 ± 23 mg/l, no inhibition phenomenon was determined in the stability variables, methane yield, or kinetics parameters studied.

  5. Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge.

    PubMed

    Borowski, Sebastian; Domański, Jarosław; Weatherley, Laurence

    2014-02-01

    The anaerobic digestion of municipal sewage sludge (SS) with swine manure (SM) and poultry manure (PM) was undertaken. It was found that a mixture of sewage sludge with a 30% addition of swine manure gave around 400 dm(3)/kg VS of biogas, whereas the maximal biogas yield from ternary mixture (SS:SM:PM=70:20:10 by weight) was only 336 dm(3)/kg VS. An inhibition of methanogenesis by free ammonia was observed in poultry manure experiments. The anaerobic digestion was inefficient in pathogen inactivation as the reduction in the number of E. coli an Enterobacteriaceae was only by one logarithmic unit. A substantial portion of pathogens was also released into the supernatant.

  6. Comparative evaluation of anaerobic digestion for sewage sludge and various organic wastes with simple modeling.

    PubMed

    Hidaka, Taira; Wang, Feng; Tsumori, Jun

    2015-09-01

    Anaerobic co-digestion of sewage sludge and other organic wastes, such as kitchen garbage, food waste, and agricultural waste, at a wastewater treatment plant (WWTP) is a promising method for both energy and material recovery. Substrate characteristics and the anaerobic digestion performance of sewage sludge and various organic wastes were compared using experiments and modeling. Co-digestion improved the value of digested sewage sludge as a fertilizer. The relationship between total and soluble elemental concentrations was correlated with the periodic table: most Na and K (alkali metals) were soluble, and around 20-40% of Mg and around 10-20% of Ca (alkaline earth metals) were soluble. The ratio of biodegradable chemical oxygen demand of organic wastes was 65-90%. The methane conversion ratio and methane production rate under mesophilic conditions were evaluated using a simplified mathematical model. There was reasonably close agreement between the model simulations and the experimental results in terms of methane production and nitrogen concentration. These results provide valuable information and indicate that the model can be used as a pre-evaluation tool to facilitate the introduction of co-digestion at WWTPs.

  7. Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge.

    PubMed

    Tada, Chika; Yang, Yingnan; Hanaoka, Toshiaki; Sonoda, Akinari; Ooi, Kenta; Sawayama, Shigeki

    2005-03-01

    The effect of an inorganic additive on the methane production from NH(4+)-rich organic sludge during anaerobic digestion was investigated using different kinds of inorganic adsorbent zeolites (mordenite, clinoptilolite, zeolite 3A, zeolite 4A), clay mineral (vermiculite), and manganese oxides (hollandite, birnessite). The additions of inorganic materials resulted in significant NH4+ removals from the natural organic sludge ([NH4+]=1, 150 mg N/l), except for the H-type zeolite 3A and birnessite. However, an enhanced methane production was only achieved using natural mordenite. Natural mordenite also enhanced the methane production from the sludge with a markedly high NH4+ concentration (4500 mg N/l) during anaerobic digestion. Chemical analyses of the sludge after the digestion showed considerable increases in the Ca2+ and Mg2+ concentrations in the presence of natural mordenite, but not with synthetic zeolite 3A. The effect of Ca2+ or Mg2+ addition on the methane production was studied using Na(+)-exchanges mordenite and Ca2+ or Mg(2+)-enriched sludge. The simultaneous addition of Ca2+ ions and Na(+)-exchanged mordenite enhanced the methane production; the amount of produced methane was about three times greater than that using only the Na(+)-exchanged mordenite. In addition, comparing the methane production by the addition of natural mordenite or Ca2+ ions, the methane production with natural mordenite was about 1.7 times higher than that with only Ca2+ ions. The addition of 5% and 10% natural mordenite were suitable condition for obtaining a high methane production. These results indicated that the Ca2+ ions, which are released from natural mordenite by a Ca2+/NH4+ exchange, enhanced the methane production of the organic waste at a high NH4+ concentration. Natural mordenite has a synergistic effect on the Ca2+ supply as well on the NH4+ removal during anaerobic digestion, which is effective for the mitigation of NH4+ inhibition against methane production.

  8. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge?

    PubMed

    Gonzalez-Gil, L; Papa, M; Feretti, D; Ceretti, E; Mazzoleni, G; Steimberg, N; Pedrazzani, R; Bertanza, G; Lema, J M; Carballa, M

    2016-10-01

    The occurrence of emerging organic micropollutants (OMPs) in sewage sludge has been widely reported; nevertheless, their fate during sludge treatment remains unclear. The objective of this work was to study the fate of OMPs during mesophilic and thermophilic anaerobic digestion (AD), the most common processes used for sludge stabilization, by using raw sewage sludge without spiking OMPs. Moreover, the results of analytical chemistry were complemented with biological assays in order to verify the possible adverse effects (estrogenic and genotoxic) on the environment and human health in view of an agricultural (re)use of digested sludge. Musk fragrances (AHTN, HHCB), ibuprofen (IBP) and triclosan (TCS) were the most abundant compounds detected in sewage sludge. In general, the efficiency of the AD process was not dependent on operational parameters but compound-specific: some OMPs were highly biotransformed (e.g. sulfamethoxazole and naproxen), while others were only slightly affected (e.g. IBP and TCS) or even unaltered (e.g. AHTN and HHCB). The MCF-7 assay evidenced that estrogenicity removal was driven by temperature. The Ames test did not show point mutation in Salmonella typhimurium while the Comet test exhibited a genotoxic effect on human leukocytes attenuated by AD. This study highlights the importance of combining chemical analysis and biological activities in order to establish appropriate operational strategies for a safer disposal of sewage sludge. Actually, it was demonstrated that temperature has an insignificant effect on the disappearance of the parent compounds while it is crucial to decrease estrogenicity.

  9. Anaerobic co-digestion of mechanically biologically treated municipal waste with primary sewage sludge - a feasibility study.

    PubMed

    Pahl, Ole; Firth, Anna; MacLeod, Iain; Baird, Jim

    2008-06-01

    This bench scale study investigated the suitability of MBT material for treatment by anaerobic digestion and the impacts of co-digestion of these wastes with sewage sludge. The results suggest that MBT material is amenable to anaerobic digestion with sewage sludge. The main problems for scale-up are related to the physical composition of the MBT material, the accumulation of heavy metals and other inert contaminants and the impact of both of these factors on final sludge quality. Full-scale trials would be required to assess the long-term impacts of MBT waste on anaerobic digestion, if this form of co-digestion were to be pursued. The material contamination that presents a barrier to the direct recycling of MBT material in land-applications is also a major hurdle in commercial co-digestion. Better quality input material would be likely to result in higher methane yields and fewer restrictions on the utilisation of the product in recycling.

  10. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    SciTech Connect

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, IckTae; Rajesh Banu, J.

    2013-05-15

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  11. Digestion and dewatering characteristics of waste activated sludge treated by an anaerobic biofilm system.

    PubMed

    Wang, Tianfeng; Shao, Liming; Li, Tianshui; Lü, Fan; He, Pinjing

    2014-02-01

    Immobilization of microorganisms for sludge anaerobic digestion was investigated in this study. The effects of filler properties on anaerobic digestion and dewaterability of waste activated sludge were assessed at mesophilic temperature in batch mode. The results showed that the duration of the methanogenic stage of reactors without filler, with only filler, and with pre-incubated filler was 39days, 19days and 13days, respectively, during which time the protein was degraded by 45.0%, 29.4% and 30.0%, and the corresponding methane yield was 193.9, 107.2 and 108.2mL/g volatile suspended solids added, respectively. On day 39, the final protein degradation efficiency of the three reactors was 45.0%, 40.9% and 42.0%, respectively. The results of normalized capillary suction time and specific resistance to filtration suggested that the reactor incorporating pre-incubated filler could improve the dewaterability of digested sludge, while the effect of the reactor incorporating only filler on sludge dewaterability was uncertain.

  12. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron.

    PubMed

    Zhang, Yaobin; Feng, Yinghong; Yu, Qilin; Xu, Zibin; Quan, Xie

    2014-05-01

    Anaerobic digestion of waste activated sludge usually requires pretreatment procedure to improve the bioavailability of sludge, which involves considerable energy and high expenditures. This study proposes a cost-effective method for enhanced anaerobic digestion of sludge without a pretreatment by directly adding iron into the digester. The results showed that addition of Fe(0) powder could enhance 14.46% methane yield, and Fe scrap (clean scrap) could further enhance methane yield (improving rate 21.28%) because the scrap has better mass transfer efficiency with sludge and liquid than Fe(0) powder. The scrap of Fe with rust (rusty scrap) could induce microbial Fe(III) reduction, which resulted in achieving the highest methane yield (improving rate 29.51%), and the reduction rate of volatile suspended solids (VSS) was also highest (48.27%) among Fe powder, clean scrap and rusty scrap. PCR-DGGE proved that the addition of rusty scrap could enhance diversity of acetobacteria and enrich iron-reducing bacteria to enhance degradation of complex substrates.

  13. Influence of anaerobic co-digestion of sewage and brewery sludges on biogas production and sludge quality.

    PubMed

    Pecharaply, Athapol; Parkpian, Preeda; Annachhatre, Ajit P; Jugsujinda, Aroon

    2007-06-01

    This research investigated operating parameters and treatment efficiency for the digestion of sewage and brewery sludge. The prime objective of this study was to enhance the quality of treated sludge for use as agriculture fertilizer and to enhance biogas production, a by-product that can be used as an energy source. Three bench-scale completely stirred tank reactor (CSTR) anaerobic digesters were operated at mesophilic condition (36+/-0.2 degrees C). A mixture of sewage and brewery sludge were used as substrates at ratios of 100:0, 75:25, 50:50, 25:75 and 0:100, based on wet weight basis (w/w). For each digester, the solids retention times (SRT) were 20 days. The organic loading and volatile solids loading were between 1.3-2.2 kg chemical oxygen demand (COD)/m3/day and 0.9-1.5 kg/m3/day, respectively. The digester fed with brewery sludge as co-substrate yielded higher treatment efficiency than sewage sludge alone. The removal efficiencies measured in terms of soluble chemical oxygen demand (SCOD) and total chemical oxygen demands (TCOD) ranged from 40% to 75% and 22% to 35%, respectively. Higher SCOD and TCOD removal efficiencies were obtained when higher fractions of brewery sludge was added to the substrate mixture. Removal efficiency was lowest for sewage sludge alone. Measured volatile solid (VS) reduction ranged from 15% to 20%. Adding a higher fraction of brewery sludge to the mixture increased the VS reduction percentage. The biogas production and methane yield also increased with increase in brewery sludge addition to the digester mixture. The methane content present in biogas of each digester exceeded 70% indicating the system was functioning as an anaerobic process. Likewise the ratio of brewery sewage influenced not only the treatment efficiency but also improved quality of treated sludge by lowering number of pathogen (less than 2 MPN/g of dried sludge) and maintaining a high nutrient concentration of nitrogen (N) 3.2-4.2%, phosphorus (P) 1.9-3.2% and

  14. Anaerobic Digestion.

    PubMed

    Liebetrau, Jan; Sträuber, Heike; Kretzschmar, Jörg; Denysenko, Velina; Nelles, Michael

    2017-04-09

    The term anaerobic digestion usually refers to the microbial conversion of organic material to biogas, which mainly consists of methane and carbon dioxide. The technical application of the naturally-occurring process is used to provide a renewable energy carrier and - as the substrate is often waste material - to reduce the organic matter content of the substrate prior to disposal.Applications can be found in sewage sludge treatment, the treatment of industrial and municipal solid wastes and wastewaters (including landfill gas utilization), and the conversion of agricultural residues and energy crops.For biorefinery concepts, the anaerobic digestion (AD) process is, on the one hand, an option to treat organic residues from other production processes. Concomitant effects are the reduction of organic carbon within the treated substance, the conversion of nitrogen and sulfur components, and the production of an energy-rich gas - the biogas. On the other hand, the multistep conversion of complex organic material offers the possibility of interrupting the conversion chain and locking out intermediates for utilization as basic material within the chemical industry.

  15. Sanitation ability of anaerobic digestion performed at different temperature on sewage sludge.

    PubMed

    Scaglia, Barbara; D'Imporzano, Giuliana; Garuti, Gilberto; Negri, Marco; Adani, Fabrizio

    2014-01-01

    A small amount of ammonia is used in full-scale plants to partially sanitize sewage sludge, thereby allowing successive biological processes to enable the high biological stability of the organic matter. Nevertheless, ammonia and methane are both produced during the anaerobic digestion (AD) of sludge. This paper describes the evaluation of a lab-scale study on the ability of anaerobic process to sanitize sewage sludge and produce biogas, thus avoiding the addition of ammonia to sanitize sludge. According to both previous work and a state of the art full-scale plant, ammonia was added to a mixture of sewage sludge at a rate so that the pH values after stirring were 8.5, 9 and 9.5. This procedure determined an ammonia addition lower than that generally indicated in the literature. The same sludge was also subjected to an AD process for 60 days under psychrophilic, mesophilic and thermophilic conditions. The levels of fecal coliform, Salmonella spp. helmints ova, pH, total N, ammonia fractions and biogas production were measured at different times during each process. The results obtained suggested that sludge sanitation can be achieved using an AD process; however, the addition of a small amount of ammonia was not effective in sludge sanitation because the buffer ability of the sludge reduced the pH and thus caused ammonia toxicity. Mesophilic and thermophilic AD sanitized better than psychrophilic AD did, but the total free ammonia concentration under the thermophilic condition inhibited biogas production. The mesophilic condition, however, allowed for both sludge sanitation and significant biogas production.

  16. Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion.

    PubMed

    Appels, Lise; Houtmeyers, Sofie; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2013-01-01

    Anaerobic digestion is widely applied for the recovery of energy from waste activated sludge. Pre-treatment methods are of high interest to increase the biodegradability of the sludge and to enhance the digestion efficiency. This paper studies the application of a microwave pre-treatment. An experimental set-up of two pilot scale semi-continuous digesters was used. During a long term experiment, one of the reactors was fed with untreated sludge, while microwave pre-treated sludge (336 kJ/kg sludge) was introduced in the second one. A solid retention time of 20 days was kept during the experiments. (Organic) dry solids, carbohydrates, proteins and volatile fatty acids were monitored during digestion. It was seen that the microwave pre-treatment resulted in an effective solubilization of the organic matter in the sludge. The changes to the sludge composition resulted in an increase in biogas production by 50%, while the methane concentration in both reactors remained stable.

  17. Bacterial community structure in treated sewage sludge with mesophilic and thermophilic anaerobic digestion.

    PubMed

    Stiborova, Hana; Wolfram, Jan; Demnerova, Katerina; Macek, Tomas; Uhlik, Ondrej

    2015-11-01

    Stabilized sewage sludge is applied to agricultural fields and farmland due to its high organic matter content. The aim of this study was to investigate the effects of two types of sludge stabilization, mesophilic anaerobic digestion (MAD) and thermophilic anaerobic digestion (TAD), on bacterial communities in sludge, including the presence of pathogenic microorganisms. Bacterial community structure and phylogenetic diversity were analyzed in four sewage sludge samples from the Czech Republic. Analysis of 16S ribosomal RNA (rRNA) genes showed that investigated sludge samples harbor diverse bacterial populations with only a few taxa present across all samples. Bacterial diversity was higher in sludge samples after MAD versus TAD treatment, and communities in MAD-treated sludge shared the highest genetic similarities. In all samples, the bacterial community was dominated by reads affiliated with Proteobacteria. The sludge after TAD treatment had considerably higher number of reads of thermotolerant/thermophilic taxa, such as the phyla Deinococcus-Thermus and Thermotogae or the genus Coprothermobacter. Only one operational taxonomic unit (OTU), which clustered with Rhodanobacter, was detected in all communities at a relative abundance >1 %. All of the communities were screened for the presence of 16S rRNA gene sequences of pathogenic bacteria using a database of 122 pathogenic species and ≥98 % identity threshold. The abundance of such sequences ranged between 0.23 and 1.57 % of the total community, with lower numbers present after the TAD treatment, indicating its higher hygienization efficiency. Sequences clustering with nontuberculous mycobacteria were present in all samples. Other detected sequences of pathogenic bacteria included Streptomyces somaliensis, Acinetobacter calcoaceticus, Alcaligenes faecalis, Gordonia spp., Legionella anisa, Bordetella bronchiseptica, Enterobacter aerogenes, Brucella melitensis, and Staphylococcus aureus.

  18. Residual cadmium forms in acid-extracted anaerobically digested sewage sludge

    SciTech Connect

    Feltz, R.E.; Logan, T.J.

    1985-01-01

    The effects of phosphorus and lime additions after acid extraction on residual Cd solubility and chemical forms in an anaerobically digested sewage sludge were investigated. High Cd content anaerobically digested sewage sludge was aerated and then acidified to pH 2 to solubilize Cd. After 18 h of acidification, the sludge was dewatered and the supernatant and solids separated. Seventy or more percent of the Cd was removed from the solids. Similar amounts of Ni, Mn and Zn were also removed, but Cu removal was only 26% and that of Pb was < 5%. Before liming the sludge was amended with rock phosphate (RP) or monocalcium phosphate (MCP). The RP was insoluble while MCP dissolved, providing a high level of phosphate ligand for Cd precipitation or coprecipitation. Estimated sludge solution solubility products for major Fe, Al and Ca phosphates showed that several of these minerals could have precipitated with P addition, especially with MCP, and Cd may have coprecipitated with these solid phases. Cadmium phosphate may also have been formed in the MCP sludge. Chemical fractionation indicated that 50% of the Cd in the aerated unextracted sludge existed as inorganic precipitates with another 40% Na/sub 4/P/sub 2/O/sub 7/ extractable. Acidification solubilized 98% of the inorganic Cd and 86% of the organically bound Cd. Seventy-nine percent of the Cd remaining in the dewatered acidified sludge was in the KNO/sub 3/ extractable (exchangeable) fraction. Liming redistributed the Cd with 13 to 19% as inorganic precipitates, 70 to 85% organically bound and < 3% in the exchangeable fraction. Phosphate addition had no significant effect on Cd fractionation.

  19. Effect of fillers on key characteristics of sludge thermophilic anaerobic digestion.

    PubMed

    Shao, Liming; Xu, Yuanshun; Wang, Tianfeng; Lü, Fan; He, Pinjing

    2015-10-01

    In anaerobic digestion (AD) of sludge, AD efficiency and digested sludge (DS) dewaterability are critical factors. In this study, polyester non-woven fabric fillers were integrated into a sludge digester. The effect of such fillers on digestion was investigated in thermophilic temperature range in semi-continuous mode. Methane production of filler system and control reactor were significantly different (P < 0.05, paired t-test). At hydraulic retention times of 18 days and 12 days, the corresponding methane yields from filler system were 140% and 161%, respectively, of the yields from control digester without filler. Improvement of DS dewaterability was uncertain during 110 days of operation. While after a longer period of digestion, filler system resulted in a lower normalized capillary suction time of DS (76.5 ± 21.6 s L/g total suspended solids) than control reactor (118.7 ± 32.9 s L/g total suspended solids). The results showed that the filler could improve thermophilic AD performance, except at too short hydraulic retention times.

  20. Anaerobic digestion of seven different sewage sludges: a biodegradability and modelling study.

    PubMed

    Astals, S; Esteban-Gutiérrez, M; Fernández-Arévalo, T; Aymerich, E; García-Heras, J L; Mata-Alvarez, J

    2013-10-15

    Seven mixed sewage sludges from different wastewater treatment plants, which have an anaerobic digester in operation, were evaluated in order to clarify the literature uncertainty with regard to the sewage sludge characterisation and biodegradability. Moreover, a methodology is provided to determine the Anaerobic Digestion Model No. 1 parameters, coefficients and initial state variables as well as a discussion about the accuracy of the first order solubilisation constant, which was obtained through biomethane potential test. The results of the biomethane potential tests showed ultimate methane potentials from 188 to 214 mL CH4 g(-1) CODfed, COD removals between 58 and 65% and two homogeneous groups for the first order solubilisation constant: (i) the lowest rate group from 0.23 to 0.35 day(-1) and (ii) the highest rate group from 0.27 to 0.43 day(-1). However, no statistically significant relationship between the ultimate methane potential or the disintegration constant and the sewage sludge characterisation was found. Next, a methodology based on the sludge characterisation before and after the biomethane potential test was developed to calculate the biodegradable fraction, the composite concentration and stoichiometric coefficients and the soluble COD of the sewage sludge; required parameters for the implementation of the Anaerobic Digestion Model No. 1. The comparison of the experimental and the simulation results proved the consistency of the developed methodology. Nevertheless, an underestimation of the first order solubilisation constant was detected when the experimental results were simulated with the solubilisation constant obtained from the linear regression experimental data fitting. The latter phenomenon could be related to the accumulation of intermediary compounds during the biomethane potential assay.

  1. Survey of the Anaerobic Biodegradation Potential of Organic Chemicals in Digesting Sludge

    PubMed Central

    Battersby, Nigel S.; Wilson, Valerie

    1989-01-01

    The degradation potential of 77 organic chemicals under methanogenic conditions was examined with an anaerobic digesting sludge from the United Kingdom. Degradation was assessed in terms of net total gas (CH4 plus CO2) produced, expressed as a percentage of the theoretical production (ThGP). The compounds tested were selected from various chemical groups and included substituted phenols and benzoates, pesticides, phthalic acid esters, homocyclic and heterocyclic ring compounds, glycols, and monosubstituted benzenes. The results obtained were in good agreement with published surveys of biodegradability in U.S. digesting sludges and other methanogenic environments. In general, the presence of chloro or nitro groups inhibited anaerobic gas production, while carboxyl and hydroxyl groups facilitated biodegradation. The relationship between substituent position and susceptibility to methanogenic degradation was compound dependent. The following chemicals were completely degraded (≥80% ThGP) at a concentration of 50 mg of carbon per liter: phenol, 2-aminophenol, 4-cresol, catechol, sodium benzoate, 4-aminobenzoic acid, 3-chlorobenzoic acid, phthalic acid, ethylene glycol, diethylene glycol, triethylene glycol, sodium stearate, and quinoline. 3-Cresol, 4-chlorobenzoic acid, dimethyl phthalate, and pyridine were partially degraded. Although the remaining chemicals tested were either persistent or toxic, their behavior may differ at more environmentally realistic chemical-to-biomass ratios. Our findings suggest that biodegradability assessments made with sludge from one source can be extrapolated to sludge from another source with a reasonable degree of confidence and should help in predicting the fate of an organic chemical during the anaerobic digestion of sewage sludge. PMID:16347851

  2. Effect of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions.

    PubMed

    Diak, James; Örmeci, Banu; Kennedy, Kevin J

    2013-04-01

    Micro-aeration, which refers to the addition of very small amounts of air, is a simple technology that can potentially be incorporated in septic tanks to improve the digestion performance. The purpose of this study was to investigate and compare the effects of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions. 1.6 L batch reactor experiments were carried out in duplicate using raw primary sludge, with 4.1 % total solids, and diluted primary sludge, with 2.1 % total solids. Reactors were operated for 5 weeks at room temperature to simulate septic tank conditions. Micro-aeration rate of 0.00156 vvm effectively solubilised chemical oxygen demand (COD) and improved the subsequent degradation of COD. Micro-aeration also increased the generation of ammonia and soluble proteins, but did not improve the reduction in total and volatile solids, or the reduction in carbohydrates. Experiments using diluted sludge samples showed similar trends as the experiments with raw sludge, which suggest that initial solids concentration did not have a significant effect on the degradation of primary sludge under septic tank conditions.

  3. Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment.

    PubMed

    Serrano, A; Siles, J A; Martín, M A; Chica, A F; Estévez-Pastor, F S; Toro-Baptista, E

    2016-07-15

    Sewage sludge generated in the activated sludge process is a polluting waste that must be treated adequately to avoid important environmental impacts. Traditional management methods, such as landfill disposal or incineration, are being ruled out due to the high content in heavy metal, pathogens, micropolluting compounds of the sewage sludge and the lack of use of resources. Anaerobic digestion could be an interesting treatment, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A microwave pre-treatment at pilot scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. The operational variables of microwave pre-treatment (power and specific energy applied) were optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) under different pre-treatment conditions. According to the variation in the sCOD and TN concentration, the optimal operation variables of the pre-treatment were fixed at 20,000 J/g TS and 700 W. A subsequent anaerobic digestion test was carried out with raw and pre-treated sewage sludge under different conditions (20,000 J/g TS and 700 W; 20,000 J/g TS and 400 W; and 30,000 J/g TS and 400 W). Although stability was maintained throughout the process, the enhancement in the total methane yield was not high (up to 17%). Nevertheless, very promising improvements were determined for the kinetics of the process, where the rG and the OLR increased by 43% and 39%, respectively, after carrying out a pre-treatment at 20,000 J/g TS and 700 W.

  4. Sequential extraction of anaerobic digestate sludge for the determination of partitioning of heavy metals.

    PubMed

    Zhu, Neng-min; Qiang-Li; Guo, Xu-jing; Hui-Zhang; Yu-Deng

    2014-04-01

    In China, agricultural use of anaerobic digestate sludge is considered a concern due to high heavy metal content of the sludge. In this study, sequential extraction procedure (SEP) was conducted to determine metal speciation which affects release and mobility of metal significantly. The results of SEP showed that each heavy metal possessed different distribution characteristics. Cu mainly reacted with carboxyl functional group to form the fraction bound to organic matter. Zn and Mn were dominated in the fraction bound to Fe-Mn oxides and carbonates, respectively. Pb, Ni, Cr, Cd and As were present as the residual fraction. Examination of mobility factors (MFs) indicated that Zn, Pb, Ni, Mn and Cd were more mobile whereas Cr and As were immobilized in anaerobic digestate. Based on the results, it can be stated that Cu, Zn, Mn, Ni and Cd may be grouped as toxic and active components in sludge and should be regarded as the priority pollutants for elimination. Pb should be monitored in terms of its high mobility factors (MF). Cr and As, nevertheless, were the most stable components in sludge.

  5. Factors affecting decay of Salmonella Birkenhead and coliphage MS2 during mesophilic anaerobic digestion and air drying of sewage sludge.

    PubMed

    Mondal, Tania; Rouch, Duncan A; Thurbon, Nerida; Smith, Stephen R; Deighton, Margaret A

    2015-06-01

    Factors affecting the decay of Salmonella Birkenhead and coliphage, as representatives of bacterial and viral pathogens, respectively, during mesophilic anaerobic digestion (MAD) and air drying treatment of anaerobically digested sewage sludge were investigated. Controlled concentrations of S. Birkenhead were inoculated into non-sterile, autoclaved, γ-irradiated and nutrient-supplemented sludge and cultures were incubated at 37 °C (MAD sludge treatment temperature) or 20 °C (summer air drying sludge treatment temperature). Nutrient limitation caused by microbial competition was the principal mechanism responsible for the decay of S. Birkenhead by MAD and during air drying of digested sludge. The effects of protease activity in sludge on MS2 coliphage decay in digested and air dried sludge were also investigated. MS2 coliphage showed a 3.0-3.5 log10 reduction during incubation with sludge-protease extracts at 37 °C for 25 h. Proteases produced by indigenous microbes in sludge potentially increase coliphage inactivation and may therefore have a significant role in the decay of enteric viruses in sewage sludge. The results help to explain the loss of viability of enteric bacteria and viral pathogens with treatment process time and contribute to fundamental understanding of the various biotic inactivation mechanisms operating in sludge treatment processes at mesophilic and ambient temperatures.

  6. [Effects of mild thermal pretreatment on anaerobic digestibility of sludge with low organic content].

    PubMed

    Chen, Han-Long; Yan, Yuan-Yuan; He, Qun-Biao; Dai, Xiao-Hu; Zhou, Qi

    2013-02-01

    The effects of mild pretreatment at temperature of 100 degrees C on the solubilization anP anaerobic digestibility of high solid sludge with low organic content were studied with the variation of heating times. Experimental results show soluble organic concentrations in supernatant increase with the prolonging of thermal pretreatment time rapidly, and slowly after 30 min. The dissolution rates of COD, protein and carbohydrate with 30 min of thermal pretreatment at 100 degrees C were 10.5%, 11.6% and 8.2%, respectively. Mild thermal pretreatment not only enhanced total methane yield, but also advanced the peak time of methane production. The methane production ratio with 30 min of thermal hydrolysis was 136 mL.g-1 (VS) at day 10 of anaerobic digestion, with an 86% increase over the control group. VS reduction ratio after 30 days anaerobic digestion o also increased to 33.3% with 30 min of thermal pretreatment at 100 degrees C compared with 19.1% in control group. In addition, studies on enzymatic activity indicated the activities of four key enzymes (protease, acetokinase, phosphotransacetylase and coenzyme F420) involved in anaerobic digestion were all enhanced by mild thermal pretreatment.

  7. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    PubMed Central

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-01-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464

  8. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community.

    PubMed

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  9. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    NASA Astrophysics Data System (ADS)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  10. Effect of microwave hydrolysis on transformation of steroidal hormones during anaerobic digestion of municipal sludge cake.

    PubMed

    Hamid, Hanna; Eskicioglu, Cigdem

    2013-09-15

    Fate and removal of 16 steroidal (estrogenic, androgenic and progestogenic) hormones were studied during advanced anaerobic digestion of sludge cake using microwave (MW) pretreatment. Effect of pretreatment temperature (80, 120, 160 °C), operating temperature (mesophilic at 35 ± 2 °C, thermophilic at 55 ± 2 °C) and sludge retention time (SRT: 20, 10, 5 days) were studied employing eight lab-scale semi-continuously fed digesters. To determine the potential effect of MW hydrolysis, hormones were quantified in total (sorbed + soluble) and supernatant (soluble) phases of the digester influent and effluent streams. Seven of 16 hormones were above the method reporting limit (RL) in one or more of the samples. Hormone concentrations in total phase of un-pretreated (control) and pretreated digester feeds ranged in <157-2491 ng/L and <157-749 ng/L, respectively. The three studied factors were found to be statistically significant (95% confidence level) in removal of one or more hormones from soluble and/or total phase. MW hydrolysis of the influent resulted in both release (from sludge matrix) and attenuation of hormones in the soluble phase. Accumulation of estrone (E1) as well as progesterone (Pr) and androstenedione (Ad) in most of the digesters indicated possible microbial transformations among the hormones. Compared to controls, all pretreated digesters had lower total hormone concentrations in their influent streams. At 20 days SRT, highest total removal (E1+E2+Ad +Pr) was observed for the thermophilic control digester (56%), followed by pretreated mesophilic digesters at 120 °C and 160 °C with around 48% efficiency. In terms of conventional performance parameters, relative (to control) improvements of MW pretreated digesters at a 5-d SRT ranged in 98-163% and 57-121%, for volatile solids removal and methane production, respectively.

  11. Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge.

    PubMed

    Dong, Bin; Liu, Xiaoguang; Dai, Lingling; Dai, Xiaohu

    2013-03-01

    The sequential extraction procedure developed by Tessier et al. was used in sludge anaerobic digestion to determine the heavy metal speciation. Sludge samples were taken every three days to investigate humic substances, VS/TS, pH, VFA, alkalinity, ammonia, the total content of Zn, Pb, Cu, Ni, and Cr, and also their distribution into EXCH, CARB, FeMnOx, OMB and RESI fractions. Results showed that, (1) Heavy metals were concentrated during the anaerobic digestion process. The concentration of all five kinds of heavy metals increased by about 50%. (2) The distribution of these heavy metals differed. (3) High-solid anaerobic digestion much or less increased the bioavailability of Cu, Zn, Ni and Cr while decreased the bioavailability of Pb. (4) There were significant degrees of correlation between heavy metal fractions and changes of some selected parameters (for example, pH, VS/TS, and VFA content). Except for Pb, the contents of total mobile fractions for Cu, Zn, Ni, Cr could be predictable from its total content.

  12. Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors.

    PubMed

    Ağdağ, Osman Nuri; Sponza, Delia Teresa

    2007-02-09

    In this study, the feasibility of the anaerobic co-digestion of a mixed industrial sludge with municipal solid wastes (MSW) was investigated in three simulated anaerobic landfilling bioreactors during a 150-day period. All of the reactors were operated with leachate recirculation. One of them was loaded only with MSW (control reactor); the second reactor was loaded with mixed industrial sludge and MSW, the weight ratio of the MSW to mixed industrial sludge was 1:1 (based on dry solid) (Run 1); the third reactor was loaded with mixed industrial sludge and MSW, the weight ratio of the MSW to mixed industrial sludge was 1:2 (based on dry solid) (Run 2). The VFA concentrations decreased significantly in Run 1 and Run 2 reactors at the end of 150 days. The pH values were higher in Run 1 and Run 2 reactors compared to control reactor. The differences between leachate characteristics, the biodegradation and the bioefficiency of the reactors were compared. The NH(4)-N concentrations released to leachate from mixed sludge in Run 1 and Run 2 reactors were lower than that of control reactor. The BOD(5)/COD ratios in Run 1 and Run 2 reactors were lower than that of control reactor at the end of 150 days. Cumulative methane gas productions and methane percentages were higher in Run 1 and Run 2 reactors. Reductions in waste quantity, carbon percentage and settlement of the waste were better in Run 1 and Run 2 reactors compared to control reactor at the end of 150 days. Furthermore, TN and TP removals in waste were higher in reactors containing industrial sludge compared to control. The toxicity test results showed that toxicity was observed in reactors containing industrial mixed sludge.

  13. Anaerobic co-digestion of sewage sludge and primary clarifier skimmings for increased biogas production.

    PubMed

    Alanya, S; Yilmazel, Y D; Park, C; Willis, J L; Keaney, J; Kohl, P M; Hunt, J A; Duran, M

    2013-01-01

    The objective of the study was to identify the impact of co-digesting clarifier skimmings on the overall methane generation from the treatment plant and additional energy value of the increased methane production. Biogas production from co-digesting clarifier skimmings and sewage sludge in pilot-scale fed-batch mesophilic anaerobic digesters has been evaluated. The digester was fed with increasing quantities of clarifier skimmings loads: 1.5, 2.6, 3.5 and 7.0 g COD equivalent/(L·d) (COD: chemical oxygen demand). Average volatile solids reduction of 65% was achieved in the scum-fed digester, compared with 51% in the control digester. Average 69% COD removal was achieved at highest scum loading (7 g COD eq/(L·d)) with approximate methane yield of 250 L CH(4)/kg COD fed (4 ft(3)/lb COD fed). The results show that scum as co-substrate in anaerobic digestion systems improves biogas yields while a 29% increase in specific CH(4) yield could be achieved when scum load is 7 g COD eq/(L·d). Based on the pilot-scale study results and full-scale data from South East Water Pollution Control Plant and Northeast Water Pollution Control Plant the expected annual energy recovery would be approximately 1.7 billion BTUs or nearly 0.5 million kWh.

  14. Anaerobic co-digestion of fruit and vegetable wastes and primary sewage sludge.

    PubMed

    Velmurugan, B; Arathy, E C; Hemalatha, R; Philip, Jerry Elsa; Alwar Ramanujam, R

    2010-01-01

    Anaerobic co-digestion of fruit and vegetable wastes (FVW) and primary sewage sludge was carried out in a fed-batch reactor having a volume of 21 under ambient temperature conditions. Three different proportions (25:75, 50:50 and 75:25 in terms ofVS) of fruit and vegetable wastes and primary sewage sludge were studied for an organic loading rate (OLR) of 1.0 g VS/ l.d and with a hydraulic retention time (HRT) of 25 days. The reactor with 75% FVW and 25% sewage sludge (in terms of VS) showed better performance in terms of VS reduction and biogas yield when compared to other two proportions.

  15. Insights into the respective role of acidification and oxidation for enhancing anaerobic digested sludge dewatering performance with Fenton process.

    PubMed

    Zhang, Weijun; Yang, Peng; Yang, Xiaoyin; Chen, Zhan; Wang, Dongsheng

    2015-04-01

    Digested sludges generally exhibit poorer dewaterability than activated sludges. This study investigated the effects of acidification and oxidation on EPS properties and dewaterability of anaerobic digested sludge in Fenton treatment in order to unravel the underlying mechanism of sludge conditioning. The results indicated that sludge dewatering property was improved after acidification treatment. Meanwhile, fluorescence analysis revealed that the protein-like substances were effectively removed from sludge bulk after acidification treatment. Acidification and Fenton oxidation showed a significant synergetic effect in enhancing sludge dewatering process. Solubilization and decomposition of bound EPS occurred synchronously during Fenton conditioning. Oxidation process is very likely to play a more important role in sludge conditioning than Fenton coagulation. According to pilot test, Fenton treatment performed much better in cake moisture content reduction than chemical conditioning with traditional inorganic coagulants. Additionally, full-scale application of Fenton conditioning will not have detrimental effects on performance of wastewater treatment system.

  16. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge.

    PubMed

    Appels, Lise; Van Assche, Ado; Willems, Kris; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2011-03-01

    Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis.

  17. Evaluation of the improvement of sonication pre-treatment in the anaerobic digestion of sewage sludge.

    PubMed

    Martín, María Ángeles; González, Inmaculada; Serrano, Antonio; Siles, José Ángel

    2015-01-01

    Sewage sludge is a polluting and hazardous waste generated in wastewater treatment plants with severe management problems. The high content in heavy metal, pathogens and micropolluting compounds limit the implementation of the available management methods. Anaerobic digestion could be an interesting treatment method, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A sonication pre-treatment at lab scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. Sonication time was optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) at different pre-treatment times. The pre-treatment time was fixed at 45 min under the study conditions given that the solubilisation of organic matter did not increase significantly at lower sonication times, whereas the concentration of total nitrogen increased markedly at higher times. The volatile fatty acids generation rate was also evaluated for the pre-treatment conditions. The anaerobic digestion of untreated and pre-treated sewage sludge was subsequently compared and promising results were obtained for loads of 1.0 g VS/L (VS, total volatile solids). The methane yield coefficient increased from 88 to 172 mLSTP/g VS (STP, 0 °C, 1 atm) after the pre-treatment, while biodegradability was found to be around 81% (in VS). Moreover, the allowed organic loading rate and methane production rate observed for the sewage sludge reached values of up to 4.1 kg VS/m(3)·d and 1270 LSTP/m(3)·d, respectively.

  18. Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production.

    PubMed

    Torres-Lozada, Patricia; Díaz-Granados, José Sánchez; Parra-Orobio, Brayan Alexis

    2015-01-01

    Water purification and wastewater treatment generate sludge, which must be adequately handled to prevent detrimental effects to the environment and public health. In this study, we examined the influence of the application of settled sludge from a drinking water treatment plant (S(DWTP)) on the anaerobic digestion (AD) of the thickened primary sludge from a municipal wastewater treatment plant (S(WWTP)) which uses chemically assisted primary treatment (CAPT). On both plants the primary coagulant is ferric chloride. The study was performed at laboratory scale using specific methanogenic activity (SMA) tests, in which mixtures of S(WWTP)-S(DWTP) with the ratios 100:00, 80:20, 75:25, 70:30 and 00:100 were evaluated. Methane detection was also performed by gas chromatography for a period of 30 days. Our results show that all evaluated ratios that incorporate S(DWTP), produce an inhibitory effect on the production of methane. The reduction in methane production ranged from 26% for the smallest concentration of S(DWTP) (20%) to more than 70% for concentrations higher than 25%. The results indicated that the hydrolytic stage was significantly affected, with the hydrolysis constant Kh also reduced by approximately 70% (0.24-0.26 day(-1) for the different ratios compared with 0.34 day(-1) for the S(WWTP) alone). This finding demonstrates that the best mixtures to be considered for anaerobic co-digestion must contain a fraction of S(DWTP) below 20%.

  19. Effect of chemo-mechanical disintegration on sludge anaerobic digestion for enhanced biogas production.

    PubMed

    Kavitha, S; Pray, S Saji; Yogalakshmi, K N; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh

    2016-02-01

    The effect of combined surfactant-dispersion pretreatment on dairy waste activated sludge (WAS) reduction in anaerobic digesters was investigated. The experiments were performed with surfactant, Sodium dodecyl sulfate (SDS) in the range of 0.01 to 0.1 g/g suspended solids (SS) and disperser with rpm of 5000-25,000. The COD (chemical oxygen demand) solubilization, suspended solids reduction, and biogas generation increased for an energy input of 7377 kJ/kg total solids (TS) (12,000 rpm, 0.04 g/g SS, and 30 min) and were found to be 38, 32, and 75 %, higher than that of control. The pretreated sludge improved the performance of semicontinuous anaerobic digesters of 4 L working volume operated at four different SRTs (sludge retention time). SRT of 15 days was found to be appropriate showing 49 and 51 % reduction in SS and volatile solids (VS), respectively. The methane yield of the pretreated sample was observed to be 50 mL/g VS removed which was observed to be comparatively higher than the control (12 mL/g VS removed) at optimal SRT of 15 days. To the best of the authors' knowledge, this study is the first to be reported and not yet been documented in literature.

  20. Metal concentrations in lime stabilised, thermally dried and anaerobically digested sewage sludges.

    PubMed

    Healy, M G; Fenton, O; Forrestal, P J; Danaher, M; Brennan, R B; Morrison, L

    2016-02-01

    Cognisant of the negative debate and public sentiment about the land application of treated sewage sludges ('biosolids'), it is important to characterise such wastes beyond current regulated parameters. Concerns may be warranted, as many priority metal pollutants may be present in biosolids. This study represents the first time that extensive use was made of a handheld X-ray fluorescence (XRF) analyser to characterise metals in sludges, having undergone treatment by thermal drying, lime stabilisation, or anaerobic digestion, in 16 wastewater treatment plants (WWTPs) in Ireland. The concentrations of metals, expressed as mgkg(-1) dry solids (DS), which are currently regulated in the European Union, ranged from 11 (cadmium, anaerobically digested (AD) biosolids) to 1273mgkg(-1) (zinc, AD biosolids), and with the exception of lead in one WWTP (which had a concentration of 3696mgkg(-1)), all metals were within EU regulatory limits. Two potentially hazardous metals, antimony (Sb) and tin (Sn), for which no legislation currently exists, were much higher than their baseline concentrations in soils (17-20mgSbkg(-1) and 23-55mgSnkg(-1)), meaning that potentially large amounts of these elements may be applied to the soil without regulation. This study recommends that the regulations governing the values for metal concentrations in sludges for reuse in agriculture are extended to include Sb and Sn.

  1. Mesophilic and thermophilic anaerobic digestion of municipal sludge and fat, oil, and grease.

    PubMed

    Kabouris, John C; Tezel, Ulas; Pavlostathis, Spyros G; Engelmann, Michael; Dulaney, James A; Todd, Allen C; Gillette, Robert A

    2009-05-01

    The anaerobic biodegradability of municipal primary sludge, thickened waste activated sludge (TWAS), and fat, oil, and grease (FOG) was assessed using semi-continuous-feed, laboratory-scale anaerobic digesters and compared with the ultimate degradability obtained from 120-day batch digestion at 35 degrees C. In run 1, combined primary sludge and TWAS (40/60%, volatile solids [VS] basis) were fed to digesters operated at mesophilic (35 degrees C) and thermophilic (52 degrees C) temperatures at loading rates of 0.99 and 1.46 g-VS/L x d for primary sludge and TWAS, respectively, and a hydraulic retention time (HRT) of 12 days. The volatile solids destruction values were 25.3 and 30.7% (69 and 83% biodegradable volatile solids destruction) at 35 degrees C and 52 degrees C, respectively. The methane (CH4) yields were 159 and 197 mL at the standard temperature and pressure (STP) conditions of 0 degree C and 1 atm/g-VS added or 632 and 642 mL @ STP/g-VS destroyed at 35 degrees C and 52 degrees C, respectively. In run 2, a mix of primary sludge, TWAS, and FOG (21/31/48%, volatile solids basis) was fed to an acid digester operated at a 1-day HRT, at 35 degrees C, and a loading rate of 52.5 g-VS/L x d. The acid-reactor effluent was fed to two parallel methane-phase reactors operated at an HRT of 12 days and maintained at 35 degrees C and 52 degrees C, respectively. After an initial period of 20 days with near-zero gas production in the acid reactor, biogas production increased and stabilized to approximately 2 mL CH4 @ STP/g-VS added, corresponding to a volatile solids destruction of 0.4%. The acid-phase reactor achieved a 43% decrease in nonsaturated fat and a 16, 26, and 20% increase of soluble COD, volatile fatty acids, and ammonia, respectively. The methane-phase volatile solids destruction values in run 2 were 45 and 51% (85 and 97% biodegradable volatile solids destruction) at 35 degrees C and 52 degrees C, respectively. The methane yields for the methane

  2. Comparison of biogas sludge and raw crop material as source of hydrolytic cultures for anaerobic digestion.

    PubMed

    Weiß, Stefan; Somitsch, Walter; Klymiuk, Ingeborg; Trajanoski, Slave; Guebitz, Georg M

    2016-05-01

    Mixed fermentative/hydrolytic bacteria were enriched on lignocellulose substrates in minimal medium under semi-anaerobic mesophilic conditions in the presence or absence of natural zeolite as growth supporter to ultimately bioaugment non-adapted sludge and thereby enhance the overall anaerobic digestion (AD) of recalcitrant plant material. Desired enzyme activities, i.e. xylanases and cellulase were monitored during subsequent cultivation cycles. Furthermore, enriched microbial communities were characterized by 16S rRNA-based 454-Pyrosequencing, revealing Firmicutes, Bacteriodetes, Proteobacteria and Spirochaetes to be the predominant bacterial groups in cultures derived from anaerobic sludge and raw crop material, i.e. maple green cut and wheat straw as well. Enriched populations relevant for biopolymer hydrolysis were then compared in biological methane potential tests to demonstrate positive effects on the biogasification of renewable plant substrate material. A significant impact on methane productivity was observed with adapted mixed cultures when used in combination with clinoptilolite to augment and supplement non-adapted bioreactor sludge.

  3. Winery waste recycling through anaerobic co-digestion with waste activated sludge.

    PubMed

    Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

    2014-11-01

    In this study biogas and high quality digestate were recovered from winery waste (wine lees) through anaerobic co-digestion with waste activated sludge both in mesophilic and thermophilic conditions. The two conditions studied showed similar yields (0.40 m(3)/kgCODfed) but different biological process stability: in fact the mesophilic process was clearly more stable than the thermophilic one in terms of bioprocess parameters. The resulting digestates showed good characteristics for both the tested conditions: heavy metals, dioxins (PCDD/F), and dioxin like bi-phenyls (PCBs) were concentred in the effluent if compared with the influent because of the important reduction of the solid dry matter, but remained at levels acceptable for agricultural reuse. Pathogens in digestate decreased. Best reductions were observed in thermophilic condition, while at 37°C the concentration of Escherichia coli was at concentrations level as high as 1000 UFC/g. Dewatering properties of digestates were evaluated by means of the capillary suction time (CST) and specific resistance to filtration (SRF) tests and it was found that a good dewatering level was achievable only when high doses of polymer (more than 25 g per kg dry solids) were added to sludge.

  4. Anaerobic co-digestion of aircraft deicing fluid and municipal wastewater sludge.

    PubMed

    Zitomer, D; Ferguson, N; McGrady, K; Schilling, J

    2001-01-01

    At many airports, aircraft deicing fluid and precipitation mix, becoming aircraft deicing runoff having a 5-day biochemical oxygen demand (BOD5) of 10(2) to 10(6) mg/L. Publicly owned treatment works can be used for aerobic biological treatment; however, it may be more economical to use anaerobic digesters to codigest a mixture of aircraft deicing fluid and sludge. The objectives of this investigation were to determine benefits and appropriate propylene glycol aircraft deicing fluid loadings to anaerobic codigesters. Results demonstrate aircraft deicing fluid can be successfully codigested to produce methane; supernatant BOD5 and Kjeldahl nitrogen concentration were not higher in codigesters compared to a conventional digester. Aircraft deicing fluid loadings as high as 1.6 g chemical oxygen demand (COD)/L x d were sustainable in codigesters, whereas system fed only aircraft deicing fluid with nutrients and alkalinity achieved a loading of 0.65 g COD/L x d. The sludge used increased digester alkalinity and provided nitrogen, iron, nickel, cobalt, and biomass required for methanogenesis. The deicer provides organics for increased methane production.

  5. Treatment of anaerobic digestion effluent of sewage sludge using soilless cultivation

    NASA Astrophysics Data System (ADS)

    Uchimura, Koki; Sago, Yuki; Kamahara, Hirotsugu; Atsuta, Yoichi; Daimon, Hiroyuki

    2014-02-01

    Soilless cultivation was carried out using anaerobic digestion effluent of sewage sludge as liquid fertilizer, with a preparation which cultures microorganisms in nutrient solution. As a result, ammonium ions contained in the effluent were nitrified into nitrate ions by the microorganisms. And then, Japanese mustard spinach (Brassica rapa var. perviridis) was cultivated by soilless cultivation system. The plants were grown well using microbial nutrient solution, which similar to the plants using conventional inorganic nutrient solution. In contrast, the plants were grown poorly using the effluent as liquid fertilizer without microorganisms.

  6. On-Site Fecal Sludge Treatment with the Anaerobic Digestion Pasteurization Latrine.

    PubMed

    Forbis-Stokes, Aaron A; O'Meara, Patrick F; Mugo, Wangare; Simiyu, Gelas M; Deshusses, Marc A

    2016-11-01

    The Anaerobic Digestion Pasteurization Latrine (ADPL) is a self-contained and energy neutral on-site sanitation system using anaerobic digestion of fecal sludge to generate biogas and then uses the biogas to pasteurize the digester effluent at 65-75°C to produce a safe effluent that can be reused locally as a fertilizer. Two ADPL systems were installed on residential plots with 17 and 35 residents in a peri-urban area outside of Eldoret, Kenya. Each system comprised three toilets built above a floating dome digester and one heat pasteurization system to sanitize the digested effluent. ADPLs are simple systems, with no moving parts and relying on gravity-induced flows. Adoption at the two sites was successful, and residents reported that the systems had little to no odor or flies. ADPLs were monitored for biogas production and temperatures in the pasteurization system. ADPLs serving 17 and 35 residents produced on average 16 and 11 Lbiogas/person/day (maximum of 20 and 15 Lbiogas/p/d), respectively. The temperature in the sterilization system was greater than 65°C on 58% and 87% of sampling days during the most stable period of operation. Treated effluent was analyzed periodically for chemical oxygen demand (COD), biochemical oxygen demand (BOD), total ammonia nitrogen (TAN), pH, and fecal coliform (FC). On average, the effluent at the two locations contained 4,540 and 6,450 mg COD/L (an 85% or 89% reduction of the estimated input), 2,050 and 3,970 mg BOD/L, and 2,420 and 4,760 mg NH3-N, respectively, and greater than 5 log reductions of FC (nondetectable) in the sterilization tank. Results from this field study show that anaerobic digestion of minimally diluted fecal sludge can provide enough energy to pasteurize digester effluent and that the ADPL may be a suitable option for on-site fecal sludge treatment.

  7. On-Site Fecal Sludge Treatment with the Anaerobic Digestion Pasteurization Latrine

    PubMed Central

    Forbis-Stokes, Aaron A.; O'Meara, Patrick F.; Mugo, Wangare; Simiyu, Gelas M.; Deshusses, Marc A.

    2016-01-01

    Abstract The Anaerobic Digestion Pasteurization Latrine (ADPL) is a self-contained and energy neutral on-site sanitation system using anaerobic digestion of fecal sludge to generate biogas and then uses the biogas to pasteurize the digester effluent at 65–75°C to produce a safe effluent that can be reused locally as a fertilizer. Two ADPL systems were installed on residential plots with 17 and 35 residents in a peri-urban area outside of Eldoret, Kenya. Each system comprised three toilets built above a floating dome digester and one heat pasteurization system to sanitize the digested effluent. ADPLs are simple systems, with no moving parts and relying on gravity-induced flows. Adoption at the two sites was successful, and residents reported that the systems had little to no odor or flies. ADPLs were monitored for biogas production and temperatures in the pasteurization system. ADPLs serving 17 and 35 residents produced on average 16 and 11 Lbiogas/person/day (maximum of 20 and 15 Lbiogas/p/d), respectively. The temperature in the sterilization system was greater than 65°C on 58% and 87% of sampling days during the most stable period of operation. Treated effluent was analyzed periodically for chemical oxygen demand (COD), biochemical oxygen demand (BOD), total ammonia nitrogen (TAN), pH, and fecal coliform (FC). On average, the effluent at the two locations contained 4,540 and 6,450 mg COD/L (an 85% or 89% reduction of the estimated input), 2,050 and 3,970 mg BOD/L, and 2,420 and 4,760 mg NH3-N, respectively, and greater than 5 log reductions of FC (nondetectable) in the sterilization tank. Results from this field study show that anaerobic digestion of minimally diluted fecal sludge can provide enough energy to pasteurize digester effluent and that the ADPL may be a suitable option for on-site fecal sludge treatment. PMID:27924135

  8. Anaerobic co-digestion of sewage sludge and strawberry extrudate under mesophilic conditions.

    PubMed

    Serrano, Antonio; Siles, José A; Chica, Arturo F; Martín, M Ángeles

    2014-01-01

    The biomethanization of sewage sludge has several disadvantages such as low methane yield, poor biodegradability and nutrient imbalance. In this paper, a sewage sludge and strawberry extrudate mixture in a proportion of 40:60 (wet weight) is proposed to improve the viability of the process. The addition of an easily biodegradable co-substrate enhanced the nutrient balance and diluted the heavy metals and inhibitors from sewage sludge. Two different experimental set-ups at lab and semi-pilot scale were employed in order to ensure the reproducibility and significance of the obtained values. Co-digestion improved the stability of the process by decreasing the alkalinity to a mean value of 3215 ± 190 mg CaCO₃/L, while maintaining the pH within the optimal range for anaerobic digestion. The methane yield coefficient and biodegradability were 176 L/kg VS (total volatile solids) (0°C, 1 atm) and 81% (VS), respectively. Kinetic parameters decreased at the highest loads, suggesting the occurrence of a slowing down phenomenon. A quality organic amendment with a heavy metal content lower than the limits established under European legislation for agricultural applications was obtained from the digestate of the proposed treatment.

  9. Dewatering and removal of metals from urban anaerobically digested sludge by Fenton's oxidation.

    PubMed

    Fontmorin, J-M; Sillanpää, Mika

    2017-02-01

    In this study, the relevance of Fenton's reaction for the treatment of urban anaerobically digested sludge was investigated. In a first part, the impact of the oxidation process on the improvement of the sludge dewaterability was studied. In a second part, the removal of heavy metals from the sludge was examined. Fenton's reaction was carried out with increasing concentrations of Fe(2+) and H2O2 in 1:10 and 1:1 ratios. Dewaterability of the raw sludge was highly improved: the addition of 36 mM Fe(2+) and 360 mM H2O2 led to specific cake resistance (SCR) and capillary suction time (CST) reductions of 99.8% and 98.8%, respectively. Indeed, under these conditions, SCR and CST of respectively 1.04 × 10(11) m kg(-1) and 18.5 ± 0.2 s were measured, and the treated sludge could be considered as having 'good dewaterability'. A significant impact was also observed on the removal of heavy metals from the sludge. After 1-h oxidation, Cd, Cr, Cu, Pb and Zn could be removed by 81.1 ± 0.1%, 25.1 ± 0.1%, 87.2 ± 1.1%, 77.3 ± 4.8% and 99.6 ± 0.3%, respectively. These results were consistent with the heavy metals' fractions in the sludge. It could be concluded that the addition of Fe(2+) and H2O2 in a 1:10 ratio was more effective than in a 1:1 ratio. The results were consistent with the extracellular polymeric substance (EPS) contents in raw and treated sludge, since loosely bound EPS decreased significantly after the treatment.

  10. Co-conditioning of the anaerobic digested sludge of a municipal wastewater treatment plant with alum sludge: benefit of phosphorus reduction in reject water.

    PubMed

    Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P

    2007-12-01

    In this study, alum sludge was introduced to co-conditioning and dewatering with an anaerobic digested sludge from a municipal wastewater treatment plant, to examine the role of the alum sludge in improving the dewaterbility of the mixed sludge and also in immobilizing phosphorus in the reject water. Experiments have demonstrated that the optimal mix ratio for the two sludges is 2:1 (anaerobic digested sludge:alum sludge: volume basis), and this can bring approximately 99% phosphorus reduction in the reject water through the adsorption of phosphorus by alum in the sludge. The phosphorus loading in wastewater treatment plants is itself derived from the recycling of reject water during the wastewater treatment process. Consequently, this co-conditioning and dewatering strategy can achieve a significant reduction in phosphorus loading in wastewater treatment plants. In addition, the use of the alum sludge has been shown to beneficially enhance the dewaterability of the resultant mixed sludge, by decreasing both the specific resistance to filtration and the capillary suction time. This is attributed to the alum sludge acting in charge neutralization and/or as adsorbent for phosphate in the aqueous phase of the sludge. Experiments have also demonstrated that the optimal polymer (Superfloc C2260, Cytec, Botlek, Netherlands) dose for the anaerobic digested sludge was 120 mg/L, while the optimal dose for the mixed sludge (mix ratio 2:1) was 15 mg/L, highlighting a huge savings in polymer addition. Therefore, from the technical perspective, the co-conditioning and dewatering strategy can be viewed as a "win-win" situation. However, for its full-scale application, integrated cost-effective analysis of process capabilities, sludge transport, increased cake disposal, additional administration, polymer saving, and so on, should be factored in.

  11. A pilot study of anaerobic membrane digesters for concurrent thickening and digestion of waste activated sludge (WAS).

    PubMed

    Dagnew, Martha; Parker, Wayne J; Seto, Peter

    2010-01-01

    The increased interest in biomass energy provides incentive for the development of efficient and high throughput digesters such as anaerobic membrane bioreactors (AnMBRs) to stabilize waste activated sludge (WAS). This paper presents the results of a pilot and short term filtration study that was conducted to assess the performance of AnMBRs when treating WAS at a 15 day hydraulic retention time (HRT) and 30 day sludge retention time (SRT) in comparison to two conventional digesters running at 15 (BSR-15) and 30 days (BSR-30) HRT/SRT. At steady state, the AnMBR digester showed a slightly higher volatile solids (VS) destruction of 48% in comparison to 44% and 35.3% for BSR-30 and BSR-15, respectively. The corresponding values of specific methane production were 0.32, 0.28 and 0.21 m(3) CH(4)/kg of VS fed. Stable membrane operation at an average flux of 40+/-3.6 LM(-2 )H(-1) (LMH) was observed when the digester was fed with a polymer-dosed thickened waste activated sludge (TWAS) and digester total suspended solids (TSS) concentrations were less than 15 gL(-1). Above this solids concentration a flux decline to 24.1+/-2.0 LM(-2) H(-1) was observed. Short term filtration tests conducted using sludge fractions of a 9.7 and 17.1 gL(-1) TSS sludge indicated 84 and 70% decline in filtration performance to be associated with the supernatant fraction of the sludge. At a higher sludge concentration, the introduction of unique fouling control strategy to tubular membranes, a relaxed mode of operation (i.e. 5 minutes permeation and 1 minute relaxation by) significantly increased the flux from 23.8+/-1.1 to 37.8+/-2.3 LMH for a neutral membrane and from 25.7+/-1.1 to 44.9+/-2.9 LMH for a negatively charged membrane. The study clearly indicates that it is technically feasible to employ AnMBRs to achieve a substantial reduction in digester volumes.

  12. Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: Analysis of process performance and hygienization potential.

    PubMed

    Tomei, M Concetta; Mosca Angelucci, Domenica; Levantesi, Caterina

    2016-03-01

    Sequential anaerobic-aerobic digestion has been demonstrated to be effective for enhanced sludge stabilization, in terms of increased solid reduction and improvement of sludge dewaterability. In this study, we propose a modified version of the sequential anaerobic-aerobic digestion process by operating the aerobic step under mesophilic conditions (T=37 °C), in order to improve the aerobic degradation kinetics of soluble and particulate chemical oxygen demand (COD). Process performance has been assessed in terms of "classical parameters" such as volatile solids (VS) removal, biogas production, COD removal, nitrogen species, and polysaccharide and protein fate. The aerobic step was operated under intermittent aeration to achieve nitrogen removal. Aerobic mesophilic conditions consistently increased VS removal, providing 32% additional removal vs. 20% at 20 °C. Similar results were obtained for nitrogen removal, increasing from 64% up to 99% at the higher temperature. Improved sludge dewaterability was also observed with a capillary suction time decrease of ~50% during the mesophilic aerobic step. This finding may be attributable to the decreased protein content in the aerobic digested sludge. The post-aerobic digestion exerted a positive effect on the reduction of microbial indicators while no consistent improvement of hygienization related to the increased temperature was observed. The techno-economic analysis of the proposed digestion layout showed a net cost saving for sludge disposal estimated in the range of 28-35% in comparison to the single-phase anaerobic digestion.

  13. Mesophilic anaerobic co-digestion of sewage sludge and orange peel waste.

    PubMed

    Serrano, Antonio; Siles López, José Angel; Chica, Arturo Francisco; Martín, M Angeles; Karouach, Fadoua; Mesfioui, Abdelaziz; El Bari, Hassan

    2014-01-01

    Mesophilic anaerobic digestion is a treatment that is widely applied for sewage sludge management but has several disadvantages such as low methane yield, poor biodegradability and nutrient imbalance. In this paper, we propose orange peel waste as an easily biodegradable co-substrate to improve the viability of the process. Sewage sludge and orange peel waste were mixed at a proportion of 70:30 (wet weight), respectively. The stability was maintained within correct parameters throughout the process, while the methane yield coefficient and biodegradability were 165 L/kg volatile solids (VS) (0 degrees C, 1 atm) and 76% (VS), respectively. The organic loading rate (OLR) increased from 0.4 to 1.6kg VS/m3 d. Nevertheless, the OLR and methane production rate decreased at the highest loads, suggesting the occurrence of an inhibition phenomenon.

  14. Continuous thermal hydrolysis and energy integration in sludge anaerobic digestion plants.

    PubMed

    Fdz-Polanco, F; Velazquez, R; Perez-Elvira, S I; Casas, C; del Barrio, D; Cantero, F J; Fdz-Polanco, M; Rodriguez, P; Panizo, L; Serrat, J; Rouge, P

    2008-01-01

    A thermal hydrolysis pilot plant with direct steam injection heating was designed and constructed. In a first period the equipment was operated in batch to verify the effect of sludge type, pressure and temperature, residence time and solids concentration. Optimal operation conditions were reached for secondary sludge at 170 degrees C, 7 bar and 30 minutes residence time, obtaining a disintegration factor higher than 10, methane production increase by 50% and easy centrifugation In a second period the pilot plant was operated working with continuous feed, testing the efficiency by using two continuous anaerobic digester operating in the mesophilic and thermophilic range. Working at 12 days residence time, biogas production increases by 40-50%. Integrating the energy transfer it is possible to design a self-sufficient system that takes advantage of this methane increase to produce 40% more electric energy.

  15. Microwave and ultrasound pre-treatments influence microbial community structure and digester performance in anaerobic digestion of waste activated sludge.

    PubMed

    Westerholm, Maria; Crauwels, Sam; Van Geel, Maarten; Dewil, Raf; Lievens, Bart; Appels, Lise

    2016-06-01

    Comparative analyses of bacterial and archaeal community structures and dynamics in three biogas digesters during start-up and subsequent operation using microwaved, ultrasonicated or untreated waste activated sludge were performed based on 454 pyrosequencing datasets of part of 16S ribosomal RNA sequences and quantitative PCR. The pre-treatment increased the solubility, and thus the availability of the substrate for microbial degradation and significantly affected the succession of the anaerobic community structure over the course of the digestion. Bacteroidetes, Proteobacteria and Firmicutes were the dominant phyla in all digesters throughout operation. Proteobacteria decreased in relative abundance from 23-26 % to 11-13 % in association with enhanced substrate availability. Negative correlations between relative abundance of Alpha-, Beta- and Gammaproteobacteria and the substrate availability and/or biogas production were disclosed in statistical analyses. Clostridiales was the dominant order in Firmicutes, and Clostridiales, Clostridia and Firmicutes relative abundance and richness were shown to positively correlate with substrate availability and biogas generation. Methanogenic communities had a fairly restricted structure, highly dominated by Methanosaeta and Methanobrevibacter phylotypes. A gradual decline in Methanobrevibacter and increased representation of Methanosaeta concilii over time were particularly apparent in the digester receiving untreated waste activated sludge, whereas more diversified archaeal communities were maintained in the pre-treatment digesters. The quantitative PCR analyses revealed a methanogenic community distribution that coincided with the 454 pyrosequencing data.

  16. Continuous thermal hydrolysis and anaerobic digestion of sludge. Energy integration study.

    PubMed

    Pérez-Elvira, S I; Fdz-Polanco, F

    2012-01-01

    Experimental data obtained from the operation in a pilot plant are used to perform mass and energy balances to a global process combining units of thermal hydrolysis (TH) of secondary sludge, anaerobic digestion (AD) of hydrolysed secondary sludge together with fresh primary sludge, and cogeneration from biogas by using a gas engine in which the biogas produces electricity and heat from the exhaust gases. Three scenarios were compared, corresponding to the three digesters operated: C (conventional AD, 17 days residence time), B (combined TH + AD, same time), and A (TH + AD at half residence time). The biogas production of digesters B and A was 33 and 24% better, respectively when compared with C. In the case of the combined TH + AD process (scenarios A and B), the key factors in the energy balance were the recovery of heat from hot streams, and the concentration of sludge. The results of the balances showed that for 8% DS concentration of the secondary sludge tested in the pilot plant, the process can be energetically self-sufficient, but a fraction of the biogas must by-pass the gas engine to be directly burned. From an economic point of view, scenario B is more profitable in terms of green energy and higher waste removal, while scenario A reduces the digester volume required by a half. Considering a population of 100,000 inhabitants, the economic benefit is 87,600 €/yr for scenario A and 132,373 €/yr for B. This value can be increased to 223,867 €/yr by increasing the sludge concentration of the feeding to the TH unit to a minimum value that allows use of all the biogas to produce green energy. This concentration is 13% DS, which is still possible from a practical point of view. Additional benefits gained with the combined TH + AD process are the enhancement of the digesters rheology and the possibility of getting Class A biosolids. The integration study presented here set the basis for the scale-up to a demonstration plant.

  17. Comparison of mechanical pretreatment methods for the enhancement of anaerobic digestion of pulp and paper waste activated sludge.

    PubMed

    Elliott, Allan; Mahmood, Talat

    2012-06-01

    The conventional anaerobic digestion process, requiring long solids retention times (SRTs) to digest solids, is currently viewed as impractical for the pulp and paper industry because of high capital costs associated with the construction of new digesters. Recent developments in sludge solubilization technology could be promising in reducing digester size, which also allows for the potential use of decommissioned tanks, both of which can reduce the capital cost. Three pretreatment technologies for use with anaerobic digestion were tested on laboratory-scale to investigate their feasibility. The SRTs in all three digesters systematically decreased from 20 to 3 days. The reference digester was fed waste activated sludge (WAS) to serve as the control at the same SRTs. The other digesters were fed WAS that had been preconditioned using mechanical shearing, sonication, or high-pressure homogenization technology. Anaerobic digestion with high-pressure homogenization produced as much methane at 3-day mean SRT as that from the reference digester operated at 20-day SRT. Therefore, a new digester can theoretically be 85% smaller than a conventional digester. An added benefit of WAS to methane conversion is the recovery of nutrients nitrogen and phosphorus.

  18. Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge.

    PubMed

    Mehdizadeh, Seyedeh Neda; Eskicioglu, Cigdem; Bobowski, Jake; Johnson, Thomas

    2013-09-15

    Microwave (2.45 GHz, 1200 W) and conventional heating (custom pressure vessel) pretreatments were applied to dewatered municipal waste sludge (18% total solids) using identical heating profiles that span a wide range of temperatures (80-160 °C). Fourteen lab-scale semi-continuous digesters were set up to optimize the energy (methane) output and sludge retention time (SRT) requirements of untreated (control) and thermally pretreated anaerobic digesters operated under mesophilic and thermophilic temperatures. Both pretreatment methods indicated that in the pretreatment range of 80-160 °C, temperature was a statistically significant factor (p-value < 0.05) for increasing solubilization of chemical oxygen demand and biopolymers (proteins, sugars, humic acids) of the waste sludge. However, the type of pretreatment method, i.e. microwave versus conventional heating, had no statistically significant effect (p-value >0.05) on sludge solubilization. With the exception of the control digesters at a 5-d SRT, all control and pretreated digesters achieved steady state at all three SRTs, corresponding to volumetric organic loading rates of 1.74-6.96 g chemical oxygen demand/L/d. At an SRT of 5 d, both mesophilic and thermophilic controls stopped producing biogas after 20 d of operation with total volatile fatty acids concentrations exceeding 1818 mg/L at pH <5.64 for mesophilic and 2853 mg/L at pH <7.02 for thermophilic controls, while the pretreated digesters continued producing biogas. Furthermore, relative (to control) organic removal efficiencies dramatically increased as SRT was shortened from 20 to 10 and then 5 d, indicating that the control digesters were challenged as the organic loading rate was increased. Energy analysis showed that, at an elevated temperature of 160 °C, the amount of methane recovered was not enough to compensate for the energy input. Among the digesters with positive net energy productions, control and pretreated digesters at 80 °C were more

  19. Identification and quantification of microbial populations in activated sludge and anaerobic digestion processes.

    PubMed

    Reyes, M; Borrás, L; Seco, A; Ferrer, J

    2015-01-01

    Eight different phenotypes were studied in an activated sludge process (AeR) and anaerobic digester (AnD) in a full-scale wastewater treatment plant by means of fluorescent in situ hybridization (FISH) and automated FISH quantification software. The phenotypes were ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, denitrifying bacteria, phosphate-accumulating organisms (PAO), glycogen-accumulating organisms (GAO), sulphate-reducing bacteria (SRB), methanotrophic bacteria and methanogenic archaea. Some findings were unexpected: (a) Presence of PAO, GAO and denitrifiers in the AeR possibly due to unexpected environmental conditions caused by oxygen deficiencies or its ability to survive aerobically; (b) presence of SRB in the AeR due to high sulphate content of wastewater intake and possibly also due to digested sludge being recycled back into the primary clarifier; (c) presence of methanogenic archaea in the AeR, which can be explained by the recirculation of digested sludge and its ability to survive periods of high oxygen levels; (d) presence of denitrifying bacteria in the AnD which cannot be fully explained because the nitrate level in the AnD was not measured. However, other authors reported the existence of denitrifiers in environments where nitrate or oxygen was not present suggesting that denitrifiers can survive in nitrate-free anaerobic environments by carrying out low-level fermentation; (e) the results of this paper are relevant because of the focus on the identification of nearly all the significant bacterial and archaeal groups of microorganisms with a known phenotype involved in the biological wastewater treatment.

  20. Impact of PCB-118 and transformer oil toxicity on anaerobic digestion of sludge: anaerobic toxicity assay results.

    PubMed

    Kaya, Devrim; Imamoglu, Ipek; Dilek Sanin, F

    2013-08-01

    In this study, possible toxicity of increasing doses of PCB-118 and transformer oil (TO) on anaerobic sludge digestion was investigated. For this purpose, five different sets of reactors were prepared in which four different PCB-118 concentration (1, 10, 20, and 30mgL(-1)) and three different TO concentration (0.38, 0.76, and 1.52gL(-1)) were applied. Throughout the study, biogas production and composition, pH, TS, VS, and COD as well as PCB concentration were monitored. Toxicity was investigated by anaerobic toxicity assay (ATA) evaluating the reduction in methane production. A notable inhibition was observed mostly in 30mgL(-1) PCB reactors. A negative influence of PCB-118 and TO was observed on COD and solids removal. A maximum of 26.5% PCB-118 removal was attained.

  1. Effect of aluminium and sulphate on anaerobic digestion of sludge from wastewater enhanced primary treatment.

    PubMed

    Cabirol, N; Barragán, E J; Durán, A; Noyola, A

    2003-01-01

    The combined and individual effects of aluminium and sulphate at concentrations of 1,000 mg/l as Al(OH)3, and 150 mgSO4(2-)/L as K2SO4, respectively, on the anaerobic digestion of sludge from enhanced primary treatment (EPT) were evaluated in 1 L capacity semi continuous reactors. It was found that at 59 days, aluminium inhibits the specific methanogenic activity (SMA) of methanogenic and acetogenic bacteria resulting in a 50% to 72% decrease. Sulphate also inhibits (48% to 65%) the SMA of the same type of bacteria. Methanogenic and acetogenic bacteria were able to adapt, to a different extent, to the assayed concentrations of aluminium and sulphate. However, the combination of aluminium and sulphate resulted in a higher inhibition, especially of the hydrogenophilic methanogenic bacteria. Indeed, this effect remained during the time of the experiment, maintaining an inhibition of 44% at 114 days. Feeding with EPT sludge led to a bigger decrease in SMA of each bacterial group, with respect to the other treatments with time. It is concluded that the acidification of anaerobic reactors fed with EPT sludge is due, among other causes, to the concurrent presence of aluminium and sulphate.

  2. Adaptive neuro-fuzzy modelling of anaerobic digestion of primary sedimentation sludge.

    PubMed

    Cakmakci, Mehmet

    2007-09-01

    Modelling of anaerobic digestion systems is difficult because their performance is complex and varies significantly with influent characteristics and operational conditions. In this study, Adaptive Neuro-Fuzzy Inference System (ANFIS) were used for modelling of anaerobic digestion system of primary sludge of Kayseri municipal WasteWater Treatment Plant (WWTP). Effluent Volatile Solid (VS) and methane yield were predicted by the ANFIS. Two stage models were performed. In the first stage, effluent VS concentration was predicted using pH, VS concentration, flowrate of pre-thickened sludge and temperature of the influent as input parameters. In the second stage, effluent VS concentration in addition to first stage input parameters were used as input parameters to predict methane yield. The low Root Mean Square Error (RMSE) and high Index of agreement (IA) values were obtained with subtractive clustering method of a first order Sugeno type inference. The model performance was evaluated with statistical parameters. According to statistical evaluations, the models satisfactorily predict effluent VS concentration and methane yield.

  3. Impact of ozone assisted ultrasonication pre-treatment on anaerobic digestibility of sewage sludge.

    PubMed

    Tian, Xinbo; Trzcinski, Antoine Prandota; Lin, Li Leonard; Ng, Wun Jern

    2015-07-01

    Impact of ultrasonication (ULS) and ultrasonication-ozonation (ULS-Ozone) pre-treatment on the anaerobic digestibility of sewage sludge was investigated with semi-continuous anaerobic reactors at solid retention time (SRT) of 10 and 20 days. The control, ULS and ULS-Ozone reactors produced 256, 309 and 348 mL biogas/g CODfed and the volatile solid (VS) removals were 35.6%, 38.3% and 42.1%, respectively at SRT of 10 days. At SRT of 20 days, the biogas yields reached 313, 337 and 393 mL biogas/g CODfed and the VS removal rates were 37.3%, 40.9% and 45.3% in the control, ULS and ULS-Ozone reactors, respectively. ULS-Ozone pre-treatment increased the residual organic amount in the digested sludge. These soluble residual organics were found to contain macromolecules with molecular weights (MW) larger than 500 kDa and smaller polymeric products with MW around 19.4 and 7.7 kDa. These compounds were further characterized to be humic acid-like substances with fluorescent spectroscopy analysis.

  4. Enhancement of Anaerobic Digestion to Treat Saline Sludge from Recirculating Aquaculture Systems.

    PubMed

    Luo, Guo-zhi; Ma, Niannian; Li, Ping; Tan, Hong-xin; Liu, Wenchang

    2015-01-01

    The effectiveness of carbohydrate addition and the use of ultrasonication as a pretreatment for the mesophilic anaerobic digestion of saline aquacultural sludge was assessed. Analyses were conducted using an anaerobic sequencing batch reactor (ASBR), which included stopped gas production attributed to the saline inhibition. After increasing the C : N ratio, gas production was observed, and the total chemical oxygen demand (TCOD) removal efficiency increased from 75% to 80%. The TCOD removal efficiency of the sonication period was approximately 85%, compared to 75% for the untreated waste. Ultrasonication of aquaculture sludge was also found to enhance the gas production rate and the TCOD removal efficiency. The average volatile fatty acid (VFA) to alkalinity ratios ranged from 0.1 to 0.05, confirming the stability of the digesters. Furthermore, soluble chemical oxygen demand (SCOD), VFA, and PO4 (3-) concentrations increased in the effluents. There was a 114% greater gas generation during the ultrasonication period, with an average production of 0.08 g COD/L · day(-1).

  5. Enhancement of Anaerobic Digestion to Treat Saline Sludge from Recirculating Aquaculture Systems

    PubMed Central

    Luo, Guo-zhi; Ma, Niannian; Li, Ping; Tan, Hong-xin; Liu, Wenchang

    2015-01-01

    The effectiveness of carbohydrate addition and the use of ultrasonication as a pretreatment for the mesophilic anaerobic digestion of saline aquacultural sludge was assessed. Analyses were conducted using an anaerobic sequencing batch reactor (ASBR), which included stopped gas production attributed to the saline inhibition. After increasing the C : N ratio, gas production was observed, and the total chemical oxygen demand (TCOD) removal efficiency increased from 75% to 80%. The TCOD removal efficiency of the sonication period was approximately 85%, compared to 75% for the untreated waste. Ultrasonication of aquaculture sludge was also found to enhance the gas production rate and the TCOD removal efficiency. The average volatile fatty acid (VFA) to alkalinity ratios ranged from 0.1 to 0.05, confirming the stability of the digesters. Furthermore, soluble chemical oxygen demand (SCOD), VFA, and PO43− concentrations increased in the effluents. There was a 114% greater gas generation during the ultrasonication period, with an average production of 0.08 g COD/L·day−1. PMID:26301258

  6. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    PubMed Central

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. PMID:22489140

  7. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    PubMed Central

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-01-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538

  8. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    NASA Astrophysics Data System (ADS)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-12-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  9. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study.

    PubMed

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X; Guo, Shaohui; Chen, Chunmao

    2016-12-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  10. Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae.

    PubMed

    Lee, Eunyoung; Cumberbatch, Jewel; Wang, Meng; Zhang, Qiong

    2017-03-01

    Anaerobic co-digestion has a potential to improve biogas production, but limited kinetic information is available for co-digestion. This study introduced regression-based models to estimate the kinetic parameters for the co-digestion of microalgae and Waste Activated Sludge (WAS). The models were developed using the ratios of co-substrates and the kinetic parameters for the single substrate as indicators. The models were applied to the modified first-order kinetics and Monod model to determine the rate of hydrolysis and methanogenesis for the co-digestion. The results showed that the model using a hyperbola function was better for the estimation of the first-order kinetic coefficients, while the model using inverse tangent function closely estimated the Monod kinetic parameters. The models can be used for estimating kinetic parameters for not only microalgae-WAS co-digestion but also other substrates' co-digestion such as microalgae-swine manure and WAS-aquatic plants.

  11. Anaerobic digestion process

    SciTech Connect

    Ishida, M.; Haga, R.; Odawara, Y.

    1982-10-19

    An algae culture grown on the water from the digested slurry of a biogasification plant serves as a means of removing CO/sub 2/ from the methane stream while purifying the wastewater and providing more biomass for the anaerobic digestion plant. Tested on a sewage-sludge digestion system, the proposed process improved the methane yield by 32% and methane concentration by 53-98 vol % while lowering the concentration of nitrogen and phosphorus in the final water.

  12. Anaerobic co-digestion of sewage sludge with shredded grass from public green spaces.

    PubMed

    Hidaka, Taira; Arai, Sayuri; Okamoto, Seiichiro; Uchida, Tsutomu

    2013-02-01

    Adding greenery from public spaces to the co-digestion process with sewage sludge was evaluated by shredding experiments and laboratory-scale batch and continuous mesophilic anaerobic fermentation experiments. The ratio of the shredded grass with 20mm or less in length by a commercially available shredder was 93%. The methane production was around 0.2NL/gVS-grass in the batch experiment. The continuous experiment fed with sewage sludge and shredded grass was stably operated for 81days. The average methane production was 0.09NL/gVS-grass when the TS ratio of the sewage sludge and the grass was 10:1. This value was smaller than those of other reports using grass silage, but the grass species in this study were not managed, and the collected grass was just shredded and not ensiled before feeding to the reactor for simple operation. The addition of grass to a digester can improve the carbon/nitrogen ratio, methane production and dewaterability.

  13. Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion

    PubMed Central

    Zhao, Zhiqiang; Zhang, Yaobin; Wang, Liying; Quan, Xie

    2015-01-01

    Direct interspecies electron transfer (DIET) between Geobacter species and Methanosaeta species is an alternative to interspecies hydrogen transfer (IHT) in anaerobic digester, which however has not been established in anaerobic sludge digestion as well as in bioelectrochemical systems yet. In this study, it was found that over 50% of methane production of an electric-anaerobic sludge digester was resulted from unknown pathway. Pyrosequencing analysis revealed that Geobacter species were significantly enriched with electrodes. Fluorescence in situ hybridization (FISH) further confirmed that the dominant Geobacter species enriched belonged to Geobacter metallireducens. Together with Methanosaeta species prevailing in the microbial communities, the direct electron exchange between Geobacter species and Methanosaeta species might be an important reason for the “unknown” increase of methane production. Conductivity of the sludge in this electric-anaerobic digester was about 30% higher than that of the sludge in a control digester without electrodes. This study not only revealed for the first time that DIET might be the important mechanism on the methanogenesis of bioelectrochemical system, but also provided a new method to enhance DIET by means of bioelectric enrichment of Geobacter species. PMID:26057581

  14. Anaerobic Digestion I. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    This lesson is the first of a two-part series on anaerobic digestion. Topics discussed include the five basic functions of an anaerobic digester, basic theory of the biological processes involved, basic equipment necessary for digestion, and the products of digestion. The lesson includes an instructor's guide and student workbook. The instructor's…

  15. Enhancement of anaerobic digestion of shredded grass by co-digestion with sewage sludge and hyperthermophilic pretreatment.

    PubMed

    Wang, Feng; Hidaka, Taira; Tsumori, Jun

    2014-10-01

    Anaerobic co-digestion of shredded grass with sewage sludge was investigated under various temperature conditions. The conversion of grass to methane was difficult to achieve under mesophilic conditions, while its methane yield was 0.19 NL/g VS-grass under thermophilic conditions. The mixture ratio of grass to sludge affected the methane yield, and the highest synergistic effect was obtained at a C/N ratio of around 10. In a continuous experiment, hyperthermophilic (80 °C) pretreatment promoted a methane yield of 0.34 NL/g VS-mixture, higher than that under mesophilic and thermophilic conditions (0.20 and 0.30 NL/g VS-mixture, respectively). A batch experiment with hyperthermophilic pretreatment showed that 3 days of treatment was sufficient for subsequent methane production, in which the highest dissolution of particulate COD, carbohydrate and protein was 25.6%, 33.6% and 25.0%, respectively.

  16. Transition of municipal sludge anaerobic digestion from mesophilic to thermophilic and long-term performance evaluation.

    PubMed

    Tezel, Ulas; Tandukar, Madan; Hajaya, Malek G; Pavlostathis, Spyros G

    2014-10-01

    Strategies for the transition of municipal sludge anaerobic digestion from mesophilic to thermophilic were assessed and the long-term stability and performance of thermophilic digesters operated at a solids retention time of 30days were evaluated. Transition from 36°C to 53.3°C at a rate of 3°C/day resulted in fluctuation of the daily gas and volatile fatty acids (VFAs) production. Steady-state was reached within 35days from the onset of temperature increase. Transitions from either 36 or 53.3°C to 60°C resulted in relatively stable daily gas production, but VFAs remained at very high levels (in excess of 5000mg COD/L) and methane production was lower than that of the mesophilic reactor. It was concluded that in order to achieve high VS and COD destruction and methane production, the temperature of continuous-flow, suspended growth digesters fed with mixed municipal sludge should be kept below 60°C.

  17. Sono-thermal pre-treatment of waste activated sludge before anaerobic digestion.

    PubMed

    Şahinkaya, Serkan; Sevimli, Mehmet Faik

    2013-01-01

    Sonication and thermalization can be applied successfully to disrupt the complex waste activated sludge (WAS) floc structure and to release extra and intra cellular polymeric substances into soluble phase along with solubilization of particulate organic matters, before sludge digestion. In this study, sonication has been combined with thermalization to improve its disintegration efficiency. It was aimed that rise in temperature occurring during the sonication of sludge was used to be as an advantage for the following thermalization in the combined pre-treatment. Thus, the effects of sonication, thermalization and sono-thermalization on physical and chemical properties of sludge were investigated separately under different pre-treatment conditions. The disintegration efficiencies of these methods were in the following descending order: sono-thermalization > sonication > thermalization. The optimum operating conditions for sono-thermalization were determined as the combination of 1-min sonication at 1.0 W/mL and thermalization at 80 °C for 1h. The influences of sludge pre-treatment on biodegradability of WAS were experienced with biochemical methane potential assay in batch anaerobic reactors. Relative to the control reactor, total methane production in the sono-thermalized reactor increased by 13.6% and it was more than the sum of relative increases achieved in the sonicated and thermalized reactors. Besides, the volatile solids and total chemical oxygen demand reductions in the sono-thermalized reactor were enhanced as well. However, it was determined that sludge pre-treatment techniques applied in this study was not feasible due to their high energy requirements.

  18. Improving methane production and phosphorus release in anaerobic digestion of particulate saline sludge from a brackish aquaculture recirculation system.

    PubMed

    Zhang, Xuedong; Ferreira, Rui B; Hu, Jianmei; Spanjers, Henri; van Lier, Jules B

    2014-06-01

    In this study, batch tests were conducted to examine the effects of trehalose and glycine betaine as well as potassium on the specific methanogenic activity (SMA), acid and alkaline phosphatase activity of anaerobic biomass and phosphorus release in anaerobic digestion of saline sludge from a brackish recirculation aquaculture system. The results of ANOVA and Tukey's HSD (honestly significant difference) tests showed that glycine betaine and trehalose enhanced SMA of anaerobic biomass and reactive phosphorus release from the particulate waste. Moreover, SMA tests revealed that methanogenic sludge, which was long-term acclimatized to a salinity level of 17 g/L was severely affected by the increase in salinity to values exceeding 35 g/L. Addition of compatible solutes, such as glycine betaine and trehalose, could be used to enhance the specific methane production rate and phosphorus release in anaerobic digestion from particulate organic waste produced in marine or brackish aquaculture recirculation systems.

  19. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    PubMed

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction.

  20. Start-Up of an Anaerobic Dynamic Membrane Digester for Waste Activated Sludge Digestion: Temporal Variations in Microbial Communities

    PubMed Central

    Yu, Hongguang; Wang, Qiaoying; Wang, Zhiwei; Sahinkaya, Erkan; Li, Yongli; Ma, Jinxing; Wu, Zhichao

    2014-01-01

    An anaerobic dynamic membrane digester (ADMD) was developed to digest waste sludge, and pyrosequencing was used to analyze the variations of the bacterial and archaeal communities during the start-up. Results showed that bacterial community richness decreased and then increased over time, while bacterial diversity remained almost the same during the start-up. Proteobacteria and Bacteroidetes were the major phyla. At the class level, Betaproteobacteria was the most abundant at the end of start-up, followed by Sphingobacteria. In the archaeal community, richness and diversity peaked at the end of the start-up stage. Principle component and cluster analyses demonstrated that archaeal consortia experienced a distinct shift and became stable after day 38. Methanomicrobiales and Methanosarcinales were the two predominant orders. Further investigations indicated that Methanolinea and Methanosaeta were responsible for methane production in the ADMD system. Hydrogenotrophic pathways might prevail over acetoclastic means for methanogenesis during the start-up, supported by specific methanogenic activity tests. PMID:24695488

  1. The fate of trace organic contaminants in sewage sludge during recuperative thickening anaerobic digestion.

    PubMed

    Yang, Shufan; McDonald, James; Hai, Faisal I; Price, William E; Khan, Stuart J; Nghiem, Long D

    2017-02-08

    The aim of this work was to study the fate of trace organic contaminants (TrOCs) in sewage sludge during recuperative thickening anaerobic digestion. Sludge shearing at 3142s(-1) for 5minutes improved biogas production. By contrast, shearing at ≥6283s(-1) for 5minutes caused a notable reduction in biogas production and the removal of volatile solids. Results reported here showed the prevalent occurrence of 17 TrOCs in sewage sludge and highlights the importance of assessing TrOC removal via mass balance calculation by taking into account partitioning between the aqueous and solid phase as well as biodegradation. Hydrophilic and readily-biodegradable TrOCs (caffeine, trimethoprim, and paracetamol) were well removed and were not affected by shearing. TrOCs such as carbamazepine, gemfibrozil, and diuron showed biodegradation only at high shearing. It is possible that shearing can facilitate the circulation of TrOCs between aqueous and solid phases, thus, enhancing the biodegradation of some TrOCs.

  2. Two-phase anaerobic co-digestion of food waste and sewage sludge.

    PubMed

    Wang, Feng; Li, Wei-Ying; Yi, Xue-Nong

    2015-01-01

    The feasibility and performance of food waste and sewage sludge co-digestion were investigated to gain insight into their resource utilization. In this study, two-phase anaerobic digestion (TPAD) was operated under a total solids mixing ratio of 1:1 and different sludge retention times (SRTs). Results show that an acidogenic reactor with a 5-day SRT obtained the highest acidification efficiency, and its acetic acid content was dominant. The organic removal rate of a methanogenic reactor (MR) with a 20-day SRT and its corresponding TPAD system with a 25-day SRT were both the highest among the MRs and TPAD systems. Volatile solids and total chemical oxygen demand average removal efficiencies of the TPAD system with a 25-day SRT reached 64.7 and 60.8%, respectively. The MR with a 30-day SRT obtained the minimum ratio of volatile fatty acid to alkalinity (0.12). The methane content generated from the different MRs fluctuated at around 70%. All of the above results can provide reference for future research.

  3. A review: factors affecting excess sludge anaerobic digestion for volatile fatty acids production.

    PubMed

    Zhang, Dong; Li, Xiaoshuai; Jia, Shuting; Dai, Lingling; Zhao, Jianfu; Chen, Yinguang; Dai, Xiaohu

    2015-01-01

    This paper presents a review of methods that improve the production of volatile fatty acids (VFA) from excess sludge during the anaerobic digestion process. These methods are mainly divided into two approaches. The first approach is located in the pre-treatment methods, which change the properties of the substrates, such as thermal pre-treatment, alkaline pre-treatment, microwave pre-treatment and ultrasonic pre-treatment. The other approach is found in the fermentation process control methods, which influence the environment of anaerobic digestion for the production of VFA, such as pH, temperature, mixing, additives and solids retention time control. In the text recent research studies of each method are listed and analyzed in detail. Comparably, microwave and ultrasonic pre-treatment methods are considered emerging and promising technologies due to their efficiency and environmentally friendly characteristics. However, the microwave pre-treatment has high electricity demand, which might make the process economically unfeasible. In order to calculate optimal operation, further studies still need to be done.

  4. Anaerobic digestion of recalcitrant textile dyeing sludge with alternative pretreatment strategies.

    PubMed

    Xiang, Xinyi; Chen, Xiaoguang; Dai, Ruobin; Luo, Ying; Ma, Puyue; Ni, Shengsheng; Ma, Chengyu

    2016-12-01

    Abundant organic compounds in textile dyeing sludge (TDS) provide possibility for its anaerobic digestion (AD) treatment. However, preliminary test showed little biogas generation in direct AD of the TDS during 20days. In order to improve the AD availability of TDS, alkaline, acid, thermal and thermal alkaline pretreatments were performed. Color and aromatic amines were specifically measured as extra characteristics for the AD of TDS. The rate-limiting steps of AD of TDS were slow hydrolysis rate and inhibited acidogenesis, which were somewhat overcome by pretreatments. Thermal alkaline pretreated TDS performed best enhancement on solubilisation. The biochemical methane potential tests revealed that thermal pretreated TDS showed highest total methane production of 55.9mL/gVSfed compared to the control with little methane generation. However, thermal alkaline pretreated TDS did not perform well in BMP test as expected. Moreover, the hydrophilicity of reactive dyes in TDS could seriously affect dewaterability of TDS.

  5. Influence of ozone pre-treatment on sludge anaerobic digestion: removal of pharmaceutical and personal care products.

    PubMed

    Carballa, Marta; Manterola, Garbiñe; Larrea, Luis; Ternes, Thomas; Omil, Francisco; Lema, Juan M

    2007-04-01

    The effect of an oxidative pre-treatment with ozone on the removal of Pharmaceutical and Personal Care Products (PPCPs) during the anaerobic digestion of sewage sludge has been investigated. Besides, the digested sludge characteristics in terms of pathogens content, dewatering properties, heavy metals content and linear alkylbenzene sulfonates (LAS) were determined. During ozonation (20mg O(3)/g TSS), about 8% of volatile solids (VS) and 60% of the chemical oxygen demand (COD) were solubilized. However, no mineralization was observed. The elimination of VS and total COD during anaerobic digestion were not affected by ozone treatment with efficiencies ranging from 60% to 65%. All PPCPs considered were removed during anaerobic treatment of sludge, with efficiencies ranging from 20% to 99%. No significant influence of ozone pre-treatment was observed on PPCPs elimination except for carbamazepine. Pathogens, heavy metals and LAS contents after conventional and pre-ozonation treatment of sewage sludge were below the legal requirements. However, the dewatering properties of sludge were deteriorated when the ozone pre-treatment was applied.

  6. Comparative mesophilic and thermophilic anaerobic digestion of palm oil mill effluent using upflow anaerobic sludge blanket.

    PubMed

    Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2012-07-01

    The effects of organic loading rate and operating temperature on the microbial diversity and performances of upflow anaerobic sludge blanket (UASB) reactors treating palm oil mill effluent (POME) were investigated. The following two UASB reactors were run in parallel for comparison: (1) under a mesophilic condition (37 degrees C) and (2) under a mesophilic condition in transition to a thermophilic condition (57 degrees C). A polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) analysis showed that the microbial population profiles significantly changed with the organic loading rate (OLR) and the temperature transition from the mesophilic to the thermophilic condition. Significant biomass washout was observed for the mesophilic UASB when operating at a high organic loading rate (OLR) of 9.5 g chemical oxygen demand (COD)/L.d. In contrast, the thermophilic UASB can be operated at this OLR and at a temperature of 57 degrees C with satisfactory COD removal and biogas production. The PCR-based DGGE analysis suggested that the thermophilic temperature of 57 degrees C was suitable for a number of hydrolytic, acidogenic, and acetogenic bacteria.

  7. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process.

    PubMed

    Grübel, Klaudiusz; Suschka, Jan

    2015-05-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (soluble chemical oxygen demand (SCOD)) to the liquid sludge phase compared with the effects of processes conducted separately. The total SCOD after alkalization at 9 pH (pH in the range of 8.96-9.10, SCOD = 600 mg O2/L) and after hydrodynamic (SCOD = 1450 mg O2/L) disintegration equaled to 2050 mg/L. However, due to the synergistic effect, the obtained SCOD value amounted to 2800 mg/L, which constitutes an additional chemical oxygen demand (COD) dissolution of about 35 %. Similarly, the synergistic effect after alkalization at 10 pH was also obtained. The applied hybrid pre-hydrolysis technology resulted in a disintegration degree of 28-35%. The experiments aimed at selection of the most appropriate procedures in terms of optimal sludge digestion results, including high organic matter degradation (removal) and high biogas production. The analyzed soft hybrid technology influenced the effectiveness of mesophilic/thermophilic anaerobic digestion in a positive way and ensured the sludge minimization. The adopted pre-treatment technology (alkalization + hydrodynamic cavitation) resulted in 22-27% higher biogas production and 13-28% higher biogas yield. After two stages of anaerobic digestion (mesophilic conditions (MAD) + thermophilic anaerobic digestion (TAD)), the highest total solids (TS) reduction amounted to 45.6% and was received for the following sample at 7 days MAD + 17 days TAD. About 7% higher TS reduction was noticed compared with the sample after 9

  8. Comparative studies on heavy metal uptake by plants from anaerobically and aerobically digested sludge-amended soil

    SciTech Connect

    Joseph, K.T.

    1983-01-01

    A study was undertaken to compare and contrast the effects of cropland application of varying quantities of anaerobically and aerobically digested sludge from a municipal wastewater treatment plant, on the uptake of certain heavy metals such as Zn, Cd, Cu, Ni, and Pb by six different types of plants (bean, tomato, carrot, cucumber, cantaloupe and sweet corn) grown on the sludge-applied soil and the accumulation of these metals in the sludge-amended soil. The main aspects of the study were the evaluation of 1) the extent of bioconcentration of heavy metals by the different kinds of plants, and 2) the availability of the metals from soil to plants, following sludge application. Field investigations involving plot-scale gardening were conducted using the two types of sludge, at application rates of 0, 2.2, 4.4, 8.8, 17.6 and 70.4 tons/acre. At application rates of 17.6 and 70.4 tons/acre, delays in germination of seeds were observed in some instances, with no apparent adverse effects on the plant's later stages of life and the yield produced. The uptake of heavy metals from sludge-amended soil by plants did not increase in direct proportion to the increase in rate of sludge application and plant species differ considerably in their uptake of heavy metals from soil which received the same amount of sludge. In general, plants grown on anaerobically digested sludge-applied soil showed higher uptake of heavy metals than those grown on aerobically digested sludge. Among the plants investigated, sweet corn was identified to be the low accumulator of heavy metals in the edible part of the plant.

  9. Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester

    NASA Astrophysics Data System (ADS)

    Sivasankari, R.; Kumaran, P.; Normanbhay, Saifuddin; Halim Shamsuddin, Abd

    2013-06-01

    An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

  10. Anaerobic waste activated sludge co-digestion with olive mill wastewater.

    PubMed

    Athanasoulia, E; Melidis, P; Aivasidis, A

    2012-01-01

    Co-digestion of waste activated sludge (WAS) with agro-industrial organic wastewaters is a technology that is increasingly being applied in order to produce increased gas yield from the biomass. In this study, the effect of olive mill wastewater (OMW) on the performance of a cascade of two anaerobic continuous stirred tank (CSTR) reactors treating thickened WAS at mesophilic conditions was investigated. The objectives of this work were (a) to evaluate the use of OMW as a co-substrate to improve biogas production, (b) to determine the optimum hydraulic retention time that provides an optimised biodegradation rate or methane production, and (c) to study the system stability after OMW addition in sewage sludge. The biogas production rate at steady state conditions reached 0.73, 0.63, 0.56 and 0.46 l(biogas)/l(reactor)/d for hydraulic retention times (HRTs) of 12.3, 14, 16.4 and 19.7 d. The average removal of soluble chemical oxygen demand (sCOD) ranged between 64 and 72% for organic loading rates between 0.49 and 0.75 g sCOD/l/d. Reduction in the volatile suspended solids ranged between 27 and 30%. In terms of biogas selectivity, values of 0.6 l(biogas)/g tCOD removed and 1.1 l(biogas)/g TVS removed were measured.

  11. Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge.

    PubMed

    Lin, Yunqin; Wang, Dehan; Wu, Shaoquan; Wang, Chunmin

    2009-10-15

    The objective of this research was to develop an alkali pretreatment process prior to anaerobic digestion (AD) of pulp and paper sludge (PPS) to improve the methane productivity. Different concentrations of sodium hydroxide solution were used to pretreat PPS, and then followed by AD of PPS and monosodium glutamate waste liquor (MGWL). Laboratory-scale experiments were carried out in completely mixed bioreactors, 1L capacity with 700 mL worked. Optimal amount of sodium hydroxide for organics solubilization in the step of pretreatment was 8 g NaOH/100g TS(sludge). Under this condition, the PPS flocs structure was well disrupted resulting in the void rate and fiber size decreased after pretreatment, and SCOD increased up to 83% as well as the peak value of VFA concentration attained 1040 mg acetic acid/L during AD. The AD efficiency of PPS with and without pretreatment was evaluated. The highest methane yield under optimal pretreatment condition was 0.32 m(3) CH(4)/kg VS(removal), 183.5% of the control. The results indicated that alkali/NaOH pretreatment could be an effective method for improving methane yield with PPS.

  12. Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste.

    PubMed

    Silvestre, G; Rodríguez-Abalde, A; Fernández, B; Flotats, X; Bonmatí, A

    2011-07-01

    The feasibility of sewage sludge co-digestion using intermediate waste generated inside a wastewater treatment plant, i.e. trapped grease waste from the dissolved air flotation unit, has been assessed in a continuous stirred lab reactor operating at 35°C with a hydraulic retention time of 20 days. Three different periods of co-digestion were carried out as the grease waste dose was increased. When the grease waste addition was 23% of the volatile solids fed (organic loading rate 3.0 kg(COD)m(-3)d(-1)), an increase in methane yield of 138% was reported. Specific activity tests suggested that anaerobic biomass had adapted to the co-substrate. The adapted inoculum showed higher acetoclastic methanogenic and β-oxidation synthrophic acetogenic activities but lower hydrogenotrophic methanogenic activity. The results indicate that a slow increase in the grease waste dose could be a strategy that favours biomass acclimation to fat-rich co-substrate, increases long chain fatty acid degradation and reduces the latter's inhibitory effect.

  13. An Aerobic Digestion of Lime Sludge.

    DTIC Science & Technology

    1982-07-01

    defined for process control. LITERATURE REVIEW GENERAL CONDITIONS The process of anaerobic digestion may be considered to occur in three stages . The... anaerobic digestion process can result in significantly higher digester volume require- ments. The characteristics of lime sludge degradatioA were...considerations: 1. The stabilized sludge must be of acceptable quality for disposal for the anaerobic digestion process to be feasible. 2. Since

  14. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    SciTech Connect

    Wan Caixia; Zhou Quancheng; Fu Guiming

    2011-08-15

    Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

  15. High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste.

    PubMed

    De Vrieze, Jo; De Lathouwer, Lars; Verstraete, Willy; Boon, Nico

    2013-07-01

    Anaerobic digestion is a key technology in the bio-based economy and can be applied to convert a wide range of organic substrates into CH4 and CO2. Kitchen waste is a valuable substrate for anaerobic digestion, since it is an abundant source of organic matter. Yet, digestion of single kitchen waste often results in process failure. High-rate activated sludge or A-sludge is produced during the highly loaded first stage of the two-phase 'Adsorptions-Belebungsverfahren' or A/B activated sludge system for municipal wastewater treatment. In this specific case, the A-sludge was amended with FeSO4 to enhance phosphorous removal and coagulation during the water treatment step. This study therefore evaluated whether this Fe-rich A-sludge could be used to obtain stable methanation and higher methane production values during co-digestion with kitchen waste. It was revealed that Fe-rich A-sludge can be a suitable co-substrate for kitchen waste; i.e. methane production rate values of 1.15 ± 0.22 and 1.12 ± 0.28 L L(-1) d(-1) were obtained during mesophilic and thermophilic co-digestion respectively of a feed-mixture consisting of 15% KW and 85% A-sludge. The thermophilic process led to higher residual VFA concentrations, up to 2070 mg COD L(-1), and can therefore be considered less stable. Addition of micro- and macronutrients provided a more stable digestion of single kitchen waste, i.e. a methane production of 0.45 L L(-1) d(-1) was obtained in the micronutrient treatment compared to 0.30 L L(-1) d(-1) in the control treatment on day 61. Yet, methane production during single kitchen waste digestion still decreased toward the end of the experiment, despite the addition of micronutrients. Methane production rates were clearly influenced by the total numbers of archaea in the different reactors. This study showed that Fe-rich A-sludge and kitchen waste are suitable for co-digestion.

  16. Development of an advanced anaerobic digester design and a kinetic model for biogasification of water hyacinth/sludge blends

    SciTech Connect

    Srivastava, V.; Fannin, K.F.; Biljetina, R.; Chynoweth, D.P.; Hayes, T.D.

    1986-07-01

    The Institute of Gas Technology (IGT) conducted a comprehensive laboratory-scale research program to develop and optimize the anaerobic digestion process for producing methane from water hyacinth and sludge blends. This study focused on digester design and operating techniques, which gave improved methane yields and production rates over those observed using conventional digesters. The final digester concept and the operating experience was utilized to design and operate a large-scale experimentla test unit (ETU) at Walt Disney World, Florida. This paper describes the novel digester design, operating techniques, and the results obtained in the laboratory. The paper also discusses a kinetic model which predicts methane yield, methane production rate, and digester effluent solids as a function of retention time. This model was successfully utilized to predict the performance of the ETU. 15 refs., 6 figs., 6 tabs.

  17. Effect of energy grass on methane production and heavy metal fractionation during anaerobic digestion of sewage sludge.

    PubMed

    Zhang, Min; Yang, Changming; Jing, Yachao; Li, Jianhua

    2016-12-01

    Anaerobic digestion (AD) is one of the most widely used processes to stabilize waste sewage sludge and produce biogas as renewable energy. The relatively low organic matter content and high heavy metal concentrations in sewage sludge have severely restricted the application and development of AD technology in China. In this study, the effect of energy grass (Pennisetum alopecuroides) addition on methane production and heavy metal fractionation during the AD of sewage sludge was evaluated. Methane production was enhanced by 11.2% by the addition of P. alopecuroides. The addition of P. alopecuroides significantly reduced the percentages of the water-soluble and exchangeable fractions of the target heavy metals in the sewage sludge after AD, and the dominant species were concentrated in Fe-Mn oxide-bound and organic- and sulfide-bound fractions of the digested sludge. The addition of P. alopecuroides at a dosage of 0.3kg significantly (P<0.05) decreased the mobility factors (MFs) of the target heavy metals after AD. In particular, the MFs of Cr and Ni were 61% and 32% lower, respectively, relative to the control. The increase in the added dose did not necessarily lead to further decreases in the MFs of the heavy metals. These results demonstrate that an appropriate addition of energy grass could enhance AD, decrease the mobility of heavy metals and promote heavy metal stabilization in sewage sludge during AD, which is beneficial for the subsequent land application of sewage sludge.

  18. Comparison of different thickening methods for active biomass recycle for anaerobic digestion of wastewater sludge.

    PubMed

    Vanyushina, A Ya; Agarev, A M; Moyzhes, S I; Nikolaev, Yu A; Kevbrina, M V; Kozlov, M N

    2012-01-01

    The effect of returning solids to the digester, after one of three thickening processes, on volatile solids reduction (VSR) and gas production was investigated. Three different thickening methods were compared: centrifugation, flotation and gravitational sedimentation. The amount and activity of retained biomass in thickened recycled sludge affected the efficiency of digestion. Semi-continuous laboratory digesters were used to study the influence of thickening processes on thermophilic sludge digestion efficiency. Centrifugation was the most effective method used and caused an increase of VSR from 43% (control) up to 70% and gas generation from 0.40 to 0.44 L g(-1) VS. Flotation and gravitational sedimentation ways of thickening appeared to be less effective if compared with centrifugation. These methods increased VSR only by up to 65 and 51%, respectively and showed no significant increase of gas production. The dewatering capacity of digested sludge, as measured by its specific resistance to filtration, was essentially better for the sludge digested in the reactors with centrifugated and settled recycle. The VS concentration of recycle (g L(-1)), as reflecting the amount of retained biomass, appeared to be one of the most important factors influencing the efficiency of sludge digestion in the recycling technology.

  19. Influence of feeding mixture composition in batch anaerobic co-digestion of stabilized municipal sludge and waste from dairy farms.

    PubMed

    Trulli, Ettore; Torretta, Vincenzo

    2015-01-01

    Waste anaerobic co-digestion applications are particularly useful in Southern Mediterranean areas where large quantities of agricultural waste materials and waste from agro-industries are produced. This waste can be added to urban waste together with the sludge produced by wastewater treatment processes, which, when combined, guarantee the supply of organic matrixes for treatment throughout the year. The implementation of facilities to service vast areas of the agricultural economy and which are heterogeneous in terms of production can provide a good solution. We present an experimental investigation into the anaerobic co-digestion of municipal sludge and bio-waste produced in the Mediterranean area. We conducted anaerobic treatability tests, with measures of biogas production and pH of the mixture in digestion. Our main aims were to identify an optimal mix of substrates for the production of biogas, and to analyse the influence on the composition of biogas and the variation in pH values of the substrates. This analysis was conducted considering the variation of the input, in particular due to the addition of waste acids, such as biological sewage sludge.

  20. A field study of lignite as a drying aid in the superheated steam drying of anaerobically digested sludge.

    PubMed

    Hoadley, A F A; Qi, Y; Nguyen, T; Hapgood, K; Desai, D; Pinches, D

    2015-10-01

    Dried sludge is preferred when the sludge is either to be incinerated or used as a soil amendment. This paper focuses on superheated steam drying which has many benefits, because the system is totally enclosed, thereby minimising odours and particulate emissions. This work reports on field trials at a wastewater treatment plant where anaerobically digested sludge is dried immediately after being dewatered by belt press. The trials showed that unlike previous off-site tests, the sludge could be dried without the addition of a filter aid at a low production rate. However, the trials also confirmed that the addition of the lignite (brown coal) into the anaerobically digested sludge led to a more productive drying process, improved product quality and a greater fraction of the product being in the desired product size range. It is concluded that these results were achieved because the lignite helped to control the granule size in the dryer. Furthermore neither Salmonella spp or E coli were detected in the dried samples. Tests on spontaneous combustion show that this risk is increased in proportion to the amount of lignite used as a drying aid.

  1. Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment.

    PubMed

    Tong, Juan; Liu, Jibao; Zheng, Xiang; Zhang, Junya; Ni, Xiaotang; Chen, Meixue; Wei, Yuansong

    2016-10-01

    The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency.

  2. Optimization of microwave pretreatment conditions to maximize methane production and methane yield in mesophilic anaerobic sludge digestion.

    PubMed

    Park, W J; Ahn, J H

    2011-10-01

    The objective of this study was to find optimum microwave pretreatment conditions for methane production and methane yield in anaerobic sludge digestion. The sludge was pretreated using a laboratory-scale industrial microwave unit (2450 MHz frequency). Microwave temperature increase rate (TIR) (2.9-17.1 degrees C/min) and final temperature (FT) (52-108 degrees C) significantly affected solubilization, methane production, and methane yield. Solubilization degree (soluble chemical oxygen demand (COD)/total COD) in the pretreated sludge (3.3-14.7%) was clearly higher than that in the raw sludge (2.6%). Within the design boundaries, the optimum conditions for maximum methane production (2.02 L/L) were TIR = 9.1 degrees C/min and FT = 90 degrees C, and the optimum conditions for maximum methane yield (809 mL/g VS(removed)) were TIR 7.1 degrees C/min and FT = 92 degrees C.

  3. Biological hydrogen production by anaerobic digestion of food waste and sewage sludge treated using various pretreatment technologies.

    PubMed

    Kim, Seungjin; Choi, Kwangkeun; Kim, Jong-Oh; Chung, Jinwook

    2013-11-01

    The purpose of this study was to enhance the efficiency of anaerobic co-digestion with sewage sludge using pretreatment technologies and food waste. We studied the effects of various pretreatment methods (thermal, chemical, ultrasonic, and their combination) on hydrogen production and the characteristics of volatile fatty acids (VFAs) using sewage sludge alone and a mixture of sewage sludge and food waste. The pretreatment combination of alkalization and ultrasonication performed best, effecting a high solubilization rate and high hydrogen production (13.8 mL H2/g VSSconsumed). At a food waste:pretreated sewage sludge ratio of 2:1 in the mixture, the peak hydrogen production value was 5.0 L H2/L/d. As the production of hydrogen increased, propionate levels fell but butyrate concentrations rose gradually.

  4. Comparative Analysis of Performance and Microbial Characteristics Between High-Solid and Low-Solid Anaerobic Digestion of Sewage Sludge Under Mesophilic Conditions.

    PubMed

    Lu, Qin; Yi, Jing; Yang, Dianhai

    2016-01-01

    High-solid anaerobic digestion of sewage sludge achieves highly efficient volatile solid reduction, and production of volatile fatty acid (VFA) and methane compared with conventional low-solid anaerobic digestion. In this study, the potential mechanisms of the better performance in high-solid anaerobic digestion of sewage sludge were investigated by using 454 high-throughput pyrosequencing and real-time PCR to analyze the microbial characteristics in sewage sludge fermentation reactors. The results obtained by 454 high-throughput pyrosequencing revealed that the phyla Chloroflexi, Bacteroidetes, and Firmicutes were the dominant functional microorganisms in high-solid and low-solid anaerobic systems. Meanwhile, the real-time PCR assays showed that high-solid anaerobic digestion significantly increased the number of total bacteria, which enhanced the hydrolysis and acidification of sewage sludge. Further study indicated that the number of total archaea (dominated by Methanosarcina) in a high-solid anaerobic fermentation reactor was also higher than that in a low-solid reactor, resulting in higher VFA consumption and methane production. Hence, the increased key bacteria and methanogenic archaea involved in sewage sludge hydrolysis, acidification, and methanogenesis resulted in the better performance of high-solid anaerobic sewage sludge fermentation.

  5. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  6. Sulfide-induced nitrate reduction in the sludge of an anaerobic digester of a zero-discharge recirculating mariculture system.

    PubMed

    Sher, Yonatan; Schneider, Kenneth; Schwermer, Carsten U; van Rijn, Jaap

    2008-10-01

    The anaerobic digester is a vital component in a zero-discharge mariculture system as therein most of the organic matter is mineralized and nitrogen-containing compounds are converted to gaseous N(2). Although denitrification is a major respiratory process in this nitrate-rich treatment stage, also sulfate respiration takes place and may cause undesirable high sulfide concentrations in the effluent water. To examine the effect of sulfide on nitrate reduction, in situ depth profiles of inorganic nitrogen and sulfur compounds were determined. Additionally, nitrate reduction was examined as a function of ambient sulfide concentrations in sludge collected from different locations in the anaerobic reactor. Depth profiles showed high concentrations of nitrate and low concentrations of sulfide and ammonia in the aqueous layer of the reactor. A sharp decrease of nitrate and an increase in sulfide and ammonia concentrations was measured at the water-sludge interface. Nitrate reduction was highest in this interface zone with rates of up to 8.05+/-0.57 micromol NO(3)(-)h(-1)g((sludge))(-1). Addition of sulfide increased the nitrate reduction rate at all sludge depths, pointing to the important role of autotrophic denitrification in the anaerobic reactor. Dissimilatory nitrate reduction to ammonia (DNRA) was found to be low in all sludge layers but was enhanced when sludge was incubated at high sulfide concentrations. Although nitrate reduction rates increased as a result of sulfide addition to sludge samples, no differences in nitrate reduction rates were observed between the samples incubated with different initial sulfide concentrations. This as opposed to sulfide oxidation rates, which followed Michaelis-Menten enzymatic kinetics. Partial oxidation of sulfide to elemental sulfur instead of a complete oxidation to sulfate, could explain the observed patterns of nitrate reduction and sulfide oxidation in sludge incubated with different initial sulfide concentrations.

  7. Removal of fecal indicator organisms and parasites (fecal coliforms and helminth eggs) from municipal biologic sludge by anaerobic mesophilic and thermophilic digestion.

    PubMed

    Rojas Oropeza, M; Cabirol, N; Ortega, S; Castro Ortiz, L P; Noyola, A

    2001-01-01

    In this work, two egg-shaped, 5L-volume, anaerobic sludge digesters were used, one under mesophilic conditions (35 degrees C, M1), and the other under thermophilic conditions (55 degrees C, T1). Both digesters were fed with the purged sludge from an anaerobic treatment plant (start-up period) and from an activated sludge plant (stabilization period), treating municipal wastewaters. The purpose of the study was to establish the technical feasibility of the anaerobic thermophilic sludge treatment comparatively, during the stages of start-up and stabilization of the process, for removing pathogenic microorganisms and parasites efficiently. The results show that, in both stages, the anaerobic thermophilic digester presents higher efficiency on the removal of pathogens and parasites, than the mesophilic digester. Anaerobic thermophilic digestion is close to complying with the EPA (1998) limits for "Class A" type biosolids, referring to the number of parasitic helminth eggs (0.25 HELarval/gTS), and to the pathogen indicator fecal coliforms (< 1000 MPN/gTS). Therefore, the results show that thermophilic anaerobic digestion of biologic sludge may be considered as a suitable technology for the production of Class A biosolids, for further use in agriculture without restrictions.

  8. From mesophilic to thermophilic digestion: the transitions of anaerobic bacterial, archaeal, and fungal community structures in sludge and manure samples.

    PubMed

    Sun, Weimin; Yu, Guangwei; Louie, Tiffany; Liu, Tong; Zhu, Chengsheng; Xue, Gang; Gao, Pin

    2015-12-01

    The shift of microbial communities during a transition from mesophilic anaerobic digestion (MAD) to thermophilic anaerobic digestion (TAD) was characterized in two treatments. One treatment was inoculated with sludge and the other was inoculated with manure. In this study, methane was produced both in MAD and TAD, but TAD has slightly more methane produced than MAD. A broad phylogenetic spectrum of bacterial, archaeal, and fungal taxa at thermophilic conditions was detected. Coprothermobacter, Bacillus, Haloplasma, Clostridiisalibacter, Methanobacterium, Methanothermobacter, Saccharomycetales, Candida, Alternaria, Cladosporium, and Penicillium were found almost exclusively in TAD, suggesting their adaptation to thermophilic conditions and ecological roles in digesting the organic compounds. The characterization of the lesser-known fungal community revealed that fungi probably constituted an important portion of the overall community within TAD and contributed to this process by degrading complex organic compounds. The shift of the microbial communities between MAD and TAD implied that temperature drastically affected the microbial diversity in anaerobic digestion. In addition, the difference in microbial communities between sludge and manure indicated that different source of inoculum also affected the microbial diversity and community.

  9. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta).

    PubMed

    Sode, Sidsel; Bruhn, Annette; Balsby, Thorsten J S; Larsen, Martin Mørk; Gotfredsen, Annemarie; Rasmussen, Michael Bo

    2013-10-01

    Phosphorus and biologically active nitrogen are valuable nutrient resources. Bioremediation with macroalgae is a potential means for recovering nutrients from waste streams. In this study, reject water from anaerobically digested sewage sludge was successfully tested as nutrient source for cultivation of the green macroalgae Ulva lactuca. Maximal growth rates of 54.57±2.16% FW d(-1) were achieved at reject water concentrations equivalent to 50 μM NH4(+). Based on the results, the growth and nutrient removal was parameterised as function of NH4(+) concentration a tool for optimisation of any similar phycoremediation system. Maximal nutrient removal rates of 22.7 mg N g DW(-1) d(-1) and 2.7 mg P g DW(-1) d(-1) were achieved at reject water concentrations equivalent to 80 and 89 μM NH4(+), respectively. A combined and integrated use of the produced biomass in a biorefinery is thought to improve the feasibility of using Ulva for bioremediation of reject water.

  10. Change of PCBs and forms of heavy metals in sewage sludge during thermophilic anaerobic digestion.

    PubMed

    Dąbrowska, Lidia; Rosińska, Agata

    2012-06-01

    Determination of seven congeners of PCBs was carried out for sewage sludge before, during and after thermophilic digestion. The overall content of heavy metals (Zn, Cu, Ni, Cd, Pb, Cr) in sludge before and after digestion was determined. Moreover the concentration of heavy metals in particular chemical fractions of the sludge was analyzed. After the thermophilic digestion total concentration of seven PCBs was reduced by 47%, which suggests that thermophilic digestion affects PCB reduction positively. On the 10th d of the process, concentration of lower chlorinated PCBs increased, whereas those of higher chlorinated PCBs decreased. The thermophilic digestion process showed no accumulation of the studied heavy metals in the mobile fractions (exchangeable and carbonate) of the stabilized sewage sludge, except for nickel. The highest increase in zinc, copper, cadmium, and chromium concentration was observed in the organic-sulfide fraction, whereas the highest increase in lead was found in the residual fraction of the sludge. In case of nickel both fractions of organic-sulfide and exchangeable-carbonate fractions were enriched.

  11. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size

    SciTech Connect

    Silvestre, Gracia; Bonmatí, August; Fernández, Belén

    2015-09-15

    Highlights: • Methane production rate increased between 56% and 208% during OFMSW–SS codigestion. • The OFMSW particle size reduction from 20 to 8 mm did not affect the methane yield. • OFMSW–SS codigestion promoted β-oxidation and acetoclastic methanogenic activity. • The evolution of specific activity was a feasible tool to control the process. - Abstract: The effect of organic fraction of municipal solid waste (OFMSW) loading rate and particulate size on the sewage sludge (SS) mesophilic anaerobic co-digestion was assessed in continuous stirred tank reactor at hydraulic retention time of 20 days. The SS–OFMSW mixture composed by 54% of the volatile solids fed (inlet-VS), at OLR of 3.1 kg{sub COD} m{sup −3} d{sup −1} (1.9 kg{sub VS} m{sup −3} d{sup −1}), showed the highest increment on the volumetric methane production and yield of +200% and +59% respectively, under stable conditions. The effect of particulate size was assessed with the same mixture and same operational conditions but reducing the OFMSW particulate size from 20 mm to 8 mm with the aim to improve the hydrolysis step, but the results showed any influence in the OFMSW particulate size range analysed. In addition, specific biomass activity was assessed at the end of each co-digestion period. Results showed that OFMSW promoted β-oxidation syntrophic acetogens and the acetoclastic methanogens activity; although the last increase of the OFMSW percentage (from 47% to 54% inlet-VS) affected negatively the specific substrate activity, but not inhibitory effect was observed. Therefore, the results obtained in the continuous experiment could be related with some inhibitory or toxic effect and not due to hydrolysis limitation. The specific biomass activity test was demonstrated to be an interesting tool to evaluate and control the co-digestion process, especially when conventional parameters did not explain the behaviour of the biological system.

  12. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size.

    PubMed

    Silvestre, Gracia; Bonmatí, August; Fernández, Belén

    2015-09-01

    The effect of organic fraction of municipal solid waste (OFMSW) loading rate and particulate size on the sewage sludge (SS) mesophilic anaerobic co-digestion was assessed in continuous stirred tank reactor at hydraulic retention time of 20days. The SS-OFMSW mixture composed by 54% of the volatile solids fed (inlet-VS), at OLR of 3.1kgCODm(-3)d(-1) (1.9kgVSm(-3)d(-1)), showed the highest increment on the volumetric methane production and yield of +200% and +59% respectively, under stable conditions. The effect of particulate size was assessed with the same mixture and same operational conditions but reducing the OFMSW particulate size from 20mm to 8mm with the aim to improve the hydrolysis step, but the results showed any influence in the OFMSW particulate size range analysed. In addition, specific biomass activity was assessed at the end of each co-digestion period. Results showed that OFMSW promoted β-oxidation syntrophic acetogens and the acetoclastic methanogens activity; although the last increase of the OFMSW percentage (from 47% to 54% inlet-VS) affected negatively the specific substrate activity, but not inhibitory effect was observed. Therefore, the results obtained in the continuous experiment could be related with some inhibitory or toxic effect and not due to hydrolysis limitation. The specific biomass activity test was demonstrated to be an interesting tool to evaluate and control the co-digestion process, especially when conventional parameters did not explain the behaviour of the biological system.

  13. Anaerobic Digestion II. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    This lesson is the second of a two-part series on anaerobic digestion. Topics discussed include classification of digester by function, roof design, and temperature range, mixing systems, gas system components, operational control basics, and general safety considerations. The lesson includes an instructor's guide and student workbook. The…

  14. Assessment of the potential for biogas production from wheat straw leachate in upflow anaerobic sludge blanket digesters.

    PubMed

    Idrus, S; Banks, C J; Heaven, S

    2012-01-01

    Wheat straw is a major potential source of waste biomass for renewable energy production, but its high salt content causes problems in combustion. The salts can be removed by washing, but this process also removes a proportion of the organic material which could potentially be recovered by anaerobic digestion of the washwater leachate. This approach would maximise the overall energy yield in an integrated process in which washwater could be recycled after further desalting. Leachate from cold water washing with a chemical oxygen demand (COD) of 1.2 g l⁻¹ was fed to mesophilic upflow anaerobic sludge blanket (UASB) digesters at a loading rate of 1 g COD l⁻¹ day⁻¹ to determine the energy yield and any detrimental effects of the leached salts on the process. The specific methane production was 0.29 l CH₄ g⁻¹ COD(added), corresponding to a COD removal rate of 84%. Light metal cations in the leachate, especially potassium, were found to accumulate in the digesters and appeared to have a synergistic effect up to a concentration of ∼6.5 mg K g⁻¹ wet weight of the granular sludge, but further accumulation caused inhibition of methanogenesis. It was shown that gas production in the inhibited digesters could be restored within 12 days by switching the feed to a synthetic sewage, which washed the accumulated K out of the digesters.

  15. Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge

    SciTech Connect

    Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan; Turney, Terence W.; Naidu, Ravi; Miller, Bradley W.; Scheckel, Kirk G.

    2013-01-14

    The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as a result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.

  16. Two-stage thermophilic-mesophilic anaerobic digestion of waste activated sludge from a biological nutrient removal plant.

    PubMed

    Watts, S; Hamilton, G; Keller, J

    2006-01-01

    A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream.

  17. Effect of enzymes on anaerobic digestion of primary sludge and septic tank performance.

    PubMed

    Diak, James; Örmeci, Banu; Kennedy, Kevin J

    2012-11-01

    Enzyme additives are believed to improve septic tank performance by increasing the hydrolysis and digestion rates and maintaining a healthy microbial population. Previous studies reported mixed results on the effectiveness of enzymes on mesophilic and thermophilic digestion, and it is not clear whether enzymes would be effective under septic tank conditions where there is no heating or mixing, quantities of enzymes added are small, and they can be washed out quickly. In this study, batch reactors and continuous-flow reactors designed and operated as septic tanks were used to evaluate whether enzymatic treatment would increase the hydrolysis and digestion rates in primary sludge. Total solids, volatile solids, total suspended solids, total and soluble chemical oxygen demand, concentrations of protein, carbohydrate, ammonia and volatile acids in sludge and effluent samples were measured to determine the differences in digestion rates in the presence and absence of enzymes. Overall, no significant improvement was observed in enzyme-treated reactors compared with the control reactors.

  18. Metagenomic Reconstruction of Key Anaerobic Digestion Pathways in Municipal Sludge and Industrial Wastewater Biogas-Producing Systems

    PubMed Central

    Cai, Mingwei; Wilkins, David; Chen, Jiapeng; Ng, Siu-Kin; Lu, Hongyuan; Jia, Yangyang; Lee, Patrick K. H.

    2016-01-01

    Anaerobic digestion (AD) is a microbial process widely used to treat organic wastes. While the microbes involved in digestion of municipal sludge are increasingly well characterized, the taxonomic and functional compositions of AD digesters treating industrial wastewater have been understudied. This study examined metagenomes from a biogas-producing digester treating municipal sludge in Shek Wu Hui (SWH), Hong Kong and an industrial wastewater digester in Guangzhou (GZ), China, and compared their taxonomic composition and reconstructed biochemical pathways. Genes encoding carbohydrate metabolism and protein metabolism functions were overrepresented in GZ, while genes encoding functions related to fatty acids, lipids and isoprenoids were overrepresented in SWH, reflecting the plants’ feedstocks. Mapping of genera to functions in each community indicated that both digesters had a high level of functional redundancy, and a more even distribution of genera in GZ suggested that it was more functionally stable. While fermentation in both samples was dominated by Clostridia, SWH had an overrepresentation of Proteobacteria, including syntrophic acetogens, reflecting its more complex substrate. Considering the growing importance of biogas as an alternative fuel source, a detailed mechanistic understanding of AD is important and this report will be a basis for further study of industrial wastewater AD. PMID:27252693

  19. Co-digestion of grease trap sludge and sewage sludge.

    PubMed

    Davidsson, A; Lövstedt, C; Jansen, J la Cour; Gruvberger, C; Aspegren, H

    2008-01-01

    Redirection of organic waste, from landfilling or incineration, to biological treatment such as anaerobic digestion is of current interest in the Malmö-Copenhagen region. One type of waste that is expected to be suitable for anaerobic digestion is sludge from grease traps. Separate anaerobic digestion of this waste type and co-digestion with sewage sludge were evaluated. The methane potential was measured in batch laboratory tests, and the methane yield was determined in continuous pilot-scale digestion. Co-digestion of sludge from grease traps and sewage sludge was successfully performed both in laboratory batch and continuous pilot-scale digestion tests. The addition of grease trap sludge to sewage sludge digesters was seen to increase the methane yield of 9-27% when 10-30% of sludge from grease traps (on VS-basis) was added. It was also seen that the grease trap sludge increases the methane yield without increasing the sludge production. Single-substrate digestion of grease trap sludge gave high methane potentials in batch tests, but could not reach stable methane production in continuous digestion.

  20. High pressure homogenization and two-phased anaerobic digestion for enhanced biogas conversion from municipal waste sludge.

    PubMed

    Wahidunnabi, Abdullahil K; Eskicioglu, Cigdem

    2014-12-01

    This study compared advanced anaerobic digestion combining two-phased anaerobic digestion (2PAD) with high pressure homogenization (HPH) pretreatment to conventional anaerobic digestion of municipal sludge at laboratory scale. The study began with examination of thickened waste activated sludge (TWAS) solubilization due to HPH pretreatment at different pressure (0-12,000 psi) and chemical dose (0.009-0.036 g NaOH/g total solids). Homogenizing pressure was found as the most significant factor (p-value < 0.05) for increasing solubilization of particulate chemical oxygen demand (COD) and biopolymers in TWAS. Based on the preliminary results, a pretreatment with chemical dose of 0.009 g NaOH/g total solids and pressure of 12,000 psi was selected for digester studies. Upon acclimation of anaerobic inocula to pretreatments, a total number of twelve lab-scale digesters were operated under scenarios including single-stage (control), 2PAD, and HPH coupled with 2PAD (HPH + 2PAD) at sludge retention times (SRTs) of 20, 14 and 7 days. Between mesophilic and thermophilic temperatures, mesophilic digestion was found to benefit more from pretreatments. Relative (to control) improvements in methane yield and volatile solids (VS) removals increased noticeably as SRT was shortened from 20 to 14 and 7 days. HPH + 2PAD system was found to achieve the maximum methane production (0.61-1.32 L CH4/Ldigester-d) and VS removals (43-64%). Thermophilic control, 2PAD and HPH + 2PAD systems resulted in significant pathogen removals meeting Class A biosolids requirements according to Organic Matter Recycling Regulations (OMRR) of British Columbia (BC) at 20 d SRT. Energy analysis indicated that all the digestion scenarios attained positive energy balance with 2PAD system operated at 20 d SRT producing the maximum net energy of 4.76 GJ/tonne CODadded.

  1. Assessment of microbial viability in municipal sludge following ultrasound and microwave pretreatments and resulting impacts on the efficiency of anaerobic sludge digestion.

    PubMed

    Cella, Monica Angela; Akgul, Deniz; Eskicioglu, Cigdem

    2016-03-01

    A range of ultrasonication (US) and microwave irradiation (MW) sludge pretreatments were compared to determine the extent of cellular destruction in micro-organisms within secondary sludge and how this cellular destruction translated to anaerobic digestion (AD). Cellular lysis/inactivation was measured using two microbial viability assays, (1) Syto 16® Green and Sytox® Orange counter-assay to discern the integrity of cellular membranes and (2) a fluorescein diacetate assay to understand relative enzymatic activity. A range of MW intensities (2.17-6.48 kJ/g total solids or TS, coinciding temperatures of 60-160 °C) were selected for comparison via viability assays; a range of corresponding US intensities (2.37-27.71 kJ/g TS, coinciding sonication times of 10-60 min at different amplitudes) were also compared to this MW range. The MW pretreatment of thickened waste activated sludge (tWAS) caused fourfold to fivefold greater cell death than non-pretreated and US-pretreated tWAS. The greatest microbial destruction occurred at MW intensities greater than 2.62 kJ/g TS of sludge, after which increased energy input via MW did not appear to cause greater microbial death. In addition, the optimal MW pretreatment (80 °C, 2.62 kJ/g TS) and corresponding US pretreatment (10 min, 60 % amplitude, 2.37 kJ/g TS) were administered to the tWAS of a mixed sludge and fed to anaerobic digesters over sludge retention times (SRTs) of 20, 14, and 7 days to compare effects of feed pretreatment on AD efficiency. The digester utilizing MW-pretreated tWAS (80 °C, 2.62 kJ/g TS) had the greatest fecal coliform removal (73.4 and 69.8 % reduction, respectively), greatest solids removal (44.2 % TS reduction), and highest overall methane production (248.2 L CH4/kg volatile solids) at 14- and 7-day SRTs. However, despite the fourfold to fivefold increases in cell death upon pretreatment, improvements from the digester fed MW-pretreated sludge were marginal (i.e., increases in efficiency of less

  2. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    PubMed

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production.

  3. Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion

    PubMed Central

    Wilkins, David; Rao, Subramanya; Lu, Xiaoying; Lee, Patrick K. H.

    2015-01-01

    Anaerobic digestion (AD) is a widespread microbial technology used to treat organic waste and recover energy in the form of methane (“biogas”). While most AD systems have been designed to treat a single input, mixtures of digester sludge and solid organic waste are emerging as a means to improve efficiency and methane yield. We examined laboratory anaerobic cultures of AD sludge from two sources amended with food waste, xylose, and xylan at mesophilic temperatures, and with cellulose at meso- and thermophilic temperatures, to determine whether and how the inoculum and substrate affect biogas yield and community composition. All substrate and inoculum combinations yielded methane, with food waste most productive by mass. Pyrosequencing of transcribed bacterial and archaeal 16S rRNA showed that community composition varied across substrates and inocula, with differing ratios of hydrogenotrophic/acetoclastic methanogenic archaea associated with syntrophic partners. While communities did not cluster by either inoculum or substrate, additional sequencing of the bacterial 16S rRNA gene in the source sludge revealed that the bacterial communities were influenced by their inoculum. These results suggest that complete and efficient AD systems could potentially be assembled from different microbial inocula and consist of taxonomically diverse communities that nevertheless perform similar functions. PMID:26528262

  4. Two-phase (acidogenic-methanogenic) anaerobic thermophilic/mesophilic digestion system for producing Class A biosolids from municipal sludge.

    PubMed

    Rubio-Loza, L A; Noyola, A

    2010-01-01

    Two different arrangements of two-phase anaerobic sludge systems were operated treating a mixture of primary and secondary sludge. Two steady state periods were evaluated: the first acidogenic thermophilic phase was operated at hydraulic retention times of 3 and 2 days and the second methanogenic (mesophilic and thermophilic) phases at 13 and 10 days. The two-phase systems had an efficient removal of pathogens and parasites, achieving values lower than those specified for Class A biosolids, according to the Mexican Standard NOM-004-SEMARNAT-2002. The first thermophilic phase achieved almost complete destruction of pathogens and parasites by itself. During the second steady state period, volatile fatty acids accumulated in the second methanogenic phases (HRT of 10 days and an organic load of 3 kg VS/m(3)d) indicating that the systems were overloaded, mainly the mesophilic digester. In this case, the accumulation of propionic acid may be related to a deficiency of micronutrients. The results show that the two-phase thermophilic/mesophilic anaerobic sludge digestion may be considered as an adequate option for the production of Class A biosolids.

  5. Two-phased hyperthermophilic anaerobic co-digestion of waste activated sludge with kitchen garbage.

    PubMed

    Lee, Myungyeol; Hidaka, Taira; Tsuno, Hiroshi

    2009-11-01

    For co-digestion of waste activated sludge with kitchen garbage, hyperthermophilic digester systems that consisted of an acidogenic reactor operated at hyperthermophilic (70 degrees C) and a methanogenic reactor operated at mesophilic (35 degrees C), thermophilic (55 degrees C) or hyperthermophilic (65 degrees C) conditions in series were studied by comparing with a thermophilic digester system that consisted of thermophilic (55 degrees C) acidogenic and methanogenic reactors. Laboratory scale reactors were operated continuously fed with a substrate blend composed of concentrated waste activated sludge and artificial kitchen garbage. At the acidogenic reactor, solubilization efficiencies of chemical oxygen demand (COD), carbohydrate and protein at 70 degrees C were about 39%, 42% and 54%, respectively, and they were higher than those at 55 degrees C by around 10%. The system of acidogenesis at 70 degrees C and methanogenesis at 55 degrees C was stable and well-functioned in terms of treatment performances and low ammonium nitrogen concentrations. Microbial community analysis was conducted using a molecular biological method. The key microbe determined at the hyperthermophilic acidogenesis step was Coprothermobacter sp., which was possibly concerned with the degradation of protein in waste activated sludge. The present study proved that the hyperthermophilic system was advantageous for treating substrate blends containing high concentrations of waste activated sludge.

  6. Heterotrophic denitrification plays an important role in N₂O production from nitritation reactors treating anaerobic sludge digestion liquor.

    PubMed

    Wang, Qilin; Jiang, Guangming; Ye, Liu; Pijuan, Maite; Yuan, Zhiguo

    2014-10-01

    Nitrous oxide (N2O) emissions from nitritation reactors receiving real anaerobic sludge digestion liquor have been reported to be substantially higher than those from reactors receiving synthetic digestion liquor. This study aims to identify the causes for the difference, and to develop strategies to reduce N2O emissions from reactors treating real digestion liquor. Two sequencing batch reactors (SBRs) performing nitritation, fed with real (SBR-R) and synthetic (SBR-S) digestion liquors, respectively, were employed. The N2O emission factors for SBR-R and SBR-S were determined to be 3.12% and 0.80% of the NH4(+)-N oxidized, respectively. Heterotrophic denitrification supported by the organic carbon present in the real digestion liquor was found to be the key contributor to the higher N2O emission from SBR-R. Heterotrophic nitrite reduction likely stopped at N2O (rather than N2), with a hypothesised cause being free nitrous acid inhibition. This implies that all nitrite reduced by heterotrophic bacteria was converted to and emitted as N2O. Increasing dissolved oxygen (DO) concentration from 0.5 to 1.0 mg/L, or above, decreased aerobic N2O production from 2.0% to 0.5% in SBR-R, whereas aerobic N2O production in SBR-S remained almost unchanged (at approximately 0.5%). We hypothesised that DO at 1 mg/L or above suppressed heterotrophic nitrite reduction thus reduced aerobic heterotrophic N2O production. We recommend that DO in a nitritation system receiving anaerobic sludge digestion liquor should be maintained at approximately 1 mg/L to minimise N2O emission.

  7. Improvement of anaerobic digestion of waste-activated sludge by using H₂O₂ oxidation, electrolysis, electro-oxidation and thermo-alkaline pretreatments.

    PubMed

    Feki, Emna; Khoufi, Sonia; Loukil, Slim; Sayadi, Sami

    2015-10-01

    Disintegration of municipal waste-activated sludge (WAS) is regarded as a prerequisite of the anaerobic digestion process to reduce sludge volume and improve biogas yield. Pretreatment of WAS using thermo-alkaline (TA), H2O2 oxidation, electrolysis and electro-oxidation (EO) processes were investigated and compared in term of COD solubilization and biogas production. For each pretreatment, the influences of different operational variables were studied in detail. At optimum conditions, EO gave the maximum COD solubilization (28 %). The effects of pretreatments under the optimum conditions on anaerobic digestion were experienced with biochemical methane potential assay. Significant increases in biogas yield up to 78 and 40 % were observed respectively in the EO and TA pretreated samples compared to raw sludge. Results clearly revealed that the application of EO is a significant alternative method for the improvement of WAS anaerobic digestion.

  8. Heterotrophic nitrification and aerobic denitrification of high-strength ammonium in anaerobically digested sludge by Alcaligenes faecalis strain No. 4.

    PubMed

    Shoda, Makoto; Ishikawa, Yoichi

    2014-06-01

    Alcaligenes faecalis strain No. 4 which is capable of heterogeneous nitrification and aerobic denitrification, was used to remove high-strength ammonium (approximately 1 g NH4(+)-N/l) from digested sludge, the product of an anaerobic digestion reactor, in which methane was produced from excess municipal sewage sludge. Repeated batch operations were conducted at 20°C and 30°C for 550 h, using a jar fermentor. The removal ratios of high-strength ammonium reached 90-100% within 24 h, and the average ammonium removal rate was 2.9 kg-N/m(3)/day, more than 200 times higher than that in conventional nitrification-denitrification processes. During these operations, the cell density was maintained at 10(8)-10(9) cells of A. faecalis strain No. 4/ml. At 3% NaCl in the digested sludge, strain No. 4 exhibited an ammonium removal rate of 3 kg-N/m(3)/day.

  9. Linking Microbial Community, Environmental Variables, and Methanogenesis in Anaerobic Biogas Digesters of Chemically Enhanced Primary Treatment Sludge.

    PubMed

    Ju, Feng; Lau, Frankie; Zhang, Tong

    2017-04-04

    Understanding the influences of biotic and abiotic factors on microbial community structure and methanogenesis are important for its engineering and ecological significance. In this study, four biogas digesters were supplied with the same inoculum and feeding sludge but operated at different sludge retention time (7 to 16 days) and organic loading rates for 90 days to determine the relative influence of biotic and environmental factors on the microbial community assembly and methanogenic performance. Despite different operational parameters, all digester communities were dominated by Bacteroidales, Clostridiales, and Thermotogales and followed the same trend of population dynamics over time. Network and multivariate analyses suggest that deterministic factors, including microbial competition (involving Bacteroidales spp.), niche differentiation (e.g., within Clostridiales spp.), and periodic microbial immigration (from feed sludge), are the key drivers of microbial community assembly and dynamics. A yet-to-be-cultured phylotype of Bacteroidales (GenBank ID: GU389558.1 ) is implicated as a strong competitor for carbohydrates. Moreover, biogas-producing rate and methane content were significantly related with the abundances of functional populations rather than any operational or physicochemical parameter, revealing microbiological mediation of methanogenesis. Combined, this study enriches our understandings of biological and environmental drivers of microbial community assembly and performance in anaerobic digesters.

  10. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD.

  11. Anaerobic co-digestion of food waste and chemically enhanced primary-treated sludge under mesophilic and thermophilic conditions.

    PubMed

    Obulisamy, Parthiba Karthikeyan; Chakraborty, Debkumar; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-12-01

    Anaerobic co-digestion of food waste with primary sewage sludge is beneficial for urban centers, while the optimized conditions reported in the literature are not locally suitable for Hong Kong. Therefore, the present study was aimed to develop an optimized mixing ratio of food waste to chemically enhanced primary-treated sewer sludge (CEPT) for co-digestion using batch tests under mesophilic (37°C) and thermophilic (55°C) conditions. The mixing ratios of 1:1, 1:2, 1:3, 2:1 and 3:1 (v v(-1)) of food waste to CEPT sludge was tested under the following conditions: temperature - 35°C and 55°C; pH - not regulated; agitation - 150 rpm and time - 20 days. The thermophilic incubations led a good hydrolysis rate and 2-12-fold higher enzyme activities than in mesophilic incubations for different mixing ratios. While the acidogenesis were found retarded that leading to 'sour and stuck' digestion for all mixing ratio of food waste to CEPT sludge from thermophilic incubations. The measured zeta potential was most favourable (-5 to -16.8 mV) for methane production under thermophilic incubations; however the CH4 recovery was less than that in mesophilic incubations. The results suggested that the quick hydrolysis and subsequent acid accumulation under thermophilic incubation lead to inhibited methanogenesis at the early stage than in mesophilic systems. It is concluded that buffer addition is therefore required for any mixing ratio of food waste to CEPT sludge for improved CH4 recovery for both mesophilic and thermophilic operations.

  12. Two-phase anaerobic digestion of partially acidified sewage sludge: a pilot plant study for safe sludge disposal in developing countries.

    PubMed

    Passio, Luca; Rizzoa, Luigi; Fuchs, Stephan

    2012-09-01

    The unsafe disposal of wastewater and sludge in different areas of developing countries results in significant environmental pollution, particularly for groundwater, thus increasing the risk of waterborne diseases spreading. In this work, a two-phase anaerobic digestion process for post-treatment of partially acidified sewage sludge was investigated to evaluate its feasibility as a safe sludge disposal system. Pilot tests showed that an effective sludge stabilization can be achieved (total volatile solids content <65%, organic acid concentration <200 mg/L at flow rate = 50 L/d and hydraulic residence time = 18 d) as well as a relative low faecal coliform density (<1000 most probable number per g total solids), showing that land application of the sludge without restrictions is possible according to US Environmental Protection Agency criteria for safe sludge disposal. A biogas production as high as 390 L/d with a 60% methane content by volume was achieved, showing that energy production from biogas may be achieved as well.

  13. Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge.

    PubMed

    Dhar, Bipro Ranjan; Nakhla, George; Ray, Madhumita B

    2012-03-01

    To enhance the anaerobic digestion of municipal waste-activated sludge (WAS), ultrasound, thermal, and ultrasound+thermal (combined) pretreatments were conducted using three ultrasound specific energy inputs (1000, 5000, and 10,000 kJ/kg TSS) and three thermal pretreatment temperatures (50, 70 and 90°C). Prior to anaerobic digestion, combined pretreatments significantly improved volatile suspended solid (VSS) reduction by 29-38%. The largest increase in methane production (30%) was observed after 30 min of 90°C pretreatment followed by 10,000 kJ/kg TSS ultrasound pretreatment. Combined pretreatments improved the dimethyl sulfide (DMS) removal efficiency by 42-72% but did not show any further improvement in hydrogen sulfide (H(2)S) removal when compared with ultrasound and thermal pretreatments alone. Economic analysis showed that combined pretreatments with 1000 kJ/kg TSS specific energy and differing thermal pretreatments (50-90°C) can reduce operating costs by $44-66/ton dry solid when compared to conventional anaerobic digestion without pretreatments.

  14. Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste.

    PubMed

    Liu, Chuanyang; Li, Huan; Zhang, Yuyao; Liu, Can

    2016-11-01

    Anaerobic co-digestion of sewage sludge and food waste was tested at two different total solid (TS) concentrations. In the low-solids group with TS 4.8%, the biogas production increased linearly as the ratio of food waste in substrate increased from 0 to 100%, but no synergetic effect was found between the two substrates. Moreover, the additive food waste resulted in the accumulation of volatile fatty acids and decelerated biogas production. Thus, the blend ratio of food waste should be lower than 50%. While in the high-solids group with TS 14%, the weak alkaline environment with pH 7.5-8.5 avoided excessive acidification but high concentration of free ammonia was a potential risk. However, good synergetic effect was found between the two substrates because the added food waste improved mass transfer in sludge cake. Thus, 50% was recommended as the optimum ratio of food waste in substrate because of the best synergetic effect.

  15. Modelling of the temperature-phased batch anaerobic digestion of raw sludge from an urban wastewater treatment plant.

    PubMed

    Riau, Víctor; De la Rubia, M Angeles; Pérez, Montserrat; Martín, Antonio; Borja, Rafael

    2012-01-01

    The disposal of excess sludge from wastewater treatment plants is a serious problem that needs to be addressed. Temperature-phased anaerobic digestion (TPAD) which combines thermophilic and mesophilic processes in one, brings together the advantages of both systems. The aim of the present work was to develop a simple kinetic model to describe the TPAD of sewage sludge in batch completely stirred tank reactors (CSTRs) and to determine the kinetic parameters of both thermophilic and mesophilic stages. A zero-order kinetic equation described the thermophilic step after 2, 4 and 6 days of digestion time (experiment 1, 2 and 3, respectively), yet a first-order equation was found to be adequate to correlate the methane gas accumulated with time in the mesophilic step, the kinetic constant being 0.21 days(-1). The methane yield coefficient obtained was found to be almost proportional to the digestion time used in the thermophilic step with values of 0.067, 0.132 and 0.193 L CH(4) STP/g VS(added) for experiments 1, 2 and 3, respectively. By contrast, the kinetic constant of the mesophilic stage was not influenced by the digestion time used in the thermophilic phase.

  16. Livestock Anaerobic Digester Database

    EPA Pesticide Factsheets

    The Anaerobic Digester Database provides basic information about anaerobic digesters on livestock farms in the United States, organized in Excel spreadsheets. It includes projects that are under construction, operating, or shut down.

  17. Increasing biogas production from sewage sludge anaerobic co-digestion process by adding crude glycerol from biodiesel industry.

    PubMed

    Nartker, Steven; Ammerman, Michelle; Aurandt, Jennifer; Stogsdil, Michael; Hayden, Olivia; Antle, Chad

    2014-12-01

    In an effort to convert waste streams to energy in a green process, glycerol from biodiesel manufacturing has been used to increase the gas production and methane content of biogas within a mesophilic anaerobic co-digestion process using primary sewage sludge. Glycerol was systematically added to the primary digester from 0% to 60% of the organic loading rate (OLR). The optimum glycerol loading range was from 25% to 60% OLR. This resulted in an 82-280% improvement in specific gas production. Following the feeding schedule described, the digesters remained balanced and healthy until inhibition was achieved at 70% glycerol OLR. This suggests that high glycerol loadings are possible if slow additions are upheld in order to allow the bacterial community to adjust properly. Waste water treatment plant operators with anaerobic digesters can use the data to increase loadings and boost biogas production to enhance energy conversion. This process provides a safe, environmentally friendly method to convert a typical waste stream to an energy stream of biogas.

  18. Complete Nitrogen Removal from Synthetic Anaerobic Sludge Digestion Liquor through Integrating Anammox and Denitrifying Anaerobic Methane Oxidation in a Membrane Biofilm Reactor.

    PubMed

    Xie, Guo-Jun; Cai, Chen; Hu, Shihu; Yuan, Zhiguo

    2017-01-17

    Partial nitritation and Anammox processes are increasingly used for nitrogen removal from anaerobic sludge digestion liquor. However, their nitrogen removal efficiency is often limited due to the production of nitrate by the Anammox reaction and the sensitivity to the nitrite to ammonium ratio. This work develops and demonstrates an innovative process that achieves complete nitrogen removal from partially nitrified anaerobic sludge digestion liquor through the use of a membrane biofilm reactor (MBfR), with methane supplied through hollow fiber membranes. When steady state with a hydraulic retention time (HRT) of 1 day was reached, the process achieved complete nitrite and ammonium removal at rates of 560 mg N/L/d and 470 mg N/L/d, respectively, without any nitrate accumulation. The process is relatively insensitive to the nitrite to ammonium ratio, achieving complete nitrogen removal when their ratio in influent varied in the range of 1.125-1.32. Pyrosequencing and fluorescence in situ hybridization analysis revealed that denitrifying anaerobic methane oxidation (DAMO) archaea, Anammox bacteria and DAMO bacteria jointly dominated the microbial community. Mass balance analysis showed that nitrate produced by Anammox (122.2 mg N/L/d) was entirely converted to nitrite by DAMO archaea, while nitrite in the feed and produced by DAMO archaea was jointly removed by Anammox (90%) and DAMO bacteria (10%). The nitrogen removal rate of over 1 kg N/m(3)/d is comparable to the practical rates reported for side-stream nitrogen removal processes.

  19. Innovative ammonia stripping with an electrolyzed water system as pretreatment of thermally hydrolyzed wasted sludge for anaerobic digestion.

    PubMed

    Park, Seyong; Kim, Moonil

    2015-01-01

    In this study, the anaerobic digestion of thermally hydrolyzed wasted sludge (THWS) with a high concentration of ammonia was carried out through combining with an ammonia stripping and an electrolyzed water system (EWS). The EWS produced acidic water (pH 2-3) at the anode and alkaline water (pH 11-12) at the cathode with an electro-diaphragm between the electrodes that could be applied to ammonia stripping. The ammonia stripping efficiency was strongly dependent on the pH and aeration rate, and the ammonium ion removal rate followed pseudo-first-order kinetics. From the BMP test, the methane yield of THWS after ammonia stripping using the EWS was 2.8 times higher than that of the control process (raw THWS without ammonia stripping). Furthermore, both methane yield and ammonium removal efficiency were higher in this study than in previous studies. Since ammonia stripping with the EWS does not require any chemicals for pH control, no precipitated sludge is produced and anaerobic microorganisms are not inhibited by cations. Therefore, ammonia stripping using the EWS could be an effective method for digestion of wastewater with a high concentration of ammonium nitrogen.

  20. Effects of titanium dioxide and zinc oxide nanoparticles on methane production from anaerobic co-digestion of primary and excess sludge.

    PubMed

    Zheng, Xiong; Wu, Lijuan; Chen, Yinguang; Su, Yinglong; Wan, Rui; Liu, Kun; Huang, Haining

    2015-01-01

    Anaerobic co-digestion of primary and excess sludge is regarded as an efficient way to reuse sludge organic matter to produce methane. In this study, short-term and long-term exposure experiments were conducted to investigate the possible effects of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) on methane production from anaerobic co-digestion of primary and excess sludge. The data showed that TiO2 NPs had no measurable impact on methane production, even at a high concentration (150 mg/g total suspended solids (TSS)). However, short-term (8 days) exposure to 30 or 150 mg/g-TSS of ZnO NPs significantly decreased methane production. More importantly, these negative effects of ZnO NPs on anaerobic sludge co-digestion were not alleviated by increasing the adaptation time to 105 days. Further studies indicated that the presence of ZnO NPs substantially decreased the abundance of methanogenic archaea, which reduced methane production. Meanwhile, the activities of some key enzymes involved in methane production, such as protease, acetate kinase, and coenzyme F420, were remarkably inhibited by the presence of ZnO NPs, which was also an important reason for the decreased methane production. These results provide a better understanding of the potential risks of TiO2 and ZnO NPs to methane production from anaerobic sludge co-digestion.

  1. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance.

    PubMed

    Dai, Xiaohu; Duan, Nina; Dong, Bin; Dai, Lingling

    2013-02-01

    System stability and performance of high-solids anaerobic co-digestion of dewatered sludge (DS) and food waste (FW) in comparison with mono digestions were investigated. System stability was improved in co-digestion systems with co-substrate acting as a diluting agent to toxic chemicals like ammonia or Na(+). For high-solids digestion of DS, the addition of FW not only improved system stability but also greatly enhanced volumetric biogas production. For high-solids digestion of FW, the addition of DS could reduce Na(+) concentration and help maintain satisfactory stability during the conversion of FW into biogas. System performances of co-digestion systems were mainly determined by the mixing ratios of DS and FW. Biogas production and volatile solids (VSs) reduction in digestion of the co-mixture of DS and FW increased linearly with higher ratios of FW. A kinetic model, which aimed to forecast the performance of co-digestion and to assist reactor design, was developed from long-term semi-continuous experiments. Maximum VS reduction for DS and FW was estimated to be 44.3% and 90.3%, respectively, and first order constant k was found to be 0.17d(-1) and 0.50 d(-1), respectively. Experimental data of co-digestion were in good conformity to the predictions of the model.

  2. How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?

    PubMed

    Wang, Dongbo; Zhao, Jianwei; Zeng, Guangming; Chen, Yinguang; Bond, Philip L; Li, Xiaoming

    2015-10-20

    Recent studies demonstrate that, besides being used for production of biodegradable plastics, poly(hydroxyalkanoate) (PHA) that is accumulated in heterotrophic microorganisms during wastewater treatment has another novel application direction, i.e., being utilized for enhancing methane yield during the anaerobic digestion of waste-activated sludge (WAS). To date, however, the underlying mechanism of how PHA affects methane production remains largely unknown, and this limits optimization and application of the strategy. This study therefore aims to fill this knowledge gap. Experimental results showed that with the increase of sludge PHA levels from 21 to 184 mg/g of volatile suspended solids (VSS) the methane yield linearly increased from 168.0 to 246.1 mL/g of VSS (R(2) = 0.9834). Compared with protein and carbohydrate (the main components of a cell), PHA exhibited a higher biochemical methane potential on a unit VSS basis. It was also found that the increased PHA not only enhanced cell disruption of PHA cells but also benefited the soluble protein conversion of both PHA- and non-PHA cells. Moreover, the reactor fed with higher PHA sludge showed greater sludge hydrolysis and acidification than those fed with the lower PHA sludges. Further investigations using fluorescence in situ hybridization and enzyme analysis revealed that the increased PHA enhanced the abundance of methanogenic Archaea and increased the activities of protease, acetate kinase, and coenzyme F420, which were consistent with the observed methane yield. This work provides insights into PHA-involved WAS digestion systems and may have important implications for future operation of wastewater treatment plants.

  3. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge.

    PubMed

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-12-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with (14)C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with (13)C(6)-glucose and (13)C(3)-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with (13)C-glucose and (13)C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with (14)C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high K(m) for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5-10  mM). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta.

  4. Co-occurence of Crenarchaeota, Thermoplasmata and methanogens in anaerobic sludge digesters.

    PubMed

    Chouari, Rakia; Guermazi, Sonda; Sghir, Abdelghani

    2015-05-01

    16S rRNA Crenarchaeota and Thermoplasmata sequences retrieved from 22 anaerobic digesters were analysed. 4.8 and 0.53 % of archaeal sequences were simultaneously affiliated to these lineages. A core of 2 operational taxonomic units (OTUs) representing 0.6 to -33.6 % of all archaeal sequences were defined for the Crenarchaeotes and identified to already known but not yet cultivable organisms in almost half of the digesters sampled. For the Thermoplasmata, apparently less abundant with 0.7 to -4.7 % of the archaeal sequences, 3 OTUs were identified. We showed here that Crenarchaeotes coexist with methanogens and are particularly abundant when Arch I lineage (also called WSA2 by Hugenholtz) is dominant in digesters. Moreover, Thermoplasmata were detected when Crenarchaeota were present. Interactions between methanogens, Crenarchaeotea and Thermoplamata were thus discussed.

  5. Analysis of the stability of high-solids anaerobic digestion of agro-industrial waste and sewage sludge.

    PubMed

    Aymerich, E; Esteban-Gutiérrez, M; Sancho, L

    2013-09-01

    The pilot-scale high-solids anaerobic digestion (HS-AD) of agro-industrial wastes and sewage sludge was analysed in terms of stability by monitoring the most common parameters used to check the performance of anaerobic digesters, i.e. Volatile Fatty Acids (VFA), ammonia nitrogen, pH, alkalinity and methane production. The results reflected similar evolution for the parameters analysed, except for an experiment that presented an unsuccessful start-up. The rest of the experiments ran successfully, although the threshold values proposed in the literature for the detection of an imbalance in wet processes were exceeded, proving the versatility of HS-AD to treat different wastes. The results evidence the need for understanding the dynamics of a high-solids system so as to detect periods of imbalance and to determine inhibitory levels for different compounds formed during anaerobic decomposition. Moreover, the findings presented here could be useful in developing an experimental basis to construct new control strategies for HS-AD.

  6. Biological pretreatment of non-flocculated sludge augments the biogas production in the anaerobic digestion of the pretreated waste activated sludge.

    PubMed

    Merrylin, J; Kumar, S Adish; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2013-01-01

    High-efficiency resource recovery from municipal solid waste (MSW) has been a focus of attention. The objective of this research is to develop a bio-pretreatment process for application prior to the anaerobic digestion of MSW to improve methane productivity. Bacillus licheniformis was used for pretreating MSW (non-flocculated with 0.07% citric acid), followed by anaerobic digestion. Laboratory-scale experiments were carried out in semi-continuous bioreactors, with a total volume of 5 L and working volume of 3 L. Among the nine organic loading rates (OLRs) investigated, the OLR of 0.84 kg SS m(-3) reactor day(-1) was found to be the most appropriate for economic operation of the reactor. Pretreatment of MSW prior to anaerobic digestion led to 55% and 64% increase of suspended solids (SS) and volatile solids reduction, respectively, with an improvement of 57% in biogas production. The results indicate that the pretreatment of non-flocculated sludge with Bacillus licheniformis which consumes less energy compared to other pretreatment techniques could be a cost-effective and environmentally sound method for producing methane from MSW.

  7. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    NASA Astrophysics Data System (ADS)

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-10-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS.

  8. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    PubMed Central

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-01-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS. PMID:27725704

  9. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH.

    PubMed

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-10-11

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS.

  10. Strategies for the recovery of nutrients and metals from anaerobically digested dairy farm sludge using cross-flow microfiltration.

    PubMed

    Gerardo, M L; Zacharof, M P; Lovitt, R W

    2013-09-15

    This work reports on the recovery of nutrients and metals from anaerobically digested manure sludge using a pilot scale microfiltration membrane system. Soluble nitrogen (N), phosphorous (P) and metals are valuable commodities which exist in high concentration in anaerobically digested manure sludge. The typical disposal of sludge on farmland can cause serious harm to the ecosystem due to eutrophication. The recovery of these materials in clarified solutions represents an added value product and a less contaminated sludge that is environmentally less hazardous. The objective of this study was to investigate the recovery of nutrients and metals using a pilot scale cross-flow membrane filtration system. A ceramic membrane of 0.22 m(2) and 0.2 μm pore size was used to perform solid-liquid separations and soluble materials were recovered in particle and bacteria free solutions. Strategies such as batch diafiltration (DF) and acid pre-treatment were investigated and the fractions collected compared against the initial permeate containing 686.2 mg NH3-N L(-1) and 41.51 mg PO4-P L(-1). Clarified fractions obtained through DF with no acid pre-treatment yielded N:P ratios of around 30 and relatively low levels of P (364.24 mg NH3-N L(-1) and 25.60 mg PO4-P L(-1)) and metals. Acid pre-treatment of the sludge resulted in a two-fold increase of P extracted (271.11 mg NH3-N L(-1) and 71.60 mg PO4-P L(-1)), altering N:P ratios to 8. Depending on the metal species, a 2-9 fold increase in concentration was also observed. Thus it has been demonstrated that different treatment strategies influence the removal and recovery of nutrients and metals from sludge. The best treatment conditions therefore depend on the targeted materials to be recovered. By careful manipulation of the treatment processes the production of specific nutrient compositions in terms of N:P ratios is possible.

  11. Determining the limits of anaerobic co-digestion of thickened waste activated sludge with grease interceptor waste.

    PubMed

    Wang, Ling; Aziz, Tarek N; de los Reyes, Francis L

    2013-07-01

    Anaerobic co-digestion of thickened waste activated sludge (TWAS) with grease interceptor waste (GIW) from a food service establishment was conducted in lab scale semi-continuous digesters. GIW included the entire contents of the grease interceptor (GI) including fat, oil, and grease (FOG), food residuals, and associated wastewater. GIW was added in step increases to identify the maximum methane production and the corresponding threshold input of GIW that led to inhibition of methanogenesis. The experiment was performed at mesophilic conditions (37 °C) with a solids retention time (SRT) of 20 days. The highest GIW addition rate achieved without digester failure was 20% (v/v), or 65.5% (w/w) of volatile solids (VS) added, enhancing the methane yield from 0.180 to 0.752 m3(CH4)/kg(VS added), biogas production from 2.2 × 10(-3) to 1.4 × 10(-2) m(3)/d, and methane content from 60.2% to 70.1%. The methane yield of 0.752 m3(CH4)/kg(VS added) is the highest value reported to date for co-digestion of GIW. Stepwise increases in co-substrate addition led to better microbial acclimation and reduced the GIW inhibitory effect. The limit for GIW addition leading to an inhibited digestion process was identified to be between 20 and 40% (v/v) or 65.5 and 83.5% (w/w) of VS added. The results show the significant benefits of anaerobic co-digestion of GIW and the positive impacts of gradual addition of GIW.

  12. Effect of mild-temperature H2O2 oxidation on solubilization and anaerobic digestion of waste activated sludge.

    PubMed

    Junga, Heejung; Kim, Jaai; Lee, Seungyong; Lee, Changsoo

    2014-08-01

    Efficient sludge management is among the most challenging issues in wastewater treatment today, and anaerobic digestion is regarded as a viable solution. Mild-temperature H202 oxidation was examined for enhanced solubilization and biogas production of waste activated sludge (WAS). The effects of pretreatment factors (i.e. temperature and H202 concentration) on the degree of WAS disintegration (DD) and biogas yield (BY) were assessed by response surface analysis within the design space of 60-90 degrees C and 0-200mM H202. Significant sludge disintegration (up to 23.0% DD) and visibly enhanced BY (up to 26.9%) were shown in the pretreatment trials. Two response surface models to describe how DD and BY respond to changes in the pretreatment conditions were successfully constructed (R2 > 0.95, p < 0.05). The models showed totally different response surface shapes, indicating the DD and BY were influenced by pretreatment conditions in very different ways. DD was dominantly affected by temperature and showed higher model responses at the high-temperature region, while the BY response peaked in the low-temperature and mid-level H2O2 region. This observation implies that the enhanced solubilization of WAS was not directly translated into an increase in biogas production. Our results showed that WAS can be efficiently disintegrated by H202 oxidation under mild-temperature conditions for enhanced anaerobic digestibility. Within the explored region of pretreatment conditions, the maximum BY was estimated to be 82.1 mL/gCODadded (32.8% greater than the untreated control) at (60.0 degrees C, 74.2 mM H2O2).

  13. Chemically coupled microwave and ultrasonic pre-hydrolysis of pulp and paper mill waste-activated sludge: effect on sludge solubilisation and anaerobic digestion.

    PubMed

    Tyagi, Vinay Kumar; Lo, Shang-Lien; Rajpal, Ankur

    2014-05-01

    The effects of alkali-enhanced microwave (MW; 50-175 °C) and ultrasonic (US) (0.75 W/mL, 15-60 min) pretreatments, on solubilisation and subsequent anaerobic digestion efficiency of pulp and paper mill waste-activated sludge, were investigated. Improvements in total chemical oxygen demand and volatile suspended solids (VSS) solubilisation were limited to 33 and 39 % in MW pretreatment only (175 °C). It reached 78 and 66 % in combined MW-alkali pretreatment (pH 12 + 175 °C), respectively. Similarly, chemical oxygen demand and VSS solubilisation were 58 and 37 % in US pretreatment alone (60 min) and it improved by 66 and 49 % after US-alkali pretreatment (pH 12 + 60 min), respectively. The biogas yield for US 60 min-alkali (pH 12)-pretreated sludge was significantly improved by 47 and 20 % over the control and US 60 reactors, respectively. The biogas generation for MW (150 °C)-alkali (pH 12)-pretreated sludge was only 6.3 % higher than control; however, it was 8.3 % lower than the MW (150 °C) reactor, which was due to the inhibition of anaerobic activity under harsh thermal-alkali treatment condition.

  14. Development of an efficient anaerobic co-digestion process for garbage, excreta, and septic tank sludge to create a resource recycling-oriented society.

    PubMed

    Sun, Zhao-Yong; Liu, Kai; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2017-03-01

    In order to develop a resource recycling-oriented society, an efficient anaerobic co-digestion process for garbage, excreta and septic tank sludge was studied based on the quantity of each biomass waste type discharged in Ooki machi, Japan. The anaerobic digestion characteristics of garbage, excreta and 5-fold condensed septic tank sludge (hereafter called condensed sludge) were determined separately. In single-stage mesophilic digestion, the excreta with lower C/N ratios yielded lower biogas volumes and accumulated higher volumes of volatile fatty acid (VFA). On the other hand, garbage allowed for a significantly larger volatile total solid (VTS) digestion efficiency as well as biogas yield by thermophilic digestion. Thus, a two-stage anaerobic co-digestion process consisting of thermophilic liquefaction and mesophilic digestion phases was proposed. In the thermophilic liquefaction of mixed condensed sludge and household garbage (wet mass ratio of 2.2:1), a maximum VTS loading rate of 24g/L/d was achieved. In the mesophilic digestion of mixed liquefied material and excreta (wet mass ratio of 1:1), biogas yield reached approximately 570ml/g-VTS fed with a methane content of 55% at a VTS loading rate of 1.0g/L/d. The performance of the two-stage process was evaluated by comparing it with a single-stage process in which biomass wastes were treated separately. Biogas production by the two-stage process was found to increase by approximately 22.9%. These results demonstrate the effectiveness of a two-stage anaerobic co-digestion process in enhancement of biogas production.

  15. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

    PubMed

    Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2014-01-01

    In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment.

  16. Anaerobic co-digestion of steam-treated Quercus serrata chips and sewage sludge under mesophilic and thermophilic conditions.

    PubMed

    Wang, Feng; Hidaka, Taira; Sakurai, Kensuke; Tsumori, Jun

    2014-08-01

    The biodegradation of Quercus serrata chips was evaluated by anaerobic digestion under various steam explosion conditions. In continuous experiments, untreated chips (W₀) and chips steam-treated at less than 1.0 MPa (W₁) and 2.0 MPa (W₄) were co-digested with sewage sludge (S₁ and S₂) taken from two different wastewater treatment plants. The apparent methane yield of W₁ and W₄ co-digested with S₁ (thermophilic) was 261 dm(3)/kgVS (volatile solids) and 248 dm(3)/kgVS, respectively. The apparent methane yield of W₄ co-digested with S₂ was 258 dm(3)/kgVS (mesophilic) and 271 dm(3)/kgVS (thermophilic). Methane production was inhibited by W₀ due to components released during hydrolysis. The methane conversion ratio of pretreated chips obtained in batch experiments varied from 40.5% to 53.8% (mesophilic) and from 49.0% to 63.7% (thermophilic). The methane conversion ratio increased with decreasing acid-soluble lignin content in the chips.

  17. Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste.

    PubMed

    Bajón Fernández, Y; Soares, A; Villa, R; Vale, P; Cartmell, E

    2014-05-01

    The increasing concentration of carbon dioxide (CO2) in the atmosphere and the stringent greenhouse gases (GHG) reduction targets, require the development of CO2 sequestration technologies applicable for the waste and wastewater sector. This study addressed the reduction of CO2 emissions and enhancement of biogas production associated with CO2 enrichment of anaerobic digesters (ADs). The benefits of CO2 enrichment were examined by injecting CO2 at 0, 0.3, 0.6 and 0.9 M fractions into batch ADs treating food waste or sewage sludge. Daily specific methane (CH4) production increased 11-16% for food waste and 96-138% for sewage sludge over the first 24h. Potential CO2 reductions of 8-34% for sewage sludge and 3-11% for food waste were estimated. The capacity of ADs to utilise additional CO2 was demonstrated, which could provide a potential solution for onsite sequestration of CO2 streams while enhancing renewable energy production.

  18. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    PubMed

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to <35 %, after four turnovers of operation. Prevailing existence of putative iron-reducing bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD.

  19. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study

    SciTech Connect

    Bolzonella, David; Cavinato, Cristina; Fatone, Francesco; Pavan, Paolo; Cecchi, Franco

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 + 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile

  20. Maximising biogas in anaerobic digestion by using engine waste heat for thermal hydrolysis pre-treatment of sludge.

    PubMed

    Pickworth, B; Adams, J; Panter, K; Solheim, O E

    2006-01-01

    Dublin's Ringsend WWTP was designed to serve a population of approximately 1.2 million p.e. with a sludge production of 37,000 dry tonnes per year after upgrading to full secondary treatment. Several technical solutions were put forward as part of a design, build, finance and operate (DBFO) competition, with the chosen solution being a proposal by Black and Veatch for a combination of sequencing batch reactor (SBR) technology and anaerobic digestion with Cambi thermal hydrolysis pre-treatment (THP). The THP plant was built by Cambi and handed over to B&V in 2002. The plant is now operated by Celtic Anglian Water. In September 2004 a test was carried out on the mass and energy balance of the plant following 2 years of operation and is detailed in this paper. The process enables digestion at very high dry solids feed and low hydraulic retention time. The plant was built with three digesters of 4250 m3 each and is fed with hydrolysed sludge at 11% DS. There are four no. 1 MW Jenbacher engines operating mainly on biogas. Each pair of engines is fitted with a waste heat boiler with a capacity of one tonne steam per hour. These boilers have sufficient capacity to provide 80% of the steam required for the THP, which in turn provides all the heat for the subsequent digestion in the form of hydrolysed feed. There are two main biogas boilers for top up steam and other uses of the biogas including thermal oxidation of concentrated odours.

  1. Use of laboratory anaerobic digesters to simulate the increase of treatment rate in full-scale high nitrogen content sewage sludge and co-digestion biogas plants.

    PubMed

    Tampio, Elina; Ervasti, Satu; Paavola, Teija; Rintala, Jukka

    2016-11-01

    The aim of this study was to assess the effect of increasing feedstock treatment rate on the performance of full-scale anaerobic digestion using laboratory-scale reactors with digestate and feedstock from full-scale digesters. The studied nitrogen-containing feedstocks were i) a mixture of industrial by-products and pig slurry, and ii) municipal sewage sludge, which digestion was studied at 41 and 52°C, respectively. This study showed the successful reduction of hydraulic retention times from 25 and 20days to around 15days, which increased organic loading rates from 2 to 3.5kg volatile solids (VS)/m(3)d and 4 to 6kgVS/m(3)d. As a result, the optimum retention time in terms of methane production and VS removal was 10-15% lower than the initial in the full-scale digesters. Accumulation of acids during start-up of the co-digestion reactor was suggested to be connected to the high ammonium nitrogen concentration and intermediate temperature of 41°C.

  2. Anaerobic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: effect of temperature.

    PubMed

    Montañés, Rocío; Solera, Rosario; Pérez, Montserrat

    2015-03-01

    The feasibility of anaerobic co-digestion of sewage sludge (SS) and sugar beet pulp lixiviation (SBPL) was assessed. Mesophilic and thermophilic batch assays of five different SS/SBPL ratios were used to investigate the effect of temperature, providing basic data on methane yield and reduction in total volatiles. Microbe concentrations (Eubacteria and methanogenic Archaea) were linked to traditional parameters, namely biogas production and removal of total volatile solids (TVS). The relationship between Eubacteria and Archaea was analysed. Given equal masses of organic matter, net methane generation was higher in the mesophilic range on the biochemical methane potential (BMP) test. Methane yield, TVS removal data and high levels of volatile fatty acids provided further evidence of the best behaviour of the mesophilic range. At the end of testing the microbial population under of the reactors consisted of Eubacteria and Archaea, with Eubacteria predominant in all cases.

  3. Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment.

    PubMed

    Abelleira-Pereira, Jose M; Pérez-Elvira, Sara I; Sánchez-Oneto, Jezabel; de la Cruz, Roberto; Portela, Juan R; Nebot, Enrique

    2015-03-15

    Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process. ATH is a novel AD pretreatment based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H2O2) addition that takes advantage of a peroxidation/direct steam injection synergistic effect. The main goal of the present research was to compare the performance of TH and ATH, conducted at a wide range of operating conditions, as pretreatments of mesophilic AD with an emphasis on methane production enhancement as a key parameter and its connection with the sludge solubilization. Results showed that both TH and ATH patently improved methane production in subsequent mesophilic BMP (biochemical methane potential) tests in comparison with BMP control tests (raw secondary sewage sludge). Besides other interesting results and discussions, a promising result was obtained since ATH, operated at temperature (115 °C), pretreatment time (5 min) and pressure (1 bar) considerably below those typically used in TH (170 °C, 30 min, 8 bar), managed to enhance the methane production in subsequent mesophilic BMP tests [biodegradability factor (fB) = cumulative CH4production/cumulative CH4production (Control) = 1.51 ± 0.01] to quite similar levels than conventional TH pretreatment [fB = 1.52 ± 0.03].

  4. Role of oxidants in enhancing dewaterability of anaerobically digested sludge through Fe (II) activated oxidation processes: hydrogen peroxide versus persulfate

    NASA Astrophysics Data System (ADS)

    Song, Kang; Zhou, Xu; Liu, Yiqi; Gong, Yanyan; Zhou, Beibei; Wang, Dongbo; Wang, Qilin

    2016-04-01

    Improving dewaterability of sludge is important for the disposal of sludge in wastewater treatment plants (WWTPs). This study, for the first time, investigated the Fe(II) activated oxidization processes in improving anaerobically digested sludge (ADS) dewaterability. The combination of Fe(II) (0–100 mg/g total solids (TS)) and persulfate (0–1,000 mg/g TS) under neutral pH as well as the combination of Fe(II) (0–100 mg/g TS) and hydrogen peroxide (HP) (0–1,000 mg/g TS) under pH 3.0 were used to examine and compare their effect on the ADS dewaterability enhancement. The highest ADS dewaterability enhancement was attained at 25 mg Fe(II)/g TS and 50 mg HP/g TS, when the CST (CST: the capillary suction time, a sludge dewaterability indicator) was reduced by 95%. In contrast, the highest CST reduction in Fe(II)-persulfate conditioning was 90%, which was obtained at 50 mg Fe(II)/g TS and 250 mg persulfate/g TS. The results showed that Fe(II)-HP conditioning was comparable with Fe(II)-persulfate conditioning in terms of highest CST reduction. Economic analysis suggested that the Fe(II)-HP conditioning was more promising for improving ADS dewaterability compared with Fe(II)-persulfate conditioning, with the saving being up to $65,000 per year in a WWTP with a population equivalent of 100,000.

  5. Role of oxidants in enhancing dewaterability of anaerobically digested sludge through Fe (II) activated oxidation processes: hydrogen peroxide versus persulfate

    PubMed Central

    Song, Kang; Zhou, Xu; Liu, Yiqi; Gong, Yanyan; Zhou, Beibei; Wang, Dongbo; Wang, Qilin

    2016-01-01

    Improving dewaterability of sludge is important for the disposal of sludge in wastewater treatment plants (WWTPs). This study, for the first time, investigated the Fe(II) activated oxidization processes in improving anaerobically digested sludge (ADS) dewaterability. The combination of Fe(II) (0–100 mg/g total solids (TS)) and persulfate (0–1,000 mg/g TS) under neutral pH as well as the combination of Fe(II) (0–100 mg/g TS) and hydrogen peroxide (HP) (0–1,000 mg/g TS) under pH 3.0 were used to examine and compare their effect on the ADS dewaterability enhancement. The highest ADS dewaterability enhancement was attained at 25 mg Fe(II)/g TS and 50 mg HP/g TS, when the CST (CST: the capillary suction time, a sludge dewaterability indicator) was reduced by 95%. In contrast, the highest CST reduction in Fe(II)-persulfate conditioning was 90%, which was obtained at 50 mg Fe(II)/g TS and 250 mg persulfate/g TS. The results showed that Fe(II)-HP conditioning was comparable with Fe(II)-persulfate conditioning in terms of highest CST reduction. Economic analysis suggested that the Fe(II)-HP conditioning was more promising for improving ADS dewaterability compared with Fe(II)-persulfate conditioning, with the saving being up to $65,000 per year in a WWTP with a population equivalent of 100,000. PMID:27109500

  6. Quantification of Gordona amarae Strains in Foaming Activated Sludge and Anaerobic Digester Systems with Oligonucleotide Hybridization Probes

    PubMed Central

    de los Reyes, M. Fiorella; de los Reyes, Francis L.; Hernandez, Mark; Raskin, Lutgarde

    1998-01-01

    Previous studies have shown the predominance of mycolic acid-containing filamentous actinomycetes (mycolata) in foam layers in activated sludge systems. Gordona (formerly Nocardia) amarae often is considered the major representative of this group in activated sludge foam. In this study, small-subunit rRNA genes of four G. amarae strains were sequenced, and the resulting sequences were compared to the sequence of G. amarae type strain SE-6. Comparative sequence analysis showed that the five strains used represent two lines of evolutionary descent; group 1 consists of strains NM23 and ASAC1, and group 2 contains strains SE-6, SE-102, and ASF3. The following three oligonucleotide probes were designed: a species-specific probe for G. amarae, a probe specific for group 1, and a probe targeting group 2. The probes were characterized by dissociation temperature and specificity studies, and the species-specific probe was evaluated for use in fluorescent in situ hybridizations. By using the group-specific probes, it was possible to place additional G. amarae isolates in their respective groups. The probes were used along with previously designed probes in membrane hybridizations to determine the abundance of G. amarae, group 1, group 2, bacterial, mycolata, and Gordona rRNAs in samples obtained from foaming activated sludge systems in California, Illinois, and Wisconsin. The target groups were present in significantly greater concentrations in activated sludge foam than in mixed liquor and persisted in anaerobic digesters. Hybridization results indicated that the presence of certain G. amarae strains may be regional or treatment plant specific and that previously uncharacterized G. amarae strains may be present in some systems. PMID:9647822

  7. Methanosarcinaceae and Acetate-Oxidizing Pathways Dominate in High-Rate Thermophilic Anaerobic Digestion of Waste-Activated Sludge

    PubMed Central

    Ho, Dang P.; Jensen, Paul D.

    2013-01-01

    This study investigated the process of high-rate, high-temperature methanogenesis to enable very-high-volume loading during anaerobic digestion of waste-activated sludge. Reducing the hydraulic retention time (HRT) from 15 to 20 days in mesophilic digestion down to 3 days was achievable at a thermophilic temperature (55°C) with stable digester performance and methanogenic activity. A volatile solids (VS) destruction efficiency of 33 to 35% was achieved on waste-activated sludge, comparable to that obtained via mesophilic processes with low organic acid levels (<200 mg/liter chemical oxygen demand [COD]). Methane yield (VS basis) was 150 to 180 liters of CH4/kg of VSadded. According to 16S rRNA pyrotag sequencing and fluorescence in situ hybridization (FISH), the methanogenic community was dominated by members of the Methanosarcinaceae, which have a high level of metabolic capability, including acetoclastic and hydrogenotrophic methanogenesis. Loss of function at an HRT of 2 days was accompanied by a loss of the methanogens, according to pyrotag sequencing. The two acetate conversion pathways, namely, acetoclastic methanogenesis and syntrophic acetate oxidation, were quantified by stable carbon isotope ratio mass spectrometry. The results showed that the majority of methane was generated by nonacetoclastic pathways, both in the reactors and in off-line batch tests, confirming that syntrophic acetate oxidation is a key pathway at elevated temperatures. The proportion of methane due to acetate cleavage increased later in the batch, and it is likely that stable oxidation in the continuous reactor was maintained by application of the consistently low retention time. PMID:23956388

  8. Metal chemistry differences between digested and undigested sludges

    SciTech Connect

    Gibbs, R.J.; Angelidis, M.

    1988-01-01

    In a study of digested and undigested sludge chemical phases metal partitioning differences were found. The anaerobic digested sludges contained relatively more metals in the oxidizable phase but, in general, the chemical partitioning was similar for both the aerobic and anaerobic sludges. Conversely, the undigested sludge, although containing one-and-a-half times more organic carbon than the digested, did not contain a high metal concentration in the oxidizable phase as did the digested sludge. The microbial activity and physicochemical changes that occur during digestion were considered as the reasons for this difference.

  9. Anaerobic digestion of thermal pre-treated sludge at different solids concentrations--Computation of mass-energy balance and greenhouse gas emissions.

    PubMed

    Pilli, Sridhar; More, Tanaji; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2015-07-01

    The effect of thermal pre-treatment on sludge anaerobic digestion (AD) efficiency was studied at different total solids (TS) concentrations (20.0, 30.0 and 40.0 g TS/L) and digestion times (0, 5, 10, 15, 20 and 30 days) for primary, secondary and mixed wastewater sludge. Moreover, sludge pre-treatment, AD and disposal processes were evaluated based on a mass-energy balance and corresponding greenhouse gas (GHG) emissions. Mass balance revealed that the least quantity of digestate was generated by thermal pre-treated secondary sludge at 30.0 g TS/L. The net energy (energy output-energy input) and energy ratio (energy output/energy input) for thermal pre-treated sludge was greater than control in all cases. The reduced GHG emissions of 73.8 × 10(-3) g CO2/g of total dry solids were observed for the thermal pre-treated secondary sludge at 30.0 g TS/L. Thermal pre-treatment of sludge is energetically beneficial and required less retention time compared to control.

  10. Bioaccumulation of metals in ryegrass (Lolium perenne L.) following the application of lime stabilised, thermally dried and anaerobically digested sewage sludge.

    PubMed

    Healy, M G; Ryan, P C; Fenton, O; Peyton, D P; Wall, D P; Morrison, L

    2016-08-01

    The uptake and accumulation of metals in plants is a potential pathway for the transfer of environmental contaminants in the food chain, and poses potential health and environmental risks. In light of increased population growth and urbanisation, the safe disposal of sewage sludge, which can contain significant levels of toxic contaminants, remains an environmental challenge globally. The aims of this experiment were to apply municipal sludge, having undergone treatment by thermal drying, anaerobic digestion, and lime stabilisation, to permanent grassland in order to assess the bioaccumulation of metals (B, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Nb, Mo, Sb, Ba, W, Pb, Fe, Cd) by perennial ryegrass over a period of up to 18 weeks after application. The legislation currently prohibits use of grassland for fodder or grazing for at least three weeks after application of treated sewage sludge (biosolids). Five treatments were used: thermally dried (TD), anaerobically digested (AD) and lime stabilised (LS) sludge all from one wastewater treatment plant (WWTP), AD sludge from another WWTP, and a study control (grassland only, without application of biosolids). In general, there was no significant difference in metal content of the ryegrass between micro-plots that received treated municipal sludge and the control over the study duration. The metal content of the ryegrass was below the levels at which phytotoxicity occurs and below the maximum levels specified for animal feeds.

  11. Value-adding conversion and volume reduction of sewage sludge by anaerobic co-digestion with crude glycerol.

    PubMed

    Kurahashi, Kensuke; Kimura, Chie; Fujimoto, You; Tokumoto, Hayato

    2017-05-01

    In this study, conversion of sewage sludge to biogas by anaerobic co-digestion with crude glycerol was examined. When 0.126g/L crude glycerol was added to the reactor, only methane was produced. Upon addition of 5.04g/L crude glycerol, hydrogen production occurred, and a significant amount of 1,3-propanediol (1,3-PDO) was generated in the liquid phase. On day 6, the dry weight was largely composed of organic acids (48%) and 1,3-PDO (17%), which are water-soluble. Degradation of 1,3-PDO was very slow, which is advantageous for recovery. Crude glycerol, which contains alkaline substances, promoted organic matter degradation by microorganisms, which possibly affected biogas and 1,3-PDO production. Addition of 0.630-2.52g/L glycerol initially led to hydrogen production, followed by methane production a few days later, which stabilized within 1week. In conclusion, adjustment of the crude glycerol concentration allows controllable conversion to value-added products for co-digestion.

  12. Anaerobic Digestion and its Applications

    EPA Science Inventory

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  13. Model development and evaluation of methane potential from anaerobic co-digestion of municipal wastewater sludge and un-dewatered grease trap waste.

    PubMed

    Yalcinkaya, Sedat; Malina, Joseph F

    2015-06-01

    The performance of anaerobic co-digestion of municipal wastewater sludge with un-dewatered grease trap waste was assessed using modified biochemical methane potential tests under mesophilic conditions (35°C). Methane potentials, process inhibition and chemical behavior of the process were analyzed at different grease trap waste feed ratios on volatile solids basis. Nonlinear regression analyses of first order reaction and modified Gompertz equations were performed to assist in interpretation of the experimental results. Methane potential of un-dewatered grease trap waste was measured as 606 mL CH4/g VS(added), while methane potential of municipal wastewater sludge was only 223 mL CH4/g VS(added). The results indicated that anaerobic digestion of grease trap waste without dewatering yields less methane potential than concentrated/dewatered grease trap waste because of high wastewater content of un-dewatered grease trap waste. However, anaerobic co-digestion of municipal wastewater sludge and grease trap waste still yields over two times more methane potential and approximately 10% more volatile solids reduction than digestion of municipal wastewater sludge alone. The anaerobic co-digestion process inhibitions were reported at 70% and greater concentrated/dewatered grease trap waste additions on volatile solids basis in previous studies; however, no inhibition was observed at 100% un-dewatered grease trap waste digestion in the present study. These results indicate that anaerobic co-digestion of un-dewatered grease trap waste may reduce the inhibition risk compared to anaerobic co-digestion of concentrated/dewatered grease trap waste. In addition, a mathematical model was developed in this study for the first time to describe the relationship between grease trap waste feed ratio on volatile solids basis and resulting methane potential. Experimental data from the current study as well as previous biochemical methane potential studies were successfully fit to this

  14. Improved anaerobic digestion of a thermally pretreated mixture of physicochemical sludge; broiler excreta and sugar cane wastes (SCW): Effect on organic matter solubilization, biodegradability and bioenergy production.

    PubMed

    Nava-Valente, Noemí; Alvarado-Lassman, Alejandro; Nativitas-Sandoval, Liliana S; Mendez-Contreras, Juan M

    2016-01-01

    Thermal pretreatment effect of a mixture of organic wastes (physicochemical sludge, excreta of broiler chickens and sugarcane wastes (SCW)) in the solubilization and biodegradability organic matter as well as bioenergy production by anaerobic digestion was evaluated. Two different mixtures of physicochemical sludge, excreta of broiler chickens and SCW (70%, 15%, 15% and 60%, 20%, 20% of VS, respectively) were treated at different temperatures (80 °C, 85 °C and 90 °C) and contact time (30, 60 and 90 min). Results indicate that, organic matter solubilization degree increased from 1.14 to 6.56%; subsequently, in the anaerobic digestion process, an increase of 50% in the volatile solids removal and 10% in biogas production was observed, while, retention time decreased from 23 up to 9 days. The results obtained were similar to pilot-scale. In both experimental scales it showed that the synergy produced by the simultaneous anaerobic digestion of different substrates could increase bioenergy production up to 1.3 L bio g(-1) VS removed and 0.82 L CH4 g(-1) VS removed. The treatment conditions presented in this study allow for large residue quantities to be treated and large bioenergy quantities to be produced (10% higher than during conventional treatment) without increasing the anaerobic digester volume.

  15. Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in sludge organic matter pools as a driving force of their fate during anaerobic digestion.

    PubMed

    Aemig, Quentin; Chéron, Claire; Delgenès, Nadine; Jimenez, Julie; Houot, Sabine; Steyer, Jean-Philippe; Patureau, Dominique

    2016-02-01

    The fate of organic matter during anaerobic digestion of sewage sludge was studied in batch systems thanks to a sequential chemical fractionation of the particulate phase coupled to fluorescence spectroscopy. Polycyclic Aromatic Hydrocarbons (PAHs) distribution within the organic pools was characterized from their analysis in the residual fraction after each extraction. Both methods were combined to understand the link between PAHs presence in organic pools and their spectral characterization after extraction. Two batch systems (sludge and inoculum mixture) were set up to study the impact of PAHs spiking on their fate and distribution. The sequential fractionation allowed us to extract and characterize about 50% of total Chemical Oxygen Demand. Moreover, fluorescence spectroscopy helped us to understand the organic pools evolution: the most easily extracted pools composed of protein-like molecules were highly degraded meaning that chemical accessibility mimics the bioaccessibility to degrading microorganisms. PAHs were present in all pools of organic matter but native PAHs were mainly present in low accessible (hardly extractable) fractions and during anaerobic digestion, they accumulated in the non-accessible (non extractable) fraction. Spiked PAHs were more dissipated during anaerobic digestion since spiking made them present in more accessible fractions. During the anaerobic digestion, contrary to native PAHs, spiked ones relocated toward less accessible organic fractions confirming the ageing phenomenon. PCA analysis showed that, in spiked mixture, PAHs presence in organic pools is linked to both PAHs physical-chemical properties and quality/quantity of the associated organic pools.

  16. Effect of hydrothermal pre-treatment (HTP) on poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion.

    PubMed

    Park, Seyong; Yoon, Young-Man; Han, Seong Kuk; Kim, Daegi; Kim, Ho

    2017-03-24

    This study is an assessment of the hydrothermal pre-treatment (HTP) of poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion. This assessment was carried out to ascertain the optimal HTP temperature. The solubilization and physical properties efficacy was investigated by capillary suction time (CST), time to filter (TTF), and particle size. In addition, the anaerobic digestion was investigated through biochemical methane potential (BMP) tests and subsequent statistical analysis using the modified Gompertz model. HTP was found to have improved the solubilization of the PSW sludge with increasing HTP temperature. In addition, the results of the CST, TTF, and particle size decreased with increasing HTP temperature. These results of the assessment that was conducted in this study confirm that the HTP process indeed modifies the physical properties of PSWs to enhance the solubilization of organic solids. Nevertheless, the results of the BMP tests and the modified Gompertz model analysis show that the optimal HTP temperature of PSWs for anaerobic digestion is 190°C. These findings show that to achieve high conversion efficiency, an accurately designed pre-treatment step must be included in the overall anaerobic digestion process for wastewater treatment.

  17. Implications of full-scale implementation of an anammox-based process as post-treatment of a municipal anaerobic sludge digester operated with co-digestion.

    PubMed

    Vázquez-Padín, J R; Morales, N; Gutiérrez, R; Fernández, R; Rogalla, F; Barrio, J P; Campos, J L; Mosquera-Corral, A; Méndez, R

    2014-01-01

    The feasibility of treating the supernatant of a municipal sludge digester supplemented with co-substrates by means of an anammox-based process (ELAN(®)) was tested in Guillarei (NW of Spain). Ammonia concentration measured in the supernatant of the sludge digester varied in the range 800-1,500 g N/m(3) due to the fact that the sludge produced in the plant was co-digested with wastes coming from surrounding food industries. Treating this supernatant in the ELAN(®) reactor, nitrogen removal rates up to 1.1 kg N/(m(3) d) were reached in experiments run in a pilot plant reactor operated in batch mode. No nitrite oxidation was registered after several months of operation despite the average dissolved oxygen (DO) concentrations being 1.5 g O2/m(3) and the temperature reaching values as low as 18 °C. By keeping the DO set point at 1-2 g O2/m(3) and tuning the hydraulic retention time, the stability of the process was guaranteed and the presence of co-substrates in the anaerobic digester did not affect negatively the operation of the autotrophic nitrogen removal process. Due to the success of the pilot plant experiment, an upscale of the process to full scale is proposed. Mass balances applied to Guillarei wastewater treatment plant revealed that in the main stream line the average denitrification rate calculated with the data of year 2011 was 226 kg N/d. Since the nitrogen removal efficiency is limited by the amount of readily biodegradable organic matter available to carry out denitrification in the water line, the implementation of an anammox-based process to treat the supernatant seems the best option to improve the effluent quality in terms of nitrogen content. The nitrogen removal rate in the sludge line would be 30 times higher than the one in the water line. The implementation of the process would improve the energetic balance and the nitrogen removal performance of the plant.

  18. Moderate temperature increase leads to disintegration of floating sludge and lower abundance of the filamentous bacterium Microthrix parvicella in anaerobic digesters.

    PubMed

    Lienen, T; Kleyböcker, A; Verstraete, W; Würdemann, H

    2014-11-15

    Filamentous bacteria such as Microthrix parvicella can cause serious foaming and floating sludge problems in anaerobic digesters fed with sewage sludge. The sewage sludge and oil co-fermenting laboratory-scale biogas digesters in this study were fed with substrates from a foaming-prone full-scale biogas plant containing the filamentous bacterium M. parvicella. At 37 °C, in both pneumatically mixed digesters a highly viscous and approximately 3 cm thick floating sludge was observed. A gradual increase of the temperature from 37 °C to 56 °C led to a significant decrease in the floating sludge thickness, which correlated with a strong decrease in the abundance of M. parvicella in the digestate. Furthermore, the stepwise temperature increase allowed for an adaption of the microbial community and prevented process failure. The study indicates that already a moderate temperature increase from 37 °C to 41 °C might help to control the M. parvicella abundance in full-scale biogas plants.

  19. [High-solids anaerobic co-digestion of sludge and kitchen garbage under mesophilic conditions].

    PubMed

    Duan, Ni-Na; Dong, Bin; Li, Jiang-Hua; Dai, Ling-Ling; Dai, Xiao-Hu

    2013-01-01

    At solid retention time (SRT) of 20 days, biogas production, volatile solid (VS) degradation and system stability in co-digestion systems of dewatered sludge (DS) and kitchen garbage (KG) were investigated in semi-continuous completely mixed reactors numbered R1-R5 (the DS/KG of their feeding substrate based on wet mass was 1:0, 4:1, 3:2, 2:3 and 0:1, respectively). The results showed that, with larger proportion of KG in feeding substrate, higher methane yield and biogas yield were obtained with lower methane content. For certain reactor at given SRT, KG addition could significantly improve the organic loading rate (OLR) and volume biogas production. System with more KG addition favored higher hydraulic constant k and VS reduction. The hydraulic constant k was 0.25 d(-1), 0.61 d(-1), 1.09 d(-1) and 1.56 d(-1), and the VS reduction was 37.4%, 50.6%, 60.7% and 68.2% for R1-R4, respectively, indicating higher hydrolysis rates with more KG addition, which led to increased VS reductions. With larger KG proportion in feeding substrate, pH, total alkalinity (TA), total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN) showed decreasing trend. As KG addition increased by 60%, pH, TA, TAN and FAN decreased by 6%, 16%, 22% and 75%, respectively. FAN and Na+ respectively were potential inhibitory chemicals that threatened the stability of the mono-system of DS and KG. In comparison with the mono-system of DS or KG, the co-system showed higher stability by diluting toxic chemicals like ammonia or Na+ to much lower levels.

  20. Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge.

    PubMed

    Houtmeyers, Sofie; Degrève, Jan; Willems, Kris; Dewil, Raf; Appels, Lise

    2014-11-01

    Anaerobic digestion is a well-known technique for the recovery of energy from waste sludge. Pre-treatment methods are useful tools to improve the biodegradability of the sludge and to enhance the digestion efficiency. In this study, an ultrasound (US) and a microwave (MW) pre-treatment were compared in a long-term digestion experiment, using 3 small pilot scale semi-continuous digesters (SRT=20 days). A specific energy of 96 kJ/kg sludge was applied, hence enabling to compare the effectiveness of both pre-treatment methods towards sludge solubilisation and biogas production enhancement. Total and volatile solids (TS and VS), COD, carbohydrates and proteins were monitored throughout the digestion experiment. It was seen that US was most effective in COD solubilisation. The average biogas increment was 20% for the microwave pre-treatment and 27% for the ultrasonic pre-treatment. However, this additional biogas production did not outweigh the energy consumed by the pre-treatment, leading to a negative energy balance.

  1. Enhancement in hydrogen production by thermophilic anaerobic co-digestion of organic fraction of municipal solid waste and sewage sludge--optimization of treatment conditions.

    PubMed

    Tyagi, Vinay Kumar; Angériz Campoy, Rubén; Álvarez-Gallego, C J; Romero García, L I

    2014-07-01

    Batch dry-thermophilic anaerobic co-digestion (55°C) of organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) for hydrogen production was studied under several sludge combinations (primary sludge, PS; waste activated sludge, WAS; and mixed sludge, MS), TS concentrations (10-25%) and mixing ratios of OFMSW and SS (1:1, 2.5:1, 5:1, 10:1). The co-digestion of OFMSW and SS showed a 70% improvement in hydrogen production rate over the OFMSW fermentation only. The co-digestion of OFMSW with MS showed 47% and 115% higher hydrogen production potential as compared with OFMSW+PS and OFMSW+WAS, respectively. The maximum hydrogen yield of 51 mL H2/g VS consumed was observed at TS concentration of 20% and OFMSW to MS mixing ratio of 5:1, respectively. The acetic and butyric acids were the main acids in VFAs evolution; however, the higher butyric acid evolution indicated that the H2 fermentation was butyrate type fermentation.

  2. Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge.

    PubMed

    Ge, Huoqing; Jensen, Paul D; Batstone, Damien J

    2011-03-15

    Two-stage temperature phased anaerobic digestion (TPAD) is an increasingly popular method to improve stabilisation of sewage waste activated sludge, which normally has inherently poor and slow degradation. However, there has been limited systematic analysis of the impact of the initial thermophilic stage (temperature, pH and retention time) on performance in the main mesophilic stage. In this study, we demonstrate a novel two-stage batch test method for TPAD processes, and use it to optimize operating conditions of the thermophilic stage in terms of degradation extent and methane production. The method determines overall degradability and apparent hydrolysis coefficient in both stages. The overall process was more effective with short pre-treatment retention times (1-2 days) and neutral pH compared to longer retention time (4 days) and low pH (4-5). Degradabilities and apparent hydrolysis coefficients were 0.3-0.5 (fraction degradable) and 0.1-0.4d(-1), respectively, with a margin of error in each measurement of approximately 20% relative (95% confidence). Pre-treatment temperature had a strong impact on the whole process, increasing overall degradability from 0.3 to 0.5 as temperature increased from 50 to 65 °C, with apparent hydrolysis coefficient increasing from 0.1 to 0.4d(-1).

  3. The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester.

    PubMed

    Uysal, Ayla; Yilmazel, Y Dilsad; Demirer, Goksel N

    2010-09-15

    The formation of struvite (MgNH(4)PO(4).6H(2)O) in wastewater treatment plants can lead to scaling and thus operational problems reducing the treatment efficiency. However, struvite has significant commercial value as an agricultural fertilizer. Therefore, controlled struvite formation in wastewater treatment plants not only presents an opportunity to recover nutrients but also corresponds to the valorization of wastes. NH(4)-N and PO(4)-P removal and recovery from the effluent of a full-scale sewage sludge anaerobic digester via controlled struvite precipitation were investigated in this study. The effect of the residual heavy metal and micropollutant content of the formed struvite on fertilizer quality was also evaluated. Removal efficiencies of NH(4)-N, PO(4)-P and COD were 89.35%, 95% and 39.78% when Mg:N:P molar ratio was 1.5:1:1 and pH was 9.0. Mercury, nickel, zinc and chrome concentrations derived from struvite precipitation were below the regulatory limit for fertilizer usage in Turkey. The precipitate did not contain polychlorinated biphenyls (PCB). X-ray diffraction (XRD) analysis conducted on the precipitate indicated a struvite formation.

  4. Study of the recovery of phosphorus from struvite precipitation in supernatant line from anaerobic digesters of sludge.

    PubMed

    Xavier, Luciano Dias; Cammarota, Magali Christe; Yokoyama, Lídia; Volschan Junior, Isaac

    2014-01-01

    The goal of this work was to study the effective recovery of phosphorus from the supernatant of anaerobic digestion of sewage sludge by precipitation as struvite. The formation of struvite is envisioned as a promising process for nutrient removal and subsequent recovery, thus providing a strong incentive for its implementation, since the sewage is a renewable source of phosphorus. Struvite precipitation was obtained by controlled addition of Mg(OH)2 or MgCl2. We evaluated the removal of ammonia and phosphate under equimolar conditions of magnesium and magnesium stoichiometric excess of 100 to 200% relative to the limiting reagent, under a stirring speed of 300 rpm at pH 8, 9 and 10. The best condition was MgCl2 in 1:1 molar ratio to phosphate, considering the stoichiometric ratio [PO4(3-)]:[NH4(+)] of 0.13 (presented by raw sample). The results show the best cost-benefit ratio, removal of phosphate of 90.6% and ammonium removal of 29%, resulting in 23 mg l(-1) PO4(3-) and 265 mg l(-1) NH4(+) concentration in effluent.

  5. Enhancement of microbial density and methane production in advanced anaerobic digestion of secondary sewage sludge by continuous removal of ammonia.

    PubMed

    Tao, Bing; Donnelly, Joanne; Oliveira, Ivo; Anthony, Ruth; Wilson, Victoria; Esteves, Sandra R

    2017-05-01

    Ammonia inhibition mitigation in anaerobic digestion of high solids content of thermally hydrolysed secondary sewage sludge by the NH4(+) affinitive clinoptilolite and a strong acid type ion-exchange resin S957 was investigated. Continuous NH4(+)-N removal was achieved through ion-exchanging at both temperatures with average removals of 50 and 70% for the clinoptilolite and resin dosed reactors, respectively. Approximate 0.2-0.5unit of pH reduction was also observed in the dosed reactors. The synergy of NH4(+)-N removal and pH reduction exponentially decreased free NH3 concentration, from 600 to 90mg/L at 43°C, which mitigated ammonia inhibition and improved methane yields by approximately 54%. Microbial community profiling suggested that facilitated by ammonia removal, the improvement in methane production was mainly achieved through the doubling in bacterial density and a 6-fold increase in population of the Methanosarcinaceae family, which in turn improved the degradation of residual volatile fatty acids, proteins and carbohydrates.

  6. Liquidization of dewatered organic sludge and anaerobic treatment

    SciTech Connect

    Sawayama, Shigeki; Inoue, Seiichi; Ogi, Tomoko

    1996-12-31

    Dewatered sewage sludge was thermochemically liquidized at 175 {degrees}C and the liquidized sludge was separated by centrifugation to 58% (w/w) supernatant and 42% precipitate. The amount of proteins in the liquidized sludge slightly decreased through the liquidization process, however, that of lipids increased. The supernatant separated from the sludge liquidized with dewatered sewage sludge was successfully anaerobically digested. Biogas yield from the supernatant from dewatered sewage sludge at organic loading concentrations of 1.9-2.2 g VS/l during 9 days incubation was 440 ml/g-added VS and digestion ratio was 66% (w/w). Biogas yield in the case of dewatered sewage sludge was 257 ml/g-added VS and digestion ratio was 45%. Similar results were obtained in the case of the anaerobically digested with sewage sludge and dewatered sludge. Anaerobic digestion of the supernatants from the liquidized sludges resulted in high biogas productivity and high digestion ratio compared with these of the original sludges. Moreover, the precipitates contained lower moisture, therefore, they can be incinerated easier than the respective original sludges.

  7. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    PubMed

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.

  8. Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge.

    PubMed

    Suanon, Fidèle; Sun, Qian; Mama, Daouda; Li, Jiangwei; Dimon, Biaou; Yu, Chang-Ping

    2016-01-01

    Anaerobic digestion (AD) is one of the most widely used processes to stabilize waste sewage sludge and produce biogas renewable energy. In this study, two different iron nanoparticles [nanoscale zero-valent iron (nZVI) and magnetite (Fe3O4)] were used in the mesophilic AD processes (37 ± 1 °C) to improve biogas production. In addition, changes of heavy metal (Cd, Co, Cu, Zn, Ni and Cr) speciation during AD of sludge with and without iron nanoparticles have been investigated. Concentrations of metals in the initial sludge were as follows: 63.1, 73.4, 1102.2, 2060.3, 483.9 and 604.1 mg kg(-1) (dry sludge basis) for Cd, Co, Cu, Zn, Ni and Cr, respectively. Sequential fractionation showed that metals were predominantly bonded to organic matter and carbonates in the initial sludge. Compared with AD without iron nanoparticles, the application of iron nanoparticles (at dose of 0.5% in this study) showed positive impact not only on biogas production, but also on improvement of metals stabilization in the digestate. Metals were found concentrated in Fe-Mn bound and residual fractions and little was accumulated in the liquid digestate and most mobile fractions of solid digestate (water soluble, exchangeable and carbonates bound). Therefore, iron nanoparticles when properly used, could improve not only biogas yield, but also regulate and control the mobilization of metals during AD process. However, our study also observed that iron nanoparticles could promote the immobilization of phosphorus within the sludge during AD, and more research is needed to fully address the mechanism behind this phenomenon and the impact on future phosphorus reuse.

  9. Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load.

    PubMed

    Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G

    2013-09-01

    The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load.

  10. Influence of Continuous Flow Microwave Pre-Treatment on Anaerobic Digestion of Secondary Thickened Sludge for Sustainable Energy Recovery in Sewage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Hephzibah, D.; Kumaran, P.; Saifuddin, N. M.

    2016-03-01

    This work elucidates the effects of pre-treatment of secondary thickened sludge (STS) for enhancement of biogas production that has great potential to generate energy for the utilization of the sewage treatment plant (STP) itself. Microwave pre-treatment has been adopted for this study. Experiment works have been designed and conducted to examine the effectiveness of continuous flow microwave pre-treatment on the solubility of STS, digestibility of STS and biogas production at a power level of 80 W for 5, 10 and 15 minutes. A few characteristics of the sewage sludge were monitored daily to identify the effect of pre-treatment on the sludge. The soluble chemical oxygen demand (SCOD)/total chemical oxygen demand (TCOD) ratio increased by 0.1, 1.0 and 1.8%, while the volatile fatty acids (VFA) concentration of the pre-treated sludge improved by 4.4, 5.1, 5.9% at the irradiation time of 5, 10 and 15 minutes, respectively at a microwave power level of 80 W. Besides that, the digestate also indicates that the pre-treated sludge undergoes efficient VS removal and TCOD removal after anaerobic digestion compared to the untreated sludge. Moreover, the biogas quantity increased by an average of 19.2, 24.1 and 32.2% in 5, 10 and 15 minutes irradiation time respectively compared to the untreated sludge. The additional quantity of biogas generated has shown a great potential for sustainable energy generation that can be utilized internally by the STP.

  11. Toxicants inhibiting anaerobic digestion: a review.

    PubMed

    Chen, Jian Lin; Ortiz, Raphael; Steele, Terry W J; Stuckey, David C

    2014-12-01

    Anaerobic digestion is increasingly being used to treat wastes from many sources because of its manifold advantages over aerobic treatment, e.g. low sludge production and low energy requirements. However, anaerobic digestion is sensitive to toxicants, and a wide range of compounds can inhibit the process and cause upset or failure. Substantial research has been carried out over the years to identify specific inhibitors/toxicants, and their mechanism of toxicity in anaerobic digestion. In this review we present a detailed and critical summary of research on the inhibition of anaerobic processes by specific organic toxicants (e.g., chlorophenols, halogenated aliphatics and long chain fatty acids), inorganic toxicants (e.g., ammonia, sulfide and heavy metals) and in particular, nanomaterials, focusing on the mechanism of their inhibition/toxicity. A better understanding of the fundamental mechanisms behind inhibition/toxicity will enhance the wider application of anaerobic digestion.

  12. Addition of crude glycerine as strategy to balance the C/N ratio on sewage sludge thermophilic and mesophilic anaerobic co-digestion.

    PubMed

    Silvestre, G; Fernández, B; Bonmatí, A

    2015-10-01

    The effect of adding crude glycerine during continuous sewage sludge anaerobic digestion was investigated under thermophilic and mesophilic temperatures. Addition of CGY at thermophilic temperature range showed a negative impact on stability and performance of the process, even at low doses. The extreme pH values of CGY, together with the rapid release of VFA, causes SS alkalinity fail to control pH drop. On the contrary, at mesophilic temperature range the process performs steadily, with 148% increase in methane production when CGY represented 1% v/v of the influent (27% of influent COD). Further CGY percentages did not show any added improvement; the biomass shift, due to a high C/N ratio, could explain this behaviour. Results suggested that CGY can be used as co-substrate of SS anaerobic digestion though, depending on the characteristics of CGY, and on operational conditions, different parameters should be taken into account to achieve a steady and consistent operation.

  13. Mesophilic batch anaerobic co-digestion of fruit-juice industrial waste and municipal waste sludge: process and cost-benefit analysis.

    PubMed

    Hosseini Koupaie, E; Barrantes Leiva, M; Eskicioglu, C; Dutil, C

    2014-01-01

    The feasibility of anaerobic co-digestion of two juice-based beverage industrial wastes, screen cake (SC) and thickened waste activated sludge (TWAS), along with municipal sludge cake (MC) was investigated. Experiments were conducted in twenty mesophilic batch 160 ml serum bottles with no inhibition occurred. The statistical analysis proved that the substrate type had statistically significant effect on both ultimate biogas and methane yields (P=0.0003<0.05). The maximum and minimum ultimate cumulative methane yields were 890.90 and 308.34 mL/g-VSremoved from the digesters containing only TWAS and SC as substrate. First-order reaction model well described VS utilization in all digesters. The first 2-day and 10-day specific biodegradation rate constants were statistically higher in the digesters containing SC (P=0.004<0.05) and MC (P=0.0005<0.05), respectively. The cost-benefit analysis showed that the capital, operating and total costs can be decreased by 21.5%, 29.8% and 27.6%, respectively using a co-digester rather than two separate digesters.

  14. Mesophilic anaerobic co-digestion of sewage sludge and a lixiviation of sugar beet pulp: optimisation of the semi-continuous process.

    PubMed

    Montañés, Rocio; Pérez, Montserrat; Solera, Rosario

    2013-08-01

    This study examine the effect of an increased organic loading rate on the efficiency of the stirred tank reactor treating sewage sludge and sugar beet pellets and to report on its steady-state performance. The digester was subjected to a program of steady-state operation over a range of hydraulic retention times (HRTs) of 30 to 6 days and organic loading rates (OLRs) of up to 1.7 kgCOD/m(3)d to evaluate its treatment capacity. The COD removal efficiency was found to be 84.23% COD in the digester when treating mixture sewage sludge/lixiviation of sugar beet pulp at 1.27 kgCOD/m(3)d (10-days SRT). The volumetric methane level produced in the digester reached 0.7 m(3)CH4/m(3)d and the methane yield was 0.64m(3)CH4/kgCODremoval. Therefore, anaerobic co-digestion of sewage sludge and lixiviation of sugar beet pulp improve the biogas productivity and the organic matter removal in addition to lowering solids retention times in the system.

  15. Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge.

    PubMed

    Quiroga, G; Castrillón, L; Fernández-Nava, Y; Marañón, E; Negral, L; Rodríguez-Iglesias, J; Ormaechea, P

    2014-02-01

    This paper presents a study of the effect of applying ultrasound pre-treatment in the production of methane when co-digesting mixtures of cattle manure with food waste and sludge. A series of experiments were carried out under mesophilic and thermophilic conditions in continuously stirred-tank reactors containing 70% cattle manure, 20% food waste and 10% sewage sludge. Ultrasound pre-treatment allows operating at lower HRT, achieving higher volumetric methane yields: 0.85 L CH4/L day at 36°C and 0.82 CH4/L day at 55°C, when cattle manure and sewage sludge were sonicated. With respect to the non-sonicated waste, these values represent increases of up to 31% and 67% for mesophilic and thermophilic digestion, respectively.

  16. The use of the core-shell structure of zero-valent iron nanoparticles (NZVI) for long-term removal of sulphide in sludge during anaerobic digestion.

    PubMed

    Su, Lianghu; Zhen, Guangyin; Zhang, Longjiang; Zhao, Youcai; Niu, Dongjie; Chai, Xiaoli

    2015-12-01

    A core-shell structure results in zero-valent iron nanoparticles (NZVI) with manifold functional properties. In this study, the long-term effects of NZVI on hydrogen sulphide removal in an anaerobic sludge digester were investigated. Within 20 days, the average hydrogen sulphide content in the biogas was successfully reduced from 300 (or 3620 of sulphate-rich sludge) mg Nm(-3) to 6.1 (121), 0.9 (3.3) and 0.5 (1.3) mg Nm(-3) in the presence of 0.05, 0.10 and 0.20% (wt) NZVI, respectively. Methane yield was enhanced at the low NZVI dose (0.05-0.10%) but decreased at the elevated dose (0.20%). Methane production and volatile solid degradation analyses implied that doses of 0.5-0.10% NZVI could accelerate sludge stabilization during anaerobic digestion. The phosphorus fractionation profile suggested that methane production could be inhibited at the elevated NZVI dose, partly due to the limited availability of soluble phosphorus due to the immobilization of bioavailable-P through the formation of vivianite. An analysis of the reducible inorganic sulphur species revealed that the elimination of hydrogen sulphide occurred via the reaction between hydrogen sulphide and the oxide shell of NZVI, which mainly formed FeS and some FeS2 and S(0).

  17. Analysis of methane emissions from digested sludge.

    PubMed

    Schaum, C; Fundneider, T; Cornel, P

    2016-01-01

    The energetic use of sewage sludge is an important step in the generation of electricity and heat within a wastewater treatment plant (WWTP). For a holistic approach, methane emissions derived from anaerobic treatment have to be considered. Measurements show that methane dissolved in digested sludge can be analyzed via the vacuum salting out degassing method. At different WWTPs, dissolved methane was measured, showing a concentration range of approximately 7-37 mg CH4/L. The average concentration of dissolved methane in mesophilic digested sludge was approximately 29 mg CH4/L, which corresponds to an estimated yearly specific load of approximately 14-21 g CH4 per population equivalent. Comparisons between continuous and discontinuous digester feeding show that a temporary rise in the volume load causes increased concentrations of dissolved methane. Investigations using an industrial-scale digestion plant, consisting of three digestion tank operated in series, show comparable results.

  18. Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature.

    PubMed

    Feng, Qing; Song, Young-Chae; Bae, Byung-Uk

    2016-11-01

    The influence of applied voltage on the bioelectrochemical anaerobic digestion of sewage sludge was studied at ambient temperature (25±2°C). The stability of the bioelectrochemical anaerobic digestion was considerably good in terms of pH, alkalinity and VFAs at 0.3V and 0.5V, but VFA accumulation occurred at 0.7V. The specific methane production rate (370mLCH4/L.d) was the highest at 0.3V, but the methane content (80.6%) in biogas and the methane yield (350mLCH4/gCODr) were higher at 0.5V, significantly better than those of 0.7V. The VS removal efficiency was 64-66% at 0.3V and 0.5V, but only 31% at 0.7V. The dominant species of planktonic microbial communities was Cloacamonas at 0.3V and 0.5V, but the percentage of hydrolytic bacteria species such as Saprospiraceae, Fimbriimonas, and Ottowia pentelensis was much higher at 0.7V. The optimal applied voltage for bioelectrochemical anaerobic digestion was 0.3-0.5V according to digestion performance and planktonic microbial communities.

  19. Eliminating methanogenic activity in hydrogen reactor to improve biogas production in a two-stage anaerobic digestion process co-digesting municipal food waste and sewage sludge.

    PubMed

    Zhu, Heguang; Parker, Wayne; Conidi, Daniela; Basnar, Robert; Seto, Peter

    2011-07-01

    Laboratory scale two-stage anaerobic digestion process model was operated for 280 days to investigate the feasibility to produce both hydrogen and methane from a mixture feedstock (1:1 (v/v)) of municipal food waste and sewage sludge. The maximum hydrogen and methane yields obtained in the two stages were 0.93 and 9.5 mL/mL feedstock. To eliminate methanogenic activity and obtain substantial hydrogen production in the hydrogen reactor, both feedstock and mixed liquor required treatment. The heat treatment (100°C, 10 min) for feedstock and a periodical treatment (every 2-5 weeks, either heating, removal of biomass particles or flushing with air) for mixed liquor were effective in different extent. The methane production in the second stage was significantly improved by the hydrogen production in the first stage. The maximum methane production obtained in the period of high hydrogen production was more than 2-fold of that observed in the low hydrogen production period.

  20. Increased biogas production in a wastewater treatment plant by anaerobic co-digestion of fruit and vegetable waste and sewer sludge - a full scale study.

    PubMed

    Park, Nathan D; Thring, Ronald W; Garton, Randy P; Rutherford, Michael P; Helle, Steve S

    2011-01-01

    Anaerobic digestion is a well established technology for the reduction of organic matter and stabilization of wastewater. Biogas, a mixture of methane and carbon dioxide, is produced as a useful by-product of the process. Current solid waste management at the city of Prince George is focused on disposal of waste and not on energy recovery. Co-digestion of fresh fruit and vegetable waste with sewer sludge can improve biogas yield by increasing the load of biodegradable material. A six week full-scale project co-digesting almost 15,000 kg of supermarket waste was completed. Average daily biogas production was found to be significantly higher than in previous years. Digester operation remained stable over the course of the study as indicated by the consistently low volatile acids-to-alkalinity ratio. Undigested organic material was visible in centrifuged sludge suggesting that the waste should have been added to the primary digester to prevent short circuiting and to increase the hydraulic retention time of the freshly added waste.

  1. Recovery of indigenous enteroviruses from raw and digested sewage sludges.

    PubMed Central

    Goddard, M R; Bates, J; Butler, M

    1981-01-01

    We examined different types of raw sewage sludge treatment, including consolidation, anaerobic mesophilic digestion with subsequent consolidation, and aerobic-thermophilic digestion. Of these, the most efficient reduction in infectious virus titer was achieved by mesophilic digestion with subsequent consolidation, although a pilot-scale aerobic-thermophilic digester was extremely time effective, producing sludges with similarly low virus titers in a small fraction of the time. Although none of the treatments examined consistently produced a sludge with undetectable virus levels, mesophilic digestion alone was found to be particularly unreliable in reducing the levels of infectious virus present in the raw sludge. PMID:6274258

  2. Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge.

    PubMed

    Ennouri, Hajer; Miladi, Baligh; Diaz, Soraya Zahedi; Güelfo, Luis Alberto Fernández; Solera, Rosario; Hamdi, Moktar; Bouallagui, Hassib

    2016-08-01

    The effect of thermal pre-treatment on the microbial populations balance and biogas production was studied during anaerobic digestion of waste activated sludge (WAS) coming from urban (US: urban sludge) and industrial (IS: industrial sludge) wastewater treatment plants (WWTP). The highest biogas yields of 0.42l/gvolatile solid (VS) removed and 0.37l/gVS removed were obtained with urban and industrial sludge pre-treated at 120°C, respectively. Fluorescent in situ hybridization (FISH) was used to quantify the major Bacteria and Archaea groups. Compared to control trails without pretreatment, Archaea content increased from 34% to 86% and from 46% to 83% for pretreated IS and US, respectively. In fact, the thermal pre-treatment of WAS enhanced the growth of hydrogen-using methanogens (HUMs), which consume rapidly the H2 generated to allow the acetogenesis. Therefore, the stable and better performance of digesters was observed involving the balance and syntrophic associations between the different microbial populations.

  3. Combined mesophilic anaerobic and thermophilic aerobic digestion process for high-strength food wastewater to increase removal efficiency and reduce sludge discharge.

    PubMed

    Jang, H M; Park, S K; Ha, J H; Park, J M

    2014-01-01

    In this study, a process that combines the mesophilic anaerobic digestion (MAD) process with thermophilic aerobic digestion (TAD) for high-strength food wastewater (FWW) treatment was developed to examine the removal of organic matter and methane production. All effluent discharged from the MAD process was separated into solid and liquid portions. The liquid part was discarded and the sludge part was passed to the TAD process for further degradation. Then, the digested sludge from the TAD process was recycled back to the MAD unit to achieve low sludge discharge from the combined process. The reactor combination was operated in two phases: during Phase I, 40 d of total hydraulic retention time (HRT) was applied; during Phase II, 20 d was applied. HRT of the TAD process was fixed at 5 d. For a comparison, a control process (single-stage MAD) was operated with the same HRTs of the combined process. Our results indicated that the combined process showed over 90% total solids, volatile solids and chemical oxygen demand removal efficiencies. In addition, the combined process showed a significantly higher methane production rate than that of the control process. Consequently, the experimental data demonstrated that the combined MAD-TAD process was successfully employed for high-strength FWW treatment with highly efficient organic matter reduction and methane production.

  4. Occurrence of antibiotic resistance genes and mobile genetic elements in enterococci and genomic DNA during anaerobic digestion of pharmaceutical waste sludge with different pretreatments.

    PubMed

    Tong, Juan; Lu, XueTing; Zhang, JunYa; Sui, Qianwen; Wang, Rui; Chen, Meixue; Wei, Yuansong

    2017-03-22

    Pharmaceutical waste sludge harbors large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), and it is necessary to study the reduction of ARGs and MGEs during sludge treatment. Therefore, the antibiotic resistance phenotypes and genotypes of enterococci, and the ARGs and MGEs in genomic DNA were investigated during anaerobic digestion (AD) with microwave (MW), thermal hydrolysis (TH) and ozone pretreatment. Results showed that sludge pretreatment increased the occurrence of the resistance phenotypes and genotypes of enterococci. During AD, the resistance of enterococci to macrolides decreased, except for in the MW-pretreated sludge. Horizontal gene transfer and co-occurrence of ermB and tetM in enterococci resulted in increased tetracycline resistance of enterococci throughout the sludge treatment. MGEs such as intI1, ISCR1 and Tn916/1545 had a significant effect on the distribution of ARGs. AD with pretreatment, especially TH pretreatment, resulted in greater ARGs and MGEs reduction and improved methane production.

  5. The anaerobic digestion process

    SciTech Connect

    Rivard, C.J.; Boone, D.R.

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  6. Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation.

    PubMed

    Suanon, Fidèle; Sun, Qian; Li, Mingyue; Cai, Xiang; Zhang, Youchi; Yan, Yijun; Yu, Chang-Ping

    2017-01-05

    Lab scale and single stage high solid anaerobic digestion of sewage sludge spiked with freshly synthesized nanoscale zero valent iron (nZVI) and commercial iron powder (IP) under mesophilic condition (37±1°C) was performed. The effects of both additives on methane yield, and pharmaceutical and personal care product (PPCP) removal were investigated. Results showed that methane yield was increased by 25.2% and 40.8% in the presence of nZVI (0.1%) and IP (1.6%), respectively. Removal efficiencies of chemical oxygen demand were 54.4% and 66.2% in the presence of nZVI and IP, respectively, which were higher compared to the control group (44.6%). In addition, most PPCPs could be partly or completely removed during the anaerobic digestion process. The application of nZVI and IP showed positive impact on the removal of chlorinated PPCPs (p<0.05), but did not show significant impact on other PPCPs (p>0.05). Our finding suggests that the application of nZVI and IP in anaerobic digestion could be a promising way to enhance methane yield but had less improvement on PPCP degradation.

  7. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge.

    PubMed

    Vardon, Derek R; Sharma, B K; Scott, John; Yu, Guo; Wang, Zhichao; Schideman, Lance; Zhang, Yuanhui; Strathmann, Timothy J

    2011-09-01

    This study explores the influence of wastewater feedstock composition on hydrothermal liquefaction (HTL) biocrude oil properties and physico-chemical characteristics. Spirulina algae, swine manure, and digested sludge were converted under HTL conditions (300°C, 10-12 MPa, and 30 min reaction time). Biocrude yields ranged from 9.4% (digested sludge) to 32.6% (Spirulina). Although similar higher heating values (32.0-34.7 MJ/kg) were estimated for all product oils, more detailed characterization revealed significant differences in biocrude chemistry. Feedstock composition influenced the individual compounds identified as well as the biocrude functional group chemistry. Molecular weights tracked with obdurate carbohydrate content and followed the order of Spirulinadigested sludge. A similar trend was observed in boiling point distributions and the long branched aliphatic contents. These findings show the importance of HTL feedstock composition and highlight the need for better understanding of biocrude chemistries when considering bio-oil uses and upgrading requirements.

  8. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    SciTech Connect

    Liu Xiao; Wang Wei; Shi Yunchun; Zheng Lei; Gao Xingbao; Qiao Wei; Zhou Yingjun

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

  9. Anaerobic co-digestion of meat-processing by-products and sewage sludge - effect of hygienization and organic loading rate.

    PubMed

    Luste, Sami; Luostarinen, Sari

    2010-04-01

    Anaerobic co-digestion of a mixture of animal by-products (ABP) from meat-processing industry and of sewage sludge was studied at 35 degrees Celsius for co-digesting such by-products in digesters at wastewater treatment plants. The three reactors were fed with ABP mixture and sewage sludge (1) in a ratio of 1:7 (v/v), (2) in the same ratio but with hygienization (70 degrees Celsius, 60 min) and (3) in a ratio of 1:3 (v/v). Hydraulic retention time (HRT) was decreased from 25 to 20 days and finally to 14 days, while organic loading rates (OLR) ranged from 1.8 to 4.0 kg VS/m(3) day. The highest specific methane yields were achieved with 20-days-HRT (1) 400 + or - 30, (2) 430 + or - 40, (3) 410 + or - 30 m(3) CH(4)/t VS. Hygienization improved methane production to a level above the highest OLR applied (feed ratio 1:3 (3)), while the quality of the digestate remained similar to the other reactors.

  10. PAH fate during the anaerobic digestion of contaminated sludge: Do bioavailability and/or cometabolism limit their biodegradation?

    PubMed

    Barret, M; Carrère, H; Delgadillo, L; Patureau, D

    2010-07-01

    The anaerobic removal of 13 Polycyclic Aromatic Hydrocarbons (PAHs) was measured in five continuous anaerobic digestors with different feed sludge, in which abiotic losses were neglected. These feeds were chosen to generate different levels of PAH bioavailability and cometabolism within the reactors. Based on the accurate modelling of PAH sorption in sludge, the aqueous fraction (including free and sorbed-to-dissolved-and-colloidal-matter PAHs) was demonstrated to be bioavailable, which validated a widespread assumption about micropollutants bioavailability in sludge. It was also demonstrated that bioavailability is not the only influencing factor. Indeed, PAHs biodegradation resulted from a combination of bioavailability and cometabolism. An equation adapted from Criddle (1993, The Kinetics of Cometabolism. Biotechnology and Bioengineering 41, 1048-1056) that takes into account both mechanisms was shown to fit the experimental data, with dry matter removal rate identified as the criteria for cometabolism. The existence of a threshold of dry matter cometabolism was suggested, below which PAHs removal would not be possible. The parameters of the Criddle equation were demonstrated to depend on PAH molecular structure, and the results suggest that they would also be influenced by substrate composition and microbial population. This research provided original outcomes for the assessment of micropollutants fate. Indeed, the understanding of the driving mechanisms was improved, which has implications for the optimization of micropollutants removal.

  11. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants.

    PubMed

    Maragkaki, A E; Fountoulakis, M; Gypakis, A; Kyriakou, A; Lasaridi, K; Manios, T

    2017-01-01

    Due to low degradability of dry solids, most of the digesters at wastewater treatment plants (WWTP) operate at low loading rates resulting in poor biogas yields. In this study, co-digestion of sewage sludge (SS) with olive mill wastewater (OMW), cheese whey (CW) and crude glycerol (CG) was studied in an attempt to improve biogas production of existing digesters at WWTPs. The effect of agro-industrial by-products in biogas production was investigated using a 220L pilot-scale (180L working volume) digester under mesophilic conditions (35°C) with a total feeding volume of 7.5L daily and a 24-day hydraulic retention time. The initial feed was sewage sludge and the bioreactor was operated using this feed for 40days. Each agro-industrial by-product was then added to the feed so that the reactor was fed continuously with 95% sewage sludge and 5% (v/v) of each examined agro-industrial by-product. The experiments showed that a 5% (v/v) addition of OMW, CG or CW to sewage sludge significantly increased biogas production by nearly 220%, 350% and 86% as values of 34.8±3.2L/d, 185.7±15.3L/d and 45.9±3.6L/d respectively, compared to that with sewage sludge alone (375ml daily, 5% v/v in the feed). The average removal of dissolved chemical oxygen demand (d-COD) ranged between 72 and 99% for organic loading rates between 0.9 and 1.5kgVSm(-3)d(-1). Reduction in the volatile solids ranged between 25 and 40%. This work suggests that methane can be produced very efficiently by adding a small concentration (5%) of agro-industrial by-products and especially CG in the inlet of digesters treating sewage sludge.

  12. Anaerobic digestion of aliphatic polyesters.

    PubMed

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry.

  13. Hemicellulose conversion by anaerobic digestion

    SciTech Connect

    Ghosh, S.; Henry, M.P.; Christopher, R.W.

    1982-01-01

    The digestibility of an aquatic biomass (water hyacinth), a land-based biomass (Coastal Bermuda grass), and a biomass-waste blend (a mixture of hyacinth, grass, MSW, and sludge) under various digestion conditions was studied. Anaerobic digestion of hemicellulose consists of the steps of enzymatic hydrolysis of hemicellulose to glucans, mannans, galactans, xylans, and arabans, and then to simple hexose and pentose sugars; production of C/sub 2/ and higher fatty acids from the simple sugars; conversion of higher fatty acids to acetate; and finally, production of methane and CO/sub 2/ from acetate, and CO/sub 2/ and hydrogen. The conversion of hemicellulose was higher under mesophilic conditions than those of cellulose or protein for all biomass test feeds, probably because the hemicellulose structure was more vulnerable to enzymatic attack than that of the lignocellulosic component. Cellulose conversion efficiencies at the mesophilic and thermophilic temperatures were about the same. However, hemicellulose was converted at a much lower efficiency than cellulose during thermophilic digestion - a situation that was the reverse of that observed at the mesophilic temperature. Cellulose was utilized in preference to hemicellulose during mesophilic digestion of nitrogen-supplemented Bermuda grass. It was speculated that Bermuda grass cellulose was converted at a higher efficiency than hemicellulose in the presence of external nitrogen because the metabolism of the breakdown product (glucose) of cellulose requires the least investment of enzymes and energy.

  14. Anaerobic digestion in rural China

    SciTech Connect

    Henderson, J.P.

    1997-01-01

    The People`s Republic of China has been promoting underground, individual, anaerobic digesters to process rural organic materials. This strategy has resulted in approximately five million household anaerobic digesters installed in China today. Simple reactors provide energy and fertilizer for Chinese farms and villages. Another benefit includes improved household sanitation. Reactor design has evolved over time. In the standard modern design, effluent is removed from the reactor at the top of the water column, meaning that supernatant is collected rather than sludge. Additionally, no mixing of the system occurs when effluent is removed. In some systems, a vertical cylindrical pull-rod port is added to the base of the effluent port. Effluent is removed by moving the pull-rod - simply a wooden shaft with a metal disk on the bottom - up and down in the port. A bucket can be placed directly under the pull-rod port, simplifying effluent removal, while the movement of the wooden shaft provides some mixing in the reactor. The gas primarily is used for cooking and lighting. A digester can provide approximately 60 percent of a family`s energy needs. Effluent from the reactors is an odorless, dark colored slurry, primarily used as an agricultural fertilizer. 3 figs.

  15. The role of zero valent iron on the fate of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic co-digestion of waste sludge and kitchen waste.

    PubMed

    Gao, Pin; Gu, Chaochao; Wei, Xin; Li, Xiang; Chen, Hong; Jia, Hanzhong; Liu, Zhenhong; Xue, Gang; Ma, Chunyan

    2017-03-15

    Activated sludge has been identified as a potential significant source of antibiotic resistance genes (ARGs) to the environment. Anaerobic digestion is extensively used for sludge stabilization and resource recovery, and represents a crucial process for controlling the dissemination of ARGs prior to land application of digested sludge. The objective of this study is to investigate the effect of zero valent iron (Fe(0)) on the attenuation of seven representative tetracycline resistance genes (tet, tet(A), tet(C), tet(G), tet(M), tet(O), tet(W), and tet(X)), and the integrase gene intI1 during thermophilic anaerobic co-digestion of waste sludge and kitchen waste. Significant decrease (P < 0.05) in the quantities of tet (except tet(W)) and intI1 genes was observed at Fe(0) dosage of 5 g/L, whereas no significant differences (P > 0.05) were found for all gene targets between digesters with Fe(0) dosages of 5 and 60 g/L. A first-order kinetic model favorably described the trends in concentrations of tet and intI1 gene targets during thermophilic anaerobic digestion with or without Fe(0). Notably, tet genes encoding different resistance mechanisms behaved distinctly in anaerobic digesters, although addition of Fe(0) could enhance their reduction. The overall results of this research suggest that thermophilic anaerobic digestion with Fe(0) can be a potential alternative technology for the attenuation of tet and intI1 genes in waste sludge.

  16. Co-digestion of press liquids of source-sorted municipal organic waste in anaerobic sludge treatment of municipal wastewater treatment plants.

    PubMed

    Effenberger, Johannes; Jahn, Lydia; Kuehn, Volker

    2016-01-01

    This paper describes a semi-continuous laboratory-scale investigation of a potential co-substrate for mesophilic anaerobic sludge digestion in a municipal wastewater treatment plant. A feed liquid produced from source-sorted municipal organic waste by pretreatment with a screw press was subjected to the investigation. Quantities produced in press trials as well as the composition of the feed liquid are presented. Mass balances for N, P and chemical oxygen demand are given in order to verify the methane production of the feed liquid in co-digestion with sewage sludge at mesophilic conditions. Hydraulic retention time of the reactors were 14.7 to 16 d and organic loading rates were 1.5 to 2.7 kg volatile solids (VS) per cubic metre per day. The pretreatment by screw press is compared to the production of feed liquids with pulper-based pretreatment processes. While the addition of the feed liquid increased methane production by about 345 ml CH(4)/g VS(in), total solids of the feed liquid were reduced to about 63%. With respect to co-digestion at municipal wastewater treatment plants, several risks associated with the investigated feed liquid are outlined.

  17. Influence of digestion temperature and organic loading rate on the continuous anaerobic treatment of process liquor from hydrothermal carbonization of sewage sludge.

    PubMed

    Wirth, Benjamin; Reza, Toufiq; Mumme, Jan

    2015-12-01

    This experimental study investigates the use of process liquor from hydrothermal carbonization (HTC) of sewage sludge as sole substrate for anaerobic digestion (AD). The process performance at 37°C (mesophilic) and 55°C (thermophilic) was determined based on two identical continuously-fed anaerobic filters (26 L each) operated for 20 weeks. During operation, the organic loading rate was stepwise increased from 1 to 5 gCOD L(-1)d(-)(1). This decreased the hydraulic retention time from 34 to 5 days. Significant differences in methane production were not observed as both reactors yielded up to 0.18 LCH4 gCOD(-)(1). Increased temperature had no effect on the steady-state COD removal efficiency with both reactors stabilized at 68-75%. Macro- and micronutrients were provided by HTC liquor in sufficient concentrations throughout the experiment. Methanogenesis was identified as the speed-limiting step in anaerobic digestion of HTC liquor. Hydrolysis was of an order of magnitude faster than methanogenesis.

  18. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    PubMed

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-03-25

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH)2. The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH)2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO.

  19. Behavior of the anaerobic CSTR in the presence of scum during primary sludge digestion and the role of pH.

    PubMed

    Gömeç, Ciğdem Yangin

    2006-01-01

    Anaerobic digestion of the primary sludge with or without scum addition and the role of pH were evaluated in four completely stirred tank reactors (CSTR) operated as batch systems at 35 degrees C (mesophilic). For investigating the scum influence, two CSTRs were only fed with the primary sludge (PS) whereas the other CSTRs were composed of the primary sludge with 15% scum (PS+Scum). The pH in two reactors was fixed at 6.5, whereas the pH in the other two reactors was left to be operated at their original values for evaluating the retardation in biodegradation rates at low pH values. Since scum is generally produced at most primary settling tanks and given into the anaerobic digesters, the behavior of the CSTR was examined with or without scum addition. The results indicated that scum addition favoured low pH levels and led to retardation in methanogenesis. Besides, pH control enhanced the biodegradation rates and led to methanogenesis to perform at shorter digestion times in the reactors. The destructions of TSS and VSS were better when the pH was controlled. When only primary sludge was used as the substrate, the reactors with or without pH control removed VSS with a corresponding production of VFAs and soluble COD. However, their productions ceased earlier and the complete VFAs consumption occurred 4 days earlier in the reactors with pH control. In the reactors consisting of PS+Scum, soluble COD productions continued during 4 days of digestion. However, soluble COD remained constant and almost no VFAs consumption occurred during the whole operation period without pH control whereas VFAs were consumed completely after around 11 days in the reactor with pH control. Overall, scum addition caused methanogenesis to perform at longer operation periods when the pH was controlled and kept above 6.5. When the pH was not controlled, scum favoured acidic conditions and did not allow methanogenesis to start due to the fact that methanogens could not perform well at low p

  20. Hydrodynamic cavitation as a novel approach for pretreatment of oily wastewater for anaerobic co-digestion with waste activated sludge.

    PubMed

    Habashi, Nima; Mehrdadi, Nasser; Mennerich, Artur; Alighardashi, Abolghasem; Torabian, Ali

    2016-07-01

    Application of hydrodynamic cavitation (HC) was investigated with the objective of biogas production enhancement from co-digestion of oily wastewater (OWW) and waste activated sludge (WAS). Initially, the effect of HC on the OWW was evaluated in terms of energy consumption and turbidity increase. Then, several mixtures of OWW (with and without HC pretreatment) and WAS with the same concentration of total volatile solid were prepared as a substrate for co-digestion. Following, several batch co-digestion trials were conducted. To compare the biogas production, a number of digestion trials were also conducted with a mono substrate (OWW or WAS alone). The best operating condition of HC was achieved in the shortest retention time (7.5 min) with the application of 3mm diameter orifice and maximum pump rotational speed. Biogas production from all co-digestion reactors was higher than the WAS mono substrate reactors. Moreover, biogas production had a direct relationship with OWW ratio and no major inhibition was observed in any of the reactors. The biogas production was also enhanced by HC pretreatment and almost all of the reactors with HC pretreatment had higher reaction rates than the reactors without pretreatment.

  1. A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system.

    PubMed

    Kim, Hyun-Woo; Nam, Joo-Youn; Shin, Hang-Sik

    2011-08-01

    Assessing contemporary anaerobic biotechnologies requires proofs on reliable performance in terms of renewable bioenergy recovery such as methane (CH(4)) production rate, CH(4) yield while removing volatile solid (VS) effectively. This study, therefore, aims to evaluate temperature-phased anaerobic sequencing batch reactor (TPASBR) system that is a promising approach for the sustainable treatment of organic fraction of municipal solid wastes (OFMSW). TPASBR system is compared with a conventional system, mesophilic two-stage anaerobic sequencing batch reactor system, which differs in operating temperature of 1st-stage. Results demonstrate that TPASBR system can obtain 44% VS removal from co-substrate of sewage sludge and food waste while producing 1.2m(3)CH(4)/m(3)(system)/d (0.2m(3)CH(4)/kgVS(added)) at organic loading rate of 6.1gVS/L/d through the synergy of sequencing-batch operation, co-digestion, and temperature-phasing. Consequently, the rapid and balanced anaerobic metabolism at thermophilic stage makes TPASBR system to afford high organic loading rate showing superior performance on OFMSW stabilization.

  2. Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio.

    PubMed

    Dai, Xiaohu; Li, Xiaoshuai; Zhang, Dong; Chen, Yinguang; Dai, Lingling

    2016-09-01

    It is necessary to find an appropriate strategy to simultaneously enhance the methane production and methane content in biogas from waste activated sludge (WAS) and grass co-digestion. In this study an efficient strategy, i.e., adjusting the initial pH 12 and C/N ratio 17/1, for simultaneous enhancement of methane production and methane content in biogas from WAS and perennial ryegrass co-digestion was reported. Experimental results indicated that the maximal methane production was 310mL/gVSadd at the optimum conditions after 30-d anaerobic digestion, which was, respectively, about 1.5- and 3.8-fold of the sole WAS and sole perennial ryegrass anaerobic digestion. Meanwhile, the methane content in biogas was about 74%, which was much higher than that of sole WAS (64%) or sole perennial ryegrass (54%) anaerobic digestion.

  3. Disintegration impact on sludge digestion process.

    PubMed

    Dauknys, Regimantas; Rimeika, Mindaugas; Jankeliūnaitė, Eglė; Mažeikienė, Aušra

    2016-11-01

    The anaerobic sludge digestion is a widely used method for sludge stabilization in wastewater treatment plant. This process can be improved by applying the sludge disintegration methods. As the sludge disintegration is not investigated enough, an analysis of how the application of thermal hydrolysis affects the sludge digestion process based on full-scale data was conducted. The results showed that the maximum volatile suspended solids (VSS) destruction reached the value of 65% independently on the application of thermal hydrolysis. The average VSS destruction increased by 14% when thermal hydrolysis was applied. In order to have the maximum VSS reduction and biogas production, it is recommended to keep the maximum defined VSS loading of 5.7 kg VSS/m(3)/d when the thermal hydrolysis is applied and to keep the VSS loading between 2.1-2.4 kg VSS/m(3)/d when the disintegration of sludge is not applied. The application of thermal hydrolysis leads to an approximately 2.5 times higher VSS loading maintenance comparing VSS loading without the disintegration; therefore, digesters with 1.8 times smaller volume is required.

  4. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment.

    PubMed

    Zhang, Junya; Lv, Chen; Tong, Juan; Liu, Jianwei; Liu, Jibao; Yu, Dawei; Wang, Yawei; Chen, Meixue; Wei, Yuansong

    2016-01-01

    The effects of microwave pretreatment (MW) on co-digestion of food waste (FW) and sewage sludge (SS) have never been investigated. In this study, a series of mesophilic biochemical methane potential (BMP) tests were conducted to determine the optimized ratio of FW and SS based on MW, and the evolution of bacterial and archaeal community was investigated through high-throughput sequencing method. Results showed that the optimized ratio was 3:2 for co-digestion of FW and SS based on MW, and the methane production was 316.24 and 338.44mLCH4/gVSadded for MW-FW and MW-SS, respectively. The MW-SS was superior for methane production compared to MW-FW, in which accumulation of propionic acid led to the inhibition of methanogenesis. Proteiniborus and Parabacteroides were responsible for proteins and polysaccharides degradation for all, respectively, while Bacteroides only dominated in co-digestion. Methanosphaera dominated in MW-FW at the active methane production phase, while it was Methanosarcina in MW-SS and mono-SS.

  5. Economic viability of anaerobic digestion

    SciTech Connect

    Wellinger, A.

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  6. The impact of furfural concentrations and substrate-to-biomass ratios on biological hydrogen production from synthetic lignocellulosic hydrolysate using mesophilic anaerobic digester sludge.

    PubMed

    Akobi, Chinaza; Hafez, Hisham; Nakhla, George

    2016-12-01

    This study evaluated the impact of furfural (a furan derivative) on hydrogen production rates and yields at initial substrate-to-microorganism ratios (S°/X°) of 4, 2, 1, and 0.5gCOD/gVSS and furfural concentrations of 4, 2, 1, and 0.5g/L. Fermentation studies were carried out in batches using synthetic lignocellulosic hydrolysate as substrate and mesophilic anaerobic digester sludge as seed. Contrary to other literature studies where furfural was inhibitory, this study showed that furfural concentrations of up to 1g/L enhanced hydrogen production with yields as high as 19% from the control (batch without furfural). Plots of hydrogen yields against gfurfural/gsugars and hydrogen yields versus gfurfural/gbiomass showed negative linear correlation indicating that these parameters influence biohydrogen production. Regression analysis indicated that gfurfural/gsugarsinitial exerted a greater effect on the degree of inhibition of hydrogen production than gfurfural/gVSSfinal.

  7. Reactor performance and microbial community dynamics during anaerobic co-digestion of municipal wastewater sludge with restaurant grease waste at steady state and overloading stages.

    PubMed

    Razaviarani, Vahid; Buchanan, Ian D

    2014-11-01

    Linkage between reactor performance and microbial community dynamics was investigated during mesophilic anaerobic co-digestion of restaurant grease waste (GTW) with municipal wastewater sludge (MWS) using 10L completely mixed reactors and a 20day SRT. Test reactors received a mixture of GTW and MWS while control reactors received only MWS. Addition of GTW to the test reactors enhanced the biogas production and methane yield by up to 65% and 120%, respectively. Pyrosequencing revealed that Methanosaeta and Methanomicrobium were the dominant acetoclastic and hydrogenotrophic methanogen genera, respectively, during stable reactor operation. The number of Methanosarcina and Methanomicrobium sequences increased and that of Methanosaeta declined when the proportion of GTW in the feed was increased to cause an overload condition. Under this overload condition, the pH, alkalinity and methane production decreased and VFA concentrations increased dramatically. Candidatus cloacamonas, affiliated within phylum Spirochaetes, were the dominant bacterial genus at all reactor loadings.

  8. Anaerobic bioleaching of metals from waste activated sludge.

    PubMed

    Meulepas, Roel J W; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E; Lens, Piet N L

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g(-1) of copper, 487 μg g(-1) of lead, 793 μg g(-1) of zinc, 27 μg g(-1) of nickel and 2.3 μg g(-1) of cadmium. During the anaerobic acidification of 3 gdry weight L(-1) waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  9. Effects of metal salt addition on odor and process stability during the anaerobic digestion of municipal waste sludge.

    PubMed

    Abbott, Timothy; Eskicioglu, Cigdem

    2015-12-01

    Anaerobic digestion (AD) is an effective way to recover energy and nutrients from organic waste; however, several issues including the solubilization of bound nutrients and the production of corrosive, highly odorous and toxic volatile sulfur compounds (VSCs) in AD biogas can limit its wider adoption. This study explored the effects of adding two different doses of ferric chloride, aluminum sulfate and magnesium hydroxide directly to the feed of complete mix semi-continuously fed mesophilic ADs on eight of the most odorous VSCs in AD biogas at three different organic loading rates (OLR). Ferric chloride was shown to be extremely effective in reducing VSCs by up to 87%, aluminum sulfate had the opposite effect and increased VSC levels by up to 920%, while magnesium hydroxide was not shown to have any significant impact. Ferric chloride, aluminum sulfate and magnesium hydroxide were effective in reducing the concentration of orthophosphate in AD effluent although both levels of alum addition caused digester failure at elevated OLRs. Extensive foaming was observed within the magnesium hydroxide dosed digesters, particularly at higher doses and high OLRs. Certain metal salt additions may be a valuable tool in overcoming barriers to AD and to meet regulatory targets.

  10. Anaerobic digestion as a waste disposal option for American Samoa

    SciTech Connect

    Rivard, C

    1993-01-01

    Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

  11. FCPP application to utilize anaerobic digester gas

    SciTech Connect

    Nakayama, Yoshio; Kusama, Nobuyuki; Wada, Katsuya

    1996-12-31

    Toshiba and a municipal organization of Yokohama city are jointly conducting a program to utilize ADG (Anaerobic Digester Gas) more effectively. ADG which contains about 60% methane is produced by anaerobic digestion of waste water treatment sludge and has been used as an energy source for heating digestion tanks in sewage treatment plants and/or for combustion engine fuel. This program is focused on operating a commercial Phosphoric Acid Fuel Cell (PAFC) power plant on ADG because of its inherently high fuel efficiency and low emissions characteristics. According to the following joint program, we have successfully demonstrated an ADG fueled FCPP The success of this study promises that the ADG fueled FCPP, an environment-friendly power generation system, will be added to the line-up of PC25{trademark}C applications.

  12. Thermal analysis and 454 pyrosequencing to evaluate the performance and mechanisms for deep stabilization and reduction of high-solid anaerobically digested sludge using biodrying process.

    PubMed

    Li, Xiaowei; Dai, Xiaohu; Yuan, Shijie; Li, Ning; Liu, Zhigang; Jin, Jingwei

    2015-01-01

    Biodrying was firstly used for post-treatment of anaerobically digested sludge (ADS) with wheat residues (WR) as bulking agents to improve its quality and reduce its amount. After 18days of biodrying, water was removed at a rate of 664.4gkg(-1) initial water at the typical ratio of ADS/WR. A separate aerobic incubation test showed that 8.11-14.84% of volatile solid (VS) was degraded in the ADS. The degradation of C- and H-containing materials (e.g., carboxylic acid) accounted for oxygen consumption and VS loss. The WR also showed strong biodegradability, and contributed approximately 86.01% of biogenerated heat during the process. Thermal balance analysis showed that the produced heat was primarily consumed through water evaporation and conductive transfer. 454 pyrosequencing implied the obvious succession from the anaerobic to aerobic microorganisms during the process. Some dominant Firmicutes, such as Clostridium and Bacillales, seemed to relate with organic matter degradation of the substrates.

  13. Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge

    PubMed Central

    Dai, Xiaohu; Yan, Han; Li, Ning; He, Jin; Ding, Yueling; Dai, Lingling; Dong, Bin

    2016-01-01

    A high solid digester with dewatered sludge was operated for 110 days to ascertain the interactions between bacterial and archaeal communities under ammonium stress, as well as the corresponding changes in bio-degradation mechanisms. The volatile solids reduction (95% confidence intervals in mean) changed from 31.6 ± 0.9% in the stable period (day 40–55) to 21.3 ± 1.5% in the last period (day 71–110) when ammonium concentration was elevated to be within 5,000–6,000 mgN/L. Biogas yield dropped accordingly from 11.9 ± 0.3 to 10.4 ± 0.2 L/d and carbon dioxide increased simultaneously from 35.2% to 44.8%. Anaerobranca better adapted to the ammonium stress, while the initially dominant protein-degrading microbes-Tepidimicrobium and Proteiniborus were suppressed, probably responsible for the increase of protein content in digestate. Meanwhile, Methanosarcina, as the dominant Archaea, was resistant to ammonium stress with the constant relative abundance of more than 92% during the whole operation. Nonmetric Multidimensional Scaling (NMDS) analysis was thus conducted which indicated that the gradually increased TAN dictated the bacterial clusters. The dominant Methanosarcina and the increased carbon dioxide content under ammonium stress suggested that, rather than the commonly acknowledged syntrophic acetate oxidation (SAO) with hydrogenotrophic methanogenesis, only SAO pathway was enhanced during the initial ‘ammonium inhibition’. PMID:27312792

  14. Electrochemical reduction of carbon dioxide to formate with Fe-C electrodes in anaerobic sludge digestion process.

    PubMed

    Zhao, Zisheng; Zhang, Yaobin; Li, Yang; Zhao, Huimin; Quan, Xie

    2016-12-01

    Electrochemical reduction of carbon dioxide (CO2) to useful chemicals is an attractive strategy to cut its emission in atmosphere. However, high overpotential and energy consumption required in the electrochemical reduction are the major barriers of this process. In this study, a new CO2 reduction technique for production of formic acid was proposed from waste activated sludge digestion in a microbial electrosynthesis system (MES) with iron plate and carbon pillar as the electrodes. Compared with other reactors, methane production of the Fe-C MES reactor was slightly lower and CO2 was undetectable. Instead, considerable formate (672.3 mg/L) and H2 (45.8 mL) were produced in this Fe-C MES reactor, but not found in the other reactors. It should be ascribed to the reduction of CO2 and H(+) at cathode. The reduction of H(+) resulted in a weak alkaline pH (9.3), which made the methanogenesis slightly lower in Fe-C MES.

  15. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste.

    PubMed

    Gou, Chengliu; Yang, Zhaohui; Huang, Jing; Wang, Huiling; Xu, Haiyin; Wang, Like

    2014-06-01

    Anaerobic co-digestion of waste activated sludge and food waste was investigated semi-continuously using continuously stirred tank reactors. Results showed that the performance of co-digestion system was distinctly influenced by temperature and organic loading rate (OLR) in terms of gas production rate (GPR), methane yield, volatile solids (VS) removal efficiency and the system stability. The highest GPR at 55 °C was 1.6 and 1.3 times higher than that at 35 and 45 °C with the OLR of 1 g VSL(-1)d(-1), and the corresponding average CH₄ yields were 0.40, 0.26 and 0.30 L CH₄ g(-1)VSadded, respectively. The thermophilic system exhibited the best load bearing capacity at extremely high OLR of 7 g VSL(-1)d(-1), while the mesophilic system showed the best process stability at low OLRs (< 5 g VSL(-1)d(-1)). Temperature had a more remarkable effect on the richness and diversity of microbial populations than the OLR.

  16. Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues.

    PubMed

    Elliott, Allan; Mahmood, Talat

    2007-11-01

    While anaerobic digestion is commonly practiced in the municipal sector, it has not gained popularity in the pulp and paper industry mainly because of its long sludge residence time requirement of 20-30 days. The construction of large digesters to provide such extended residence times is capital-intensive and thus the implementation of anaerobic digestion has remained economically prohibitive. A review of the literature suggests that recent developments in sludge preconditioning technologies have substantially reduced the sludge residence time requirement to the order of 7 days. Also, the preconditioned sludges have been reported to hold potential for higher methane recovery with reduced excess sludge production requiring disposal. Such advantages, coupled with escalating fuel prices and the introduction of carbon credits under the Kyoto Accord, have significantly improved the economics of anaerobic digestion. As the cost of sludge management varies from one mill to another, mill-specific economic assessment of anaerobic digestion could identify cost-saving opportunities.

  17. Implementing Livestock Anaerobic Digestion Projects

    EPA Pesticide Factsheets

    Page provides information to help make an informed decision about installing an anaerobic digester. Is it a good match for a farm’s organic waste, project financing, development guidelines and permit requirements?

  18. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Rejean Samson; Anh LeDuy

    1982-08-01

    Spirulina maxima algal biomass could be used as the sole nutrient for the production of biogas by anaerobic digestion process. It is relatively simple to adapt the municipal sewage sludge to this new substrate. The adapted sludge is very stable. Under nonoptimal conditions, the methane yield and productivity obtained were 0.26 m/sup 3//(kg VS added day) and 0.26 m/sup 3//(kg VS added day), respectively, with the semicontinuous, daily fed, anaerobic digestion having loading rate of 0.97 kg VS/(m/sup 3/ day), retention time of 33 days and temperature of 30/sup 0/C.

  19. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment.

    PubMed

    Ruffino, Barbara; Campo, Giuseppe; Genon, Giuseppe; Lorenzi, Eugenio; Novarino, Daniel; Scibilia, Gerardo; Zanetti, Mariachiara

    2015-01-01

    Performances of mechanical and low-temperature (<100°C) thermal pre-treatments were investigated to improve the present efficiency of anaerobic digestion (AD) carried out on waste activated sludge (WAS) in the largest Italian wastewater treatment plant (2,300,000p.e.). Thermal pre-treatments returned disintegration rates of one order of magnitude higher than mechanical ones (about 25% vs. 1.5%). The methane specific production increased by 21% and 31%, with respect to untreated samples, for treatment conditions of respectively 70 and 90°C, 3h. Thermal pre-treatments also decreased WAS viscosity. Preliminary energy and economic assessments demonstrated that a WAS final total solid content of 5% was enough to avoid the employment of auxiliary methane for the pre-treatment at 90°C and the subsequent AD process, provided that all the heat generated was transferred to WAS through heat exchangers. Moreover, the total revenues from sale of the electricity produced from biogas increased by 10% with respect to the present scenario.

  20. Alkaline-mechanical pretreatment process for enhanced anaerobic digestion of thickened waste activated sludge with a novel crushing device: Performance evaluation and economic analysis.

    PubMed

    Cho, Si-Kyung; Ju, Hyun-Jun; Lee, Jeong-Gyu; Kim, Sang-Hyoun

    2014-08-01

    Although various pretreatments have been widely investigated to enhance the anaerobic digestion (AD) of waste activated sludge (WAS), economic feasibility issues have limited real-world applications. The authors examined the performance and economic analysis of an alkaline-mechanical process with a novel mechanical crushing device for thickened WAS pretreatment. The pretreatment at 40gTS/L, pH 13, and 90min reaction time achieved 64% of solubilization efficiency and 8.3 times higher CH4 yield than the control. In addition, a synergistic CH4 yield enhancement was observed when the pretreated and raw WAS were used together as feedstock, and the greatest synergy was observed at a volumetric mixture ratio of 50:50. Economic estimates indicate that up to 22% of WAS treatment costs would be saved by the installation of the suggested process. The experimental results clearly indicate that the alkaline-mechanical process would be highly effective and economically feasible for the AD of thickened WAS.

  1. Outdoor cultures of Chlorella pyrenoidosa in the effluent of anaerobically digested activated sludge: The effects of pH and free ammonia.

    PubMed

    Tan, Xiao-Bo; Zhang, Ya-Lei; Yang, Li-Bin; Chu, Hua-Qiang; Guo, Jun

    2016-01-01

    A freshwater algae Chlorella pyrenoidosa was cultured outdoors using anaerobically digested activated sludge effluent. The effects of pH variations were evaluated. The coupled pH variations and free ammonia toxicity significantly affected the algal growth, lipids accumulation and contamination control during every season. The free ammonia toxicity at high pH levels actually inhibited the algal growth. Compared to an optimal algal growth at a pH of 5.7-6.5, biomass productivity at a high pH of 8.3-8.8 was reduced by 67.15±6.98%, 54.39±6.42% and 83.63±5.71% in the spring, fall and summer, respectively. When the pH rose above 9.1-9.6, algae were unable to grow in the wastewater. However, high pH levels reduced contamination (e.g., bacteria and microalgae grazers) and triggered lipids accumulation in algal cells. These findings suggest that pH control strategies are essential for this type of algal wastewater system, where ammonia is the dominant nitrogen source.

  2. Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: system amendments and membrane performance.

    PubMed

    Qiao, Wei; Takayanagi, Kazuyuki; Shofie, Mohammad; Niu, Qigui; Yu, Han Qing; Li, Yu-You

    2013-12-01

    Coffee grounds are deemed to be difficult for degradation by thermophilic anaerobic process. In this research, a 7 L AnMBR accepting coffee grounds was operated for 82 days and failed with pH dropping to 6.6. The deficiency of micronutrients in the reactor was identified. The system was recovered by supplying micronutrient, pH adjustment and influent ceasing for 22 days. In the subsequent 160 days of co-digestion experiment, waste activated sludge (15% in the mixture) was mixed into coffee grounds. The COD conversion efficiency of 67.4% was achieved under OLR of 11.1 kg-COD/m(3) d and HRT of 20 days. Tannins was identified affecting protein degradation by a batch experiment. Quantitative supplements of NH4HCO3 (0.12 g-N/g-TSin) were effective to maintain alkalinity and pH. The solid concentration in the AnMBR reached 75 g/L, but it did not significantly affect membrane filtration under a flux of 5.1 L/m(2) h. Soluble carbohydrate, lipid and protein were partially retained by the membrane.

  3. Development of a fluorescence-based microplate method for the determination of volatile fatty acids in anaerobically digested and sewage sludges.

    PubMed

    Robert-Peillard, F; Palacio-Barco, E; Coulomb, B; Boudenne, J L

    2012-01-15

    This paper presents a simple, accurate and multi-sample method for the determination of volatile fatty acids (VFAs) thanks to a 96-well microplate technique. A procedure using an activating reagent of the carboxylic function (water-soluble carbodiimide EDC) and a fluorescent amino labeling reagent (N-(1-naphthyl)ethylenediamine, EDAN) allows the formation of an isoindole derivative that needs to be separated from initial fluorescent amine for efficient VFAs determination. Isolation of these fluorescent VFA-derivatives was carried out by use of the fluorescent quenching of EDAN with o-phthaldialdehyde (OPA). Quenching was most efficient at pH around 7 and by heating at 40°C within the microplate reader. This optimized procedure has been applied to various carboxylic acids and other organic compounds, demonstrating that VFA exhibit the highest fluorescence responses with homogeneous results for the main ones (acetic, propionic and butyric acid, all mass concentration expressed as acetic acid equivalents). This protocol was calibrated against acetic acid and determination of VFA was thus possible in the range 3.9-2,000 mg L(-1) (acetic acid equivalents). Subsequent application to real samples (sewage sludges or anaerobically digested samples) and comparison to gas chromatography analyses gave accurate results, proving the great potential of our high-throughput microplate-based technique for the analysis of VFA.

  4. Dry anaerobic co-digestion of organic fraction of municipal waste with paperboard mill sludge and gelatin solid waste for enhancement of hydrogen production.

    PubMed

    Elsamadony, M; Tawfik, A

    2015-09-01

    The aim of this study is to investigate the bio-H2 production via dry anaerobic co-fermentation of organic fraction of municipal solid waste (OFMSW) with protein and calcium-rich substrates such as gelatin solid waste (GSW) and paperboard mill sludge (PMS). Co-fermentation of OFMSW/GSW/PMS significantly enhanced the H2 production (HP) and H2 yield (HY). The maximum HP of 1082.5±91.4 mL and HY of 144.9±9.8 mL/gVSremoved were achieved at a volumetric ratio of 70% OFMSW:20% GSW:10% PMS. COD, carbohydrate, protein and lipids conversion efficiencies were 60.9±4.4%, 71.4±3.5%, 22.6±2.3% and 20.5±1.8% respectively. Co-fermentation process reduced the particle size distribution which is favorably utilized by hydrogen producing bacteria. The mean particle size diameters for feedstock and the digestate were 939.3 and 115.2μm, respectively with reduction value of 8.15-fold in the mixtures. The volumetric H2 production increased from 4.5±0.3 to 7.2±0.6 L(H2)/L(substrate) at increasing Ca(+2) concentrations from 1.8±0.1 to 6.3±0.5 g/L respectively.

  5. Comparison of microbial activity in anaerobic and microaerobic digesters.

    PubMed

    Jenicek, P; Celis, C A; Koubova, J; Pokorna, D

    2011-01-01

    Microaerobic alternative of anaerobic digestion offers many advantages especially when sulfide concentration in the digester is high. For better understanding of the microaerobic technology more detailed characterization of biomass activity is needed. Two equal digesters were operated under the same condition except of microaeration in one of them. During long term operation of anaerobic and microaerobic digesters the sludge quality and the biomass activity was monitored. The activity of sulfide oxidizing bacteria of microaerobic biomass was significantly higher in comparison with anaerobic biomass. The activity of sulfate reducing bacteria was comparable. The activity of methanogenic bacteria activity depended on sulfide concentration more than on microaeration. The extent of foaming problems was lower in the microaerobic than in the anaerobic digester.

  6. Long and short term impacts of CuO, Ag and CeO2 nanoparticles on anaerobic digestion of municipal waste activated sludge.

    PubMed

    Ünşar, E Kökdemir; Çığgın, A S; Erdem, A; Perendeci, N A

    2016-02-01

    In this study, long and short term inhibition impacts of Ag, CuO and CeO2 nanoparticles (NPs) on anaerobic digestion (AD) of waste activated sludge (WAS) were investigated. CuO NPs were detected as the most toxic NPs on AD. As the CuO NP concentration increased from 5 to 1000 mg per gTS, an increase in the inhibition of AD from 5.8 to 84.0% was observed. EC50 values of short and long term inhibitions were calculated as 224.2 mgCuO per gTS and 215.1 mgCuO per gTS, respectively. Ag and CeO2 NPs did not cause drastic impacts on AD as compared to CuO NPs. In the long term test, Ag NPs created 12.1% decrease and CeO2 NPs caused 9.2% increase in the methane production from WAS at the highest dosage. FISH imaging also revealed that the abundance of Archaea in raw WAS was similar in short and long term tests carried out with WAS containing Ag and CeO2 NPs. On the other hand, CuO NPs caused inhibition of Archaea in the long term test. Digestion kinetics of WAS containing Ag, CeO2, CuO NPs were also evaluated with Gompertz, Logistic, Transference and First Order models. The hydrolysis rate constant (kH) for each concentration of Ag and CeO2 NPs and the raw WAS was 0.027745 d(-1) while the kH of WAS containing high concentrations of CuO NPs was found to be 0.001610 d(-1).

  7. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: batch versus CSTR experiments to investigate optimal design.

    PubMed

    Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Peu, P; Sadowski, A G; Béline, F

    2012-02-01

    In this study, the maximum ratio of greasy sludge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determine the maximum ratio to be used in a CSTR configuration. Additionally, when the ratio of greasy sludge increased from 0% to 60% of the feed COD, CSTR methane production increased by more than 60%. When the greasy sludge ratio increased from 60% to 90% of the feed COD, the reactor yield decreased by 75%.

  8. Anaerobic digestion of crude glycerol from biodiesel manufacturing using a large-scale pilot plant: methane production and application of digested sludge as fertilizer.

    PubMed

    Baba, Yasunori; Tada, Chika; Watanabe, Ryoya; Fukuda, Yasuhiro; Chida, Nobuyoshi; Nakai, Yutaka

    2013-07-01

    This report is the first to consider methane production energy balance from crude glycerol at a practical rather than a laboratory scale. Crude glycerol was added to the plant progressively at between 5 and 75 L glycerol/30 m(3)-day for 1.5 years, and the energy balance was positive at a loading rate of 30 L glycerol/30 m(3)-day (1 ml/L-day). At this loading rate over one year, an energy output equivalent to 106% of the energy input was achieved. The surplus energy was equivalent to transport for 1200 km, so the proper feedstock-transportation distance was within a 12.5-km radius of the biogas plant. In addition, the digested sludge contained fertilizer components (T-N: 0.11%, P2O5: 0.036%, K2O: 0.19%) that increased grass yield by 1.2 times when applied to grass fields. Thus, crude glycerol is an attractive bioresource that can be used as both a feedstock for methane production and a liquid fertilizer.

  9. Potential nanosilver impact on anaerobic digestion at moderate silver concentrations.

    PubMed

    Yang, Yu; Chen, Qian; Wall, Judy D; Hu, Zhiqiang

    2012-03-15

    Silver nanoparticles (AgNPs, nanosilver) entering the sewers and wastewater treatment plants (WWTPs) are mostly accumulated in the sludge. In this study, we determined the impact of AgNPs on anaerobic glucose degradation, sludge digestion and methanogenic assemblages. At ambient (22 °C) and mesophilic temperatures (37 °C), there was no significant difference in biogas and methane production between the sludge treated with AgNPs at the concentrations up to 40 mg Ag/L (13.2 g silver/Kg biomass COD) and the control. In these anaerobic digestion samples, acetate and propionic acid were the only detectable volatile fatty acids (VFAs) and they were depleted in 3 days. On the other hand, more than 90% of AgNPs was removed from the liquid phase and associated with the sludge while almost no silver ions were released from AgNPs under anaerobic conditions. Quantitative PCR results indicated that Methanosaeta and Methanomicrobiales were the dominant methanogens, and the methanogenic diversity and population remained largely unchanged after nanosilver exposure and anaerobic digestion. The results suggest that AgNPs at moderate concentrations (e.g., ≤40 mg/L) have negligible impact on anaerobic digestion and methanogenic assemblages because of little to no silver ion release.

  10. Fate of antibiotic resistance genes and its drivers during anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment.

    PubMed

    Zhang, Junya; Chen, Meixue; Sui, Qianwen; Wang, Rui; Tong, Juan; Wei, Yuansong

    2016-10-01

    In this study, anaerobic digestion of mono-SS, MW-SS:FW and SS:MW-FW was investigated to understand the fate of ARGs and its drivers. Anaerobic digestion was effective for the reduction of metal resistance genes (MRGs), and could reduce the abundance of blaOXA-1, sulI and tetG, while sulII in co-digestion and blaTEM and ereA only in MW-SS. ARGs reduction could be partly attributed to the reduction of co-selective pressure from heavy metals reflected by MRGs. However, the abundance of mefA/E, ermB, ermF, tetM and tetX increased significantly. Anaerobic co-digestion, especially for MW-SS, could reduce total ARGs abundance compared with mono-SS, and evolution of bacterial community was the main driver for the fate of ARGs.

  11. Effect of structural carbohydrates and lignin content on the anaerobic digestion of paper and paper board materials by anaerobic granular sludge.

    PubMed

    Gonzalez-Estrella, Jorge; Asato, Caitlin M; Jerke, Amber C; Stone, James J; Gilcrease, Patrick C

    2017-05-01

    Anaerobic digestion (AD) of lignocellulosic materials is commonly limited by the hydrolysis step. Unlike unprocessed lignocellulosic materials, paper and paper board (PPB) are processed for their fabrication. Such modifications may affect their methane yields and methane production rates. Previous studies have investigated the correlation between lignin and biomethane yields of unprocessed lignocellulosic materials; nevertheless, there is limited knowledge regarding the relationship between the AD kinetic parameters and composition of PPB. This study evaluated correlations of methane yields and Monod and Gompertz kinetic parameters with structural carbohydrates, lignin, and ash concentration of five types of PPBs. All components were used as single and combined independent variables in linear regressions to predict methane yield, maximum specific methanogenic activity (SMAmax ), saturation constant (Ks ), and lag phase (λ). Additionally, microbial community profiles were obtained for each PPB assay. Results showed methane yields ranging from 69.2 ± 8.61 to 97.2 ± 2.29% of PPB substrates provided. The highest correlation coefficients were obtained for SMAmax as function of hemicellulose/(lignin + ash) (R(2)  = 0.86) and for λ as a function of lignin + cellulose (R(2)  = 0.85). All other parameters exhibited weaker correlations (R(2)  ≤ 0.77). Relative abundance analyses revealed no major changes in the community profile for each of the substrates evaluated. The overall findings of this study are: (i) combinations of structural carbohydrates, lignin, and ash used as ratios of degradable to either non-degradable or slowly degradable fractions predict AD kinetic parameters of PPB materials better than single independent variables; and (ii) other components added during their fabrication may also influence both methane yield and kinetic parameters. Biotechnol. Bioeng. 2017;114: 951-960. © 2016 Wiley Periodicals, Inc.

  12. Impact of Adding Biopreparations on the Anaerobic Co-Digestion of Sewage Sludge with Grease Trap Waste

    NASA Astrophysics Data System (ADS)

    Worwąg, Małgorzata

    2016-09-01

    The aim of the study was to evaluate the effect of using biopreparations on efficiency of the co-fermentation process. Commercial bacterial biopreparations DBC Plus Type L, DBC Plus Type R5 and yeast biopreparations were used in the study. The process of cofermentation of sewage sludge with grease trap waste from a production plant that manufactured methyl esters of fatty acids was analysed in the laboratory environment under mesophilic conditions. The sludge in the reactor was replaced once a day, with hydraulic retention time of 10 days. Grease trap waste accounted for 35%wt. of the fermentation mixture. The stabilization process was monitored everyday based on the measurements of biogas volume. Addition of yeast biopreparation to methane fermentation of sewage sludge with grease trap waste caused an increase in mean daily biogas production from 6.9 dm3 (control mixture) to 9.21dm3 (mixture M3). No differences in biogas production were found for other cases (mixtures M1, M2). A similar relationship was observed for methane content in biogas.

  13. Evaluation of thermophilic anaerobic digestion

    SciTech Connect

    Shamskhorzani, R.

    1989-01-01

    The objectives of this study were to examine the effect of temperature on the digestion of a synthetic substrate, alone and with waste activated sludge (WAS), and to determine the effect of nickel, cobalt and molybdenum on thermophilic digestion. Two different types of reactors, batch fed and continuous flow, were operated in four separate phases for over two years. The data indicated that thermophilic digestion could be established from digesting mesophilic domestic sewage sludge by setting the temperature at 50C. An additional acclimation period of about 15 days was required for stimulation of thermophilic bacteria at 60C. Thermophilic digestion at temperatures up to 75C could easily be established in a few days, provided that the digester was well adapted at 60C. The rate of metabolism increased with temperature, reaching an optimum between 60C and 65C. It was possible to shift from 50C to 37C and back to thermophilic temperatures with a minimum of difficulties. Temperature fluctuation of less than 5C did not cause any upset in the performance of the thermophilic digesters operating at 50C to 65C. Addition of Ni, Co and Mo at 1 mg/L appeared to be satisfactory with the suspended solids maintained in the system at long SRT periods. The best substrate removal at 50C was 99.6% reduction at 10 g/L/d COD and 99.6% reduction at 14 g/L/d COD at 55C. The limits for COD loading under a once daily batch fed operations were 24 g/d at 50C and 33 g/d at 55C. The continuous flow fixed-film digester was able to digest WAS with liquid detention times as short as 8 hours. Thirty percent digestion of the volatile solids in WAS was obtained at a 3-day LDT and 16% at an 8-hr LDT.

  14. Anaerobic Digestion Analysis. Training Module 5.120.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with alkalinity, volatile acids and carbon dioxide determinations for an anaerobic sludge digester. Included are objectives, instructor guides, student handouts and transparency masters. This module considers total and bicarbonate…

  15. Defining Anaerobic Digestion Stability-Full Scale Study

    NASA Astrophysics Data System (ADS)

    Demitry, M. E., Sr.

    2014-12-01

    A full-scale anaerobic digester receiving a mixture of primary and secondary sludge was monitored for one hundred days. A chemical oxygen demand, COD, and a volatile solids, VS, mass balance was conducted to evaluate the stability of the digester and its capability of producing methane gas. The COD mass balance could account for nearly 90% of the methane gas produced while the VS mass balance showed that 91% of the organic matter removed resulted in biogas formation. Other parameters monitored included: pH, alkalinity, VFA, and propionic acid. The values of these parameters showed that steady state had occurred. Finally, at mesophilic temperature and at steady state performance, the anaerobic digester stability was defined as a constant ratio of methane produced per substrate of ΔVS (average ratio=0.404 l/g). This ratio can be used as universal metric to determine the anaerobic digester stability in an easy and inexpensive way.

  16. [Anaerobic digestion of lignocellulosic biomass with animal digestion mechanisms].

    PubMed

    Wu, Hao; Zhang, Pan-Yue; Guo, Jian-Bin; Wu, Yong-Jie

    2013-02-01

    Lignocellulosic material is the most abundant renewable resource in the earth. Herbivores and wood-eating insects are highly effective in the digestion of plant cellulose, while anaerobic digestion process simulating animal alimentary tract still remains inefficient. The digestion mechanisms of herbivores and wood-eating insects and the development of anaerobic digestion processes of lignocellulose were reviewed for better understanding of animal digestion mechanisms and their application in design and operation of the anaerobic digestion reactor. Highly effective digestion of lignocellulosic materials in animal digestive system results from the synergistic effect of various digestive enzymes and a series of physical and biochemical reactions. Microbial fermentation system is strongly supported by powerful pretreatment, such as rumination of ruminants, cellulase catalysis and alkali treatment in digestive tract of wood-eating insects. Oxygen concentration gradient along the digestive tract may stimulate the hydrolytic activity of some microorganisms. In addition, the excellent arrangement of solid retention time, digesta flow and end product discharge enhance the animal digestion of wood cellulose. Although anaerobic digestion processes inoculated with rumen microorganisms based rumen digestion mechanisms were developed to treat lignocellulose, the fermentation was more greatly limited by the environmental conditions in the anaerobic digestion reactors than that in rumen or hindgut. Therefore, the anaerobic digestion processes simulating animal digestion mechanisms can effectively enhance the degradation of wood cellulose and other organic solid wastes.

  17. Effect of digestion time on anaerobic digestion with high ammonia concentration

    NASA Astrophysics Data System (ADS)

    Oktavitri, Nur Indradewi; Purnobasuki, Hery; Kuncoro, Eko Prasetyo; Purnamasari, Indah; Semma Hadinnata, P.

    2016-03-01

    Anaerobic digestion was developed to treat high concentration organic compound efficiently in certain Digestion Time (DT). High ammonia concentration could influenced removal organic compound in digestion. This bench scale study investigated the effect of digestion time on anaerobic batch reactor with high ammonia concentration. Total Ammonia Nitrogen (TAN) concentration was adjusted 4000 and 5000 mg/1, Digestion time was ranged from 0-26 d, operation temperature was ranged from 28-29°C, inoculum was collected from slaughter house sludge. The degradation of Chemical Oxygen Demand (COD) correlated with digestion time. The concentration of TAN from synthetic wastewater contain 5000 mg/1 of TAN more fluctuated than those use 4000 mg/1 of TAN. However, the biogas production from wastewater contained 4000 mg/1 of TAN gradually increased until 24 d of DT. The reactor contain 5000 mg/1 of TAN only growth until 12 d and steady state at over 12 d of digestion time.

  18. Effect of increased load of high-strength food wastewater in thermophilic and mesophilic anaerobic co-digestion of waste activated sludge on bacterial community structure.

    PubMed

    Jang, Hyun Min; Ha, Jeong Hyub; Kim, Mi-Sun; Kim, Jong-Oh; Kim, Young Mo; Park, Jong Moon

    2016-08-01

    In recent years, anaerobic co-digestion (AcoD) has been widely used to improve reactor performance, especially methane production. In this study, we applied two different operating temperatures (thermophilic and mesophilic) and gradually increased the load of food wastewater (FWW) to investigate the bacterial communities during the AcoD of waste activated sludge (WAS) and FWW. As the load of FWW was increased, methane production rate (MPR; L CH4/L d) and methane content (%) in both Thermophilic AcoD (TAcoD) and Mesophilic AcoD (MAcoD) increased significantly; the highest MPR and methane content in TAcoD (1.423 L CH4/L d and 68.24%) and MAcoD (1.233 L CH4/L d and 65.21%) were observed when the FWW mixing ratio was 75%. However, MPR and methane yield in both reactors decreased markedly and methane production in TAcoD ceased completely when only FWW was fed into the reactor, resulting from acidification of the reactor caused by accumulation of organic acids. Pyrosequencing analysis revealed a decrease in bacterial diversity in TAcoD and a markedly different composition of bacterial communities between TAcoD and MAcoD with an increase in FWW load. For example, Bacterial members belonging to two genera Petrotoga (assigned to phylum Thermotogae) and Petrimonas (assigned to phylum Bacteroidetes) became dominant in TAcoD and MAcoD with an increase in FWW load, respectively. In addition, quantitative real-time PCR (qPCR) results showed higher bacterial and archaeal populations (expressed as 16S rRNA gene concentration) in TAcoD than MAcoD with an increase in FWW load and showed maximum population when the FWW mixing ratio was 75% in both reactors. Collectively, this study demonstrated the dynamics of key bacterial communities in TAcoD and MAcoD, which were highly affected by the load of FWW.

  19. Influence of two-phase anaerobic digestion on fate of selected antibiotic resistance genes and class I integrons in municipal wastewater sludge.

    PubMed

    Wu, Ying; Cui, Erping; Zuo, Yiru; Cheng, Weixiao; Rensing, Christopher; Chen, Hong

    2016-07-01

    The response of representative antibiotic resistance genes (ARGs) to lab-scale two-phase (acidogenic/methanogenic phase) anaerobic digestion processes under thermophilic and mesophilic conditions was explored. The associated microbial communities and bacterial pathogens were characterized by 16S rRNA gene sequencing. A two-phase thermophilic digestion reduced the presence of tetA, tetG, tetX, sul1, ermB, dfrA1, dfrA12 and intI1 exhibiting 0.1-0.72 log unit removal; in contrast, tetO, tetW, sul3, ermF and blaTEM even increased relative to the feed, and sul2 showed no significant decrease. The acidogenic phase of thermophilic digestion was primarily responsible for reducing the quantity of these genes, while the subsequent methanogenic phase caused a rebound in their quantity. In contrast, a two-phase mesophilic digestion process did not result in reducing the quantity of all ARGs and intI1 except for ermB and blaTEM. ARGs patterns were correlated with Proteobacteria and Actinobacteria during the two-phase anaerobic digestion.

  20. Aerobic and anaerobic bioprocessing of activated sludge: floc disintegration by enzymes.

    PubMed

    Ayol, Azize; Filibeli, Ayse; Sir, Diclehan; Kuzyaka, Ersan

    2008-11-01

    Hydrolytic enzymes such as glucosidases, lipases, and proteases have an imperative function at the hydrolysis stage of complex organic structures in the degradation of biodegradable particulate organic matter. As a key factor, extracellular polymeric substances (EPS) control the extracellular hydrolytic enzymes in this degradation mechanism. A flocculated matrix of EPS bridging with bacteria holds back the dewaterability properties of the bioprocessed sludges. Disruption of the flocculated matrix leads to improved solubilization of sludge solids by attacking the hydrolytic enzymes to polymeric substances forming enzyme-substrate complexes. To determine the floc disintegration mechanisms by enzymes during aerobic and anaerobic bioprocessing of sludges, experimental data obtained from three aerobic digesters and three anaerobic digesters were evaluated. As part of a broader project examining the overall fate and effects of hydrolytic enzymes in biological sludge stabilization, this paper compares the performances of aerobic and anaerobic reactors used in this study and reports significant improvements in enzymatic treatment of activated sludge.

  1. Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease.

    PubMed

    Yang, Zhao-Hui; Xu, Rui; Zheng, Yue; Chen, Ting; Zhao, Li-Jun; Li, Min

    2016-07-01

    Performance of co-digesters, treated of sewage sludge (SS) with fat, oil and grease (FOG), were conducted semi-continuously in two mesophilic reactors over 180days. Compared with SS mono-digestion, biogas production and TS removal efficiency of co-digestion were significantly enhanced up to 35% and 26% by adding upper limit FOG (60% on VS). Enhancement in co-digestion performance was also stimulated by the release of extracellular polymeric substances (EPS), which was increased 40% in both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) than that of mono-digester. Based on high-throughput sequencing (HTS), analysis of microbial 16S rRNA gene comprehensively revealed the dynamic change of microbial community. Results showed that both bacterial and archaeal undergone an apparent succession with FOG addition, and large amount of consortium like Methanosaeta and N09 were involved in the process. Redundancy analysis showed the acetoclastic genera Methanosaeta distinctly related with biogas production and EPS degradation.

  2. Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision.

    PubMed

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2017-01-01

    This study used life cycle assessment to evaluate the environmental impact of anaerobic co-digestion (AcoD) and compared it against the current waste management system in two case study areas. Results indicated AcoD to have less environmental impact for all categories modelled excluding human toxicity, despite the need to collect and pre-treat food waste separately. Uncertainty modelling confirmed that AcoD has a 100% likelihood of a smaller global warming potential, and for acidification, eutrophication and fossil fuel depletion AcoD carried a greater than 85% confidence of inducing a lesser impact than the current waste service.

  3. Anaerobic digestion potential of urban organic waste: a case study in Malmö.

    PubMed

    Davidsson, Asa; Jansen, Jes la Cour; Appelqvist, Björn; Gruvberger, Christopher; Hallmer, Martin

    2007-04-01

    A study of existing organic waste types in Malmö, Sweden was performed. The purpose was to gather information about organic waste types in the city to be able to estimate the potential for anaerobic treatment in existing digesters at the wastewater treatment plan (WWTP). The urban organic waste types that could have a significant potential for anaerobic digestion amount to about 50 000 tonnes year(-1) (sludge excluded). Some of the waste types were further evaluated by methane potential tests and continuous pilot-scale digestion. Single-substrate digestion and co-digestion of pre-treated, source-sorted organic fraction of municipal solid waste, wastewater sludge, sludge from grease traps and fruit and vegetable waste were carried out. The experiments showed that codigestion of grease sludge and WWTP sludge was a better way of making use of the methane potential in the grease trap sludge than single-substrate digestion. Another way of increasing the methane production in sludge digesters is to add source-sorted organic fraction of municipal solid waste (SSOFMSW). Adding SSOFMSW (20% of the total volatile solids) gave a 10-15% higher yield than could be expected by comparison with separate digestion of sludge respective SSOFMSW. Co-digestion of sludge and organic waste is beneficial not just for increasing gas production but also for stabilizing the digestion process. This was seen when co-digesting fruit and vegetable waste and sludge. When co-digested with sludge, this waste gave a better result than the separate digestion of fruit and vegetable waste. Considering single-substrate digestion, SSOFMSW is the only waste in the study which makes up a sufficient quantity to be suitable as the base substrate in a full-scale digester that is separated from the sludge digestion. The two types of SSOFMSW tested in the pilot-scale digestion were operated successfully at mesophilic temperature. By adding SSOFMSW, grease trap sludge and fruit and vegetables waste to sludge

  4. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge.

    PubMed

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-11

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  5. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    PubMed Central

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-01-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them. PMID:27166174

  6. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  7. Efficiency of a pilot-scale integrated sludge thickening and digestion reactor in treating low-organic excess sludge.

    PubMed

    He, Qiang; Li, Jiang; Liu, Hongxia; Tang, Chuandong; de Koning, Jaap; Spanjers, Henri

    2012-06-01

    The sludge production from medium- and small-scale wastewater treatment plants in the Three Gorges Reservoir Region is low and non-stable; especially, the organic content in this sludge is low (near 40% of VS/TS). An integrated thickening and digestion (ISTD) reactor was developed to treat this low-organic excess sludge. After a flow test and start-up experiment of the reactor, a running experiment was used to investigate the excess sludge treatment efficiency under five different excess sludge inflows: 200, 300, 400, 500 and 400 L/d (a mixture of excess sludge and primary sludge in a volume ratio of 9:1). This trial was carried out in the wastewater treatment plant in Chongqing, which covers 80% of the Three Gorges Reservoir Region, under the following conditions: (1) sludge was heated to 38-40 degrees C using an electrical heater to maintain anaerobic mesophilic digestion; (2) the biogas produced was recirculated to mix raw sludge with anaerobic sludge in the reactor under the flow rate of 12.5 L/min. There were three main results. Firstly, the flow pattern of the inner reactor was almost completely mixed under the air flow of 12.0 L/min using clear water. Secondly, under all the different sludge inflows, the water content in the outlet sludge was below 93%. Thirdly, the organic content in the outlet sludge was decreased from 37% to 30% and from 24% to 20%, whose removal ratio was in relation to the organic content of the inlet sludge. The excess sludge treatment capacity of the ISTD reactor was according to the organic content in the excess sludge.

  8. Anaerobic digestion of alcohol stillage

    SciTech Connect

    Binder, L.K.

    1981-01-01

    In the production of ethanol from grain, the distillation step produces a residue of distillers grains or stillage that contains greater than 90% water and is currently dried and used as a cattle feed supplement. Experimental work was carried out on the anaerobic digestion of the stillage to determine the feasibility of using the CH/sub 4/ produced to supply the energy required in the ethanol distillation step. The fermentation characteristics of the stillage were studied, and the amount of CH/sub 4/ produced was determined. Based on an economic analysis, the value of the pressed solids fraction of the stillage as feed is much greater than the potential return from producing CH/sub 4/.

  9. Influence of fluid dynamics on anaerobic digestion of food waste for biogas production.

    PubMed

    Wang, Fengping; Zhang, Cunsheng; Huo, Shuhao

    2017-05-01

    To enhance the stability and efficiency of an anaerobic process, the influences of fluid dynamics on the performance of anaerobic digestion and sludge granulation were investigated using computational fluid dynamics (CFD). Four different propeller speeds (20, 60, 100, 140 r/min) were adopted for anaerobic digestion of food waste in a 30 L continuously stirred tank reactor (CSTR). Experimental results indicated that the methane yield increased with increasing the propeller speed within the experimental range. Results from CFD simulation and sludge granulation showed that the optimum propeller speed for anaerobic digestion was 100 r/min. Lower propeller speed (20 r/min) inhibited mass transfer and resulted in the failure of anaerobic digestion, while higher propeller speed (140 r/min) would lead to higher energy loss and system instability. Under this condition, anaerobic digestion could work effectively with higher efficiency of mass transfer which facilitated sludge granulation and biogas production. The corresponding mean liquid velocity and shear strain rate were 0.082 m/s and 10.48 s(-1), respectively. Moreover, compact granular sludge could be formed, with lower energy consumption. CFD was successfully used to study the influence of fluid dynamics on the anaerobic digestion process. The key parameters of the optimum mixing condition for anaerobic digestion of food waste in a 30 L CSTR including liquid velocity and shear strain rate were obtained using CFD, which were of paramount significance for the scale-up of the bioreactor. This study provided a new way for the optimization and scale-up of the anaerobic digestion process in CSTR based on the fluid dynamics analysis.

  10. Fate of Trace Metals in Anaerobic Digestion.

    PubMed

    Fermoso, F G; van Hullebusch, E D; Guibaud, G; Collins, G; Svensson, B H; Carliell-Marquet, C; Vink, J P M; Esposito, G; Frunzo, L

    2015-01-01

    A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments--often agricultural lands receiving discharge waters from anaerobic digestion processes--simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.

  11. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1).

    PubMed

    Blumensaat, F; Keller, J

    2005-01-01

    The aim of the study presented was to implement a process model to simulate the dynamic behaviour of a pilot-scale process for anaerobic two-stage digestion of sewage sludge. The model implemented was initiated to support experimental investigations of the anaerobic two-stage digestion process. The model concept implemented in the simulation software package MATLAB/Simulink is a derivative of the IWA Anaerobic Digestion Model No.1 (ADM1) that has been developed by the IWA task group for mathematical modelling of anaerobic processes. In the present study the original model concept has been adapted and applied to replicate a two-stage digestion process. Testing procedures, including balance checks and 'benchmarking' tests were carried out to verify the accuracy of the implementation. These combined measures ensured a faultless model implementation without numerical inconsistencies. Parameters for both, the thermophilic and the mesophilic process stage, have been estimated successfully using data from lab-scale experiments described in literature. Due to the high number of parameters in the structured model, it was necessary to develop a customised procedure that limited the range of parameters to be estimated. The accuracy of the optimised parameter sets has been assessed against experimental data from pilot-scale experiments. Under these conditions, the model predicted reasonably well the dynamic behaviour of a two-stage digestion process in pilot scale.

  12. Pilot plant study of the effects of quebracho and wattle on anaerobic digestion

    SciTech Connect

    Eye, J.D.; Ficker, C.F.

    1982-01-01

    Quebracho and wattle tannin adversely affected the operational control required for the systems as well as CH4 production. The anaerobic organisms however degraded the tannins and the characteristic red color was effectively removed from the supernatant (liquid phase of digested sludge) during digestion.

  13. Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum 'Synergistetes', isolated from an anaerobic sludge digester.

    PubMed

    Ganesan, Akila; Chaussonnerie, Sébastien; Tarrade, Anne; Dauga, Catherine; Bouchez, Théodore; Pelletier, Eric; Le Paslier, Denis; Sghir, Abdelghani

    2008-09-01

    A novel anaerobic, mesophilic, amino-acid-utilizing bacterium, strain 158T, was isolated from an anaerobic digester of a wastewater treatment plant. Cells of strain 158T were non-motile, rod-shaped (2.0-3.0 x 0.8-1.0 microm) and stained Gram-negative. Optimal growth occurred at 37 degrees C and pH 7.0 in an anaerobic basal medium containing 1 % Casamino acids. Strain 158T fermented arginine, histidine, lysine and serine and showed growth on yeast extract, brain-heart infusion (BHI) medium and tryptone, but not on carbohydrates, organic acids or alcohols. The end products of degradation were: acetate, butyrate, H2 and CO2 from arginine; acetate, propionate, butyrate, H2 and CO2 from lysine; and acetate, propionate, butyrate, valerate, H2 and CO2 from histidine, serine, BHI medium, Casamino acids and tryptone. The DNA G+C content was 55.8 mol%. The 16S rRNA gene sequence of strain 158T showed only 92.6 % sequence similarity with that of Synergistes jonesii, the only described species of the 'Synergistes' group. The major cellular fatty acids were iso-C(15:0) (16.63 %), iso-C(15:0) 3-OH (12.41 %) and C(17:1)omega6c (9.46 %) and the polar fatty acids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylamine; these fatty acid profiles did not resemble those of any recognized bacterial species. Due to the considerable differences in genotypic, phenotypic and phylogenetic characteristics between strain 158T and those of its nearest relative, it is proposed that strain 158T represents a novel species in a new genus, Cloacibacillus evryensis gen. nov., sp. nov., in the phylum 'Synergistetes'. The type strain is 158T (=DSM 19522T=JCM 14828T).

  14. Inclusion of Saccharina latissima in conventional anaerobic digestion systems.

    PubMed

    Ometto, F; Berg, A; Björn, A; Safaric, L; Svensson, B H; Karlsson, A; Ejlertsson, J

    2017-04-04

    Loading macroalgae into existing anaerobic digestion (AD) plants allows us to overcome challenges such as low digestion efficiencies, trace elements limitation, excessive salinity levels and accumulation of volatile fatty acids (VFAs), observed while digesting algae as a single substrate. In this work, the co-digestion of the brown macroalgae Saccharina latissima with mixed municipal wastewater sludge (WWS) was investigated in mesophilic and thermophilic conditions. The hydraulic retention time (HRT) and the organic loading rate (OLR) were fixed at 19 days and 2.1 g l(-1) d(-1) of volatile solids (VS), respectively. Initially, WWS was digested alone. Subsequently, a percentage of the total OLR (20%, 50% and finally 80%) was replaced by S. latissima biomass. Optimal digestion conditions were observed at medium-low algae loading (≤50% of total OLR) with an average methane yield close to [Formula: see text] and [Formula: see text] in mesophilic and thermophilic conditions, respectively. The conductivity values increased with the algae loading without inhibiting the digestion process. The viscosities of the reactor sludges revealed decreasing values with reduced WWS loading at both temperatures, enhancing mixing properties.

  15. REACTIVATION AND REGROWTH OF INDICATOR ORGANISMS ASSOCIATED WITH ANAEROBICALLY DIGESTED AND DEWATERED BIOSOLIDS: EPA’S PERSPECTIVE

    EPA Science Inventory

    The Water Environment Research Foundation (WERF) recently published a report titled Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bacte...

  16. Assessment of hydrogen metabolism in commercial anaerobic digesters.

    PubMed

    Kern, Tobias; Theiss, Juliane; Röske, Kerstin; Rother, Michael

    2016-05-01

    Degradation of biomass in the absence of exogenous electron acceptors via anaerobic digestion involves a syntrophic association of a plethora of anaerobic microorganisms. The commercial application of this process is the large-scale production of biogas from renewable feedstock as an alternative to fossil fuels. After hydrolysis of polymers, monomers are fermented to short-chain fatty acids and alcohols, which are further oxidized to acetate. Carbon dioxide, molecular hydrogen (H2), and acetate generated during the process are converted to methane by methanogenic archaea. Since many of the metabolic pathways as well as the syntrophic interactions and dependencies during anaerobic digestion involve formation, utilization, or transfer of H2, its metabolism and the methanogenic population were assessed in various samples from three commercial biogas plants. Addition of H2 significantly increased the rate of methane formation, which suggested that hydrogenotrophic methanogenesis is not a rate-limiting step during biogas formation. Methanoculleus and Methanosarcina appeared to numerically dominate the archaeal population of the three digesters, but their proportion and the Bacteria-to-Archaea ratio did not correlate with the methane productivity. Instead, hydrogenase activity in cell-free extracts from digester sludge correlated with methane productivity in a positive fashion. Since most microorganisms involved in biogas formation contain this activity, it approximates the overall anaerobic metabolic activity and may, thus, be suitable for monitoring biogas reactor performance.

  17. Anaerobic treatment of sludge from a nitrification-denitrification landfill leachate plant

    SciTech Connect

    Maranon, E. . E-mail: emara@uniovi.es; Castrillon, L.; Fernandez, Y.; Fernandez, E.

    2006-07-01

    The viability of anaerobic digestion of sludge from a MSW landfill leachate treatment plant, with COD values ranging between 15,000 and 19,400 mg O{sub 2} dm{sup -3}, in an upflow anaerobic sludge blanket reactor was studied. The reactor employed had a useful capacity of 9 l, operating at mesophilic temperature. Start-up of the reactor was carried out in different steps, beginning with diluted sludge and progressively increasing the amount of sludge fed into the reactor. The study was carried out over a period of 7 months. Different amounts of methanol were added to the feed, ranging between 6.75 and 1 cm{sup 3} dm{sup -3} of feed in order to favour the growth of methanogenic flora. The achieved biodegradation of the sludge using an upflow anaerobic sludge blanket Reactor was very high for an HRT of 9 days, obtaining decreases in COD of 84-87% by the end of the process. Purging of the digested sludge represented {approx}16% of the volume of the treated sludge.

  18. The anaerobic digestion of organic solid wastes

    SciTech Connect

    Hartung, H.A.

    1996-09-01

    Anaerobic digestion offers many advantages in the processing of organic solid wastes, using a closed system to convert the waste to combustible gas and a stabilized organic residue.Odors are contained while digestion removes their source and gas is collected for energy recovery as heat or electricity. The stabilized residue is less than the starting waste by the mass of gas produced, and it can be disposed of by land application, land filling, incineration or composting. The stimulation of digesters and the phenomenon of co-digestion are two ways the performance of anaerobic digesters can be enhanced. Data from farm digesters and municipal wastewater treatment plants illustrate the present venue of the process; laboratory studies of the anaerobic digestion of a variety of solid wastes show that the process can be applied to these materials as well. About two thirds of municipal solid waste is shown to be amenable to anaerobic digestion in a substrate from an active municipal sewage plant digester.

  19. Methane from partially digested sewage sludge using a steam-injection rapid thermal reactor. Final report

    SciTech Connect

    Leuschner, A.P.; Laquidara, M.J.

    1988-09-01

    Each day, a fleet of barges hauls 300,000 cubic feet of sewage sludge from wastewater treatment facilities in New York City, to an ocean dumping site 106 miles offshore. On January 1, 1992, this ocean dumping site will be officially closed by federal mandate, forcing the city to find alternative disposal methods for its sewage sludge. Researchers at Dynatech and the Thayer School of Engineering at Dartmouth College have explored an innovative method for enhancing the anaerobic digestion sludge treatment system. Results from an extensive series of laboratory tests indicate that using a thermal reactor, an additional 70% of the organic material in the sludge can be converted to biogas by anaerobic digestion. More importantly, 85% of the total organic material is removed from the sludge. The remaining sludge was dewatered and found to be two to four times drier than normally dewatered sludge. Applying these results to NYC, the volume of sludge requiring disposal might be reduced from 300,000 cubic feet per day to about 13,000 cubic feet per day through a three-step process employing thermal reactors, anaerobic digestion and dewatering.

  20. Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia stripping.

    PubMed

    Yabu, Hironori; Sakai, Chikako; Fujiwara, Tomoko; Nishio, Naomichi; Nakashimada, Yutaka

    2011-03-01

    To avoid the inhibition of methane production by ammonia that occurs during the degradation of garbage, anaerobic digestion with prior ammonia production and subsequent stripping was investigated. In the ammonia production phase, the maximum ammonia concentration was approximately 2800 mg N/kg of total wet sludge in the range of 4 days of sludge retention time, indicating that only 43% of total nitrogen in the model garbage was converted to ammonia. The model garbage from which ammonia was produced and stripped was subjected to semi-continuous thermophilic dry anaerobic digestion over 180 days. The gas yield was in the range of 0.68 to 0.75 Nm(3)/kg volatile solid, and it decreased with the decrease of the sludge retention time. The ammonia-nitrogen concentration in the sludge was kept below 3000 mg N/kg total wet sludge. Microbial community structure analysis revealed that the phylum Firmicutes dominated in the ammonia production, but the community structure changed at different sludge retention times. In dry anaerobic digestion, the dominant bacteria shifted from the phylum Thermotogae to Firmicutes. The dominant archaeon was the genus Methanothermobacter, but the ratio of Methanosarcina increased during the process of dry anaerobic digestion.

  1. Effect of domestication on microorganism diversity and anaerobic digestion of food waste.

    PubMed

    Bi, S J; Hong, X J; Wang, G X; Li, Y; Gao, Y M; Yan, L; Wang, Y J; Wang, W D

    2016-08-19

    To accomplish the rapid start-up and stable operation of biogas digesters, an efficient inoculum is required. To obtain such an inoculum for food waste anaerobic digestion, we domesticated dairy manure anaerobic digestion residue by adding food waste every day. After 36 days, the pH and biogas yield stabilized signifying the completion of domestication. During domestication, the microbial communities in the inocula were investigated by constructing 16S rDNA clone libraries. We evaluated the effect of the domesticated inoculum by testing batch food waste anaerobic digestion with a non-domesticated inoculum as a control. The pH and methane yield of the digestion systems were determined as measurement indices. Domestication changed the composition and proportion of bacteria and archaea in the inocula. Of the bacteria, Clostridia (49.3%), Bacteroidales (19.5%), and Anaerolinaceae (8.1%) species were dominant in the seed sludge; Anaerolinaceae (49.0%), Clostridia (28.4%), and Bacteroidales (9.1%), in domestication sludge. Methanosaeta was the dominant genus in both of the seed (94.3%) and domestication (74.3%) sludge. However, the diversity of methanogenic archaea was higher in the domestication than in seed sludge. Methanoculleus, which was absent from the seed sludge, appeared in the domestication sludge (21.7%). When the domesticated inoculum was used, the digestion system worked stably (organic loading rate: 20 gVS/L; methane yield: 292.2 ± 9.8 mL/gVS; VS = volatile solids), whereas the digestion system inoculated with seed sludge failed to generate biogas. The results indicate that inoculum domestication ensures efficient and stable anaerobic digestion by enriching the methanogenic strains.

  2. [Factors of effecting hydrogen production from anaerobic fermentation of excess sewage sludge].

    PubMed

    Cai, Mu-lin; Liu, Jun-xin

    2005-03-01

    Large amounts of sewage sludge is produced from the treatment of wastewater by biological processes, which is usually treated by anaerobic digestion to produce methane gas. Acetogenesis and hydrogen are an intermediate phase during the anaerobic digestion. Batch tests of fermentative hydrogen production under different initial pH (3.0 - 12.5) were compared using the raw sludge and alkaline pretreated sludge. The influences of the characteristics and concentration of sludge were also examined thereafter. Results show that the optimal initial pH for biohydrogen production from sewage sludge was around 11.0. Under this optimal condition, the biohydrogen yield of raw sludge was 8.1 mL/g, and it would reach to 16.9 mL/g when the sludge was pretreated by alkali. Furthermore, there is no methane generation during the biohydrogen fermentation of the alkaline pretreatment sludge in 4 days and the hydrogen consumption is also slowed down. In addition, a low VSS/SS rate will reduce the hydrogen yield, while the concentrations of sludge have no obvious compact on it.

  3. Upflow anaerobic sludge blanket reactor--a review.

    PubMed

    Bal, A S; Dhagat, N N

    2001-04-01

    Biological treatment of wastewater basically reduces the pollutant concentration through microbial coagulation and removal of non-settleable organic colloidal solids. Organic matter is biologically stabilized so that no further oxygen demand is exerted by it. The biological treatment requires contact of the biomass with the substrate. Various advances and improvements in anaerobic reactors to achieve variations in contact time and method of contact have resulted in development of in suspended growth systems, attached growth or fixed film systems or combinations thereof. Although anaerobic systems for waste treatment have been used since late 19th century, they were considered to have limited treatment efficiencies and were too slow to serve the needs of a quickly expanding wastewater volume, especially in industrialized and densely populated areas. At present aerobic treatment is the most commonly used process to reduce the organic pollution level of both domestic and industrial wastewaters. Aerobic techniques, such as activated sludge process, trickling filters, oxidation ponds and aerated lagoons, with more or less intense mixing devices, have been successfully installed for domestic wastewater as well as industrial wastewater treatment. Anaerobic digestion systems have undergone modifications in the last two decades, mainly as a result of the energy crisis. Major developments have been made with regard to anaerobic metabolism, physiological interactions among different microbial species, effects of toxic compounds and biomass accumulation. Recent developments however, have demonstrated that anaerobic processes might be an economically attractive alternative for the treatment of different types of industrial wastewaters and in (semi-) tropical areas also for domestic wastewaters. The anaerobic degradation of complex, particulate organic matter has been described as a multistep process of series and parallel reactions. It involves the decomposition of organic and

  4. Robust regulation of anaerobic digestion processes.

    PubMed

    Mailleret, L; Bernard, O; Steyer, J P

    2003-01-01

    This paper deals with the problem of controlling anaerobic digestion processes. A two-step (i.e. acidogenesis-methanization) mass balance model is considered for a 1 m3 fixed bed digester treating industrial wine distillery wastewater. The control law aims at regulating the organic pollution level while avoiding washout of biomass. To this end, a simple output feedback controller is considered which regulates a variable strongly related to the Chemical Oxygen Demand (COD). Numerical simulations assuming noisy measurements first illustrate the robustness of this control procedure. Then, the regulating procedure is implemented on the considered anaerobic digestion process in order to validate and demonstrate its efficiency in real life experiments.

  5. Digestion of sludge and organic waste in the sustainability concept for Malmö, Sweden.

    PubMed

    la Cour Jansen, J; Gruvberger, C; Hanner, N; Aspegren, H; Svärd, A

    2004-01-01

    Anaerobic digestion of sludge has been part of the treatment plant in Malmö for many years and several projects on optimisation of the digestion process have been undertaken in full scale as well as in pilot scale. In order to facilitate a more sustainable solution in the future for waste management, solid waste organic waste is sorted out from households for anaerobic treatment in a newly built city district. The system for treatment of the waste is integrated in a centralised solution located at the existing wastewater treatment plant. A new extension of the digester capacity enables separate as well as co-digestion of sludge together with urban organic waste from households, industry, restaurants, big kitchens, food stores, supermarkets, green markets etc. for biogas production and production of fertiliser. Collection and pre-treatment of different types of waste are in progress together with examination of biogas potential for different types of organic waste. Collection of household waste as well as anaerobic digestion in laboratory and pilot scale has been performed during the last year. It is demonstrated that organic household waste can be digested separately or in combination with sludge. In the latter case a higher biogas yield is found than should be expected from digestion of the two materials separately. Household waste from a system based on collection of organic waste from grinders could be digested at mesophilic conditions whereas digestion failed at thermophilic conditions.

  6. Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability.

    PubMed

    Jensen, P D; Astals, S; Lu, Y; Devadas, M; Batstone, D J

    2014-12-15

    Anaerobic codigestion (AcoD) is a proven option to significantly boost biogas production while utilizing existing digesters and infrastructure. The aim of the present research was to conduct an exhaustive study regarding anaerobic codigestion of mixed sewage sludge and crude glycerol considering impacts on organic load, hydraulic load, process performance and microbial community. The methane potential of crude glycerol varied from 370 mL CH4·g(-1) VS to 483 mL CH4·g(-1) VS for different samples tested. The half maximal inhibitory concentration of crude glycerol was 1.01 g VS L(-1), and the primary mechanism of inhibition was through overload from rapid fermentation rather than the presence of toxic compounds in the crude glycerol. In continuous operation over 200 days, feeding glycerol at up to 2% v/v, increased organic load by up to 70% and resulted in a 50% increase in methane production. Glycerol dosing resulted in no change in apparent dewaterability, with both codigestion and control reactors returning values of 22%-24%. Members of the phylum Thermotogae emerged as a niche population during AcoD of sewage sludge and glycerol; however there was no gross change in microbial community structure and only minimal changes in diversity. AcoD did not result in synergisms between sewage sludge and crude glycerol. Actually, at dose rate up to 2% v/v glycerol dosing is still an effective strategy to increase the organic loading rate of continuous anaerobic digesters with minimal impact of the hydraulic retention time. Nonetheless, the dose rate must be managed to: (i) prevent process inhibition and (ii) ensure sufficient degradation time to produce a stable biosolids product.

  7. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Samson, R.; LeDuy, A.

    1982-08-01

    The semimicroscopic blue-green alga Spirulina maxima makes an ideal substrate for anaerobic digestion because it is easy to harvest, it can use carbon dioxide from the atmosphere as its carbon source, and its fermentability is higher than that of other small algae. Digestion experiments demonstrated that S. maxima can serve as the sole nutrient for biogas production and that municipal sewage sludge, when adapted to this new substrate, is very stable. During semicontinuous daily-fed trials under non-optimal conditions at an 0.06 lb volatile solids (VS)/ft/sup 3/ (0.97 kg VS/m/sup 3/) loading rate, 33-day retention time, and 86/sup 0/F (30/sup 0/C) digestion temperature, the daily methane yield was 4.2 CF/lb (0.26 m/sup 3//kg) VS added, which represents 47% of the maximum theoretical yield. Studies on optimizing the process are underway.

  8. Response of anaerobic granular sludge to single-wall carbon nanotube exposure.

    PubMed

    Li, Ling-Li; Tong, Zhong-Hua; Fang, Cai-Yun; Chu, Jian; Yu, Han-Qing

    2015-03-01

    Rapid development and application of nanotechnology have introduced various nanopaticles, such as single-walled carbon nanotubes (SWCNTs), whose negative effects on aquatic organisms and cultured cells have been reported, into anaerobic wastewater treatment systems. In this study, the response of methanogenic sludge exposed to SWCNTs in anaerobic digestion process was investigated. Results show that SWCNTs, at a concentration up to 1000 mg/L, had no significant impact on the maximum methane yield. In contrast, they induced much faster substrate utilization and methane production rates. Scanning electron microscopy examination shows that more extracellular polymeric substances (EPS) were excreted from the anaerobic sludge and closely interacted with SWCNTs. Such an interaction prevented nanoparticles from piercing into cells, and thus reduced their cytotoxicity. In the compact anaerobic granule structure, SWCNTs exposure enhanced the electrical conductance of the sludge, which might promote direct interspecies electron transfer among anaerobic fermentative bacteria and methanogens in the anaerobic digestion process. Our results provide useful information to understand the response of anaerobic microorganisms to CNTs in complex environmental matrix.

  9. Performance and stability of two-stage anaerobic digestion.

    PubMed

    Zahller, J D; Bucher, R H; Ferguson, J F; Stensel, H D

    2007-05-01

    The stability, capacity, and solids destruction efficiency of single versus two-stage anaerobic digestion was studied in bench-scale reactors using combined waste activated and primary sludge. Laboratory staged mesophilic digesters showed an improved volatile solids and volatile suspended solids destruction efficiency over a single-stage system (at the same total solids retention time [SRT]) of approximately 3.2 and 5.8 percentage points, respectively. To quantify stability and capacity, a new digester monitoring method was introduced that measured the digester maximum acetate utilization capacity, V(max,ac), and was used to investigate the potential for digester instability at different transient loadings. The ratio of the V(max,ac) value to the estimated acetate production rate for a given digester loading was termed the acetate capacity number (ACN). Values greater than 1.0 indicate excess acetate utilization capacity. The first stage of the laboratory two-stage mesophilic system (10-day SRT for each stage) had an ACN number of 1.3 compared with a value of 1.8 for the single-stage 20-day SRT digester. Thus, while a staged mesophilic system can improve solids destruction efficiency, it demonstrates a lower capacity for metabolizing highly variable loads.

  10. Improving Project Outcomes and Growing the Anaerobic Digestion Industy Report

    EPA Pesticide Factsheets

    Anaerobic digestion ombudsmen assist with project development, ensure the long-term sustainability of projects, and help advance the industry. This report explores the benefits of anaerobic digestion ombudsmen and provides guidance for implementing them.

  11. Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD).

    PubMed

    Ghosh, S; Henry, M P; Sajjad, A; Mensinger, M C; Arora, J L

    2000-01-01

    Bioconversion of municipal solid waste-sludge blend by conventional high-rate and two-phase anaerobic digestion was studied. RDF (refused-derived fuel)-quality feed produced in a Madison, Wisconsin, USA, MRF (materials-recovery facility) was used. High-rate digestion experiments were conducted with bench-scale digesters under target operating conditions developed from an economic feasibility study. The effects of digestion temperature, RDF content of digester feed, HRT, loading rate, RDF particle size, and RDF pretreatment with cellulase or dilute solutions of NaOH or lime on digester performance were studied. A pilot-scale two-phase digestion plant was operated with 80:20 (weight ratio) RDF-sludge blends to show that this process exhibited a higher methane yield, and produced a higher methane-content digester gas than those obtained by single-stage, high-rate anaerobic digestion.

  12. Thermophilic two-phase anaerobic digestion of source-sorted organic fraction of municipal solid waste for bio-hythane production: effect of recirculation sludge on process stability and microbiology over a long-term pilot-scale experience.

    PubMed

    Giuliano, A; Zanetti, L; Micolucci, F; Cavinato, C

    2014-01-01

    A two-stage thermophilic anaerobic digestion process for the concurrent production of hydrogen and methane through the treatment of the source-sorted organic fraction of municipal solid waste was carried out over a long-term pilot scale experience. Two continuously stirred tank reactors were operated for about 1 year. The results showed that stable production of bio-hythane without inoculum treatment could be obtained. The pH of the dark fermentation reactor was maintained in the optimal range for hydrogen-producing bacteria activity through sludge recirculation from a methanogenic reactor. An average specific bio-hythane production of 0.65 m(3) per kg of volatile solids fed was achieved when the recirculation flow was controlled through an evaporation unit in order to avoid inhibition problems for both microbial communities. Microbial analysis indicated that dominant bacterial species in the dark fermentation reactor are related to the Lactobacillus family, while the population of the methanogenic reactor was mainly composed of Defluviitoga tunisiensis. The archaeal community of the methanogenic reactor shifted, moving from Methanothermobacter-like to Methanobacteriales and Methanosarcinales, the latter found also in the dark fermentation reactor when a considerable methane production was detected.

  13. Anaerobic digestion of municipal solid waste: Analysis of cellulose biodegradative power

    SciTech Connect

    Rivard, C.J.; Nagle, N.J.; Nieves, R.A.; Himmel, M.E.

    1993-12-31

    Anaerobic digestion of municipal solid waste (MSW) represents a waste disposal option which results in the production of a gaseous fuel (methane) and an organic residue suitable for use as a soil amendment. The rate limiting step in this process is the hydrolysis of polymeric substrates such as cellulose. Analysis of digester sludge resident cellulase enzyme activity will be discussed. Cellulase enzyme activities are removed from sludge solids by a detergent extraction protocol. The analysis of discrete cellulase activities was accomplished using non-denaturing gel electrophoresis and Zymogram activity staining for CMC activity. Preliminary isolations of discrete cellulase activities from anaerobic digester sludge was performed by preparation isoelectric focussing using the Rainin RF-3 system.

  14. Candidatus Methanogranum caenicola: a Novel Methanogen from the Anaerobic Digested Sludge, and Proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a Methanogenic Lineage of the Class Thermoplasmata

    PubMed Central

    Iino, Takao; Tamaki, Hideyuki; Tamazawa, Satoshi; Ueno, Yoshiyuki; Ohkuma, Moriya; Suzuki, Ken-ichiro; Igarashi, Yasuo; Haruta, Shin

    2013-01-01

    The class Thermoplasmata harbors huge uncultured archaeal lineages at the order level, so-called Groups E2 and E3. A novel archaeon Kjm51a affiliated with Group E2 was enriched from anaerobic sludge in the present study. Clone library analysis of the archaeal 16S rRNA and mcrA genes confirmed a unique archaeal population in the enrichment culture. The 16S rRNA gene-based phylogeny revealed that the enriched archaeon Kjm51a formed a distinct cluster within Group E2 in the class Thermoplasmata together with Methanomassiliicoccus luminyensis B10T and environmental clone sequences derived from anaerobic digesters, bovine rumen, and landfill leachate. Archaeon Kjm51a showed 87.7% 16S rRNA gene sequence identity to the closest cultured species, M. luminyensis B10T, indicating that archaeon Kjm51a might be phylogenetically novel at least at the genus level. In fluorescence in situ hybridization analysis, archaeon Kjm51a was observed as coccoid cells completely corresponding to the archaeal cells detected, although bacterial rod cells still coexisted. The growth of archaeon Kjm51a was dependent on the presence of methanol and yeast extract, and hydrogen and methane were produced in the enrichment culture. The addition of 2-bromo ethanesulfonate to the enrichment culture completely inhibited methane production and increased hydrogen concentration, which suggested that archaeon Kjm51a is a methanol-reducing hydrogenotrophic methanogen. Taken together, we propose the provisional taxonomic assignment, named Candidatus Methanogranum caenicola, for the enriched archaeon Kjm51a belonging to Group E2. We also propose to place the methanogenic lineage of the class Thermoplasmata in a novel order, Methanomassiliicoccales ord. nov. PMID:23524372

  15. Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata.

    PubMed

    Iino, Takao; Tamaki, Hideyuki; Tamazawa, Satoshi; Ueno, Yoshiyuki; Ohkuma, Moriya; Suzuki, Ken-Ichiro; Igarashi, Yasuo; Haruta, Shin

    2013-01-01

    The class Thermoplasmata harbors huge uncultured archaeal lineages at the order level, so-called Groups E2 and E3. A novel archaeon Kjm51a affiliated with Group E2 was enriched from anaerobic sludge in the present study. Clone library analysis of the archaeal 16S rRNA and mcrA genes confirmed a unique archaeal population in the enrichment culture. The 16S rRNA gene-based phylogeny revealed that the enriched archaeon Kjm51a formed a distinct cluster within Group E2 in the class Thermoplasmata together with Methanomassiliicoccus luminyensis B10(T) and environmental clone sequences derived from anaerobic digesters, bovine rumen, and landfill leachate. Archaeon Kjm51a showed 87.7% 16S rRNA gene sequence identity to the closest cultured species, M. luminyensis B10(T), indicating that archaeon Kjm51a might be phylogenetically novel at least at the genus level. In fluorescence in situ hybridization analysis, archaeon Kjm51a was observed as coccoid cells completely corresponding to the archaeal cells detected, although bacterial rod cells still coexisted. The growth of archaeon Kjm51a was dependent on the presence of methanol and yeast extract, and hydrogen and methane were produced in the enrichment culture. The addition of 2-bromo ethanesulfonate to the enrichment culture completely inhibited methane production and increased hydrogen concentration, which suggested that archaeon Kjm51a is a methanol-reducing hydrogenotrophic methanogen. Taken together, we propose the provisional taxonomic assignment, named Candidatus Methanogranum caenicola, for the enriched archaeon Kjm51a belonging to Group E2. We also propose to place the methanogenic lineage of the class Thermoplasmata in a novel order, Methanomassiliicoccales ord. nov.

  16. Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: Insights from sequential extraction and P K-edge XANES.

    PubMed

    Huang, Rixiang; Tang, Yuanzhi

    2016-09-01

    (Hydro)thermal treatments of sewage sludge is a promising option that can simultaneously target safe waste disposal, energy recovery, and nutrient recovery/recycling. The speciation of phosphorus (P) in sludge is of great relevance to P reclamation/recycling and soil application of sludge-derived products, thus it is critical to understand the effects of different treatment techniques and conditions on P speciation. This study systematically characterized P speciation (i.e. complexation and mineral forms) in chars derived from pyrolysis and hydrothermal carbonization (HTC) of municipal sewage sludges. Combined sequential extraction and P K-edge X-ray absorption near edge structure (XANES) spectroscopy analysis revealed the dependence of P transformation on treatment conditions and metal composition in the feedstocks. Pyrolysis of sludges decreased the relative abundance of phytic acid while increased the abundance of Al-associated P. HTC thoroughly homogenized and exposed P for interaction with various metals/minerals, with the final P speciation closely related to the composition/speciation of metals and their affinities to P. Results from this study revealed the mechanisms of P transformation during (hydro)thermal treatments of sewage sludges, and might be applicable to other biosolids. It also provided fundamental knowledge basis for the design and selection of waste management strategies for better P (re)cycling and reclamation.

  17. Application of the ADM1 model to advanced anaerobic digestion.

    PubMed

    Parker, Wayne J

    2005-11-01

    In this paper the ADM1 model that has been developed by the IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes is summarized. The model was applied to a variety of anaerobic digestion scenarios that are presented in the literature and for each data set the model predictions were compared to experimental values. Based upon the model applications it was apparent that for accurate model simulations the influent sludge should be well characterized in terms of biodegradable and recalcitrant COD and also nitrogenous compounds. In almost all cases the model was able to reflect the trends that were observed in the experimental data however the concentrations of VFAs were consistently over-predicted in digesters with short SRTs. It would appear that the inhibition functions associated with low pH values tend to overestimate the impact of pH on biokinetic rates for the acid-consuming bacteria. Application of the model with flow through of active biomass between digesters in series in temperature-phased systems needs to be further evaluated in the future.

  18. Effects of spiked metals on the MSW anaerobic digestion.

    PubMed

    Lo, H M; Chiang, C F; Tsao, H C; Pai, T Y; Liu, M H; Kurniawan, T A; Chao, K P; Liou, C T; Lin, K C; Chang, C Y; Wang, S C; Banks, C J; Lin, C Y; Liu, W F; Chen, P H; Chen, C K; Chiu, H Y; Wu, H Y; Chao, T W; Chen, Y R; Liou, D W; Lo, F C

    2012-01-01

    This study aimed to investigate the effects of eight metals on the anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) in bioreactors. Anaerobic bioreactors containing 200 mL MSW mixed completely with 200 m L sludge seeding. Ca and K (0, 1000, 2000 and 6,000 mg L(-1)) and Cr, Ni, Zn, Co, Mo and W (0, 5, 50 and 100 mg  L(-1)) of various dose were added to anaerobic bioreactors to examine their anaerobic digestion performance. Results showed that except K and Zn, Ca (~728 to ~1,461 mg  L(-1)), Cr (~0.0022 to ~0.0212 mg  L(-1)), Ni (~0.801 to ~5.362 mg  L(-1)), Co (~0.148 to ~0.580 mg  L(-1)), Mo (~0.044 to ~52.94 mg  L(-1)) and W (~0.658 to ~40.39 mg  L(-1)) had the potential to enhance the biogas production. On the other hand, except Mo and W, inhibitory concentrations IC(50) of Ca, K, Cr, Ni, Zn and Co were found to be ~3252, ~2097, ~0.124, ~7.239, ~0.482, ~8.625 mg  L(-1), respectively. Eight spiked metals showed that they were adsorbed by MSW to a different extent resulting in different liquid metals levels and potential stimulation and inhibition on MSW anaerobic digestion. These results were discussed and compared to results from literature.

  19. Enhancement of dewatering performance of digested paper mill sludge by chemical pretreatment

    NASA Astrophysics Data System (ADS)

    Lin, Y. Q.; Zeng, C.; Wu, H. H.; Zeng, B. X.

    2016-08-01

    The wide application of anaerobic digestion (AD) for waste sludge results in a huge amount of digested sludge, while the appropriate reuse of digested sludge depends on effective solid-liquid separation. Thus, chemical (acid/alkali) pretreatment effects on dewaterability of digested paper mill sludge (DPMS) for better downstream reuse based on enhanced solid- liquid separation were investigated in this research. The dewatering properties of paper mill sludge (PMS) were also investigated to elucidate the impact of AD on sludge dewaterability. The results indicated that a higher DPMS dewaterability was noted with acid pretreatment (pH5). A 41.37% moisture content and 74.41% dewatering efficiency were determined for DPMS after acid (pH5) pretreatment within 25 min. In addition, a 7.13 mg•g-1 VSS of extracellular polymeric substances (EPS) and 101.50 μm of average particle size were observed. It was also observed that both EPS concentrations and particle sizes were key parameters influencing DPMS dewaterability. Lower EPS concentrations with larger average particle sizes contributed to enhanced sludge dewaterability. Moreover, dewaterability of PMS was higher than that of DPMS, which illustrated that AD would decrease the sludge dewaterability.

  20. Anaerobic Digestion in a Flooded Densified Leachbed

    NASA Technical Reports Server (NTRS)

    Chynoweth, David P.; Teixeira, Arthur A.; Owens, John M.; Haley, Patrick J.

    2009-01-01

    A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.

  1. Utilisation of energy from digester gas and sludge incineration at Hamburg's Köhlbrandhöft WWTP.

    PubMed

    Thierbach, R D; Hanssen, H

    2002-01-01

    At Hamburg's Köhlbrandhöft WWTP the demand for external energy supply is minimised by state of the art sludge treatment. The sludge is subjected to thickening, anaerobic digestion, dewatering, drying and incineration. The digester gas is used in a combined gas and steam turbine process. The sludge incineration also produces steam, which is also used in the steam turbine that follows the gas turbine. The turbines produce electricity, partially expanded steam is used for the sludge drying process. Heat from the condensation of vapours from sludge drying is used to heat the anaerobic digesters. The overall process requires no external heat or fuel and produces 60% of the WWTP's electricity demand.

  2. Use of biochars in anaerobic digestion.

    PubMed

    Mumme, Jan; Srocke, Franziska; Heeg, Kathrin; Werner, Maja

    2014-07-01

    This study investigated the behavior of biochars from pyrolysis (pyrochar) and hydrothermal carbonization (hydrochar) in anaerobic digestion regarding their degradability and their effects on biogas production and ammonia inhibition. A batch fermentation experiment (42°C, 63 days) was conducted in 100mL syringes filled with 30 g inoculum, 2g biochar and four levels of total ammonium nitrogen (TAN). For pyrochar, no clear effect on biogas production was observed, whereas hydrochar increased the methane yield by 32%. This correlates with the hydrochar's larger fraction of anaerobically degradable carbon (10.4% of total carbon, pyrochar: 0.6%). Kinetic and microbiota analyses revealed that pyrochar can prevent mild ammonia inhibition (2.1 g TANk g(-1)). Stronger inhibitions (3.1-6.6 g TAN kg(-1)) were not mitigated, neither by pyrochar nor by hydrochar. Future research should pay attention to biochar-microbe interactions and the effects in continuously-fed anaerobic digesters.

  3. Co-digestion of solid poultry manure with municipal sewage sludge.

    PubMed

    Borowski, Sebastian; Weatherley, Laurence

    2013-08-01

    The anaerobic digestion was investigated using mixed sewage sludge and poultry manure. The experiments showed that a 30% addition of poultry manure to the sewage sludge did not increase specific gas yield (376 dm(3)/kg VS versus 384 dm(3)/kg VS), however gas production rate as calculated per unit volume was 1.5 higher for sludge and manure mixture. The anaerobic digestion turned out to be inefficient in terms of pathogen treatment, since the reduction of Enterobacteriaceae reached only two logarithmic units. In the course of the digestion processes, nutrients were released to the supernatant, and longer SRT favored that phenomenon. The liquor after the digestion of sludge alone was rich in phosphates (348-358 gP/m(3)) and contained a lot of organic carbon (COD of 2705-6034 gO2/m(3)). Conversely, more ammonium nitrogen was found in the supernatant after co-digestion of sludge with manure (2094-2221 gN/m(3)). However, there was no evidence of ammonia inhibition.

  4. Anaerobic stabilization of waste activated sludge at different temperatures and solid retention times: Evaluation by sludge reduction, soluble chemical oxygen demand release and dehydration capability.

    PubMed

    Li, Xiyao; Peng, Yongzhen; He, Yuelan; Wang, Shuying; Guo, Siyu; Li, Lukai

    2017-03-01

    Anaerobic treatment is the most widely used method of waste activated sludge (WAS) stabilization. Using a semi-continuous stirring tank with condensed WAS, we investigated effects of decreasing the solid retention time (SRT) from 32days to 6.4days on sludge reduction, soluble chemical oxygen demand (SCOD) release and dehydration capability, along with anaerobic digestion operated at medium temperature (MT-AD) or anaerobic digestion operated at room temperature (RT-AD). Results showed that effects of temperature on SCOD release were greater at SRT of 32d and 6.4d. When SRT was less than 8d, total solids (TS), volatile solids (VS) and capillary suction time (CST) did not change significantly. CST was lowest at SRT of 10.7days, indicating best condition for sludge dehydration. Principal component analysis (PCA) showed that the most optimum SRT was higher than 10.7d both in MT-AD or RT-AD.

  5. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion.

    PubMed

    Fagbohungbe, Michael O; Herbert, Ben M J; Hurst, Lois; Ibeto, Cynthia N; Li, Hong; Usmani, Shams Q; Semple, Kirk T

    2017-03-01

    Biochar, like most other adsorbents, is a carbonaceous material, which is formed from the combustion of plant materials, in low-zero oxygen conditions and results in a material, which has the capacity to sorb chemicals onto its surfaces. Currently, research is being carried out to investigate the relevance of biochar in improving the soil ecosystem, digestate quality and most recently the anaerobic digestion process. Anaerobic digestion (AD) of organic substrates provides both a sustainable source of energy and a digestate with the potential to enhance plant growth and soil health. In order to ensure that these benefits are realised, the anaerobic digestion system must be optimized for process stability and high nutrient retention capacity in the digestate produced. Substrate-induced inhibition is a major issue, which can disrupt the stable functioning of the AD system reducing microbial breakdown of the organic waste and formation of methane, which in turn reduces energy output. Likewise, the spreading of digestate on land can often result in nutrient loss, surface runoff and leaching. This review will examine substrate inhibition and their impact on anaerobic digestion, nutrient leaching and their environmental implications, the properties and functionality of biochar material in counteracting these challenges.

  6. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    PubMed Central

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-01-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank. PMID:26350761

  7. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank.

  8. Multi-wavelength fluorometry for anaerobic digestion process monitoring.

    PubMed

    Morel, E; Santamaria, K; Perrier, M; Guiot, S R; Tartakovsky, B

    2005-01-01

    Applicability of multi-wavelength fluorometry for anaerobic digestion process monitoring was investigated in a 3.5 L upflow anaerobic sludge bed (UASB) lab-scale reactor. Both off-line and on-line monitoring of key process parameters was tested. Off-line emission spectra were measured at an angle of 90 degrees to the excitation beam using a cuvette. On-line measurements were carried out using a fiber optic probe in the external recirculation line of the digester. Fluorescence spectra were correlated to available analytical measurements to obtain partial least square regression models. An independent set of measurements was used to validate the regression models. Model estimations showed reasonable agreement with analytical measurements with multiple determination coefficients (R2) between 0.6 and 0.95. Results showed that offline fluorescence measurements can be used for fast estimation of anaerobic digestor effluent quality. At the same time, the on-line implementation of multi-wavelength fluorescence measurements can be used for realtime process monitoring and, potentially, for on-line process control.

  9. Horse manure as feedstock for anaerobic digestion.

    PubMed

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible.

  10. Microbial processes associated to the decontamination and detoxification of a polluted activated sludge during its anaerobic stabilization.

    PubMed

    Bertin, Lorenzo; Capodicasa, Serena; Occulti, Fabio; Girotti, Stefano; Marchetti, Leonardo; Fava, Fabio

    2007-06-01

    Xenobiotic compounds accumulate in activated sludge resulting from wastewater treatment plants serving both civil and industrial areas. The opportunity to use anaerobic digestion for the decontamination and beneficial disposal of a contaminated activated sludge was investigated in mesophilic and thermophilic microcosms monitored through an integrated chemical, microbiological and ecotoxicological procedure. The 10 months anaerobic sludge incubation at 35 degrees C resulted in an extensive production of a methane-rich biogas, a marked reduction of pathogenic cultivable bacteria and, importantly, a marked biodegradation of the sludge-carried organic pollutants, including some polychlorinated biphenyls and polycyclic aromatic hydrocarbons, along with a relevant sludge detoxification. The sludge decontamination seemed to occur mostly under methanogenic conditions and was not significantly affected by the addition of yeast extract or molasses. Lower bioremediation and biomethanization yields were observed under thermophilic conditions.

  11. Adsorption and decolorization kinetics of methyl orange by anaerobic sludge.

    PubMed

    Yu, Lei; Li, Wen-Wei; Lam, Michael Hon-Wah; Yu, Han-Qing

    2011-05-01

    Adsorption and decolorization kinetics of methyl orange (MO) by anaerobic sludge in anaerobic sequencing batch reactors were investigated. The anaerobic sludge was found to have a saturated adsorption capacity of 36 ± 1 mg g MLSS(-1) to MO. UV/visible spectrophotometer and high-performance liquid chromatography analytical results indicated that the MO adsorption and decolorization occurred simultaneously in this system. This process at various substrate concentrations could be well simulated using a modified two-stage model with apparent pseudo first-order kinetics. Furthermore, a noncompetitive inhibition kinetic model was also developed to describe the MO decolorization process at high NaCl concentrations, and an inhibition constant of 3.67 g NaCl l(-1) was estimated. This study offers an insight into the adsorption and decolorization processes of azo dyes by anaerobic sludge and provides a better understanding of the anaerobic dye decolorization mechanisms.

  12. Measuring metal and phosphorus speciation in P-rich anaerobic digesters.

    PubMed

    Carliell-Marquet, C M; Wheatley, A D

    2002-01-01

    High concentrations of soluble orthophosphate, magnesium and potassium are released during anaerobic digestion of biological phosphorus removal (BPR) sludge. This research was undertaken to investigate the effects of phosphorus enrichment on digester performance, metal and phosphorus speciation. High concentrations of soluble PO4-P (> 250 mg/l) were found to have a retarding effect on anaerobic digestion, reducing the rate of volatile solids digestion and methane production in comparison to control digesters. This was found to be reversible after a period of time, which was related to the amount of PO4-P added to the digesters, higher concentrations of PO4-P requiring more time for digester recovery. Addition of magnesium and potassium to the digesters, together with PO4-P, reduced the inhibitory effect of phosphorus enrichment but these digesters still showed lower rates of volatile solids digestion and methane production in comparison to the control digesters. Phosphorus enrichment resulted in extensive precipitation of calcium, magnesium and manganese, markedly reducing the soluble and easily available fractions of these metals. Other trace metals such as copper, zinc, chromium, nickel and cobalt actually showed increased levels of solubility as a result of phosphorus enrichment. This was thought to be caused by high levels of soluble organic carbon in the phosphorus-rich anaerobic digesters, which acted as organic ligands for metal complexation.

  13. Photoenhanced anaerobic digestion of organic acids

    DOEpatents

    Weaver, Paul F.

    1990-01-01

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  14. Involvement of a novel fermentative bacterium in acidification in a thermophilic anaerobic digester.

    PubMed

    Hori, Tomoyuki; Akuzawa, Masateru; Haruta, Shin; Ueno, Yoshiyuki; Ogata, Atsushi; Ishii, Masaharu; Igarashi, Yasuo

    2014-12-01

    Acidification results from the excessive accumulation of volatile fatty acids and the breakthrough of buffering capacity in anaerobic digesters. However, little is known about the identity of the acidogenic bacteria involved. Here, we identified an active fermentative bacterium during acidification in a thermophilic anaerobic digester by sequencing and phylogenetic analysis of isotopically labeled rRNA. The digestion sludge retrieved from the beginning of pH drop in the laboratory-scale anaerobic digester was incubated anaerobically at 55 °C for 4 h during which (13)C-labeled glucose was supplemented repeatedly. (13)CH4 and (13)CO2 were produced after substrate addition. RNA extracts from the incubated sludge was density-separated by ultracentrifugation, and then bacterial communities in the density fractions were screened by terminal restriction fragment length polymorphism and clone library analyses based on 16S rRNA transcripts. Remarkably, a novel lineage within the genus Thermoanaerobacterium became abundant with increasing the buoyant density and predominated in the heaviest fraction of RNA. The results in this study indicate that a thermoacidophilic bacterium exclusively fermented the simple carbohydrate glucose, thereby playing key roles in acidification in the thermophilic anaerobic digester.

  15. Anaerobic digestion for household organics

    SciTech Connect

    Sinclair, R.; Kelleher, M.

    1995-04-01

    Considerable success in using anaerobic technology for processing household organics is being reported by several recently constructed facilities in Europe. Organic residuals collected separately in a Belgian town are processed to produce biogas and a compost-like material in less than one month. The dry anaerobic conversion process (DRANCO) was developed by Organic Waste Systems (OWS) in the 1980s, with the collaboration of Professor Willy Verstraete at the University of Ghent`s Laboratory of Applied Microbial Ecology. The patented process converts solid and semisolid organic residuals into biogas (for energy recovery) and a stable humus like product. The plant has competing odor sources such as the active landfill and the surrounding farmland - in fact, the smell of livestock manure is quite prevalent in this heavily agricultural area. Addition of the nonrecyclable paper fraction to the feedstock improves the carbon/nitrogen ratio, soaks up moisture, and absorbs odor. The entire Brecht facility does not occupy much space and total material retention time at the site is one month, compared to a number of months for aerobic systems. It also has a low staffing requirement, provides energy self-sufficiency, and the final soil enhancement product meets established quality standards.

  16. EXTRACELLULAR POLYANIONS IN DIGESTED SLUDGE: MEASUREMENT AND RELATIONSHIP TO SLUDGE DEWATERABILITY. (R823486)

    EPA Science Inventory

    The polyanionic fraction of digested sludge extracellular material was quantified using an in situ dye adsorption method, and the relationships between measured extracellular polyanion (ECPA)
    concentrations and sludge dewaterability were investigated. Measured ECPA concentrat...

  17. Anaerobic digestion of municipal solid waste

    SciTech Connect

    Dasgupta, A.; Nemerow, N.L.; Farooq, S.; Daly, E.L.Jr.; Sengupta, S.; Gerrish, H.P.; Wong, K.F.

    1981-01-01

    Filtrate from an anaerobic municipal waste digestion plant at Pompano Beach, Florida, has BOD, COD, and total organic C contents of 1075, 6855, and 1655 mg/L, respectively. The treatment does not inactivate total coliforms; that of the digester slurry and filtrate are 2.3 X 10 to the power of 6 and 1.7 X 10 to the power of 6/100 mL, respectively. The average concentrations of Cr, Cu, Mn, Fe, Ni, and Zn in the filtrate are 0.48, 1.29, 7.29, 32, 0.35, and 11 mg/L, respectively. The filtrate requires treatment prior to discharge.

  18. Hydroxylation and hydrolysis: two main metabolic ways of spiramycin I in anaerobic digestion.

    PubMed

    Zhu, Pei; Chen, Daijie; Liu, Wenbin; Zhang, Jianbin; Shao, Lei; Li, Ji-an; Chu, Ju

    2014-02-01

    The anaerobic degradation behaviors of five macrolides including spiramycin I, II, III, midecamycin and josamycin by sludge were investigated. Within 32days, 95% of spiramycin I, II or III was degraded, while the remove rate of midecamycin or josamycin was 75%. SPM I degradation was much higher in nutrition supplementation than that just in sludge. The degradation products and processes of spiramycin I were further characterized. Three molecules, designated P-1, P-2 and P-3 according to their order of occurrence, were obtained and purified. Structural determination was then performed by nuclear magnetic resonance and MS/MS spectra, and data indicated that hydroxylation and hydrolysis were main reactions during the anaerobic digestion of spiramycin I. P-1 is the intermediate of hydroxylation, and P-2 is the intermediate of hydrolysis. P-3 is the final product of the both reaction. This study revealed a hydroxylation and hydrolysis mechanism of macrolide in anaerobic digestion.

  19. Hog farm in California uses anaerobic digestion

    SciTech Connect

    Swanson, D.

    1995-12-31

    This article describes a system of covered lagoons which help address the waste management problems of hog farmers as well as producing methane used to power generators. Four advantages of anaerobic digestion are described along with the system: energy production from methane; fertilizer for fields; economic development in rural areas; and improved water quality through reduction of nonpoint source pollution. Address for full report is given.

  20. Anaerobic digestion of municipal solid waste

    SciTech Connect

    Dasgupta, A.; Nemerow, N.L.; Farooq, S.; Daly, E.L. Jr.; Sengupta, S.; Gerrish, H.P.; Wong, K.F.

    1981-03-01

    A demonstration anaerobic digestion plant has been installed at Pompano Beach, Florida, capable of treating 100 tons per day of municipal solid waste. The suitability of this process and its environmental effects at a full scale operation level is being examined. The study presented and discussed in this paper had as its main objective the characterization of various waste streams and an assessment of their environmental effects if discharged into the environment.

  1. Effect of microwave pre-treatment of thickened waste activated sludge on biogas production from co-digestion of organic fraction of municipal solid waste, thickened waste activated sludge and municipal sludge.

    PubMed

    Ara, E; Sartaj, M; Kennedy, K

    2014-12-01

    Anaerobic co-digestion of organic fraction of municipal solid waste, with thickened waste activated sludge and primary sludge has the potential to enhance biodegradation of solid waste, increase longevity of existing landfills and lead to more sustainable development by improving waste to energy production. This study reports on mesophilic batch and continuous studies using different concentrations and combinations (ratios) of organic fraction of municipal solid waste, thickened waste activated sludge (microwave pre-treated and untreated) and primary sludge to assess the potential for improved biodegradability and specific biogas production. Improvements in specific biogas production for batch assays, with concomitant improvements in total chemical oxygen demand and volatile solid removal, were obtained with organic fraction of municipal solid waste:thickened waste activated sludge:primary sludge mixtures at a ratio of 50:25:25 (with and without thickened waste activated sludge microwave pre-treatment). This combination was used for continuous digester studies. At 15 d hydraulic retention times, the co-digestion of organic fraction of municipal solid waste:organic fraction of municipal solid waste:primary sludge and organic fraction of municipal solid waste:thickened waste activated sludge microwave:primary sludge resulted in a 1.38- and 1.46-fold increase in biogas production and concomitant waste stabilisation when compared with thickened waste activated sludge:primary sludge (50:50) and thickened waste activated sludge microwave:primary sludge (50:50) digestion at the same hydraulic retention times and volumetric volatile solid loading rate, respectively. The digestion of organic fraction of municipal solid waste with primary sludge and thickened waste activated sludge provides beneficial effects that could be implemented at municipal wastewater treatment plants that are operating at loading rates of less than design capacity.

  2. The effects of co-substrate and thermal pretreatment on anaerobic digestion performance.

    PubMed

    Amiri, Leyla; Abdoli, Mohammad Ali; Gitipour, Saeid; Madadian, Edris

    2016-11-29

    The influence of anaerobic co-digestion of leachate and sludge with organic fraction of municipal solid waste (OFMSW) under mesophilic condition in three batch digesters of 5 L capacity has been studied. OFMSW was mixed with leachate and sludge at three different ratios. Experimental results illustrated that the digester with a ratio of 2000/2500 (leachate (mL) or sludge/OFMSW (mL)) had significantly higher performance. Furthermore, this study compared the performance of anaerobic digestion of different substrates with three different mixing ratios with and without thermal pretreatment at low temperature (65°C) in terms of biogas production, chemical oxygen demand (COD) elimination as well as hydraulic retention time. In addition, to predict the biogas yield and evaluate the kinetic parameters, the modified Gompertz model was applied. Based on the results, the maximum biogas yield from adding different leachate and sludge ratios to OFMSW was recorded to be 0.45 and 0.38 m(3 )kg(-1) COD which was higher about 7% in comparison with co-digestion original OFMSW without thermal pretreatment. In addition, thermal pretreatment accelerated the hydrolysis step. Moreover, the total COD elimination was relatively stable in the range of 52-60% at all types of substrate mixtures. Also, the modified Gompertz model demonstrated a good fit to the experimental results.

  3. Horsepower requirements for high-solids anaerobic digestion

    SciTech Connect

    Rivard, C.J.; Kay, B.D.; Kerbaugh, D.H.

    1995-12-31

    Improved organic loading rates for anaerobic bioconversion of cellulosic feedstocks are possible through high-solids processing. Additionally, the reduction in process water for such a system further improves the economics by reducing the overall size of the digestion system. However, mixing of high-solids materials is often viewed as an energy-intensive part of the process. Although the energy demand for high-solids mixing may be minimized by improving the agitator configuration and reducing the mixing speed, relatively little information is available for the actual horsepower requirements of a mechanically mixed high-solids digester system. The effect of sludge total solids content and digester fill level on mixing power requirements was evaluated using a novel NREL laboratory-scale high-solids digester. Trends in horsepower requirements are shown that establish the optimum parameters for minimizing mixing energy requirements, while maintaining adequate solids blending for biological activity. The comparative relationship between laboratory-scale mixing energy estimates and those required for scale-up systems is also established.

  4. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion.

    PubMed

    Smith, Adam L; Stadler, Lauren B; Cao, Ling; Love, Nancy G; Raskin, Lutgarde; Skerlos, Steven J

    2014-05-20

    The objective of this study was to evaluate emerging anaerobic membrane bioreactor (AnMBR) technology in comparison with conventional wastewater energy recovery technologies. Wastewater treatment process modeling and systems analyses were combined to evaluate the conditions under which AnMBR may produce more net energy and have lower life cycle environmental emissions than high rate activated sludge with anaerobic digestion (HRAS+AD), conventional activated sludge with anaerobic digestion (CAS+AD), and an aerobic membrane bioreactor with anaerobic digestion (AeMBR+AD). For medium strength domestic wastewater treatment under baseline assumptions at 15 °C, AnMBR recovered 49% more energy as biogas than HRAS+AD, the most energy positive conventional technology considered, but had significantly higher energy demands and environmental emissions. Global warming impacts associated with AnMBR were largely due to emissions of effluent dissolved methane. For high strength domestic wastewater treatment, AnMBR recovered 15% more net energy than HRAS+AD, and the environmental emissions gap between the two systems was reduced. Future developments of AnMBR technology in low energy fouling control, increased flux, and management of effluent methane emissions would make AnMBR competitive with HRAS+AD. Rapid advancements in AnMBR technology must continue to achieve its full economic and environmental potential as an energy recovery strategy for domestic wastewater.

  5. Aminobacterium thunnarium sp. nov., a mesophilic, amino acid-degrading bacterium isolated from an anaerobic sludge digester, pertaining to the phylum Synergistetes.

    PubMed

    Hamdi, Olfa; Ben Hania, Wajdi; Postec, Anne; Bouallagui, Hassib; Hamdi, Moktar; Bonin, Patricia; Ollivier, Bernard; Fardeau, Marie-Laure

    2015-02-01

    A new Gram-staining-positive, non-sporulating, mesophilic, amino acid-degrading anaerobic bacterium, designated strain OTA 102(T), was isolated from an anaerobic sequencing batch reactor treating wastewater from cooking tuna. The cells were curved rods (0.6-2.5×0.5 µm) and occurred singly or in pairs. The strain was motile by means of one lateral flagellum. Strain OTA 102(T) grew at temperatures between 30 and 45 °C (optimum 40 °C), between pH 6.0 and 8.4 (optimum pH 7.2) and NaCl concentrations between 1 and 5 % (optimum 2 %, w/v). Strain OTA 102(T) required yeast extract for growth. Serine, threonine, glycine, cysteine, citrate, fumarate, α-ketoglutarate and pyruvate were fermented. When co-cultured with Methanobacterium formicicum as the hydrogen scavenger, strain OTA 102(T) oxidized alanine, valine, leucine, isoleucine, aspartate, tyrosine, methionine, histidine and asparagine. The genomic DNA G+C content of strain OTA 102(T) was 41.7 mol%. The main fatty acid was iso-C15 : 0. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain OTA 102(T) was related to Aminobacterium colombiense and Aminobacterium mobile (95.5 and 95.2 % similarity, respectively), of the phylum Synergistetes. On the basis of phylogenetic, genetic and physiological characteristics, strain OTA 102(T) is proposed to represent a novel species of the genus Aminobacterium, Aminobacterium thunnarium sp. nov. The type strain is OTA 102(T) ( = DSM 27500(T) = JCM 19320(T)).

  6. Biogas plasticization coupled anaerobic digestion: continuous flow anaerobic pump test results.

    PubMed

    Schimel, Keith A; Boone, David R

    2010-03-01

    In this investigation, the Anaerobic Pump (TAP) and a conventional continuous flow stirred tank reactor (CFSTR) were tested side by side to compare performance. TAP integrates anaerobic digestion (AD) with biogas plasticization-disruption cycle to improve mass conversion to methane. Both prototypes were fed a "real world" 50:50 mixture of waste-activated sludge (WAS) and primary sludge and operated at room temperature (20 degrees Celsius). The quantitative results from three steady states show TAP peaked at 97% conversion of the particulate COD in a system hydraulic residence time (HRT) of only 6 days. It achieved a methane production of 0.32 STP cubic meter CH(4) per kilogram COD fed and specific methane yield of 0.78 m(3) CH(4) per cubic meter per day. This was more than three times the CFSTR specific methane yield (0.22 m(3) CH(4) per cubic meter per day) and more than double the CFSTR methane production (0.15 m(3) CH(4) per kilogram COD fed). A comparative kinetics analysis showed the TAP peak substrate COD removal rate (R (o)) was 2.24 kg COD per cubic meter per day, more than three times the CFSTR substrate removal rate of 0.67 kg COD per cubic meter per day. The three important factors contributing to the superior TAP performance were (1) effective solids capture (96%) with (2) mass recycle and (3) stage II plasticization-disruption during active AD. The Anaerobic Pump (TAP) is a high rate, high efficiency-low temperature microbial energy engine that could be used to improve renewable energy yields from classic AD waste substrates like refuse-derived fuels, treatment plant sludges, food wastes, livestock residues, green wastes and crop residuals.

  7. Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose.

    PubMed

    Li, Xiaofen; Swan, Janis E; Nair, Giridhar R; Langdon, Alan G

    2015-01-01

    Many potentially useful intermediates such as hydrogen and volatile fatty acids (VFAs) are formed during the complex anaerobic digestion processes that produce methane from biomass. This study recovers VFAs from an anaerobic digester by a combination of gas stripping and absorption with calcium carbonate slurry. Glucose was used as the model substrate because it is readily available, inexpensive, and easily digested. Sludge from a meatworks anaerobic digester produced methane and carbon dioxide (and sometimes a small amount of hydrogen) when batch-fed with glucose. Conditioning the neutral anaerobic sludge to an acidic pH (below 4.8) was achieved using repeated 1 g L(-1) doses of glucose. After conditioning, mainly VFAs and hydrogen were produced. The intermediate VFAs could be stripped using headspace gas. In subsequent fed-batch digestion/stripping cycles, the pH decreased when glucose was added and then increased when the VFA was gas stripped. The predominant acids formed at low pH values were lactic, butyric, and acetic acids. Lactic acid was converted to VFAs during stripping. The VFA calcium salts recovered were 80% butyrate and 20% acetate with minor quantities of propionate and valerate.

  8. The effect of sludge recirculation rate on a UASB-digester treating domestic sewage at 15 °C.

    PubMed

    Zhang, Lei; Hendrickx, Tim L G; Kampman, Christel; Zeeman, Grietje; Temmink, Hardy; Li, Weiguang; Buisman, Cees J N

    2012-01-01

    The anaerobic treatment of low strength domestic sewage at low temperature is an attractive and important topic at present. The upflow anaerobic sludge bed (UASB)-digester system is one of the anaerobic systems to challenge low temperature and concentrations. The effect of sludge recirculation rate on a UASB-digester system treating domestic sewage at 15 °C was studied in this research. A sludge recirculation rate of 0.9, 2.6 and 12.5% of the influent flow rate was investigated. The results showed that the total chemical oxygen demand (COD) removal efficiency rose with increasing sludge recirculation rate. A sludge recirculation rate of 0.9% of the influent flow rate led to organic solids accumulation in the UASB reactor. After the sludge recirculation rate increased from 0.9 to 2.6%, the stability of the UASB sludge was substantially improved from 0.37 to 0.15 g CH₄-COD/g COD, and the bio-gas production in the digester went up from 2.9 to 7.4 L/d. The stability of the UASB sludge and bio-gas production in the digester were not significantly further improved by increasing sludge recirculation rate to 12.5% of the influent flow rate, but the biogas production in the UASB increased from 0.37 to 1.2 L/d. It is recommended to apply a maximum sludge recirculation rate of 2-2.5% of the influent flow rate in a UASB-digester system, as this still allows energy self-sufficiency of the system.

  9. Struvite formation for enhanced dewaterability of digested wastewater sludge.

    PubMed

    Bergmans, B J C; Veltman, A M; van Loosdrecht, M C M; van Lier, J B; Rietveld, L C

    2014-01-01

    One of the main advantages of controlled struvite formation in digested sludge is an improvement in dewaterability of the digested sludge, which eventually leads to lower volumes of dewatered sludge that need to be transported. The effects of the control parameters for struvite formation, magnesium concentration and pH, on digested sludge dewaterability were investigated and are discussed in relation to the efficiency of struvite formation. Laboratory experiments with digested activated sludge were performed in a 20 L batch reactor. CO2 was stripped from the digested sludge using a bubble aerator and magnesium chloride was added to induce struvite formation. The dewaterability of the sludge was determined by gravity filtration tests. In the experiments, either the pH or the molar magnesium to phosphate ratio (Mg:PO4) was varied. The results confirm improved sludge dewaterability after struvite formation. Magnesium to phosphate ratios above 1.0 mol/mol did not further improve dewaterability. The addition of magnesium did not prevent the need for polymer addition for sludge dewatering. An increase in pH led to a deterioration in dewaterability. The best dewaterability results were found at the lowest pH value (pH = 7.0), while stirring the sludge instead of using the bubble aerator. At these settings, an orthophosphate removal of around 80% was achieved.

  10. [Municipal biowaste thermal-hydrolysis and ASBR anaerobic digestion].

    PubMed

    Hou, Hua-hua; Wang, Wei; Hu, Song; Xu, Yi-xian

    2010-02-01

    Thermal-hydrolysis can remarkably improve the solid organics dissolving efficiency of urban biomass waste, and anaerobic sequencing batch reactor (ASBR) was used to improve the efficiency of urban biomass waste anaerobic digestion. The optimum thermal-hydrolysis temperature and holding time was 175 degrees C and 60 min, the volatile suspended solid (VSS) dissolving ratio of kitchen waste, fruit-and-vegetable waste and sludge were 31.3%, 31.9% and 49.7%, respectively. Two ASBR and one continuous-flow stirred tank reactor (CSTR) were started at hydraulic retention time (HRT) = 20 d, COD organic loading rate (OLR) = 3.2-3.6 kg/(m3 x d). The biogas production volumes were 5656 mL/d(A1), 6335 mL/d(A2) and 3 103 mL/d(CSTR), respectively; VSS degradation ratios were 45.3% (A1), 50.87% (A2), 20.81% (CSTR), and the total COD (TCOD) removal rates were 88.1% (A1), 90% (A2), 72.6% (CSTR). In ASBR, organic solid and anaerobic microorganism were remained in the reactor during settling period. When HRT was 20 d, the solid retention time (SRT) was over 130 d, which made ASBR higher efficiency than CSTR.

  11. Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: focusing on the inoculum sources.

    PubMed

    Forster-Carneiro, T; Pérez, M; Romero, L I; Sales, D

    2007-12-01

    The effect of inoculum source on anaerobic thermophilic digestion of separately collected organic fraction of municipal solid wastes (SC_OFMSW) has been studied. Performance of laboratory scale reactors (V: 1.1 L) were evaluated using six different inoculums sources: (1) corn silage (CS); (2) restaurant waste digested mixed with rice hulls (RH_OFMSW); (3) cattle excrement (CATTLE); (4) swine excrement (SWINE); (5) digested sludge (SLUDGE); and (6) SWINE mixed with SLUDGE (1:1) (SWINE/SLUDGE). The SC_OFMSW was separately and collected from university restaurant. The selected conditions were: 25% of inoculum, 30% of total solid and 55 degrees C of temperature, optimum in the thermophilic range. The six inoculum sources showed an initial start-up phase in the range between 2 and 4 days and the initial methane generation began over 10 days operational process. Results indicated that SLUDGE is the best inoculum source for anaerobic thermophilic digestion of the treatment of organic fraction of municipal solid waste at dry conditions (30%TS). Over 60 days operating period, it was confirmed that SLUDGE reactor can achieve 44.0%COD removal efficiency and 43.0%VS removal. In stabilization phase, SLUDGE reactor showed higher volumetric biogas generated of 78.9 mL/day (or 35.6 mLCH(4)/day) reaching a methane yield of 0.53 LCH(4)/gVS. Also, SWINE/SLUDGE and SWINE were good inoculums at these experimental conditions.

  12. Evaluating a model of anaerobic digestion of organic wastes through system identification

    SciTech Connect

    Anex, R.P.; Kiely, G.

    1999-07-01

    Anaerobic digestion of the organic fraction of municipal solid waste (MSW), on its own or co-digested with primary sewage sludge (PSS), produces high quality biogas, suitable as renewable energy. Parameter estimation and evaluation of a two-stage mathematical model of the anaerobic co-digestion of the organic fraction of MSW and PSS are described. Measured data are from a bench scale laboratory experiment using a continuously stirred tank reactor and operated at 36 C for 115 days. The two-stage model simulates acidogenesis and methanogenesis, including ammonia inhibition. Model parameters are estimated using an output error, Levenberg-Marquardt (LM) algorithm. Sensitivity of the estimated parameter values and the model outputs to non-estimated model parameters and measurement errors are evaluated. The estimated mathematical model successfully predicts the performance of the anaerobic reactor. Sensitivity results provide guidance for improving the model structure and experimental procedures.

  13. Structures of microbial communities found in anaerobic batch runs that produce methane from propionic acid--Seeded from full-scale anaerobic digesters above a certain threshold.

    PubMed

    Kim, Woong; Shin, Seung Gu; Han, Gyuseong; Cho, Kyungjin; Hwang, Seokhwan

    2015-11-20

    The volatile fatty acid propionate inhibits anaerobic digestion during organic waste treatments. To examine potential microbial interactions that accelerate propionate oxidation, anaerobic digestion systems seeded with various types of anaerobic sludge were analyzed. Seed samples were collected from 10 different full-scale anaerobic reactors in South Korea. Propionate oxidation was estimated as the methane production rate per gram of propionate used per day. Two domestic sewage sludge showed the highest methane production rate values, 109.1 ± 4.2 and 74.5 ± 8.6 mL CH4/(g propionate ∙ d). A food waste recycling wastewater source exhibited the lowest methane production rate, 33.2 ± 2.6 mL CH4/(g propionate ∙ d). To investigate how the microbial community structure affected propionate oxidation, qualitative molecular analyses were carried out using denaturing gradient gel electrophoresis. Methanosaeta concilii, an aceticlastic methanogen, was detected in most batch runs. Smithella propionica, a unique propionate oxidizer and simultaneous producer of acetate, was found in domestic sewage sludge sources showing the highest methane production rate; in contrast, Desulfobulbus rhabdoformis, a sulfate reducer coupled with the consumption of acetate to be used as a precursor of methane, was observed in food waste recycling wastewater sludge source showing the lowest methane production rate. Thus, we propose that S. propionica, a syntrophic acetate producer using propionate, might cooperate with aceticlastic methanogens for high methane production during anaerobic digestion that included propionate.

  14. Methane Production from Rice Straw Hydrolysate Treated with Dilute Acid by Anaerobic Granular Sludge.

    PubMed

    Cheng, Jing-Rong; Liu, Xue-Ming; Chen, Zhi-Yi

    2016-01-01

    The traditional anaerobic digestion process of straw to biogas faces bottlenecks of long anaerobic digestion time, low digestion rate, less gas production, etc., while straw hydrolysate has the potential to overcome these drawbacks. In this study, the dilute sulphuric acid-treated hydrolysate of rice straw (DSARSH) containing high sulfate was firstly proved to be a feasible substrate for methane production under mesophilic digestion by granular sludge within a short digestion time. Batch anaerobic digestion process was operated under different initial chemical oxygen demand (COD) values at temperature of 37 °C with the pH of 8.5. Among the initial COD values ranging from 3000 to 11,000 mg/L, 5000 mg/L was proved to be the most appropriate considering high COD removal efficiency (94.17 ± 1.67 %), CH4 content (65.52 ± 3.12 %), and CH4 yield (0.346 ± 0.008 LCH4/g COD removed) within 120 h. Furthermore, when the studied system operated at the initial COD of 5000 mg/L, the sulfate removal ratio could reach 56.28 %.

  15. Microbial and nutritional regulation of high-solids anaerobic mono-digestion of fruit and vegetable wastes.

    PubMed

    Mu, Hui; Li, Yan; Zhao, Yuxiao; Zhang, Xiaodong; Hua, Dongliang; Xu, Haipeng; Jin, Fuqiang

    2017-03-16

    The anaerobic digestion of single fruit and vegetable wastes (FVW) can be easily interrupted by rapid acidogenesis and inhibition of methanogen, and the digestion system tends to be particularly unstable at high solid content. In this study, the anaerobic digestion of FVW in batch experiments under mesophilic condition at a high solid concentration of 10% was successfully conducted to overcome the acidogenesis problem through several modifications. Firstly, compared with the conventional anaerobic sludge (CAS), the acclimated anaerobic granular sludge (AGS) was found to be a better inoculum due to its higher Archaea abundance. Secondly, waste activated sludge (WAS) was chosen to co-digest with FVW, because WAS had abundant proteins that could generate intermediate ammonium. The ammonium could neutralize the accumulated volatile fatty acids (VFAs) and prevent the pH value of the digestion system from rapidly decreasing. Co-digestion of FVW and WAS with TS ratio of 60:40 gave the highest biogas yield of 562 mL/g-VS and the highest methane yield of 362 mL/g-VS. Key parameters in the digestion process, including VFAs concentration, pH, enzyme activity, and microbial activity, were also examined.

  16. Co-digestion of pig slaughterhouse waste with sewage sludge.

    PubMed

    Borowski, Sebastian; Kubacki, Przemysław

    2015-06-01

    Slaughterhouse wastes (SHW) are potentially very attractive substrates for biogas production. However, mono-digestion of these wastes creates great technological problems associated with the inhibitory effects of ammonia and fatty acids on methanogens as well as with the foaming in the digesters. In the following study, the co-digestion of slaughterhouse wastes with sewage sludge (SS) was undertaken. Batch and semi-continuous experiments were performed at 35°C with municipal sewage sludge and pig SHW composed of meat tissue, intestines, bristles and post-flotation sludge. In batch assays, meat tissue and intestinal wastes gave the highest methane productions of 976 and 826 dm(3)/kg VS, respectively, whereas the methane yield from the sludge was only 370 dm(3)/kg VS. The co-digestion of sewage sludge with 50% SHW (weight basis) provided the methane yield exceeding 600 dm(3)/kg VS, which was more than twice as high as the methane production from sewage sludge alone. However, when the loading rate exceeded 4 kg VS/m(3) d, a slight inhibition of methanogenesis was observed, without affecting the digester stability. The experiments showed that the co-digestion of sewage sludge with large amount of slaughterhouse wastes is feasible, and the enhanced methane production does not affect the digester stability.

  17. Feasibility studies on the treatment of dairy wastewaters with upflow anaerobic sludge blanket reactors.

    PubMed

    Ramasamy, E V; Gajalakshmi, S; Sanjeevi, R; Jithesh, M N; Abbasi, S A

    2004-06-01

    The feasibility of using upflow anaerobic sludge blanket (UASB) reactors for the treatment of dairy wastewaters was explored. Two types of UASBs were used--one operating on anaerobic sludge granules developed by us from digested cowdung slurry (DCDS) and the other on the granules obtained from the reactors of M/s EID Parry treating sugar industry wastewaters. The reactors were operated at HRT of 3 and 12 h and on COD loading rates ranging from 2.4 kg per m3 of digester volume, per day to 13.5 kg m(-3) d(-1). At the 3 h HRT, the maximum COD reduction in the DCDS-seeded and the industrial sludge-seeded reactors was 95.6% and 96.3%, respectively, better than at 12 h HRT (90% and 92%, respectively). In both the reactors, the maximum, the second best, and the third best COD reduction occurred at the loading rates of 10.8, 8.6 and 7.2 kg m3 d(-1), respectively. At loading rates higher than 10.8 kg, the reactor performance dropped precipitously. Whereas in the first few months the reactors operating on sludge from EID Parry achieved better biodegradation of the waste, compared to the reactors operated on DCDS, the performance of the latter gradually improved and matched with the performance of the former.

  18. Co-digestion of molasses or kitchen waste with high-rate activated sludge results in a diverse microbial community with stable methane production.

    PubMed

    De Vrieze, Jo; Plovie, Kristof; Verstraete, Willy; Boon, Nico

    2015-04-01

    Kitchen waste and molasses are organic waste streams with high organic content, and therefore are interesting substrates for renewable energy production by means of anaerobic digestion. Both substrates, however, often cause inhibition of the anaerobic digestion process, when treated separately, hence, co-digestion with other substrates is required to ensure stable methane production. In this research, A-sludge (sludge harvested from a high rate activated sludge system) was used to stabilize co-digestion with kitchen waste or molasses. Lab-scale digesters were fed with A-sludge and kitchen waste or molasses for a total period of 105 days. Increased methane production values revealed a stabilizing effect of concentrated A-sludge on kitchen waste digestion. Co-digestion of molasses with A-sludge also resulted in a higher methane production. Volumetric methane production rates up to 1.53 L L(-1) d(-1) for kitchen waste and 1.01 L L(-1) d(-1) for molasses were obtained by co-digestion with A-sludge. The stabilizing effect of A-sludge was attributed to its capacity to supplement various nutrients. Microbial community results demonstrated that both reactor conditions and substrate composition determined the nature of the bacterial community, although there was no direct influence of micro-organisms in the substrate itself, while the methanogenic community profile remained constant as long as optimal conditions were maintained.

  19. Utilization of vegetable dumplings waste from industrial production by anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Pilarska, Agnieszka A.; Pilarski, Krzysztof; Ryniecki, Antoni; Tomaszyk, Kamila; Dach, Jacek; Wolna-Maruwka, Agnieszka

    2017-01-01

    This paper provides the analysis of results of biogas and methane yield for vegetable dumplings waste: dough with fat, vegetable waste, and sludge from the clarifier. Anaerobic digestion of food waste used in the experiments was stable after combining the substrates with a digested pulp composed of maize silage and liquid manure (as inoculum), at suitable ratios. The study was carried out in a laboratory scale using anaerobic batch reactors, at controlled (mesophilic) temperature and pH conditions. The authors present the chemical reactions accompanying biodegradation of the substrates and indicate the chemical compounds which may lead to acidification during the anaerobic digestion. An anaerobic digestion process carried out with the use of a dough-and-fat mixture provided the highest biogas and methane yields. The following yields were obtained in terms of fresh matter: 242.89 m3 Mg-1 for methane and 384.38 m3 Mg-1 for biogas, and in terms of volatile solids: 450.73 m3 Mg-1 for methane and 742.40 m3 Mg-1 for biogas. Vegetables and sludge from the clarifier (as fresh matter) provided much lower yields.

  20. Improve bio-activity of anaerobic sludge by low energy ultrasound.

    PubMed

    Zhu, Yichun; Li, Xin; Du, Maoan; Liu, Zuwen; Luo, Hui; Zhang, Tao

    2015-01-01

    This research focused on ultrasound-enhanced bio-activity of anaerobic sludge. Low energy ultrasound irradiation can increase the bio-activity of anaerobic sludge. Ultrasonic parameter, characteristics of anaerobic sludge and experimental conditions are important parameters which affect the enhancement effect on anaerobic sludge. In order to assess the effects of characteristics of anaerobic sludge and experimental conditions on ultrasonic irradiation of anaerobic sludge, experiments with different characteristics of anaerobic sludge were carried out and analyzed with the content of coenzyme F420 and dehydrogenase activity (DHA). The results showed that anaerobic sludge bio-activity was impacted by the initial temperature, initial chemical oxygen demand (COD), sludge concentration, and stirring during the ultrasonic process. Optimal performance was achieved when sound frequency, power density, and ultrasonic irradiation period was 20 kHz, 0.1 W/mL, and 10 min, respectively, under which the wastewater COD removal efficiency was increased by 12.9 percentage points. The results indicated that low temperature could affect the anaerobic sludge irradiation effect, while intermittent stirring could enhance the bio-activity of anaerobic sludge irradiation effect and low substrate concentration improved anaerobic sludge activity by ultrasound.

  1. Effects of shearing on biogas production and microbial community structure during anaerobic digestion with recuperative thickening.

    PubMed

    Yang, Shufan; Phan, Hop V; Bustamante, Heriberto; Guo, Wenshan; Ngo, Hao H; Nghiem, Long D

    2017-03-12

    Recuperative thickening can intensify anaerobic digestion to produce more biogas and potentially reduce biosolids odour. This study elucidates the effects of sludge shearing during the thickening process on the microbial community structure and its effect on biogas production. Medium shearing resulted in approximately 15% increase in biogas production. By contrast, excessive or high shearing led to a marked decrease in biogas production, possibly due to sludge disintegration and cell lysis. Microbial analysis using 16S rRNA gene amplicon sequencing showed that medium shearing increased the evenness and diversity of the microbial community in the anaerobic digester, which is consistent with the observed improved biogas production. By contrast, microbial diversity decreased under either excessive shearing or high shearing condition. In good agreement with the observed decrease in biogas production, the abundance of Bacteroidales and Syntrophobaterales (which are responsible for hydrolysis and acetogenesis) decreased due to high shearing during recuperative thickening.

  2. WASTEWATER reclamation and methane production using water hyacinth and anaerobic digestion

    SciTech Connect

    Chynoweth, D.P.; DoLenc, D.A.; Reddy, K.R.; Schwegler, B.

    1983-06-01

    This paper describes the results of research in progress to evaluate the technical and economic feasibility of utilizing water hyacinth ponds for treatment of domestic wastewater and the utilization of anaerobic digestion for conversion of the hyacinth crop and primary sludge to methane. The system concept illustrated in Figure I employs water hyacinth ponds for secondary and tertiary treatment of effluent from primary treatment (which removes settleable solids). Primary effluent supernatant is passed through water hyacinth ponds which effect organic and nutrient reduction. Collected primary sludge and harvested hyacinth are added as a blend to the anaerobic digestion process where a portion of the organic matter is converted to methane and carbon dioxide. The methane is separated from the carbon dioxide and used as an energy product.

  3. Study of the operational conditions for anaerobic digestion of urban solid wastes

    SciTech Connect

    Castillo M, Edgar Fernando . E-mail: efcastil@uis.edu.co; Cristancho, Diego Edison; Victor Arellano, A.

    2006-07-01

    This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 deg. C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 deg. C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg{sup -1} of wet waste day{sup -1}. Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT.

  4. Study of the operational conditions for anaerobic digestion of urban solid wastes.

    PubMed

    M, Edgar Fernando Castillo; Cristancho, Diego Edison; Arellano, A Victor

    2006-01-01

    This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 degrees C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 degrees C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg(-1) of wet wasteday(-1). Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT.

  5. Spectroscopic characterization of digestates obtained from sludge mixed to increasing amounts of fruit and vegetable wastes

    NASA Astrophysics Data System (ADS)

    Provenzano, Maria Rosaria; Cavallo, Ornella; Malerba, Anna Daniela; Di Maria, Francesco; Ricci, Anna; Gigliotti, Giovanni

    2015-04-01

    Anaerobic digestion (AD) represents an efficient waste-treatment technology during which microorganisms break down biodegradable material in absence of oxygen yielding a biogas containing methane. The aim of this work was to investigate the transformations occurring in the organic matter during the co-digestion of waste mixed sludge (WMS) with an increasing amount of fruit and vegetable wastes (FVW) in a pilot scale apparatus reproducing a full-scale digester in an existing wastewater treatment plant. Samples comprised: sludge, FVW, sludge mixed with 10-20-30-40% FVW. Ingestates and digestates were analyzed by means of emission fluorescence spectroscopy and FTIR associated to Fourier self deconvolution (FSD) of spectra. With increasing the amount of FVW from 10% to 20% at which percentage biogas production reached the maximum value, FTIR spectra and FSD traces of digestates exhibited a decrease of intensity of peaks assigned to polysaccharides and aliphatics and an increase of peak assigned to aromatics as a result of the biodegradation of rapidly degradable materials and concentration of aromatic recalcitrant compounds. Digestates with 30 and 40% FVW exhibited a relative increase of intensity of peaks assigned to aliphatics likely as a result of the increasing amount of rapidly degradable materials and the consequent reduction of the hydraulic retention time. This may cause inhibition of methanogenesis and accumulation of volatile fatty acids. The highest emission fluorescence intensity was observed for the digestate with 20% FVW confirming the concentration of aromatic recalcitrant compounds in the substrate obtained at the highest biogas production.

  6. Anaerobic co-digestion of cyanide containing cassava pulp with pig manure.

    PubMed

    Glanpracha, Naraporn; Annachhatre, Ajit P

    2016-08-01

    Anaerobic co-digestion of cyanide-containing cassava pulp with pig manure was evaluated using laboratory scale mesophilic digester. The digester was operated in a semi-continuous mode with the mixed feedstock having C/N ratio of 35:1. Digester startup was accomplished in 60days with loading of 0.5-1kgVS/m(3)d. Subsequently, the loading to digester was increased step-wise from 2 to 9kgVS/m(3)d. Digester performance was stable at loading between 2 and 6kgVS/m(3)d with an average volatile solid removal and methane yield of 82% and 0.38m(3)/kgVSadded, respectively. However, beyond loading of 7kgVS/m(3)d, solubilization of particulate matter did not take place efficiently. Cyanide present in cassava pulp was successfully degraded indicating that anaerobic sludge in the digester was well acclimatized to cyanide. The results show that cassava pulp can be successfully digested anaerobically with pig manure as co-substrate without any inhibitory effect of cyanide present in the cassava pulp.

  7. [Research advances in anaerobic co-digestion of biogas fermentation substrates].

    PubMed

    Dong, Fei-Qing; Li, Xia; Lu, Jian-Bo

    2012-07-01

    With global climate change, more and more attention has been paid to the development of bio-energy. Biogas fermentation, as a fairly mature technology of bio-matter energy transformation, has received considerable attention and experienced much development. How to improve the efficiency of biogas fermentation and promote its industrialization is a pressing issue. Anaerobic co-digestion is a simple, low-cost, and high-efficiency method for enhancing the efficiency of biogas fermentation, and received increasing attention from related researchers. This paper summarized the characteristics of various fermentation substrates, reviewed the research advances in the co-digestion of animal manure, sewage sludge, and industrial waste, with the focus on the advantages of co-digestion and the factors affecting the rate and efficiency of co-digestion, and prospected the future research of co-digestion and its application, aimed to provide theoretical guidance for the promotion and application of co-digestion techniques.

  8. Evaluation and characterization during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor.

    PubMed

    Xiao, Xiaolan; Huang, Zhenxing; Ruan, Wenquan; Yan, Lintao; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing

    2015-10-01

    The anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor (AnMBR) was investigated at two different operational modes, including no sludge discharge and daily sludge discharge of 20 L. The AnMBR provided excellent and reliable permeate quality with high COD removal efficiencies over 99%. The obvious accumulations of long chain fatty acids (LCFAs) and Ca(2+) were found in the anaerobic digester by precipitation and agglomeration. Though the physicochemical process contributed to attenuating the free LCFAs toxicity on anaerobic digestion, the digestion efficiency was partly influenced for the low bioavailability of those precipitates. Moreover, higher organic loading rate (OLR) of 5.8 kg COD/(m(3) d) and digestion efficiency of 78% were achieved as the AnMBR was stably operated with sludge discharge, where the membrane fouling propensity was also alleviated, indicating the crucial significance of SRT control on the treatment of high-strength kitchen waste slurry via AnMBRs.

  9. TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

    EPA Science Inventory

    EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

  10. Enhanced biogas production using cow manure to stabilize co-digestion of whey and primary sludge.

    PubMed

    Shilton, A; Powell, N; Broughton, A; Pratt, C; Pratt, S; Pepper, C

    2013-01-01

    Increasing biogas production from municipal anaerobic digesters via additional loading with industrial/agricultural wastes offers a low-cost, sustainable energy generation option of significant untapped potential. In this work, bench-top reactors were used to mimic a full-scale primary sludge digester operating at an organic loading rate (OLR) of 2.4 kg COD/m3 d and a 20 d hydraulic retention time (HRT). Co-digestion of whey with primary sludge was sustained at a loading rate of 3.2 kg COD/m3 d (17 d HRT) and boosted gas production to 151% compared to primary sludge digestion alone. Addition of chemical alkalinity enabled co-digestion of whey with primary sludge to be maintained at an elevated OLR of 6.4 kg COD/m3 d (11 d HRT) with gas production increased to 208%. However, when the chemical addition was simply replaced by cow manure, stable operation was maintained at OLRs of 5.2-6.9 kg COD/m3 d (11-14 d HRT) with gas production boosted up to 268%.

  11. Potential of high-frequency ultrasounds to improve sludge anaerobic conversion and surfactants removal at different food/inoculum ratio.

    PubMed

    Gallipoli, A; Gianico, A; Gagliano, M C; Braguglia, C M

    2014-05-01

    High-frequency ultrasounds have recently gained interest as oxidative technique for sonochemical degradation of organic contaminants in water. In this study an innovative approach applying 200 kHz ultrasounds to improve both sludge anaerobic biodegradability and decontamination is proposed. Digestion tests were performed on batch reactors fed either with untreated or sonicated sludge, at different food/inoculum (F/I) ratio, in the range 0.3-0.9. First order kinetic highlighted a decreasing trend of the hydrolysis rate by increasing F/I, both for untreated and sonicated sludge. Positive effect of ultrasounds on specific biogas production was evident, but the conversion rate for pretreated sludge was strongly affected by F/I, and decreased by increasing F/I. Anionic surfactants anaerobic removal occurred in all tests, but the effect of ultrasounds was significant only at F/I=0.3. By pretreating sludge with high frequency ultrasounds, low F/I was the ideal ratio improving both sludge anaerobic digestion and decontamination.

  12. Electrolysis-enhanced anaerobic digestion of wastewater.

    PubMed

    Tartakovsky, B; Mehta, P; Bourque, J-S; Guiot, S R

    2011-05-01

    This study demonstrates enhanced methane production from wastewater in laboratory-scale anaerobic reactors equipped with electrodes for water electrolysis. The electrodes were installed in the reactor sludge bed and a voltage of 2.8-3.5 V was applied resulting in a continuous supply of oxygen and hydrogen. The oxygen created micro-aerobic conditions, which facilitated hydrolysis of synthetic wastewater and reduced the release of hydrogen sulfide to the biogas. A portion of the hydrogen produced electrolytically escaped to the biogas improving its combustion properties, while another part was converted to methane by hydrogenotrophic methanogens, increasing the net methane production. The presence of oxygen in the biogas was minimized by limiting the applied voltage. At a volumetric energy consumption of 0.2-0.3 Wh/L(R), successful treatment of both low and high strength synthetic wastewaters was demonstrated. Methane production was increased by 10-25% and reactor stability was improved in comparison to a conventional anaerobic reactor.

  13. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    PubMed Central

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  14. Improved utilization of fish waste by anaerobic digestion following omega-3 fatty acids extraction.

    PubMed

    Nges, Ivo Achu; Mbatia, Betty; Björnsson, Lovisa

    2012-11-15

    Fish waste is a potentially valuable resource from which high-value products can be obtained. Anaerobic digestion of the original fish waste and the fish sludge remaining after enzymatic pre-treatment to extract fish oil and fish protein hydrolysate was evaluated regarding the potential for methane production. The results showed high biodegradability of both fish sludge and fish waste, giving specific methane yields of 742 and 828 m(3)CH(4)/tons VS added, respectively. However, chemical analysis showed high concentrations of light metals which, together with high fat and protein contents, could be inhibitory to methanogenic bacteria. The feasibility of co-digesting the fish sludge with a carbohydrate-rich residue from crop production was thus investigated, and a full-scale process outlined for converting odorous fish waste to useful products.

  15. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity

    NASA Astrophysics Data System (ADS)

    Mei, Ran; Narihiro, Takashi; Nobu, Masaru K.; Kuroda, Kyohei; Liu, Wen-Tso

    2016-09-01

    Anaerobic digestion is a common technology to biologically stabilize wasted solids produced in municipal wastewater treatment. Its efficiency is usually evaluated by calculating the reduction in volatile solids, which assumes no biomass growth associated with digestion. To determine whether this assumption is valid and further evaluate digestion efficiency, this study sampled 35 digester sludge from different reactors at multiple time points together with the feed biomass in a full-scale water reclamation plant at Chicago, Illinois. The microbial communities were characterized using Illumina sequencing technology based on 16S rRNA and 16S rRNA gene (rDNA). 74 core microbial populations were identified and represented 58.7% of the entire digester community. Among them, active populations were first identified using the ratio of 16S rRNA and 16S rDNA (rRNA/rDNA) for individual populations, but this approach failed to generate consistent results. Subsequently, a recently proposed mass balance model was applied to calculate the specific growth rate (μ), and this approach successfully identified active microbial populations in digester (positive μ) that could play important roles than those with negative μ. It was further estimated that 82% of microbial populations in the feed sludge were digested in comparison with less than 50% calculated using current equations.

  16. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity

    PubMed Central

    Mei, Ran; Narihiro, Takashi; Nobu, Masaru K.; Kuroda, Kyohei; Liu, Wen-Tso

    2016-01-01

    Anaerobic digestion is a common technology to biologically stabilize wasted solids produced in municipal wastewater treatment. Its efficiency is usually evaluated by calculating the reduction in volatile solids, which assumes no biomass growth associated with digestion. To determine whether this assumption is valid and further evaluate digestion efficiency, this study sampled 35 digester sludge from different reactors at multiple time points together with the feed biomass in a full-scale water reclamation plant at Chicago, Illinois. The microbial communities were characterized using Illumina sequencing technology based on 16S rRNA and 16S rRNA gene (rDNA). 74 core microbial populations were identified and represented 58.7% of the entire digester community. Among them, active populations were first identified using the ratio of 16S rRNA and 16S rDNA (rRNA/rDNA) for individual populations, but this approach failed to generate consistent results. Subsequently, a recently proposed mass balance model was applied to calculate the specific growth rate (μ), and this approach successfully identified active microbial populations in digester (positive μ) that could play important roles than those with negative μ. It was further estimated that 82% of microbial populations in the feed sludge were digested in comparison with less than 50% calculated using current equations. PMID:27666090

  17. Complete genome sequence of Methanolinea tarda NOBI-1T, a hydrogenotrophic methanogen isolated from methanogenic digester sludge

    DOE PAGES

    Yamamoto, Kyosuke; Tamaki, Hideyuki; Cadillo-Quiroz, Hinsby; ...

    2014-09-04

    In this study, we report a 2.0-Mb complete genome sequence of Methanolinea tarda NOBI-1T, a methanogenic archaeon isolated from an anaerobic digested sludge. This is the first genome report of the genus Methanolinea isolate belonging to the family Methanoregulaceae, a recently proposed novel family within the order Methanomicrobiales.

  18. Complete Genome Sequence of Methanolinea tarda NOBI-1T, a Hydrogenotrophic Methanogen Isolated from Methanogenic Digester Sludge.

    PubMed

    Yamamoto, Kyosuke; Tamaki, Hideyuki; Cadillo-Quiroz, Hinsby; Imachi, Hiroyuki; Kyrpides, Nikos; Woyke, Tanja; Goodwin, Lynne; Zinder, Stephen H; Kamagata, Yoichi; Liu, Wen-Tso

    2014-09-04

    Here, we report a 2.0-Mb complete genome sequence of Methanolinea tarda NOBI-1(T), a methanogenic archaeon isolated from an anaerobic digested sludge. This is the first genome report of the genus Methanolinea isolate belonging to the family Methanoregulaceae, a recently proposed novel family within the order Methanomicrobiales.

  19. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    SciTech Connect

    Niu Dongjie; Huang Hui; Dai Xiaohu; Zhao Youcai

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

  20. Bioconversion of selenate in methanogenic anaerobic granular sludge.

    PubMed

    Astratinei, Violeta; van Hullebusch, Eric; Lens, Piet

    2006-01-01

    The capacity of anaerobic granular sludge to remove selenate from contaminated wastewater was investigated. The potential of different types of granular sludge to remove selenate from the liquid phase was compared to that of suspended sludge and contaminated soil and sediment samples. The selenate removal rates ranged from 400 to 1500 microg g VSS(-1) h(-1), depending on the source of biomass, electron donor, and the initial selenate concentration. The granular structure protects the microorganisms when exposed to high selenate concentrations (0.1 to 1 mM). Anaerobic granular sludge "Eerbeek," originating from a UASB reactor treating paper mill wastewater, removed about 90, 50, and 36% of 0.1, 0.5, and 1 mM of Se, respectively, from the liquid phase when incubated with 20 mM lactate at 30 degrees C and pH 7.5. Selenite, elemental Se (Se(o)), and metal selenide precipitates were the conversion products. Enrichments from the anaerobic granular sludge "Eerbeek" were able to convert 90% of the 10-mM selenate to Se(o) at a rate of 1505 microg Se(VI) g cells(-1) h(-1), a specific growth rate of 0.0125 g cells h(-1), and a yield of 0.083 g cells mg Se(-1). Both microbial metabolic processes (e.g dissimilatory reduction) as well as microbially mediated physicochemical mechanisms (adsorption and precipitation) contribute to the removal of selenate from the Se-containing medium.

  1. Effect of low temperature microwave pretreatment on characteristics and mesophilic digestion of primary sludge.

    PubMed

    Zheng, Jian; Kennedy, Kevin J; Eskicioglu, Cigdem

    2009-04-01

    The main obstacles existing in the biodegradation of primary sludge are particle de-amalgamation and the degradation-resisting structure of large-size particulate. Microwave irradiation solubilizes primary sludge by interaction of the electromagnetic field with polar particles in the sludge, which leads to a temperature increase in the irradiated sample. The influence of microwave irradiation on the characteristics and biochemical methane potential of microwave-pretreated primary sludge was studied in terms of microwave intensity (40 and 80% of total microwave power), sludge solid concentration (1 to 4% total solids, w/v) and pretreatment temperature achieved (35 to 90 degrees C). Microwave irradiation was found to increase the concentration of soluble chemical oxygen demand in the sludge. The ratio of soluble to total chemical oxygen demand increased from 2.5 to between 6 and 7% for primary sludge with 4% total solids concentration at a pretreatment temperature of 90 degrees C. In biochemical methane potential tests, biogas production rate increased with both pretreatment temperature and sludge total solids concentrations. For primary sludge with 4% total solids concentration pretreated to 90 degrees C, biogas production rate increased by 37% or resulted in a 28% reduction in required digestion time to achieve 85% of the ultimate biogas production. A first-order reaction model showed a constant increase in the biogas production rate coefficient with the increase in microwave pretreatment temperature. Microwave intensity in the range of pretreatment temperatures studied (35 to 90 degrees C) presented no obvious impact on primary sludge solubilization or anaerobic digestion in terms of ultimate biodegradation efficiency.

  2. Co-digestion of municipal sewage sludge and solid waste: modelling of carbohydrate, lipid and protein content influence.

    PubMed

    Nielfa, A; Cano, R; Pérez, A; Fdez-Polanco, M

    2015-03-01

    Solid wastes from industrial, commercial and community activities are of growing concern as the total volume of waste produced continues to increase. The knowledge of the specific composition and characteristics of the waste is an important tool in the correct development of the anaerobic digestion process. The problems derived from the anaerobic digestion of sole substrates with high lipid, carbohydrate or protein content lead to the co-digestion of these substrates with another disposed waste, such as sewage sludge. The kinetic of the anaerobic digestion is especially difficult to explain adequately, although some mathematical models are able to represent the main aspects of a biological system, thus improving understanding of the parameters involved in the process. The aim of this work is to evaluate the experimental biochemical methane potential on the co-digestion of sewage sludge with different solid wastes (grease; spent grain and cow manure) through the implementation of four kinetic models. The co-digestion of grease waste and mixed sludge obtained the best improvements from the sole substrates, with additional positive synergistic effects. The Gompertz model fits the experimental biochemical methane potential to an accuracy of 99%, showing a correlation between the percentage of lipid in the substrates and co-digestions and the period of lag phase.

  3. Anaerobic Codigestion of Sludge: Addition of Butcher's Fat Waste as a Cosubstrate for Increasing Biogas Production.

    PubMed

    Martínez, E J; Gil, M V; Fernandez, C; Rosas, J G; Gómez, X

    2016-01-01

    Fat waste discarded from butcheries was used as a cosubstrate in the anaerobic codigestion of sewage sludge (SS). The process was evaluated under mesophilic and thermophilic conditions. The codigestion was successfully attained despite some inhibitory stages initially present that had their origin in the accumulation of volatile fatty acids (VFA) and adsorption of long-chain fatty acids (LCFA). The addition of a fat waste improved digestion stability and increased biogas yields thanks to the higher organic loading rate (OLR) applied to the reactors. However, thermophilic digestion was characterized by an effluent of poor quality and high VFA content. Results from spectroscopic analysis suggested the adsorption of lipid components onto the anaerobic biomass, thus disturbing the complete degradation of substrate during the treatment. The formation of fatty aggregates in the thermophilic reactor prevented process failure by avoiding the exposure of biomass to the toxic effect of high LCFA concentrations.

  4. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials.

    PubMed

    Zhao, Zhiqiang; Zhang, Yaobin; Woodard, T L; Nevin, K P; Lovley, D R

    2015-09-01

    Syntrophic metabolism of alcohols and fatty acids is a critical step in anaerobic digestion, which if enhanced can better stabilize the process and enable shorter retention times. Direct interspecies electron transfer (DIET) has recently been recognized as an alternative route to hydrogen interspecies transfer as a mechanism for interspecies syntrophic electron exchange. Therefore, the possibility of accelerating syntrophic metabolism of ethanol in up-flow anaerobic sludge blanket (UASB) reactors by incorporating conductive materials in reactor design was investigated. Graphite, biochar, and carbon cloth all immediately enhanced methane production and COD removal. As the hydraulic retention time was decreased the increased effectiveness of treatment in reactors with conductive materials increased versus the control reactor. When these conductive materials were removed from the reactors rates of syntrophic metabolism declined to rates comparable to the control reactor. These results suggest that incorporating conductive materials in the design of UASB reactors may enhance digester effectiveness.

  5. Food waste co-digestion with sewage sludge--realising its potential in the UK.

    PubMed

    Iacovidou, Eleni; Ohandja, Dieudonné-Guy; Voulvoulis, Nikolaos

    2012-12-15

    The application of anaerobic co-digestion of food waste with sewage sludge, although well established in many European countries, is still in its infancy in the UK. This process has many benefits to offer, with a successful application often associated with increased renewable energy potential, outweighing constraints associated with the variability of food waste and its handling requirements prior to co-digestion. With both regulations and water infrastructures designed and constructed on the basis of linear views and sectorial requirements and conditions and technologies from the past in many parts of the world, in the UK, sewage sludge and food waste digestion operations are also under very different regulatory and management regimes. With sustainability requiring that we do not address single issues in isolation, but through a systems approach that delivers integrated solutions, co-digestion of food waste with sewage sludge could become such a solution. If carefully applied, co-digestion can deliver beneficial synergies for the water industry and authorities responsible for food waste management. The collaboration of all relevant stakeholders and regulators to support changes to current regulatory frameworks to enable this, is proposed as the way forward, particularly as their complexity has been identified as the major hurdle to the implementation of co-digestion in the UK.

  6. Effect of whey storage on biogas produced by co-digestion of sewage sludge and whey.

    PubMed

    Powell, N; Broughton, A; Pratt, C; Shilton, A

    2013-01-01

    Biogas production from municipal anaerobic digesters could potentially be boosted via co-digestion with organic wastes such as whey. The challenge is that whey production is seasonal. This research examined the effect of storing whey at ambient temperature on: (1) whey composition; (2) biogas production from co-digestion of the stored whey with municipal primary sludge. Whey storage resulted in acidification with formation of acetate, propionate and butyrate and a 9% reduction in total chemical oxygen demand (COD) over the 9-month trial. A control digester fed with primary sludge produced 0.18-0.23 m3 CH4/kgCOD(added). Co-digestion of fresh whey and sludge increased biogas production and the methane contribution from the whey was 0.29 m3CH4/kgCOD(added). When the fresh whey was substituted with stored whey, methane production by the whey remained at 0.29 m3CH4/kgCOD(added). The ability to store whey at ambient temperature and allow co-digestion year round will significantly improve the economics of biogas production from whey.

  7. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    EPA Science Inventory

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  8. Anaerobic digestion of municipal solid waste: Utility of process residues as a soil amendment

    SciTech Connect

    Rivard, C.J.; Nagle, N.J.; Kay, B.D.

    1995-12-31

    Tuna processing wastes (sludges high in fat, oil, and grease [FOG]) and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal challenge. The biological conversion of the organic fraction of these wastes to useful products, including methane and fertilizer-grade residue, through anaerobic high-solids digestion is currently in scale-up development. The suitability of the anaerobic digestion residues as a soil amendment was evaluated through extensive chemical analysis and greenhouse studies using corn as an indicator crop. Additionally, native Samoan soil was used to evaluate the specific application rates for the compost. Experiments established that anaerobic residues increase crop yields in direct proportion to increases in the application rate. Additionally, nutrient saturation was not demonstrated within the range of application rates evaluated for the Samoan soil. Beyond nutrient supplementation, organic residue amendment to Samoan soil imparts enhanced water and nutrient-binding capacities.

  9. Effect of thermal hydrolysis and ultrasounds pretreatments on foaming in anaerobic digesters.

    PubMed

    Alfaro, N; Cano, R; Fdz-Polanco, F

    2014-10-01

    Foam appears regularly in anaerobic digesters producing operational and safety problems. In this research, based on the operational observation at semi-industrial pilot scale where sludge pretreatment mitigated foaming in anaerobic digesters, this study aimed at evaluating any potential relationship between foaming tools applied to activated sludge at lab-scale (foam potential, foam stability and Microthrix parvicella abundance) and the experimental behavior observed in pilot scale and full-scale anaerobic digesters. The potential of thermal hydrolysis and ultrasounds for reducing foaming capacity was also evaluated. Filamentous bacteria abundance was directly linked to foaming capacity in anaerobic processes. A maximum reduction of M.parvicella abundance (from 5 to 2) was reached using thermal hydrolysis with steam explosion at 170°C and ultrasounds at 66.7kWh/m(3), showing both good anti-foaming properties. On the other hand, foam potential and stability determinations showed a lack of consistency with the bacteria abundance results and experimental evidences.

  10. Optimising the anaerobic co-digestion of urban organic waste using dynamic bioconversion mathematical modelling.

    PubMed

    Fitamo, T; Boldrin, A; Dorini, G; Boe, K; Angelidaki, I; Scheutz, C

    2016-12-01

    Mathematical anaerobic bioconversion models are often used as a convenient way to simulate the conversion of organic materials to biogas. The aim of the study was to apply a mathematical model for simulating the anaerobic co-digestion of various types of urban organic waste, in order to develop strategies for controlling and optimising the co-digestion process. The model parameters were maintained in the same way as the original dynamic bioconversion model, albeit with minor adjustments, to simulate the co-digestion of food and garden waste with mixed sludge from a wastewater treatment plant in a continuously stirred tank reactor. The model's outputs were validated with experimental results obtained in thermophilic conditions, with mixed sludge as a single substrate and urban organic waste as a co-substrate at hydraulic retention times of 30, 20, 15 and 10 days. The predicted performance parameter (methane productivity and yield) and operational parameter (concentration of ammonia and volatile fatty acid) values were reasonable and displayed good correlation and accuracy. The model was later applied to identify optimal scenarios for an urban organic waste co-digestion process. The simulation scenario analysis demonstrated that increasing the amount of mixed sludge in the co-substrate had a marginal effect on the reactor performance. In contrast, increasing the amount of food waste and garden waste resulted in improved performance.

  11. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities.

    PubMed

    Sawatdeenarunat, Chayanon; Surendra, K C; Takara, Devin; Oechsner, Hans; Khanal, Samir Kumar

    2015-02-01

    Anaerobic digestion (AD) of lignocellulosic biomass provides an excellent opportunity to convert abundant bioresources into renewable energy. Rumen microorganisms, in contrast to conventional microorganisms, are an effective inoculum for digesting lignocellulosic biomass due to their intrinsic ability to degrade substrate rich in cellulosic fiber. However, there are still several challenges that must be overcome for the efficient digestion of lignocellulosic biomass. Anaerobic biorefinery is an emerging concept that not only generates bioenergy, but also high-value biochemical/products from the same feedstock. This review paper highlights the current status of lignocellulosic biomass digestion and discusses its challenges. The paper also discusses the future research needs of lignocellulosic biomass digestion.

  12. Inactivation of dairy manure-borne pathogens by anaerobic digestion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Anaerobic digestion of animal manure has the potential to inactivate enteric pathogens, thereby reducing exposures to livestock and humans when the products of digestion are disposed by land-spreading or irrigation or returned to livestock uses such as bedding. Data on digester effectiv...

  13. Inoculum selection is crucial to ensure operational stability in anaerobic digestion.

    PubMed

    De Vrieze, Jo; Gildemyn, Sylvia; Vilchez-Vargas, Ramiro; Jáuregui, Ruy; Pieper, Dietmar H; Verstraete, Willy; Boon, Nico

    2015-01-01

    Anaerobic digestion is considered a key technology for the future bio-based economy. The microbial consortium carrying out the anaerobic digestion process is quite complex, and its exact role in terms of "elasticity", i.e., the ability to rapidly adapt to changing conditions, is still unknown. In this study, the role of the initial microbial community in terms of operational stability and stress tolerance was evaluated during a 175-day experiment. Five different inocula from stable industrial anaerobic digesters were fed a mixture of waste activated sludge and glycerol. Increasing ammonium pulses were applied to evaluate stability and stress tolerance. A different response in terms of start-up and ammonium tolerance was observed among the different inocula. Methanosaetaceae were the dominant acetoclastic methanogens, yet, Methanosarcinaceae increased in abundance at elevated ammonium concentrations. A shift from a Firmicutes to a Proteobacteria dominated bacterial community was observed in failing digesters. Methane production was strongly positively correlated with Methanosaetaceae, but also with Bacteria related to Anaerolinaceae, Clostridiales, and Alphaproteobacteria. Volatile fatty acids were strongly positively correlated with Betaproteobacteria and Bacteroidetes, yet ammonium concentration only with Bacteroidetes. Overall, these results indicate the importance of inoculum selection to ensure stable operation and stress tolerance in anaerobic digestion.

  14. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids

    SciTech Connect

    Griffin, M.E.; McMahon, K.D.; Mackie, R.I.; Raskin, L.

    1998-02-05

    An aggressive start-up strategy was used to initiate codigestion in two anaerobic, continuously mixed bench-top reactors at mesophilic (37 C) and thermophilic (55 C) conditions. The digesters were inoculated with mesophilic anaerobic sewage sludge and cattle manure and were fed a mixture of simulated municipal solid waste and biosolids in proportions that reflect US production rates. The design organic loading rate was 3.1 kg volatile solids/m{sup 3}/day and the retention time was 20 days. Ribosomal RNA-targeted oligonucleotide probes were used to determine the methanogenic community structure in the inocula and the digesters. Chemical analyses were performed to evaluate digester performance. The aggressive start-up strategy was successful for the thermophilic reactor, despite the use of a mesophilic inoculum.

  15. Behavior of carbon monoxide as a trace component of anaerobic digester gases and methanogenesis from acetate

    SciTech Connect

    Hickey, R.F. ); Switzenbaum, M.S. )

    1990-11-01

    Carbon monoxide was a normal trace component of the gases produced during anaerobic sludge digestion. The CO concentration increased in response to perturbing the digestion process by increasing organic loading or adding acetate. Reducing the headspace methane level resulted in higher measured CO concentrations. Accordingly, a thermodynamic relationship was developed by dividing the acetoclastic methane reaction into two half-cell reactions, representing production of and subsequent oxidation of CO. A constant fraction of the total free energy available for acetate conversion to methane was assigned to each half-cell based on the basis of experimental observations. It was determined that approximately 54% of the energy available for acetate conversion to methane was consistently associated with the anaerobic oxidation of CO to carbon dioxide. Estimated values compared well for measured concentrations for both mesophilic and thermophilic digesters operating under steady-state conditions.

  16. Silver Sulfidation in Thermophilic Anaerobic Digesters and Effects on Antibiotic Resistance Genes

    SciTech Connect

    Kim, Bojeong; Miller, Jennifer H.; Monsegue, Niven; Levard, Clément; Hong, Yanjuan; Hull, Matthew S.; Murayama, Mitsuhiro; Brown, Gordon E.; Vikesland, Peter J.; Knocke, William R.; Pruden, Amy; Hochella, Michael F.

    2015-12-15

    Physical and chemical transformations and biological responses of silver nanoparticles (AgNPs) in wastewater treatment systems are of particular interest because of the extensive existing and continually growing uses of AgNPs in consumer products. In this study, we investigated the transformation of AgNPs and AgNO3 during thermophilic anaerobic digestion and effects on selection or transfer of antibiotic resistance genes (ARGs). Ag2S-NPs, sulfidation products of both AgNPs and AgNO3, were recovered from raw and digested sludges and were analyzed by analytical transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS). TEM and XAS revealed rapid (≤20 min) Ag sulfidation for both Ag treatments. Once transformed, Ag2S-NPs (as individual NPs or an NP aggregate) persisted for the duration of the batch digestion. The digestion process produced Ag2S-NPs that were strongly associated with sludge organics and/or other inorganic precipitates. Ag treatments (up to 1,000 mg Ag/kg) did not have an impact on the performance of thermophilic anaerobic digesters or ARG response, as indicated by quantitative polymerase chain reaction measurements of sul1, tet(W), and tet(O) and also intI1, an indicator of horizontal gene transfer of ARGs. Thus, rapid Ag sulfidation and stabilization with organics effectively sequester Ag and prevent biol