Analog detection for cavity lifetime spectroscopy
Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.
2001-05-15
An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.
Analog detection for cavity lifetime spectroscopy
Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.
2003-01-01
An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.
Conference Report: Biosignature Preservation and Detection in Mars Analog Environments.
Hays, Lindsay; Beaty, David
2017-01-01
The Conference on Biosignature Preservation and Detection in Mars Analog Environments held in May 2016 brought together scientists to discuss microbial biosignatures in Mars analog habitable environments. Five analog environments were discussed: (1) hydrothermal spring systems, (2) subaqueous environments, (3) subaerial environments, (4) subsurface environments, and (5) iron-rich systems. This paper details the major messages that resulted from the discussions and will be followed by a review paper that adds significant detail from the published literature and interpretations from the writing committee of the workshop for future research and application to astrobiological exploration missions. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 1-2.
Discovery of a Jupiter/Saturn analog with gravitational microlensing.
Gaudi, B S; Bennett, D P; Udalski, A; Gould, A; Christie, G W; Maoz, D; Dong, S; McCormick, J; Szymanski, M K; Tristram, P J; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; Depoy, D L; Han, C; Kaspi, S; Lee, C-U; Mallia, F; Natusch, T; Pogge, R W; Park, B-G; Abe, F; Bond, I A; Botzler, C S; Fukui, A; Hearnshaw, J B; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N J; Sako, T; Saito, To; Sato, S; Skuljan, L; Sullivan, D J; Sumi, T; Sweatman, W L; Yock, P C M; Albrow, M D; Allan, A; Beaulieu, J-P; Burgdorf, M J; Cook, K H; Coutures, C; Dominik, M; Dieters, S; Fouqué, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; Macintosh, B
2008-02-15
Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.
Analog Computer-Aided Detection (CAD) information can be more effective than binary marks.
Cunningham, Corbin A; Drew, Trafton; Wolfe, Jeremy M
2017-02-01
In socially important visual search tasks, such as baggage screening and diagnostic radiology, experts miss more targets than is desirable. Computer-aided detection (CAD) programs have been developed specifically to improve performance in these professional search tasks. For example, in breast cancer screening, many CAD systems are capable of detecting approximately 90% of breast cancer, with approximately 0.5 false-positive detections per image. Nevertheless, benefits of CAD in clinical settings tend to be small (Birdwell, 2009) or even absent (Meziane et al., 2011; Philpotts, 2009). The marks made by a CAD system can be "binary," giving the same signal to any location where the signal is above some threshold. Alternatively, a CAD system presents an analog signal that reflects strength of the signal at a location. In the experiments reported, we compare analog and binary CAD presentations using nonexpert observers and artificial stimuli defined by two noisy signals: a visible color signal and an "invisible" signal that informed our simulated CAD system. We found that analog CAD generally yielded better overall performance than binary CAD. The analog benefit is similar at high and low target prevalence. Our data suggest that the form of the CAD signal can directly influence performance. Analog CAD may allow the computer to be more helpful to the searcher.
Analog Computer-Aided Detection (CAD) information can be more effective than binary marks
Cunningham, Corbin A.; Drew, Trafton; Wolfe, Jeremy M.
2017-01-01
In socially important visual search tasks such as baggage screening and diagnostic radiology, experts miss more targets than is desirable. Computer Aided Detection (CAD) programs have been developed specifically to help improve performance in these professional search tasks. For example, in breast cancer screening, many CAD systems are capable of detecting approximately 90% of breast cancer, with approximately 0.5 false positive detections per image. Nevertheless, benefits of CAD in clinical settings tend to be small (Birdwell, 2009) or even absent (Meziane et al., 2011; Philpotts, 2009). The marks made by a CAD system can be “Binary”, giving the same signal to any location where the signal is above some threshold. Alternatively, a CAD system present an Analog signal that reflected strength of the signal at a location. In the experiments reported here, we compare analog and binary CAD presentations using non-expert observers and artificial stimuli defined by two noisy signals: a visible color signal and an "invisible" signal that informed our simulated CAD system. We found that analog CAD generally yielded better overall performance than binary CAD. The analog benefit is similar at high and low target prevalence. Our data suggest that the form of the CAD signal can directly influence performance. Analog CAD may allow the computer to be more helpful to the searcher. PMID:27928658
1978-07-01
occurred. The attitude detection system included a three-axis fluxgate vector magnetometer and solar attitude detectors that produced both analog and digital ...heliogoniometer ( digital solar attitudeIsensing system) Three axis analog solar detection - Rubidium vapor magnetometer Three axis fluxgate magnetometer ...Telemetry: 35 channels modulating 150 MHz carrier on command Three axis solar attitude detector system Three axis fluxgate magnetometer system
Biosignature Preservation and Detection in Mars Analog Environments.
Hays, Lindsay E; Graham, Heather V; Des Marais, David J; Hausrath, Elisabeth M; Horgan, Briony; McCollom, Thomas M; Parenteau, M Niki; Potter-McIntyre, Sally L; Williams, Amy J; Lynch, Kennda L
2017-04-01
This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 363-400.
Design of an integrated sensor system for the detection of traces of different molecules in the air
NASA Astrophysics Data System (ADS)
Strle, D.; Muševič, I.
2015-04-01
This article presents the design of a miniature detection system and its associated signal processing electronics, which can detect and selectively recognize vapor traces of different materials in the air - including explosives. It is based on the array of surface-functionalized COMB capacitive sensors and extremely low noise, analog, integrated electronic circuit, hardwired digital signal processing hardware and additional software running on a PC. The instrument is sensitive and selective, consumes a minimum amount of energy, is very small (few mm3) and cheap to produce in large quantities, and is insensitive to mechanical influences. Using an electronic detection system built of low noise analog front-end and hard-wired digital signal processing, it is possible to detect less than 0.3ppt of TNT molecules in the atmosphere (3 TNT molecules in 1013 molecules of the air) at 25°C on a 1 Hz bandwidth using very small volume and approx. 10 mA current from a 5V supply voltage. The sensors are implemented in a modified MEMS process and analog electronics in 0.18 um CMOS technology.
Detecting Analogies Unconsciously
Reber, Thomas P.; Luechinger, Roger; Boesiger, Peter; Henke, Katharina
2014-01-01
Analogies may arise from the conscious detection of similarities between a present and a past situation. In this functional magnetic resonance imaging study, we tested whether young volunteers would detect analogies unconsciously between a current supraliminal (visible) and a past subliminal (invisible) situation. The subliminal encoding of the past situation precludes awareness of analogy detection in the current situation. First, participants encoded subliminal pairs of unrelated words in either one or nine encoding trials. Later, they judged the semantic fit of supraliminally presented new words that either retained a previously encoded semantic relation (“analog”) or not (“broken analog”). Words in analogs versus broken analogs were judged closer semantically, which indicates unconscious analogy detection. Hippocampal activity associated with subliminal encoding correlated with the behavioral measure of unconscious analogy detection. Analogs versus broken analogs were processed with reduced prefrontal but enhanced medial temporal activity. We conclude that analogous episodes can be detected even unconsciously drawing on the episodic memory network. PMID:24478656
Evaluation of Pulse Counting for the Mars Organic Mass Analyzer (MOMA) Ion Trap Detection Scheme
NASA Technical Reports Server (NTRS)
Van Amerom, Friso H.; Short, Tim; Brinckerhoff, William; Mahaffy, Paul; Kleyner, Igor; Cotter, Robert J.; Pinnick, Veronica; Hoffman, Lars; Danell, Ryan M.; Lyness, Eric I.
2011-01-01
The Mars Organic Mass Analyzer is being developed at Goddard Space Flight Center to identify organics and possible biological compounds on Mars. In the process of characterizing mass spectrometer size, weight, and power consumption, the use of pulse counting was considered for ion detection. Pulse counting has advantages over analog-mode amplification of the electron multiplier signal. Some advantages are reduced size of electronic components, low power consumption, ability to remotely characterize detector performance, and avoidance of analog circuit noise. The use of pulse counting as a detection method with ion trap instruments is relatively rare. However, with the recent development of high performance electrical components, this detection method is quite suitable and can demonstrate significant advantages over analog methods. Methods A prototype quadrupole ion trap mass spectrometer with an internal electron ionization source was used as a test setup to develop and evaluate the pulse-counting method. The anode signal from the electron multiplier was preamplified. The an1plified signal was fed into a fast comparator for pulse-level discrimination. The output of the comparator was fed directly into a Xilinx FPGA development board. Verilog HDL software was written to bin the counts at user-selectable intervals. This system was able to count pulses at rates in the GHz range. The stored ion count nun1ber per bin was transferred to custom ion trap control software. Pulse-counting mass spectra were compared with mass spectra obtained using the standard analog-mode ion detection. Prelin1inary Data Preliminary mass spectra have been obtained for both analog mode and pulse-counting mode under several sets of instrument operating conditions. Comparison of the spectra revealed better peak shapes for pulse-counting mode. Noise levels are as good as, or better than, analog-mode detection noise levels. To artificially force ion pile-up conditions, the ion trap was overfilled and ions were ejected at very high scan rates. Pile-up of ions was not significant for the ion trap under investigation even though the ions are ejected in so-called 'ion-micro packets'. It was found that pulse counting mode had higher dynamic range than analog mode, and that the first amplification stage in analog mode can distort mass peaks. The inherent speed of the pulse counting method also proved to be beneficial to ion trap operation and ion ejection characterization. Very high scan rates were possible with pulse counting since the digital circuitry response time is so much smaller than with the analog method. Careful investigation of the pulse-counting data also allowed observation of the applied resonant ejection frequency during mass analysis. Ejection of ion micro packets could be clearly observed in the binned data. A second oscillation frequency, much lower than the secular frequency, was also observed. Such an effect was earlier attributed to the oscillation of the total plasma cloud in the ion trap. While the components used to implement pulse counting are quite advanced, due to their prevalence in consumer electronics, the cost of this detection system is no more than that of an analog mode system. Total pulse-counting detection system electronics cost is under $250
Method and apparatus for data decoding and processing
Hunter, Timothy M.; Levy, Arthur J.
1992-01-01
A system and technique is disclosed for automatically controlling the decoding and digitizaiton of an analog tape. The system includes the use of a tape data format which includes a plurality of digital codes recorded on the analog tape in a predetermined proximity to a period of recorded analog data. The codes associated with each period of analog data include digital identification codes prior to the analog data, a start of data code coincident with the analog data recording, and an end of data code subsequent to the associated period of recorded analog data. The formatted tape is decoded in a processing and digitization system which includes an analog tape player coupled to a digitizer to transmit analog information from the recorded tape over at least one channel to the digitizer. At the same time, the tape player is coupled to a decoder and interface system which detects and decodes the digital codes on the tape corresponding to each period of recorded analog data and controls tape movement and digitizer initiation in response to preprogramed modes. A host computer is also coupled to the decoder and interface system and the digitizer and programmed to initiate specific modes of data decoding through the decoder and interface system including the automatic compilation and storage of digital identification information and digitized data for the period of recorded analog data corresponding to the digital identification data, compilation and storage of selected digitized data representing periods of recorded analog data, and compilation of digital identification information related to each of the periods of recorded analog data.
Digitally balanced detection for optical tomography.
Hafiz, Rehan; Ozanyan, Krikor B
2007-10-01
Analog balanced Photodetection has found extensive usage for sensing of a weak absorption signal buried in laser intensity noise. This paper proposes schemes for compact, affordable, and flexible digital implementation of the already established analog balanced detection, as part of a multichannel digital tomography system. Variants of digitally balanced detection (DBD) schemes, suitable for weak signals on a largely varying background or weakly varying envelopes of high frequency carrier waves, are introduced analytically and elaborated in terms of algorithmic and hardware flow. The DBD algorithms are implemented on a low-cost general purpose reconfigurable hardware (field-programmable gate array), utilizing less than half of its resources. The performance of the DBD schemes compare favorably with their analog counterpart: A common mode rejection ratio of 50 dB was observed over a bandwidth of 300 kHz, limited mainly by the host digital hardware. The close relationship between the DBD outputs and those of known analog balancing circuits is discussed in principle and shown experimentally in the example case of propane gas detection.
Biosignature Preservation and Detection in Mars Analog Environments
Graham, Heather V.; Des Marais, David J.; Hausrath, Elisabeth M.; Horgan, Briony; McCollom, Thomas M.; Parenteau, M. Niki; Potter-McIntyre, Sally L.; Williams, Amy J.; Lynch, Kennda L.
2017-01-01
Abstract This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation—Biosignature detection—Mars analog environments—Conference report—Astrobiological exploration. Astrobiology 17, 363–400. PMID:28177270
Detection of Planets Orbiting Sun-Like Stars
NASA Astrophysics Data System (ADS)
Marcy, Geoffrey W.; Butler, R. Paul
1996-12-01
During the past 11 months, astronomers have finally discovered planets orbiting Sun-like stars. A total of eight planets has been detected by the Doppler technique, and there are possible planets detected by astrometry around one other star. Some of the new planets exhibit properties similar to those in our Solar System. But many of them have properties that were unexpected. Several planets are more massive than Jupiter, and some orbit their host star in orbits smaller than Mercury's orbit. Equally unexpected is that three of these planets have noncircular orbits. Current theory of the formation of planetary systems is challenged to account for these new planetary properties, but several models are emerging, involving gravitational scattering of planetesimals and viscous or tidal decay of orbits. The occurrence rate of true analogs of our Solar System will soon be determined with the detection of long-period gas giants analogous to Jupiter.
Evaluation Of The Diagnostic Performance Of A Multimedia Medical Communications System.
NASA Astrophysics Data System (ADS)
Robertson, John G.; Coristine, Marjorie; Goldberg, Morris; Beeton, Carolyn; Belanger, Garry; Tombaugh, Jo W.; Hickey, Nancy M.; Millward, Steven F.; Davis, Michael; Whittingham, David
1989-05-01
The central concern of radiologists when evaluating Picture Archiving Communication System (PACS) is the diagnostic performance of digital images compared to the original analog versions of the same images. Considerable work has been done comparing the ROC curves of various types of digital systems to the corresponding analog systems for the detection of specific phantoms or diseases. Although the studies may notify the radiologists that for a specific lesion a digital system may perform as well as the analog system, it tells the radiologists very little about the impact on diagnostic performance of a digital system in the general practice of radiology. We describe in this paper an alternative method for evaluating the diagnostic performance of a digital system and a preliminary experiment we conducted to test the methodology.
[Real-time detection and processing of medical signals under windows using Lcard analog interfaces].
Kuz'min, A A; Belozerov, A E; Pronin, T V
2008-01-01
Multipurpose modular software for an analog interface based on Lcard 761 is considered. Algorithms for pipeline processing of medical signals under Windows with dynamic control of computational resources are suggested. The software consists of user-friendly completable modifiable modules. The module hierarchy is based on object-oriented heritage principles, which make it possible to construct various real-time systems for long-term detection, processing, and imaging of multichannel medical signals.
Low-power analog integrated circuits for wireless ECG acquisition systems.
Tsai, Tsung-Heng; Hong, Jia-Hua; Wang, Liang-Hung; Lee, Shuenn-Yuh
2012-09-01
This paper presents low-power analog ICs for wireless ECG acquisition systems. Considering the power-efficient communication in the body sensor network, the required low-power analog ICs are developed for a healthcare system through miniaturization and system integration. To acquire the ECG signal, a low-power analog front-end system, including an ECG signal acquisition board, an on-chip low-pass filter, and an on-chip successive-approximation analog-to-digital converter for portable ECG detection devices is presented. A quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and upconversion mixer are also developed to transmit the ECG signal through wireless communication. In the receiver, a 2.4 GHz fully integrated CMOS RF front end with a low-noise amplifier, differential power splitter, and quadrature mixer based on current-reused folded architecture is proposed. The circuits have been implemented to meet the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless ECG acquisition systems have been fabricated using a 0.18 μm Taiwan Semiconductor Manufacturing Company (TSMC) CMOS standard process. The measured results on the human body reveal that ECG signals can be acquired effectively by the proposed low-power analog front-end ICs.
NASA Astrophysics Data System (ADS)
Wirthmann, André; McCombe, Bruce D.; Heitmann, Detlef; Holland, Steffen; Friedland, Klaus-Jürgen; Hu, Can-Ming
2007-11-01
We report on photoresistance and magnetotransport measurements in a moderate mobility two-dimensional electron system subject to far-infrared (terahertz) radiation. The photoresistance shows radiation induced 1/B -periodic oscillations, which we identify as the terahertz analog of microwave-induced resistance oscillations (MIROs). The MIRO-analog oscillations show a sign reversal in the low-field, high current regime. We simultaneously observe magnetoplasmons and MIRO-analog oscillations with no apparent coupling between them. Using a meandering Hall-bar geometry allows us to greatly enhance sensitivity and detect these oscillations even at elevated temperatures and moderate mobilities.
An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horan, D.
1999-04-13
An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less
A power-efficient analog integrated circuit for amplification and detection of neural signals.
Borghi, T; Bonfanti, A; Gusmeroli, R; Zambra, G; Spinelli, A S
2008-01-01
We present a neural amplifier that optimizes the trade-off between power consumption and noise performance down to the best so far reported. In the perspective of realizing a fully autonomous implantable system we also address the problem of spike detection by using a new simple algorithm and we discuss the implementation with analog integrated circuits. Implemented in 0.35-microm CMOS technology and with total current consumption of about 20 microA, the whole circuit occupies an area of 0.18 mm(2). Reduced power consumption and small area make it suited to be used in chronic multichannel recording systems for neural prosthetics and neuroscience experiments.
Safety Assessment of TACOM’s Crew Station/Turret Motion Base Simulator
1992-04-01
mode. The power ON switch is interlocked with the system hydraulic pressure switch so that the electronics can not be turned off while the system...analog) "o Oil Temperature Transducer (analog) "o Facility Pressure Switch o Pressure Critical Switch "o Six Supply Solenoid Valves "O Three Accumulator...Relief Solenoid Valves o Return Pressure Switch o Return Valve Switch o Six Filter Clogged Switches (one per filter) The Facility Pressure switch detects
Searching for Biosignatures in Martian Sedimentary Systems
NASA Astrophysics Data System (ADS)
Stevens, A. H.; McDonald, A.; Cockell, C. S.
2018-04-01
We present experiments designed to simulate an inhabited martian lacustrine system analogous to Gale Crater. We describe the microbes found to thrive in this simulated environment and identify issues detecting biomarkers in this context.
Talukder, Niloy; Furniturewalla, Abbas; Le, Tuan; Chan, Matthew; Hirday, Shreyas; Cao, Xinnan; Xie, Pengfei; Lin, Zhongtian; Gholizadeh, Azam; Orbine, Steve; Javanmard, Mehdi
2017-06-01
We present a portable system for personalized blood cell counting consisting of a microfluidic impedance cytometer and portable analog readout electronics, feeding into an analog-to-digital converter (ADC), and being transmitted via Bluetooth to a user-accessible mobile application. We fabricated a microfluidic impedance cytometer with a novel portable analog readout. The novel design of the analog readout, which consists of a lock-in-amplifier followed by a high-pass filter stage for subtraction of drift and DC offset, and a post-subtraction high gain stage, enables detection of particles and cells as small as 1 μm in diameter, despite using a low-end 8-bit ADC. The lock-in-amplifier and the ADC were set up to receive and transmit data from a Bluetooth module. In order to initiate the system, as well as to transmit all of the data, a user friendly mobile application was developed, and a proof-of-concept trial was run on a blood sample. Applications such as personalized health monitoring require robust device operation and resilience to clogging. It is desirable to avoid using channels comparable in size to the particles being detected thus requiring high levels of sensitivity. Despite using low-end off-the-shelf hardware, our sensing platform was capable of detecting changes in impedance as small as 0.032%, allowing detection of 3 μm diameter particles in a 300 μm wide channel. The sensitivity of our system is comparable to that of a high-end bench-top impedance spectrometer when tested using the same sensors. The novel analog design allowed for an instrument with a footprint of less than 80 cm 2 . The aim of this work is to demonstrate the potential of using microfluidic impedance spectroscopy for low cost health monitoring. We demonstrated the utility of the platform technology towards cell counting, however, our platform is broadly applicable to assaying wide panels of biomarkers including proteins, nucleic acids, and various cell types.
Leak detection utilizing analog binaural (VLSI) techniques
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor)
1995-01-01
A detection method and system utilizing silicon models of the traveling wave structure of the human cochlea to spatially and temporally locate a specific sound source in the presence of high noise pandemonium. The detection system combines two-dimensional stereausis representations, which are output by at least three VLSI binaural hearing chips, to generate a three-dimensional stereausis representation including both binaural and spectral information which is then used to locate the sound source.
Detection and Modeling of High-Dimensional Thresholds for Fault Detection and Diagnosis
NASA Technical Reports Server (NTRS)
He, Yuning
2015-01-01
Many Fault Detection and Diagnosis (FDD) systems use discrete models for detection and reasoning. To obtain categorical values like oil pressure too high, analog sensor values need to be discretized using a suitablethreshold. Time series of analog and discrete sensor readings are processed and discretized as they come in. This task isusually performed by the wrapper code'' of the FDD system, together with signal preprocessing and filtering. In practice,selecting the right threshold is very difficult, because it heavily influences the quality of diagnosis. If a threshold causesthe alarm trigger even in nominal situations, false alarms will be the consequence. On the other hand, if threshold settingdoes not trigger in case of an off-nominal condition, important alarms might be missed, potentially causing hazardoussituations. In this paper, we will in detail describe the underlying statistical modeling techniques and algorithm as well as the Bayesian method for selecting the most likely shape and its parameters. Our approach will be illustrated by several examples from the Aerospace domain.
NASA Astrophysics Data System (ADS)
Salamatova, T.; Zhukov, V.
2017-02-01
The paper presents the application of the artificial immune systems apparatus as a heuristic method of network intrusion detection for algorithmic provision of intrusion detection systems. The coevolutionary immune algorithm of artificial immune systems with clonal selection was elaborated. In testing different datasets the empirical results of evaluation of the algorithm effectiveness were achieved. To identify the degree of efficiency the algorithm was compared with analogs. The fundamental rules based of solutions generated by this algorithm are described in the article.
Efficient audio signal processing for embedded systems
NASA Astrophysics Data System (ADS)
Chiu, Leung Kin
As mobile platforms continue to pack on more computational power, electronics manufacturers start to differentiate their products by enhancing the audio features. However, consumers also demand smaller devices that could operate for longer time, hence imposing design constraints. In this research, we investigate two design strategies that would allow us to efficiently process audio signals on embedded systems such as mobile phones and portable electronics. In the first strategy, we exploit properties of the human auditory system to process audio signals. We designed a sound enhancement algorithm to make piezoelectric loudspeakers sound ”richer" and "fuller." Piezoelectric speakers have a small form factor but exhibit poor response in the low-frequency region. In the algorithm, we combine psychoacoustic bass extension and dynamic range compression to improve the perceived bass coming out from the tiny speakers. We also developed an audio energy reduction algorithm for loudspeaker power management. The perceptually transparent algorithm extends the battery life of mobile devices and prevents thermal damage in speakers. This method is similar to audio compression algorithms, which encode audio signals in such a ways that the compression artifacts are not easily perceivable. Instead of reducing the storage space, however, we suppress the audio contents that are below the hearing threshold, therefore reducing the signal energy. In the second strategy, we use low-power analog circuits to process the signal before digitizing it. We designed an analog front-end for sound detection and implemented it on a field programmable analog array (FPAA). The system is an example of an analog-to-information converter. The sound classifier front-end can be used in a wide range of applications because programmable floating-gate transistors are employed to store classifier weights. Moreover, we incorporated a feature selection algorithm to simplify the analog front-end. A machine learning algorithm AdaBoost is used to select the most relevant features for a particular sound detection application. In this classifier architecture, we combine simple "base" analog classifiers to form a strong one. We also designed the circuits to implement the AdaBoost-based analog classifier.
Research on application of photoelectric rotary encoder in space optical remote sensor
NASA Astrophysics Data System (ADS)
Zheng, Jun; Qi, Shao-fan; Wang, Yuan-yuan; Zhang, Zhan-dong
2016-11-01
For space optical remote sensor, especially wide swath detecting sensor, the focusing control system for the focal plane should be well designed to obtain the best image quality. The crucial part of this system is the measuring instrument. For previous implements, the potentiometer, which is essentially a voltage divider, is usually introduced to conduct the position in feedback closed-loop control process system. However, the performances of both electro-mechanical and digital potentiometers is limited in accuracy, temperature coefficients, and scale range. To have a better performance of focal plane moving detection, this article presents a new measuring implement with photoelectric rotary encoder, which consists of the photoelectric conversion system and the signal process system. In this novel focusing control system, the photoelectric conversion system is fixed on main axis, which can transform the angle information into a certain analog signal. Through the signal process system, after analog-to-digital converting and data format processing of the certain analog signal, the focusing control system can receive the digital precision angle position which can be used to deduct the current moving position of the focal plane. For utilization of space optical remote sensor in aerospace areas, the reliability design of photoelectric rotary encoder system should be considered with highest priority. As mentioned above, this photoelectric digital precision angle measurement device is well designed for this real-time control and dynamic measurement system, because its characters of high resolution, high accuracy, long endurance, and easy to maintain.
A FPGA-based Measurement System for Nonvolatile Semiconductor Memory Characterization
NASA Astrophysics Data System (ADS)
Bu, Jiankang; White, Marvin
2002-03-01
Low voltage, long retention, high density SONOS nonvolatile semiconductor memory (NVSM) devices are ideally suited for PCMCIA, FLASH and 'smart' cards. The SONOS memory transistor requires characterization with an accurate, rapid measurement system with minimum disturbance to the device. The FPGA-based measurement system includes three parts: 1) a pattern generator implemented with XILINX FPGAs and corresponding software, 2) a high-speed, constant-current, threshold voltage detection circuit, 3) and a data evaluation program, implemented with a LABVIEW program. Fig. 1 shows the general block diagram of the FPGA-based measurement system. The function generator is designed and simulated with XILINX Foundation Software. Under the control of the specific erase/write/read pulses, the analog detect circuit applies operational modes to the SONOS device under test (DUT) and determines the change of the memory-state of the SONOS nonvolatile memory transistor. The TEK460 digitizes the analog threshold voltage output and sends to the PC computer. The data is filtered and averaged with a LABVIEWTM program running on the PC computer and displayed on the monitor in real time. We have implemented the pattern generator with XILINX FPGAs. Fig. 2 shows the block diagram of the pattern generator. We realized the logic control by a method of state machine design. Fig. 3 shows a small part of the state machine. The flexibility of the FPGAs enhances the capabilities of this system and allows measurement variations without hardware changes. The characterization of the nonvolatile memory transistor device under test (DUT), as function of programming voltage and time, is achieved by a high-speed, constant-current threshold voltage detection circuit. The analog detection circuit incorporating fast analog switches controlled digitally with the FPGAs. The schematic circuit diagram is shown in Fig. 4. The various operational modes for the DUT are realized with control signals applied to the analog switches (SW) as shown in Fig. 5. A LABVIEWTM program, on a PC platform, collects and processes the data. The data is displayed on the monitor in real time. This time-domain filtering reduces the digitizing error. Fig. 6 shows the data processing. SONOS nonvolatile semiconductor memories are characterized by erase/write, retention and endurance measurements. Fig. 7 shows the erase/write characteristics of an n-Channel, 5V prog-rammable SONOS memory transistor. Fig.8 shows the retention characteristic of the same SONOS transistor. We have used this system to characterize SONOS nonvolatile semiconductor memory transistors. The attractive features of the test system design lies in the cost-effectiveness and flexibility of the test pattern implementation, fast read-out of memory state, low power, high precision determination of the device threshold voltage, and perhaps most importantly, minimum disturbance, which is indispensable for nonvolatile memory characterization.
NASA Astrophysics Data System (ADS)
Qi, Zhong; Zhang, Teng; Han, Ge; Li, Dongcang; Ma, Xin; Gong, Wei
2017-04-01
The current acquisition system of a lidar detects return signals in two modes (i.e., analog and photon counting); resulting in the lower (below 1500 m) and upper (higher than 1100 m) atmospheric parameters need analog and photon counting signal to retrieve, respectively. Hence, a lidar cannot obtain a continuous column of the concentrations of atmospheric components. For carbon cycle studies, the range-resolved concentration of atmospheric CO2 in the lower troposphere (below 1500 m) is one of the most significant parameters that should be determined. This study proposes a novel gluing method that merges the CO2 signal detected by ground-based DIAL in the lower troposphere. Through simulation experiments, the best uniform approximation polynomial theorem is utilized to determine the transformation coefficient to correlate signals from the different modes perfectly. The experimental results (both simulation experiments and actual measurement of signals) show that the proposed method is suitable and feasible for merging data in the region below 1500 m. Hence, the photon-counting signals whose SNRs are higher than those of the analog signals can be used to retrieve atmospheric parameters at an increased near range, facilitating atmospheric soundings using ground-based lidar in various fields.
Fast Low-Cost Multiple Sensor Readout System
Carter-Lewis, David; Krennich, Frank; Le Bohec, Stephane; Petry, Dirk; Sleege, Gary
2004-04-06
A low resolution data acquisition system is presented. The data acquisition system has a plurality of readout modules serially connected to a controller. Each readout module has a FPGA in communication with analog to digital (A/D) converters, which are connected to sensors. The A/D converter has eight bit or lower resolution. The FPGA detects when a command is addressed to it and commands the A/D converters to convert analog sensor data into digital data. The digital data is sent on a high speed serial communication bus to the controller. A graphical display is used in one embodiment to indicate if a sensor reading is outside of a predetermined range.
NASA Astrophysics Data System (ADS)
Tian, Changbin; Chang, Jun; Wang, Qiang; Wei, Wei; Zhu, Cunguang
2015-03-01
An optical fiber gas sensor mainly consists of two parts: optical part and detection circuit. In the debugging for the detection circuit, the optical part usually serves as a signal source. However, in the debugging condition, the optical part can be easily influenced by many factors, such as the fluctuation of ambient temperature or driving current resulting in instability of the wavelength and intensity for the laser; for dual-beam sensor, the different bends and stresses of the optical fiber will lead to the fluctuation of the intensity and phase; the intensity noise from the collimator, coupler, and other optical devices in the system will also result in the impurity of the optical part based signal source. In order to dramatically improve the debugging efficiency of the detection circuit and shorten the period of research and development, this paper describes an analog signal source, consisting of a single chip microcomputer (SCM), an amplifier circuit, and a voltage-to-current conversion circuit. It can be used to realize the rapid debugging detection circuit of the optical fiber gas sensor instead of optical part based signal source. This analog signal source performs well with many other advantages, such as the simple operation, small size, and light weight.
Thevis, Mario; Thomas, Andreas; Schänzer, Wilhelm
2014-12-01
With the growing availability of mature systems and strategies in biotechnology and the continuously expanding knowledge of cellular processes and involved biomolecules, human sports drug testing has become a considerably complex field in the arena of analytical chemistry. Proving the exogenous origin of peptidic drugs and respective analogs at lowest concentration levels in biological specimens (commonly blood, serum and urine) of rather limited volume is required to pursue an action against cheating athletes. Therefore, approaches employing chromatographic-mass spectrometric, electrophoretic, immunological and combined test methods have been required and developed. These allow detecting the misuse of peptidic compounds of lower (such as growth hormone-releasing peptides, ARA-290, TB-500, AOD-9604, CJC-1295, desmopressin, luteinizing hormone-releasing hormones, synacthen, etc.), intermediate (e.g., insulins, IGF-1 and analogs, 'full-length' mechano growth factor, growth hormone, chorionic gonadotropin, erythropoietin, etc.) and higher (e.g., stamulumab) molecular mass with desired specificity and sensitivity. A gap between the technically possible detection and the day-to-day analytical practice, however, still needs to be closed.
Design and implementation of JOM-3 Overhauser magnetometer analog circuit
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Jiang, Xue; Zhao, Jianchang; Zhang, Shuang; Guo, Xin; Zhou, Tingting
2017-09-01
Overhauser magnetometer, a kind of static-magnetic measurement system based on the Overhauser effect, has been widely used in archaeological exploration, mineral resources exploration, oil and gas basin structure detection, prediction of engineering exploration environment, earthquakes and volcanic eruotions, object magnetic measurement and underground buried booty exploration. Overhauser magnetometer plays an important role in the application of magnetic field measurement for its characteristics of small size, low power consumption and high sensitivity. This paper researches the design and the application of the analog circuit of JOM-3 Overhauser magnetometer. First, the Larmor signal output by the probe is very weak. In order to obtain the signal with high signal to noise rstio(SNR), the design of pre-amplifier circuit is the key to improve the quality of the system signal. Second, in this paper, the effectual step which could improve the frequency characters of bandpass filter amplifier circuit were put forward, and theoretical analysis was made for it. Third, the shaping circuit shapes the amplified sine signal into a square wave signal which is suitable for detecting the rising edge. Fourth, this design elaborated the optimized choice of tuning circuit, so the measurement range of the magnetic field can be covered. Last, integrated analog circuit testing system was formed to detect waveform of each module. By calculating the standard deviation, the sensitivity of the improved Overhauser magnetometer is 0.047nT for Earth's magnetic field observation. Experimental results show that the new magnetometer is sensitive to earth field measurement.
On the Incidence of Wise Infrared Excess Among Solar Analog, Twin, and Sibling Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Da Costa, A. D.; Martins, B. L. Canto; Lima Jr, J. E.
2017-03-01
This study presents a search for infrared (IR) excess in the 3.4, 4.6, 12, and 22 μ m bands in a sample of 216 targets, composed of solar sibling, twin, and analog stars observed by the Wide-field Infrared Survey Explorer ( WISE ) mission. In general, an IR excess suggests the existence of warm dust around a star. We detected 12 μ m and/or 22 μ m excesses at the 3 σ level of confidence in five solar analog stars, corresponding to a frequency of 4.1% of the entire sample of solar analogs analyzed, and in one out of 29more » solar sibling candidates, confirming previous studies. The estimation of the dust properties shows that the sources with IR excesses possess circumstellar material with temperatures that, within the uncertainties, are similar to that of the material found in the asteroid belt in our solar system. No photospheric flux excess was identified at the W1 (3.4 μ m) and W2 (4.6 μ m) WISE bands, indicating that, in the majority of stars of the present sample, no detectable dust is generated. Interestingly, among the 60 solar twin stars analyzed in this work, no WISE photospheric flux excess was detected. However, a null-detection excess does not necessarily indicate the absence of dust around a star because different causes, including dynamic processes and instrument limitations, can mask its presence.« less
A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA
NASA Astrophysics Data System (ADS)
Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao
2015-10-01
Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.
Martin, Aaron E.; Wipfli, Mark S.; Spangler, Robert E.
2010-01-01
Land use activities often directly and indirectly limit the capacity of freshwater habitats to produce fish. Consequently, habitat creation and enhancement actions are often undertaken to increase the quantity and quality of resources available to aquatic communities within these impaired systems, with the intent to increase fish production. The objectives of this study were to (1) determine whether aquatic community colonization and development could be accelerated through additions of woody debris bundles and marine-derived nutrients (via salmon carcass analog pellets) and (2) measure how aquatic communities (biofilm, invertebrates, and fish) respond to these additions after the creation of off-channel (alcove) fish habitat in a stream in south-central Alaska. Biofilm, invertebrates, and juvenile coho salmon Oncorhynchus kisutch were sampled in four treatments (control, wood, analog, and analog plus wood). Biofilm chlorophyll-aconcentrations were 4–10 times higher in analog-enriched treatments than in the control and wood treatments. No treatment effects were detected in benthic invertebrate density; however, treatment differences were detected in coho salmon diets, with nearly twice the amount of invertebrate abundance and biomass (primarily various dipteran, ephemeropteran, and plecopteran larvae) in the analog and analog plus wood treatments compared with the control and wood treatments. Juvenile coho salmon density and biomass were significantly higher in the wood treatment than in the analog plus wood treatment, and fish in the control showed possible signs of density-dependent limitation. Further, body condition of juvenile coho salmon was highest in the two analog-enriched treatments at the end of the study; juveniles in these habitats showed nearly two times the condition increase of fish inhabiting the control and wood treatment alcoves. These results demonstrate that the combination of salmon carcass analog and woody debris bundle additions aids in the short-term development of aquatic communities in newly created off-channel habitats, providing a boost in limited resources such as food and shelter.
Highly-sensitive and large-dynamic diffuse optical tomography system for breast tumor detection
NASA Astrophysics Data System (ADS)
Du, Wenwen; Zhang, Limin; Yin, Guoyan; Zhang, Yanqi; Zhao, Huijuan; Gao, Feng
2018-02-01
Diffuse optical tomography (DOT) as a new functional imaging has important clinical applications in many aspects such as benign and malignant breast tumor detection, tumor staging and so on. For quantitative detection of breast tumor, a three-wavelength continuous-wave DOT prototype system combined the ultra-high sensitivity of the photon-counting detection and the measurement parallelism of the lock-in technique was developed to provide high temporal resolution, high sensitivity, large dynamic detection range and signal-to-noise ratio. Additionally, a CT-analogous scanning mode was proposed to cost-effectively increase the detection data. To evaluate the feasibility of the system, a series of assessments were conducted. The results demonstrate that the system can obtain high linearity, stability and negligible inter-wavelength crosstalk. The preliminary phantom experiments show the absorption coefficient is able to be successfully reconstructed, indicating that the system is one of the ideal platforms for optical breast tumor detection.
Locomotive track detection for underground
NASA Astrophysics Data System (ADS)
Ma, Zhonglei; Lang, Wenhui; Li, Xiaoming; Wei, Xing
2017-08-01
In order to improve the PC-based track detection system, this paper proposes a method to detect linear track for underground locomotive based on DSP + FPGA. Firstly, the analog signal outputted from the camera is sampled by A / D chip. Then the collected digital signal is preprocessed by FPGA. Secondly, the output signal of FPGA is transmitted to DSP via EMIF port. Subsequently, the adaptive threshold edge detection, polar angle and radius constrain based Hough transform are implemented by DSP. Lastly, the detected track information is transmitted to host computer through Ethernet interface. The experimental results show that the system can not only meet the requirements of real-time detection, but also has good robustness.
Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision
Yang, Bingwei; Xie, Xinhao; Li, Duan
2018-01-01
Time of flight (TOF) based light detection and ranging (LiDAR) is a technology for calculating distance between start/stop signals of time of flight. In lab-built LiDAR, two ranging systems for measuring flying time between start/stop signals include time-to-digital converter (TDC) that counts time between trigger signals and analog-to-digital converter (ADC) that processes the sampled start/stop pulses waveform for time estimation. We study the influence of waveform characteristics on range accuracy and precision of two kinds of ranging system. Comparing waveform based ranging (WR) with analog discrete return system based ranging (AR), a peak detection method (WR-PK) shows the best ranging performance because of less execution time, high ranging accuracy, and stable precision. Based on a novel statistic mathematical method maximal information coefficient (MIC), WR-PK precision has a high linear relationship with the received pulse width standard deviation. Thus keeping the received pulse width of measuring a constant distance as stable as possible can improve ranging precision. PMID:29642639
Plasmonic computing of spatial differentiation
NASA Astrophysics Data System (ADS)
Zhu, Tengfeng; Zhou, Yihan; Lou, Yijie; Ye, Hui; Qiu, Min; Ruan, Zhichao; Fan, Shanhui
2017-05-01
Optical analog computing offers high-throughput low-power-consumption operation for specialized computational tasks. Traditionally, optical analog computing in the spatial domain uses a bulky system of lenses and filters. Recent developments in metamaterials enable the miniaturization of such computing elements down to a subwavelength scale. However, the required metamaterial consists of a complex array of meta-atoms, and direct demonstration of image processing is challenging. Here, we show that the interference effects associated with surface plasmon excitations at a single metal-dielectric interface can perform spatial differentiation. And we experimentally demonstrate edge detection of an image without any Fourier lens. This work points to a simple yet powerful mechanism for optical analog computing at the nanoscale.
Three-Dimensional Localized-Delocalized Anderson Transition in the Time Domain
NASA Astrophysics Data System (ADS)
Delande, Dominique; Morales-Molina, Luis; Sacha, Krzysztof
2017-12-01
Systems which can spontaneously reveal periodic evolution are dubbed time crystals. This is in analogy with space crystals that display periodic behavior in configuration space. While space crystals are modeled with the help of space periodic potentials, crystalline phenomena in time can be modeled by periodically driven systems. Disorder in the periodic driving can lead to Anderson localization in time: the probability for detecting a system at a fixed point of configuration space becomes exponentially localized around a certain moment in time. We here show that a three-dimensional system exposed to a properly disordered pseudoperiodic driving may display a localized-delocalized Anderson transition in the time domain, in strong analogy with the usual three-dimensional Anderson transition in disordered systems. Such a transition could be experimentally observed with ultracold atomic gases.
Advanced Atmospheric Water Vapor DIAL Detection System
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)
2000-01-01
Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.
Motion camera based on a custom vision sensor and an FPGA architecture
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel
1998-09-01
A digital camera for custom focal plane arrays was developed. The camera allows the test and development of analog or mixed-mode arrays for focal plane processing. The camera is used with a custom sensor for motion detection to implement a motion computation system. The custom focal plane sensor detects moving edges at the pixel level using analog VLSI techniques. The sensor communicates motion events using the event-address protocol associated to a temporal reference. In a second stage, a coprocessing architecture based on a field programmable gate array (FPGA) computes the time-of-travel between adjacent pixels. The FPGA allows rapid prototyping and flexible architecture development. Furthermore, the FPGA interfaces the sensor to a compact PC computer which is used for high level control and data communication to the local network. The camera could be used in applications such as self-guided vehicles, mobile robotics and smart surveillance systems. The programmability of the FPGA allows the exploration of further signal processing like spatial edge detection or image segmentation tasks. The article details the motion algorithm, the sensor architecture, the use of the event- address protocol for velocity vector computation and the FPGA architecture used in the motion camera system.
NASA Astrophysics Data System (ADS)
Ishikawa, M.; Itoga, T.; Okuji, T.; Nakhostin, M.; Shinohara, K.; Hayashi, T.; Sukegawa, A.; Baba, M.; Nishitani, T.
2006-10-01
A line-integrated neutron emission profile is routinely measured using the radial neutron collimator system in JT-60U tokamak. Stilbene neuron detectors (SNDs), which combine a stilbene organic crystal scintillation detector (SD) with an analog neutron-gamma pulse shape discrimination (PSD) circuit, have been used to measure collimated neutron flux. Although the SND has many advantages as a neutron detector, the maximum count rate is limited up to ˜1×105counts/s due to the analog PSD circuit. To overcome this issue, a digital signal processing system (DSPS) using a flash analog-to-digital converter (Acqiris DC252, 8GHz, 10bits) has been developed at Cyclotron and Radioisotope Center in Tohoku University. In this system anode signals from photomultiplier of the SD are directory stored and digitized. Then, the PSD between neutrons and gamma rays is performed using software. The DSPS has been installed in the vertical neutron collimator system in JT-60U and applied to deuterium experiments. It is confirmed that the PSD is sufficiently performed and collimated neutron flux is successfully measured with count rate up to ˜5×105counts/s without the effect of pileup of detected pulses. The performance of the DSPS as a neutron detector, which supersedes the SND, is demonstrated.
Method and apparatus for signal processing in a sensor system for use in spectroscopy
O'Connor, Paul [Bellport, NY; DeGeronimo, Gianluigi [Nesconset, NY; Grosholz, Joseph [Natrona Heights, PA
2008-05-27
A method for processing pulses arriving randomly in time on at least one channel using multiple peak detectors includes asynchronously selecting a non-busy peak detector (PD) in response to a pulse-generated trigger signal, connecting the channel to the selected PD in response to the trigger signal, and detecting a pulse peak amplitude. Amplitude and time of arrival data are output in first-in first-out (FIFO) sequence. An apparatus includes trigger comparators to generate the trigger signal for the pulse-receiving channel, PDs, a switch for connecting the channel to the selected PD, and logic circuitry which maintains the write pointer. Also included, time-to-amplitude converters (TACs) convert time of arrival to analog voltage and an analog multiplexer provides FIFO output. A multi-element sensor system for spectroscopy includes detector elements, channels, trigger comparators, PDs, a switch, and a logic circuit with asynchronous write pointer. The system includes TACs, a multiplexer and analog-to-digital converter.
Antarctic analogs for Enceladus
NASA Astrophysics Data System (ADS)
Murray, A. E.; Andersen, D. T.; McKay, C. P.
2014-12-01
Enceladus is a new world for Astrobiology. The Cassini discovery of the icy plume emanating from the South Polar region indicates an active world, where detection of water, organics, sodium, and nano-particle silica in the plume strongly suggests that the source is a subsurface salty ocean reservoir. Recent gravity data from Cassini confirms the presence of a regional sea extending north to 50°S. An ocean habitat under a thick ice cover is perhaps a recurring theme in the Outer Solar System, but what makes Enceladus unique is that the plume jetting out into space is carrying samples of this ocean. Therefore, through the study of Enceladus' plumes we can gain new insights not only of a possible habitable world in the Solar Systems, but also about the formation and evolution of other icy-satellites. Cassini has been able to fly through this plume - effectively sampling the ocean. It is time to plan for future missions that do more detailed analyses, possibly return samples back to Earth and search for evidence of life. To help prepare for such missions, the need for earth-based analog environments is essential for logistical, methodological (life detection) and theoretical development. We have undertaken studies of two terrestrial environments that are close analogs to Enceladus' ocean: Lake Vida and Lake Untersee - two ice-sealed Antarctic lakes that represent physical, chemical and possibly biological analogs for Enceladus. By studying the diverse biology and physical and chemical constraints to life in these two unique lakes we will begin to understand the potential habitability of Enceladus and other icy moons, including possible sources of nutrients and energy, which together with liquid water are the key ingredients for life. Analog research such as this will also enable us to develop and test new strategies to search for evidence of life on Enceladus.
High-frequency ultrasound Doppler system for biomedical applications with a 30-MHz linear array.
Xu, Xiaochen; Sun, Lei; Cannata, Jonathan M; Yen, Jesse T; Shung, K Kirk
2008-04-01
In this paper, we report the development of the first high-frequency (HF) pulsed-wave Doppler system using a 30-MHz linear array transducer to assess the cardiovascular functions in small animals. This array-based pulsed-wave Doppler system included a 16-channel HF analog beamformer, a HF pulsed-wave Doppler module, timing circuits, HF bipolar pulsers and analog front ends. The beamformed echoes acquired by the 16-channel analog beamformer were fed directly to the HF pulsed-wave Doppler module. Then the in-phase and quadrature-phase (IQ) audio Doppler signals were digitized by either a sound card or a Gage digitizer and stored in a personal computer. The Doppler spectrogram was displayed on a personal computer in real time. The two-way beamwidths were determined to be 160 microm to 320 microm when the array was electronically focused at different focal points at depths from 5 to 10 mm. A micro-flow phantom, consisting of a polyimide tube with an inner diameter of 127 microm and the wire phantom were used to evaluate and calibrate the system. The results show that the system is capable of detecting motion velocity of the wire phantom as low as 0.1 mm/s, and detecting blood-mimicking flow velocity in the 127-microm tube lower than 7 mm/s. The system was subsequently used to measure the blood flow in vivo in two mouse abdominal superficial vessels, with diameters of approximately 200 microm, and a mouse aorta close to the heart. These results demonstrated that this system may become an indispensable part of the current HF array-based imaging systems for small animal studies.
Design and Performance of the Astro-E/XRS Signal Processing System
NASA Technical Reports Server (NTRS)
Boyce, Kevin R.; Audley, M. D.; Baker, R. G.; Dumonthier, J. J.; Fujimoto, R.; Gendreau, K. C.; Ishisaki, Y.; Kelley, R. L.; Stahle, C. K.; Szymkowiak, A. E.
1999-01-01
We describe the signal processing system of the Astro-E XRS instrument. The Calorimeter Analog Processor (CAP) provides bias and power for the detectors and amplifies the detector signals by a factor of 20,000. The Calorimeter Digital Processor (CDP) performs the digital processing of the calorimeter signals, detecting X-ray pulses and analyzing them by optimal filtering. We describe the operation of pulse detection, Pulse height analysis. and risetime determination. We also discuss performance, including the three event grades (hi-res mid-res, and low-res). anticoincidence detection, counting rate dependence, and noise rejection.
[Study for portable dynamic ECG monitor and recorder].
Yang, Pengcheng; Li, Yongqin; Chen, Bihua
2012-09-01
This Paper presents a portable dynamic ECG monitor system based on MSP430F149 microcontroller. The electrocardiogram detecting system consists of ECG detecting circuit, man-machine interaction module, MSP430F149 and upper computer software. The ECG detecting circuit including a preamplifier, second-order Butterworth low-pass filter, high-pass filter, and 50Hz trap circuit to detects electrocardiogram and depresses various kinds of interference effectively. A microcontroller is used to collect three channel analog signals which can be displayed on TFT LCD. A SD card is used to record real-time data continuously and implement the FTA16 file system. In the end, a host computer system interface is also designed to analyze the ECG signal and the analysis results can provide diagnosis references to clinical doctors.
A Multi-Epoch Timing and Spectral Study of the Ultraluminous X-Ray NGC 5408 X-1 with XMM-Newton
NASA Technical Reports Server (NTRS)
Dheeraj, Pasham; Strohmayer, Tod E.
2012-01-01
We present results of new XMM-Newton observations of the ultraluminous X-ray source (ULX) NGC 5408 X-1, one of the few ULXs to show quasi-periodic oscillations (QPOs). We detect QPOs in each of four new (approximately equal to 100 ks) pointings, expanding the range of frequencies observed from 10 to 40 mHz. We compare our results with the timing and spectral correlations seen in stellar-mass black hole systems, and find that the qualitative nature of the timing and spectral behavior of NGC 5408 X-1 is similar to systems in the steep power-law state exhibiting Type-C QPOs. However, in order for this analogy to quantitatively hold we must only be seeing the so-called saturated portion of the QPO frequency-photon index (or disk flux) relation. Assuming this to be the case, we place a lower limit on the mass of NGC 5408 X-1 of greater than or equal to 800 solar mass. Alternatively, the QPO frequency is largely independent of the spectral parameters, in which case a close analogy with the Type-C QPOs in stellar system is problematic. Measurement of the source's timing properties over a wider range of energy spectral index is needed to definitively resolve this ambiguity. We searched all the available data for both a broad Fe emission line as well as high-frequency QPO analogs (0.1- 1 Hz), but detected neither. We place upper limits on the equivalent width of any Fe emission feature in the 6-7 keV band and of the amplitude (rms) of a high-frequency QPO analog of approximately equal to 10 eV and approximately equal to 4%, respectively.
Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices.
Pejović, Milić M; Denić, Dragan B; Pejović, Momčilo M; Nešić, Nikola T; Vasović, Nikola
2010-10-01
This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.
Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.
2010-10-15
This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven bymore » TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.« less
Chan, U Fai; Chan, Wai Wong; Pun, Sio Hang; Vai, Mang I; Mak, Peng Un
2007-01-01
Traditional/Current electronic circuits for Telemedicine have significant performance on certain bioelectric signal detection. However, it is rarely seen that can handle multiple signals without changing of hardware. This paper introduces a general front-end amplifier for various bioelectric signals based on Field Programmable Analogy Array (FPAA) Technology. Employing FPAA technology, the implemented amplifier can be adapted for various bioelectric signals without alternating the circuitry while its compact size (core parts < 2 cm2) provides an alternative solution for miniaturized Telemedicine system and Wearable Devices. The proposed design implementation has demonstrated, through successfully ECG and EMG signal extractions, a quick way to miniaturize analog biomedical circuit in a convenient and cost effective way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Eric Y.; Flory, Adam E.; Lamarche, Brian L.
2014-06-01
The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software.more » The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values« less
A Model-Based Expert System for Space Power Distribution Diagnostics
NASA Technical Reports Server (NTRS)
Quinn, Todd M.; Schlegelmilch, Richard F.
1994-01-01
When engineers diagnose system failures, they often use models to confirm system operation. This concept has produced a class of advanced expert systems that perform model-based diagnosis. A model-based diagnostic expert system for the Space Station Freedom electrical power distribution test bed is currently being developed at the NASA Lewis Research Center. The objective of this expert system is to autonomously detect and isolate electrical fault conditions. Marple, a software package developed at TRW, provides a model-based environment utilizing constraint suspension. Originally, constraint suspension techniques were developed for digital systems. However, Marple provides the mechanisms for applying this approach to analog systems such as the test bed, as well. The expert system was developed using Marple and Lucid Common Lisp running on a Sun Sparc-2 workstation. The Marple modeling environment has proved to be a useful tool for investigating the various aspects of model-based diagnostics. This report describes work completed to date and lessons learned while employing model-based diagnostics using constraint suspension within an analog system.
A novel CMOS transducer for giant magnetoresistance sensors.
Luong, Van Su; Lu, Chih-Cheng; Yang, Jing-Wen; Jeng, Jen-Tzong
2017-02-01
In this work, an ASIC (application specific integrated circuits) transducer circuit for field modulated giant magnetoresistance (GMR) sensors was designed and fabricated using a 0.18-μm CMOS process. The transducer circuits consist of a frequency divider, a digital phase shifter, an instrument amplifier, and an analog mixer. These comprise a mix of analog and digital circuit techniques. The compact chip size of 1.5 mm × 1.5 mm for both analog and digital parts was achieved using the TSMC18 1P6M (1-polysilicon 6-metal) process design kit, and the characteristics of the system were simulated using an HSpice simulator. The output of the transducer circuit is the result of the first harmonic detection, which resolves the modulated field using a phase sensitive detection (PSD) technique and is proportional to the measured magnetic field. When the dual-bridge GMR sensor is driven by the transducer circuit with a current of 10 mA at 10 kHz, the observed sensitivity of the field sensor is 10.2 mV/V/Oe and the nonlinearity error was 3% in the linear range of ±1 Oe. The performance of the system was also verified by rotating the sensor system horizontally in earth's magnetic field and recording the sinusoidal output with respect to the azimuth angle, which exhibits an error of less than ±0.04 Oe. These results prove that the ASIC transducer is suitable for driving the AC field modulated GMR sensors applied to geomagnetic measurement.
Analog phase lock between two lasers at LISA power levels
NASA Astrophysics Data System (ADS)
Diekmann, Christian; Steier, Frank; Sheard, Benjamin; Heinzel, Gerhard; Danzmann, Karsten
2009-03-01
This paper presents the implementation of an analog optical phase-locked-loop with an offset frequency of about 20MHz between two lasers, where the detected light powers were of the order of 31 pW and 200 μW. The goal of this setup was the design and characterization of a photodiode transimpedance amplifier for application in LISA. By application of a transimpedance amplifier designed to have low noise and low power consumption, the phase noise between the two lasers was a factor of two above the shot noise limit down to 60mHz. The achievable phase sensitivity depends ultimately on the available power of the highly attenuated master laser and on the input current noise of the transimpedance amplifier of the photodetector. The limiting noise source below 60mHz was the analog phase measurement system that was used in this experiment. A digital phase measurement system that is currently under development at the AEI will be used in the near future. Its application should improve the sensitivity.
Rule-Based Relaxation of Reference Identification Failures. Technical Report No. 396.
ERIC Educational Resources Information Center
Goodman, Bradley A.
In a step toward creating a robust natural language understanding system which detects and avoids miscommunication, this artificial intelligence research report provides a taxonomy of miscommunication problems that arise in expert-apprentice dialogues (including misunderstandings, wrong communication, and bad analogies), and proposes a flexible…
Implementation of a portable device for real-time ECG signal analysis.
Jeon, Taegyun; Kim, Byoungho; Jeon, Moongu; Lee, Byung-Geun
2014-12-10
Cardiac disease is one of the main causes of catastrophic mortality. Therefore, detecting the symptoms of cardiac disease as early as possible is important for increasing the patient's survival. In this study, a compact and effective architecture for detecting atrial fibrillation (AFib) and myocardial ischemia is proposed. We developed a portable device using this architecture, which allows real-time electrocardiogram (ECG) signal acquisition and analysis for cardiac diseases. A noisy ECG signal was preprocessed by an analog front-end consisting of analog filters and amplifiers before it was converted into digital data. The analog front-end was minimized to reduce the size of the device and power consumption by implementing some of its functions with digital filters realized in software. With the ECG data, we detected QRS complexes based on wavelet analysis and feature extraction for morphological shape and regularity using an ARM processor. A classifier for cardiac disease was constructed based on features extracted from a training dataset using support vector machines. The classifier then categorized the ECG data into normal beats, AFib, and myocardial ischemia. A portable ECG device was implemented, and successfully acquired and processed ECG signals. The performance of this device was also verified by comparing the processed ECG data with high-quality ECG data from a public cardiac database. Because of reduced computational complexity, the ARM processor was able to process up to a thousand samples per second, and this allowed real-time acquisition and diagnosis of heart disease. Experimental results for detection of heart disease showed that the device classified AFib and ischemia with a sensitivity of 95.1% and a specificity of 95.9%. Current home care and telemedicine systems have a separate device and diagnostic service system, which results in additional time and cost. Our proposed portable ECG device provides captured ECG data and suspected waveform to identify sporadic and chronic events of heart diseases. This device has been built and evaluated for high quality of signals, low computational complexity, and accurate detection.
Signal processing: opportunities for superconductive circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralston, R.W.
1985-03-01
Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described andmore » examples of superconductive implementations given. A canonic signal-processing system is then configured using these components in combination with analog/digital converters and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. Superconductive circuits hold promise for processing signals of 10-GHz bandwidth. Signal processing systems, however, can be properly designed and implemented only through a synergistic combination of the talents of device physicists, circuit designers, algorithm architects and system engineers. An immediate challenge to the applied superconductivity community is to begin sharing ideas with these other researchers.« less
Energy level diagrams for black hole orbits
NASA Astrophysics Data System (ADS)
Levin, Janna
2009-12-01
A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.
Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.
Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo
2016-01-01
In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.
The Anglo-Australian Planet Search XXIV: The Frequency of Jupiter Analogs
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Butler, R. P.; Tinney, C. G.; Horner, Jonathan; Carter, B. D.; Wright, D. J.; Jones, H. R. A.; Bailey, J.; O'Toole, Simon J.
2016-03-01
We present updated simulations of the detectability of Jupiter analogs by the 17-year Anglo-Australian Planet Search. The occurrence rate of Jupiter-like planets that have remained near their formation locations beyond the ice line is a critical datum necessary to constrain the details of planet formation. It is also vital in our quest to fully understand how common (or rare) planetary systems like our own are in the Galaxy. From a sample of 202 solar-type stars, and correcting for imperfect detectability on a star-by-star basis, we derive a frequency of {6.2}-1.6+2.8% for giant planets in orbits from 3 to 7 au. When a consistent definition of “Jupiter analog” is used, our results are in agreement with those from other legacy radial-velocity surveys.
An analog filter approach to frequency domain fluorescence spectroscopy
Trainham, Clifford P.; O'Neill, Mary D.; McKenna, Ian J.
2015-10-01
The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modeled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as Spicea can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modeling of the entiremore » system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. Furthermore, the techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response.« less
Development of a Photon Counting System for Differential Lidar Signal Detection
NASA Technical Reports Server (NTRS)
Elsayed-Ali, Hani
1997-01-01
Photon counting has been chosen as a means to extend the detection range of current airborne DIAL ozone measurements. Lidar backscattered return signals from the on and off-line lasers experience a significant exponential decay. To extract further data from the decaying ozone return signals, photon counting will be used to measure the low light levels, thus extending the detection range. In this application, photon counting will extend signal measurement where the analog return signal is too weak. The current analog measurement range is limited to approximately 25 kilometers from an aircraft flying at 12 kilometers. Photon counting will be able to exceed the current measurement range so as to follow the mid-latitude model of ozone density as a function of height. This report describes the development of a photon counting system. The initial development phase begins with detailed evaluation of individual photomultiplier tubes. The PMT qualities investigated are noise count rates, single electron response peaks, voltage versus gain values, saturation effects, and output signal linearity. These evaluations are followed by analysis of two distinctive tube base gating schemes. The next phase is to construct and operate a photon counting system in a laboratory environment. The laboratory counting simulations are used to determine optimum discriminator setpoints and to continue further evaluations of PMT properties. The final step in the photon counting system evaluation process is the compiling of photon counting measurements on the existing ozone DIAL laser system.
Progress on the Use of Combined Analog and Photon Counting Detection for Raman Lidar
NASA Technical Reports Server (NTRS)
Newsom, Rob; Turner, Dave; Clayton, Marian; Ferrare, Richard
2008-01-01
The Atmospheric Radiation Measurement (ARM) program Raman Lidar (CARL) was upgraded in 2004 with a new data system that provides simultaneous measurements of both the photomultiplier analog output voltage and photon counts. The so-called merge value added procedure (VAP) was developed to combine the analog and count-rate signals into a single signal with improved dynamic range. Earlier versions of this VAP tended to cause unacceptably large biases in the water vapor mixing ratio during the daytime as a result of improper matching between the analog and count-rate signals in the presence of elevated solar background levels. We recently identified several problems and tested a modified version of the merge VAP by comparing profiles of water vapor mixing ratio derived from CARL with simultaneous sonde data over a six month period. We show that the modified merge VAP significantly reduces the daytime bias, and results in mean differences that are within approximately 1% for both nighttime and daytime measurements.
VizieR Online Data Catalog: WISE IR excesses among main sequence stars (Da Costa+, 2017)
NASA Astrophysics Data System (ADS)
da Costa, A. D.; Canto Martins, B. L.; Leao, I. C.; Lima, J. E., Jr.; Freire da Silva, D.; de Freitas, D. B.; de Medeiros, J. R.
2017-10-01
This study presents a search for infrared (IR) excess in the 3.4, 4.6, 12, and 22μm bands in a sample of 216 targets, composed of solar sibling, twin, and analog stars observed by the Wide-field Infrared Survey Explorer (WISE) mission. In general, an IR excess suggests the existence of warm dust around a star. We detected 12μm and/or 22μm excesses at the 3σ level of confidence in five solar analog stars, corresponding to a frequency of 4.1% of the entire sample of solar analogs analyzed, and in one out of 29 solar sibling candidates, confirming previous studies. The estimation of the dust properties shows that the sources with IR excesses possess circumstellar material with temperatures that, within the uncertainties, are similar to that of the material found in the asteroid belt in our solar system. No photospheric flux excess was identified at the W1 (3.4μm) and W2 (4.6μm) WISE bands, indicating that, in the majority of stars of the present sample, no detectable dust is generated. Interestingly, among the 60 solar twin stars analyzed in this work, no WISE photospheric flux excess was detected. However, a null-detection excess does not necessarily indicate the absence of dust around a star because different causes, including dynamic processes and instrument limitations, can mask its presence. (1 data file).
Mine Safety Detection System (MSDS)
2012-09-01
that comes to rest on the bottom in either sea lane will represent a navigation obstacle resulting in lane closure until the wreck can be cleared...order in which the depth layers are searched follows a rational that emulates the analogy of “testing the waters before diving in”. As the oil
ROC Analysis of Chest Radiographs Using Computed Radiography and Conventional Analog Films
NASA Astrophysics Data System (ADS)
Morioka, Craig A.; Brown, Kathy; Hayrapetian, Alek S.; Kangarloo, Hooshang; Balter, Stephen; Huang, H. K.
1989-05-01
Receiver operating characteristic is used to compare the image quality of films obtained digitally using computed radiography (CR) and conventionally using analog film following fluoroscopic examination. Similar radiological views were obtained by both modalities. Twenty-four cases, some with a solitary noncalcified nodule and/or pneumothorax, were collected. Ten radiologists have been tested viewing analog and CR digital films separately. Final results indicate that there is no statistically significant difference in the ability to detect either a pneumothorax or a solitary noncalcified nodule when comparing CR digital film with conventional analog film. However, there is a trend that indicated the area under the ROC curves for detection of either a pneumothorax or solitary noncalcified nodule were greater for the analog film than for the digital film.
Analog VLSI system for active drag reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, B.; Goodman, R.; Jiang, F.
1996-10-01
In today`s cost-conscious air transportation industry, fuel costs are a substantial economic concern. Drag reduction is an important way to reduce costs. Even a 5% reduction in drag translates into estimated savings of millions of dollars in fuel costs. Drawing inspiration from the structure of shark skin, the authors are building a system to reduce drag along a surface. Our analog VLSI system interfaces with microfabricated, constant-temperature shear stress sensors. It detects regions of high shear stress and outputs a control signal to activate a microactuator. We are in the process of verifying the actual drag reduction by controlling microactuatorsmore » in wind tunnel experiments. We are encouraged that an approach similar to one that biology employs provides a very useful contribution to the problem of drag reduction. 9 refs., 21 figs.« less
Thermostatic system of sensor in NIR spectrometer based on PID control
NASA Astrophysics Data System (ADS)
Wang, Zhihong; Qiao, Liwei; Ji, Xufei
2016-11-01
Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.
Analog nonlinear MIMO receiver for optical mode division multiplexing transmission.
Spalvieri, Arnaldo; Boffi, Pierpaolo; Pecorino, Simone; Barletta, Luca; Magarini, Maurizio; Gatto, Alberto; Martelli, Paolo; Martinelli, Mario
2013-10-21
The complexity and the power consumption of digital signal processing are crucial issues in optical transmission systems based on mode division multiplexing and coherent multiple-input multiple-output (MIMO) processing at the receiver. In this paper the inherent characteristic of spatial separation between fiber modes is exploited, getting a MIMO system where joint demultiplexing and detection is based on spatially separated photodetectors. After photodetection, one has a MIMO system with nonlinear crosstalk between modes. The paper shows that the nonlinear crosstalk can be dealt with by a low-complexity and non-adaptive detection scheme, at least in the cases presented in the paper.
Lan, Feifei; Liang, Linlin; Zhang, Yan; Li, Li; Ren, Na; Yan, Mei; Ge, Shenguang; Yu, Jinghua
2017-11-01
In this work, a chemiluminescence-driven collapsible greeting card-like photoelectrochemical lab-on-paper device (GPECD) with hollow channel was demonstrated, in which target-triggering cascade DNA amplification strategy was ingeniously introduced. The GPECD had the functions of reagents storage and signal collection, and the change of configuration could control fluidic path, reaction time and alterations in electrical connectivity. In addition, three-dimentional reduced graphene oxide affixed Au flower was in situ grown on paper cellulose fiber for achieving excellent conductivity and biocompatibility. The cascade DNA amplification strategy referred to the cyclic formation of target analog chain and its trigger action to hybridization chain reaction (HCR), leading to the formation of numerous hemin/G-quadruplex DNA mimic enzyme with the presence of hemin. Subjected to the catalysis of hemin/G-quadruplex, the strong chemiluminiscence of luminol-H 2 O 2 system was obtained, which then was used as internal light source to excite photoactive materials realizing the simplification of instrument. In this analyzing process, thrombin served as proof-of-concept, and the concentration of target was converted into the DNA signal output by the specific recognition of aptamer-protein and target analog chain recycling. The target analog chain was produced in quantity with the presence of target, which further triggered abundant HCR and introduced hemin/G-quadruplex into the system. The photocurrent signal was obtained after the nitrogen-doped carbon dots sensitized ZnO was stimulated by chemiluminescence. The proposed GPECD exhibited excellent specificity and sensitivity toward thrombin with a detection limit of 16.7 fM. This judiciously engineered GPECD paved a luciferous way for detecting other protein with trace amounts in bioanalysis and clinical biomedicine.
Research on energy transmission calculation problem on laser detecting submarine
NASA Astrophysics Data System (ADS)
Fu, Qiang; Li, Yingchao; Zhang, Lizhong; Wang, Chao; An, Yan
2014-12-01
The laser detection and identification is based on the method of using laser as the source of signal to scan the surface of ocean. If the laser detection equipment finds out the target, it will immediately reflect the returning signal, and then through receiving and disposing the returning signal by the receiving system, to realize the function of detection and identification. Two mediums channels should be though in the process of laser detection transmission, which are the atmosphere and the seawater. The energy loss in the process of water transport, mainly considering the surface reflection and scattering attenuation and internal attenuation factors such as seawater. The energy consumption though atmospheric transmission, mainly considering the absorption of atmospheric and the attenuation causing by scattering, the energy consumption though seawater transmission, mainly considering the element such as surface reflection, the attenuation of scattering and internal attenuation of seawater. On the basis of the analysis and research, through the mode of establishment of atmospheric scattering, the model of sea surface reflection and the model of internal attenuation of seawater, determine the power dissipation of emitting lasers system, calculates the signal strength that reaches the receiver. Under certain conditions, the total attenuation of -98.92 dB by calculation, and put forward the related experiment scheme by the use of Atmospheric analog channel, seawater analog channel. In the experiment of the theory, we use the simulation pool of the atmosphere and the sea to replace the real environment where the laser detection system works in this kind of situation. To start with, we need to put the target in the simulating seawater pool of 10 meters large and then control the depth of the target in the sea level. We, putting the laser detection system in position where it is 2 kilometers far from one side, secondly use the equipment to aim at the target in some distance. Lastly, by launching and detecting the signal of returning wave, identify the effect of the image produced by the system.
Digital and analog communication systems
NASA Technical Reports Server (NTRS)
Shanmugam, K. S.
1979-01-01
The book presents an introductory treatment of digital and analog communication systems with emphasis on digital systems. Attention is given to the following topics: systems and signal analysis, random signal theory, information and channel capacity, baseband data transmission, analog signal transmission, noise in analog communication systems, digital carrier modulation schemes, error control coding, and the digital transmission of analog signals.
A configurable and low-power mixed signal SoC for portable ECG monitoring applications.
Kim, Hyejung; Kim, Sunyoung; Van Helleputte, Nick; Artes, Antonio; Konijnenburg, Mario; Huisken, Jos; Van Hoof, Chris; Yazicioglu, Refet Firat
2014-04-01
This paper describes a mixed-signal ECG System-on-Chip (SoC) that is capable of implementing configurable functionality with low-power consumption for portable ECG monitoring applications. A low-voltage and high performance analog front-end extracts 3-channel ECG signals and single channel electrode-tissue-impedance (ETI) measurement with high signal quality. This can be used to evaluate the quality of the ECG measurement and to filter motion artifacts. A custom digital signal processor consisting of 4-way SIMD processor provides the configurability and advanced functionality like motion artifact removal and R peak detection. A built-in 12-bit analog-to-digital converter (ADC) is capable of adaptive sampling achieving a compression ratio of up to 7, and loop buffer integration reduces the power consumption for on-chip memory access. The SoC is implemented in 0.18 μm CMOS process and consumes 32 μ W from a 1.2 V while heart beat detection application is running, and integrated in a wireless ECG monitoring system with Bluetooth protocol. Thanks to the ECG SoC, the overall system power consumption can be reduced significantly.
Optical properties of materials at low temperature and their application to optical detection
NASA Technical Reports Server (NTRS)
Hartwig, W. H.; Tarchi, A. A.
1972-01-01
A lumped model to represent the photodielectric effect is developed. An analog simulation for a sample in a microwave cavity with a static magnetic field is developed. A system to measure continuously the PDE is analyzed. A performance factor to compared PD detectors versus ac photoconductors is computed. The operating conditions are defined for the appropriate noise conditions. The detectivity of the detector is found to be limited by the semiconductor sample noise.
Bioactivation of bisphenol A and its analogs (BPF, BPAF, BPZ and DMBPA) in human liver microsomes.
Schmidt, Jan; Kotnik, Petra; Trontelj, Jurij; Knez, Željko; Mašič, Lucija Peterlin
2013-06-01
Bisphenol A analogs are a class of chemicals known as diphenylmethanes, which contain two benzene rings separated by one central carbon atom, usually with a para-hydroxy group on both benzene rings. Bisphenol A (BPA) can induce an uterotrophic response in immature CD-1 mice and elicits estrogenic responses in many other experimental systems. Besides highlighting endocrine effects, a number of metabolic studies provide strong support for the idea that reactive species of BPA are formed in vitro and in vivo that can form covalent adducts with nucleophilic macromolecules and/or produce oxidative stress. We used a liquid chromatography with a triple quadrupole tandem mass spectrometry (LC-MS/MS) for the detection of metabolites and glutathione conjugates of BPA and its analogs (BPF, BPAF, BPZ and DMBPA) in human liver microsomes (HLM) or with recombinant CYP isozymes in the presence of NADPH and GSH as a trapping agent. We have confirmed that BPA and its structural analogs form hydroxylated metabolites and electrophilic species during bioactivation in HLM and CYP isozymes. These results provided important mechanistic insight into the metabolic fate of BPA structural analogs in vitro. Copyright © 2013 Elsevier Ltd. All rights reserved.
Apparatus for providing a servo drive signal in a high-speed stepping interferometer
NASA Technical Reports Server (NTRS)
Schindler, R. A. (Inventor)
1979-01-01
An analog voltage approximately linearly proportional to a desired offset from the present null position of a moving mirror in an interferometer is applied to the mirror moving means. As the mirror moves to the next null position, as determined by the analog voltage, the fringes of a laser reference interference pattern are detected. At the occurrence of each fringe the analog voltage is reduced proportionally so that when the next null position is reached, this driving analog is effectively zero. A binary up/down counter, by its internal count, causes a digital/analog converter to supply the analog voltage to the mirror moving means. Fringe detection and direction of movement logic cause the binary up/down counter to be decremented from its offset count as the mirror is moved to the new null position. Undesirable movement of the mirror due to vibration or other sources causes a correcting drive signal to be applied to the mirror moving means that is proportional to the distance of movement.
Compressed sensing: Radar signal detection and parameter measurement for EW applications
NASA Astrophysics Data System (ADS)
Rao, M. Sreenivasa; Naik, K. Krishna; Reddy, K. Maheshwara
2016-09-01
State of the art system development is very much required for UAVs (Unmanned Aerial Vehicle) and other airborne applications, where miniature, lightweight and low-power specifications are essential. Currently, the airborne Electronic Warfare (EW) systems are developed with digital receiver technology using Nyquist sampling. The detection of radar signals and parameter measurement is a necessary requirement in EW digital receivers. The Random Modulator Pre-Integrator (RMPI) can be used for matched detection of signals using smashed filter. RMPI hardware eliminates the high sampling rate analog to digital computer and reduces the number of samples using random sampling and detection of sparse orthonormal basis vectors. RMPI explore the structural and geometrical properties of the signal apart from traditional time and frequency domain analysis for improved detection. The concept has been proved with the help of MATLAB and LabVIEW simulations.
Early Detection of Breast Cancer Using Posttranslationally Modified Biomarkers
2011-03-01
1 and 2 in Globo H synthesis , Proc Natl Acad Sci U S A 105, 11667-11672. 18. Gilewski, T., Ragupathi, G., Bhuta, S., Williams, L. J., Musselli, C...carmustine and new proline analog of nitrosourea on antioxidant system in breast carcinoma cells (MCF-7), Drug Chem Toxicol 33, 55-63. 34. Galijasevic, S
NASA Astrophysics Data System (ADS)
Henderson, Bryana L.; Gudipati, Murthy S.
2015-02-01
As discovery of complex molecules and ions in our solar system and the interstellar medium has proliferated, several groups have turned to laboratory experiments in an effort to simulate and understand these chemical processes. So far only infrared (IR) and ultraviolet (UV) spectroscopy has been able to directly probe these reactions in ices in their native, low-temperature states. Here we report for the first time results using a complementary technique that harnesses two-step two-color laser ablation and ionization to measure mass spectra of energetically processed astrophysical and cometary ice analogs directly without warming the ices—a method for hands-off in situ ice analysis. Electron bombardment and UV irradiation of H2O, CH3OH, and NH3 ices at 5 K and 70 K led to complex irradiation products, including HCO, CH3CO, formamide, acetamide, methyl formate, and HCN. Many of these species, whose assignment was also strengthened by isotope labeling studies and correlate with IR-based spectroscopic studies of similar irradiated ices, are important ingredients for the building blocks of life. Some of them have been detected previously via astronomical observations in the interstellar medium and in cometary comae. Other species such as CH3CO (acetyl) are yet to be detected in astrophysical ices or interstellar medium. Our studies suggest that electron and UV photon processing of astrophysical ice analogs leads to extensive chemistry even in the coldest reaches of space, and lend support to the theory of comet-impact-induced delivery of complex organics to the inner solar system.
Anger, Hal O.; Martin, Donn C.; Lampton, Michael L.
1983-01-01
A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally.
Modeling of a latent fault detector in a digital system
NASA Technical Reports Server (NTRS)
Nagel, P. M.
1978-01-01
Methods of modeling the detection time or latency period of a hardware fault in a digital system are proposed that explain how a computer detects faults in a computational mode. The objectives were to study how software reacts to a fault, to account for as many variables as possible affecting detection and to forecast a given program's detecting ability prior to computation. A series of experiments were conducted on a small emulated microprocessor with fault injection capability. Results indicate that the detecting capability of a program largely depends on the instruction subset used during computation and the frequency of its use and has little direct dependence on such variables as fault mode, number set, degree of branching and program length. A model is discussed which employs an analog with balls in an urn to explain the rate of which subsequent repetitions of an instruction or instruction set detect a given fault.
A Hopfield neural network for image change detection.
Pajares, Gonzalo
2006-09-01
This paper outlines an optimization relaxation approach based on the analog Hopfield neural network (HNN) for solving the image change detection problem between two images. A difference image is obtained by subtracting pixel by pixel both images. The network topology is built so that each pixel in the difference image is a node in the network. Each node is characterized by its state, which determines if a pixel has changed. An energy function is derived, so that the network converges to stable states. The analog Hopfield's model allows each node to take on analog state values. Unlike most widely used approaches, where binary labels (changed/unchanged) are assigned to each pixel, the analog property provides the strength of the change. The main contribution of this paper is reflected in the customization of the analog Hopfield neural network to derive an automatic image change detection approach. When a pixel is being processed, some existing image change detection procedures consider only interpixel relations on its neighborhood. The main drawback of such approaches is the labeling of this pixel as changed or unchanged according to the information supplied by its neighbors, where its own information is ignored. The Hopfield model overcomes this drawback and for each pixel allows a tradeoff between the influence of its neighborhood and its own criterion. This is mapped under the energy function to be minimized. The performance of the proposed method is illustrated by comparative analysis against some existing image change detection methods.
ERIC Educational Resources Information Center
Shahani, Vijay M.; Jenkinson, Jodie
2016-01-01
We explored analogies used for introducing students to the concept of potential energy wells. Two analogy systems were developed, a spring system and a novel system consisting of electrostatic spheres. These two, distinct analogies were housed within an interactive tool that allowed students to manipulate the analogous systems and witness changes…
Rotanone analogs: method of preparation and use
VanBrocklin, Henry F; O& #x27; Neil, James P; Gibbs, Andrew R; Erathodiyil, Nandanan
2013-10-08
The present invention provides rotenone analogs and methods of making and using them. Labeled with single photon and positron emitting isotopes, the rotenone analogs of the present invention are useful in, for example, clinical imaging applications as tracers to measure cardiac blood flow and detect regions of ischemia.
Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.
Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes
2015-07-22
This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA.
NASA Technical Reports Server (NTRS)
Kimura, Yuki; Nuth, Joseph A., III; Tsukamota, Katsuo; Kaito, Chihiro
2010-01-01
Exothermic reactions during the annealing of laboratory synthesized amorphous magnesium-bearing silicate particles used as grain analogs of cosmic dust were detected by differential scanning calorimetry (DSC) in air. With infrared spectroscopy and transmission electron microscopy, we show that cosmic dust could possibly undergo fusion to larger particles, with oxidation of magnesium silicide and crystallization of forsterite as exothermic reactions in the early solar system. The reactions begin at approximately 425, approximately 625, and approximately 1000 K, respectively, and the reaction energies (enthalpies) are at least 727, 4151, and 160.22 J per gram, respectively. During the crystallization of forsterite particles, the spectral evolution of the 10 micrometer feature from amorphous to crystalline was observed to begin at lower temperature than the crystallization temperature of 1003 K. During spectral evolution at lower temperature, nucleation and/or the formation of nanocrystallites of forsterite at the surface of the grain analogs was observed.
42.8 Gb/s ASK homodyne receiver using standard DFB lasers
NASA Astrophysics Data System (ADS)
Becker, D.; Mohr, D.; Datta, S.; Wree, C.; Bhandare, S.; Joshi, A.
2009-05-01
Optical synchronous coherent detection is attracting greater attention within the defense and security community because it allows linear recovery both of the amplitude and phase of optical signals. Fiber-based transmission impairments such as chromatic dispersion and polarization mode dispersion can be compensated in the electrical domain. Additionally, synchronous detection offers the potential of improved receiver sensitivity and extended reach versus direct or interferometric detection schemes. 28 Gbaud/112 Gb/s and 42.8 Gbaud transmissions are now being considered in fiber networks worldwide. Due to the lack of broadband high frequency components centered at IF values of 56 GHz and 86 GHz, respectively, the coherent heterodyne approach is not viable for these baud rates. The homodyne approach remains one of the choices available to fully exploit the advantages of synchronous coherent detection at these transmission data rates. In order to implement the homodyne receiver, optical phase locking between the signal and local oscillator laser (LO) is required. Digital approaches for this task rely upon very complex, fast, and high power-consumption chips. A homodyne receiver using an analog approach for phase locking would allow for increased system simplicity at a lower cost. Use of commercial-off-the-shelf (COTS) DFB lasers embedded within the receiver would also increase system feasibility for defense applications. We demonstrate synchronous demodulation of a 42.8 Gbaud signal using an analog optical phase-locked loop. The homodyne system was optimized to use COTS DFB lasers having an aggregate linewidth of ~2 MHz. We also analyze the impact of uncompensated phase noise on receiver performance.
Analog "neuronal" networks in early vision.
Koch, C; Marroquin, J; Yuille, A
1986-01-01
Many problems in early vision can be formulated in terms of minimizing a cost function. Examples are shape from shading, edge detection, motion analysis, structure from motion, and surface interpolation. As shown by Poggio and Koch [Poggio, T. & Koch, C. (1985) Proc. R. Soc. London, Ser. B 226, 303-323], quadratic variational problems, an important subset of early vision tasks, can be "solved" by linear, analog electrical, or chemical networks. However, in the presence of discontinuities, the cost function is nonquadratic, raising the question of designing efficient algorithms for computing the optimal solution. Recently, Hopfield and Tank [Hopfield, J. J. & Tank, D. W. (1985) Biol. Cybern. 52, 141-152] have shown that networks of nonlinear analog "neurons" can be effective in computing the solution of optimization problems. We show how these networks can be generalized to solve the nonconvex energy functionals of early vision. We illustrate this approach by implementing a specific analog network, solving the problem of reconstructing a smooth surface from sparse data while preserving its discontinuities. These results suggest a novel computational strategy for solving early vision problems in both biological and real-time artificial vision systems. PMID:3459172
Simulate different environments TDLAS On the analysis of the test signal strength
NASA Astrophysics Data System (ADS)
Li, Xin; Zhou, Tao; Jia, Xiaodong
2014-12-01
TDLAS system is the use of the wavelength tuning characteristics of the laser diode, for detecting the absorption spectrum of the gas absorption line. Detecting the gas space, temperature, pressure and flow rate and concentration. The use of laboratory techniques TDLAS gas detection, experimental simulation engine combustion water vapor and smoke. using an optical lens system receives the signal acquisition and signal interference test analysis. Analog water vapor and smoke in two different environments in the sample pool interference. In both experiments environmental interference gas absorption in the optical signal acquisition, signal amplitude variation analysis, and records related to the signal data. In order to study site conditions in the engine combustion process for signal acquisition provides an ideal experimental data .
Video Guidance Sensor System With Integrated Rangefinding
NASA Technical Reports Server (NTRS)
Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Howard, Richard T. (Inventor); Roe, Fred Davis, Jr. (Inventor); Bell, Joseph L. (Inventor)
2006-01-01
A video guidance sensor system for use, p.g., in automated docking of a chase vehicle with a target vehicle. The system includes an integrated rangefinder sub-system that uses time of flight measurements to measure range. The rangefinder sub-system includes a pair of matched photodetectors for respectively detecting an output laser beam and return laser beam, a buffer memory for storing the photodetector outputs, and a digitizer connected to the buffer memory and including dual amplifiers and analog-to-digital converters. A digital signal processor processes the digitized output to produce a range measurement.
Jiménez-Banzo, Ana; Ragàs, Xavier; Kapusta, Peter; Nonell, Santi
2008-09-01
Two recent advances in optoelectronics, namely novel near-IR sensitive photomultipliers and inexpensive yet powerful diode-pumped solid-state lasers working at kHz repetition rate, enable the time-resolved detection of singlet oxygen (O2(a1Deltag)) phosphorescence in photon counting mode, thereby boosting the time-resolution, sensitivity, and dynamic range of this well-established detection technique. Principles underlying this novel approach and selected examples of applications are provided in this perspective, which illustrate the advantages over the conventional analog detection mode.
Sensing Methods for Detecting Analog Television Signals
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Azizur; Song, Chunyi; Harada, Hiroshi
This paper introduces a unified method of spectrum sensing for all existing analog television (TV) signals including NTSC, PAL and SECAM. We propose a correlation based method (CBM) with a single reference signal for sensing any analog TV signals. In addition we also propose an improved energy detection method. The CBM approach has been implemented in a hardware prototype specially designed for participating in Singapore TV white space (WS) test trial conducted by Infocomm Development Authority (IDA) of the Singapore government. Analytical and simulation results of the CBM method will be presented in the paper, as well as hardware testing results for sensing various analog TV signals. Both AWGN and fading channels will be considered. It is shown that the theoretical results closely match with those from simulations. Sensing performance of the hardware prototype will also be presented in fading environment by using a fading simulator. We present performance of the proposed techniques in terms of probability of false alarm, probability of detection, sensing time etc. We also present a comparative study of the various techniques.
Anger, H.O.; Martin, D.C.; Lampton, M.L.
1983-07-26
A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally. 15 figs.
Recent arsenic metabolism studies have begun to indicate the presence of sulfur analogs of the more common arsenic oxides in biological systems. An emerging area of research is how and where these arsenic species are formed in the metabolic pathway. The authors have previously i...
A TCAS-II Resolution Advisory Detection Algorithm
NASA Technical Reports Server (NTRS)
Munoz, Cesar; Narkawicz, Anthony; Chamberlain, James
2013-01-01
The Traffic Alert and Collision Avoidance System (TCAS) is a family of airborne systems designed to reduce the risk of mid-air collisions between aircraft. TCASII, the current generation of TCAS devices, provides resolution advisories that direct pilots to maintain or increase vertical separation when aircraft distance and time parameters are beyond designed system thresholds. This paper presents a mathematical model of the TCASII Resolution Advisory (RA) logic that assumes accurate aircraft state information. Based on this model, an algorithm for RA detection is also presented. This algorithm is analogous to a conflict detection algorithm, but instead of predicting loss of separation, it predicts resolution advisories. It has been formally verified that for a kinematic model of aircraft trajectories, this algorithm completely and correctly characterizes all encounter geometries between two aircraft that lead to a resolution advisory within a given lookahead time interval. The RA detection algorithm proposed in this paper is a fundamental component of a NASA sense and avoid concept for the integration of Unmanned Aircraft Systems in civil airspace.
Signal processing: opportunities for superconductive circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralston, R.W.
1985-03-01
Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data-processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described and examplesmore » of superconductive implementations given. A canonic signal-processing system is then configured using these components and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. (Reprints)« less
An analog retina model for detecting dim moving objects against a bright moving background
NASA Technical Reports Server (NTRS)
Searfus, R. M.; Colvin, M. E.; Eeckman, F. H.; Teeters, J. L.; Axelrod, T. S.
1991-01-01
We are interested in applications that require the ability to track a dim target against a bright, moving background. Since the target signal will be less than or comparable to the variations in the background signal intensity, sophisticated techniques must be employed to detect the target. We present an analog retina model that adapts to the motion of the background in order to enhance targets that have a velocity difference with respect to the background. Computer simulation results and our preliminary concept of an analog 'Z' focal plane implementation are also presented.
NASA Astrophysics Data System (ADS)
Armantrout, Guy A.
1988-02-01
The present conference consideres topics in radiation detectors, advanced electronic circuits, data acquisition systems, radiation detector systems, high-energy and nuclear physics radiation detection, spaceborne instrumentation, health physics and environmental radiation detection, nuclear medicine, nuclear well logging, and nuclear reactor instrumentation. Attention is given to the response of scintillators to heavy ions, phonon-mediated particle detection, ballistic deficits in pulse-shaping amplifiers, fast analog ICs for particle physics, logic cell arrays, the CERN host interface, high performance data buses, a novel scintillating glass for high-energy physics applications, background events in microchannel plates, a tritium accelerator mass spectrometer, a novel positron tomograph, advancements in PET, cylindrical positron tomography, nuclear techniques in subsurface geology, REE borehole neutron activation, and a continuous tritium monitor for aqueous process streams.
Driscoll, Jonathan D.; Shih, Andy Y.; Iyengar, Satish; Field, Jeffrey J.; White, G. Allen; Squier, Jeffrey A.; Cauwenberghs, Gert
2011-01-01
We present a high-speed photon counter for use with two-photon microscopy. Counting pulses of photocurrent, as opposed to analog integration, maximizes the signal-to-noise ratio so long as the uncertainty in the count does not exceed the gain-noise of the photodetector. Our system extends this improvement through an estimate of the count that corrects for the censored period after detection of an emission event. The same system can be rapidly reconfigured in software for fluorescence lifetime imaging, which we illustrate by distinguishing between two spectrally similar fluorophores in an in vivo model of microstroke. PMID:21471395
Analog Video Authentication and Seal Verification Equipment Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory Lancaster
Under contract to the US Department of Energy in support of arms control treaty verification activities, the Savannah River National Laboratory in conjunction with the Pacific Northwest National Laboratory, the Idaho National Laboratory and Milagro Consulting, LLC developed equipment for use within a chain of custody regime. This paper discussed two specific devices, the Authentication Through the Lens (ATL) analog video authentication system and a photographic multi-seal reader. Both of these devices have been demonstrated in a field trial, and the experience gained throughout will also be discussed. Typically, cryptographic methods are used to prove the authenticity of digital imagesmore » and video used in arms control chain of custody applications. However, in some applications analog cameras are used. Since cryptographic authentication methods will not work on analog video streams, a simple method of authenticating analog video was developed and tested. A photographic multi-seal reader was developed to image different types of visual unique identifiers for use in chain of custody and authentication activities. This seal reader is unique in its ability to image various types of seals including the Cobra Seal, Reflective Particle Tags, and adhesive seals. Flicker comparison is used to compare before and after images collected with the seal reader in order to detect tampering and verify the integrity of the seal.« less
Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS
NASA Technical Reports Server (NTRS)
Burton, William D., Jr.; Schultz, J. Albert; Vaughn, Valentine; McCully, Michael; Ulrich, Steven; Egan, Thomas F.
2006-01-01
A modified ion-detector/data-acquisition system has been devised to increase the dynamic range of a time-of-flight mass spectrometer (TOF-MS) that, previously, included a microchannel-plate detector and a data-acquisition system based on counting pulses and time-tagging them by use of a time-to-digital converter (TDC). The dynamic range of the TOF-MS was limited by saturation of the microchannel plate detector, which can handle no more than a few million counts per second. The modified system includes (1) a combined microchannel plate/discrete ion multiplier and (2) a hybrid data-acquisition system that simultaneously performs analog current or voltage measurements and multianode single-ion-pulse-counting time-of-flight measurements to extend the dynamic range of a TDC into the regime in which a mass peak comprises multiple ions arriving simultaneously at the detector. The multianode data are used to determine, in real time, whether the detector is saturated. When saturation is detected, the data-acquisition system selectively enables circuitry that simultaneously determines the ion-peak intensity by measuring the time profile of the analog current or voltage detector-output signal.
Advanced Signal Conditioners for Data-Acquisition Systems
NASA Technical Reports Server (NTRS)
Lucena, Angel; Perotti, Jose; Eckhoff, Anthony; Medelius, Pedro
2004-01-01
Signal conditioners embodying advanced concepts in analog and digital electronic circuitry and software have been developed for use in data-acquisition systems that are required to be compact and lightweight, to utilize electric energy efficiently, and to operate with high reliability, high accuracy, and high power efficiency, without intervention by human technicians. These signal conditioners were originally intended for use aboard spacecraft. There are also numerous potential terrestrial uses - especially in the fields of aeronautics and medicine, wherein it is necessary to monitor critical functions. Going beyond the usual analog and digital signal-processing functions of prior signal conditioners, the new signal conditioner performs the following additional functions: It continuously diagnoses its own electronic circuitry, so that it can detect failures and repair itself (as described below) within seconds. It continuously calibrates itself on the basis of a highly accurate and stable voltage reference, so that it can continue to generate accurate measurement data, even under extreme environmental conditions. It repairs itself in the sense that it contains a micro-controller that reroutes signals among redundant components as needed to maintain the ability to perform accurate and stable measurements. It detects deterioration of components, predicts future failures, and/or detects imminent failures by means of a real-time analysis in which, among other things, data on its present state are continuously compared with locally stored historical data. It minimizes unnecessary consumption of electric energy. The design architecture divides the signal conditioner into three main sections: an analog signal section, a digital module, and a power-management section. The design of the analog signal section does not follow the traditional approach of ensuring reliability through total redundancy of hardware: Instead, following an approach called spare parts tool box, the reliability of each component is assessed in terms of such considerations as risks of damage, mean times between failures, and the effects of certain failures on the performance of the signal conditioner as a whole system. Then, fewer or more spares are assigned for each affected component, pursuant to the results of this analysis, in order to obtain the required degree of reliability of the signal conditioner as a whole system. The digital module comprises one or more processors and field-programmable gate arrays, the number of each depending on the results of the aforementioned analysis. The digital module provides redundant control, monitoring, and processing of several analog signals. It is designed to minimize unnecessary consumption of electric energy, including, when possible, going into a low-power "sleep" mode that is implemented in firmware. The digital module communicates with external equipment via a personal-computer serial port. The digital module monitors the "health" of the rest of the signal conditioner by processing defined measurements and/or trends. It automatically makes adjustments to respond to channel failures, compensate for effects of temperature, and maintain calibration.
Sebok, Angelia; Wickens, Christopher D
2017-03-01
The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.
Unraveling the Mystery of Exozodiacal Dust
NASA Astrophysics Data System (ADS)
Ertel, S.; Augereau, J.-C.; Thébault, P.; Absil, O.; Bonsor, A.; Defrère, D.; Kral, Q.; Le Bouquin, J.-B.; Lebreton, J.; Coudé du Foresto, V.
2014-01-01
Exozodiacal dust clouds are thought to be the extrasolar analogs of the Solar System's zodiacal dust. Studying these systems provides insights in the architecture of the innermost regions of planetary systems, including the Habitable Zone. Furthermore, the mere presence of the dust may result in major obstacles for direct imaging of earth-like planets. Our EXOZODI project aims to detect and study exozodiacal dust and to explain its origin. We are carrying out the first large, near-infrared interferometric survey in the northern (CHARA/FLUOR) and southern (VLTI/PIONIER) hemispheres. Preliminary results suggest a detection rate of up to 30% around A to K type stars and interesting trends with spectral type and age. We focus here on presenting the observational work carried out by our team.
NASA Astrophysics Data System (ADS)
Gómez Colín, R.; García Juárez, A.; Zaldívar Huerta, I. E.; Marquina, A. Vera; García Delgado, L. A.; Leal Cruz, A. L.; Gómez Fuentes, R.
2016-03-01
In this paper we propose a photonic architecture as an alternative tool to distribute point to multipoint analog and digital information over a hybrid wireless visible optical communication system. The experimental set-up is composed of a red laser pointer, an acousto-optic modulator, a sinusoidal grating and a photo-detector array. By using a simple and variable interferometric system, diffraction gratings with different spatial frequencies are generated and recorded on a photoemulsion which is composed of vanilla with dichromate gelatin. Analog video and digital information are first transmitted and recovered over a wireless communication system using a microwave carrier at 4.52 GHz which is generated by distributed feedback lasers operating in the low laser threshold current region. Separately, the recovered video information and digital data are combined with a radio frequency signal of 80 MHz, obtaining a subcarrier of information that is imposed on the optical carrier of the pointer laser using an acousto-optic modulator which is operated with an angle of incident light that satisfies the Bragg condition. The modulated optical carrier is sent to a sinusoidal grating, the diffraction pattern is photo-detected using an array of PIN photo-detectors. The use of sinusoidal gratings with acousto-optic modulators allows that number of channels to be increased when both components are placed in cascade.
Sarafijanović, Slavisa; Le Boudec, Jean-Yves
2005-09-01
In mobile ad hoc networks, nodes act both as terminals and information relays, and they participate in a common routing protocol, such as dynamic source routing (DSR). The network is vulnerable to routing misbehavior, due to faulty or malicious nodes. Misbehavior detection systems aim at removing this vulnerability. In this paper, we investigate the use of an artificial immune system (AIS) to detect node misbehavior in a mobile ad hoc network using DSR. The system is inspired by the natural immune system (IS) of vertebrates. Our goal is to build a system that, like its natural counterpart, automatically learns, and detects new misbehavior. We describe our solution for the classification task of the AIS; it employs negative selection and clonal selection, the algorithms for learning and adaptation used by the natural IS. We define how we map the natural IS concepts such as self, antigen, and antibody to a mobile ad hoc network and give the resulting algorithm for classifying nodes as misbehaving. We implemented the system in the network simulator Glomosim; we present detection results and discuss how the system parameters affect the performance of primary and secondary response. Further steps will extend the design by using an analogy to the innate system, danger signal, and memory cells.
Ambulatory REACT: real-time seizure detection with a DSP microprocessor.
McEvoy, Robert P; Faul, Stephen; Marnane, William P
2010-01-01
REACT (Real-Time EEG Analysis for event deteCTion) is a Support Vector Machine based technology which, in recent years, has been successfully applied to the problem of automated seizure detection in both adults and neonates. This paper describes the implementation of REACT on a commercial DSP microprocessor; the Analog Devices Blackfin®. The primary aim of this work is to develop a prototype system for use in ambulatory or in-ward automated EEG analysis. Furthermore, the complexity of the various stages of the REACT algorithm on the Blackfin processor is analysed; in particular the EEG feature extraction stages. This hardware profile is used to select a reduced, platform-aware feature set, in order to evaluate the seizure classification accuracy of a lower-complexity, lower-power REACT system.
High-Speed Edge-Detecting Line Scan Smart Camera
NASA Technical Reports Server (NTRS)
Prokop, Norman F.
2012-01-01
A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..
NASA Astrophysics Data System (ADS)
Fachrurrozi, Muhammad; Saparudin; Erwin
2017-04-01
Real-time Monitoring and early detection system which measures the quality standard of waste in Musi River, Palembang, Indonesia is a system for determining air and water pollution level. This system was designed in order to create an integrated monitoring system and provide real time information that can be read. It is designed to measure acidity and water turbidity polluted by industrial waste, as well as to show and provide conditional data integrated in one system. This system consists of inputting and processing the data, and giving output based on processed data. Turbidity, substances, and pH sensor is used as a detector that produce analog electrical direct current voltage (DC). Early detection system works by determining the value of the ammonia threshold, acidity, and turbidity level of water in Musi River. The results is then presented based on the level group pollution by the Support Vector Machine classification method.
Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology
Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes
2015-01-01
This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA. PMID:26205275
Franzblau, Alfred; teWaterNaude, Jim; Sen, Ananda; d'Arcy, Hannah; Smilg, Jacqueline S; Mashao, Khanyakude S; Meyer, Cristopher A; Lockey, James E; Ehrlich, Rodney I
2018-03-01
Continuing use of analog film and digital chest radiography for screening and surveillance for pneumoconiosis and tuberculosis in lower and middle income countries raises questions of equivalence of disease detection. This study compared analog to digital images for intra-rater agreement across formats and prevalence of changes related to silicosis and tuberculosis among South African gold miners using the International Labour Organization classification system. Miners with diverse radiological presentations of silicosis and tuberculosis were recruited. Digital and film chest images on each subject were classified by four expert readers. Readings of film and soft copy digital images showed no significant differences in prevalence of tuberculosis or silicosis, and intra-rater agreement across formats was fair to good. Hard copy images yielded higher prevalences. Film and digital soft copy images show consistent prevalence of findings, and generally fair to good intra-rater agreement for findings related to silicosis and tuberculosis. © 2017 Wiley Periodicals, Inc.
The Young Solar Analogs Project
NASA Astrophysics Data System (ADS)
Lambert, Ryan; Gray, Richard, , Dr.
2014-03-01
The ultimate goal of the Young Solar Analogs Project is to give insight into the conditions in the early solar system when life was first forming on the earth and to assess the challenges the young, active sun presented to that early life. To achieve this, we have been monitoring since 2007 the stellar activity of 31 young solar-type stars with ages between 0.3 and 1.5 Gyrs. Many of these stars exhibit star spot cycles like the sun, but in a few cases we are seeing evidence for a previously unknown type of star spot cycle. Some vary chaotically. We have detected the presence of differential rotation in several stars. We have also detected a number of powerful flares both photometrically and spectroscopically. Optical irradiance changes in these stars can be as high as 10% in a single year; such solar variability would have led to catastropic climate change on the early earth. We would like to thank NSF for their generous donations to this project.
THE CENTER OF LIGHT: SPECTROASTROMETRIC DETECTION OF EXOMOONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agol, Eric; Jansen, Tiffany; Lacy, Brianna
2015-10-10
Direct imaging of extrasolar planets with future space-based coronagraphic telescopes may provide a means of detecting companion moons at wavelengths where the moon outshines the planet. We propose a detection strategy based on the positional variation of the center of light with wavelength, “spectroastrometry.” This new application of this technique could be used to detect an exomoon, to determine the exomoon’s orbit and the mass of the host exoplanet, and to disentangle the spectra of the planet and moon. We consider two model systems, for which we discuss the requirements for detection of exomoons around nearby stars. We simulate themore » characterization of an Earth–Moon analog system with spectroastrometry, showing that the orbit, the planet mass, and the spectra of both bodies can be recovered. To enable the detection and characterization of exomoons we recommend that coronagraphic telescopes should extend in wavelength coverage to 3 μm, and should be designed with spectroastrometric requirements in mind.« less
A Search for Interstellar Monohydric Thiols
NASA Astrophysics Data System (ADS)
Gorai, Prasanta; Das, Ankan; Das, Amaresh; Sivaraman, Bhalamurugan; Etim, Emmanuel E.; Chakrabarti, Sandip K.
2017-02-01
It has been pointed out by various astronomers that a very interesting relationship exists between interstellar alcohols and the corresponding thiols (sulfur analog of alcohols) as far as the spectroscopic properties and chemical abundances are concerned. Monohydric alcohols such as methanol and ethanol are widely observed and 1-propanol was recently claimed to have been seen in Orion KL. Among the monohydric thiols, methanethiol (chemical analog of methanol) has been firmly detected in Orion KL and Sgr B2(N2) and ethanethiol (chemical analog of ethanol) has been observed in Sgr B2(N2), though the confirmation of this detection is yet to come. It is very likely that higher order thiols could be observed in these regions. In this paper, we study the formation of monohydric alcohols and their thiol analogs. Based on our quantum chemical calculation and chemical modeling, we find that the Tg conformer of 1-propanethiol is a good candidate of astronomical interest. We present various spectroscopically relevant parameters of this molecule to assist in its future detection in the interstellar medium.
From entanglement witness to generalized Catalan numbers.
Cohen, E; Hansen, T; Itzhaki, N
2016-07-27
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a "sterile entanglement witness", which for large enough systems detects entanglement without affecting much the system's state. We discuss when our proposed entanglement witness can be regarded as a sterile one.
Deaths Involving Fentanyl, Fentanyl Analogs, and U-47700 - 10 States, July-December 2016.
O'Donnell, Julie K; Halpin, John; Mattson, Christine L; Goldberger, Bruce A; Gladden, R Matthew
2017-11-03
Preliminary estimates of U.S. drug overdose deaths exceeded 60,000 in 2016 and were partially driven by a fivefold increase in overdose deaths involving synthetic opioids (excluding methadone), from 3,105 in 2013 to approximately 20,000 in 2016 (1,2). Illicitly manufactured fentanyl, a synthetic opioid 50-100 times more potent than morphine, is primarily responsible for this rapid increase (3,4). In addition, fentanyl analogs such as acetylfentanyl, furanylfentanyl, and carfentanil are being detected increasingly in overdose deaths (5,6) and the illicit opioid drug supply (7). Carfentanil is estimated to be 10,000 times more potent than morphine (8). Estimates of the potency of acetylfentanyl and furanylfentanyl vary but suggest that they are less potent than fentanyl (9). Estimates of relative potency have some uncertainty because illicit fentanyl analog potency has not been evaluated in humans. This report describes opioid overdose deaths during July-December 2016 that tested positive for fentanyl, fentanyl analogs, or U-47700, an illicit synthetic opioid, in 10 states participating in CDC's Enhanced State Opioid Overdose Surveillance (ESOOS) program.* Fentanyl analogs are similar in chemical structure to fentanyl but not routinely detected because specialized toxicology testing is required. Fentanyl was detected in at least half of opioid overdose deaths in seven of 10 states, and 57% of fentanyl-involved deaths also tested positive for other illicit drugs, such as heroin. Fentanyl analogs were present in >10% of opioid overdose deaths in four states, with carfentanil, furanylfentanyl, and acetylfentanyl identified most frequently. Expanded surveillance for opioid overdoses, including testing for fentanyl and fentanyl analogs, assists in tracking the rapidly changing illicit opioid market and informing innovative interventions designed to reduce opioid overdose deaths.
Automation of servicibility of radio-relay station equipment
NASA Astrophysics Data System (ADS)
Uryev, A. G.; Mishkin, Y. I.; Itkis, G. Y.
1985-03-01
Automation of the serviceability of radio relay station equipment must ensure central gathering and primary processing of reliable instrument reading with subsequent display on the control panel, detection and recording of failures soon enough, advance enough warning based on analysis of detertioration symptoms, and correct remote measurement of equipment performance parameters. Such an inspection will minimize transmission losses while reducing nonproductive time and labor spent on documentation and measurement. A multichannel automated inspection system for this purpose should operate by a parallel rather than sequential procedure. Digital data processing is more expedient in this case than analog method and, therefore, analog to digital converters are required. Spepcial normal, above limit and below limit test signals provide means of self-inspection, to which must be added adequate interference immunization, stabilization, and standby power supply. Use of a microcomputer permits overall refinement and expansion of the inspection system while it minimizes though not completely eliminates dependence on subjective judgment.
Advanced optical fiber communication systems
NASA Astrophysics Data System (ADS)
Kazovsky, Leonid G.
1994-03-01
Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.
NASA Astrophysics Data System (ADS)
Miles-Paez, Paulo; Metchev, Stanimir; Burgasser, Adam; Apai, Daniel; Palle, Enric; Zapatero Osorio, Maria Rosa; Artigau, Etienne; Mace, Greg; Tannock, Megan; Triaud, Amaury
2018-05-01
There are about 150 known planets around M dwarfs, but only one system around an ultra-cool (>M7) dwarf: Trappist-1. Ultra-cool dwarfs are arguably the most promising hosts for atmospheric and biosignature detection in transiting planets because of the enhanced feature contrast in transit and eclipse spectroscopy. We propose a Spitzer survey to continuously monitor 15 of the brightest ultra-cool dwarfs over 3 days. To maximize the probability of detecting transiting planets, we have selected only targets seen close to equator-on. Spin-orbit alignment expectations dictate that the planetary systems around these ultra-cool dwarfs should also be oriented nearly edge-on. Any planet detections from this survey will immediately become top priority targets for JWST transit spectroscopy. No other telescope, present or within the foreseeable future, will be able to conduct a similarly sensitive and dedicated survey for characterizeable Earth analogs.
Automatic Single Event Effects Sensitivity Analysis of a 13-Bit Successive Approximation ADC
NASA Astrophysics Data System (ADS)
Márquez, F.; Muñoz, F.; Palomo, F. R.; Sanz, L.; López-Morillo, E.; Aguirre, M. A.; Jiménez, A.
2015-08-01
This paper presents Analog Fault Tolerant University of Seville Debugging System (AFTU), a tool to evaluate the Single-Event Effect (SEE) sensitivity of analog/mixed signal microelectronic circuits at transistor level. As analog cells can behave in an unpredictable way when critical areas interact with the particle hitting, there is a need for designers to have a software tool that allows an automatic and exhaustive analysis of Single-Event Effects influence. AFTU takes the test-bench SPECTRE design, emulates radiation conditions and automatically evaluates vulnerabilities using user-defined heuristics. To illustrate the utility of the tool, the SEE sensitivity of a 13-bits Successive Approximation Analog-to-Digital Converter (ADC) has been analysed. This circuit was selected not only because it was designed for space applications, but also due to the fact that a manual SEE sensitivity analysis would be too time-consuming. After a user-defined test campaign, it was detected that some voltage transients were propagated to a node where a parasitic diode was activated, affecting the offset cancelation, and therefore the whole resolution of the ADC. A simple modification of the scheme solved the problem, as it was verified with another automatic SEE sensitivity analysis.
NASA Astrophysics Data System (ADS)
Kipping, D. M.; Torres, G.; Henze, C.; Teachey, A.; Isaacson, H.; Petigura, E.; Marcy, G. W.; Buchhave, L. A.; Chen, J.; Bryson, S. T.; Sandford, E.
2016-04-01
Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of (0.91+/- 0.02) {R}{{J}}, a low orbital eccentricity ({0.06}-0.04+0.10), and an equilibrium temperature of (131+/- 3) K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric coverage, we are able to uniquely and precisely measure the orbital period of this post snow-line planet (1071.2323 ± 0.0006d), paving the way for follow-up of this K = 11.8 mag target.
Unfolding and unfoldability of digital pulses in the z-domain
NASA Astrophysics Data System (ADS)
Regadío, Alberto; Sánchez-Prieto, Sebastián
2018-04-01
The unfolding (or deconvolution) technique is used in the development of digital pulse processing systems applied to particle detection. This technique is applied to digital signals obtained by digitization of analog signals that represent the combined response of the particle detectors and the associated signal conditioning electronics. This work describes a technique to determine if the signal is unfoldable. For unfoldable signals the characteristics of the unfolding system (unfolder) are presented. Finally, examples of the method applied to real experimental setup are discussed.
NASA Astrophysics Data System (ADS)
Petigura, Erik; Marcy, G.
2012-05-01
With its unprecedented photometric precision and duty cycle, the Kepler mission offers the first opportunity to detect Earth analog planets. Detecting transits with depths of 0.01%, periods of 1 year, and durations of 10 hours pose a novel challenge, prompting an optimization of both the detrending of the photometry and of the transit search algorithm. We present TERRA, the Transiting Exoearth Robust Reduction Algorithm, designed specifically to find earth analogs. TERRA carefully treats systematic effects with timescales comparable to an exoearth transit and removes features that are not important from the perspective of transit detection. We demonstrate TERRA's detection power through an extensive transit injection and recovery experiment.
Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung
2016-03-15
Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes. Copyright © 2015 Elsevier B.V. All rights reserved.
Frequency-Modulated Microwave Photonic Links with Direct Detection: Review and Theory
2010-12-15
create large amounts of signal distortion. Alternatives to MZIs have been pro- posed, including Fabry - Perot interferometers, ber Bragg gratings (FBGs...multiplexed, analog signals for applications in cable television distribution. Experimental results for a Fabry - Perot discriminated, FM subcarrier...multiplexed system were presented by [17]. An array of optical frequency modulated DFB lasers and a Fabry - Perot discriminator were used to transmit and
Optical Microwave Interactions in Semiconductor Devices.
1980-11-01
geometry can be used in microwave-optical analog T signal processing systems. A theoretical and experimental study of mode locking in (GaAI)As injection... STUDY OF MODE-LOCKING IN (GaAl)As INJECTION LASER .......... ......................... ... 55 A. Experimental Set-Up and DC Characteristics...modulation and 4 detection of optical beams at microwave frequencies. Our approach for modulating the optical beam has been to study the modulation capability
Stabilometer Computerized Analog Recording System for Studying Gross Motor Skill Learning
ERIC Educational Resources Information Center
Chasey, William C., Jr.; And Others
1976-01-01
The stabilometer computerized analog recording system (SCARS) provides for storing analog and digital information on a single channel audio tape recorder at lower cost and greater versatility than other systems. (MB)
Fault detection in digital and analog circuits using an i(DD) temporal analysis technique
NASA Technical Reports Server (NTRS)
Beasley, J.; Magallanes, D.; Vridhagiri, A.; Ramamurthy, Hema; Deyong, Mark
1993-01-01
An i(sub DD) temporal analysis technique which is used to detect defects (faults) and fabrication variations in both digital and analog IC's by pulsing the power supply rails and analyzing the temporal data obtained from the resulting transient rail currents is presented. A simple bias voltage is required for all the inputs, to excite the defects. Data from hardware tests supporting this technique are presented.
NASA Astrophysics Data System (ADS)
Andersson, Mats; Persson, Linda; Svensson, Tomas; Svanberg, Sune
2007-11-01
We present a flexible and compact, digital, lock-in detection system and its use in high-resolution tunable diode laser spectroscopy. The system involves coherent sampling, and is based on the synchronization of two data acquisition cards running on a single standard computer. A software-controlled arbitrary waveform generator is used for laser modulation, and a four-channel analog/digital board records detector signals. Gas spectroscopy is performed in the wavelength modulation regime. The coherently detected signal is averaged a selected number of times before it is stored or analyzed by software-based, lock-in techniques. Multiple harmonics of the modulation signal (1f, 2f, 3f, 4f, etc.) are available in each single data set. The sensitivity is of the order of 10-5, being limited by interference fringes in the measurement setup. The capabilities of the system are demonstrated by measurements of molecular oxygen in ambient air, as well as dispersed gas in scattering materials, such as plants and human tissue.
Andersson, Mats; Persson, Linda; Svensson, Tomas; Svanberg, Sune
2007-11-01
We present a flexible and compact, digital, lock-in detection system and its use in high-resolution tunable diode laser spectroscopy. The system involves coherent sampling, and is based on the synchronization of two data acquisition cards running on a single standard computer. A software-controlled arbitrary waveform generator is used for laser modulation, and a four-channel analog/digital board records detector signals. Gas spectroscopy is performed in the wavelength modulation regime. The coherently detected signal is averaged a selected number of times before it is stored or analyzed by software-based, lock-in techniques. Multiple harmonics of the modulation signal (1f, 2f, 3f, 4f, etc.) are available in each single data set. The sensitivity is of the order of 10(-5), being limited by interference fringes in the measurement setup. The capabilities of the system are demonstrated by measurements of molecular oxygen in ambient air, as well as dispersed gas in scattering materials, such as plants and human tissue.
An Ultralow-Power Sleep Spindle Detection System on Chip.
Iranmanesh, Saam; Rodriguez-Villegas, Esther
2017-08-01
This paper describes a full system-on-chip to automatically detect sleep spindle events from scalp EEG signals. These events, which are known to play an important role on memory consolidation during sleep, are also characteristic of a number of neurological diseases. The operation of the system is based on a previously reported algorithm, which used the Teager energy operator, together with the Spectral Edge Frequency (SEF50) achieving more than 70% sensitivity and 98% specificity. The algorithm is now converted into a hardware analog based customized implementation in order to achieve extremely low levels of power. Experimental results prove that the system, which is fabricated in a 0.18 μm CMOS technology, is able to operate from a 1.25 V power supply consuming only 515 nW, with an accuracy that is comparable to its software counterpart.
NASA Astrophysics Data System (ADS)
Miley, H.; Forrester, J. B.; Greenwood, L. R.; Keillor, M. E.; Eslinger, P. W.; Regmi, R.; Biegalski, S.; Erikson, L. E.
2013-12-01
The aerosol samples taken from the CTBT International Monitoring Systems stations are measured in the field with a minimum detectable concentration (MDC) of ~30 microBq/m3 of Ba-140. This is sufficient to detect far less than 1 kt of aerosol fission products in the atmosphere when the station is in the plume from such an event. Recent thinking about minimizing the potential source region (PSR) from a detection has led to a desire for a multi-station or multi-time period detection. These would be connected through the concept of ';event formation', analogous to event formation in seismic event study. However, to form such events, samples from the nearest neighbors of the detection would require re-analysis with a more sensitive laboratory to gain a substantially lower MDC, and potentially find radionuclide concentrations undetected by the station. The authors will present recent laboratory work with air filters showing various cost effective means for enhancing laboratory sensitivity.
Fast Offset Laser Phase-Locking System
NASA Technical Reports Server (NTRS)
Shaddock, Daniel; Ware, Brent
2008-01-01
Figure 1 shows a simplified block diagram of an improved optoelectronic system for locking the phase of one laser to that of another laser with an adjustable offset frequency specified by the user. In comparison with prior systems, this system exhibits higher performance (including higher stability) and is much easier to use. The system is based on a field-programmable gate array (FPGA) and operates almost entirely digitally; hence, it is easily adaptable to many different systems. The system achieves phase stability of less than a microcycle. It was developed to satisfy the phase-stability requirement for a planned spaceborne gravitational-wave-detecting heterodyne laser interferometer (LISA). The system has potential terrestrial utility in communications, lidar, and other applications. The present system includes a fast phasemeter that is a companion to the microcycle-accurate one described in High-Accuracy, High-Dynamic-Range Phase-Measurement System (NPO-41927), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 22. In the present system (as in the previously reported one), beams from the two lasers (here denoted the master and slave lasers) interfere on a photodiode. The heterodyne photodiode output is digitized and fed to the fast phasemeter, which produces suitably conditioned, low-latency analog control signals which lock the phase of the slave laser to that of the master laser. These control signals are used to drive a thermal and a piezoelectric transducer that adjust the frequency and phase of the slave-laser output. The output of the photodiode is a heterodyne signal at the difference between the frequencies of the two lasers. (The difference is currently required to be less than 20 MHz due to the Nyquist limit of the current sampling rate. We foresee few problems in doubling this limit using current equipment.) Within the phasemeter, the photodiode-output signal is digitized to 15 bits at a sampling frequency of 40 MHz by use of the same analog-to-digital converter (ADC) as that of the previously reported phasemeter. The ADC output is passed to the FPGA, wherein the signal is demodulated using a digitally generated oscillator signal at the offset locking frequency specified by the user. The demodulated signal is low-pass filtered, decimated to a sample rate of 1 MHz, then filtered again. The decimated and filtered signal is converted to an analog output by a 1 MHz, 16-bit digital-to-analog converters. After a simple low-pass filter, these analog signals drive the thermal and piezoelectric transducers of the laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Naoko, E-mail: naoko.sano@ncl.ac.uk; Barlow, Anders J.; Cumpson, Peter J.
The solar system contains large quantities of organic compounds that can form complex molecular structures. The processing of organic compounds by biological systems leads to molecules with distinctive structural characteristics; thus, the detection and characterization of organic materials could lead to a high degree of confidence in the existence of extra-terrestrial life. Given the nature of the surface of most planetary bodies in the solar system, evidence of life is more likely to be found in the subsurface where conditions are more hospitable. Basalt is a common rock throughout the solar system and the primary rock type on Mars andmore » Earth. Basalt is therefore a rock type that subsurface life might exploit and as such a suitable material for the study of methods required to detect and analyze organic material in rock. Telluric basalts from Earth represent an analog for extra-terrestrial rocks where the indigenous organic matter could be analyzed for molecular biosignatures. This study focuses on organic matter in the basalt with the use of surface analysis techniques utilizing Ar gas cluster ion beams (GCIB); time of flight secondary ion mass spectrometry (ToF-SIMS), and x-ray photoelectron spectroscopy (XPS), to characterize organic molecules. Tetramethylammonium hydroxide (TMAH) thermochemolysis was also used to support the data obtained using the surface analysis techniques. The authors demonstrate that organic molecules were found to be heterogeneously distributed within rock textures. A positive correlation was observed to exist between the presence of microtubule textures in the basalt and the organic compounds detected. From the results herein, the authors propose that ToF-SIMS with an Ar GCIB is effective at detecting organic materials in such geological samples, and ToF-SIMS combined with XPS and TMAH thermochemolysis may be a useful approach in the study of extra-terrestrial organic material and life.« less
Observing Strategies for the Detection of Jupiter Analogs
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Tinney, C. G.; Horner, J.; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Bailey, J.; Carter, B. D.; Salter, G. S.; Wright, D.
2013-04-01
To understand the frequency, and thus the formation and evolution, of planetary systems like our own solar system, it is critical to detect Jupiter-like planets in Jupiter-like orbits. For long-term radial-velocity monitoring, it is useful to estimate the observational effort required to reliably detect such objects, particularly in light of severe competition for limited telescope time. We perform detailed simulations of observational campaigns, maximizing the realism of the sampling of a set of simulated observations. We then compute the detection limits for each campaign to quantify the effect of increasing the number of observational epochs and varying their time coverage. We show that once there is sufficient time baseline to detect a given orbital period, it becomes less effective to add further time coverage—rather, the detectability of a planet scales roughly as the square root of the number of observations, independently of the number of orbital cycles included in the data string. We also show that no noise floor is reached, with a continuing improvement in detectability at the maximum number of observations N = 500 tested here.
NASA Astrophysics Data System (ADS)
Beckerman, Laura Grace
The Mars Science Laboratory (MSL) Curiosity rover is equipped with CheMin, the first x-ray diffraction (XRD) instrument on Mars, for in situ mineralogy as part of its mission to seek evidence of past habitability at Gale Crater. Detection and characterization of hydrated minerals like clays and sulfates provides crucial insight into Mars' early geochemistry. For example, clays are often interpreted as having formed in lacustrine environments at neutral pHs, while sulfates such as jarosite are evidence of acid sulfate alteration. However, CheMin's inability to remove non-clay minerals and to preferentially orient samples may pose significant challenges to clay detection and characterization at Gale Crater. To evaluate the effect of particle size separation (<0.2 microm), removal of non-clay minerals, preferred orientation, and ethylene glycol solvation on XRD analyses of clays, we used both a CheMin analog instrument and a traditional laboratory XRD to identify clays in acid sulfate altered basalt from Mars analog sites in Costa Rica. We detected kaolinite in four of the fourteen samples studied, one of which also contained montmorillonite. Kaolinite was not detected in two samples with the analog instrument prior to clay isolation. These results suggest that CheMin may miss detection of some clays at Gale Crater, which could affect interpretations of early Mars' habitability. Mistaking iron-rich natroalunite (Na[Al,Fe]3(SO4) 2(OH)6) for jarosite (KFe3(SO4) 2(OH)6) could also impact interpretations of early Mars, as natroalunite can form over a broader range of pH, water:rock ratios, and redox conditions than can jarosite. To determine if iron-rich natroalunite is a common alteration product at Mars analog sites, we assessed iron content in natroalunite from Costa Rica. We detected up to 30% iron substitution in natroalunite at diverse geochemical settings. We also evaluated the feasibility of using XRD or Raman spectroscopy for in situ iron-rich natroalunite detection, and determined that CheMin on Curiosity and the Raman Laser Spectrometer on the upcoming ExoMars rover could detect natroalunite with ≥25% iron substitution. Distinguishing between iron-rich natroalunite and jarosite with CheMin could aid in interpreting geochemical conditions and habitability at Gale Crater.
Interstellar and Planetary Analogs in the Laboratory
NASA Technical Reports Server (NTRS)
Salama, Farid
2013-01-01
We present and discuss the unique capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to investigate the interaction of ionizing radiation (UV, charged particles) with molecular species (neutral molecules, radicals and ions) and carbonaceous grains in the Solar System and in the Interstellar Medium (ISM). COSmIC stands for Cosmic Simulation Chamber, a laboratory chamber where interstellar and planetary analogs are generated, processed and analyzed. It is composed of a pulsed discharge nozzle (PDN) expansion that generates a free jet supersonic expansion in a plasma cavity coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a cavity ring down spectroscopy (CRDS) system for photonic detection and a Reflectron time-of-flight mass spectrometer (ReTOF-MS) for mass detection. This setup allows the study of molecules, ions and solids under the low temperature and high vacuum conditions that are required to simulate some interstellar, circumstellar and planetary physical environments providing new fundamental insights on the molecular level into the processes that are critical to the chemistry in the ISM, circumstellar and planet forming regions, and on icy objects in the Solar System. Recent laboratory results that were obtained using COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid particles from their gas-phase molecular precursors in environments as varied as circumstellar outflow and planetary atmospheres.
A family of chaotic pure analog coding schemes based on baker's map function
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Jing; Lu, Xuanxuan; Yuen, Chau; Wu, Jun
2015-12-01
This paper considers a family of pure analog coding schemes constructed from dynamic systems which are governed by chaotic functions—baker's map function and its variants. Various decoding methods, including maximum likelihood (ML), minimum mean square error (MMSE), and mixed ML-MMSE decoding algorithms, have been developed for these novel encoding schemes. The proposed mirrored baker's and single-input baker's analog codes perform a balanced protection against the fold error (large distortion) and weak distortion and outperform the classical chaotic analog coding and analog joint source-channel coding schemes in literature. Compared to the conventional digital communication system, where quantization and digital error correction codes are used, the proposed analog coding system has graceful performance evolution, low decoding latency, and no quantization noise. Numerical results show that under the same bandwidth expansion, the proposed analog system outperforms the digital ones over a wide signal-to-noise (SNR) range.
NASA Astrophysics Data System (ADS)
Ganzert, Steven; Guttmann, Josef; Steinmann, Daniel; Kramer, Stefan
Lung protective ventilation strategies reduce the risk of ventilator associated lung injury. To develop such strategies, knowledge about mechanical properties of the mechanically ventilated human lung is essential. This study was designed to develop an equation discovery system to identify mathematical models of the respiratory system in time-series data obtained from mechanically ventilated patients. Two techniques were combined: (i) the usage of declarative bias to reduce search space complexity and inherently providing the processing of background knowledge. (ii) A newly developed heuristic for traversing the hypothesis space with a greedy, randomized strategy analogical to the GSAT algorithm. In 96.8% of all runs the applied equation discovery system was capable to detect the well-established equation of motion model of the respiratory system in the provided data. We see the potential of this semi-automatic approach to detect more complex mathematical descriptions of the respiratory system from respiratory data.
The Chemical Composition of an Extrasolar Kuiper-Belt-Object
NASA Astrophysics Data System (ADS)
Xu, S.; Zuckerman, B.; Dufour, P.; Young, E. D.; Klein, B.; Jura, M.
2017-02-01
The Kuiper Belt of our solar system is a source of short-period comets that may have delivered water and other volatiles to Earth and the other terrestrial planets. However, the distribution of water and other volatiles in extrasolar planetary systems is largely unknown. We report the discovery of an accretion of a Kuiper-Belt-Object analog onto the atmosphere of the white dwarf WD 1425+540. The heavy elements C, N, O, Mg, Si, S, Ca, Fe, and Ni are detected, with nitrogen observed for the first time in extrasolar planetary debris. The nitrogen mass fraction is ∼2%, comparable to that in comet Halley and higher than in any other known solar system object. The lower limit to the accreted mass is ∼1022 g, which is about one hundred thousand times the typical mass of a short-period comet. In addition, WD 1425+540 has a wide binary companion, which could facilitate perturbing a Kuiper-Belt-Object analog into the white dwarf’s tidal radius. This finding shows that analogs to objects in our Kuiper Belt exist around other stars and could be responsible for the delivery of volatiles to terrestrial planets beyond the solar system. Part of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among Caltech, the University of California and NASA. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
Detecting Water on Super-Earths Using JAVST
NASA Technical Reports Server (NTRS)
Deming, D.
2010-01-01
Nearby lower train sequence stars host a class of planets known as Super-Earths, that have no analog in our own solar system. Super-Earths are rocky and/or icy planets with masses up to about 10 Earth masses, They are expected to host atmospheres generated by a number of processes including accretion of chondritic material. Water vapor should be a common constituent of super-Earth atmospheres, and may be detectable in transiting super-Earths using transmission spectroscopy during primar y eclipse, and emission spectroscopy at secondary eclipse. I will discuss the prospects for super-Earth atmospheric measurements using JWST.
System and method for linearly amplifying optical analog signals by backward Raman scattering
Lin, Cheng-Heui
1988-01-01
A system for linearly amplifying an optical analog signal by backward stimulated Raman scattering comprises a laser source for generating a pump pulse; and an optic fiber having two opposed apertures, a first aperture for receiving the pump pulse and a second aperture for receiving the optical analog signal, wherein the optical analog signal is linearly amplified to an amplified optical analog signal.
System and method for linearly amplifying optical analog signals by backward Raman scattering
Lin, Cheng-Heui
1988-07-05
A system for linearly amplifying an optical analog signal by backward stimulated Raman scattering comprises a laser source for generating a pump pulse; and an optic fiber having two opposed apertures, a first aperture for receiving the pump pulse and a second aperture for receiving the optical analog signal, wherein the optical analog signal is linearly amplified to an amplified optical analog signal.
Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology
Brinkworth, Russell S. A.; O'Carroll, David C.
2009-01-01
The extraction of accurate self-motion information from the visual world is a difficult problem that has been solved very efficiently by biological organisms utilizing non-linear processing. Previous bio-inspired models for motion detection based on a correlation mechanism have been dogged by issues that arise from their sensitivity to undesired properties of the image, such as contrast, which vary widely between images. Here we present a model with multiple levels of non-linear dynamic adaptive components based directly on the known or suspected responses of neurons within the visual motion pathway of the fly brain. By testing the model under realistic high-dynamic range conditions we show that the addition of these elements makes the motion detection model robust across a large variety of images, velocities and accelerations. Furthermore the performance of the entire system is more than the incremental improvements offered by the individual components, indicating beneficial non-linear interactions between processing stages. The algorithms underlying the model can be implemented in either digital or analog hardware, including neuromorphic analog VLSI, but defy an analytical solution due to their dynamic non-linear operation. The successful application of this algorithm has applications in the development of miniature autonomous systems in defense and civilian roles, including robotics, miniature unmanned aerial vehicles and collision avoidance sensors. PMID:19893631
Boukabache, Hamza; Escriba, Christophe; Fourniols, Jean-Yves
2014-10-31
Structural health monitoring using noninvasive methods is one of the major challenges that aerospace manufacturers face in this decade. Our work in this field focuses on the development and the system integration of millimetric piezoelectric sensors/ actuators to generate and measure specific guided waves. The aim of the application is to detect mechanical flaws on complex composite and alloy structures to quantify efficiently the global structures' reliability. The study begins by a physical and analytical analysis of a piezoelectric patch. To preserve the structure's integrity, the transducers are directly pasted onto the surface which leads to a critical issue concerning the interfacing layer. In order to improve the reliability and mitigate the influence of the interfacing layer, the global equations of piezoelectricity are coupled with a load transfer model. Thus we can determine precisely the shear strain developed on the surface of the structure. To exploit the generated signal, a high precision analog charge amplifier coupled to a double T notch filter were designed and scaled. Finally, a novel joined time-frequency analysis based on a wavelet decomposition algorithm is used to extract relevant structures signatures. Finally, this paper provides examples of application on aircraft structure specimens and the feasibility of the system is thus demonstrated.
Boukabache, Hamza; Escriba, Christophe; Fourniols, Jean-Yves
2014-01-01
Structural health monitoring using noninvasive methods is one of the major challenges that aerospace manufacturers face in this decade. Our work in this field focuses on the development and the system integration of millimetric piezoelectric sensors/ actuators to generate and measure specific guided waves. The aim of the application is to detect mechanical flaws on complex composite and alloy structures to quantify efficiently the global structures' reliability. The study begins by a physical and analytical analysis of a piezoelectric patch. To preserve the structure's integrity, the transducers are directly pasted onto the surface which leads to a critical issue concerning the interfacing layer. In order to improve the reliability and mitigate the influence of the interfacing layer, the global equations of piezoelectricity are coupled with a load transfer model. Thus we can determine precisely the shear strain developed on the surface of the structure. To exploit the generated signal, a high precision analog charge amplifier coupled to a double T notch filter were designed and scaled. Finally, a novel joined time-frequency analysis based on a wavelet decomposition algorithm is used to extract relevant structures signatures. Finally, this paper provides examples of application on aircraft structure specimens and the feasibility of the system is thus demonstrated. PMID:25365457
Advanced Data Acquisition Systems
NASA Technical Reports Server (NTRS)
Perotti, J.
2003-01-01
Current and future requirements of the aerospace sensors and transducers field make it necessary for the design and development of new data acquisition devices and instrumentation systems. New designs are sought to incorporate self-health, self-calibrating, self-repair capabilities, allowing greater measurement reliability and extended calibration cycles. With the addition of power management schemes, state-of-the-art data acquisition systems allow data to be processed and presented to the users with increased efficiency and accuracy. The design architecture presented in this paper displays an innovative approach to data acquisition systems. The design incorporates: electronic health self-check, device/system self-calibration, electronics and function self-repair, failure detection and prediction, and power management (reduced power consumption). These requirements are driven by the aerospace industry need to reduce operations and maintenance costs, to accelerate processing time and to provide reliable hardware with minimum costs. The project's design architecture incorporates some commercially available components identified during the market research investigation like: Field Programmable Gate Arrays (FPGA) Programmable Analog Integrated Circuits (PAC IC) and Field Programmable Analog Arrays (FPAA); Digital Signal Processing (DSP) electronic/system control and investigation of specific characteristics found in technologies like: Electronic Component Mean Time Between Failure (MTBF); and Radiation Hardened Component Availability. There are three main sections discussed in the design architecture presented in this document. They are the following: (a) Analog Signal Module Section, (b) Digital Signal/Control Module Section and (c) Power Management Module Section. These sections are discussed in detail in the following pages. This approach to data acquisition systems has resulted in the assignment of patent rights to Kennedy Space Center under U.S. patent # 6,462,684. Furthermore, NASA KSC commercialization office has issued licensing rights to Circuit Avenue Netrepreneurs, LLC , a minority-owned business founded in 1999 located in Camden, NJ.
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74... translator transmission systems and the modification of existing analog transmission systems for digital... specifically refitted or replaced to operate at a higher power. (3) Analog heterodyne translators, when...
CMOS Image Sensor and System for Imaging Hemodynamic Changes in Response to Deep Brain Stimulation.
Zhang, Xiao; Noor, Muhammad S; McCracken, Clinton B; Kiss, Zelma H T; Yadid-Pecht, Orly; Murari, Kartikeya
2016-06-01
Deep brain stimulation (DBS) is a therapeutic intervention used for a variety of neurological and psychiatric disorders, but its mechanism of action is not well understood. It is known that DBS modulates neural activity which changes metabolic demands and thus the cerebral circulation state. However, it is unclear whether there are correlations between electrophysiological, hemodynamic and behavioral changes and whether they have any implications for clinical benefits. In order to investigate these questions, we present a miniaturized system for spectroscopic imaging of brain hemodynamics. The system consists of a 144 ×144, [Formula: see text] pixel pitch, high-sensitivity, analog-output CMOS imager fabricated in a standard 0.35 μm CMOS process, along with a miniaturized imaging system comprising illumination, focusing, analog-to-digital conversion and μSD card based data storage. This enables stand alone operation without a computer, nor electrical or fiberoptic tethers. To achieve high sensitivity, the pixel uses a capacitive transimpedance amplifier (CTIA). The nMOS transistors are in the pixel while pMOS transistors are column-parallel, resulting in a fill factor (FF) of 26%. Running at 60 fps and exposed to 470 nm light, the CMOS imager has a minimum detectable intensity of 2.3 nW/cm(2) , a maximum signal-to-noise ratio (SNR) of 49 dB at 2.45 μW/cm(2) leading to a dynamic range (DR) of 61 dB while consuming 167 μA from a 3.3 V supply. In anesthetized rats, the system was able to detect temporal, spatial and spectral hemodynamic changes in response to DBS.
Fault Detection, Isolation and Recovery (FDIR) Portable Liquid Oxygen Hardware Demonstrator
NASA Technical Reports Server (NTRS)
Oostdyk, Rebecca L.; Perotti, Jose M.
2011-01-01
The Fault Detection, Isolation and Recovery (FDIR) hardware demonstration will highlight the effort being conducted by Constellation's Ground Operations (GO) to provide the Launch Control System (LCS) with system-level health management during vehicle processing and countdown activities. A proof-of-concept demonstration of the FDIR prototype established the capability of the software to provide real-time fault detection and isolation using generated Liquid Hydrogen data. The FDIR portable testbed unit (presented here) aims to enhance FDIR by providing a dynamic simulation of Constellation subsystems that feed the FDIR software live data based on Liquid Oxygen system properties. The LO2 cryogenic ground system has key properties that are analogous to the properties of an electronic circuit. The LO2 system is modeled using electrical components and an equivalent circuit is designed on a printed circuit board to simulate the live data. The portable testbed is also be equipped with data acquisition and communication hardware to relay the measurements to the FDIR application running on a PC. This portable testbed is an ideal capability to perform FDIR software testing, troubleshooting, training among others.
Carbonaceous Meteorites Contain a Wide Range of Extraterrestrial Nucleobases
NASA Technical Reports Server (NTRS)
Callahan, Michael P.; Smith, Karen E.; Cleaves, H. James, II; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.
2011-01-01
All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nuc1eobases in meteorites has been debated for over 50 y. So far, the few nuc1eobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs; purine, 2,6-diminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analoge were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.
Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases
Callahan, Michael P.; Smith, Karen E.; Cleaves, H. James; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.
2011-01-01
All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nucleobases in meteorites has been debated for over 50 y. So far, the few nucleobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography–mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs: purine, 2,6-diaminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analogs were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules. PMID:21836052
Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases.
Callahan, Michael P; Smith, Karen E; Cleaves, H James; Ruzicka, Josef; Stern, Jennifer C; Glavin, Daniel P; House, Christopher H; Dworkin, Jason P
2011-08-23
All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nucleobases in meteorites has been debated for over 50 y. So far, the few nucleobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs: purine, 2,6-diaminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analogs were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.
Linearized electrooptic polymeric directional coupler modulator
NASA Astrophysics Data System (ADS)
Hung, Yu-Chueh
External linearized modulators are required in high-performance analog optical communication systems since the performance of conventional modulators, such as Mach-Zehnder modulators, are degraded by distortions by the nonlinearity of their transfer functions. Various linearization schemes have been proposed to increase the dynamic range of an analog optical link. Most of the optical schemes involve multiple Mach-Zehnder modulators, either in parallel or series configuration, incorporated with strict balance of RF and bias control. This is a significant challenge when it comes to practical implementation. In this dissertation, a linearized two-section directional coupler modulator made from electrooptic polymer is presented. The coupling coefficient of each section is tailored by properly tuning the refractive index contrast, which can be easily employed using the photobleaching technique in polymer technology. A two-tone test was performed to evaluate the linearity of the modulator and the spur-free dynamic range shows a 7.5 dB improvement compared to a conventional Mach-Zehnder modulator. This scheme avoids multiple modulators or complicated modulation synchronization and demonstrates a compact design in real implementation. Most of the linearization schemes up to date consider only the direct detection mode of operation. However, the RF output characteristics at the detection side are determined differently by various system parameters if a coherent link is implemented instead. Therefore, different considerations of linearization have to be examined for this kind of application. In the second part of this dissertation, the impact of various modulation scenarios on the system performance of an analog coherent optical link will be addressed. It will be shown that a directional coupler modulator is better suited at increasing the dynamic range in coherent optical links. Specific designs of a directional coupler modulator shows an SFDR improvement of 20 dB compared to a Mach-Zehnder modulator. This new type of device can be easily fabricated using photobleaching technique in eletrooptic polymer and can be utilized in various applications.
ERIC Educational Resources Information Center
Taber, Keith S.
2013-01-01
Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…
NASA Astrophysics Data System (ADS)
Gontier, Camille
2017-11-01
The purpose of this study is to detect mind-wandering in an Extra-Vehicular Activity (EVA) context during a long supervision task. Detection is realized using an electro-cardiogram and measures of heart rate variability. Experienced by everyone, mind-wandering depicts the state of mind where thoughts are not related to the current action. Its deleterious aspect regarding performance suggests a need to take mind-wandering seriously as an impediment to manned space missions' safety. Previous research confirmed the hypothesis according to which several physiological responses can be used to track down mind-wandering. ECG recordings are both easy to obtain and analyze, statistically related to mind-wandering, and easy to record during extra-vehicular activities. Data analyzed in this paper have been recorded during a Mars-analog mission (MDRS 164), from February 20 to March 6, 2016 at the Mars Desert Research Station (Utah). During various cognitive tasks, the subject had his ECG and awareness levels monitored at the same time to see if a correlation between these two measures can be used in a Mars-mission environment. At different time intervals, the subject was interrupted using the thought probe method to inquire about his thoughts. Heart Rate Variability (HRV, which power in high frequencies is related to the parasympathetic system and is expected to vary with mind-wandering) was then computed from recorded data, and its statistical changes during on-task and off-task thoughts were assessed. Although data revealed no significant differences nor coherent trends in HRV-related metrics between the two conditions, results are paving the way towards a better understanding of ECG-recordings and their use during space-analog missions.
NASA Technical Reports Server (NTRS)
Generazio, Edward R. (Inventor)
2012-01-01
A method of validating a probability of detection (POD) testing system using directed design of experiments (DOE) includes recording an input data set of observed hit and miss or analog data for sample components as a function of size of a flaw in the components. The method also includes processing the input data set to generate an output data set having an optimal class width, assigning a case number to the output data set, and generating validation instructions based on the assigned case number. An apparatus includes a host machine for receiving the input data set from the testing system and an algorithm for executing DOE to validate the test system. The algorithm applies DOE to the input data set to determine a data set having an optimal class width, assigns a case number to that data set, and generates validation instructions based on the case number.
Compensated intruder-detection systems
McNeilly, David R.; Miller, William R.
1984-01-01
Intruder-detection systems in which intruder-induced signals are transmitted through a medium also receive spurious signals induced by changes in a climatic condition affecting the medium. To combat this, signals received from the detection medium are converted to a first signal. The system also provides a reference signal proportional to climate-induced changes in the medium. The first signal and the reference signal are combined for generating therefrom an output signal which is insensitive to the climatic changes in the medium. An alarm is energized if the output signal exceeds a preselected value. In one embodiment, an acoustic cable is coupled to a fence to generate a first electrical signal proportional to movements thereof. False alarms resulting from wind-induced movements of the fence (detection medium) are eliminated by providing an anemometer-driven voltage generator to provide a reference voltage proportional to the velocity of wind incident on the fence. An analog divider receives the first electrical signal and the reference signal as its numerator and denominator inputs, respectively, and generates therefrom an output signal which is insensitive to the wind-induced movements in the fence.
From entanglement witness to generalized Catalan numbers
NASA Astrophysics Data System (ADS)
Cohen, E.; Hansen, T.; Itzhaki, N.
2016-07-01
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one.
From entanglement witness to generalized Catalan numbers
Cohen, E.; Hansen, T.; Itzhaki, N.
2016-01-01
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one. PMID:27461089
NASA Astrophysics Data System (ADS)
Onuma, Takashi; Otani, Yukitoshi
2014-03-01
A two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz is proposed. A polarization image sensor is developed as core device of the system. It is composed of a pixelated polarizer array made from photonic crystal and a parallel read out circuit with a multi-channel analog to digital converter specialized for two-dimensional polarization detection. By applying phase shifting algorism with circularly-polarized incident light, birefringence phase difference and azimuthal angle can be measured. The performance of the system is demonstrated experimentally by measuring actual birefringence distribution and polarization device such as Babinet-Soleil compensator.
Spike processing with a graphene excitable laser
Shastri, Bhavin J.; Nahmias, Mitchell A.; Tait, Alexander N.; Rodriguez, Alejandro W.; Wu, Ben; Prucnal, Paul R.
2016-01-01
Novel materials and devices in photonics have the potential to revolutionize optical information processing, beyond conventional binary-logic approaches. Laser systems offer a rich repertoire of useful dynamical behaviors, including the excitable dynamics also found in the time-resolved “spiking” of neurons. Spiking reconciles the expressiveness and efficiency of analog processing with the robustness and scalability of digital processing. We demonstrate a unified platform for spike processing with a graphene-coupled laser system. We show that this platform can simultaneously exhibit logic-level restoration, cascadability and input-output isolation—fundamental challenges in optical information processing. We also implement low-level spike-processing tasks that are critical for higher level processing: temporal pattern detection and stable recurrent memory. We study these properties in the context of a fiber laser system and also propose and simulate an analogous integrated device. The addition of graphene leads to a number of advantages which stem from its unique properties, including high absorption and fast carrier relaxation. These could lead to significant speed and efficiency improvements in unconventional laser processing devices, and ongoing research on graphene microfabrication promises compatibility with integrated laser platforms. PMID:26753897
Finite element model for MOI applications using A-V formulation
NASA Astrophysics Data System (ADS)
Xuan, L.; Shanker, B.; Udpa, L.; Shih, W.; Fitzpatrick, G.
2001-04-01
Magneto-optic imaging (MOI) is a relatively new sensor application of an extension of bubble memory technology to NDT and produce easy-to-interpret, real time analog images. MOI systems use a magneto-optic (MO) sensor to produce analog images of magnetic flux leakage from surface and subsurface defects. The instrument's capability in detecting the relatively weak magnetic fields associated with subsurface defects depends on the sensitivity of the magneto-optic sensor. The availability of a theoretical model that can simulate the MOI system performance is extremely important for optimization of the MOI sensor and hardware system. A nodal finite element model based on magnetic vector potential formulation has been developed for simulating MOI phenomenon. This model has been used for predicting the magnetic fields in simple test geometry with corrosion dome defects. In the case of test samples with multiple discontinuities, a more robust model using the magnetic vector potential Ā and electrical scalar potential V is required. In this paper, a finite element model based on A-V formulation is developed to model complex circumferential crack under aluminum rivets in dimpled countersink.
Spicing Up Pharmacology: A Review of Synthetic Cannabinoids From Structure to Adverse Events.
Davidson, Colin; Opacka-Juffry, Jolanta; Arevalo-Martin, Angel; Garcia-Ovejero, Daniel; Molina-Holgado, Eduardo; Molina-Holgado, Francisco
2017-01-01
Recreational use of synthetic cannabinoids (SCB), a class of novel psychoactive substances is an increasing public health problem specifically in Western societies, with teenagers, young adults, and the prison population being the most affected. Some of these SCB are analogs of tetrahydrocannabinol, aminoalkylindoles, and other phytocannabinoid analogs have been detected in herbal preparations generically called "Spice." Spice, "K2" or "fake cannabis" is a general term used for variable herbal mixtures of unknown ingredients or chemical composition. SCB are highly potent CB 1 cannabinoid receptor agonists falsely marketed and sold as safe and legal drugs. Here, we present an overview of the endocannabinoid system, CB, and SCB chemical structures and activity at CB receptors. Finally, we highlight the psychological effects of SCB, particularly on learning and memory, and adverse clinical effects including on the cardiovascular system, kidneys, and CNS, including psychosis. Taken together, it is clear that many SCB are extremely dangerous and a major public health problem. © 2017 Elsevier Inc. All rights reserved.
Complete analog control of the carrier-envelope-phase of a high-power laser amplifier.
Feng, C; Hergott, J-F; Paul, P-M; Chen, X; Tcherbakoff, O; Comte, M; Gobert, O; Reduzzi, M; Calegari, F; Manzoni, C; Nisoli, M; Sansone, G
2013-10-21
In this work we demonstrate the development of a complete analog feedback loop for the control of the carrier-envelope phase (CEP) of a high-average power (20 W) laser operating at 10 kHz repetition rate. The proposed method combines a detection scheme working on a single-shot basis at the full-repetition-rate of the laser system with a fast actuator based either on an acousto-optic or on an electro-optic crystal. The feedback loop is used to correct the CEP fluctuations introduced by the amplification process demonstrating a CEP residual noise of 320 mrad measured on a single-shot basis. The comparison with a feedback loop operating at a lower sampling rate indicates an improvement up to 45% in the residual noise. The measurement of the CEP drift for different integration times clearly evidences the importance of the single-shot characterization of the residual CEP drift. The demonstrated scheme could be efficiently applied for systems approaching the 100 kHz repetition rate regime.
A Field-Based Cleaning Protocol for Sampling Devices Used in Life-Detection Studies
NASA Astrophysics Data System (ADS)
Eigenbrode, Jennifer; Benning, Liane G.; Maule, Jake; Wainwright, Norm; Steele, Andrew; Amundsen, Hans E. F.
2009-06-01
Analytical approaches to extant and extinct life detection involve molecular detection often at trace levels. Thus, removal of biological materials and other organic molecules from the surfaces of devices used for sampling is essential for ascertaining meaningful results. Organic decontamination to levels consistent with null values on life-detection instruments is particularly challenging at remote field locations where Mars analog field investigations are carried out. Here, we present a seven-step, multi-reagent decontamination method that can be applied to sampling devices while in the field. In situ lipopolysaccharide detection via low-level endotoxin assays and molecular detection via gas chromatography-mass spectrometry were used to test the effectiveness of the decontamination protocol for sampling of glacial ice with a coring device and for sampling of sediments with a rover scoop during deployment at Arctic Mars-analog sites in Svalbard, Norway. Our results indicate that the protocols and detection technique sufficiently remove and detect low levels of molecular constituents necessary for life-detection tests.
A field-based cleaning protocol for sampling devices used in life-detection studies.
Eigenbrode, Jennifer; Benning, Liane G; Maule, Jake; Wainwright, Norm; Steele, Andrew; Amundsen, Hans E F
2009-06-01
Analytical approaches to extant and extinct life detection involve molecular detection often at trace levels. Thus, removal of biological materials and other organic molecules from the surfaces of devices used for sampling is essential for ascertaining meaningful results. Organic decontamination to levels consistent with null values on life-detection instruments is particularly challenging at remote field locations where Mars analog field investigations are carried out. Here, we present a seven-step, multi-reagent decontamination method that can be applied to sampling devices while in the field. In situ lipopolysaccharide detection via low-level endotoxin assays and molecular detection via gas chromatography-mass spectrometry were used to test the effectiveness of the decontamination protocol for sampling of glacial ice with a coring device and for sampling of sediments with a rover scoop during deployment at Arctic Mars-analog sites in Svalbard, Norway. Our results indicate that the protocols and detection technique sufficiently remove and detect low levels of molecular constituents necessary for life-detection tests.
Experiments in Sound and Structural Vibrations Using an Air-Analog Model Ducted Propulsion System
2007-08-01
Department of Aerospace S~and Mechanical Engineering I 20070904056 I EXPERIMENTS IN SOUND AND STRUCTURAL VIBRATIONS USING AN AIR -ANALOG MODEL DUCTED...SOUND AND STRUCTURAL * VIBRATIONS USING AN AIR -ANALOG MODEL DUCTED PROPULSION SYSTEM FINAL TECHNICAL REPORT Prepared by: Scott C. Morris Assistant...Vibration Using Air - 5b. GRANT NUMBER Analog Model Ducted Propulsion Systems N00014-1-0522 5C. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER
Phase transitions in community detection: A solvable toy model
NASA Astrophysics Data System (ADS)
Ver Steeg, Greg; Moore, Cristopher; Galstyan, Aram; Allahverdyan, Armen
2014-05-01
Recently, it was shown that there is a phase transition in the community detection problem. This transition was first computed using the cavity method, and has been proved rigorously in the case of q = 2 groups. However, analytic calculations using the cavity method are challenging since they require us to understand probability distributions of messages. We study analogous transitions in the so-called “zero-temperature inference” model, where this distribution is supported only on the most likely messages. Furthermore, whenever several messages are equally likely, we break the tie by choosing among them with equal probability, corresponding to an infinitesimal random external field. While the resulting analysis overestimates the thresholds, it reproduces some of the qualitative features of the system. It predicts a first-order detectability transition whenever q > 2 (as opposed to q > 4 according to the finite-temperature cavity method). It also has a regime analogous to the “hard but detectable” phase, where the community structure can be recovered, but only when the initial messages are sufficiently accurate. Finally, we study a semisupervised setting where we are given the correct labels for a fraction ρ of the nodes. For q > 2, we find a regime where the accuracy jumps discontinuously at a critical value of ρ.
From Extrasolar Planets to Exo-Earths
NASA Astrophysics Data System (ADS)
Fischer, Debra
2018-06-01
The ancient Greeks debated whether the Earth was unique, or innumerable worlds existed around other Suns. Twenty five years ago, technology and human ingenuity enabled the discovery of the first extrasolar planet candidates. The architectures of these first systems, with gas giant planets in star-skirting orbits, were unexpected and again raised an echo of that ancient question: is the Earth typical or unique? We are interested in this seemingly anthropocentric question because with all of our searching and discoveries, Earth is the only place where life has been found. It is the question of whether life exists elsewhere that energizes the search for exoplanets. The trajectory of this field has been stunning. After a steady stream of detections with the radial velocity method, a burst of discovery was made possible with the NASA Kepler mission. While thousands of smaller planets have now been found, true Earth analogs have eluded robust detection. However, we are sharpening the knives of our technology and without a doubt we now stand at the threshold of detecting hundreds of Earth analogs. Using Gaia, TESS, WFIRST, JWST and new ground-based spectrographs, we will learn the names and addresses of the worlds that orbit nearby stars and we will be ready to probe their atmospheres. We will finally resolve the ancient question of whether life is unique or common.
NASA Astrophysics Data System (ADS)
Dijk, Judith; van Eekeren, Adam W. M.; Toet, Alexander; den Hollander, Richard J. M.; Schutte, Klamer; van Heijningen, Ad W. P.; Bijl, Piet
2013-04-01
For many military operations, situational awareness is of great importance. During night conditions, this situational awareness can be improved using both analog and digital image-intensified cameras. The quality of image intensifiers is a topic of interest. One of the differences between a digital and analog system is noise behavior. For digital image intensifiers, the noise behavior is not as good as for analog image intensifiers, but it can be improved using noise-reduction techniques. In this paper, the improvement using temporal noise reduction and local adaptive contrast enhancement is shown and quantitatively evaluated by subjective measurement of the conspicuity and triangle orientation discrimination (TOD). The results of the conspicuity and TOD experiments are consistent with each other. The highest improvement is found for a low-clutter environment; for medium- and high-clutter environments, the improvement is less. This can be explained by the fact that image enhancement increases contrast of all image details, irrespective of whether they are targets or clutter. For low-clutter image enhancement, target conspicuity and target detection improvement will be largest, since there are not many distracting elements.
A Multi-Epoch Timing and Spectral Study of the ULX NGC 5408 X-1 with XMM-Newton
NASA Technical Reports Server (NTRS)
Strohmayer, Tod E.; Dheeraj, Pasham R.
2012-01-01
We report results from extensive new XMM- Newton observations of the ultraluminous X-ray source (ULX) NGC 5408 X-1, one of the few ULXs to show quasi-periodic X-ray variability. We detect quasi-periodic oscillations (QPOs) in each of four new (approximately equal 100 ks each) pointings, expanding the range of frequencies and rms amplitudes observed from the source to 10-40 mHz and 10-45 %, respectively. However, similarly significant variations in the power-law photon spectral index, Gamma, are not observed. We use the results of timing and energy spectral modeling to compare with the timing and spectral correlations seen in stellar-mass systems. We find that the qualitative nature of the timing and energy spectra of NGC 5408 X-1 are very similar to stellar-mass black holes in the steep power-law state exhibiting Type-C QPOs. However, in order for this analogy to quantitatively hold we must only be seeing the so-called saturated portion of the QPO frequency - photon index (or disk flux) relation. Assuming this to be the case, we place a lower limit on the mass of NGC 5408 X-1 of approx greater than 800 Solar Mass. Alternatively, the QPO centroid frequency is largely independent of the spectral parameters, in which case a close analogy of NGC 5408 X-1's mHz QPOs with Type-C QPOs in stellar systems is problematic. Measurement of the source's timing properties over a greater range of spectral parameters (in particular the spectral index) is needed in order to definitively resolve this ambiguity. We searched all the available data for both a broad Fe emission line as well as high frequency QPO analogs (0.1 - 1 Hz), but detected neither. We place upper limits on the equivalent width of any Fe emission feature in the 6 - 7 keY band, and of the amplitude (rms) of a high frequency QPO analog of approx equal 10 eV and approx equal 4%, respectively.
ERIC Educational Resources Information Center
Vosniadou, Stella
Analogical reasoning is one mechanism that has been recognized as having the potential of bringing prior knowledge to bear on the acquisition of new information. Analogical reasoning involves the identification and transfer of structural information from a known system to a new and relatively unknown system. The productive use of analogy is often…
2008-09-12
measurement Fluxgate magnetometer 10 RS232- ASCII SerialDevice.fluxgate Provides redundant aircraft attitude measurement Acoustic altimeters 10 Analog...primarily by terrain, vegetation, and structural inhibitions to safe low-altitude flight. The magnetometer data can be analyzed to extract either...to validate the results of the magnetometer survey. ESTCP Victorville PBR WAA Final Report December 2008 Sky Research, Inc. 2 1.2. Objectives of
Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.
Stone, Scott A; Tata, Matthew S
2017-01-01
Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.
Rendering visual events as sounds: Spatial attention capture by auditory augmented reality
Tata, Matthew S.
2017-01-01
Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible. PMID:28792518
Prelinguistic Relational Concepts: Investigating Analogical Processing in Infants
ERIC Educational Resources Information Center
Ferry, Alissa L.; Hespos, Susan J.; Gentner, Dedre
2015-01-01
This research asks whether analogical processing ability is present in human infants, using the simplest and most basic relation--the "same-different" relation. Experiment 1 (N = 26) tested whether 7- and 9-month-olds spontaneously detect and generalize these relations from a single example, as previous research has suggested. The…
USDA-ARS?s Scientific Manuscript database
Structures of the mycotoxin zearalenone and its analogs were investigated using density functional theory methods to gain insight into the ground state and excited state properties related to detection. Zearalenone is an estrogenic mycotoxin that can occur in agricultural commodities, and ultraviole...
Scalable hybrid computation with spikes.
Sarpeshkar, Rahul; O'Halloran, Micah
2002-09-01
We outline a hybrid analog-digital scheme for computing with three important features that enable it to scale to systems of large complexity: First, like digital computation, which uses several one-bit precise logical units to collectively compute a precise answer to a computation, the hybrid scheme uses several moderate-precision analog units to collectively compute a precise answer to a computation. Second, frequent discrete signal restoration of the analog information prevents analog noise and offset from degrading the computation. And, third, a state machine enables complex computations to be created using a sequence of elementary computations. A natural choice for implementing this hybrid scheme is one based on spikes because spike-count codes are digital, while spike-time codes are analog. We illustrate how spikes afford easy ways to implement all three components of scalable hybrid computation. First, as an important example of distributed analog computation, we show how spikes can create a distributed modular representation of an analog number by implementing digital carry interactions between spiking analog neurons. Second, we show how signal restoration may be performed by recursive spike-count quantization of spike-time codes. And, third, we use spikes from an analog dynamical system to trigger state transitions in a digital dynamical system, which reconfigures the analog dynamical system using a binary control vector; such feedback interactions between analog and digital dynamical systems create a hybrid state machine (HSM). The HSM extends and expands the concept of a digital finite-state-machine to the hybrid domain. We present experimental data from a two-neuron HSM on a chip that implements error-correcting analog-to-digital conversion with the concurrent use of spike-time and spike-count codes. We also present experimental data from silicon circuits that implement HSM-based pattern recognition using spike-time synchrony. We outline how HSMs may be used to perform learning, vector quantization, spike pattern recognition and generation, and how they may be reconfigured.
Development report: Automatic System Test and Calibration (ASTAC) equipment
NASA Technical Reports Server (NTRS)
Thoren, R. J.
1981-01-01
A microcomputer based automatic test system was developed for the daily performance monitoring of wind energy system time domain (WEST) analyzer. The test system consists of a microprocessor based controller and hybrid interface unit which are used for inputing prescribed test signals into all WEST subsystems and for monitoring WEST responses to these signals. Performance is compared to theoretically correct performance levels calculated off line on a large general purpose digital computer. Results are displayed on a cathode ray tube or are available from a line printer. Excessive drift and/or lack of repeatability of the high speed analog sections within WEST is easily detected and the malfunctioning hardware identified using this system.
A wide-band high-resolution spectrum analyzer.
Quirk, M P; Garyantes, M F; Wilck, H C; Grimm, M J
1988-12-01
This paper describes a two-million-channel 40-MHz-bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2(21)-point, Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis and detection.
NASA Astrophysics Data System (ADS)
Xiang, Yan; Xia, Jinsong; Wu, H.; Li, H. F.
2002-04-01
Radiolabeled bioactive peptides which bind specifically to surface receptors over expressed in tumor cells are considered as alternatives for tumor detection with ECT. In this investigation, 99mTc-hydrazinonicotinyl - TNF analogs (WH701) was labeled using ethylenediaminediacetic acid (EDDA) as coligand (a number of TNF analogs had been selected and synthesized using random phage-display peptides library in our lab) and Pharmacokinetics and feasibility studies were performed.
Analog cosmological particle generation in a superconducting circuit
NASA Astrophysics Data System (ADS)
Tian, Zehua; Jing, Jiliang; Dragan, Andrzej
2017-06-01
We propose the use of a waveguidelike transmission line based on direct-current superconducting quantum interference devices (dc-SQUID) and demonstrate that the node flux in this transmission line behaves in the same way as quantum fields in an expanding (or contracting) universe. We show how to detect the analog cosmological particle generation and analyze its feasibility with current circuit quantum electrodynamics (cQED) technology. Our setup in principle paves a new way for the exploration of analog quantum gravitational effects.
Raman Lidar MERGE Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newsom, Rob; Goldsmith, John; Sivaraman, Chitra
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Raman lidars (RLs) are semi-autonomous, land-based, laser remote sensing systems that provide height- and time-resolved measurements of water vapor mixing ratio, temperature, aerosol backscatter, extinction, and linear depolarization ratio from about 200 m to greater than 10 km AGL. These systems transmit at a wavelength of 355 nm with 300 mJ, ~5 ns pulses, and a pulse repetition frequency of 30 Hz. The receiver incorporates nine detection channels, including two water vapor channels at 408 nm, two nitrogen channels at 387 nm, three elastic channels, and twomore » rotational Raman channels for temperature profiling at 354 and 353 nm. Figure 1 illustrates the layout of the ARM RL receiver system. Backscattered light from the atmosphere enters the telescope and is directed into the receiver system (i.e., aft optics). This signal is then split between a narrow-field-of-view radiometer (NFOV) path (blue) and a wide-field-of-view zenith radiometer (WFOV) path (red). The WFOV (2 mrad) path contains three channels (water vapor, nitrogen, and unpolarized elastic), and the NFOV (0.3 mrad) path contains six channels (water vapor, nitrogen, parallel and perpendicular elastic, and two rotational Raman). All nine detection channels use Electron Tubes 9954B photomultiplier tubes (PMTs). The signals from each of the nine PMTs are acquired using transient data recorders from Licel GbR (Berlin, Germany). The Licel data recorders provide simultaneous measurements of both analog photomultiplier current and photon counts at height resolution of 7.5 m and a time resolution of 10 s. The analog signal provides good linearity in the strong signal regime, but poor sensitivity at low signal levels. Conversely, the photo counting signal provides good sensitivity in the weak signal regime, but is strongly nonlinear at higher signal levels. The advantage in recording both signals is that they can be combined (or merged) into a single signal with improved dynamic range. The process of combining the analog and photon counting data has become known as “gluing” (Whiteman et al., 2006).« less
Biomimetic machine vision system.
Harman, William M; Barrett, Steven F; Wright, Cameron H G; Wilcox, Michael
2005-01-01
Real-time application of digital imaging for use in machine vision systems has proven to be prohibitive when used within control systems that employ low-power single processors without compromising the scope of vision or resolution of captured images. Development of a real-time machine analog vision system is the focus of research taking place at the University of Wyoming. This new vision system is based upon the biological vision system of the common house fly. Development of a single sensor is accomplished, representing a single facet of the fly's eye. This new sensor is then incorporated into an array of sensors capable of detecting objects and tracking motion in 2-D space. This system "preprocesses" incoming image data resulting in minimal data processing to determine the location of a target object. Due to the nature of the sensors in the array, hyperacuity is achieved thereby eliminating resolutions issues found in digital vision systems. In this paper, we will discuss the biological traits of the fly eye and the specific traits that led to the development of this machine vision system. We will also discuss the process of developing an analog based sensor that mimics the characteristics of interest in the biological vision system. This paper will conclude with a discussion of how an array of these sensors can be applied toward solving real-world machine vision issues.
Synchronous in-field application of life-detection techniques in planetary analog missions
NASA Astrophysics Data System (ADS)
Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Gentry, Diana; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Yin, Chang; Cullen, David C.; Geppert, Wolf
2015-02-01
Field expeditions that simulate the operations of robotic planetary exploration missions at analog sites on Earth can help establish best practices and are therefore a positive contribution to the planetary exploration community. There are many sites in Iceland that possess heritage as planetary exploration analog locations and whose environmental extremes make them suitable for simulating scientific sampling and robotic operations. We conducted a planetary exploration analog mission at two recent lava fields in Iceland, Fimmvörðuháls (2010) and Eldfell (1973), using a specially developed field laboratory. We tested the utility of in-field site sampling down selection and tiered analysis operational capabilities with three life detection and characterization techniques: fluorescence microscopy (FM), adenine-triphosphate (ATP) bioluminescence assay, and quantitative polymerase chain reaction (qPCR) assay. The study made use of multiple cycles of sample collection at multiple distance scales and field laboratory analysis using the synchronous life-detection techniques to heuristically develop the continuing sampling and analysis strategy during the expedition. Here we report the operational lessons learned and provide brief summaries of scientific data. The full scientific data report will follow separately. We found that rapid in-field analysis to determine subsequent sampling decisions is operationally feasible, and that the chosen life detection and characterization techniques are suitable for a terrestrial life-detection field mission. In-field analysis enables the rapid obtainment of scientific data and thus facilitates the collection of the most scientifically relevant samples within a single field expedition, without the need for sample relocation to external laboratories. The operational lessons learned in this study could be applied to future terrestrial field expeditions employing other analytical techniques and to future robotic planetary exploration missions.
NASA Astrophysics Data System (ADS)
Sidor, Kamil; Szlachta, Anna
2017-04-01
The article presents the impact of the edge detection method in the image analysis on the reading accuracy of the measured value. In order to ensure the automatic reading of the measured value by an analog meter, a standard webcam and the LabVIEW programme were applied. NI Vision Development tools were used. The Hough transform was used to detect the indicator. The programme output was compared during the application of several methods of edge detection. Those included: the Prewitt operator, the Roberts cross, the Sobel operator and the Canny edge detector. The image analysis was made for an analog meter indicator with the above-mentioned methods, and the results of that analysis were compared with each other and presented.
NASA Astrophysics Data System (ADS)
Villa, Carlos; Kumavor, Patrick; Donkor, Eric
2008-04-01
Photonics Analog-to-Digital Converters (ADCs) utilize a train of optical pulses to sample an electrical input waveform applied to an electrooptic modulator or a reverse biased photodiode. In the former, the resulting train of amplitude-modulated optical pulses is detected (converter to electrical) and quantized using a conversional electronics ADC- as at present there are no practical, cost-effective optical quantizers available with performance that rival electronic quantizers. In the latter, the electrical samples are directly quantized by the electronics ADC. In both cases however, the sampling rate is limited by the speed with which the electronics ADC can quantize the electrical samples. One way to increase the sampling rate by a factor N is by using the time-interleaved technique which consists of a parallel array of N electrical ADC converters, which have the same sampling rate but different sampling phase. Each operating at a quantization rate of fs/N where fs is the aggregated sampling rate. In a system with no real-time operation, the N channels digital outputs are stored in memory, and then aggregated (multiplexed) to obtain the digital representation of the analog input waveform. Alternatively, for real-time operation systems the reduction of storing time in the multiplexing process is desired to improve the time response of the ADC. The complete elimination of memories come expenses of concurrent timing and synchronization in the aggregation of the digital signal that became critical for a good digital representation of the analog signal waveform. In this paper we propose and demonstrate a novel optically synchronized encoder and multiplexer scheme for interleaved photonics ADCs that utilize the N optical signals used to sample different phases of an analog input signal to synchronize the multiplexing of the resulting N digital output channels in a single digital output port. As a proof of concept, four 320 Megasamples/sec 12-bit of resolution digital signals were multiplexed to form an aggregated 1.28 Gigasamples/sec single digital output signal.
New Exozodi and Asteroid Belt Analogs using WISE
NASA Astrophysics Data System (ADS)
Patel, Rahul; Metchev, Stanimir; Heinze, Aren
2015-01-01
The presence of circumstellar dust in the terrestrial planet zone and asteroid belt regions of stars can be ascertained from the excess flux from main sequence stars in the mid-infrared wavelengths. Finding dust in these regions is significant as it traces material related to terrestrial planet formation. The WISE All-Sky survey presents an opportunity to extend the population of faint disks to flux levels 100x fainter than disks detected by IRAS.We use the WISE All-Sky Survey data to detect circumstellar debris disks at the 12 and 22 μm bandpasses (W3 and W4, respectively). We present the detection of a sample of over 214 exozodi and asteroid belt analog candidates, 45% of which are brand new detections at confidence levels >99.5%. This was done by cross-matching Hipparcos main-sequence stars with the WISE All-Sky Data Release for stars within 75 pc and outside the galactic plane (|b|>5 deg) and then seeking color excesses at W3 and W4. In addition to applying the standard WISE photometric flags and filters to remove contaminants from our sample, we also improved our selection techniques by correcting for previously unknown systematic behavior in the WISE photometry, thereby including bright saturated stars into our sample. Our debris disk candidates are reliable detections as well as unprecedentedly faint, due in large part to these improved selection techniques. These new nearby excess hosts are optimal targets for direct imaging campaigns to characterize the disk morphology and to provide a larger sample of well characterized disks with which to understand the overall exoplanetary system architecture.
Stankiewicz-Kranc, Anna; Miltyk, Wojciech; Skrzydlewska, Elzbieta
2010-01-01
The high toxicity and low selectivity of carmustine restrict its application in anticancer therapy. Therefore, proline analogs of nitrosourea have been synthesized to obtain compounds whose action on neoplastic cells is characterized by higher selectivity. The present studies have aimed at examining the influence of carmustine and a new proline analog of nitrosourea on the redox system of fibroblasts and breast cancer cells (MCF-7). Carmustine and the proline analog of nitrosourea caused an increase in hydrogen peroxide concentration both in fibroblasts and MCF-7 cells. Moreover, administration of carmustine and the new analog of nitrosourea caused a decrease in the activity of antioxidant enzymes. Observed changes in the antioxidant system correlated with an increase in concentration of dityrosine, as well as a decrease in tryptophan concentration. Changes in the antioxidant system were also accompanied by intensification of the lipid peroxidation process. In conclusion, carmustine and proline analog of nitrosourea produce similar changes in the antioxidant system in normal and cancer cells and are responsible for oxidative stress.
Toward "Constructing" the Concept of Statistical Power: An Optical Analogy.
ERIC Educational Resources Information Center
Rogers, Bruce G.
This paper presents a visual analogy that may be used by instructors to teach the concept of statistical power in statistical courses. Statistical power is mathematically defined as the probability of rejecting a null hypothesis when that null is false, or, equivalently, the probability of detecting a relationship when it exists. The analogy…
Click Chemistry for Analysis of Cell Proliferation in Flow Cytometry.
Clarke, Scott T; Calderon, Veronica; Bradford, Jolene A
2017-10-02
The measurement of cellular proliferation is fundamental to the assessment of cellular health, genotoxicity, and the evaluation of drug efficacy. Labeling, detection, and quantification of cells in the synthesis phase of cell cycle progression are not only important for characterizing basic biology, but also in defining cellular responses to drug treatments. Changes in DNA replication during S-phase can provide valuable insights into mechanisms of cell growth, cell cycle kinetics, and cytotoxicity. A common method for detection of cell proliferation is the incorporation of a thymidine analog during DNA synthesis. This chapter presents a pulse labeling method using the thymidine analog, 5-ethynyl-2'-deoxyuridine (EdU), with subsequent detection by click chemistry. EdU detection using click chemistry is bio-orthogonal to most living systems and does not non-specifically label other biomolecules. Live cells are first pulsed with EdU. After antibody labeling cell surface markers, fixation, and permeabilization, the incorporated EdU is covalently labeled using click chemistry thereby identifying proliferating cells. Improvements in click chemistry allow for labeling in the presence of fluorescent proteins and phycobiliproteins without quenching due to copper. Measuring DNA replication during cell cycle progression has cell health applications in flow cytometry, fluorescence microscopy, and high content imaging. This protocol has been developed and optimized for research use only and is not suitable for use in diagnostic procedures. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Integrated Circuit Design of 3 Electrode Sensing System Using Two-Stage Operational Amplifier
NASA Astrophysics Data System (ADS)
Rani, S.; Abdullah, W. F. H.; Zain, Z. M.; N, Aqmar N. Z.
2018-03-01
This paper presents the design of a two-stage operational amplifier(op amp) for 3-electrode sensing system readout circuits. The designs have been simulated using 0.13μm CMOS technology from Silterra (Malaysia) with Mentor graphics tools. The purpose of this projects is mainly to design a miniature interfacing circuit to detect the redox reaction in the form of current using standard analog modules. The potentiostat consists of several op amps combined together in order to analyse the signal coming from the 3-electrode sensing system. This op amp design will be used in potentiostat circuit device and to analyse the functionality for each module of the system.
Wessendorf, Kurt O.; Kemper, Dale A.
2003-06-03
A very low power analog pulse processing system implemented as an ASIC useful for processing signals from radiation detectors, among other things. The system incorporates the functions of a charge sensitive amplifier, a shaping amplifier, a peak sample and hold circuit, and, optionally, an analog to digital converter and associated drivers.
Analog Techniques in CEBAF's RF Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovater, J.; Fugitt, Jock
1988-01-01
Recent developments in high-speed analog technology have progressed into the areas of traditional RF technology.Diode-related devices are being replaced by analog IC's in the CEBAF RF control system.Complex phase modulators and attenuators have been successfully tested at 70 MHz.They have three advantages over existing technology: lower cost, less temperature sensitivity, and more linearity.RF signal conditioning components and how to implement the new analog IC's will be covered in this paper.
Patel, Aniruddh D; Foxton, Jessica M; Griffiths, Timothy D
2005-12-01
Musically tone-deaf individuals have psychophysical deficits in detecting pitch changes, yet their discrimination of intonation contours in speech appears to be normal. One hypothesis for this dissociation is that intonation contours use coarse pitch contrasts which exceed the pitch-change detection thresholds of tone-deaf individuals (). We test this idea by presenting intonation contours for discrimination, both in the context of the original sentences in which they occur and in a "pure" form dissociated from any phonetic context. The pure form consists of gliding-pitch analogs of the original intonation contours which exactly follow their pattern of pitch and timing. If the spared intonation perception of tone-deaf individuals is due to the coarse pitch contrasts of intonation, then such individuals should discriminate the original sentences and the gliding-pitch analogs equally well. In contrast, we find that discrimination of the gliding-pitch analogs is severely degraded. Thus it appears that the dissociation between spoken and musical pitch perception in tone-deaf individuals is due to a deficit at a higher level than simple pitch-change detection.
Lee, Youngbum; Kim, Jinkwon; Son, Muntak; Lee, Myoungho
2007-01-01
This research implements wireless accelerometer sensor module and algorithm to determine wearer's posture, activity and fall. Wireless accelerometer sensor module uses ADXL202, 2-axis accelerometer sensor (Analog Device). And using wireless RF module, this module measures accelerometer signal and shows the signal at ;Acceloger' viewer program in PC. ADL algorithm determines posture, activity and fall that activity is determined by AC component of accelerometer signal and posture is determined by DC component of accelerometer signal. Those activity and posture include standing, sitting, lying, walking, running, etc. By the experiment for 30 subjects, the performance of implemented algorithm was assessed, and detection rate for postures, motions and subjects was calculated. Lastly, using wireless sensor network in experimental space, subject's postures, motions and fall monitoring system was implemented. By the simulation experiment for 30 subjects, 4 kinds of activity, 3 times, fall detection rate was calculated. In conclusion, this system can be application to patients and elders for activity monitoring and fall detection and also sports athletes' exercise measurement and pattern analysis. And it can be expected to common person's exercise training and just plaything for entertainment.
Clinical decision making using teleradiology in urology.
Lee, B R; Allaf, M; Moore, R; Bohlman, M; Wang, G M; Bishoff, J T; Jackman, S V; Cadeddu, J A; Jarrett, T W; Khazan, R; Kavoussi, L R
1999-01-01
Using a personal computer-based teleradiology system, we compared accuracy, confidence, and diagnostic ability in the interpretation of digitized radiographs to determine if teleradiology-imported studies convey sufficient information to make relevant clinical decisions involving urology. Variables of diagnostic accuracy, confidence, image quality, interpretation, and the impact of clinical decisions made after viewing digitized radiographs were compared with those of original radiographs. We evaluated 956 radiographs that included 94 IV pyelograms, four voiding cystourethrograms, and two nephrostograms. The radiographs were digitized and transferred over an Ethernet network to a remote personal computer-based viewing station. The digitized images were viewed by urologists and graded according to confidence in making a diagnosis, image quality, diagnostic difficulty, clinical management based on the image itself, and brief patient history. The hard-copy radiographs were then interpreted immediately afterward, and diagnostic decisions were reassessed. All analog radiographs were reviewed by an attending radiologist. Ninety-seven percent of the decisions made from the digitized radiographs did not change after reviewing conventional radiographs of the same case. When comparing the variables of clinical confidence, quality of the film on the teleradiology system versus analog films, and diagnostic difficulty, we found no statistical difference (p > .05) between the two techniques. Overall accuracy in interpreting the digitized images on the teleradiology system was 88% by urologists compared with that of the attending radiologist's interpretation of the analog radiographs. However, urologists detected findings on five (5%) analog radiographs that had been previously unreported by the radiologist. Viewing radiographs transmitted to a personal computer-based viewing station is an appropriate means of reviewing films with sufficient quality on which to base clinical decisions. Our focus was whether decisions made after viewing the transmitted radiographs would change after viewing the hard-copy images of the same case. In 97% of the cases, the decision did not change. In those cases in which management was altered, recommendation of further imaging studies was the most common factor.
Wang, Tiantian; Kim, Sanghyo; An, Jeong Ho
2017-02-01
Loop-mediated isothermal amplification (LAMP) is considered as one of the alternatives to the conventional PCR and it is an inexpensive portable diagnostic system with minimal power consumption. The present work describes the application of LAMP in real-time photon detection and quantitative analysis of nucleic acids integrated with a disposable complementary-metal-oxide semiconductor (CMOS) image sensor. This novel system works as an amplification-coupled detection platform, relying on a CMOS image sensor, with the aid of a computerized circuitry controller for the temperature and light sources. The CMOS image sensor captures the light which is passing through the sensor surface and converts into digital units using an analog-to-digital converter (ADC). This new system monitors the real-time photon variation, caused by the color changes during amplification. Escherichia coli O157 was used as a proof-of-concept target for quantitative analysis, and compared with the results for Staphylococcus aureus and Salmonella enterica to confirm the efficiency of the system. The system detected various DNA concentrations of E. coli O157 in a short time (45min), with a detection limit of 10fg/μL. The low-cost, simple, and compact design, with low power consumption, represents a significant advance in the development of a portable, sensitive, user-friendly, real-time, and quantitative analytic tools for point-of-care diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Structure-property study of the Raman spectroscopy detection of fusaric acid and analogs
USDA-ARS?s Scientific Manuscript database
Food security can benefit from the development of selective methods to detect toxins. Fusaric acid is a mycotoxin produced by certain fungi occasionally found in agricultural commodities. Raman spectroscopy allows selective detection of analytes associated with certain spectral characteristics relat...
New coherent laser communication detection scheme based on channel-switching method.
Liu, Fuchuan; Sun, Jianfeng; Ma, Xiaoping; Hou, Peipei; Cai, Guangyu; Sun, Zhiwei; Lu, Zhiyong; Liu, Liren
2015-04-01
A new coherent laser communication detection scheme based on the channel-switching method is proposed. The detection front end of this scheme comprises a 90° optical hybrid and two balanced photodetectors which outputs the in-phase (I) channel and quadrature-phase (Q) channel signal current, respectively. With this method, the ultrahigh speed analog/digital transform of the signal of the I or Q channel is not required. The phase error between the signal and local lasers is obtained by simple analog circuit. Using the phase error signal, the signals of the I/Q channel are switched alternately. The principle of this detection scheme is presented. Moreover, the comparison of the sensitivity of this scheme with that of homodyne detection with an optical phase-locked loop is discussed. An experimental setup was constructed to verify the proposed detection scheme. The offline processing procedure and results are presented. This scheme could be realized through simple structure and has potential applications in cost-effective high-speed laser communication.
Coherent detection and digital signal processing for fiber optic communications
NASA Astrophysics Data System (ADS)
Ip, Ezra
The drive towards higher spectral efficiency in optical fiber systems has generated renewed interest in coherent detection. We review different detection methods, including noncoherent, differentially coherent, and coherent detection, as well as hybrid detection methods. We compare the modulation methods that are enabled and their respective performances in a linear regime. An important system parameter is the number of degrees of freedom (DOF) utilized in transmission. Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency as it uses all four available DOF contained in the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Software based receivers benefit from the robustness of DSP, flexibility in design, and ease of adaptation to time-varying channels. Linear impairments, including chromatic dispersion (CD) and polarization-mode dispersion (PMD), can be compensated quasi-exactly using finite impulse response filters. In practical systems, sampling the received signal at 3/2 times the symbol rate is sufficient to enable an arbitrary amount of CD and PMD to be compensated for a sufficiently long equalizer whose tap length scales linearly with transmission distance. Depending on the transmitted constellation and the target bit error rate, the analog-to-digital converter (ADC) should have around 5 to 6 bits of resolution. Digital coherent receivers are naturally suited for the implementation of feedforward carrier recovery, which has superior linewidth tolerance than phase-locked loops, and does not suffer from feedback delay constraints. Differential bit encoding can be used to prevent catastrophic receiver failure due to cycle slips. In systems where nonlinear effects are concentrated mostly at fiber locations with small accumulated dispersion, nonlinear phase de-rotation is a low-complexity algorithm that can partially mitigate nonlinear effects. For systems with arbitrary dispersion maps, however, backpropagation is the only universal technique that can jointly compensate dispersion and fiber nonlinearity. Backpropagation requires solving the nonlinear Schrodinger equation at the receiver, and has high computational cost. Backpropagation is most effective when dispersion compensation fibers are removed, and when signal processing is performed at three times oversampling. Backpropagation can improve system performance and increase transmission distance. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gb/s should become practical in the near future.
Instrumentation System Diagnoses a Thermocouple
NASA Technical Reports Server (NTRS)
Perotti, Jose; Santiago, Josephine; Mata, Carlos; Vokrot, Peter; Zavala, Carlos; Burns, Bradley
2008-01-01
An improved self-validating thermocouple (SVT) instrumentation system not only acquires readings from a thermocouple but is also capable of detecting deterioration and a variety of discrete faults in the thermocouple and its lead wires. Prime examples of detectable discrete faults and deterioration include open- and short-circuit conditions and debonding of the thermocouple junction from the object, the temperature of which one seeks to measure. Debonding is the most common cause of errors in thermocouple measurements, but most prior SVT instrumentation systems have not been capable of detecting debonding. The improved SVT instrumentation system includes power circuitry, a cold-junction compensator, signal-conditioning circuitry, pulse-width-modulation (PWM) thermocouple-excitation circuitry, an analog-to-digital converter (ADC), a digital data processor, and a universal serial bus (USB) interface. The system can operate in any of the following three modes: temperature measurement, thermocouple validation, and bonding/debonding detection. The software running in the processor includes components that implement statistical algorithms to evaluate the state of the thermocouple and the instrumentation system. When the power is first turned on, the user can elect to start a diagnosis/ monitoring sequence, in which the PWM is used to estimate the characteristic times corresponding to the correct configuration. The user also has the option of using previous diagnostic values, which are stored in an electrically erasable, programmable read-only memory so that they are available every time the power is turned on.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at
2013-02-20
Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery ofmore » {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.« less
NASA Astrophysics Data System (ADS)
Liu, Na; Ju, Cheng
2018-02-01
Nyquist-SCM signal after fiber transmission, direct detection (DD), and analog down-conversion suffers from linear ISI, nonlinear ISI, and I/Q imbalance, simultaneously. Theoretical analysis based on widely linear (WL) and Volterra series is given to explain the relationship and interaction of these three interferences. A blind equalization algorithm, cascaded WL and Volterra equalizer, is designed to mitigate these three interferences. Furthermore, the feasibility of the proposed cascaded algorithm is experimentally demonstrated based on a 40-Gbps data rate 16-quadrature amplitude modulation (QAM) virtual single sideband (VSSB) Nyquist-SCM DD system over 100-km standard single mode fiber (SSMF) transmission. In addition, the performances of conventional strictly linear equalizer, WL equalizer, Volterra equalizer, and cascaded WL and Volterra equalizer are experimentally evaluated, respectively.
Mutagen Synergy: Hypermutability Generated by Specific Pairs of Base Analogs
Ang, Jocelyn; Song, Lisa Yun; D'Souza, Sara; Hong, Irene L.; Luhar, Rohan; Yung, Madeline
2016-01-01
ABSTRACT We tested pairwise combinations of classical base analog mutagens in Escherichia coli to study possible mutagen synergies. We examined the cytidine analogs zebularine (ZEB) and 5-azacytidine (5AZ), the adenine analog 2-aminopurine (2AP), and the uridine/thymidine analog 5-bromodeoxyuridine (5BrdU). We detected a striking synergy with the 2AP plus ZEB combination, resulting in hypermutability, a 35-fold increase in mutation frequency (to 53,000 × 10−8) in the rpoB gene over that with either mutagen alone. A weak synergy was also detected with 2AP plus 5AZ and with 5BrdU plus ZEB. The pairing of 2AP and 5BrdU resulted in suppression, lowering the mutation frequency of 5BrdU alone by 6.5-fold. Sequencing the mutations from the 2AP plus ZEB combination showed the predominance of two new hot spots for A·T→G·C transitions that are not well represented in either single mutagen spectrum, and one of which is not found even in the spectrum of a mismatch repair-deficient strain. The strong synergy between 2AP and ZEB could be explained by changes in the dinucleoside triphosphate (dNTP) pools. IMPORTANCE Although mutagens have been widely studied, the mutagenic effects of combinations of mutagens have not been fully researched. Here, we show that certain pairwise combinations of base analog mutagens display synergy or suppression. In particular, the combination of 2-aminopurine and zebularine, analogs of adenine and cytidine, respectively, shows a 35-fold increased mutation frequency compared with that of either mutagen alone. Understanding the mechanism of synergy can lead to increased understanding of mutagenic processes. As combinations of base analogs are used in certain chemotherapy regimens, including those involving ZEB and 5AZ, these results indicate that testing the mutagenicity of all drug combinations is prudent. PMID:27457718
NASA Technical Reports Server (NTRS)
Allen, C. C.; Wainwright, N. R.; Grasby, S. E.; Harvey, R. P.
2003-01-01
The current Martian surface environment is extremely hostile to any known form of life. The combination of subfreezing temperature, low atmospheric pressure and high ultraviolet flux, combined with desiccated and possibly oxidizing soil, could destroy even the hardiest microorganisms. The Viking biology experiments are generally interpreted to indicate that the surface of Mars is currently devoid of life and organic molecules at the part-per-billion level. Speculation on the possibility of extant or preserved microbial life on Mars thus centers on refuges in some manner protected from the current surface environment, either in space or time. Terrestrial analogs include hydrothermal systems, lakes, caves and subsurface aquifers as well as more clement conditions in the distant past. We are examining the evidence for microbiology in Earth's glaciated polar regions as analogs to the polar caps of Mars. This research concerns the detection of microorganisms or their preserved remains at the surface and within polar glacial ice.
Real-time Fourier transformation of lightwave spectra and application in optical reflectometry.
Malacarne, Antonio; Park, Yongwoo; Li, Ming; LaRochelle, Sophie; Azaña, José
2015-12-14
We propose and experimentally demonstrate a fiber-optics scheme for real-time analog Fourier transform (FT) of a lightwave energy spectrum, such that the output signal maps the FT of the spectrum of interest along the time axis. This scheme avoids the need for analog-to-digital conversion and subsequent digital signal post-processing of the photo-detected spectrum, thus being capable of providing the desired FT processing directly in the optical domain at megahertz update rates. The proposed concept is particularly attractive for applications requiring FT analysis of optical spectra, such as in many optical Fourier-domain reflectrometry (OFDR), interferometry, spectroscopy and sensing systems. Examples are reported to illustrate the use of the method for real-time OFDR, where the target axial-line profile is directly observed in a single-shot oscilloscope trace, similarly to a time-of-flight measurement, but with a resolution and depth of range dictated by the underlying interferometry scheme.
Photon-Number-Resolving Transition-Edge Sensors for the Metrology of Quantum Light Sources
NASA Astrophysics Data System (ADS)
Schmidt, M.; von Helversen, M.; López, M.; Gericke, F.; Schlottmann, E.; Heindel, T.; Kück, S.; Reitzenstein, S.; Beyer, J.
2018-05-01
Low-temperature photon-number-resolving detectors allow for direct access to the photon number distribution of quantum light sources and can thus be exploited to explore the photon statistics, e.g., solid-state-based non-classical light sources. In this work, we report on the setup and calibration of a detection system based on fiber-coupled tungsten transition-edge sensors (W-TESs). Our stand-alone system comprises two W-TESs, read out by two 2-stage-SQUID current sensors, operated in a compact detector unit that is integrated in an adiabatic demagnetization refrigerator. Fast low-noise analog amplifiers and digitizers are used for signal acquisition. The detection efficiency of the single-mode fiber-coupled detector system in the spectral region of interest (850-950 nm) is determined to be larger than 87 %. The presented detector system opens up new routes in the characterization of quantum light sources for quantum information, quantum-enhanced sensing and quantum metrology.
Dynamical inference: where phase synchronization and generalized synchronization meet.
Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta
2014-06-01
Synchronization is a widespread phenomenon that occurs among interacting oscillatory systems. It facilitates their temporal coordination and can lead to the emergence of spontaneous order. The detection of synchronization from the time series of such systems is of great importance for the understanding and prediction of their dynamics, and several methods for doing so have been introduced. However, the common case where the interacting systems have time-variable characteristic frequencies and coupling parameters, and may also be subject to continuous external perturbation and noise, still presents a major challenge. Here we apply recent developments in dynamical Bayesian inference to tackle these problems. In particular, we discuss how to detect phase slips and the existence of deterministic coupling from measured data, and we unify the concepts of phase synchronization and general synchronization. Starting from phase or state observables, we present methods for the detection of both phase and generalized synchronization. The consistency and equivalence of phase and generalized synchronization are further demonstrated, by the analysis of time series from analog electronic simulations of coupled nonautonomous van der Pol oscillators. We demonstrate that the detection methods work equally well on numerically simulated chaotic systems. In all the cases considered, we show that dynamical Bayesian inference can clearly identify noise-induced phase slips and distinguish coherence from intrinsic coupling-induced synchronization.
NASA Technical Reports Server (NTRS)
1985-01-01
The primary objective of the Test Active Control Technology (ACT) System laboratory tests was to verify and validate the system concept, hardware, and software. The initial lab tests were open loop hardware tests of the Test ACT System as designed and built. During the course of the testing, minor problems were uncovered and corrected. Major software tests were run. The initial software testing was also open loop. These tests examined pitch control laws, wing load alleviation, signal selection/fault detection (SSFD), and output management. The Test ACT System was modified to interface with the direct drive valve (DDV) modules. The initial testing identified problem areas with DDV nonlinearities, valve friction induced limit cycling, DDV control loop instability, and channel command mismatch. The other DDV issue investigated was the ability to detect and isolate failures. Some simple schemes for failure detection were tested but were not completely satisfactory. The Test ACT System architecture continues to appear promising for ACT/FBW applications in systems that must be immune to worst case generic digital faults, and be able to tolerate two sequential nongeneric faults with no reduction in performance. The challenge in such an implementation would be to keep the analog element sufficiently simple to achieve the necessary reliability.
Advanced Detector and Waveform Digitizer for Water Vapor DIAL Systems
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.
1998-01-01
Measurement of atmospheric water vapor has become a major requirement for understanding moist-air processes. Differential absorption lidar (DIAL) is a technique best suited for the measurement of atmospheric water vapor. NASA Langley Research Center is continually developing improved DIAL systems. One aspect of current development is focused on the enhancement of a DIAL receiver by applying state-of-the-art technology in building a new compact detection system that will be placed directly on the DIAL receiver telescope. The newly developed detection system has the capability of being digitally interfaced with a simple personal computer, using a discrete input/output interface. This has the potential of transmitting digital data over relatively long distances instead of analog signals, which greatly reduces measurement noise. In this paper, we discuss some results from the new compact water vapor DIAL detection system which includes a silicon based avalanche photodiode (APD) detector, a 14-bit, 10-MHz waveform digitizer, a microcontroller and other auxiliary electronics. All of which are contained on a small printed-circuit-board. This will significantly reduce the weight and volume over the current CAMAC system and eventually will be used in a water vapor DIAL system on an unpiloted atmospheric vehicle (UAV) aircraft, or alternatively on an orbiting spacecraft.
On the impact of approximate computation in an analog DeSTIN architecture.
Young, Steven; Lu, Junjie; Holleman, Jeremy; Arel, Itamar
2014-05-01
Deep machine learning (DML) holds the potential to revolutionize machine learning by automating rich feature extraction, which has become the primary bottleneck of human engineering in pattern recognition systems. However, the heavy computational burden renders DML systems implemented on conventional digital processors impractical for large-scale problems. The highly parallel computations required to implement large-scale deep learning systems are well suited to custom hardware. Analog computation has demonstrated power efficiency advantages of multiple orders of magnitude relative to digital systems while performing nonideal computations. In this paper, we investigate typical error sources introduced by analog computational elements and their impact on system-level performance in DeSTIN--a compositional deep learning architecture. These inaccuracies are evaluated on a pattern classification benchmark, clearly demonstrating the robustness of the underlying algorithm to the errors introduced by analog computational elements. A clear understanding of the impacts of nonideal computations is necessary to fully exploit the efficiency of analog circuits.
Cosand, W L; Merrifield, R B
1977-01-01
The importance of arginine residues 13 and 14 in the bee venom neurotoxin, apamin, was teste by the synthesis of replacement analogs. [13,14-di-Ndelta-trifluoroacetylornithine]Apamin was synthesized by the solid phase method on a benzhydrylamine resin. It was deprotected to [13,14-diornithine]apamin, which was then guanidinated to produce the 4-homoarginine-13,14-diarginine analog, [Har4]apamin. Neither the trifluoroacetylornithine analog nor the ornithine analog produced any detectable symptoms when injected intravenously into mice. However, the synthetic [Har4]apamin exhibited the full neurotoxic activity of native apamin and of [Har4]apamin derived from the natural toxin. This provided an internal structural control for the correctness of the primary structure of the inactive synthetic analogs and strengthened the conclusion that one, or both, of the arginine residues plays an important role in the action of apamin. Images PMID:268626
Hybrid tracking and control system for computer-aided retinal surgery
NASA Astrophysics Data System (ADS)
Ferguson, R. D.; Wright, Cameron H. G.; Rylander, Henry G., III; Welch, Ashley J.; Barrett, Steven F.
1996-05-01
We describe initial experimental results of a new hybrid digital and analog design for retinal tracking and laser beam control. Initial results demonstrate tracking rates which exceed the equivalent of 50 degrees per second in the eye, with automatic lesion pattern creation and robust loss of lock detection. Robotically assisted laser surgery to treat conditions such as diabetic retinopathy, macular degeneration, and retinal tears can now be realized under clinical conditions with requisite safety using standard video hardware and inexpensive optical components.
Postapocalypse stratigraphy: Some considerations and proposals
NASA Astrophysics Data System (ADS)
Prosh, E. C.; McCracken, A. D.
1985-01-01
An imminent nuclear apocalypse will be a geologically significant event characterized by widespread extinction and marked by a highly radioactive lower boundary layer. The concept of a fallout-enriched Cenozoic/postapocalypse boundary layer is significant in that such a horizon would constitute an ideal, global isochron that is both readily detectable and correlatable; the only other systemic boundary that appears to be analogous is the Cretaceous/Tertiary boundary. New terminology consistent with the established stratigraphic nomenclature is herein proposed for the major anticipated postapocalypse geochronologic units.
Electrical detection of liquid lithium leaks from pipe joints.
Schwartz, J A; Jaworski, M A; Mehl, J; Kaita, R; Mozulay, R
2014-11-01
A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.
Single photon detection and timing in the Lunar Laser Ranging Experiment.
NASA Technical Reports Server (NTRS)
Poultney, S. K.
1972-01-01
The goals of the Lunar Laser Ranging Experiment lead to the need for the measurement of a 2.5 sec time interval to an accuracy of a nanosecond or better. The systems analysis which included practical retroreflector arrays, available laser systems, and large telescopes led to the necessity of single photon detection. Operation under all background illumination conditions required auxiliary range gates and extremely narrow spectral and spatial filters in addition to the effective gate provided by the time resolution. Nanosecond timing precision at relatively high detection efficiency was obtained using the RCA C31000F photomultiplier and Ortec 270 constant fraction of pulse-height timing discriminator. The timing accuracy over the 2.5 sec interval was obtained using a digital interval with analog vernier ends. Both precision and accuracy are currently checked internally using a triggerable, nanosecond light pulser. Future measurements using sub-nanosecond laser pulses will be limited by the time resolution of single photon detectors.
NASA Astrophysics Data System (ADS)
White, Travis L.; Miller, William H.
1999-02-01
Researchers at the University of Missouri - Columbia have developed a three-crystal phoswich detector coupled to a digital pulse shape discrimination system for use in alpha/beta/gamma spectroscopy. Phoswich detectors use a sandwich of scintillators viewed by a single photomultiplier tube to simultaneously detect multiple types of radiation. Separation of radiation types is based upon pulse shape difference among the phosphors, which has historically been performed with analog circuitry. The system uses a GaGe CompuScope 1012, 12 bit, 10 MHz computer-based oscilloscope that digitally captures the pulses from a phoswich detector and subsequently performs pulse shape discrimination with cross-correlation analysis. The detector, based partially on previous phoswich designs by Usuda et al., uses a 10 mg/cm 2 thick layer of ZnS(Ag) for alpha detection, followed by a 0.254 cm CaF 2(Eu) crystal for beta detection, all backed by a 2.54 cm NaI(Tl) crystal for gamma detection. Individual energy spectra and count rate information for all three radiation types are displayed and updated periodically. The system shows excellent charged particle discrimination with an accuracy of greater than 99%. Future development will include a large area beta probe with gamma-ray discrimination, systems for low-energy photon detection (e.g. Bremsstrahlung or keV-range photon emissions), and other health physics instrumentation.
QRS peak detection for heart rate monitoring on Android smartphone
NASA Astrophysics Data System (ADS)
Pambudi Utomo, Trio; Nuryani, Nuryani; Darmanto
2017-11-01
In this study, Android smartphone is used for heart rate monitoring and displaying electrocardiogram (ECG) graph. Heart rate determination is based on QRS peak detection. Two methods are studied to detect the QRS complex peak; they are Peak Threshold and Peak Filter. The acquisition of ECG data is utilized by AD8232 module from Analog Devices, three electrodes, and Microcontroller Arduino UNO R3. To record the ECG data from a patient, three electrodes are attached to particular body’s surface of a patient. Patient’s heart activity which is recorded by AD8232 module is decoded by Arduino UNO R3 into analog data. Then, the analog data is converted into a voltage value (mV) and is processed to get the QRS complex peak. Heart rate value is calculated by Microcontroller Arduino UNO R3 uses the QRS complex peak. Voltage, heart rate, and the QRS complex peak are sent to Android smartphone by Bluetooth HC-05. ECG data is displayed as the graph by Android smartphone. To evaluate the performance of QRS complex peak detection method, three parameters are used; they are positive predictive, accuracy and sensitivity. Positive predictive, accuracy, and sensitivity of Peak Threshold method is 92.39%, 70.30%, 74.62% and for Peak Filter method are 98.38%, 82.47%, 83.61%, respectively.
Demonstration of Detection and Ranging Using Solvable Chaos
NASA Technical Reports Server (NTRS)
Corron, Ned J.; Stahl, Mark T.; Blakely, Jonathan N.
2013-01-01
Acoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. The chaotic waveform generated by this hybrid system is used as the transmitted waveform. The oscillator admits an exact analytic solution that can be written as the linear convolution of binary symbols and a single basis function. This linear representation enables coherent reception using a simple analog matched filter and without need for digital sampling or signal processing. An audio frequency implementation of the transmitter and receiver is described. Successful acoustic ranging measurements are presented to demonstrate the viability of the approach.
Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D
2014-05-20
Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies. Copyright © 2014 Elsevier B.V. All rights reserved.
Design of portable electrocardiogram device using DSO138
NASA Astrophysics Data System (ADS)
Abuzairi, Tomy; Matondang, Josef Stevanus; Purnamaningsih, Retno Wigajatri; Basari, Ratnasari, Anita
2018-02-01
Cardiovascular disease has been one of the leading causes of sudden cardiac deaths in many countries, covering Indonesia. Electrocardiogram (ECG) is a medical test to detect cardiac abnormalities by measuring the electrical activity generated by the heart, as the heart contracts. By using ECG, we can observe anomaly at the time of heart abnormalities. In this paper, design of portable ECG device is presented. The portable ECG device was designed to easily use in the village clinic or houses, due to the small size device and other benefits. The device was designed by using four units: (1) ECG electrode; (2) ECG analog front-end; (3) DSO138; and (4) battery. To create a simple electrode system in the portable ECG, 1-lead ECG with two electrodes were applied. The analog front-end circuitry consists of three integrated circuits, an instrumentation amplifier AD820AN, a low noise operational amplifier OPA134, and a low offset operational amplifier TL082. Digital ECG data were transformed to graphical data on DSO138. The results show that the portable ECG is successfully read the signal from 1-lead ECG system.
The Young Solar Analogs Project
NASA Astrophysics Data System (ADS)
Gray, Richard O.; Saken, J. M.; Corbally, C. J.; Seeds, M. F.; Morrison, S. S.
2012-01-01
We are carrying out a long-term project of measuring chromospheric activity and brightness variations in 31 young solar analogs (YSAs) using the Dark Sky Observatory (DSO -- Appalachian State University) 32-inch telescope and the G/M spectrograph. These YSAs are solar-type (spectral types F8 - K2) stars with ages ranging from 0.3 - 1.5 Gyr. The goal of this project is to gain better understanding of the magnetic activity of the early Sun, and especially how that activity may have impacted the development of life on the Earth. This project will also yield insights into the space environments experienced by young Earth analogs. We are currently in our 5th year of obtaining Ca II K & H chromospheric flux measurements, and are beginning to see signs of long-term activity cycles in a number of our stars. In addition, rotational modulation of the chromospheric fluxes is detectable in our data, and we have determined rotational periods for many of our stars. Short timescale increases in the K & H fluxes have been observed in a number of our stars; these events may be related to stellar flares. VATTSpec, a new moderate-resolution spectrograph on the 1.8-m Vatican Telescope in Arizona, has recently become involved with the project. This spectrograph will increase our ability to detect short-term changes in stellar activity on timescales of hours to minutes. We have been monitoring the program stars for one year in a multi-band photometric system consisting of Stromgren-v, and Johnson B, V, and R filters. We will soon add a narrow-band H-alpha filter to the system. Photometry is being carried out with a small piggy-back telescope on the 32-inch, but a robotic photometric telescope is currently being installed at DSO for this purpose. This project is supported by the National Science Foundation.
What Would Physical Educators Know about Movement Education? A Review of Literature, 2006-2016
ERIC Educational Resources Information Center
Barker, Dean; Bergentoft, Heléne; Nyberg, Gunn
2017-01-01
This review article identifies the conceptual underpinnings of current movement research in physical education. Using a hermeneutic approach, four analogies for movement education are identified: the "motor program analogy", the "neurobiological systems analogy", the "instinctive movement analogy", and the…
Real-time quantitative fluorescence measurement of microscale cell culture analog systems
NASA Astrophysics Data System (ADS)
Oh, Taek-il; Kim, Donghyun; Tatosian, Daniel; Sung, Jong Hwan; Shuler, Michael
2007-02-01
A microscale cell culture analog (μCCA) is a cell-based lab-on-a-chip assay that, as an animal surrogate, is applied to pharmacological studies for toxicology tests. A μCCA typically comprises multiple chambers and microfluidics that connect the chambers, which represent animal organs and blood flow to mimic animal metabolism more realistically. A μCCA is expected to provide a tool for high-throughput drug discovery. Previously, a portable fluorescence detection system was investigated for a single μCCA device in real-time. In this study, we present a fluorescence-based imaging system that provides quantitative real-time data of the metabolic interactions in μCCAs with an emphasis on measuring multiple μCCA samples simultaneously for high-throughput screening. The detection system is based on discrete optics components, with a high-power LED and a charge-coupled device (CCD) camera as a light source and a detector, for monitoring cellular status on the chambers of each μCCA sample. Multiple samples are characterized mechanically on a motorized linear stage, which is fully-automated. Each μCCA sample has four chambers, where cell lines MES-SA/DX- 5, and MES-SA (tumor cells of human uterus) have been cultured. All cell-lines have been transfected to express the fusion protein H2B-GFP, which is a human histone protein fused at the amino terminus to EGFP. As a model cytotoxic drug, 10 μM doxorubicin (DOX) was used. Real-time quantitative data of the intensity loss of enhanced green fluorescent protein (EGFP) during cell death of target cells have been collected over several minutes to 40 hours. Design issues and improvements are also discussed.
Uchiyama, Nahoko; Shimokawa, Yoshihiko; Kikura-Hanajiri, Ruri; Demizu, Yosuke; Goda, Yukihiro; Hakamatsuka, Takashi
Six new psychoactive substances were identified together with two other substances (compounds 1 - 8 ) in illegal products by our ongoing survey in Japan between January and July 2014. A new synthetic cannabinoid, FDU-NNEI [1-(4-fluorobenzyl)- N -(naphthalen-1-yl)-1 H -indole-3-carboxamide, 2 ], was detected with the newly distributed synthetic cannabinoid FDU-PB-22 ( 1 ). Two 2 H -indazole isomers of synthetic cannabinoids, AB-CHMINACA 2 H -indazole analog ( 3 ) and NNEI 2 H -indazole analog ( 4 ), were newly identified with 1 H -indazoles [AB-CHMINACA and NNEI indazole analog (MN-18)]. In addition, 2-methylpropyl N -(naphthalen-1-yl) carbamate ( 5 ) and isobutyl 1-pentyl-1 H -indazole-3-carboxylate ( 6 ) were detected in illegal products. Compound 6 is considered to be a by-product of the preparation of NNEI indazole analog from compound 5 and 1-pentyl-1 H -indazole. A phenethylamine derivative, N -OH-EDMA [ N -hydroxy-3,4-ethylenedioxy- N -methylamphetamine, 7 ], and a cathinone derivative, dimethoxy-α-PHP (dimethoxy-α-pyrrolidinohexanophenone, 8 ), were newly identified in illegal products. Among them, compounds 1 and 8 have been controlled as designated substances (Shitei-Yakubutsu) under the Pharmaceutical Affairs Law in Japan since August and November 2014, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, M.; Shinohara, K.; Itoga, T.
2008-03-12
Neutron emission profiles are routinely measured in JT-60U Tokamak. Stinbene neuron detectors (SNDs), which combine a Stilbene organic crystal scintillation detector (Stilbene detector) with an analog neutron-gamma pulse shape discrimination (PSD) circuit, have been used to measure neutron flux efficiently. Although the SND has many advantages as a neutron detector, the maximum count rate is limited up to {approx}1x 10{sup 5} counts/s due to the dead time of the analog PSD circuit. To overcome this issue, a digital signal processing (DSP) system using a Flash-ADC has been developed. In this system, anode signals from the photomultiplier of the Stilbene detectormore » are fed to the Flash ADC and digitized. Then, the PSD between neutrons and gamma-rays are performed using software. The photomultiplier tube is also modified to suppress and correct gain fluctuation of the photomultiplier. The DSP system has been installed in the center channel of the vertical neutron collimator system in JT-60U and applied to measurements of neutron flux in JT-60U experiments. Neutron flux are successfully measured with count rate up to {approx}1x 10{sup 6} counts/s without the effect of pile up of detected pulses. The performance of the DSP system as a neutron detector is demonstrated.« less
Analog to digital workflow improvement: a quantitative study.
Wideman, Catherine; Gallet, Jacqueline
2006-01-01
This study tracked a radiology department's conversion from utilization of a Kodak Amber analog system to a Kodak DirectView DR 5100 digital system. Through the use of ProModel Optimization Suite, a workflow simulation software package, significant quantitative information was derived from workflow process data measured before and after the change to a digital system. Once the digital room was fully operational and the radiology staff comfortable with the new system, average patient examination time was reduced from 9.24 to 5.28 min, indicating that a higher patient throughput could be achieved. Compared to the analog system, chest examination time for modality specific activities was reduced by 43%. The percentage of repeat examinations experienced with the digital system also decreased to 8% vs. the level of 9.5% experienced with the analog system. The study indicated that it is possible to quantitatively study clinical workflow and productivity by using commercially available software.
Systematic Model-in-the-Loop Test of Embedded Control Systems
NASA Astrophysics Data System (ADS)
Krupp, Alexander; Müller, Wolfgang
Current model-based development processes offer new opportunities for verification automation, e.g., in automotive development. The duty of functional verification is the detection of design flaws. Current functional verification approaches exhibit a major gap between requirement definition and formal property definition, especially when analog signals are involved. Besides lack of methodical support for natural language formalization, there does not exist a standardized and accepted means for formal property definition as a target for verification planning. This article addresses several shortcomings of embedded system verification. An Enhanced Classification Tree Method is developed based on the established Classification Tree Method for Embeded Systems CTM/ES which applies a hardware verification language to define a verification environment.
[Experience in the use of equipment for ECG system analysis in municipal polyclinics].
Bondarenko, A A
2006-01-01
Two electrocardiographs, an analog-digital electrocardiograph with preliminary analog filtering of signal and a smart cardiograph implemented as a PC-compatible device without preliminary analog filtering, are considered. Advantages and disadvantages of ECG systems based on artificial intelligence are discussed. ECG interpretation modes provided by the two electrocardiographs are considered. The reliability of automatic ECG interpretation is assessed. Problems of rational use of automated ECG processing systems are discussed.
9 CFR 113.47 - Detection of extraneous viruses by the fluorescent antibody technique.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Detection of extraneous viruses by the... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Standard Procedures § 113.47 Detection of extraneous viruses by the...
9 CFR 113.47 - Detection of extraneous viruses by the fluorescent antibody technique.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Detection of extraneous viruses by the... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Standard Procedures § 113.47 Detection of extraneous viruses by the...
9 CFR 113.47 - Detection of extraneous viruses by the fluorescent antibody technique.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Detection of extraneous viruses by the... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Standard Procedures § 113.47 Detection of extraneous viruses by the...
9 CFR 113.47 - Detection of extraneous viruses by the fluorescent antibody technique.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Detection of extraneous viruses by the... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Standard Procedures § 113.47 Detection of extraneous viruses by the...
Method and apparatus for clockless analog-to-digital conversion and peak detection
DeGeronimo, Gianluigi
2007-03-06
An apparatus and method for analog-to-digital conversion and peak detection includes at least one stage, which includes a first switch, second switch, current source or capacitor, and discriminator. The discriminator changes state in response to a current or charge associated with the input signal exceeding a threshold, thereby indicating whether the current or charge associated with the input signal is greater than the threshold. The input signal includes a peak or a charge, and the converter includes a peak or charge detect mode in which a state of the switch is retained in response to a decrease in the current or charge associated with the input signal. The state of the switch represents at least a portion of a value of the peak or of the charge.
NASA Astrophysics Data System (ADS)
Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group
2010-02-01
Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in master mode for control acquisition and monitoring and interlocking.
Moens, Pierre D.J.; Gratton, Enrico; Salvemini, Iyrri L.
2010-01-01
Fluorescence correlation spectroscopy (FCS) was developed in 1972 by Magde, Elson and Webb (Magde et al., 1972). Photon counting detectors and avalanche photodiodes have become standards in FCS to the point that there is a widespread belief that these detectors are essential to perform FCS experiments, despite the fact that FCS was developed using analog detectors. Spatial and temporal intensity fluctuation correlations using analog detection on a commercial Olympus Fluoview 300 microscope has been reported by Brown et al. (2008). However, each analog instrument has its own idiosyncrasies that need to be understood before using the instrument for FCS. In this work we explore the capabilities of the Nikon C1, a low cost confocal microscope, to obtain single point FCS, Raster-scan Image Correlation Spectroscopy (RICS) and Number & Brightness data both in solution and incorporated into the membrane of Giant Unilamellar Vesicles (GUVs). We show that it is possible to obtain dynamic information about fluorescent molecules from single point FCS, RICS and Number & Brightness using the Nikon C1. We highlighted the fact that care should be taken in selecting the acquisition parameters in order to avoid possible artifacts due to the detector noise. However, due to relatively large errors in determining the distribution of digital levels for a given microscope setting, the system is probably only adequate for determining relative brightness within the same image. PMID:20734406
The robot's eyes - Stereo vision system for automated scene analysis
NASA Technical Reports Server (NTRS)
Williams, D. S.
1977-01-01
Attention is given to the robot stereo vision system which maintains the image produced by solid-state detector television cameras in a dynamic random access memory called RAPID. The imaging hardware consists of sensors (two solid-state image arrays using a charge injection technique), a video-rate analog-to-digital converter, the RAPID memory, and various types of computer-controlled displays, and preprocessing equipment (for reflexive actions, processing aids, and object detection). The software is aimed at locating objects and transversibility. An object-tracking algorithm is discussed and it is noted that tracking speed is in the 50-75 pixels/s range.
Ding, Hui; Ding, Wanjing; Ma, Zhongjun
2017-03-22
Two prenylated indole alkaloids were isolated from the ethyl acetate extracts of a marine-derived fungus Penicillium sp. NH-SL and one of them exhibited potent cytotoxic activity against mouse hepa 1c1c7 cells. In order to detect other bioactive analogs, we used liquid chromatogram tandem mass spectrometry (LC-MS/MS) to analyze the mass spectrometric characteristics of the isolated compounds as well as the crude extracts. As a result, three other analogs were detected, and their structures were deduced according to the similar fragmentation patterns. This is the first systematic report on the mass spectrometric characteristics of prenylated indole derivatives.
NASA Astrophysics Data System (ADS)
Wainwright, N. R.; Steele, A.; Monaco, L.; Fries, M.
2017-02-01
Life detection goals and technologies are remarkably similar between several types of NASA missions and the pharmaceutical and biotechnology industries. Needs for sensitivity, specificity, speed have driven techniques and equipment to common ends.
NASA Astrophysics Data System (ADS)
Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.
2008-02-01
Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.
A research of a high precision multichannel data acquisition system
NASA Astrophysics Data System (ADS)
Zhong, Ling-na; Tang, Xiao-ping; Yan, Wei
2013-08-01
The output signals of the focusing system in lithography are analog. To convert the analog signals into digital ones which are more flexible and stable to process, a desirable data acquisition system is required. The resolution of data acquisition, to some extent, affects the accuracy of focusing. In this article, we first compared performance between the various kinds of analog-to-digital converters (ADC) available on the market at the moment. Combined with the specific requirements (sampling frequency, converting accuracy, numbers of channels etc) and the characteristics (polarization, amplitude range etc) of the analog signals, the model of the ADC to be used as the core chip in our hardware design was determined. On this basis, we chose other chips needed in the hardware circuit that would well match with ADC, then the overall hardware design was obtained. Validation of our data acquisition system was verified through experiments and it can be demonstrated that the system can effectively realize the high resolution conversion of the multi-channel analog signals and give the accurate focusing information in lithography.
Heat Flow vs. Cash Flow: A Banking Analogy
NASA Astrophysics Data System (ADS)
Wynn, Charles M., Sr.
1997-04-01
An analogy is drawn between the withdrawal of money from an automated teller machine (ATM) and an exothermic chemical reaction. In the analogy the amount in an individual's account is regarded as the system and the money withdrawn is regarded as part of the surroundings. Diagrams are used to present the analogy. An analogy can be drawn also between a deposit into an account and an endothermic chemical reaction.
The Role of Prior Knowledge in Learning from Analogies in Science Texts
ERIC Educational Resources Information Center
Braasch, Jason L. G.; Goldman, Susan R.
2010-01-01
Two experiments examined whether inconsistent effects of analogies in promoting new content learning from text are related to prior knowledge of the analogy "per se." In Experiment 1, college students who demonstrated little understanding of weather systems and different levels of prior knowledge (more vs. less) of an analogous everyday…
Gluing for Raman lidar systems using the lamp mapping technique.
Walker, Monique; Venable, Demetrius; Whiteman, David N
2014-12-20
In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.
A Spacecraft Housekeeping System-on-Chip in a Radiation Hardened Structured ASIC
NASA Technical Reports Server (NTRS)
Suarez, George; DuMonthier, Jeffrey J.; Sheikh, Salman S.; Powell, Wesley A.; King, Robyn L.
2012-01-01
Housekeeping systems are essential to health monitoring of spacecraft and instruments. Typically, sensors are distributed across various sub-systems and data is collected using components such as analog-to-digital converters, analog multiplexers and amplifiers. In most cases programmable devices are used to implement the data acquisition control and storage, and the interface to higher level systems. Such discrete implementations require additional size, weight, power and interconnect complexity versus an integrated circuit solution, as well as the qualification of multiple parts. Although commercial devices are readily available, they are not suitable for space applications due the radiation tolerance and qualification requirements. The Housekeeping System-o n-A-Chip (HKSOC) is a low power, radiation hardened integrated solution suitable for spacecraft and instrument control and data collection. A prototype has been designed and includes a wide variety of functions including a 16-channel analog front-end for driving and reading sensors, analog-to-digital and digital-to-analog converters, on-chip temperature sensor, power supply current sense circuits, general purpose comparators and amplifiers, a 32-bit processor, digital I/O, pulse-width modulation (PWM) generators, timers and I2C master and slave serial interfaces. In addition, the device can operate in a bypass mode where the processor is disabled and external logic is used to control the analog and mixed signal functions. The device is suitable for stand-alone or distributed systems where multiple chips can be deployed across different sub-systems as intelligent nodes with computing and processing capabilities.
Extending Raman's reach: enabling applications via greater sensitivity and speed
NASA Astrophysics Data System (ADS)
Creasey, David; Sullivan, Mike; Paul, Chris; Rathmell, Cicely
2018-02-01
Over the last decade, miniature fiber optic spectrometers have greatly expanded the ability of Raman spectroscopy to tackle practical applications in the field, from mobile pharmaceutical ID to hazardous material assessment in remote locations. There remains a gap, however, between the typical diode array spectrometer and their more sensitive benchtop analogs. High sensitivity, cooled Raman spectrometers have the potential to narrow that gap by providing greater sensitivity, better SNR, and faster measurement times. In this paper, we'll look at the key factors in the design of high sensitivity miniature Raman spectrometers and their associated accessories, as well as the key metric for direct comparison of these systems - limit of detection. With the availability of our high sensitivity Raman systems operating at wavelengths from the UV to NIR, many applications are now becoming practical in the field, from trace level detection to analysis of complex biological samples.
Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.
Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert
2017-07-01
Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.
Views from EPOXI. Colors in Our Solar System as an Analog for Extrasolar Planets
NASA Technical Reports Server (NTRS)
Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Meadows, V.; Lisse, C. M.
2010-01-01
With extrasolar planet detection becoming more common place, the frontiers of extrasolar planet science have moved beyond detection to the observations required to determine planetary properties. Once the existing observational challenges have been overcome, the first visible-light studies of extrasolar Earth-sized planets will likely employ filter photometry or low-resolution. spectroscopy to observe disk-integrated radiation from the unresolved planet. While spectroscopy of these targets is highly desirable, and provides the most robust form of characterization. S/N considerations presently limit spectroscopic measurements of extrasolar worlds. Broadband filter photometry will thus serve as a first line of characterization. In this paper we use Extrasolar Observation and Characterization (EPOCh) filter photometry of the Earth. Moon and Mars model spectra. and previous photometric and spectroscopic observations of a range the solar system planets. Titan, and Moon to explore the limitations of using color as a baseline for understanding extrasolar planets
The Hadean, Through a Glass Telescopically: Observations of Young Solar Analogs
NASA Technical Reports Server (NTRS)
Gaidos, E. J.
1998-01-01
Investigations into the Earth's surface environment during the Hadean eon (prior to 3.8 Ga) are hampered by the paucity of the geological and geochemical record and the relative inaccessibility of better-preserved surfaces with possibly similar early histories (i.e., Mars). One approach is to observe nearby, young solar-mass stars as analogs to the Hadean Sun and its environment. A catalog of 38 G and early K stars within 25 pc was constructed based on main-sequence status, bolometric luminosity, lack of known stellar companions within 800 AU, and coronal X-ray luminosities commensurate with the higher activity of solar-mass stars <0.8 b.y. old. Spectroscopic data support the assignment of ages of 0.2 - 0.8 Ga for most of these stars. Observations of these objects will provide insight into external forces that influenced Hadean atmosphere, ocean, and surface evolution (and potential ecosystems), including solar luminosity evolution, the flux and spectrum of solar ultraviolet radiation, the intensity of the solar wind, and the intensity and duration of a late period of heavy bombardment. The standard model of solar evolution predicts a luminosity of 0.75 solar luminosity at the end of the Hadean, implying a terrestrial surface temperature inconsistent with the presence of liquid water and motivating atmospheric greenhouse models. An alternative model fo solar evolution that invokes mass loss, constructed to explain solar Li depletion, attenuates or reverses this luminosity evolution of the atmospheres of Earth and the other terrestrial planets. This model can be tested by Li abundance measurements. The continuum emission from stellar wind plasma during significant mass loss may be detectable at millimeter and radio wavelengths. The Earth (and Moon) experienced a period of intense bombardment prior to 3.8 Ga, long after accretion was completed in the inner solar system and possibly associated with the clearing of residual planetesimals in the outer solar system. Such a bombardment may have contributed volatiles and organics to the surface, but also have limited the appearacne of a biosphere. While planetary systems around solar systems cannot be detected directly with present technology, the thermal emission from the interplanetary dust generated during a similar heavy bombardment period can be. Midinfrared observations of a large uniform sample of solar analogs are used to constrain the frequency and duration of such events.
Rotary encoding device with polygonal reflector and centroid detection
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
1994-01-01
A device for positioning encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a light beam is directed towards the facets. The facets of the polygonal mirror reflect the light beam such that a light spot is created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spot on the spots on the linear array detector. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spot and to compute the position of the shaft based upon the data from the analog-to-digital converter.
NASA Astrophysics Data System (ADS)
Dimova, Dilyana; Bajorath, Jürgen
2017-07-01
Computational scaffold hopping aims to identify core structure replacements in active compounds. To evaluate scaffold hopping potential from a principal point of view, regardless of the computational methods that are applied, a global analysis of conventional scaffolds in analog series from compound activity classes was carried out. The majority of analog series was found to contain multiple scaffolds, thus enabling the detection of intra-series scaffold hops among closely related compounds. More than 1000 activity classes were found to contain increasing proportions of multi-scaffold analog series. Thus, using such activity classes for scaffold hopping analysis is likely to overestimate the scaffold hopping (core structure replacement) potential of computational methods, due to an abundance of artificial scaffold hops that are possible within analog series.
A mixed-signal implementation of a polychronous spiking neural network with delay adaptation
Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André
2014-01-01
We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits. PMID:24672422
A mixed-signal implementation of a polychronous spiking neural network with delay adaptation.
Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan C; van Schaik, André
2014-01-01
We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits.
Bushman, Lane R; Kiser, Jennifer J; Rower, Joseph E; Klein, Brandon; Zheng, Jia-Hua; Ray, Michelle L; Anderson, Peter L
2011-09-10
An ultra-sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assay was developed and validated to facilitate the assessment of clinical pharmacokinetics of nucleotide analogs from lysed intracellular matrix. The method utilized a strong anion exchange isolation of mono-(MP), di-(DP), and tri-phosphates (TP) from intracellular matrix. Each fraction was then dephosphorylated to the parent moiety yielding a molar equivalent to the original nucleotide analog intracellular concentration. The analytical portion of the methodology was optimized in specific nucleoside analog centric modes (i.e. tenofovir (TFV) centric, zidovudine (ZDV) centric), which included desalting/concentration by solid phase extraction and detection by LC-MS/MS. Nucleotide analog MP-, DP-, and TP-determined on the TFV centric mode of analysis include TFV, lamivudine (3TC), and emtricitibine (FTC). The quantifiable linear range for TFV was 2.5-2000 fmol/sample, and that for 3TC/FTC was 0.1 200 pmol/sample. Nucleoside analog MP-, DP-, and TP-determined on the ZDV centric mode of analysis included 3TC and ZDV. The quantifiable linear range for 3TC was 0.1 100 pmol/sample, and 5-2000 fmol/sample for ZDV. Stable labeled isotopic internal standards facilitated accuracy and precision in alternative cell matrices, which supported the intended use of the method for MP, DP, and TP determinations in various cell types. The method was successfully applied to clinical research samples generating novel intracellular information for TFV, FTC, ZDV, and 3TC nucleotides. This document outlines method development, validation, and application to clinical research. Copyright © 2011 Elsevier B.V. All rights reserved.
Embedding Analogical Reasoning into 5E Learning Model: A Study of the Solar System
ERIC Educational Resources Information Center
Devecioglu-Kaymakci, Yasemin
2016-01-01
The purpose of this study was to investigate how the 5E learning model affects learning about the Solar System when an analogical model is utilized in teaching. The data were gathered in an urban middle school 7th grade science course while teaching relevant astronomy topics. The analogical model developed by the researchers was administered to 20…
Noise Analysis of Spatial Phase coding in analog Acoustooptic Processors
NASA Technical Reports Server (NTRS)
Gary, Charles K.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Optical beams can carry information in their amplitude and phase; however, optical analog numerical calculators such as an optical matrix processor use incoherent light to achieve linear operation. Thus, the phase information is lost and only the magnitude can be used. This limits such processors to the representation of positive real numbers. Many systems have been devised to overcome this deficit through the use of digital number representations, but they all operate at a greatly reduced efficiency in contrast to analog systems. The most widely accepted method to achieve sign coding in analog optical systems has been the use of an offset for the zero level. Unfortunately, this results in increased noise sensitivity for small numbers. In this paper, we examine the use of spatially coherent sign coding in acoustooptical processors, a method first developed for digital calculations by D. V. Tigin. This coding technique uses spatial coherence for the representation of signed numbers, while temporal incoherence allows for linear analog processing of the optical information. We show how spatial phase coding reduces noise sensitivity for signed analog calculations.
Chinzei, Y; Taylor, D; Ando, K
1991-07-01
Effects of juvenile hormones (JH) and JH analogs on the release of vitellogenin (Vg) into the hemolymph and ovarian development in unfed adult female ticks, Ornithodoros moubata (Murray), were investigated. Topical application of acetone solvent and injection of acetone or oils showed some increase in Vg titer in the hemolymph. Topical application of JH (JH I, JH II, JH III) and JH analogs (methoprene, S21149, S21150, and S31183) dissolved in acetone to unengorged adult females elevated Vg titer in the hemolymph but only to the same level as the acetone controls. These effects were independent of dose. Injection of JH (JH I, JH II, JH III) and methoprene dissolved in mineral oil also did not significantly increase the Vg titer in the hemolymph compared with the controls (mineral oil injection). Electrophoretic analysis of hemolymph from females 5 d after treatment topically or by injection with JH and JH analogs showed faint Vg bands which comigrated with Vg's (Vg-1 and Vg-2) of normal, engorged female hemolymph, but Vg bands were detected more clearly in the hemolymph samples that were collected greater than 2 wk after treatment. However, the same level of Vg also was detected in the hemolymph of females treated with acetone or mineral oil. Vg synthesis in females treated with JH and JH analogs was analyzed by in vivo labeling and fluorography, which showed that Vg synthesis was not induced by application of JH to unengorged females.
Digital redesign of anti-wind-up controller for cascaded analog system.
Chen, Y S; Tsai, J S H; Shieh, L S; Moussighi, M M
2003-01-01
The cascaded conventional anti-wind-up (CAW) design method for integral controller is discussed. Then, the prediction-based digital redesign methodology is utilized to find the new pulse amplitude modulated (PAM) digital controller for effective digital control of the analog plant with input saturation constraint. The desired digital controller is determined from existing or pre-designed CAW analog controller. The proposed method provides a novel methodology for indirect digital design of a continuous-time unity output-feedback system with a cascaded analog controller as in the case of PID controllers for industrial control processes with the presence of actuator saturations. It enables us to implement an existing or pre-designed cascaded CAW analog controller via a digital controller effectively.
A CMOS image sensor with programmable pixel-level analog processing.
Massari, Nicola; Gottardi, Massimo; Gonzo, Lorenzo; Stoppa, David; Simoni, Andrea
2005-11-01
A prototype of a 34 x 34 pixel image sensor, implementing real-time analog image processing, is presented. Edge detection, motion detection, image amplification, and dynamic-range boosting are executed at pixel level by means of a highly interconnected pixel architecture based on the absolute value of the difference among neighbor pixels. The analog operations are performed over a kernel of 3 x 3 pixels. The square pixel, consisting of 30 transistors, has a pitch of 35 microm with a fill-factor of 20%. The chip was fabricated in a 0.35 microm CMOS technology, and its power consumption is 6 mW with 3.3 V power supply. The device was fully characterized and achieves a dynamic range of 50 dB with a light power density of 150 nW/mm2 and a frame rate of 30 frame/s. The measured fixed pattern noise corresponds to 1.1% of the saturation level. The sensor's dynamic range can be extended up to 96 dB using the double-sampling technique.
Developing Analogy Cost Estimates for Space Missions
NASA Technical Reports Server (NTRS)
Shishko, Robert
2004-01-01
The analogy approach in cost estimation combines actual cost data from similar existing systems, activities, or items with adjustments for a new project's technical, physical or programmatic differences to derive a cost estimate for the new system. This method is normally used early in a project cycle when there is insufficient design/cost data to use as a basis for (or insufficient time to perform) a detailed engineering cost estimate. The major limitation of this method is that it relies on the judgment and experience of the analyst/estimator. The analyst must ensure that the best analogy or analogies have been selected, and that appropriate adjustments have been made. While analogy costing is common, there is a dearth of advice in the literature on the 'adjustment methodology', especially for hardware projects. This paper discusses some potential approaches that can improve rigor and repeatability in the analogy costing process.
Performance Effects of Display Incogruity in a Digital and Analog Clock Reading Task
NASA Technical Reports Server (NTRS)
Comstock, J. Raymond, Jr.; Derks, Peter L.
2004-01-01
In an era of increasing automation, it is important to design displays and input devices that minimize human error. In this context, information concerning the human response to the detection of incongruous information is important. Such incongruous information can be operationalized as unexpected (perhaps erroneous) information on which a decision by the human or operation by an automated system is based. In the aviation environment, decision making when faced with inadequate, incomplete, or incongruous information may occur in a failure scenario. An additional challenge facing the human operator in automated environments is maintaining alertness or vigilance. The vigilance issue is of particular concern as a factor that may interact with performance when faced with inadequate, incomplete, or incongruous information. From the literature on eye-scan behavior we know that the time spent looking at a particular display or indicator is a function of the type of information one is trying to discern from the display. For example, quick glances are all it takes for confirming that an indicator is in a normal position or range, whereas a continuous look of several seconds may be required for confirmation that a complex control input is having the desired effect. Important to consider is that while an extended look takes place, visual input from other sources may be missed. Much like an extended look, the interpretation of incongruous information may require extra time. The present experiment was designed to explore the performance consequences of a decision making task when incongruous information was presented. For this experiment a display incongruity was created on a subset of trials of a clock reading laboratory task. Display incongruity was made possible through presentation of 'impossible' times (e.g. 1:65 or 11:90). Subjects made 'same' 'different' decisions and keyboard responses to pairings of Analog-Analog (AA), Digital-Digital (DD), and Analog- Digital (AD), display combinations. For trials during which display incongruities were not presented, based on prior research comparing digital and analog clock displays, it would be expected that the Digital-Digital condition would result in the shortest response times and the Analog-Analog and Analog-Digital conditions would have longer response times. The performance consequence expected on trials with incongruous times would be very long response times.
NASA's Analog Missions: Driving Exploration Through Innovative Testing
NASA Technical Reports Server (NTRS)
Reagan, Marcum L.; Janoiko, Barbara A.; Parker, Michele L.; Johnson, James E.; Chappell, Steven P.; Abercromby, Andrew F.
2012-01-01
Human exploration beyond low-Earth orbit (LEO) will require a unique collection of advanced, innovative technologies and the precise execution of complex and challenging operational concepts. One tool we in the Analog Missions Project at the National Aeronautics and Space Administration (NASA) utilize to validate exploration system architecture concepts and conduct technology demonstrations, while gaining a deeper understanding of system-wide technical and operational challenges, is our analog missions. Analog missions are multi-disciplinary activities that test multiple features of future spaceflight missions in an integrated fashion to gain a deeper understanding of system-level interactions and integrated operations. These missions frequently occur in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They allow us to test robotics, vehicle prototypes, habitats, communications systems, in-situ resource utilization, and human performance as it relates to these technologies. And they allow us to validate architectural concepts, conduct technology demonstrations, and gain a deeper understanding of system-wide technical and operational challenges needed to support crewed missions beyond LEO. As NASA develops a capability driven architecture for transporting crew to a variety of space environments, including the moon, near-Earth asteroids (NEA), Mars, and other destinations, it will use its analog missions to gather requirements and develop the technologies that are necessary to ensure successful human exploration beyond LEO. Currently, there are four analog mission platforms: Research and Technology Studies (RATS), NASA s Extreme Environment Mission Operations (NEEMO), In-Situ Resource Utilization (ISRU), and International Space Station (ISS) Test bed for Analog Research (ISTAR).
A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar.
Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun; Huang, Yuan-Hao
2018-04-05
Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256 × 13 real-time radar image display with a throughput of 28.2 frames per second.
Xiong, Wei; Laaser, Jennifer E.; Mehlenbacher, Randy D.; Zanni, Martin T.
2011-01-01
In the last ten years, two-dimensional infrared spectroscopy has become an important technique for studying molecular structures and dynamics. We report the implementation of heterodyne detected two-dimensional sum-frequency generation (HD 2D SFG) spectroscopy, which is the analog of 2D infrared (2D IR) spectroscopy, but is selective to noncentrosymmetric systems such as interfaces. We implement the technique using mid-IR pulse shaping, which enables rapid scanning, phase cycling, and automatic phasing. Absorptive spectra are obtained, that have the highest frequency resolution possible, from which we extract the rephasing and nonrephasing signals that are sometimes preferred. Using this technique, we measure the vibrational mode of CO adsorbed on a polycrystalline Pt surface. The 2D spectrum reveals a significant inhomogenous contribution to the spectral line shape, which is quantified by simulations. This observation indicates that the surface conformation and environment of CO molecules is more complicated than the simple “atop” configuration assumed in previous work. Our method can be straightforwardly incorporated into many existing SFG spectrometers. The technique enables one to quantify inhomogeneity, vibrational couplings, spectral diffusion, chemical exchange, and many other properties analogous to 2D IR spectroscopy, but specifically for interfaces. PMID:22143772
Xiong, Wei; Laaser, Jennifer E; Mehlenbacher, Randy D; Zanni, Martin T
2011-12-27
In the last ten years, two-dimensional infrared spectroscopy has become an important technique for studying molecular structures and dynamics. We report the implementation of heterodyne detected two-dimensional sum-frequency generation (HD 2D SFG) spectroscopy, which is the analog of 2D infrared (2D IR) spectroscopy, but is selective to noncentrosymmetric systems such as interfaces. We implement the technique using mid-IR pulse shaping, which enables rapid scanning, phase cycling, and automatic phasing. Absorptive spectra are obtained, that have the highest frequency resolution possible, from which we extract the rephasing and nonrephasing signals that are sometimes preferred. Using this technique, we measure the vibrational mode of CO adsorbed on a polycrystalline Pt surface. The 2D spectrum reveals a significant inhomogenous contribution to the spectral line shape, which is quantified by simulations. This observation indicates that the surface conformation and environment of CO molecules is more complicated than the simple "atop" configuration assumed in previous work. Our method can be straightforwardly incorporated into many existing SFG spectrometers. The technique enables one to quantify inhomogeneity, vibrational couplings, spectral diffusion, chemical exchange, and many other properties analogous to 2D IR spectroscopy, but specifically for interfaces.
Zielonka, Jacek; Lambeth, J. David; Kalyanaraman, Balaraman
2014-01-01
L-012, a luminol-based chemiluminescent (CL) probe, is widely used in vitro and in vivo to detect NADPH oxidase (Nox)-derived superoxide (O2·−) and identify Nox inhibitors. Yet understanding of the free radical chemistry of L-012 probe is still lacking. We report that peroxidase and H2O2 induce superoxide dismutase (SOD)-sensitive, L-012-derived CL in the presence of oxygen. O2·− alone does not react with L-012 to emit luminescence. Self-generated O2·− during oxidation of L-012 and luminol-analogs artifactually induce CL inhibitable by SOD. These aspects make assays based on luminol analogs less than ideal for specific detection and identification of O2·− and NOX inhibitors. PMID:24080119
Reconfigurable Sensor Monitoring System
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2017-01-01
A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.
A Lidar for Making Range Resolved CO2 Measurements within the Planetary Boundary Layer
NASA Technical Reports Server (NTRS)
Burris, John; Riris, Haris; Andrews, Arlyn; Krainak, Mike; Sun, Xiaoli; Abshire, Jim; Colarco, Amelia; Heaps, William
2006-01-01
A ground based differential absorption lidar is under development at NASA's Goddard Space Flight Center to make range resolved measurements of CO2 within the planetary boundary layer. This is a direct detection lidar designed for both photon counting and analog use. Technology being developed for this instrument will be discussed including efforts in fiber lasers, optical parametric amplifiers and both InGaAs and HgCdTe solid-state detectors. The capabilities of this system are investigated and preliminary results presented.
Gamma ray spectroscopy with Arduino UNO
NASA Astrophysics Data System (ADS)
Lavelle, C. M.
2018-05-01
We review a simple gamma ray spectrometer constructed on a solderless breadboard. The spectrometer's detector consists of a CsI(Tl) scintillator and silicon photomultiplier (SiPM) and its readout is facilitated by an Arduino UNO. The system is low cost and utilizes a minimum of components while still achieving satisfactory charge linearity and noise levels. This instrument can be used in instructional laboratories to introduce both radiation detection and analog signal processing concepts. We also expect it will be of interest to those seeking to introduce gamma spectroscopy to the expanding ecosystem of Arduino hardware.
Measurement of control system response using an analog operational circuit
NASA Technical Reports Server (NTRS)
Lalli, V. R.
1978-01-01
Ten basic steps are established for an analog method that measures control system response parameters. An example shows how these steps were used on a speed control portion of an auxiliary power unit. The equations and calculations necessary to describe this subsystem are given. The mechanization schematic and simulation diagram for obtaining the measured response parameters of the control system using an analog circuit are explained. Methods for investigating the various effects of the control parameters are described. It is concluded that the optimum system should be underdamped enough to be slightly oscillatory during transients.
Shimamura, Hiroyuki; Breazzano, Steven P; Garfunkle, Joie; Kimball, F Scott; Trzupek, John D; Boger, Dale L
2010-06-09
Full details of the initial development and continued examination of a powerful intramolecular palladium(0)-mediated indole annulation for macrocyclization closure of the strained 16-membered biaryl ring system found in complestatin (1, chloropeptin II) and the definition of factors impacting its intrinsic atropodiastereoselectivity are described. Its examination and use in an alternative, second-generation total synthesis of complestatin are detailed in which the order of the macrocyclization reactions was reversed from our first-generation total synthesis. In this approach and with the ABCD biaryl ether ring system in place, the key Larock cyclization was conducted with substrate 36 (containing four phenols, five secondary amides, one carbamate, and four labile aryl chlorides) and provided the product 37 (56%) exclusively as a single atropisomer (>20:1, detection limits) possessing the natural (R)-configuration. In this instance, the complexity of the substrate and the reverse macrocyclization order did not diminish the atropodiastereoselectivity; rather, it provided an improvement over the 4:1 selectivity that was observed with the analogous substrate used to provide the isolated DEF ring system in our first-generation approach. Just as significant, the atroposelectivity represents a complete reversal of the diasteroselectivity observed with analogous macrocyclizations conducted using a Suzuki biaryl coupling.
Multidetector system for nanosecond tagged neutron technology based on hardware selection of events
NASA Astrophysics Data System (ADS)
Karetnikov, M. D.; Korotkov, S. A.; Khasaev, T. O.
2016-09-01
At the T( d, n)He4 reaction a neutron is accompanied by an associated alpha-particle emitted in the opposite direction. A time and a direction of the neutron escape can be determined by measuring a time and coordinates of the alpha particle at the position-sensitive alpha-detector. The nanosecond tagged neutron technology (NTNT) based on this principle has great potentialities for various applications, e.g., for remote detection of explosives. A spectrum of gamma-rays emitted at the interaction of tagged neutrons with nuclei of chemical elements allows identify a chemical composition of an irradiated object. For practical realization of NTNT, a time resolution of recording the alpha-gamma coincidences should be close to 1 ns. The total intensity of signals can exceed 1 × 106 1/s from all gamma-detectors and 7 × 106 1/s from the alpha-detector. The processing of such stream of data without losses and distortion of information is one of challenging problems of NTNT. Several models of analog DAQ system based on hardware selection of events were devised and their characteristics are examined. The comparison with the digital DAQ systems demonstrated that the analog DAQ provides better timing parameters, lower power consumption, and higher maximum rate of useful events.
NASA Astrophysics Data System (ADS)
Yahampath, Pradeepa
2017-12-01
Consider communicating a correlated Gaussian source over a Rayleigh fading channel with no knowledge of the channel signal-to-noise ratio (CSNR) at the transmitter. In this case, a digital system cannot be optimal for a range of CSNRs. Analog transmission however is optimal at all CSNRs, if the source and channel are memoryless and bandwidth matched. This paper presents new hybrid digital-analog (HDA) systems for sources with memory and channels with bandwidth expansion, which outperform both digital-only and analog-only systems over a wide range of CSNRs. The digital part is either a predictive quantizer or a transform code, used to achieve a coding gain. Analog part uses linear encoding to transmit the quantization error which improves the performance under CSNR variations. The hybrid encoder is optimized to achieve the minimum AMMSE (average minimum mean square error) over the CSNR distribution. To this end, analytical expressions are derived for the AMMSE of asymptotically optimal systems. It is shown that the outage CSNR of the channel code and the analog-digital power allocation must be jointly optimized to achieve the minimum AMMSE. In the case of HDA predictive quantization, a simple algorithm is presented to solve the optimization problem. Experimental results are presented for both Gauss-Markov sources and speech signals.
Temperature Tolerant Evolvable Systems Utilizing FPGA Boards and Bias-Controlled Amplifiers
NASA Technical Reports Server (NTRS)
Kumar, Nikhil R.
2005-01-01
Space missions often require radiation and extreme-temperature hardened electronics to survive the harsh environments beyond Earth's atmosphere. Traditional approaches to preserve electronics incorporate shielding, insulation and redundancy at the expense of power and weight. However, a novel way of bypassing these problems is the concept of evolutionary hardware. A reconfigurable device, consisting of several switches interconnected with analog/digital parts, is controlled by an evolutionary processor (EP). When the EP detects degradation in the circuit it sends signals to reconfigure the switches, thus forming a new circuit with the desired output. This concept has been developed since the mid-l990s, but one problem remains-the EP cannot degrade substantially. For this reason, extensive testing at extreme temperatures (-180 to 120 C) has been done on devices found on FPGA boards (taking the role of the EP), such as the Analog to Digital and the Digital to Analog Converter. The EP is used in conjunction with a bias-controlled amplifier and a new prototype relay board, which is interconnected with 6 G4-FETs, a tri-input transistor-like element developed at JPL. The greatest improvements to be made lie in the reconfigurable device, so future design and testing of the G4-FET chip is required.
Synthesis of a Fluorescently Labeled 68Ga-DOTA-TOC Analog for Somatostatin Receptor Targeting.
Ghosh, Sukhen C; Hernandez Vargas, Servando; Rodriguez, Melissa; Kossatz, Susanne; Voss, Julie; Carmon, Kendra S; Reiner, Thomas; Schonbrunn, Agnes; Azhdarinia, Ali
2017-07-13
Fluorescently labeled imaging agents can identify surgical margins in real-time to help achieve complete resections and minimize the likelihood of local recurrence. However, photon attenuation limits fluorescence-based imaging to superficial lesions or lesions that are a few millimeters beneath the tissue surface. Contrast agents that are dual-labeled with a radionuclide and fluorescent dye can overcome this limitation and combine quantitative, whole-body nuclear imaging with intraoperative fluorescence imaging. Using a multimodality chelation (MMC) scaffold, IRDye 800CW was conjugated to the clinically used somatostatin analog, 68 Ga-DOTA-TOC, to produce the dual-labeled analog, 68 Ga-MMC(IRDye 800CW)-TOC, with high yield and specific activity. In vitro pharmacological assays demonstrated retention of receptor-targeting properties for the dual-labeled compound with robust internalization that was somatostatin receptor (SSTR) 2-mediated. Biodistribution studies in mice identified the kidneys as the primary excretion route for 68 Ga-MMC(IRDye 800CW)-TOC, along with clearance via the reticuloendothelial system. Higher uptake was observed in most tissues compared to 68 Ga-DOTA-TOC but decreased as a function of time. The combination of excellent specificity for SSTR2-expressing cells and suitable biodistribution indicate potential application of 68 Ga-MMC(IRDye 800CW)-TOC for intraoperative detection of SSTR2-expressing tumors.
The Comparison of Visual Working Memory Representations with Perceptual Inputs
Hyun, Joo-seok; Woodman, Geoffrey F.; Vogel, Edward K.; Hollingworth, Andrew
2008-01-01
The human visual system can notice differences between memories of previous visual inputs and perceptions of new visual inputs, but the comparison process that detects these differences has not been well characterized. This study tests the hypothesis that differences between the memory of a stimulus array and the perception of a new array are detected in a manner that is analogous to the detection of simple features in visual search tasks. That is, just as the presence of a task-relevant feature in visual search can be detected in parallel, triggering a rapid shift of attention to the object containing the feature, the presence of a memory-percept difference along a task-relevant dimension can be detected in parallel, triggering a rapid shift of attention to the changed object. Supporting evidence was obtained in a series of experiments that examined manual reaction times, saccadic reaction times, and event-related potential latencies. However, these experiments also demonstrated that a slow, limited-capacity process must occur before the observer can make a manual change-detection response. PMID:19653755
Advancing High Contrast Adaptive Optics
NASA Astrophysics Data System (ADS)
Ammons, M.; Poyneer, L.; GPI Team
2014-09-01
A long-standing challenge has been to directly image faint extrasolar planets adjacent to their host suns, which may be ~1-10 million times brighter than the planet. Several extreme AO systems designed for high-contrast observations have been tested at this point, including SPHERE, Magellan AO, PALM-3000, Project 1640, NICI, and the Gemini Planet Imager (GPI, Macintosh et al. 2014). The GPI is the world's most advanced high-contrast adaptive optics system on an 8-meter telescope for detecting and characterizing planets outside of our solar system. GPI will detect a previously unstudied population of young analogs to the giant planets of our solar system and help determine how planetary systems form. GPI employs a 44x44 woofer-tweeter adaptive optics system with a Shack-Hartmann wavefront sensor operating at 1 kHz. The controller uses Fourier-based reconstruction and modal gains optimized from system telemetry (Poyneer et al. 2005, 2007). GPI has an apodized Lyot coronal graph to suppress diffraction and a near-infrared integral field spectrograph for obtaining planetary spectra. This paper discusses current performance limitations and presents the necessary instrumental modifications and sensitivity calculations for scenarios related to high-contrast observations of non-sidereal targets.
Wang, Chang-Lin; Qiu, Ting-Ting; Yang, Dai-Jun; Yuan, Bi-Yu; Han, Feng-Tong; Li, Li; Gu, Ning
2017-04-01
C-terminal esterification of opioid peptides may change their opioid activities due to the modified physicochemical properties. In the present study, the pharmacological activities of C-terminal esterified endomorphin-2 (EM-2) analogs 1-3 were characterized by in vitro metabolic stability and octanol/buffer distribution assays. Also, the antinociceptive profiles in the radiant heat paw withdrawal test and related side effects of these analogs were determined. Our results showed that all three analogs significantly increased the metabolic stability and lipophilicity. Moreover, analogs 1-3 displayed potent antinociceptive activities after intracerebroventricular (i.c.v.) administration. Analogs 1 and 3 exhibited about 2-fold higher antinociception than EM-2, and differential opioid mechanisms were involved. In addition, EM-2 at 50 μmol/kg failed to produce any significant antinociceptive activity after subcutaneous (s.c.) administration, whereas equimolar dose of analogs 1-3 produced significant analgesic effects. Analog 3 showed the highest antinociceptive activity after systemic administration, which was consistent with its in vitro stability and lipophilicity. We further evaluated the antinociceptive tolerance of analogs 1-3. In acute tolerance test, analogs 1-3 shifted the dose-response curves rightward by only 1.4-3.2 fold as determined by tolerance ratio, whereas EM-2 by 5.6-fold, demonstrating reduced antinociceptive tolerance. Also, analogs 1 and 2 decreased chronic antinociceptive tolerance by central and peripheral administration of drugs. In particular, analogs 3 displayed insignificant chronic antinociceptive tolerance. Furthermore, analogs 1-3 were less prone to induce gastrointestinal side effects at analgesic doses. The present investigation gave the evidence that C-terminal esterified modifications of EM-2 will facilitate the development of novel opioid analgesics with reduced side effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Wearable Healthcare System With a 13.7 μA Noise Tolerant ECG Processor.
Izumi, Shintaro; Yamashita, Ken; Nakano, Masanao; Kawaguchi, Hiroshi; Kimura, Hiromitsu; Marumoto, Kyoji; Fuchikami, Takaaki; Fujimori, Yoshikazu; Nakajima, Hiroshi; Shiga, Toshikazu; Yoshimoto, Masahiko
2015-10-01
To prevent lifestyle diseases, wearable bio-signal monitoring systems for daily life monitoring have attracted attention. Wearable systems have strict size and weight constraints, which impose significant limitations of the battery capacity and the signal-to-noise ratio of bio-signals. This report describes an electrocardiograph (ECG) processor for use with a wearable healthcare system. It comprises an analog front end, a 12-bit ADC, a robust Instantaneous Heart Rate (IHR) monitor, a 32-bit Cortex-M0 core, and 64 Kbyte Ferroelectric Random Access Memory (FeRAM). The IHR monitor uses a short-term autocorrelation (STAC) algorithm to improve the heart-rate detection accuracy despite its use in noisy conditions. The ECG processor chip consumes 13.7 μA for heart rate logging application.
Design and validation of wireless system for oil monitoring base on optical sensing unit
NASA Astrophysics Data System (ADS)
Niu, Liqun; Wang, Weiming; Zhang, Shuaishuai; Li, Zhirui; Yu, Yan; Huang, Hui
2017-04-01
According to the situation of oil leakage and the development of oil detection technology, a wireless monitoring system, combining with the sensor technology, optical measurement technology, and wireless technology, is designed. In this paper, the architecture of a wireless system is designed. In the hardware, the collected data, acquired by photoelectric conversion and analog to digital conversion equipment, will be sent to the upper machine where they are saved and analyzed. The experimental results reveals that the wireless system has the characteristics of higher precision, more real-time and more convenient installation, it can reflect the condition of the measuring object truly and implement the dynamic monitoring for a long time on-site, stability—thus it has a good application prospect in the oil monitoring filed.
An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors
NASA Technical Reports Server (NTRS)
Parrish, E. A.; Mcvey, E. S.
1977-01-01
The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system.
The Kepler Mission: A Search for Terrestrial Planets - Development Status
NASA Technical Reports Server (NTRS)
Koch, David; Borucki, W.; Mayer, D.; Caldwell, D.; Jenkens, J.; Dunham, E.; Geary, J.; Bachtell, E.; Deininger, W.; Philbrick, R.
2003-01-01
We have embarked on a mission to detect terrestrial planets. The space mission has been optimized to search for earth-size planets (0.5 to 10 earth masses) in the habitable zone (HZ) of solar-like stars. Given this design, the mission will necessarily be capable of not only detecting Earth analogs, but a wide range of planetary types and characteristics ranging from Mercury-size objects with orbital periods of days to gas-giants in decade long orbits that have undeniable signatures even with only one transit detected. The mission is designed to survey the full range of spectral-type dwarf stars. The approach is to detect the periodic signal of transiting planets. Three or more transits of a star exceeding a combined threshold of eight sigma with a statistically consistent period, brightness change and duration provide a rigorous method of detection. From the relative brightness change the planet size can be calculated. From the period the orbital size can be calculated and its location relative to the HZ determined. Presented here are: the mission goals, the top level system design requirements derived from these goals that drive the flight system design, a number of the trades that have lead to the mission concept, expected photometric performance dependence on stellar brightness and spectral type based on the system 'noise tree' analysis. Updated estimates are presented of the numbers of detectable planets versus size, orbit, stellar spectral type and distances based on a planet frequency hypothesis. The current project schedule and organization are given.
Zhu, Zhi; Zhang, Wenhua; Leng, Xuefei; Zhang, Mingxia; Guan, Zhichao; Lu, Jiangquan; Yang, Chaoyong James
2012-10-21
Genetic alternations can serve as highly specific biomarkers to distinguish fatal bacteria or cancer cells from their normal counterparts. However, these mutations normally exist in very rare amount in the presence of a large excess of non-mutated analogs. Taking the notorious pathogen E. coli O157:H7 as the target analyte, we have developed an agarose droplet-based microfluidic ePCR method for highly sensitive, specific and quantitative detection of rare pathogens in the high background of normal bacteria. Massively parallel singleplex and multiplex PCR at the single-cell level in agarose droplets have been successfully established. Moreover, we challenged the system with rare pathogen detection and realized the sensitive and quantitative analysis of a single E. coli O157:H7 cell in the high background of 100,000 excess normal K12 cells. For the first time, we demonstrated rare pathogen detection through agarose droplet microfluidic ePCR. Such a multiplex single-cell agarose droplet amplification method enables ultra-high throughput and multi-parameter genetic analysis of large population of cells at the single-cell level to uncover the stochastic variations in biological systems.
Experimental study of thin film sensor networks for wind turbine blade damage detection
NASA Astrophysics Data System (ADS)
Downey, A.; Laflamme, S.; Ubertini, F.; Sauder, H.; Sarkar, P.
2017-02-01
Damage detection of wind turbine blades is difficult due to their complex geometry and large size, for which large deployment of sensing systems is typically not economical. A solution is to develop and deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel skin-type strain gauge for measuring strain over very large surfaces. The skin, a type of large-area electronics, is constituted from a network of soft elastomeric capacitors. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a dense network of soft elastomeric capacitors to detect, localize, and quantify damage on wind turbine blades. We also leverage mature off-the-shelf technologies, in particular resistive strain gauges, to augment such dense sensor network with high accuracy data at key locations, therefore constituting a hybrid dense sensor network. The proposed hybrid dense sensor network is installed inside a wind turbine blade model, and tested in a wind tunnel to simulate an operational environment. Results demonstrate the ability of the hybrid dense sensor network to detect, localize, and quantify damage.
Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip.
Wang, Tanyu; Zhang, Mohan; Dreher, Dakota D; Zeng, Yong
2013-11-07
Quantitative detection of low abundance proteins is of significant interest for biological and clinical applications. Here we report an integrated microfluidic solid-phase ELISA platform for rapid and ultrasensitive detection of proteins with a wide dynamic range. Compared to the existing microfluidic devices that perform affinity capture and enzyme-based optical detection in a constant channel volume, the key novelty of our design is two-fold. First, our system integrates a microwell-patterned assay chamber that can be pneumatically actuated to significantly reduce the volume of chemifluorescent reaction, markedly improving the sensitivity and speed of ELISA. Second, monolithic integration of on-chip pumps and the actuatable assay chamber allow programmable fluid delivery and effective mixing for rapid and sensitive immunoassays. Ultrasensitive microfluidic ELISA was demonstrated for insulin-like growth factor 1 receptor (IGF-1R) across at least five orders of magnitude with an extremely low detection limit of 21.8 aM. The microwell-based solid-phase ELISA strategy provides an expandable platform for developing the next-generation microfluidic immunoassay systems that integrate and automate digital and analog measurements to further improve the sensitivity, dynamic ranges, and reproducibility of proteomic analysis.
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.
2010-04-01
Malware are analogs of viruses. Viruses are comprised of large numbers of polypeptide proteins. The shape and function of the protein strands determines the functionality of the segment, similar to a subroutine in malware. The full combination of subroutines is the malware organism, in analogous fashion as a collection of polypeptides forms protein structures that are information bearing. We propose to apply the methods of Bioinformatics to analyze malware to provide a rich feature set for creating a unique and novel detection and classification scheme that is originally applied to Bioinformatics amino acid sequencing. Our proposed methods enable real time in situ (in contrast to in vivo) detection applications.
Ding, Hui; Ding, Wanjing; Ma, Zhongjun
2017-01-01
Two prenylated indole alkaloids were isolated from the ethyl acetate extracts of a marine-derived fungus Penicillium sp. NH-SL and one of them exhibited potent cytotoxic activity against mouse hepa 1c1c7 cells. In order to detect other bioactive analogs, we used liquid chromatogram tandem mass spectrometry (LC-MS/MS) to analyze the mass spectrometric characteristics of the isolated compounds as well as the crude extracts. As a result, three other analogs were detected, and their structures were deduced according to the similar fragmentation patterns. This is the first systematic report on the mass spectrometric characteristics of prenylated indole derivatives. PMID:28327529
Influence of Benzene on the Optical Properties of Titan Haze Laboratory Analogs in the Mid-Visible
NASA Technical Reports Server (NTRS)
Yoon, Y. Heidi; Trainer, Melissa G.; Tolbert, Margaret A.
2012-01-01
The Cassini Ion and Neutral Mass Spectrometer (Waite, Jr., et al., 2007) and the Composite Infrared Spectrometer (Coustenis, A., et al., 2007) have detected benzene in the upper atmosphere and stratosphere of Titan. Photochemical reactions involving benzene in Titan's atmosphere may influence polycyclic aromatic hydrocarbon formation, aerosol formation, and the radiative balance of Titan's atmosphere. We measure the effect of benzene on the optical properties of Titan analog particles in the laboratory. Using cavity ring-down aerosol extinction spectroscopy, we determine the real and imaginary refractive index at 532 nm of particles formed by benzene photolysis and Titan analog particles formed with ppm-levels of benzene. These studies are compared to the previous study by Hasenkopf, et a1. (2010) of Titan analog particles formed by methane photolysis.
Antarctic atmospheric infrasound. Final technical report, 1 July 1981-30 September 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, C.R.; McKibben, B.N.
1986-11-01
In order to monitor atmospheric infrasonic waves in the passband from 0.1 to 0.01 Hz a digital infrasonic detection system was installed in Antarctica on the Ross Ice shelf near McMurdo Station on McMurdo Sound. An array of seven infrasonic microphones subtending an area of about 35 sg km was operated in Windless Bight. The analog microphone data were telemetered to McMurdo station where the infrasonic date were digitized and subjected to on-line real-time analysis to detect traveling infrasonic waves with periods from 10 to 100 seconds. During the period of operation of the Antartic infrasonic observatory, hundreds of infrasonicmore » signals were detected in association with many natural sources such as the aurora australis, marine storm sea-air interactions, volcanic eruptions, mountain generated lee-wave effects, large meteors and auroral electrojet supersonic motions.« less
Investigative change detection: identifying new topics using lexicon-based search
NASA Astrophysics Data System (ADS)
Hintz, Kenneth J.
2002-08-01
In law enforcement there is much textual data which needs to be searched in order to detect new threats. A new methodology which can be applied to this need is the automatic searching of the contents of documents from known sources to construct a lexicon of words used by that source. When analyzing future documents, the occurrence of words which have not been lexiconized are indicative of the introduction of a new topic into the source's lexicon which should be examined in its context by an analyst. A system analogous to this has been built and used to detect Fads and Categories on web sites. Fad refers to the first appearance of a word not in the lexicon; Category refers to the repeated appearance of a Fad word and the exceeding of some frequency or spatial occurrence metric indicating a permanence to the Category.
The Characterization of Biosignatures in Caves Using an Instrument Suite.
Uckert, Kyle; Chanover, Nancy J; Getty, Stephanie; Voelz, David G; Brinckerhoff, William B; McMillan, Nancy; Xiao, Xifeng; Boston, Penelope J; Li, Xiang; McAdam, Amy; Glenar, David A; Chavez, Arriana
2017-12-01
The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques. Key Words: Biosignature suites-Caves-Mars-Life detection. Astrobiology 17, 1203-1218.
Dial Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL
NASA Technical Reports Server (NTRS)
Newchurch, Mike; Kuang, Shi; Burris, John; Johnson, Steve; Long, Stephanie
2008-01-01
A tropospheric ozone DIfferential Absorption Lidar (DIAL) system has been developed jointly by NASA and the University of Alabama at Huntsville (UAH). Two separated Nd:YAG pumped dye laser systems produce the laser pulses with wavelengths of 285 and 291 nm at 20 Hz frequency. The receiver is a Newtonian telescope with a 40 cm primary and a two-channel aft optics unit. The detection system currently uses photon counting to facilitate operations at the maximum achievable altitude. This lidar measures free-tropospheric ozone profiles between 4-10 km at Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) in UAH campus (ASL 206 m) under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from approx.5% at 4 km to approx.60% at 10 km with 750-m vertical resolution and 30-minute integration. Three Hamamatsu 7400 PMTs and analog detection technique will be added on the current system to extend the measurement to approx.100 m above ground to monitor the PBL and lower tropospheric ozone variations.
System for transmitting low frequency analog signals over AC power lines
Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.
1989-01-01
A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.
System for transmitting low frequency analog signals over AC power lines
Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.
1989-09-05
A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.
A system for tranmitting low frequency analog signals over ac power lines
Baker, S.P.; Durall, R.L.; Haynes, H.D.
1987-07-30
A system for transmitting low frequency analog signals over ac power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an ac power line. The modulation signal frequency range is selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the ac power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal. 4 figs.
NASA Astrophysics Data System (ADS)
Zeng, Shihao; Chen, Manna; Zhang, Ting; Hu, Wei; Guo, Qi; Lu, Daquan
2018-01-01
We illuminate an analytical model of soliton interactions in lead glass by analogizing to a gravitational force system. The orbits of spiraling solitons under a long-range interaction are given explicitly and demonstrated to follow Newton's second law of motion and the Binet equation by numerical simulations. The condition for circular orbits is obtained and the oscillating orbits are proved not to be closed. We prove the analogy between the nonlocal nonlinear optical system and gravitational system and specify the quantitative relation of the quantity between the two models.
Letter box line blackener for the HDTV/conventional-analog hybrid system
Wysocki, Frederick J.; Nickel, George H.
2006-07-18
A blackener for letter box lines associated with a HDTV/conventional-analog hybrid television transmission where the blackener counts horizontal sync pulses contained in the HDTV/conventional-analog hybrid television transmission and determines when the HDTV/conventional-analog hybrid television transmission is in letter-box lines: if it is, then the blackener sends substitute black signal to an output; and if it is not, then the blackener sends the HDTV/conventional-analog hybrid television transmission to the output.
Property-Based Monitoring of Analog and Mixed-Signal Systems
NASA Astrophysics Data System (ADS)
Havlicek, John; Little, Scott; Maler, Oded; Nickovic, Dejan
In the recent past, there has been a steady growth of the market for consumer embedded devices such as cell phones, GPS and portable multimedia systems. In embedded systems, digital, analog and software components are combined on a single chip, resulting in increasingly complex designs that introduce richer functionality on smaller devices. As a consequence, the potential insertion of errors into a design becomes higher, yielding an increasing need for automated analog and mixed-signal validation tools. In the purely digital setting, formal verification based on properties expressed in industrial specification languages such as PSL and SVA is nowadays successfully integrated in the design flow. On the other hand, the validation of analog and mixed-signal systems still largely depends on simulation-based, ad-hoc methods. In this tutorial, we consider some ingredients of the standard verification methodology that can be successfully exported from digital to analog and mixed-signal setting, in particular property-based monitoring techniques. Property-based monitoring is a lighter approach to the formal verification, where the system is seen as a "black-box" that generates sets of traces, whose correctness is checked against a property, that is its high-level specification. Although incomplete, monitoring is effectively used to catch faults in systems, without guaranteeing their full correctness.
Hadamard multimode optical imaging transceiver
Cooke, Bradly J; Guenther, David C; Tiee, Joe J; Kellum, Mervyn J; Olivas, Nicholas L; Weisse-Bernstein, Nina R; Judd, Stephen L; Braun, Thomas R
2012-10-30
Disclosed is a method and system for simultaneously acquiring and producing results for multiple image modes using a common sensor without optical filtering, scanning, or other moving parts. The system and method utilize the Walsh-Hadamard correlation detection process (e.g., functions/matrix) to provide an all-binary structure that permits seamless bridging between analog and digital domains. An embodiment may capture an incoming optical signal at an optical aperture, convert the optical signal to an electrical signal, pass the electrical signal through a Low-Noise Amplifier (LNA) to create an LNA signal, pass the LNA signal through one or more correlators where each correlator has a corresponding Walsh-Hadamard (WH) binary basis function, calculate a correlation output coefficient for each correlator as a function of the corresponding WH binary basis function in accordance with Walsh-Hadamard mathematical principles, digitize each of the correlation output coefficient by passing each correlation output coefficient through an Analog-to-Digital Converter (ADC), and performing image mode processing on the digitized correlation output coefficients as desired to produce one or more image modes. Some, but not all, potential image modes include: multi-channel access, temporal, range, three-dimensional, and synthetic aperture.
Nam, Hyeong Soo; Kang, Woo Jae; Lee, Min Woo; Song, Joon Woo; Kim, Jin Won; Oh, Wang-Yuhl; Yoo, Hongki
2018-01-01
The pathophysiological progression of chronic diseases, including atherosclerosis and cancer, is closely related to compositional changes in biological tissues containing endogenous fluorophores such as collagen, elastin, and NADH, which exhibit strong autofluorescence under ultraviolet excitation. Fluorescence lifetime imaging (FLIm) provides robust detection of the compositional changes by measuring fluorescence lifetime, which is an inherent property of a fluorophore. In this paper, we present a dual-modality system combining a multispectral analog-mean-delay (AMD) FLIm and a high-speed swept-source optical coherence tomography (OCT) to simultaneously visualize the cross-sectional morphology and biochemical compositional information of a biological tissue. Experiments using standard fluorescent solutions showed that the fluorescence lifetime could be measured with a precision of less than 40 psec using the multispectral AMD-FLIm without averaging. In addition, we performed ex vivo imaging on rabbit iliac normal-looking and atherosclerotic specimens to demonstrate the feasibility of the combined FLIm-OCT system for atherosclerosis imaging. We expect that the combined FLIm-OCT will be a promising next-generation imaging technique for diagnosing atherosclerosis and cancer due to the advantages of the proposed label-free high-precision multispectral lifetime measurement. PMID:29675330
Structural design of intrinsically fluorescent oxysterols.
Nåbo, Lina J; Modzel, Maciej; Krishnan, Kathiresan; Covey, Douglas F; Fujiwara, Hideji; Ory, Daniel S; Szomek, Maria; Khandelia, Himanshu; Wüstner, Daniel; Kongsted, Jacob
2018-05-01
Oxysterols are oxidized derivatives of cholesterol with many important biological functions. Trafficking of oxysterols in and between cells is not well studied, largely due to the lack of appropriate oxysterol analogs. Intrinsically fluorescent oxysterols present a new route towards direct observation of intracellular oxysterol trafficking by fluorescence microscopy. We characterize the fluorescence properties of the existing fluorescent 25-hydroxycholesterol analog 25-hydroxycholestatrienol, and propose a new probe with an extended conjugated system. The location of both probes inside a membrane is analyzed and compared with that of 25-hydroxycholesterol using molecular dynamics simulations. The analogs' one- and two-photon absorption properties inside the membrane are evaluated using electronic structure calculations with polarizable embedding. Due to predicted keto-enol tautomerisation of the new oxysterol analog, we also evaluate the keto form. Both analogs are found to be good probe candidates for 25-hydroxycholesterol, provided that the new analog remains in the enol-form. Only the new analog with extended conjugated system shows significant two-photon absorption, which is strongly enhanced by the presence of the membrane. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ferkinhoff, Carl; Brisbin, Drew; Parshley, Stephen; Nikola, Thomas; Stacey, Gordon J.; Schoenwald, Justin; Higdon, James L.; Higdon, Sarah J. U.; Verma, Aprajita; Riechers, Dominik; Hailey-Dunsheath, Steven; Menten, Karl M.; Güsten, Rolf; Weiß, Axel; Irwin, Kent; Cho, Hsiao M.; Niemack, Michael; Halpern, Mark; Amiri, Mandana; Hasselfield, Matthew; Wiebe, D. V.; Ade, Peter A. R.; Tucker, Carol E.
2014-01-01
We recently commissioned our new spectrometer, the second-generation z(Redshift) and Early Universe Spectrometer (ZEUS-2) on the Atacama Pathfinder Experiment telescope. ZEUS-2 is a submillimeter grating spectrometer optimized for detecting the faint and broad lines from distant galaxies that are redshifted into the telluric windows from 200 to 850 μm. It uses a focal plane array of transition-edge sensed bolometers, the first use of these arrays for astrophysical spectroscopy. ZEUS-2 promises to be an important tool for studying galaxies in the years to come because of its synergy with Atacama Large Millimeter Array and its capabilities in the short submillimeter windows that are unique in the post-Herschel era. Here, we report on our first detection of the [C II] 158 μm line with ZEUS-2. We detect the line at z ~ 1.8 from H-ATLAS J091043.1-000322 with a line flux of (6.44 ± 0.42) × 10-18 W m-2. Combined with its far-IR luminosity and a new Herschel-PACS detection of the [O I] 63 μm line, we model the line emission as coming from a photo-dissociation region with far-ultraviolet radiation field, G ~ 2 × 104 G 0, gas density, n ~ 1 × 103 cm-3 and size between ~0.4 and 1 kpc. On the basis of this model, we conclude that H-ATLAS J091043.1-000322 is a high-redshift analog of a local ultra-luminous IR galaxy; i.e., it is likely the site of a compact starburst caused by a major merger. Further identification of these merging systems is important for constraining galaxy formation and evolution models.
Phase-locked loops. [in analog and digital circuits communication system
NASA Technical Reports Server (NTRS)
Gupta, S. C.
1975-01-01
An attempt to systematically outline the work done in the area of phase-locked loops which are now used in modern communication system design is presented. The analog phase-locked loops are well documented in several books but discrete, analog-digital, and digital phase-locked loop work is scattered. Apart from discussing the various analysis, design, and application aspects of phase-locked loops, a number of references are given in the bibliography.
NASA Technical Reports Server (NTRS)
Wagner, L. J.
1977-01-01
The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.
The LUX experiment - trigger and data acquisition systems
NASA Astrophysics Data System (ADS)
Druszkiewicz, Eryk
2013-04-01
The Large Underground Xenon (LUX) detector is a two-phase xenon time projection chamber designed to detect interactions of dark matter particles with the xenon nuclei. Signals from the detector PMTs are processed by custom-built analog electronics which provide properly shaped signals for the trigger and data acquisition (DAQ) systems. During calibrations, both systems must be able to handle high rates and have large dynamic ranges; during dark matter searches, maximum sensitivity requires low thresholds. The trigger system uses eight-channel 64-MHz digitizers (DDC-8) connected to a Trigger Builder (TB). The FPGA cores on the digitizers perform real-time pulse identification (discriminating between S1 and S2-like signals) and event localization. The TB uses hit patterns, hit maps, and maximum response detection to make trigger decisions, which are reached within few microseconds after the occurrence of an event of interest. The DAQ system is comprised of commercial digitizers with customized firmware. Its real-time baseline suppression allows for a maximum event acquisition rate in excess of 1.5 kHz, which results in virtually no deadtime. The performance of the trigger and DAQ systems during the commissioning runs of LUX will be discussed.
Tolbert, Jeremy R; Kabali, Pratik; Brar, Simeranjit; Mukhopadhyay, Saibal
2009-01-01
We present a digital system for adaptive data compression for low power wireless transmission of Electroencephalography (EEG) data. The proposed system acts as a base-band processor between the EEG analog-to-digital front-end and RF transceiver. It performs a real-time accuracy energy trade-off for multi-channel EEG signal transmission by controlling the volume of transmitted data. We propose a multi-core digital signal processor for on-chip processing of EEG signals, to detect signal information of each channel and perform real-time adaptive compression. Our analysis shows that the proposed approach can provide significant savings in transmitter power with minimal impact on the overall signal accuracy.
Ultra-low-power wearable biopotential sensor nodes.
Yazicioglu, R F; Torfs, T; Penders, J; Romero, I; Kim, H; Merken, P; Gyselinckx, B; Yoo, H J; Van Hoof, C
2009-01-01
This paper discusses ultra-low-power wireless sensor nodes intended for wearable biopotential monitoring. Specific attention is given to mixed-signal design approaches and their impact on the overall system power dissipation. Examples of trade-offs in power dissipation between analog front-ends and digital signal processing are also given. It is shown how signal filtering can further reduce the internal power consumption of a node. Such power saving approaches are indispensable as real-life tests of custom wireless ECG patches reveal the need for artifact detection and correction. The power consumption of such additional features has to come from power savings elsewhere in the system as the overall power budget cannot increase.
NASA Technical Reports Server (NTRS)
Glavin, D.; Freissnet, C.; Eigenbrode, J.; Miller, K.; Martin, M.; Summons, R. E.; Steele, A.; Archer, D.; Brunner, A.; Buch, A.;
2014-01-01
The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources.
A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors.
Zhang, Xiaoyang; Lian, Yong
2014-12-01
This paper presents an ultra-low-power event-driven analog-to-digital converter (ADC) with real-time QRS detection for wearable electrocardiogram (ECG) sensors in wireless body sensor network (WBSN) applications. Two QRS detection algorithms, pulse-triggered (PUT) and time-assisted PUT (t-PUT), are proposed based on the level-crossing events generated from the ADC. The PUT detector achieves 97.63% sensitivity and 97.33% positive prediction in simulation on the MIT-BIH Arrhythmia Database. The t-PUT improves the sensitivity and positive prediction to 97.76% and 98.59% respectively. Fabricated in 0.13 μm CMOS technology, the ADC with QRS detector consumes only 220 nW measured under 300 mV power supply, making it the first nanoWatt compact analog-to-information (A2I) converter with embedded QRS detector.
Jang, Jun-Ho; Lee, Jong-Soo; Yotsu-Yamashita, Mari
2010-01-01
Tetrodotoxin (TTX) and its deoxy analogs, 5-deoxyTTX, 11-deoxyTTX, 6,11-dideoxyTTX, and 5,6,11-trideoxyTTX, were quantified in the tissues of three female and three male specimens of the marine puffer fish, Fugu niphobles, from the southern coast of Korea, and in the whole body of the brackishwater puffer fishes, Tetraodon nigroviridis (12 specimens) and Tetrodon biocellatus (three specimens) from Southeast Asia using LC/MS in single ion mode (SIM). Identification of these four deoxy analogs in the ovarian tissue of F. niphobles were further confirmed by LC/MS/MS. TTX and 5,6,11-trideoxyTTX were detected in all three puffer fish species as the major TTX analogs, similar to Japanese Fugu pardalis. While 6,11-dideoxyTTX was also found to be a major analog in almost all tissues of Korean F. niphobles, this analog was minor in the two Tetraodon species and Japanese F. pardalis. Among the tissues of F. niphobles, the concentrations of TTXs were highest in the ovaries (female) and skin (female and male). PMID:20479966
IADE: a system for intelligent automatic design of bioisosteric analogs
NASA Astrophysics Data System (ADS)
Ertl, Peter; Lewis, Richard
2012-11-01
IADE, a software system supporting molecular modellers through the automatic design of non-classical bioisosteric analogs, scaffold hopping and fragment growing, is presented. The program combines sophisticated cheminformatics functionalities for constructing novel analogs and filtering them based on their drug-likeness and synthetic accessibility using automatic structure-based design capabilities: the best candidates are selected according to their similarity to the template ligand and to their interactions with the protein binding site. IADE works in an iterative manner, improving the fitness of designed molecules in every generation until structures with optimal properties are identified. The program frees molecular modellers from routine, repetitive tasks, allowing them to focus on analysis and evaluation of the automatically designed analogs, considerably enhancing their work efficiency as well as the area of chemical space that can be covered. The performance of IADE is illustrated through a case study of the design of a nonclassical bioisosteric analog of a farnesyltransferase inhibitor—an analog that has won a recent "Design a Molecule" competition.
Ahmadi, Mahmoud Kamal; Fawaz, Samar; Fang, Lei; Yu, Zhipeng; Pfeifer, Blaine A
2016-05-01
The production of the mixed nonribosomal peptide-polyketide natural product yersiniabactin (Ybt) has been established using E. coli as a heterologous host. In this study, precursor-directed biosynthesis was used to generate five new analogs of Ybt, demonstrating the flexibility of the heterologous system and the biosynthetic process in allowing compound diversity. A combination of biosynthetic and cellular engineering was then used to influence the production metrics of the resulting analogs. First, the cellular levels and activity of FadL, a hydrocarbon transport protein, were tested for subsequent influence upon exogenous precursor uptake and Ybt analog production with a positive correlation observed between FadL over-production and analog formation. Next, a Ybt biosynthetic editing enzyme was removed from the heterologous system which decreased native compound production but increased analog formation. A final series of experiments enhanced endogenous anthranilate towards complete pathway formation of the associated analog which showed a selective ability to bind gold. © 2015 Wiley Periodicals, Inc.
IADE: a system for intelligent automatic design of bioisosteric analogs.
Ertl, Peter; Lewis, Richard
2012-11-01
IADE, a software system supporting molecular modellers through the automatic design of non-classical bioisosteric analogs, scaffold hopping and fragment growing, is presented. The program combines sophisticated cheminformatics functionalities for constructing novel analogs and filtering them based on their drug-likeness and synthetic accessibility using automatic structure-based design capabilities: the best candidates are selected according to their similarity to the template ligand and to their interactions with the protein binding site. IADE works in an iterative manner, improving the fitness of designed molecules in every generation until structures with optimal properties are identified. The program frees molecular modellers from routine, repetitive tasks, allowing them to focus on analysis and evaluation of the automatically designed analogs, considerably enhancing their work efficiency as well as the area of chemical space that can be covered. The performance of IADE is illustrated through a case study of the design of a nonclassical bioisosteric analog of a farnesyltransferase inhibitor--an analog that has won a recent "Design a Molecule" competition.
Characterization of Human Mammary Epithelial Stem Cells
2010-10-01
This term reflects the method used to detect murine mammary stem cells which is based on their individual ability to regenerate an entire mammary tree......mammary stem cells. We now describe a method for detecting an analogous subpopulation in normal human mammary tissue. Dissociated cells are suspended
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs-Gedrim, Robin B.; Agarwal, Sapan; Knisely, Kathrine E.
Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaO x, andmore » two conducting metallization systems, Cu-SiO 2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. As a result, this suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.« less
Jacobs-Gedrim, Robin B.; Agarwal, Sapan; Knisely, Kathrine E.; ...
2017-12-01
Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaO x, andmore » two conducting metallization systems, Cu-SiO 2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. As a result, this suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.« less
Digital redesign of the control system for the Robotics Research Corporation model K-1607 robot
NASA Technical Reports Server (NTRS)
Carroll, Robert L.
1989-01-01
The analog control system for positioning each link of the Robotics Research Corporation Model K-1607 robot manipulator was redesigned for computer control. In order to accomplish the redesign, a linearized model of the dynamic behavior of the robot was developed. The parameters of the model were determined by examination of the input-output data collected in closed-loop operation of the analog control system. The robot manipulator possesses seven degrees of freedom in its motion. The analog control system installed by the manufacturer of the robot attempts to control the positioning of each link without feedback from other links. Constraints on the design of a digital control system include: the robot cannot be disassembled for measurement of parameters; the digital control system must not include filtering operations if possible, because of lack of computer capability; and criteria of goodness of control system performing is lacking. The resulting design employs sampled-data position and velocity feedback. The criteria of the design permits the control system gain margin and phase margin, measured at the same frequencies, to be the same as that provided by the analog control system.
Resistive RAMs as analog trimming elements
NASA Astrophysics Data System (ADS)
Aziza, H.; Perez, A.; Portal, J. M.
2018-04-01
This work investigates the use of Resistive Random Access Memory (RRAM) as an analog trimming device. The analog storage feature of the RRAM cell is evaluated and the ability of the RRAM to hold several resistance states is exploited to propose analog trim elements. To modulate the memory cell resistance, a series of short programming pulses are applied across the RRAM cell allowing a fine calibration of the RRAM resistance. The RRAM non volatility feature makes the analog device powers up already calibrated for the system in which the analog trimmed structure is embedded. To validate the concept, a test structure consisting of a voltage reference is evaluated.
High-order synchronization of hair cell bundles
NASA Astrophysics Data System (ADS)
Levy, Michael; Molzon, Adrian; Lee, Jae-Hyun; Kim, Ji-Wook; Cheon, Jinwoo; Bozovic, Dolores
2016-12-01
Auditory and vestibular hair cell bundles exhibit active mechanical oscillations at natural frequencies that are typically lower than the detection range of the corresponding end organs. We explore how these noisy nonlinear oscillators mode-lock to frequencies higher than their internal clocks. A nanomagnetic technique is used to stimulate the bundles without an imposed mechanical load. The evoked response shows regimes of high-order mode-locking. Exploring a broad range of stimulus frequencies and intensities, we observe regions of high-order synchronization, analogous to Arnold Tongues in dynamical systems literature. Significant areas of overlap occur between synchronization regimes, with the bundle intermittently flickering between different winding numbers. We demonstrate how an ensemble of these noisy spontaneous oscillators could be entrained to efficiently detect signals significantly above the characteristic frequencies of the individual cells.
High-order synchronization of hair cell bundles
Levy, Michael; Molzon, Adrian; Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo; Bozovic, Dolores
2016-01-01
Auditory and vestibular hair cell bundles exhibit active mechanical oscillations at natural frequencies that are typically lower than the detection range of the corresponding end organs. We explore how these noisy nonlinear oscillators mode-lock to frequencies higher than their internal clocks. A nanomagnetic technique is used to stimulate the bundles without an imposed mechanical load. The evoked response shows regimes of high-order mode-locking. Exploring a broad range of stimulus frequencies and intensities, we observe regions of high-order synchronization, analogous to Arnold Tongues in dynamical systems literature. Significant areas of overlap occur between synchronization regimes, with the bundle intermittently flickering between different winding numbers. We demonstrate how an ensemble of these noisy spontaneous oscillators could be entrained to efficiently detect signals significantly above the characteristic frequencies of the individual cells. PMID:27974743
Spectral Characterization of Analog Samples in Anticipation of OSIRIS-REx's Arrival at Bennu
NASA Technical Reports Server (NTRS)
Donaldson Hanna, K. L.; Schrader, D. L.; Bowles, N. E.; Clark, B. E.; Cloutis, E. A.; Connolly, H. C., Jr.; Hamilton, V. E.; Keller, L. P.; Lauretta, D. S.; Lim, L. F.;
2017-01-01
NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission successfully launched on September 8th, 2016. During its rendezvous with near-Earth asteroid (101955) Bennu beginning in 2018, OSIRIS-REx will characterize the asteroid's physical, mineralogical, and chemical properties in an effort to globally map the properties of Bennu, a primitive carbonaceous asteroid, and choose a sampling location [e.g. 1]. In preparation for these observations, we spectrally characterized a suite of analog samples across visible, near- and thermal-infrared wavelengths and used these in initial tests of phase detection and abundance determination software algorithms. Here we present the thermal infrared laboratory measurements of the analog sample suite measured under asteroidlike conditions, which are relevant to the interpretation of spectroscopic observations by the OSIRIS-REx Thermal Emission Spectrometer (OTES) [2, 3]. This suite of laboratory measurements of asteroid analogs under asteroid-like conditions is the first of their kind.
Jiang, Keren; Wang, Yinan; Thakur, Garima; Kotsuchibashi, Yohei; Naicker, Selvaraj; Narain, Ravin; Thundat, Thomas
2017-05-10
A conjugated polymer interface consisting of an oxaborole containing polymer and a glycopolymer was used for achieving very high selectivity in dopamine (DA) detection. The optimum binding affinity between the polymers promotes the selectivity to DA through a displacement mechanism while remaining unaffected by other structurally related analogs and saccharide derivatives. Real-time detection of DA with very high selectivity and sensitivity has been demonstrated by immobilizing the polymer conjugates on surface plasmon resonance (SPR) and microcantilever (MCL) sensor platforms. Using the conjugated polymer sensing layer, the SPR biosensor was capable of detecting DA in the concentration range of 1 × 10 -9 to 1 × 10 -4 mol L -1 , whereas the MCL sensor showed a limit of detection (LOD) of 5 × 10 -11 mol L -1 . We find that the sensing mechanism is based on DA-induced reversible swelling of the conjugated polymer layer and this allows regeneration and reuse of the sensor multiple times. Also, we conclude that SPR is a suitable sensor platform for DA in-line detection at clinical level considering the detection time and stability, whereas MCL can achieve a much lower LOD.
Clustering analysis of moving target signatures
NASA Astrophysics Data System (ADS)
Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto
2010-04-01
Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.
Worrell, V E; Nagle, D P
1990-01-01
The enzymes involved in the purine interconversion pathway of wild-type and purine analog-resistant strains of Methanobacterium thermoautotrophicum Marburg were assayed by radiometric and spectrophotometric methods. Wild-type cells incorporated labeled adenine, guanine, and hypoxanthine, whereas mutant strains varied in their ability to incorporate these bases. Adenine, guanine, hypoxanthine, and xanthine were activated by phosphoribosyltransferase activities present in wild-type cell extracts. Some mutant strains simultaneously lost the ability to convert both guanine and hypoxanthine to the respective nucleotide, suggesting that the same enzyme activates both bases. Adenosine, guanosine, and inosine phosphorylase activities were detected for the conversion of base to nucleoside. Adenine deaminase activity was detected at low levels. Guanine deaminase activity was not detected. Nucleoside kinase activities for the conversion of adenosine, guanosine, and inosine to the respective nucleotides were detected by a new assay. The nucleotide-interconverting enzymes AMP deaminase, succinyl-AMP synthetase, succinyl-AMP lyase, IMP dehydrogenase, and GMP synthetase were present in extracts; GMP reductase was not detected. The results indicate that this autotrophic methanogen has a complex system for the utilization of exogenous purines. PMID:2345148
The Design of Optical Sensor for the Pinhole/Occulter Facility
NASA Technical Reports Server (NTRS)
Greene, Michael E.
1990-01-01
Three optical sight sensor systems were designed, built and tested. Two optical lines of sight sensor system are capable of measuring the absolute pointing angle to the sun. The system is for use with the Pinhole/Occulter Facility (P/OF), a solar hard x ray experiment to be flown from Space Shuttle or Space Station. The sensor consists of a pinhole camera with two pairs of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the pinhole, track and hold circuitry for data reduction, an analog to digital converter, and a microcomputer. The deflection of the image center is calculated from these data using an approximation for the solar image. A second system consists of a pinhole camera with a pair of perpendicularly mounted linear photodiode arrays, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed. A third optical sensor system is capable of measuring the internal vibration of the P/OF between the mask and base. The system consists of a white light source, a mirror and a pair of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the mirror, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image and hence the vibration of the structure is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed.
The Anglo-Australian Planet Search. XXII. Two New Multi-planet Systems
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Horner, J.; Tuomi, Mikko; Salter, G. S.; Tinney, C. G.; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Bailey, J.; Carter, B. D.; Jenkins, J. S.; Zhang, Z.; Vogt, S. S.; Rivera, Eugenio J.
2012-07-01
We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 ± 427 days, and a minimum mass of 5.3 M Jup. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 ± 0.07). The second planet in the HD 159868 system has a period of 352.3 ± 1.3 days and m sin i = 0.73 ± 0.05 M Jup. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.
THE ANGLO-AUSTRALIAN PLANET SEARCH. XXII. TWO NEW MULTI-PLANET SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittenmyer, Robert A.; Horner, J.; Salter, G. S.
2012-07-10
We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 {+-} 427 days, and a minimum mass of 5.3 M{sub Jup}. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 {+-} 0.07). The second planet in the HD 159868 system has a period of 352.3 {+-} 1.3 days and m sin i = 0.73 {+-} 0.05 M{sub Jup}. In both of thesemore » systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.« less
9 CFR 113.55 - Detection of extraneous agents in Master Seed Virus.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Master Seed Virus. 113.55 Section 113.55 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.55 Detection of extraneous agents in Master Seed Virus...
9 CFR 113.55 - Detection of extraneous agents in Master Seed Virus.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Master Seed Virus. 113.55 Section 113.55 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.55 Detection of extraneous agents in Master Seed Virus...
9 CFR 113.55 - Detection of extraneous agents in Master Seed Virus.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Master Seed Virus. 113.55 Section 113.55 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.55 Detection of extraneous agents in Master Seed Virus...
9 CFR 113.55 - Detection of extraneous agents in Master Seed Virus.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Master Seed Virus. 113.55 Section 113.55 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.55 Detection of extraneous agents in Master Seed Virus...
Coherent time-stretch transformation for real-time capture of wideband signals.
Buckley, Brandon W; Madni, Asad M; Jalali, Bahram
2013-09-09
Time stretch transformation of wideband waveforms boosts the performance of analog-to-digital converters and digital signal processors by slowing down analog electrical signals before digitization. The transform is based on dispersive Fourier transformation implemented in the optical domain. A coherent receiver would be ideal for capturing the time-stretched optical signal. Coherent receivers offer improved sensitivity, allow for digital cancellation of dispersion-induced impairments and optical nonlinearities, and enable decoding of phase-modulated optical data formats. Because time-stretch uses a chirped broadband (>1 THz) optical carrier, a new coherent detection technique is required. In this paper, we introduce and demonstrate coherent time stretch transformation; a technique that combines dispersive Fourier transform with optically broadband coherent detection.
Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun
NASA Astrophysics Data System (ADS)
Buchhave, Lars A.; Bitsch, Bertram; Johansen, Anders; Latham, David W.; Bizzarro, Martin; Bieryla, Allyson; Kipping, David M.
2018-03-01
Jupiter played an important role in determining the structure and configuration of the Solar System. Whereas hot-Jupiter type exoplanets preferentially form around metal-rich stars, the conditions required for the formation of planets with masses, orbits, and eccentricities comparable to Jupiter (Jupiter analogs) are unknown. Using spectroscopic metallicities, we show that stars hosting Jupiter analogs have an average metallicity close to solar, in contrast to their hot-Jupiter and eccentric cool-Jupiter counterparts, which orbit stars with super-solar metallicities. Furthermore, the eccentricities of Jupiter analogs increase with host-star metallicity, suggesting that planet–planet scatterings producing highly eccentric cool Jupiters could be more common in metal-rich environments. To investigate a possible explanation for these metallicity trends, we compare the observations to numerical simulations, which indicate that metal-rich stars typically form multiple Jupiters, leading to planet–planet interactions and, hence, a prevalence of either eccentric cool Jupiters or hot Jupiters with circularized orbits. Although the samples are small and exhibit variations in their metallicities, suggesting that numerous processes other than metallicity affect the formation of planetary systems, the data in hand suggests that Jupiter analogs and terrestrial-sized planets form around stars with average metallicities close to solar, whereas high-metallicity systems preferentially host eccentric cool Jupiter or hot Jupiters, indicating that higher metallicity systems may not be favorable for the formation of planetary systems akin to the Solar System.
The Pennies-as-Electrons Analogy
ERIC Educational Resources Information Center
Ashmann, Scott
2009-01-01
Everyday experiences familiarize students with the ways in which electricity is used, but often the underlying concepts remain a mystery. Teachers often use analogies to help students relate the flow of electrons to other common systems, but many times these analogies are incomplete and lead to more student misconceptions. However, the "pass the…
NASA Astrophysics Data System (ADS)
Pape, Dennis R.
1990-09-01
The present conference discusses topics in optical image processing, optical signal processing, acoustooptic spectrum analyzer systems and components, and optical computing. Attention is given to tradeoffs in nonlinearly recorded matched filters, miniature spatial light modulators, detection and classification using higher-order statistics of optical matched filters, rapid traversal of an image data base using binary synthetic discriminant filters, wideband signal processing for emitter location, an acoustooptic processor for autonomous SAR guidance, and sampling of Fresnel transforms. Also discussed are an acoustooptic RF signal-acquisition system, scanning acoustooptic spectrum analyzers, the effects of aberrations on acoustooptic systems, fast optical digital arithmetic processors, information utilization in analog and digital processing, optical processors for smart structures, and a self-organizing neural network for unsupervised learning.
Jiang, Xingxing; Cheng, Mengfan; Luo, Fengguang; Deng, Lei; Fu, Songnian; Ke, Changjian; Zhang, Minming; Tang, Ming; Shum, Ping; Liu, Deming
2016-12-12
A novel electro-optic chaos source is proposed on the basis of the reverse-time chaos theory and an analog-digital hybrid feedback loop. The analog output of the system can be determined by the numeric states of shift registers, which makes the system robust and easy to control. The dynamical properties as well as the complexity dependence on the feedback parameters are investigated in detail. The correlation characteristics of the system are also studied. Two improving strategies which were established in digital field and analog field are proposed to conceal the time-delay signature. The proposed scheme has the potential to be used in radar and optical secure communication systems.
Triplexer Monitor Design for Failure Detection in FTTH System
NASA Astrophysics Data System (ADS)
Fu, Minglei; Le, Zichun; Hu, Jinhua; Fei, Xia
2012-09-01
Triplexer was one of the key components in FTTH systems, which employed an analog overlay channel for video broadcasting in addition to bidirectional digital transmission. To enhance the survivability of triplexer as well as the robustness of FTTH system, a multi-ports device named triplexer monitor was designed and realized, by which failures at triplexer ports can be detected and localized. Triplexer monitor was composed of integrated circuits and its four input ports were connected with the beam splitter whose power division ratio was 95∶5. By means of detecting the sampled optical signal from the beam splitters, triplexer monitor tracked the status of the four ports in triplexer (e.g. 1310 nm, 1490 nm, 1550 nm and com ports). In this paper, the operation scenario of the triplexer monitor with external optical devices was addressed. And the integrated circuit structure of the triplexer monitor was also given. Furthermore, a failure localization algorithm was proposed, which based on the state transition diagram. In order to measure the failure detection and localization time under the circumstance of different failed ports, an experimental test-bed was built. Experiment results showed that the detection time for the failure at 1310 nm port by the triplexer monitor was less than 8.20 ms. For the failure at 1490 nm or 1550 nm port it was less than 8.20 ms and for the failure at com port it was less than 7.20 ms.
Burchenal, J H
1975-01-01
Essentially all the drugs which are active against human leukemias and lymphomas are active against one type or another of the rodent leukemias and lymphomas. Leukemia L1210 has been generally the most successful screening tool for clinically active compounds. Leukemia P388, however, seems to be better in detecting active antibiotics and natural products and P1534 is particularly sensitive to the Vinca alkaloids, while L5178Y, EARAD, and 6C3HED are useful in detecting the activities of various asparaginase containing fractions. Cell cultures of these leukemias can demonstrate mechanism of drug action and quantitate resistance. Spontaneous AKR leukemia is a model of the advanced human disease. In these leukemias vincristine and prednisone produce a 4 log cell kill. Cytoxan and arabinosyl cytosine (Ara-C) are also effective. On the other hand drugs such as mercaptopurine (6MP) and methotrexate which are highly active in the maintenance phase of acute lymphocytic leukemia (ALL) and in L1210 have little or no activity against the AKR spontaneous system. Mouse leukemias can also detect schedule dependence, synergistic combinations, cross resistance, oral activity, and the ability of drugs to pass the blood brain barrier. A case in point is the Ara-C analog 2,2'-anhydro-arabinofuranosyl-5-fluorocytosine (AAFC) which is not schedule dependent, is active orally, is potentiated by thioguanine, and is effective against intracerebrally inoculated mouse leukemia. AAFC and its analogs might thus be a considerable improvement over Ara-C which is at the present time the most important component of the combination treatment of acute myelogenous leukemia (AML).
Advances in Interstellar and Planetary Laboratory Astrophysics with Ames’ COSmIC Facility
NASA Astrophysics Data System (ADS)
Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma
2017-06-01
The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow forming, processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostics tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular the advances that have been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [4] and planetary atmospheres [5, 6]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs will also be addressed as well as the implications of the on-going studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU S251, Kwok & Sandford eds.CUP, 4, 357 (2008).[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J., Biennier L., Beletsky Y., In-Ok Song, The Astrophys. J., 728, 154 (2011)[4] Cesar Contreras & Farid Salama, The Astrophys. J. Suppl. Ser., 208, 6 (2013)[5] Sciamma-O'Brien E., Ricketts C., and Salama F. Icarus, 243, 325 (2014)[6] Sciamma-O'Brien E., Upton K. and Salama F. Icarus, in press (2017)
Pyxis handheld polarimetric imager
NASA Astrophysics Data System (ADS)
Chenault, David B.; Pezzaniti, J. Larry; Vaden, Justin P.
2016-05-01
The instrumentation for measuring infrared polarization signatures has seen significant advancement over the last decade. Previous work has shown the value of polarimetric imagery for a variety of target detection scenarios including detection of manmade targets in clutter and detection of ground and maritime targets while recent work has shown improvements in contrast for aircraft detection and biometric markers. These data collection activities have generally used laboratory or prototype systems with limitations on the allowable amount of target motion or the sensor platform and usually require an attached computer for data acquisition and processing. Still, performance and sensitivity have been steadily getting better while size, weight, and power requirements have been getting smaller enabling polarimetric imaging for a greater or real world applications. In this paper, we describe Pyxis®, a microbolometer based imaging polarimeter that produces live polarimetric video of conventional, polarimetric, and fused image products. A polarization microgrid array integrated in the optical system captures all polarization states simultaneously and makes the system immune to motion artifacts of either the sensor or the scene. The system is battery operated, rugged, and weighs about a quarter pound, and can be helmet mounted or handheld. On board processing of polarization and fused image products enable the operator to see polarimetric signatures in real time. Both analog and digital outputs are possible with sensor control available through a tablet interface. A top level description of Pyxis® is given followed by performance characteristics and representative data.
A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar
Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun
2018-01-01
Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256×13 real-time radar image display with a throughput of 28.2 frames per second. PMID:29621170
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eler, Gabrielle Jacklin; Santos, Israel Souza; Giaretta de Moraes, Amarilis
n-Propyl gallate and its analogs are used in foods and other products to prevent oxidation. In the liver the compound exerts several harmful effects, especially gluconeogenesis inhibition. The mode of transport and distribution of n-propyl gallate and its kinetics of biotransformation have not yet been investigated. To fill this gap the transformation, transport and distribution of n-propyl gallate and two analogs were investigated in the rat liver. Isolated perfused rat liver was used. n-Propyl gallate, methyl gallate, n-octyl gallate and transformation products were quantified by high pressure-liquid chromatography coupled to fluorescence detection. The interactions of n-propyl gallate and analogs withmore » the liver presented three main characteristics: (1) the hydrolytic release of gallic acid from n-propyl gallate and methyl gallate was very fast compared with the subsequent transformations of the gallic acid moiety; (2) transport of the esters was very fast and flow-limited in contrast to the slow and barrier-limited transport of gallic acid; (3) the apparent distribution volume of n-propyl gallate, but probably also of methyl gallate and n-octyl gallate, greatly exceeded the water space in the liver, contrary to the gallic acid space which is smaller than the water space. It can be concluded that at low portal concentrations (< 50 μM) the gallic acid esters are 100% extracted during a single passage through the liver, releasing mainly gallic acid into the systemic circulation. For the latter a considerable time is required until complete biotransformation. The exposure of the liver to the esters, however, is quite prolonged due to extensive intracellular binding. - Highlights: • The liver binds very strongly n-propyl gallate and releases basically gallic acid. • n-propyl gallate and analogs undergo concentrative flow-limited distribution. • Gallic acid undergoes barrier-limited distribution and is slowly transformed. • The long residence time of n-propyl gallate and analogs increases toxicity.« less
ANALOG I/O MODULE TEST SYSTEM BASED ON EPICS CA PROTOCOL AND ACTIVEX CA INTERFACE
DOE Office of Scientific and Technical Information (OSTI.GOV)
YENG,YHOFF,L.
2003-10-13
Analog input (ADC) and output (DAC) modules play a substantial role in device level control of accelerator and large experiment physics control system. In order to get the best performance some features of analog modules including linearity, accuracy, crosstalk, thermal drift and so on have to be evaluated during the preliminary design phase. Gain and offset error calibration and thermal drift compensation (if needed) may have to be done in the implementation phase as well. A natural technique for performing these tasks is to interface the analog VO modules and GPIB interface programmable test instruments with a computer, which canmore » complete measurements or calibration automatically. A difficulty is that drivers of analog modules and test instruments usually work on totally different platforms (vxworks VS Windows). Developing new test routines and drivers for testing instruments under VxWorks (or any other RTOS) platform is not a good solution because such systems have relatively poor user interface and developing such software requires substantial effort. EPICS CA protocol and ActiveX CA interface provide another choice, a PC and LabVIEW based test system. Analog 110 module can be interfaced from LabVIEW test routines via ActiveX CA interface. Test instruments can be controlled via LabVIEW drivers, most of which are provided by instrument vendors or by National Instruments. Labview also provides extensive data analysis and process functions. Using these functions, users can generate powerful test routines very easily. Several applications built for Spallation Neutron Source (SNS) Beam Loss Monitor (BLM) system are described in this paper.« less
Digital receiver study and implementation
NASA Technical Reports Server (NTRS)
Fogle, D. A.; Lee, G. M.; Massey, J. C.
1972-01-01
Computer software was developed which makes it possible to use any general purpose computer with A/D conversion capability as a PSK receiver for low data rate telemetry processing. Carrier tracking, bit synchronization, and matched filter detection are all performed digitally. To aid in the implementation of optimum computer processors, a study of general digital processing techniques was performed which emphasized various techniques for digitizing general analog systems. In particular, the phase-locked loop was extensively analyzed as a typical non-linear communication element. Bayesian estimation techniques for PSK demodulation were studied. A hardware implementation of the digital Costas loop was developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo Hailu; Zhou Xinxing; Shu Weixing
We theorize an enhanced and switchable spin Hall effect (SHE) of light near the Brewster angle on reflection and demonstrate it experimentally. The obtained spin-dependent splitting reaches 3200 nm near the Brewster angle, which is 50 times larger than the previously reported values in refraction. We find that the amplifying factor in weak measurement is not a constant, which is significantly different from that in refraction. As an analogy of SHE in an electronic system, a switchable spin accumulation in SHE of light is detected. We were able to switch the direction of the spin accumulations by slightly adjusting themore » incident angle.« less
Optical Johnson noise thermometry
NASA Technical Reports Server (NTRS)
Shepard, R. L.; Blalock, T. V.; Maxey, L. C.; Roberts, M. J.; Simpson, M. L.
1989-01-01
A concept is being explored that an optical analog of the electrical Johnson noise may be used to measure temperature independently of emissivity. The concept is that a laser beam may be modulated on reflection from a hot surface by interaction of the laser photons with the thermally agitated conduction electrons or the lattice phonons, thereby adding noise to the reflected laser beam. If the reflectance noise can be detected and quantified in a background of other noise in the optical and signal processing systems, the reflectance noise may provide a noncontact measurement of the absolute surface temperature and may be independent of the surface's emissivity.
NASA Technical Reports Server (NTRS)
Coker, A. E.; Marshall, R.; Thomson, N. S.
1977-01-01
Data were collected near Bartow, Florida, for the purpose of studying land collapse phenomena using remote sensing techniques. Data obtained using the multispectral scanner system consisted of various combinations of 18 spectral bands ranging from 0.4-14.0 microns and several types of photography. The multispectral data were processed on a special-purpose analog computer in order to detect moisture-stressed vegetation and to enhance terrain surface temperatures. The processed results were printed on film to show the patterns of distribution of the proposed hydrogeologic indicators.
Light scattering in gas mixtures - Evidence of fast and slow sound modes
NASA Astrophysics Data System (ADS)
Clouter, M. J.; Luo, H.; Kiefte, H.; Zollweg, J. A.
1990-02-01
Campa and Cohen (1989) have predicted that dilute, binary mixtures of gases with disparate masses should exhibit a (fast) sound mode whose velocity is considerably greater than expected on the basis of conventional hydrodynamic theory, and which should be observable via light-scattering experiments. Effects that are consistent with this prediction were observed in the Brillouin spectra of the H2 + Ar system, but were not detected for the case of CH4 + SF6. Results for the SF6 + H2 mixture demonstrate the existence of an analogous slow-mode contribution to the spectrum.
Huang, David; Swanson, Eric A.; Lin, Charles P.; Schuman, Joel S.; Stinson, William G.; Chang, Warren; Hee, Michael R.; Flotte, Thomas; Gregory, Kenton; Puliafito, Carmen A.; Fujimoto, James G.
2015-01-01
A technique called optical coherence tomography (OCT) has been developed for noninvasive cross-sectional imaging in biological systems. OCT uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way that is analogous to ultrasonic pulse-echo imaging. OCT has longitudinal and lateral spatial resolutions of a few micrometers and can detect reflected signals as small as ~10−10 of the incident optical power. Tomographic imaging is demonstrated in vitro in the peripapillary area of the retina and in the coronary artery, two clinically relevant examples that are representative of transparent and turbid media, respectively. PMID:1957169
NASA Astrophysics Data System (ADS)
Suzuki, Yutaka; Fukasawa, Mizuya; Sakata, Osamu; Kato, Hatsuhiro; Hattori, Asobu; Kato, Takaya
Vascular access for hemodialysis is a lifeline for over 280,000 chronic renal failure patients in Japan. Early detection of stenosis may facilitate long-term use of hemodialysis shunts. Stethoscope auscultation of vascular murmurs has some utility in the assessment of access patency; however, the sensitivity of this diagnostic approach is skill dependent. This study proposes a novel diagnosis support system to detect stenosis by using vascular murmurs. The system is based on a self-organizing map (SOM) and short-time maximum entropy method (STMEM) for data analysis. SOM is an artificial neural network, which is trained using unsupervised learning to produce a feature map that is useful for visualizing the analogous relationship between input data. The author recorded vascular murmurs before and after percutaneous transluminal angioplasty (PTA). The SOM-based classification was consistent with to the classification based on MEM spectral and spectrogram characteristics. The ratio of pre-PTA murmurs in the stenosis category was much higher than the post-PTA murmurs. The results suggest that the proposed method may be an effective tool in the determination of shunt stenosis.
Mineralogy and astrobiology detection using laser remote sensing instrument.
Abedin, M Nurul; Bradley, Arthur T; Sharma, Shiv K; Misra, Anupam K; Lucey, Paul G; McKay, Christopher P; Ismail, Syed; Sandford, Stephen P
2015-09-01
A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100 m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20 km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters.
Miniaturized, on-head, invasive electrode connector integrated EEG data acquisition system.
Ives, John R; Mirsattari, Seyed M; Jones, D
2007-07-01
Intracranial electroencephalogram (EEG) monitoring involves recording multi-contact electrodes. The current systems require separate wires from each recording contact to the data acquisition unit resulting in many connectors and cables. To overcome limitations of such systems such as noise, restrictions in patient mobility and compliance, we developed a miniaturized EEG monitoring system with the amplifiers and multiplexers integrated into the electrode connectors and mounted on the head. Small, surface-mounted instrumentation amplifiers, coupled with 8:1 analog multiplexers, were assembled into 8-channel modular units to connect to 16:1 analog multiplexer manifold to create a small (55 cm(3)) head-mounted 128-channel system. A 6-conductor, 30 m long cable was used to transmit the EEG signals from the patient to the remote data acquisition system. Miniaturized EEG amplifiers and analog multiplexers were integrated directly into the electrode connectors. Up to 128-channels of EEG were amplified and analog multiplexed directly on the patient's head. The amplified EEG data were obtained over one long wire. A miniaturized system of invasive EEG recording has the potential to reduce artefact, simplify trouble-shooting, lower nursing care and increase patient compliance. Miniaturization technology improves intracranial EEG monitoring and leads to >128-channel capacity.
Target scattering characteristics for OAM-based radar
NASA Astrophysics Data System (ADS)
Liu, Kang; Gao, Yue; Li, Xiang; Cheng, Yongqiang
2018-02-01
The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM) based radar system. To illustrate the role of OAM-based radar cross section (ORCS), conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS). The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.
A computer system for analysis and transmission of spirometry waveforms using volume sampling.
Ostler, D V; Gardner, R M; Crapo, R O
1984-06-01
A microprocessor-controlled data gathering system for telemetry and analysis of spirometry waveforms was implemented using a completely digital design. Spirometry waveforms were obtained from an optical shaft encoder attached to a rolling seal spirometer. Time intervals between 10-ml volume changes (volume sampling) were stored. The digital design eliminated problems of analog signal sampling. The system measured flows up to 12 liters/sec with 5% accuracy and volumes up to 10 liters with 1% accuracy. Transmission of 10 waveforms took about 3 min. Error detection assured that no data were lost or distorted during transmission. A pulmonary physician at the central hospital reviewed the volume-time and flow-volume waveforms and interpretations generated by the central computer before forwarding the results and consulting with the rural physician. This system is suitable for use in a major hospital, rural hospital, or small clinic because of the system's simplicity and small size.
Method and apparatus for digitally based high speed x-ray spectrometer
Warburton, W.K.; Hubbard, B.
1997-11-04
A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a ``hardwired`` processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer. 19 figs.
Method and apparatus for digitally based high speed x-ray spectrometer
Warburton, William K.; Hubbard, Bradley
1997-01-01
A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a "hardwired" processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer.
Carotenoids and Retinoids: Nomenclature, Chemistry, and Analysis.
Harrison, Earl H; Curley, Robert W
Carotenoids are polyenes synthesized in plants and certain microorganisms and are pigments used by plants and animals in various physiological processes. Some of the over 600 known carotenoids are capable of metabolic conversion to the essential nutrient vitamin A (retinol) in higher animals. Vitamin A also gives rise to a number of other metabolites which, along with their analogs, are known as retinoids. To facilitate discussion about these important molecules, a nomenclature is required to identify specific substances. The generally accepted rules for naming these important molecules have been agreed to by various Commissions of the International Union of Pure and Applied Chemistry and International Union of Biochemistry. These naming conventions are explained along with comparisons to more systematic naming rules that apply for these organic chemicals. Identification of the carotenoids and retinoids has been advanced by their chemical syntheses, and here, both classical and modern methods for synthesis of these molecules, as well as their analogs, are described. Because of their importance in biological systems, sensitive methods for the detection and quantification of these compounds from various sources have been essential. Early analyses that relied on liquid adsorption and partition chromatography have given way to high-performance liquid chromatography (HPLC) coupled with various detection methods. The development of HPLC coupled to mass spectrometry, particularly LC/MS-MS with Multiple Reaction Monitoring, has resulted in the greatest sensitivity and specificity in these analyses.
Interaction of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems
Broniec, Agnieszka; Klosinski, Radoslaw; Pawlak, Anna; Wrona-Krol, Marta; Thompson, David; Sarna, Tadeusz
2011-01-01
Plasmalogens (Plg) are phospholipids containing vinyl ether linkage at the sn-1 position of the glycerophospholipid backbone. In spite of being quite abundant in humans, the biological role of plasmalogens remains speculative. It has been postulated that plasmalogens are physiological antioxidants with the vinyl ether functionality serving as sacrificial trap for free radicals and singlet oxygen. However, no quantitative data on the efficiency of plasmalogens to scavenge these reactive species are available. In this study, rate constants of quenching of singlet oxygen, generated by photosensitized energy transfer, by several plasmalogens and, for comparison, by their diacyl analogs, were determined by time-resolved detection of phosphorescence at 1270 nm. Relative rates of the interaction of singlet oxygen, with plasmalogens and other lipids in solution and liposomal membranes were measured by electron paramagnetic resonance oximetry and product analysis, employing HPLC-EC detection of cholesterol hydroperoxides and iodometric assay of lipid hydroperoxides. Results show that singlet oxygen interacts with plasmalogens significantly faster than with the other lipids, with he corresponding rate constants being by one-two orders of magnitude greater. The quenching of singlet oxygen by plasmalogens is mostly reactive in nature and results from its preferential interaction with the vinyl ether bond. The data suggest that plasmalogens could protect unsaturated membrane lipids against oxidation induced by singlet oxygen, providing that the oxidation products are not excessively cytotoxic. PMID:21236336
Lessons from Natural Analog Studies for Geologic Disposal of High-Level Nuclear Waste (Invited)
NASA Astrophysics Data System (ADS)
Murphy, W. M.
2009-12-01
For over fifty years natural analog studies have provided lessons addressing scientific, technical, and social problems concerning geologic disposal of high-level nuclear waste. Idealized concepts for permanent disposal environments evolved from an understanding of the geological, geochemical and hydrological characteristics of analogous rocks including natural salt deposits (as advocated by the US National Academy of Sciences in 1957), ancient cratonic rocks (as investigated at Lac du Bonnet, Canada, Aspö, Sweden, and Vienne, France), and marine sedimentary rock formations (as studied at Mol, Belgium, and Bure, France). Additional multidisciplinary studies have been conducted at natural sites that bear characteristics analogous to potential repository systems, notably at natural uranium (and thorium) deposits including Poços de Caldas, Brazil, Alligator Rivers, Australia, Peña Blanca, Mexico, and Oklo, Gabon. Researchers of natural analogs for geologic disposal have addressed technical uncertainties regarding processes that have transpired over large time and space scales, which are generally inaccessible to laboratory studies. Principal questions for nuclear waste disposal include the geochemical stability and alteration rates of radionuclide bearing minerals and the mechanisms and rates of transport of radionuclides in groundwater. In their most direct applications, natural analogs studies have been devoted to testing specific models for repository performance and the experimental data that support those models. Parameters used in predictive performance assessment modeling have been compared to natural system data, including mineral solubilities, sorption coefficients, diffusion rates, and colloid transport properties. For example, the rate of uraninite oxidation and the natural paragenesis of uranium mineral alteration at Peña Blanca have been compared favorably to results of experimental studies of spent fuel alteration related to the proposed repository at Yucca Mountain, Nevada, USA. These results generally bracket repository conditions between natural and experimental systems providing confidence in the understanding of expected processes. Also, the conceptual bases and numerical techniques for modeling unsaturated zone contaminant transport over periods of thousands of years at Yucca Mountain were tested by modeling the observable record of metal transport from archaeological artifacts buried in Holocene tuff at Akrotiri, Greece. Geologically episodic mineral alteration and contaminant transport have been documented using radioisotope data in numerous analog systems providing insights for the interpretation and validity of predictive models for long term repository performance. The applicability and value of natural analog studies to understanding geologic disposal systems is a persistent question. As proposed disposal sites become increasingly well defined by site characterization and engineering design, the strengths and weaknesses of analogies can be assessed. Confidence in predictive models for complex geologic and engineered phenomena can be enhanced through multiple lines of investigation including studies of natural analog systems.
Blaettler, M; Bruegger, A; Forster, I C; Lehareinger, Y
1988-03-01
The design of an analog interface to a digital audio signal processor (DASP)-video cassette recorder (VCR) system is described. The complete system represents a low-cost alternative to both FM instrumentation tape recorders and multi-channel chart recorders. The interface or DASP input-output unit described in this paper enables the recording and playback of up to 12 analog channels with a maximum of 12 bit resolution and a bandwidth of 2 kHz per channel. Internal control and timing in the recording component of the interface is performed using ROMs which can be reprogrammed to suit different analog-to-digital converter hardware. Improvement in the bandwidth specifications is possible by connecting channels in parallel. A parallel 16 bit data output port is provided for direct transfer of the digitized data to a computer.
Life sciences flight experiments microcomputer
NASA Technical Reports Server (NTRS)
Bartram, Peter N.
1987-01-01
A promising microcomputer configuration for the Spacelab Life Sciences Lab. Equipment inventory consists of multiple processors. One processor's use is reserved, with additional processors dedicated to real time input and output operations. A simple form of such a configuration, with a processor board for analog to digital conversion and another processor board for digital to analog conversion, was studied. The system used digital parallel data lines between the boards, operating independently of the system bus. Good performance of individual components was demonstrated: the analog to digital converter was at over 10,000 samples per second. The combination of the data transfer between boards with the input or output functions on each board slowed performance, with a maximum throughput of 2800 to 2900 analog samples per second. Any of several techniques, such as use of the system bus for data transfer or the addition of direct memory access hardware to the processor boards, should give significantly improved performance.
NASA Astrophysics Data System (ADS)
Palo, Scott; Vaudrin, Cody
Defined by a minimal RF front-end followed by an analog-to-digital converter (ADC) and con-trolled by a reconfigurable logic device (FPGA), the digital receiver will replace conventional heterodyning analog receivers currently in use by the COBRA meteor radar. A basic hardware overview touches on the major digital receiver components, theory of operation and data han-dling strategies. We address concerns within the community regarding the implementation of digital receivers in small-scale scientific radars, and outline the numerous benefits with a focus on reconfigurability. From a remote sensing viewpoint, having complete visibility into a band of the EM spectrum allows an experiment designer to focus on parameter estimation rather than hardware limitations. Finally, we show some basic multistatic receiver configurations enabled through GPS time synchronization. Currently, the digital receiver is configured to facilitate range and radial velocity determination of meteors in the MLT region for use with the COBRA meteor radar. Initial measurements from data acquired at Platteville, Colorado and Tierra Del Fuego in Argentina will be presented. We show an improvement in detection rates compared to conventional analog systems. Scientific justification for a digital receiver is clearly made by the presentation of RTI plots created using data acquired from the receiver. These plots reveal an interesting phenomenon concerning vacillating power structures in a select number of meteor trails.
Chiarelli, Antonio M; Libertino, Sebania; Zappasodi, Filippo; Mazzillo, Massimo; Pompeo, Francesco Di; Merla, Arcangelo; Lombardo, Salvatore; Fallica, Giorgio
2017-07-01
We report development, testing, and in vivo characterization of a multichannel optical probe for continuous wave (CW) functional near-infrared spectroscopy (fNIRS) that relies on silicon photomultipliers (SiPMs) detectors. SiPMs are cheap, low voltage, and robust semiconductor light detectors with performances analogous to photomultiplier tubes (PMTs). In contrast with PMTs, SiPMs allow direct contact with the head and transfer of the analog signals through thin cables greatly increasing the system flexibility avoiding optical fibers. The coupling of SiPMs and light-emitting diodes (LEDs) made the optical probe lightweight and robust against motion artifacts. After characterization of SiPM performances, which was proven to provide a noise equivalent power below 3 fW, the apparatus was compared through an in vivo experiment to a commercial system relying on laser diodes, PMTs, and optical fibers for light probing and detection. The optical probes were located over the primary sensorimotor cortex and the similarities between the hemodynamic responses to the contralateral motor task were assessed. When compared to other state-of-the-art wearable fNIRS systems, where photodiode detectors are employed, the single photon sensitivity and dynamic range of SiPMs can fully exploit the long and variable interoptode distances needed for correct estimation of brain hemodynamics using CW-fNIRS.
Shuenn-Yuh Lee; Chih-Jen Cheng; Ming-Chun Liang
2011-08-01
In this paper, wireless telemetry using the near-field coupling technique with round-wire coils for an implanted cardiac microstimulator is presented. The proposed system possesses an external powering amplifier and an internal bidirectional microstimulator. The energy of the microstimulator is provided by a rectifier that can efficiently charge a rechargeable device. A fully integrated regulator and a charge pump circuit are included to generate a stable, low-voltage, and high-potential supply voltage, respectively. A miniature digital processor includes a phase-shift-keying (PSK) demodulator to decode the transmission data and a self-protective system controller to operate the entire system. To acquire the cardiac signal, a low-voltage and low-power monitoring analog front end (MAFE) performs immediate threshold detection and data conversion. In addition, the pacing circuit, which consists of a pulse generator (PG) and its digital-to-analog (D/A) controller, is responsible for stimulating heart tissue. The chip was fabricated by Taiwan Semiconductor Manufacturing Company (TSMC) with 0.35-μm complementary metal-oxide semiconductor technology to perform the monitoring and pacing functions with inductively powered communication. Using a model with lead and heart tissue on measurement, a -5-V pulse at a stimulating frequency of 60 beats per minute (bpm) is delivered while only consuming 31.5 μW of power.
Ren, Suping; Espiritu, Christine; Kelly, Mollie; Lau, Vincent; Zheng, Lingjie; Hartman, George D.; Flores, Osvaldo A.; Klumpp, Klaus
2017-01-01
ABSTRACT The hepatitis B virus (HBV) core protein serves multiple essential functions in the viral life cycle, and antiviral agents that target the core protein are being developed. Capsid assembly modulators (CAMs) are compounds that target core and misdirect capsid assembly, resulting in the suppression of HBV replication and virion production. Besides HBV DNA, circulating HBV RNA has been detected in patient serum and can be associated with the treatment response. Here we studied the effect of HBV CAMs on the production of extracellular HBV RNA using infected HepaRG cells and primary human hepatocytes. Representative compounds from the sulfonamide carboxamide and heteroaryldihydropyrimidine series of CAMs were evaluated and compared to nucleos(t)ide analogs as inhibitors of the viral polymerase. The results showed that CAMs blocked extracellular HBV RNA with efficiencies similar to those with which they blocked pregenomic RNA (pgRNA) encapsidation, HBV DNA replication, and Dane particle production. Nucleos(t)ide analogs inhibited viral replication and virion production but not encapsidation or production of extracellular HBV RNA. Profiling of HBV RNA from both culture supernatants and patient serum showed that extracellular viral RNA consisted of pgRNA and spliced pgRNA variants with an internal deletion(s) but still retained the sequences at both the 5′ and 3′ ends. Similar variants were detected in the supernatants of infected cells with and without nucleos(t)ide analog treatment. Overall, our data demonstrate that HBV CAMs represent direct antiviral agents with a profile differentiated from that of nucleos(t)ide analogs, including the inhibition of extracellular pgRNA and spliced pgRNA. PMID:28559265
The Role of Writing in Learning from Analogies
ERIC Educational Resources Information Center
Klein, Perry D.; Piacente-Cimini, Sabrina; Williams, Laura A.
2007-01-01
This study examines the role of writing in learning scientific principles through analogy. Seventy-two university students observed two demonstrations concerning one of three topics: buoyant force of a fluid, projectile motion or forces internal to a system. Each composed an analogy on one of the topics through speaking-only, writing-only, or…
Onset of dissolution-driven instabilities in fluids with nonmonotonic density profile
NASA Astrophysics Data System (ADS)
Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan
2015-11-01
Analog systems have recently been used in several experiments in the context of convective mixing of C O2 . We generalize the nonmonotonic density dependence of the growth of instabilities and provide a scaling relation for the onset of instability. The results of linear stability analysis and direct numerical simulations show that these fluids do not resemble the dynamics of C O2 -water convective instabilities. A typical analog system, such as water-propylene glycol, is found to be less unstable than C O2 -water. These results provide a basis for further research and proper selection of analog systems and are essential to the interpretation of experiments.
ALMA 1.3 Millimeter Map of the HD 95086 System -- A Young Analog of the HR 8799 System
NASA Astrophysics Data System (ADS)
Su, Kate; MacGregor, Meredith Ann; Booth, Mark; Wilner, David; Malhotra, Renu; Morrison, Sarah; OST STDT
2018-01-01
Planets and minor bodies such as asteroids, Kuiper-belt objects and comets are integral components of a planetary system. Interactions among them leave clues about the formation process of a planetary system. The signature of such interactions is best illustrated through resolved observations of its debris disk. Here we present ALMA 1.3 mm observations of HD 95086, a young analog of the HR 8799 system, that hosts a directly imaged giant planet b and a massive debris disk with both asteroid- and Kuiper-belt analogs. The location of the Kuiper-belt analog is resolved for the first time. Our deep ALMA map also reveals a bright source located near the edge of the ring. The properties of the source, based on limited data, are consistent with it being a luminous star-forming galaxy at high redshift. We will discuss future, resolved observations of debris disks, highlighting the potential of the Origins Space Telescope (OST), one of the four science and technology definition studies commissioned by NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey.
NASA Astrophysics Data System (ADS)
Liu, Lintao; Gao, Yuhan; Deng, Jun
2017-11-01
This work presents a reconfigurable mixed-signal system-on-chip (SoC), which integrates switched-capacitor-based field programmable analog arrays (FPAA), analog-to-digital converter (ADC), digital-to-analog converter, digital down converter , digital up converter, 32-bit reduced instruction-set computer central processing unit (CPU) and other digital IPs on a single chip with 0.18 μm CMOS technology. The FPAA intellectual property could be reconfigured as different function circuits, such as gain amplifier, divider, sine generator, and so on. This single-chip integrated mixed-signal system is a complete modern signal processing system, occupying a die area of 7 × 8 mm 2 and consuming 719 mW with a clock frequency of 150 MHz for CPU and 200 MHz for ADC/DAC. This SoC chip can help customers to shorten design cycles, save board area, reduce the system power consumption and depress the system integration risk, which would afford a big prospect of application for wireless communication. Project supported by the National High Technology and Development Program of China (No. 2012AA012303).
Design by Analogy: Achieving More Patentable Ideas from One Creative Design
NASA Astrophysics Data System (ADS)
Jia, Li-Zhen; Wu, Chun-Long; Zhu, Xue-Hong; Tan, Run-Hua
2018-12-01
A patent is a kind of technical document to protect intellectual property for individuals or enterprises. Patentable idea generation is a crucial step for patent application and analogy is confirmed to be an effective technique to inspire creative ideas. Analogy-based design usually starts from representation of an analogy source and is followed by the retrieval of appropriate analogs, mapping of design knowledge and adaptation of target solution. To diffuse one core idea into other new contexts and achieve more patentable ideas, this paper mainly centered on the first two stages of analogy-based design and proposed a patentable ideation framework. The analogical information of the source system, including source design problems and solution, was mined comprehensively through International Patent Classification analysis and represented in the form of function, behavior and structure. Three heuristics were suggested for searching the set of candidate target systems with a similar design problem, where the source design could be transferred. To systematize the process of source representation, analogs retrieval, idea transfer, and solution generation, an ideation model was put forward. Finally, the bladeless fan was selected as a source design to illustrate the application of this work. The design output shows that the representation and heuristics are beneficial, and this systematic ideation method can help the engineer or designer enhance creativity and discover more patentable opportunities.
Helicopter TEM parameters analysis and system optimization based on time constant
NASA Astrophysics Data System (ADS)
Xiao, Pan; Wu, Xin; Shi, Zongyang; Li, Jutao; Liu, Lihua; Fang, Guangyou
2018-03-01
Helicopter transient electromagnetic (TEM) method is a kind of common geophysical prospecting method, widely used in mineral detection, underground water exploration and environment investigation. In order to develop an efficient helicopter TEM system, it is necessary to analyze and optimize the system parameters. In this paper, a simple and quantitative method is proposed to analyze the system parameters, such as waveform, power, base frequency, measured field and sampling time. A wire loop model is used to define a comprehensive 'time constant domain' that shows a range of time constant, analogous to a range of conductance, after which the characteristics of the system parameters in this domain is obtained. It is found that the distortion caused by the transmitting base frequency is less than 5% when the ratio of the transmitting period to the target time constant is greater than 6. When the sampling time window is less than the target time constant, the distortion caused by the sampling time window is less than 5%. According to this method, a helicopter TEM system, called CASHTEM, is designed, and flight test has been carried out in the known mining area. The test results show that the system has good detection performance, verifying the effectiveness of the method.
Khan, Shahid N; Persons, John D; Paulsen, Janet L; Guerrero, Michel; Schiffer, Celia A; Kurt-Yilmaz, Nese; Ishima, Rieko
2018-03-13
In the era of state-of-the-art inhibitor design and high-resolution structural studies, detection of significant but small protein structural differences in the inhibitor-bound forms is critical to further developing the inhibitor. Here, we probed differences in HIV-1 protease (PR) conformation among darunavir and four analogous inhibitor-bound forms and compared them with a drug-resistant mutant using nuclear magnetic resonance chemical shifts. Changes in amide chemical shifts of wild-type (WT) PR among these inhibitor-bound forms, ΔCSP, were subtle but detectable and extended >10 Å from the inhibitor-binding site, asymmetrically between the two subunits of PR. Molecular dynamics simulations revealed differential local hydrogen bonding as the molecular basis of this remote asymmetric change. Inhibitor-bound forms of the drug-resistant mutant also showed a similar long-range ΔCSP pattern. Differences in ΔCSP values of the WT and the mutant (ΔΔCSPs) were observed at the inhibitor-binding site and in the surrounding region. Comparing chemical shift changes among highly analogous inhibitors and ΔΔCSPs effectively eliminated local environmental effects stemming from different chemical groups and enabled exploitation of these sensitive parameters to detect subtle protein conformational changes and to elucidate asymmetric and remote conformational effects upon inhibitor interaction.
Video Surveillance: All Eyes Turn to IP
ERIC Educational Resources Information Center
Raths, David
2011-01-01
Many university officials recognize the need to upgrade their older analog video surveillance systems. In a 2010 survey by "Campus Safety" magazine, half of university respondents expressed dissatisfaction with the quality and coverage of their current video surveillance systems. Among the limitations of analog closed-circuit television…
Chang, Hetan; Liu, Yang; Yang, Ting; Pelosi, Paolo; Dong, Shuanglin; Wang, Guirong
2015-01-01
Sexual communication in moths offers a simplified scenario to model and investigate insect sensory perception. Both PBPs (pheromone-binding proteins) and PRs (pheromone receptors) are involved in the detection of sex pheromones, but the interplay between them still remains largely unknown. In this study, we have measured the binding affinities of the four recombinant PBPs of Chilo suppressalis (CsupPBPs) to pheromone components and analogs and characterized the six PRs using the Xenopus oocytes expression system. Interestingly, when the responses of PRs were recorded in the presence of PBPs, we measured in several combinations a dramatic increase in signals as well as in sensitivity of such combined systems. Furthermore, the discrimination ability of appropriate combinations of PRs and PBPs was improved compared with the performance of PBPs or PRs alone. Besides further supporting a role of PBPs in the pheromone detection and discrimination, our data shows for the first time that appropriate combinations of PRs and PBPs improved the discrimination ability of PBPs or PRs alone. The variety of responses measured with different pairing of PBPs and PRs indicates the complexity of the olfaction system, which, even for the relatively simple task of detecting sex pheromones, utilises a highly sophisticated combinatorial approach. PMID:26310773
NASA Astrophysics Data System (ADS)
Wang, Fang; Liao, Gui-ping; Li, Jian-hui; Zou, Rui-biao; Shi, Wen
2013-03-01
A novel method, which we called the analogous multifractal cross-correlation analysis, is proposed in this paper to study the multifractal behavior in the power-law cross-correlation between price and load in California electricity market. In addition, a statistic ρAMF -XA, which we call the analogous multifractal cross-correlation coefficient, is defined to test whether the cross-correlation between two given signals is genuine or not. Our analysis finds that both the price and load time series in California electricity market express multifractal nature. While, as indicated by the ρAMF -XA statistical test, there is a huge difference in the cross-correlation behavior between the years 1999 and 2000 in California electricity markets.
Wang, Fang; Liao, Gui-ping; Li, Jian-hui; Zou, Rui-biao; Shi, Wen
2013-03-01
A novel method, which we called the analogous multifractal cross-correlation analysis, is proposed in this paper to study the multifractal behavior in the power-law cross-correlation between price and load in California electricity market. In addition, a statistic ρAMF-XA, which we call the analogous multifractal cross-correlation coefficient, is defined to test whether the cross-correlation between two given signals is genuine or not. Our analysis finds that both the price and load time series in California electricity market express multifractal nature. While, as indicated by the ρAMF-XA statistical test, there is a huge difference in the cross-correlation behavior between the years 1999 and 2000 in California electricity markets.
FITPix COMBO—Timepix detector with integrated analog signal spectrometric readout
NASA Astrophysics Data System (ADS)
Holik, M.; Kraus, V.; Georgiev, V.; Granja, C.
2016-02-01
The hybrid semiconductor pixel detector Timepix has proven a powerful tool in radiation detection and imaging. Energy loss and directional sensitivity as well as particle type resolving power are possible by high resolution particle tracking and per-pixel energy and quantum-counting capability. The spectrometric resolving power of the detector can be further enhanced by analyzing the analog signal of the detector common sensor electrode (also called back-side pulse). In this work we present a new compact readout interface, based on the FITPix readout architecture, extended with integrated analog electronics for the detector's common sensor signal. Integrating simultaneous operation of the digital per-pixel information with the common sensor (called also back-side electrode) analog pulse processing circuitry into one device enhances the detector capabilities and opens new applications. Thanks to noise suppression and built-in electromagnetic interference shielding the common hardware platform enables parallel analog signal spectroscopy on the back side pulse signal with full operation and read-out of the pixelated digital part, the noise level is 600 keV and spectrometric resolution around 100 keV for 5.5 MeV alpha particles. Self-triggering is implemented with delay of few tens of ns making use of adjustable low-energy threshold of the particle analog signal amplitude. The digital pixelated full frame can be thus triggered and recorded together with the common sensor analog signal. The waveform, which is sampled with frequency 100 MHz, can be recorded in adjustable time window including time prior to the trigger level. An integrated software tool provides control, on-line display and read-out of both analog and digital channels. Both the pixelated digital record and the analog waveform are synchronized and written out by common time stamp.
3'-End labeling of nucleic acids by a polymerase ribozyme.
Samanta, Biswajit; Horning, David P; Joyce, Gerald F
2018-06-13
A polymerase ribozyme can be used to label the 3' end of RNA or DNA molecules by incorporating a variety of functionalized nucleotide analogs. Guided by a complementary template, the ribozyme adds a single nucleotide that may contain a fluorophore, biotin, azide or alkyne moiety, thus enabling the detection and/or capture of selectively labeled materials. Employing a variety of commercially available nucleotide analogs, efficient labeling was demonstrated for model RNAs and DNAs, human microRNAs and natural tRNA.
Fast, Low-Power, Hysteretic Level-Detector Circuit
NASA Technical Reports Server (NTRS)
Arditti, Mordechai
1993-01-01
Circuit for detection of preset levels of voltage or current intended to replace standard fast voltage comparator. Hysteretic analog/digital level detector operates at unusually low power with little sacrifice of speed. Comprises low-power analog circuit and complementary metal oxide/semiconductor (CMOS) digital circuit connected in overall closed feedback loop to decrease rise and fall times, provide hysteresis, and trip-level control. Contains multiple subloops combining linear and digital feedback. Levels of sensed signals and hysteresis level easily adjusted by selection of components to suit specific application.
Multiprocessor Neural Network in Healthcare.
Godó, Zoltán Attila; Kiss, Gábor; Kocsis, Dénes
2015-01-01
A possible way of creating a multiprocessor artificial neural network is by the use of microcontrollers. The RISC processors' high performance and the large number of I/O ports mean they are greatly suitable for creating such a system. During our research, we wanted to see if it is possible to efficiently create interaction between the artifical neural network and the natural nervous system. To achieve as much analogy to the living nervous system as possible, we created a frequency-modulated analog connection between the units. Our system is connected to the living nervous system through 128 microelectrodes. Two-way communication is provided through A/D transformation, which is even capable of testing psychopharmacons. The microcontroller-based analog artificial neural network can play a great role in medical singal processing, such as ECG, EEG etc.
A front-end readout Detector Board for the OpenPET electronics system
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.
2015-08-01
We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.
A front-end readout Detector Board for the OpenPET electronics system
Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; ...
2015-08-12
Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less
Detection of hydrodynamic stimuli by the Florida manatee (Trichechus manatus latirostris).
Gaspard, Joseph C; Bauer, Gordon B; Reep, Roger L; Dziuk, Kimberly; Read, Latoshia; Mann, David A
2013-06-01
Florida manatees inhabit the coastal and inland waters of the peninsular state. They have little difficulty navigating the turbid waterways, which often contain obstacles that they must circumnavigate. Anatomical and behavioral research suggests that the vibrissae and associated follicle-sinus complexes that manatees possess over their entire body form a sensory array system for detecting hydrodynamic stimuli analogous to the lateral line system of fish. This is consistent with data highlighting that manatees are tactile specialists, evidenced by their specialized facial morphology and use of their vibrissae during feeding and active investigation/manipulation of objects. Two Florida manatees were tested in a go/no-go procedure using a staircase method to assess their ability to detect low-frequency water movement. Hydrodynamic vibrations were created by a sinusoidally oscillating sphere that generated a dipole field at frequencies from 5 to 150 Hz, which are below the apparent functional hearing limit of the manatee. The manatees detected particle displacement of less than 1 μm for frequencies of 15-150 Hz and of less than a nanometer at 150 Hz. Restricting the facial vibrissae with various size mesh openings indicated that the specialized sensory hairs played an important role in the manatee's exquisite tactile sensitivity.
Endophytic Fungi in Indigenous Australasian Grasses Associated with Toxicity to Livestock
Miles, Christopher O.; di Menna, Margaret E.; Jacobs, Surrey W. L.; Garthwaite, Ian; Lane, Geoffrey A.; Prestidge, Ron A.; Marshall, Sergio L.; Wilkinson, Heather H.; Schardl, Christopher L.; Ball, Olivier J.-P.; Latch, Garrick C. M.
1998-01-01
Grazing of Echinopogon spp. by livestock in Australia has caused symptoms similar to those of perennial ryegrass staggers. We observed an endophytic fungus in the intercellular spaces of the leaves and seeds of New Zealand and Australian specimens of Echinopogon ovatus. Culture of surface-sterilized seeds from New Zealand specimens yielded a slow-growing fungus. An examination in which immunoblotting and an enzyme-linked immunosorbent assay (ELISA) were used indicated that E. ovatus plants from Australia and New Zealand were infected with fungi serologically related to Neotyphodium lolii (the endophyte of perennial ryegrass) and other Epichloe and Neotyphodium spp. endophytic in pooid grasses. No lolitrems (the indole–diterpenoids implicated as the causative agents of perennial ryegrass staggers), peramine analogs, or ergot alkaloids were detected in the infected specimens by high-performance liquid chromatography or ELISA. However, in endophyte-infected E. ovatus plants from New Zealand, analogs of the indole–diterpenoid paxilline (thought to be a biosynthetic precursor of the lolitrems and related tremorgens) were detected by ELISA, and N-formylloline was detected by gas chromatography. Endophyte-free specimens of New Zealand E. ovatus did not contain detectable paxilline analogs or lolines and were more palatable than infected specimens to adults of the pasture pest Listronotus bonariensis (Argentine stem weevil). Hyphae similar to those of the E. ovatus endophyte were also found in herbarium specimens of Echinopogon nutans var. major, Echinopogon intermedius, Echinopogon caespitosus, and Echinopogon cheeli. This appears to be the first time that an endophytic Neotyphodium species has been identified in grasses endemic to New Zealand or Australia. PMID:9464398
A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology.
Huang, C-W; Huang, Y-J; Yen, P-W; Tsai, H-H; Liao, H-H; Juang, Y-Z; Lu, S-S; Lin, C-T
2013-11-21
As developments of modern societies, an on-field and personalized diagnosis has become important for disease prevention and proper treatment. To address this need, in this work, a polysilicon nanowire (poly-Si NW) based biosensor system-on-chip (bio-SSoC) is designed and fabricated by a 0.35 μm 2-Poly-4-Metal (2P4M) complementary metal-oxide-semiconductor (CMOS) process provided by a commercialized semiconductor foundry. Because of the advantages of CMOS system-on-chip (SoC) technologies, the poly-Si NW biosensor is integrated with a chopper differential-difference amplifier (DDA) based analog-front-end (AFE), a successive approximation analog-to-digital converter (SAR ADC), and a microcontroller to have better sensing capabilities than a traditional Si NW discrete measuring system. In addition, an on-off key (OOK) wireless transceiver is also integrated to form a wireless bio-SSoC technology. This is pioneering work to harness the momentum of CMOS integrated technology into emerging bio-diagnosis technologies. This integrated technology is experimentally examined to have a label-free and low-concentration biomolecular detection for both Hepatitis B Virus DNA (10 fM) and cardiac troponin I protein (3.2 pM). Based on this work, the implemented wireless bio-SSoC has demonstrated a good biomolecular sensing characteristic and a potential for low-cost and mobile applications. As a consequence, this developed technology can be a promising candidate for on-field and personalized applications in biomedical diagnosis.
Study of pseudo noise CW diode laser for ranging applications
NASA Technical Reports Server (NTRS)
Lee, Hyo S.; Ramaswami, Ravi
1992-01-01
A new Pseudo Random Noise (PN) modulated CW diode laser radar system is being developed for real time ranging of targets at both close and large distances (greater than 10 KM) to satisy a wide range of applications: from robotics to future space applications. Results from computer modeling and statistical analysis, along with some preliminary data obtained from a prototype system, are presented. The received signal is averaged for a short time to recover the target response function. It is found that even with uncooperative targets, based on the design parameters used (200-mW laser and 20-cm receiver), accurate ranging is possible up to about 15 KM, beyond which signal to noise ratio (SNR) becomes too small for real time analog detection.
System level latchup mitigation for single event and transient radiation effects on electronics
Kimbrough, J.R.; Colella, N.J.
1997-09-30
A ``blink`` technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements. 18 figs.
System level latchup mitigation for single event and transient radiation effects on electronics
Kimbrough, Joseph Robert; Colella, Nicholas John
1997-01-01
A "blink" technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements.
The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Amit; Meadows, Victoria; Crisp, Dave, E-mail: amit0@astro.washington.edu
2014-09-01
We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each givenmore » planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.
Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less
An application specific integrated circuit based multi-anode microchannel array readout system
NASA Technical Reports Server (NTRS)
Smeins, Larry G.; Stechman, John M.; Cole, Edward H.
1991-01-01
Size reduction of two new multi-anode microchannel array (MAMA) readout systems is described. The systems are based on two analog and one digital application specific integrated circuits (ASICs). The new readout systems reduce volume over previous discrete designs by 80 percent while improving electrical performance on virtually every significant parameter. Emphasis is made on the packaging used to achieve the volume reduction. Surface mount technology (SMT) is combined with modular construction for the analog portion of the readout. SMT reliability concerns and the board area impact of MIL SPEC SMT components is addressed. Package selection for the analog ASIC is discussed. Future sytems will require even denser packaging and the volume reduction progression is shown.
Local community detection as pattern restoration by attractor dynamics of recurrent neural networks.
Okamoto, Hiroshi
2016-08-01
Densely connected parts in networks are referred to as "communities". Community structure is a hallmark of a variety of real-world networks. Individual communities in networks form functional modules of complex systems described by networks. Therefore, finding communities in networks is essential to approaching and understanding complex systems described by networks. In fact, network science has made a great deal of effort to develop effective and efficient methods for detecting communities in networks. Here we put forward a type of community detection, which has been little examined so far but will be practically useful. Suppose that we are given a set of source nodes that includes some (but not all) of "true" members of a particular community; suppose also that the set includes some nodes that are not the members of this community (i.e., "false" members of the community). We propose to detect the community from this "imperfect" and "inaccurate" set of source nodes using attractor dynamics of recurrent neural networks. Community detection by the proposed method can be viewed as restoration of the original pattern from a deteriorated pattern, which is analogous to cue-triggered recall of short-term memory in the brain. We demonstrate the effectiveness of the proposed method using synthetic networks and real social networks for which correct communities are known. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sensitive molecular diagnostics using surface-enhanced resonance Raman scattering (SERRS)
NASA Astrophysics Data System (ADS)
Faulds, Karen; Graham, Duncan; McKenzie, Fiona; MacRae, Douglas; Ricketts, Alastair; Dougan, Jennifer
2009-02-01
Surface enhanced resonance Raman scattering (SERRS) is an analytical technique with several advantages over competitive techniques in terms of improved sensitivity and multiplexing. We have made great progress in the development of SERRS as a quantitative analytical method, in particular for the detection of DNA. SERRS is an extremely sensitive and selective technique which when applied to the detection of labelled DNA sequences allows detection limits to be obtained which rival, and in most cases, are better than fluorescence. Here the conditions are explored which will enable the successful detection of DNA using SERRS. The enhancing surface which is used is crucial and in this case suspensions of nanoparticles were used as they allow quantitative behaviour to be achieved and allow analogous systems to current fluorescence based systems to be made. The aggregation conditions required to obtain SERRS of DNA are crucial and herein we describe the use of spermine as an aggregating agent. The nature of the label which is used, be it fluorescent, positively or negatively charged also effects the SERRS response and these conditions are again explored here. We have clearly demonstrated the ability to identify the components of a mixture of 5 analytes in solution by using two different excitation wavelengths and also of a 6-plex using data analysis techniques. These conditions will allow the use of SERRS for the detection of target DNA in a meaningful diagnostic assay.
Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures
NASA Technical Reports Server (NTRS)
Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser
2012-01-01
Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the system can capture acoustic emission events that can be a prelude to structural failure, as well as piezoactuator-induced ultrasonic Lamb-waves-based techniques as a basis for damage detection.
Control issues of microgravity vibration isolation
NASA Technical Reports Server (NTRS)
Knospe, Carl R.; Hampton, Richard D.
1991-01-01
Active vibration isolation systems contemplated for microgravity space experiments may be designed to reach given performance requirements in a variety of ways. An analogy to passive isolation systems proves to be illustrative but lacks the flexibility as a design tool of a control systems approach and may lead to poor design. Control theory as applied to vibration isolation is reviewed and passive analogies discussed.
Real Time Digital Control of a Magnetostrictive Actuator
NASA Technical Reports Server (NTRS)
Zrostlik, Rick L.; Hall, David L.; Flatau, Alison B.
1996-01-01
The use of the magnetostrictive material Terfenol-D as a motion source in active vibration control (AVC) systems are being studied. Currently it is of limited use due to the nonlinear nature of the strain versus magnetization curve and the magnetic hysteresis in the Terfenol-D. One manifestation of these nonlinearities is waveform distortion in the output velocity of the transducer. For Terfenol-D to be used in ever greater numbers of AVC systems, these nonlinearities must be addressed. In this study the nonlinearities are treated as disturbances to a linear system. The acceleration output is used in simple analog and digital feedback control schemes to improve linearity of the transducer. In addition, the use of a Terfenol-D actuator in an AVC system is verified. Both analog and digital controllers are implemented and results compared. A cantilever beam system is considered for AVC applications. The second thrust of this presentation is the reduction of harmonic distortions. Two conclusions can be reached from this work. One, the linearization of Terfenol-D transducers is possible with the use of feedback controllers, both digital and analog. Second, Terfenol-D is a viable motion source in active vibration control systems utilizing either analog or digital controllers.
Reliability of unstable periodic orbit based control strategies in biological systems.
Mishra, Nagender; Hasse, Maria; Biswal, B; Singh, Harinder P
2015-04-01
Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.
Dynamical System Approach for Edge Detection Using Coupled FitzHugh-Nagumo Neurons.
Li, Shaobai; Dasmahapatra, Srinandan; Maharatna, Koushik
2015-12-01
The prospect of emulating the impressive computational capabilities of biological systems has led to considerable interest in the design of analog circuits that are potentially implementable in very large scale integration CMOS technology and are guided by biologically motivated models. For example, simple image processing tasks, such as the detection of edges in binary and grayscale images, have been performed by networks of FitzHugh-Nagumo-type neurons using the reaction-diffusion models. However, in these studies, the one-to-one mapping of image pixels to component neurons makes the size of the network a critical factor in any such implementation. In this paper, we develop a simplified version of the employed reaction-diffusion model in three steps. In the first step, we perform a detailed study to locate this threshold using continuous Lyapunov exponents from dynamical system theory. Furthermore, we render the diffusion in the system to be anisotropic, with the degree of anisotropy being set by the gradients of grayscale values in each image. The final step involves a simplification of the model that is achieved by eliminating the terms that couple the membrane potentials of adjacent neurons. We apply our technique to detect edges in data sets of artificially generated and real images, and we demonstrate that the performance is as good if not better than that of the previous methods without increasing the size of the network.
Reliability of unstable periodic orbit based control strategies in biological systems
NASA Astrophysics Data System (ADS)
Mishra, Nagender; Hasse, Maria; Biswal, B.; Singh, Harinder P.
2015-04-01
Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.
Microwave analog fiber-optic link for use in the deep space network
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.
1990-01-01
A novel fiber-optic system with dynamic range of up to 150 dB-Hz for transmission of microwave analog signals is described. The design, analysis, and laboratory evaluations of this system are reported, and potential applications in the NASA/JPL Deep Space Network are discussed.
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory
1988-01-01
A novel technique to analyze analog data in fiber optic sensing systems with temporal separation of channels is proposed. A theoretical explanation of the process is presented and an experimental setup that was used to obtain data is described.
An alkaline spring system within the Del Puerto ophiolite (California USA): A Mars analog site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blank, J.G.; Green, S.; Blake, D.
2008-10-01
Mars appears to have experienced little compositional differentiation of primitive lithosphere, and thus much of the surface of Mars is covered by mafic lavas. On Earth, mafic and ultramafic rocks present in ophiolites, oceanic crust and upper mantle that have been obducted onto land, are therefore good analogs for Mars. The characteristic mineralogy, aqueous geochemistry, and microbial communities of cold-water alkaline springs associated with these mafic and ultramafic rocks represent a particularly compelling analog for potential life-bearing systems. Serpentinization, the reaction of water with mafic minerals such as olivine and pyroxene, yields fluids with unusual chemistry (Mg-OH and Ca-OH watersmore » with pH values up to {approx}12), as well as heat and hydrogen gas that can sustain subsurface, chemosynthetic ecosystems. The recent observation of seeps from pole-facing crater and canyon walls in the higher Martian latitudes supports the hypothesis that even present conditions might allow for a rockhosted chemosynthetic biosphere in near-surface regions of the Martian crust. The generation of methane within a zone of active serpentinization, through either abiogenic or biogenic processes, could account for the presence of methane detected in the Martian atmosphere. For all of these reasons, studies of terrestrial alkaline springs associated with mafic and ultramafic rocks are particularly timely. This study focuses on the alkaline Adobe Springs, emanating from mafic and ultramafic rocks of the California Coast Range, where a community of novel bacteria is associated with the precipitation of Mg-Ca carbonate cements. The carbonates may serve as a biosignature that could be used in the search for evidence of life on Mars.« less
Assessing Planetary Habitability: Don't Forget Exotic Life!
NASA Astrophysics Data System (ADS)
Schulze-Makuch, Dirk
2012-05-01
With the confirmed detection of more than 700 exoplanets, the temptation looms large to constrain the search for extraterrestrial life to Earth-type planets, which have a similar distance to their star, a similar radius, mass and density. Yet, a look even within our Solar System points to a variety of localities to which life could have adapted to outside of the so-called Habitable Zone (HZ). Examples include the hydrocarbon lakes on Titan, the subsurface ocean environment of Europa, the near- surface environment of Mars, and the lower atmosphere of Venus. Recent Earth analog work and extremophile investigations support this notion, such as the discovery of a large microbial community in a liquid asphalt lake in Trinidad (as analog to Titan) or the discovery of a cryptoendolithic habitat in the Antarctic desert, which exists inside rocks, such as beneath sandstone surfaces and dolerite clasts, and supports a variety of eukaryotic algae, fungi, and cyanobacteria (as analog to Mars). We developed a Planetary Habitability Index (PHI, Schulze-Makuch et al., 2011), which was developed to prioritize exoplanets not based on their similarity to Earth, but whether the extraterrestrial environment could, in principle, be a suitable habitat for life. The index includes parameters that are considered to be essential for life such as the presence of a solid substrate, an atmosphere, energy sources, polymeric chemistry, and liquids on the planetary surface. However, the index does not require that this liquid is water or that the energy source is light (though the presence of light is a definite advantage). Applying the PHI to our Solar System, Earth comes in first, with Titan second, and Mars third.
Beyond the resolution limit: subpixel resolution in animals and now in silicon
NASA Astrophysics Data System (ADS)
Wilcox, M. J.
2007-09-01
Automatic acquisition of aerial threats at thousands of kilometers distance requires high sensitivity to small differences in contrast and high optical quality for subpixel resolution, since targets occupy much less surface area than a single pixel. Targets travel at high speed and break up in the re-entry phase. Target/decoy discrimination at the earliest possible time is imperative. Real time performance requires a multifaceted approach with hyperspectral imaging and analog processing allowing feature extraction in real time. Hyperacuity Systems has developed a prototype chip capable of nonlinear increase in resolution or subpixel resolution far beyond either pixel size or spacing. Performance increase is due to a biomimetic implementation of animal retinas. Photosensitivity is not homogeneous across the sensor surface, allowing pixel parsing. It is remarkably simple to provide this profile to detectors and we showed at least three ways to do so. Individual photoreceptors have a Gaussian sensitivity profile and this nonlinear profile can be exploited to extract high-resolution. Adaptive, analog circuitry provides contrast enhancement, dynamic range setting with offset and gain control. Pixels are processed in parallel within modular elements called cartridges like photo-receptor inputs in fly eyes. These modular elements are connected by a novel function for a cell matrix known as L4. The system is exquisitely sensitive to small target motion and operates with a robust signal under degraded viewing conditions, allowing detection of targets smaller than a single pixel or at greater distance. Therefore, not only is instantaneous feature extraction possible but also subpixel resolution. Analog circuitry increases processing speed with more accurate motion specification for target tracking and identification.
Analog CMOS design for optical coherence tomography signal detection and processing.
Xu, Wei; Mathine, David L; Barton, Jennifer K
2008-02-01
A CMOS circuit was designed and fabricated for optical coherence tomography (OCT) signal detection and processing. The circuit includes a photoreceiver, differential gain stage and lock-in amplifier based demodulator. The photoreceiver consists of a CMOS photodetector and low noise differential transimpedance amplifier which converts the optical interference signal into a voltage. The differential gain stage further amplifies the signal. The in-phase and quadrature channels of the lock-in amplifier each include an analog mixer and switched-capacitor low-pass filter with an external mixer reference signal. The interferogram envelope and phase can be extracted with this configuration, enabling Doppler OCT measurements. A sensitivity of -80 dB is achieved with faithful reproduction of the interferometric signal envelope. A sample image of finger tip is presented.
Design and Experiment of Electrooculogram (EOG) System and Its Application to Control Mobile Robot
NASA Astrophysics Data System (ADS)
Sanjaya, W. S. M.; Anggraeni, D.; Multajam, R.; Subkhi, M. N.; Muttaqien, I.
2017-03-01
In this paper, we design and investigate a biological signal detection of eye movements (Electrooculogram). To detect a signal of Electrooculogram (EOG) used 4 instrument amplifier process; differential instrumentation amplifier, High Pass Filter (HPF) with 3 stage filters, Low Pass Filter (LPF) with 3 stage filters and Level Shifter circuit. The total of amplifying is 1000 times of gain, with frequency range 0.5-30 Hz. IC OP-Amp OP07 was used for all amplifying process. EOG signal will be read as analog input for Arduino microprocessor, and will interfaced with serial communication to PC Monitor using Processing® software. The result of this research show a differences value of eye movements. Differences signal of EOG have been applied to navigation control of the mobile robot. In this research, all communication process using Bluetooth HC-05.
Perelman, Yevgeny; Ginosar, Ran
2007-01-01
A mixed-signal front-end processor for multichannel neuronal recording is described. It receives 12 differential-input channels of implanted recording electrodes. A programmable cutoff High Pass Filter (HPF) blocks dc and low-frequency input drift at about 1 Hz. The signals are band-split at about 200 Hz to low-frequency Local Field Potential (LFP) and high-frequency spike data (SPK), which is band limited by a programmable-cutoff LPF, in a range of 8-13 kHz. Amplifier offsets are compensated by 5-bit calibration digital-to-analog converters (DACs). The SPK and LFP channels provide variable amplification rates of up to 5000 and 500, respectively. The analog signals are converted into 10-bit digital form, and streamed out over a serial digital bus at up to 8 Mbps. A threshold filter suppresses inactive portions of the signal and emits only spike segments of programmable length. A prototype has been fabricated on a 0.35-microm CMOS process and tested successfully, demonstrating a 3-microV noise level. Special interface system incorporating an embedded CPU core in a programmable logic device accompanied by real-time software has been developed to allow connectivity to a computer host.
Gross, V; Bährle, R; Mayer, G
2018-04-01
The taxon Tardigrada, commonly called "water bears", consists of microscopic, eight-legged invertebrates that are well known for their ability to tolerate extreme environmental conditions. Their miniscule body size means that tardigrades possess a small total number of cells, the number and arrangement of which may be highly conserved in some organs. Although mitoses have been observed in several organs, the rate and pattern of cell divisions in adult tardigrades has never been characterized. In this study, we incubated live tardigrades over a period of several days with a thymidine analog in order to visualize all cells that had divided during this time. We focus on the midgut, the largest part of the digestive system. Our results show that new cells in the midgut arise from the anterior and posterior ends of this organ and either migrate or divide toward its middle. These cells divide at a constant rate and all cells of the midgut epithelium are replaced in approximately one week. On the other hand, we found no cell divisions in the nervous system or any other major organs, suggesting that the cell turnover of these organs may be extremely slow or dependent on changing environmental conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Burns, Aaron C.; Sorensen, Peter W.
2011-01-01
A variety of unnatural bile acid derivatives (9a–9f) were synthesized and used to examine the specificity with which the sea lamprey (Petromyzon marinus) olfactory system detects these compounds. These compounds are analogs of petromyzonol sulfate (PS, 1), a component of the sea lamprey migratory pheromone. Both the stereochemical configuration at C5 (i.e., 5α vs. 5β) and the extent and sites of oxygenation (hydroxylation or ketonization) of the bile acid derived steroid skeleton were evaluated by screening the compounds for olfactory activity using electro-olfactogram recording. 5β-Petromyzonol sulfate (9a) elicited a considerable olfactory response at sub-nanomolar concentration. In addition, less oxygenated systems (i.e., 9b–9e) elicited olfactory responses, albeit with less potency. The sea lamprey sex pheromone mimic 9f (5β-3-ketopetromyzonol sulfate) was also examined and found to produce a much lower olfactory response. Mixture studies conducted with 9a and PS (1) suggest that stimulation is occurring via similar modes of activation, demonstrating a relative lack of specificity for recognition of the allo-configuration (i.e., 5α) in sea lamprey olfaction. This attribute could facilitate design of pheromone analogs to control this invasive species. PMID:21145335
Chau, Michael; Forcinito, Patricia; Andrade, Anenisia C; Hegde, Anita; Ahn, Sohyun; Lui, Julian C; Baron, Jeffrey; Nilsson, Ola
2011-08-01
In embryonic growth cartilage, Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) participate in a negative feedback loop that regulates chondrocyte differentiation. Postnatally, this region undergoes major structural and functional changes. To explore the organization of the Ihh–PTHrP system in postnatal growth plate, we microdissected growth plates of 7-day-old rats into their constituent zones and assessed expression of genes participating in the h–PTHrP feedback loop. Ihh, Patched 1, Smoothened, Gli1, Gli2, Gli3, and Pthr1 were expressed in regions analogous to the expression domains in embryonic growth cartilage. However, PTHrP was expressed in resting zone cartilage, a site that differs from the embryonic source, the periarticular cells. We then used mice in which lacZ has replaced coding sequences of Gli1 and thus serves as a marker for active hedgehog signaling. At 1, 4, 8, and 12 weeks of age, lacZ expression was detected in a pattern analogous to that of embryonic cartilage. The findings support the hypothesis that the embryonic Ihh–PTHrP feedback loop is maintained in the postnatal growth plate except that the source of PTHrP has shifted to a more proximal location in the resting zone.
Post-processing of seismic parameter data based on valid seismic event determination
McEvilly, Thomas V.
1985-01-01
An automated seismic processing system and method are disclosed, including an array of CMOS microprocessors for unattended battery-powered processing of a multi-station network. According to a characterizing feature of the invention, each channel of the network is independently operable to automatically detect, measure times and amplitudes, and compute and fit Fast Fourier transforms (FFT's) for both P- and S- waves on analog seismic data after it has been sampled at a given rate. The measured parameter data from each channel are then reviewed for event validity by a central controlling microprocessor and if determined by preset criteria to constitute a valid event, the parameter data are passed to an analysis computer for calculation of hypocenter location, running b-values, source parameters, event count, P- wave polarities, moment-tensor inversion, and Vp/Vs ratios. The in-field real-time analysis of data maximizes the efficiency of microearthquake surveys allowing flexibility in experimental procedures, with a minimum of traditional labor-intensive postprocessing. A unique consequence of the system is that none of the original data (i.e., the sensor analog output signals) are necessarily saved after computation, but rather, the numerical parameters generated by the automatic analysis are the sole output of the automated seismic processor.
The Creative Power of Formal Analogies in Physics: The Case of Albert Einstein
ERIC Educational Resources Information Center
Gingras, Yves
2015-01-01
In order to show how formal analogies between different physical systems play an important conceptual work in physics, this paper analyzes the evolution of Einstein's thoughts on the structure of radiation from the point of view of the formal analogies he used as "lenses" to "see" through the "black box" of Planck's…
Measurement, time-stamping, and analysis of electrodermal activity in fMRI
NASA Astrophysics Data System (ADS)
Smyser, Christopher; Grabowski, Thomas J.; Rainville, Pierre; Bechara, Antione; Razavi, Mehrdad; Mehta, Sonya; Eaton, Brent L.; Bolinger, Lizann
2002-04-01
A low cost fMRI-compatible system was developed for detecting electrodermal activity without inducing image artifact. Subject electrodermal activity was measured on the plantar surface of the foot using a standard recording circuit. Filtered analog skin conductance responses (SCR) were recorded with a general purpose, time-stamping data acquisition system. A conditioning paradigm involving painful thermal stimulation was used to demonstrate SCR detection and investigate neural correlates of conditioned autonomic activity. 128x128 pixel EPI-BOLD images were acquired with a GE 1.5T Signa scanner. Image analysis was performed using voxel-wise multiple linear regression. The covariate of interest was generated by convolving stimulus event onset with a standard hemodynamic response function. The function was time-shifted to determine optimal activation. Significance was tested using the t-statistic. Image quality was unaffected by the device, and conditioned and unconditioned SCRs were successfully detected. Conditioned SCRs correlated significantly with activity in the right anterior insular cortex. The effect was more robust when responses were scaled by SCR amplitude. The ability to measure and time register SCRs during fMRI acquisition enables studies of cognitive processes marked by autonomic activity, including those involving decision-making, pain, emotion, and addiction.
A real-time detector system for precise timing of audiovisual stimuli.
Henelius, Andreas; Jagadeesan, Sharman; Huotilainen, Minna
2012-01-01
The successful recording of neurophysiologic signals, such as event-related potentials (ERPs) or event-related magnetic fields (ERFs), relies on precise information of stimulus presentation times. We have developed an accurate and flexible audiovisual sensor solution operating in real-time for on-line use in both auditory and visual ERP and ERF paradigms. The sensor functions independently of the used audio or video stimulus presentation tools or signal acquisition system. The sensor solution consists of two independent sensors; one for sound and one for light. The microcontroller-based audio sensor incorporates a novel approach to the detection of natural sounds such as multipart audio stimuli, using an adjustable dead time. This aids in producing exact markers for complex auditory stimuli and reduces the number of false detections. The analog photosensor circuit detects changes in light intensity on the screen and produces a marker for changes exceeding a threshold. The microcontroller software for the audio sensor is free and open source, allowing other researchers to customise the sensor for use in specific auditory ERP/ERF paradigms. The hardware schematics and software for the audiovisual sensor are freely available from the webpage of the authors' lab.
Vendors unveil one-step fugitive emissions monitoring, management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, M.
1995-04-01
An alliance of manufacturers has developed a ``single-source solution`` for fugitive emissions monitoring. The LeakTracker{trademark} system combines barcode scans, and vapor detection and data collection capabilities to help companies comply with leak detection and repair requirements as mandated by the Environmental Protection Agency`s Method 21 guidelines. LeakTracker doubles productivity and helps eliminate human-error factors associated with fugitive emissions monitoring. Two-person teams, clipboard-and-pencil data entry, and manual data transcription are eliminated. By automating the process and integrating all components, a technician can monitor 500 points daily following Method 21 guidelines, compared to about 250 readings per day using other systems. LeakTrackermore » includes a handheld workstation, sampling probe and laser-scan barcode reader that fit in a vest worn by a field technician. The technician points the workstation toward a barcode tag and pulls the trigger, which initiates a barcode read and automatically records the time, date and location. While the detachable probe ``sniffs`` for emissions, an analyzer interface module converts the gas detection signal from analog to digital format, allowing data to be recorded by the workstation. LeakTracker has an accuracy rate of 1 part per million.« less
Analogy, higher order thinking, and education.
Richland, Lindsey Engle; Simms, Nina
2015-01-01
Analogical reasoning, the ability to understand phenomena as systems of structured relationships that can be aligned, compared, and mapped together, plays a fundamental role in the technology rich, increasingly globalized educational climate of the 21st century. Flexible, conceptual thinking is prioritized in this view of education, and schools are emphasizing 'higher order thinking', rather than memorization of a cannon of key topics. The lack of a cognitively grounded definition for higher order thinking, however, has led to a field of research and practice with little coherence across domains or connection to the large body of cognitive science research on thinking. We review literature on analogy and disciplinary higher order thinking to propose that relational reasoning can be productively considered the cognitive underpinning of higher order thinking. We highlight the utility of this framework for developing insights into practice through a review of mathematics, science, and history educational contexts. In these disciplines, analogy is essential to developing expert-like disciplinary knowledge in which concepts are understood to be systems of relationships that can be connected and flexibly manipulated. At the same time, analogies in education require explicit support to ensure that learners notice the relevance of relational thinking, have adequate processing resources available to mentally hold and manipulate relations, and are able to recognize both the similarities and differences when drawing analogies between systems of relationships. © 2015 John Wiley & Sons, Ltd.
Glycolaldehyde in Perseus young solar analogs
NASA Astrophysics Data System (ADS)
De Simone, M.; Codella, C.; Testi, L.; Belloche, A.; Maury, A. J.; Anderl, S.; André, Ph.; Maret, S.; Podio, L.
2017-03-01
Context. The earliest evolutionary stages of low-mass protostars are characterised by the so-called hot-corino stage, when the newly born star heats the surrounding material and enrich the gas chemically. Studying this evolutionary phase of solar protostars may help understand the evolution of prebiotic complex molecules in the development of planetary systems. Aims: In this paper we focus on the occurrence of glycolaldehyde (HCOCH2OH) in young solar analogs by performing the first homogeneous and unbiased study of this molecule in the Class 0 protostars of the nearby Perseus star forming region. Methods: We obtained sub-arcsec angular resolution maps at 1.3 mm and 1.4 mm of glycolaldehyde emission lines using the IRAM Plateau de Bure (PdB) interferometer in the framework of the CALYPSO IRAM large program. Results: Glycolaldehyde has been detected towards 3 Class 0 and 1 Class I protostars out of the 13 continuum sources targeted in Perseus: NGC 1333-IRAS2A1, NGC 1333-IRAS4A2, NGC 1333-IRAS4B1, and SVS13-A. The NGC 1333 star forming region looks particularly glycolaldehyde rich, with a rate of occurrence up to 60%. The glycolaldehyde spatial distribution overlaps with the continuum one, tracing the inner 100 au around the protostar. A large number of lines (up to 18), with upper-level energies Eu from 37 K up to 375 K has been detected. We derived column densities ≥1015 cm-2 and rotational temperatures Trot between 115 K and 236 K, imaging for the first time hot-corinos around NGC 1333-IRAS4B1 and SVS13-A. Conclusions: In multiple systems glycolaldehyde emission is detected only in one component. The case of the SVS13-A+B and IRAS4-A1+A2 systems support that the detection of glycolaldehyde (at least in the present Perseus sample) indicates older protostars (I.e. SVS13-A and IRAS4-A2), evolved enough to develop the hot-corino region (I.e. 100 K in the inner 100 au). However, only two systems do not allow us to firmly conclude whether the primary factor leading to the detection of glycolaldehyde emission is the environments hosting the protostars, evolution (e.g. low value of Lsubmm/Lint), or accretion luminosity (high Lint). Based on observations carried out with the IRAM Plateau de Bure interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Reduced datacube (FITS file) is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A121
The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.
Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M
2009-04-01
We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.
Susceptibility study of audio recording devices to electromagnetic stimulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halligan, Matthew S.; Grant, Steven L.; Beetner, Daryl G.
2014-02-01
Little research has been performed to study how intentional electromagnetic signals may couple into recording devices. An electromagnetic susceptibility study was performed on an analog tape recorder, a digital video camera, a wired computer microphone, and a wireless microphone system to electromagnetic interference. Devices were subjected to electromagnetic stimulations in the frequency range of 1-990 MHz and field strengths up to 4.9 V/m. Carrier and message frequencies of the stimulation signals were swept, and the impacts of device orientation and antenna polarization were explored. Message signals coupled into all devices only when amplitude modulated signals were used as stimulation signals.more » Test conditions that produced maximum sensitivity were highly specific to each device. Only narrow carrier frequency ranges could be used for most devices to couple messages into recordings. A basic detection technique using cross-correlation demonstrated the need for messages to be as long as possible to maximize message detection and minimize detection error. Analysis suggests that detectable signals could be coupled to these recording devices under realistic ambient conditions.« less
StegoWall: blind statistical detection of hidden data
NASA Astrophysics Data System (ADS)
Voloshynovskiy, Sviatoslav V.; Herrigel, Alexander; Rytsar, Yuri B.; Pun, Thierry
2002-04-01
Novel functional possibilities, provided by recent data hiding technologies, carry out the danger of uncontrolled (unauthorized) and unlimited information exchange that might be used by people with unfriendly interests. The multimedia industry as well as the research community recognize the urgent necessity for network security and copyright protection, or rather the lack of adequate law for digital multimedia protection. This paper advocates the need for detecting hidden data in digital and analog media as well as in electronic transmissions, and for attempting to identify the underlying hidden data. Solving this problem calls for the development of an architecture for blind stochastic hidden data detection in order to prevent unauthorized data exchange. The proposed architecture is called StegoWall; its key aspects are the solid investigation, the deep understanding, and the prediction of possible tendencies in the development of advanced data hiding technologies. The basic idea of our complex approach is to exploit all information about hidden data statistics to perform its detection based on a stochastic framework. The StegoWall system will be used for four main applications: robust watermarking, secret communications, integrity control and tamper proofing, and internet/network security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trainham, Clifford P.; O'Neill, Mary D.; McKenna, Ian J.
The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modeled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as Spicea can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modeling of the entiremore » system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. Furthermore, the techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response.« less
NASA Astrophysics Data System (ADS)
Morrison, R. E.; Robinson, S. H.
A continuous wave Doppler radar system has been designed which is portable, easily deployed, and remotely controlled. The heart of this system is a DSP/control board using Analog Devices ADSP-21020 40-bit floating point digital signal processor (DSP) microprocessor. Two 18-bit audio A/D converters provide digital input to the DSP/controller board for near real time target detection. Program memory for the DSP is dual ported with an Intel 87C51 microcontroller allowing DSP code to be up-loaded or down-loaded from a central controlling computer. The 87C51 provides overall system control for the remote radar and includes a time-of-day/day-of-year real time clock, system identification (ID) switches, and input/output (I/O) expansion by an Intel 82C55 I/O expander.
Artifact Noise Removal Techniques on Seismocardiogram Using Two Tri-Axial Accelerometers
Luu, Loc; Dinh, Anh
2018-01-01
The aim of this study is on the investigation of motion noise removal techniques using two-accelerometer sensor system and various placements of the sensors on gentle movement and walking of the patients. A Wi-Fi based data acquisition system and a framework on Matlab are developed to collect and process data while the subjects are in motion. The tests include eight volunteers who have no record of heart disease. The walking and running data on the subjects are analyzed to find the minimal-noise bandwidth of the SCG signal. This bandwidth is used to design filters in the motion noise removal techniques and peak signal detection. There are two main techniques of combining signals from the two sensors to mitigate the motion artifact: analog processing and digital processing. The analog processing comprises analog circuits performing adding or subtracting functions and bandpass filter to remove artifact noises before entering the data acquisition system. The digital processing processes all the data using combinations of total acceleration and z-axis only acceleration. The two techniques are tested on three placements of accelerometer sensors including horizontal, vertical, and diagonal on gentle motion and walking. In general, the total acceleration and z-axis acceleration are the best techniques to deal with gentle motion on all sensor placements which improve average systolic signal-noise-ratio (SNR) around 2 times and average diastolic SNR around 3 times comparing to traditional methods using only one accelerometer. With walking motion, ADDER and z-axis acceleration are the best techniques on all placements of the sensors on the body which enhance about 7 times of average systolic SNR and about 11 times of average diastolic SNR comparing to only one accelerometer method. Among the sensor placements, the performance of horizontal placement of the sensors is outstanding comparing with other positions on all motions. PMID:29614821
Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer
Warburton, William K.; Hubbard, Bradley
1999-01-01
A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner's operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system.
NASA Technical Reports Server (NTRS)
Kadrmas, K. A.
1973-01-01
A very high speed switching circuit, part of a laser radar data acquisition system, has been designed and tested. The primary function of this circuit was to provide computer controlled switching of photodiode detector preamplifier power supply voltages, typically less than plus or minus 20 volts, in approximately 10 nanoseconds. Thus, in actual use, detector and/or detector preamplifier damage can be avoided as a result of sudden extremely large values of backscattered radiation being detected, such as might be due to short range, very thin atmospheric dust layers. Switching of the power supply voltages was chosen over direct switching the photodiode detector input to the preamplifier, based on system noise considerations. Also, the circuit provides a synchronized trigger pulse output for triggering devices such as the Biomation Model 8100 100 MHz analog to digital converter.
A reconfigurable medically cohesive biomedical front-end with ΣΔ ADC in 0.18µm CMOS.
Jha, Pankaj; Patra, Pravanjan; Naik, Jairaj; Acharya, Amit; Rajalakshmi, P; Singh, Shiv Govind; Dutta, Ashudeb
2015-08-01
This paper presents a generic programmable analog front-end (AFE) for acquisition and digitization of various biopotential signals. This includes a lead-off detection circuit, an ultra-low current capacitively coupled signal conditioning stage with programmable gain and bandwidth, a new mixed signal automatic gain control (AGC) mechanism and a medically cohesive reconfigurable ΣΔ ADC. The full system is designed in UMC 0.18μm CMOS. The AFE achieves an overall linearity of more 10 bits with 0.47μW power consumption. The ADC provides 2(nd) order noise-shaping while using single integrator and an ENOB of ~11 bits with 5μW power consumption. The system was successfully verified for various ECG signals from PTB database. This system is intended for portable batteryless u-Healthcare devices.
Transitioning from analog to digital audio recording in childhood speech sound disorders.
Shriberg, Lawrence D; McSweeny, Jane L; Anderson, Bruce E; Campbell, Thomas F; Chial, Michael R; Green, Jordan R; Hauner, Katherina K; Moore, Christopher A; Rusiewicz, Heather L; Wilson, David L
2005-06-01
Few empirical findings or technical guidelines are available on the current transition from analog to digital audio recording in childhood speech sound disorders. Of particular concern in the present context was whether a transition from analog- to digital-based transcription and coding of prosody and voice features might require re-standardizing a reference database for research in childhood speech sound disorders. Two research transcribers with different levels of experience glossed, transcribed, and prosody-voice coded conversational speech samples from eight children with mild to severe speech disorders of unknown origin. The samples were recorded, stored, and played back using representative analog and digital audio systems. Effect sizes calculated for an array of analog versus digital comparisons ranged from negligible to medium, with a trend for participants' speech competency scores to be slightly lower for samples obtained and transcribed using the digital system. We discuss the implications of these and other findings for research and clinical practise.
Transitioning from analog to digital audio recording in childhood speech sound disorders
Shriberg, Lawrence D.; McSweeny, Jane L.; Anderson, Bruce E.; Campbell, Thomas F.; Chial, Michael R.; Green, Jordan R.; Hauner, Katherina K.; Moore, Christopher A.; Rusiewicz, Heather L.; Wilson, David L.
2014-01-01
Few empirical findings or technical guidelines are available on the current transition from analog to digital audio recording in childhood speech sound disorders. Of particular concern in the present context was whether a transition from analog- to digital-based transcription and coding of prosody and voice features might require re-standardizing a reference database for research in childhood speech sound disorders. Two research transcribers with different levels of experience glossed, transcribed, and prosody-voice coded conversational speech samples from eight children with mild to severe speech disorders of unknown origin. The samples were recorded, stored, and played back using representative analog and digital audio systems. Effect sizes calculated for an array of analog versus digital comparisons ranged from negligible to medium, with a trend for participants’ speech competency scores to be slightly lower for samples obtained and transcribed using the digital system. We discuss the implications of these and other findings for research and clinical practise. PMID:16019779
Wang, Changhong; He, Wei; Tong, Yi; Zhao, Rong
2016-03-14
Low-power and high-density electronic synapse is an important building block of brain-inspired systems. The recent advancement in memristor has provided an opportunity to advance electronic synapse design. However, a guideline on designing and manipulating the memristor's analog behaviors is still lacking. In this work, we reveal that compliance current (Icomp) of electroforming process played an important role in realizing a stable analog behavior, which is attributed to the generation of conical-type conductive filament. A proper Icomp could result in a large conductance window, good stability, and low voltage analog switching. We further reveal that different pulse conditions can lead to three analog behaviors, where the conductance changes in monotonic increase, plateau after initial jump, and impulse-like shape, respectively. These behaviors could benefit the design of electronic synapse with enriched learning capabilities. This work will provide a useful guideline for designing and manipulating memristor as electronic synapses for brain-inspired systems.
NASA Astrophysics Data System (ADS)
Wang, Changhong; He, Wei; Tong, Yi; Zhao, Rong
2016-03-01
Low-power and high-density electronic synapse is an important building block of brain-inspired systems. The recent advancement in memristor has provided an opportunity to advance electronic synapse design. However, a guideline on designing and manipulating the memristor’s analog behaviors is still lacking. In this work, we reveal that compliance current (Icomp) of electroforming process played an important role in realizing a stable analog behavior, which is attributed to the generation of conical-type conductive filament. A proper Icomp could result in a large conductance window, good stability, and low voltage analog switching. We further reveal that different pulse conditions can lead to three analog behaviors, where the conductance changes in monotonic increase, plateau after initial jump, and impulse-like shape, respectively. These behaviors could benefit the design of electronic synapse with enriched learning capabilities. This work will provide a useful guideline for designing and manipulating memristor as electronic synapses for brain-inspired systems.
A mixed analog/digital chaotic neuro-computer system for quadratic assignment problems.
Horio, Yoshihiko; Ikeguchi, Tohru; Aihara, Kazuyuki
2005-01-01
We construct a mixed analog/digital chaotic neuro-computer prototype system for quadratic assignment problems (QAPs). The QAP is one of the difficult NP-hard problems, and includes several real-world applications. Chaotic neural networks have been used to solve combinatorial optimization problems through chaotic search dynamics, which efficiently searches optimal or near optimal solutions. However, preliminary experiments have shown that, although it obtained good feasible solutions, the Hopfield-type chaotic neuro-computer hardware system could not obtain the optimal solution of the QAP. Therefore, in the present study, we improve the system performance by adopting a solution construction method, which constructs a feasible solution using the analog internal state values of the chaotic neurons at each iteration. In order to include the construction method into our hardware, we install a multi-channel analog-to-digital conversion system to observe the internal states of the chaotic neurons. We show experimentally that a great improvement in the system performance over the original Hopfield-type chaotic neuro-computer is obtained. That is, we obtain the optimal solution for the size-10 QAP in less than 1000 iterations. In addition, we propose a guideline for parameter tuning of the chaotic neuro-computer system according to the observation of the internal states of several chaotic neurons in the network.
McGuire, Krista L; Allison, Steven D; Fierer, Noah; Treseder, Kathleen K
2013-01-01
Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0-20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.
Immune Function Changes during a Spaceflight-Analog Undersea Mission
NASA Technical Reports Server (NTRS)
Crucian, Brian; Stowe, Raymond; Mehta, Satish; Quiniarte, Heather; Yetman, Deborah; Pierson, Duane; Sams, Clarence
2008-01-01
There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. It is attractive to utilize ground-based spaceflight analogs as appropriate to investigate this phenomenon. For spaceflight-associated immune dysregulation (SAID), the authors believe the most appropriate analogs might be NEEMO (short duration, Shuttle analog), Antarctic winter-over (long-duration, ISS analog) and the Haughton Mars Project in the Canadian Arctic (intermediate-duration). Each of these analogs replicate isolation, mission-associated stress, disrupted circadian rhythms, and other aspects of flight thought to contribute to SAID. To validate NEEMO as a flight analog with respect to SAID, a pilot study was conducted during the NEEMO-12 and 13 missions during 2007. Assays were performed that assessed immune status, physiological stress and latent viral reactivation. Blood and saliva samples were collected at pre-, mid-, and post-mission timepoints.
Effects of Martian Surface Materials on the Thermal Decomposition of Hydrogen Peroxide
NASA Technical Reports Server (NTRS)
Archer, P. D., Jr.
2017-01-01
While hydrogen peroxide (H2O2) has been detected in the martian atmosphere, it has not been detected in surface materials. Since the Viking lander mission, we have sent instruments to Mars with the capability to detect H2O2. The Sample Analysis at Mars (SAM) instrument onboard the Curiosity Rover and Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander both detected water and oxygen releases from analyzed sediments but whether or not peroxide could be the source of these gases has not been investigated. We are investigating the possible presence of H2O2 in martian materials by analyzing Mars-relevant minerals that have been mixed with hydrogen peroxide using lab instruments configured as analogs to Mars mission instruments. The object of this research is to use lab instruments to find the effects of Mars analog minerals on hydrogen peroxide gas release temperatures, specifically gas releases of water and oxygen and also determine the effect of the peroxide on the minerals. Data that we get from the lab can then be compared to the data collected from Mars. The minerals hematite, siderite, San Carlos olivine, magnetite and nontronite were chosen as our Mars analog minerals. 20 mg of analog Mars minerals with 5µl of 50% H2O2, and were either run immediately or placed in a sealed tube for 2, 4, or 9 days to look for changes over time with two reps being done at each time step to determine repeatability. Each sample was heated from -60 degC to 500 degC at 20 degC/min and the evolved gases were monitored with a mass spectrometer. Each sample was also analyzed with an X-ray diffraction instrument to look for changes in mineralogy. Preliminary results show three potential outcomes: 1) peroxide has no effect on the sample (e.g., hematite), 2) the mineral is unaffected but catalyzes peroxide decomposition (magnetite, siderite), or 3) peroxide alters the mineral (pyrrhotite, San Carlos olivine).
Effects of Martian Surface Materials on the Thermal Decomposition of Hydrogen Peroxide
NASA Astrophysics Data System (ADS)
Dame, Rudger H.; Archer, Paul Douglas; Hogancamp, Joanna C.
2017-10-01
While hydrogen peroxide (H2O2) has been detected in the martian atmosphere, it has not been detected in surface materials. Since the Viking lander mission, we have sent instruments to Mars with the capability to detect H2O2. The Sample Analysis at Mars (SAM) instrument onboard the Curiosity Rover and Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander both detected water and oxygen releases from analyzed sediments but whether or not peroxide could be the source of these gases has not been investigated. We are investigating the possible presence of H2O2 in martian materials by analyzing Mars-relevant minerals that have been mixed with hydrogen peroxide using lab instruments configured as analogs to Mars mission instruments.The object of this research is to use lab instruments to find the effects of Mars analog minerals on hydrogen peroxide gas release temperatures, specifically gas releases of water and oxygen and also determine the effect of the peroxide on the minerals. Data that we get from the lab can then be compared to the data collected from Mars.The minerals hematite, siderite, San Carlos olivine, magnetite and nontronite were chosen as our Mars analog minerals. ~20 mg of analog Mars minerals with 5µl of 50% H2O2, and were either run immediately or placed in a sealed tube for 2, 4, or 9 days to look for changes over time with two reps being done at each time step to determine repeatability. Each sample was heated from -60 °C to 500 °C at 20 °C/min and the evolved gases were monitored with a mass spectrometer. Each sample was also analyzed with an X-ray diffraction instrument to look for changes in mineralogy.Preliminary results show three potential outcomes: 1) peroxide has no effect on the sample (e.g., hematite), 2) the mineral is unaffected but catalyzes peroxide decomposition (magnetite, siderite), or 3) peroxide alters the mineral (pyrrhotite, San Carlos olivine).
Spontaneous Analog Number Representations in 3-Year-Old Children
ERIC Educational Resources Information Center
Cantlon, Jessica F.; Safford, Kelley E.; Brannon, Elizabeth M.
2010-01-01
When enumerating small sets of elements nonverbally, human infants often show a set-size limitation whereby they are unable to represent sets larger than three elements. This finding has been interpreted as evidence that infants spontaneously represent small numbers with an object-file system instead of an analog magnitude system (Feigenson,…
Cohen, Pieter A; Travis, John C; Venhuis, Bastiaan J
2014-01-01
Pharmaceuticals and banned substances have been detected in hundreds of purportedly natural supplements. Recently, several athletes have been disqualified from competition after testing positive for the methamphetamine analog N,α-diethyl-phenylethylamine (N,α-DEPEA). Athletes have claimed they unknowingly consumed the banned stimulant in workout supplements. Three samples from different lot numbers of Craze, a workout supplement, were analyzed to detect the presence and concentration of N,α-DEPEA. Two labs independently identified N,α-DEPEA in the supplement using ultra high performance liquid chromatography (UHPLC) coupled to an LTQ Orbitrap XL mass spectrometer and UHPLC-quadruple-time-of-flight mass (Q-TOF) spectrometer, respectively. The identity of N,α-DEPEA was confirmed using nuclear magnetic resonance and reference standards. Manufacturer recommended servings were estimated to provide 21 to 35 mg of N,α-DEPEA. N,α-DEPEA has never been studied in humans. N,α-DEPEA is a methamphetamine analog; however, its stimulant, addictive and other adverse effects in humans are entirely unknown. Regulatory agencies should act expeditiously to warn consumers and remove N,α-DEPEA from all dietary supplements. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.
2016-01-01
Benzene detection has been reported in Titans atmosphere both in the stratosphere at ppb levels by remote sensing and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer. This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titans atmospheric chemistry, especially in the formation of aerosols. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. It has been shown recently that aerosol analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500/cm, a first step towards reproducing the aerosol spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared. In this work we investigate the influence of environmental temperature on the absorption spectra of such aerosol samples, simulating the temperature range to which aerosols, once formed, are exposed during their transport through Titans stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these aerosol analogs in the far-infrared, which is consistent with the CIRS observations.
Szebeni, Gábor J; Balázs, Árpád; Madarász, Ildikó; Pócz, Gábor; Ayaydin, Ferhan; Kanizsai, Iván; Fajka-Boja, Roberta; Alföldi, Róbert; Hackler, László; Puskás, László G
2017-10-07
Achiral Mannich-type curcumin analogs have been synthetized and assayed for their cytotoxic activity. The anti-proliferative and cytotoxic activity of curcuminoids has been tested on human non-small-cell lung carcinoma (A549), hepatocellular carcinoma (HepG2) and pancreatic cancer cell line (PANC-1). Based on the highest anti-proliferative activity nine drug candidates were further tested and proved to cause phosphatidylserine exposure as an early sign of apoptosis. Curcumin analogs with the highest apoptotic activity were selected for mechanistic studies in the most sensitive PANC-1 cells. Cytotoxic activity was accompanied by cytostatic effect since curcumin and analogs treatment led to G₀/G₁ cell cycle arrest. Moreover, cytotoxic effect could be also detected via the accumulation of curcuminoids in the endoplasmic reticulum (ER) and the up-regulation of ER stress-related unfolded protein response (UPR) genes: HSPA5 , ATF4, XBP1 , and DDIT3 . The activated UPR induced mitochondrial membrane depolarization, caspase-3 activation and subsequent DNA breakdown in PANC-1 cells. Achiral curcumin analogs, C509, C521 and C524 possessed superior, 40-times more potent cytotoxic activity compared to natural dihydroxy-dimetoxycurcumin in PANC-1 cells.
NASA Astrophysics Data System (ADS)
Kessler, Seth S.; Spearing, S. Mark
2002-07-01
Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents the conclusions of an experimental and analytical survey of candidate methods for in-situ damage detection in composite structures. Experimental results are presented for the application of modal analysis and Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage. Piezoelectric patches were used as actuators and sensors for both sets of experiments. Modal analysis methods were reliable for detecting small amounts of global damage in a simple composite structure. By comparison, Lamb wave methods were sensitive to all types of local damage present between the sensor and actuator, provided useful information about damage presence and severity, and present the possibility of estimating damage type and location. Analogous experiments were also performed for more complex built-up structures. These techniques are suitable for structural health monitoring applications since they can be applied with low power conformable sensors and can provide useful information about the state of a structure during operation. Piezoelectric patches could also be used as multipurpose sensors to detect damage by a variety of methods such as modal analysis, Lamb wave, acoustic emission and strain based methods simultaneously, by altering driving frequencies and sampling rates. This paper present guidelines and recommendations drawn from this research to assist in the design of a structural health monitoring system for a vehicle. These systems will be an important component in future designs of air and spacecraft to increase the feasibility of their missions.
Coherent detection in optical fiber systems.
Ip, Ezra; Lau, Alan Pak Tao; Barros, Daniel J F; Kahn, Joseph M
2008-01-21
The drive for higher performance in optical fiber systems has renewed interest in coherent detection. We review detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method. We compare modulation methods encoding information in various degrees of freedom (DOF). Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency, by utilizing all four available DOF, the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Linear impairments, including chromatic dispersion and polarization-mode dispersion, can be compensated quasi-exactly using finite impulse response filters. Some nonlinear impairments, such as intra-channel four-wave mixing and nonlinear phase noise, can be compensated partially. Carrier phase recovery can be performed using feedforward methods, even when phase-locked loops may fail due to delay constraints. DSP-based compensation enables a receiver to adapt to time-varying impairments, and facilitates use of advanced forward-error-correction codes. We discuss both single- and multi-carrier system implementations. For a given modulation format, using coherent detection, they offer fundamentally the same spectral efficiency and power efficiency, but may differ in practice, because of different impairments and implementation details. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gbit/s should become practical within the next few years.
A CAMAC based real-time noise analysis system for nuclear reactors
NASA Astrophysics Data System (ADS)
Ciftcioglu, Özer
1987-05-01
A CAMAC based real-time noise analysis system was designed for the TRIGA MARK II nuclear reactor at the Institute for Nuclear Energy, Istanbul. The input analog signals obtained from the radiation detectors are introduced to the system through CAMAC interface. The signals converted into digital form are processed by a PDP-11 computer. The fast data processing based on auto/cross power spectral density computations is carried out by means of assembly written FFT algorithms in real-time and the spectra obtained are displayed on a CAMAC driven display system as an additional monitoring device. The system has the advantage of being software programmable and controlled by a CAMAC system so that it is operated under program control for reactor surveillance, anomaly detection and diagnosis. The system can also be used for the identification of nonstationary operational characteristics of the reactor in long term by comparing the noise power spectra with the corresponding reference noise patterns prepared in advance.
Modernization of B-2 Data, Video, and Control Systems Infrastructure
NASA Technical Reports Server (NTRS)
Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.
Modernization of B-2 Data, Video, and Control Systems Infrastructure
NASA Technical Reports Server (NTRS)
Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.
NASA Astrophysics Data System (ADS)
Zafar, Fahad; Kalavally, Vineetha; Bakaul, Masuduzzaman; Parthiban, R.
2015-09-01
For making commercial implementation of light emitting diode (LED) based visible light communication (VLC) systems feasible, it is necessary to incorporate it with dimming schemes which will provide energy savings, moods and increase the aesthetic value of the places using this technology. There are two general methods which are used to dim LEDs commonly categorized as analog and digital dimming. Incorporating fast data transmission with these techniques is a key challenge in VLC. In this paper, digital and analog dimming for a 10 Mb/s non return to zero on-off keying (NRZ-OOK) based VLC system is experimentally investigated considering both photometric and communicative parameters. A spectrophotometer was used for photometric analysis and a line of sight (LOS) configuration in the presence of ambient light was used for analyzing communication parameters. Based on the experimental results, it was determined that digital dimming scheme is preferable for use in indoor VLC systems requiring high dimming precision and data transmission at lower brightness levels. On the other hand, analog dimming scheme is a cost effective solution for high speed systems where dimming precision is insignificant.
NASA Astrophysics Data System (ADS)
Endl, Michael; Brugamyer, Erik J.; Cochran, William D.; MacQueen, Phillip J.; Robertson, Paul; Meschiari, Stefano; Ramirez, Ivan; Shetrone, Matthew; Gullikson, Kevin; Johnson, Marshall C.; Wittenmyer, Robert; Horner, Jonathan; Ciardi, David R.; Horch, Elliott; Simon, Attila E.; Howell, Steve B.; Everett, Mark; Caldwell, Caroline; Castanheira, Barbara G.
2016-02-01
We report the detection of two new long-period giant planets orbiting the stars HD 95872 and HD 162004 (ψ1 Dra B) by the McDonald Observatory planet search. The planet HD 95872b has a minimum mass of 4.6 {M}{{Jup}} and an orbital semimajor axis of 5.2 AU. The giant planet ψ1 Dra Bb has a minimum mass of 1.5 {M}{{Jup}} and an orbital semimajor axis of 4.4 AU. Both of these planets qualify as Jupiter analogs. These results are based on over one and a half decades of precise radial velocity (RV) measurements collected by our program using the McDonald Observatory Tull Coude spectrograph at the 2.7 m Harlan J. Smith Telescope. In the case of ψ1 Dra B we also detect a long-term nonlinear trend in our data that indicates the presence of an additional giant planet, similar to the Jupiter-Saturn pair. The primary of the binary star system, ψ1 Dra A, exhibits a very large amplitude RV variation due to another stellar companion. We detect this additional member using speckle imaging. We also report two cases—HD 10086 and HD 102870 (β Virginis)—of significant RV variation consistent with the presence of a planet, but that are probably caused by stellar activity, rather than reflexive Keplerian motion. These two cases stress the importance of monitoring the magnetic activity level of a target star, as long-term activity cycles can mimic the presence of a Jupiter-analog planet.
FPGA-Based X-Ray Detection and Measurement for an X-Ray Polarimeter
NASA Technical Reports Server (NTRS)
Gregory, Kyle; Hill, Joanne; Black, Kevin; Baumgartner, Wayne
2013-01-01
This technology enables detection and measurement of x-rays in an x-ray polarimeter using a field-programmable gate array (FPGA). The technology was developed for the Gravitational and Extreme Magnetism Small Explorer (GEMS) mission. It performs precision energy and timing measurements, as well as rejection of non-x-ray events. It enables the GEMS polarimeter to detect precisely when an event has taken place so that additional measurements can be made. The technology also enables this function to be performed in an FPGA using limited resources so that mass and power can be minimized while reliability for a space application is maximized and precise real-time operation is achieved. This design requires a low-noise, charge-sensitive preamplifier; a highspeed analog to digital converter (ADC); and an x-ray detector with a cathode terminal. It functions by computing a sum of differences for time-samples whose difference exceeds a programmable threshold. A state machine advances through states as a programmable number of consecutive samples exceeds or fails to exceed this threshold. The pulse height is recorded as the accumulated sum. The track length is also measured based on the time from the start to the end of accumulation. For track lengths longer than a certain length, the algorithm estimates the barycenter of charge deposit by comparing the accumulator value at the midpoint to the final accumulator value. The design also employs a number of techniques for rejecting background events. This innovation enables the function to be performed in space where it can operate autonomously with a rapid response time. This implementation combines advantages of computing system-based approaches with those of pure analog approaches. The result is an implementation that is highly reliable, performs in real-time, rejects background events, and consumes minimal power.
Investigation of charge coupled device correlation techniques
NASA Technical Reports Server (NTRS)
Lampe, D. R.; Lin, H. C.; Shutt, T. J.
1978-01-01
Analog Charge Transfer Devices (CTD's) offer unique advantages to signal processing systems, which often have large development costs, making it desirable to define those devices which can be developed for general system's use. Such devices are best identified and developed early to give system's designers some interchangeable subsystem blocks, not requiring additional individual development for each new signal processing system. The objective of this work is to describe a discrete analog signal processing device with a reasonably broad system use and to implement its design, fabrication, and testing.
NASA Technical Reports Server (NTRS)
Heller, R. C.; Weber, F. P.; Zealear, K. A.
1970-01-01
The detection of stress induced by bark beetles in conifers is reviewed in two sections: (1) the analysis of very small scale aerial photographs taken by NASA's RB-57F aircraft on August 10, 1969, and (2) the analysis of multispectral imagery obtained by the optical-mechanical line scanner. Underexposure of all films taken from the RB-57 aircraft and inadequate flight coverage prevented drawing definitive conclusions regarding optimum scales and film combinations to detect the discolored infestations. Preprocessing of the scanner signals by both analog and digital computers improved the accuracy of target recognition. Selection and ranking of the best channels for signature recognition was the greatest contribution of digital processing. Improvements were made in separating hardwoods from conifers and old-kill pine trees from recent discolored trees and from healthy trees, but accuracy of detecting the green infested trees is still not acceptable on either the SPARC or thermal-contouring processor. From six years of experience in processing line scan data it is clear that the greatest gain in previsual detection of stress will occur when registered multispectral data from a single aperture or common instantaneous field of view scanner system can be collected and processed.
NASA Astrophysics Data System (ADS)
Crosby, Jeffrey Scott
Mercury is a pollutant of grave concern with well documented neurological and developmental health impacts. Better sensing methodology would improve detection and control of mercury and thus reduce its health burden. Gold nanoparticles provide a sensing medium with potential advantages in sensitivity, selectivity, robustness, and cost over established techniques. Mercury readily adsorbs onto the surface of the gold changing the localized surface plasmon resonance which is measured as a shift in the peak optical absorbance wavelength. This shift is dependent on the mercury concentration and predictable with classical electromagnetism. This work investigates some of the fundamental relationships driving sensor response. The effects of mass transfer and surface kinetics on mercury/gold nanoparticle adsorption are determined with analytical models and experimental results based on impinging flow geometry. To decouple mass transfer and surface kinetics adsorption, electrical analogy models are constructed and fit to the experimental data. The models can account for variations in flow conditions and surface coatings on the nanoparticles. These models are generalizable to other systems. Results from these fundamental investigations are used to improve and extend sensor performance. The time response or collection efficiency is optimized depending on system requirements. Using the knowledge gained, the applicability of gold nanoparticle mercury sensors is extended to a fiber optic based system and aqueous detection. Nanorods deposited on the surface of a fiber optic cable have a linear response with concentration and are able to detect mercury down to 1.0 mug/m3. The modification of an established oxidation/reduction scheme for use with the sensor allows for the detection of ionic and organic mercury from water samples which ordinarily would not be reactive with gold nanoparticles. The aqueous sensor was able to detect mercury below the EPA's drinking water limit.
Mechatronics by Analogy and Application to Legged Locomotion
NASA Astrophysics Data System (ADS)
Ragusila, Victor
A new design methodology for mechatronic systems, dubbed as Mechatronics by Analogy (MbA), is introduced and applied to designing a leg mechanism. The new methodology argues that by establishing a similarity relation between a complex system and a number of simpler models it is possible to design the former using the analysis and synthesis means developed for the latter. The methodology provides a framework for concurrent engineering of complex systems while maintaining the transparency of the system behaviour through making formal analogies between the system and those with more tractable dynamics. The application of the MbA methodology to the design of a monopod robot leg, called the Linkage Leg, is also studied. A series of simulations show that the dynamic behaviour of the Linkage Leg is similar to that of a combination of a double pendulum and a spring-loaded inverted pendulum, based on which the system kinematic, dynamic, and control parameters can be designed concurrently. The first stage of Mechatronics by Analogy is a method of extracting significant features of system dynamics through simpler models. The goal is to determine a set of simpler mechanisms with similar dynamic behaviour to that of the original system in various phases of its motion. A modular bond-graph representation of the system is determined, and subsequently simplified using two simplification algorithms. The first algorithm determines the relevant dynamic elements of the system for each phase of motion, and the second algorithm finds the simple mechanism described by the remaining dynamic elements. In addition to greatly simplifying the controller for the system, using simpler mechanisms with similar behaviour provides a greater insight into the dynamics of the system. This is seen in the second stage of the new methodology, which concurrently optimizes the simpler mechanisms together with a control system based on their dynamics. Once the optimal configuration of the simpler system is determined, the original mechanism is optimized such that its dynamic behaviour is analogous. It is shown that, if this analogy is achieved, the control system designed based on the simpler mechanisms can be directly implemented to the more complex system, and their dynamic behaviours are close enough for the system performance to be effectively the same. Finally it is shown that, for the employed objective of fast legged locomotion, the proposed methodology achieves a better design than Reduction-by-Feedback, a competing methodology that uses control layers to simplify the dynamics of the system.
NASA Technical Reports Server (NTRS)
Mata, Carlos T.
2003-01-01
Anadigm(registered trademark) today announced that ASRC Aerospace Corporation has designed Anadigm's dynamically reconfigurable Field Programmable Analog Array (FPAA) technology into an advanced data acquisition system developed under contract for NASA. ASRC Aerospace designed in the Anadigm(registered trademark) FPAA to provide complex analog signal conditioning in its intelligent, self-calibrating, and self-healing advanced data acquisition system (ADAS). The ADAS has potential applications in industrial, manufacturing, and aerospace markets. This system offers highly reliable operation while reducing the need for user interaction. Anadigm(registered trademark)'s dynamically reconfigurable FPAAs can be reconfigured in-system by the designer or on the fly by a microprocessor. A single device can thus be programmed to implement multiple analog functions and/or to adapt on-the-fly to maintain precision operation despite system degradation and aging. In the case of the ASRC advanced data acquisition system, the FPAA helps ensure that the system will continue to operating at 100% functionality despite changes in the environment, component degradation, and/or component failures.
Transistor analogs of emergent iono-neuronal dynamics.
Rachmuth, Guy; Poon, Chi-Sang
2008-06-01
Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications.
Adenosylcobinamide methyl phosphate as a pseudocoenzyme for diol dehydrase.
Ishida, A; Toraya, T
1993-02-16
Adenosylcobinamide methyl phosphate, a novel analog of adenosylcobalamin lacking the nucleotide loop moiety, was synthesized. It did not show detectable coenzymic activity but behaved as a strong competitive inhibitor against AdoCbl with relatively high affinity (Ki = 2.5 microM). When apoenzyme was incubated at 37 degrees C with this analog in the presence of substrate, the Co-C bond of the analog was almost completely and irreversibly cleaved within 10 min, forming an enzyme-bound Co(II)-containing species. The cleavage was not observed in the absence of substrate. The Co-C bond cleavage in the presence of substrate was not catalytic but stoichiometric, implying that the Co-C bond of the analog undergoes activation when the analog binds to the active site of the enzyme. 5'-Deoxyadenosine was the only product derived from the adenosyl group of the analog upon the Co-C bond cleavage. Apoenzyme did not undergo modification during this process. Therefore, it seems likely that adenosylcobinamide methyl phosphate acts as a pseudocoenzyme or a potent suicide coenzyme. Since adenosylcobinamide neither functions as coenzyme nor binds tightly to apoenzyme, it can be concluded that the phosphodiester moiety of the nucleotide loop of adenosylcobalamin is essential for tight binding to apoenzyme and therefore for subsequent activation of the Co-C bond and catalysis. It is also evident that the nucleotide loop is obligatory for the normal progress of catalytic cycle.
A Toolbox for Exoplanet Exploration
NASA Astrophysics Data System (ADS)
Jensen-Clem, Rebecca Marie
2017-05-01
In this thesis, I develop a new suite of tools to address two questions in exoplanet science: how common are Earth-mass planets in the habitable zones of Solar-type stars, and can we detect signs of life on other worlds? Answering the first question requires a method for detecting Earth-Sun analogs. Currently, the radial velocity (RV) method of exoplanet detection is one of the most successful tools for probing inner planetary systems. However, degeneracy between a spectrometer's wavelength calibration and the astrophysical RV shift has limited the sensitivity of today's instruments. In my thesis, I address a method for breaking this degeneracy: by combining a traditional spectrometer design with a dynamic interferometer, a fringe pattern is generated at the image plane that is highly sensitive to changes in the radial velocity of the target star. I augmented previous theoretical studies of the method, creating an end-to-end simulation to 1) introduce and recover wavelength calibration errors, and 2) investigate the effects of interferometer position errors on the RV precision. My simulation showed that using this kind of interferometric system, a 5-m class telescope could detect an Earth-Sun analog. Addressing the occurrence rate of Earth twins also requires an understanding of planet formation in multiple star systems, which encompass half of all Solar-type stars. Gravitational interactions between binary components separated by 10-100 astronomical units are predicted to truncate the outer edges of their respective disks, possibly reducing the disks' lifetimes. Consequently, the pool of material and the amount of time available for planet formation may be smaller than in single star systems. The stars' rotational periods provide a fossil record of these events: star-disk magnetic interactions initially prevent a contracting pre-main sequence star from spinning up, and hence a star with a shorter-lived disk is expected to be spinning more quickly when it reaches the zero age main sequence. In order to conduct a large-scale multiplicity survey to investigate the relationship between stellar rotation and binary system properties (e.g. their separations and mass ratios), I contributed to the commissioning of Robo-AO, a robotic laser guide star adaptive optics system, at the Kitt Peak 2.1-m. After the instrument's installation, I wrote a data pipeline to optimize the system's sensitivity to close stellar companions via reference star differential imaging. I then characterized Robo-AO's performance during its first year of operations. Finally, I used Robo-AO to search for binaries among the 759 stars in the Pleiades with rotational periods measured using the photometric data of the re-purposed Kepler telescope, K2. Detecting signs of life on other worlds will require detailed characterization of rocky exoplanet atmospheres. Polarimetry has long been proposed as a means of probing these atmospheres, but current instruments lack the sensitivity to detect the starlight reflected and polarized by such small, close-in planets. However, the latest generation of high contrast imaging instruments (e.g. GPI and SPHERE) may be able to detect the polarization of thermal emission by young gas giants due to scattering by aerosols in their atmospheres. Observational constraints on the details of clouds physics imposed by polarized emission will improve our understanding of the planets' compositions, and hence their formation histories. For the case of the brown dwarf HD19467 B orbiting a nearby Sun-like star, I demonstrated that the Gemini Planet Imager can detect linear polarizations on the order predicted for these cloudy exoplanets. My current pilot programs can produce the first detections of polarized exoplanet emission, while also building expertise for reflected starlight polarimetry with future observatories.
Carrier Modulation Via Waveform Probability Density Function
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
2006-01-01
Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital one's or zero's. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental physical laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.
Carrier Modulation Via Waveform Probability Density Function
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
2004-01-01
Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital ONEs or ZEROs. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental natural laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.
A wideband, high-resolution spectrum analyzer
NASA Technical Reports Server (NTRS)
Quirk, M. P.; Wilck, H. C.; Garyantes, M. F.; Grimm, M. J.
1988-01-01
A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.
A wide-band high-resolution spectrum analyzer
NASA Technical Reports Server (NTRS)
Quirk, Maureen P.; Garyantes, Michael F.; Wilck, Helmut C.; Grimm, Michael J.
1988-01-01
A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.
Circuit for detecting initial systole and dicrotic notch. [for monitoring arterial pressure
NASA Technical Reports Server (NTRS)
Gebben, V. D.; Webb, J. A., Jr. (Inventor)
1974-01-01
Circuitry is disclosed for processing an arterial pressure waveform to produce during any one cycle a pulse corresponding to the initial systole and a pulse corresponding to the dicrotic notch. In a first channel, an electrical analog of the arterial pressure waveform is filtered and then compared to the original waveform to produce an initial systole signal. In a second channel, the analog is differentiated, filtered, and fed through a gate controlled by pulses from the first channel to produce an electrical pulse corresponding to the dicrotic notch.
Yu, Xiaohua; Xue, Jingchuan; Yao, Hong; Wu, Qian; Venkatesan, Arjun K; Halden, Rolf U; Kannan, Kurunthachalam
2015-12-15
As health concerns over bisphenol A (BPA) in consumer products are mounting, this weak estrogen mimicking compound is gradually being replaced with structural analogs, whose environmental occurrence and estrogen risks are not well understood yet. We used high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to determine the concentrations of eight bisphenol analogs in 76 sewage sludge samples collected by the U.S. Environmental Protection Agency (EPA) in 2006/2007 from 74 wastewater treatment plants (WWTPs) in 35 states. Bisphenols were detected at the following concentration ranges (ng/g dry weight) and detection frequencies: BPA (6.5-4700; 100%); bisphenol S (BPS; <1.79-1480; 84%); bisphenol F (BPF; <1.79-242; 68%); bisphenol AF (BPAF; <1.79-72.2; 46%); bisphenol P (BPP; <1.79-6.42; <5%), bisphenol B (BPB; <1.79-5.60; <5%), and bisphenol Z (BPZ; <1.79--66.7; <5%). Bisphenol AP (BPAP) was not detected in any of the samples (<1.79 ng/g dw). Concentrations of BPA in sewage sludge were an order of magnitude higher than those reported in China but similar to those in Germany. The calculated 17β-estradiol equivalents (E2EQ) of bisphenols present in sludge samples were 7.74 (0.26-90.5) pg/g dw, which were three orders of magnitude lower than the estrogenic activity contributed by natural estrogens present in the sludge. The calculated mass loading of bisphenols through the disposal of sludge and wastewater was <0.02% of the total U.S. production. As the usage of BPA is expected to decline further, environmental emissions of BPS, BPF, and BPAF are likely to increase in the future. This study establishes baseline levels and estrogenic activity of diverse bisphenol analogs in sewage sludge. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heineke, J.M.
1978-12-20
This study examines and analyzes several classes of incidents in which decision makers are confronted with adversaries. The classes are analogous to adversaries in a material control system in a nuclear facility. Both internal threats (bank frauds and embezzlements) and external threats (aircraft hijackings and hostage-type terrorist events were analyzed. (DLC)
Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer
Warburton, W.K.; Hubbard, B.
1999-02-09
A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion is disclosed. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner`s operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system. 13 figs.
System for memorizing maximum values
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1992-01-01
The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.
System for memorizing maximum values
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1992-08-01
The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.
System for Memorizing Maximum Values
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1996-01-01
The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either liner or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.
The alluring but misleading analogy between mirror neurons and the motor theory of speech.
Holt, Lori L; Lotto, Andrew J
2014-04-01
Speech is commonly claimed to relate to mirror neurons because of the alluring surface analogy of mirror neurons to the Motor Theory of speech perception, which posits that perception and production draw upon common motor-articulatory representations. We argue that the analogy fails and highlight examples of systems-level developmental approaches that have been more fruitful in revealing perception-production associations.
Advanced Data Acquisition Systems with Self-Healing Circuitry
NASA Technical Reports Server (NTRS)
Larson, William E.; Ihlefeld, Curtis M.; Medelius, Pedro J.; Delgado, H. (Technical Monitor)
2001-01-01
Kennedy Space Center's Spaceport Engineering & Technology Directorate has developed a data acquisition system that will help drive down the cost of ground launch operations. This system automates both the physical measurement set-up function as well as configuration management documentation. The key element of the system is a self-configuring, self-calibrating, signal-conditioning amplifier that automatically adapts to any sensor to which it is connected. This paper will describe the core technology behind this device and the automated data system in which it has been integrated. The paper will also describe the revolutionary enhancements that are planned for this innovative measurement technology. All measurement electronics devices contain circuitry that, if it fails or degrades, requires the unit to be replaced, adding to the cost of operations. Kennedy Space Center is now developing analog circuits that will be able to detect their own failure and dynamically reconfigure their circuitry to restore themselves to normal operation. This technology will have wide ranging application in all electronic devices used in space and ground systems.
NASA Astrophysics Data System (ADS)
Shibata, Junji; Kaneko, Kazuhide; Ohishi, Kiyoshi; Ando, Itaru; Ogawa, Mina; Takano, Hiroshi
This paper proposes a new output voltage control for an inverter system, which has time-delay and nonlinear load. In the next generation X-ray computed tomography of a medical device (X-ray CT) that uses the contactless power transfer method, the feedback signal often contains time-delay due to AD/DA conversion and error detection/correction time. When the PID controller of the inverter system is received the adverse effects of the time-delay, the controller often has an overshoot and a oscillated response. In order to overcome this problem, this paper proposes a compensation method based on the Smith predictor for an inverter system having a time-delay and the nonlinear loads which are the diode bridge rectifier and X-ray tube. The proposed compensation method consists of the hybrid Smith predictor system based on an equivalent analog circuit and DSP. The experimental results confirm the validity of the proposed system.
NASA Technical Reports Server (NTRS)
Meredith, R. W.; Becher, J.
1981-01-01
Parts were fabricated for the acoustic ground impedance meter and the instrument was tested. A rubber hose was used to connect the resonator neck to the chamber in order to suppress vibration from the volume velocity source which caused chatter. An analog to digital converter was successfully hardwired to the computer detection system. The cooling system for the resonant tube was modified to use liquid nitrogen cooling. This produced the required temperature for the tube, but the temperature gradients within each of the four tube sections reached unacceptable levels. Final measurements of the deexcitation of nitrogen by water vapor indicate that the responsible physical process is not the direct vibration-translation energy transfer, but is a vibration-vibration energy transfer.
European corn borer sex pheromone : Inhibition and elicitation of behavioral response by analogs.
Schwarz, M; Klun, J A; Uebel, E C
1990-05-01
The male sexual behavior-stimulating and inhibiting properties of a series of analogs of the European corn borer sex pheromone were determined in a flight tunnel. The structural requirements for inhibition of pheromonal response were far less restrictive than those for elicitation of that response. Analogs that by themselves elicited upwind flight response from males at a low dose were generally less inhibitory to male response than many of the analogs that had no pheromonal activity. These findings suggest that many pheromone analogs bind to pheromone receptors without provoking behavioral response and possibly undergo slower degradation on the antenna than pheromonally active compounds. The disparity of response to analogs by two pheromonal types of the European corn borer indicates that the pheromone receptor and pheromone catabolic systems are biochemically very different in the two types.
The Terrestrial Planets Formation in the Solar-System Analogs
NASA Astrophysics Data System (ADS)
Ji, Jianghui; Liu, L.; Chambers, J. E.; Butler, R. P.
2006-09-01
In this work, we numerically studied the terrestrial planets formation in the Solar-Systems Analogs using MERCURY (Chambers 1999). The Solar-System Analogs are herein defined as a solar-system like planetary system, where the system consists of two wide-separated Jupiter-like planets (e.g., 47 UMa, Ji et al. 2005) move about the central star on nearly circular orbits with low inclinations, then low-mass terrestrial planets can be formed there, and life would be possibly evolved. We further explored the terrestrial planets formation due to the current uncertainties of the eccentricities for two giant planets. In addition, we place a great many of the planetesimals between two Jupiter-like planets to investigate the potential asteroidal structure in such systems. We showed that the secular resonances and mean motion resonances can play an important role in shaping the asteroidal structure. We acknowledge the financial support by National Natural Science Foundation of China (Grant No.10573040, 10233020, 10203005) and Foundation of Minor Planets of Purple Mountain Observatory.
Rotation, activity, and stellar obliquities in a large uniform sample of Kepler solar analogs
NASA Astrophysics Data System (ADS)
Buzasi, Derek; Lezcano, Andy; Preston, Heather L.
2016-10-01
In this study, we undertook a deep photometric examination of a narrowly-defined sample of solar analogs in the Kepler field, with the goals of producing a uniform and statistically meaningful sample of such stars, comparing the properties of planet hosts to those of the general stellar population, and examining the behavior of rotation and photometric activity among stars with similar overall physical parameters. We successfully derived photometric activity indicators and rotation periods for 95 planet hosts (Kepler objects of interest [KOIs]) and 954 solar analogs without detected planets; 573 of these rotation periods are reported here for the first time. Rotation periods average roughly 20 d, but the distribution has a wide dispersion, with a tail extending to P > 35 d which appears to be inconsistent with published gyrochronological relations. We observed a weak rotation-activity relation for stars with rotation periods less than about 12 d; for slower rotators, the relation is dominated by scatter. However, we are able to state that the solar activity level derived from Virgo data is consistent with the majority of stars with similar rotation periods in our sample. Finally, our KOI sample is consistently approximately 0.3 dex more variable than our non-KOIs; we ascribe the difference to a selection effect due to low orbital obliquity in the planet-hosting stars and derive a mean obliquity for our sample of χ = 6+5°-6, similar to that seen in the solar system.
Tectonics and volcanism on Mars: a compared remote sensing analysis with earthly geostructures
NASA Astrophysics Data System (ADS)
Baggio, Paolo; Ancona, M. A.; Callegari, I.; Pinori, S.; Vercellone, S.
1999-12-01
The recent knowledge on Mars' lithosphere evolution does not find yet sufficient analogies with the Earth's tectonic models. The Viking image analysis seems to be even now frequently, rather fragmentary, and do not permits to express any coherent relationships among the different detected phenomena. Therefore, today it is impossible to support any reliable kinematic hypothesis. The Remote-Sensing interpretation is addressed to a Viking image mosaic of the known Tharsis Montes region and particularly focused on the Arsia Mons volcano. Several previously unknown lineaments, not directly linked to volcano-tectonics, were detected. Their mutual relationships recall transcurrent kinematics that could be related to similar geostructural models known in the Earth plate tectonic dynamics. Several concordant relationships between the Arsia Mons volcano and the brittle extensive tectonic features of earthly Etnean district (Sicily, South Italy), interpreted on Landsat TM images, were pointed out. These analogies coupled with the recently confirmed strato- volcano topology of Tharsis Montes (Head and Wilson), the layout distribution of the effusive centers (Arsia, Pavonis and Ascraeus Montes), the new tectonic lineaments and the morphological features, suggest the hypothesis of a plate tectonic volcanic region. The frame could be an example in agreement with the most recent interpretation of Mars (Sleep). A buried circular body, previously incorrectly interpreted as a great landslide event from the western slope of Arsia Mons volcano, seems really to be a more ancient volcanic structure (Arsia Mons Senilis), which location is in evident relation with the interpreted new transcurrent tectonic system.
Radiation protection program for early detection of breast cancer in a mammography facility
NASA Astrophysics Data System (ADS)
Villagomez Casimiro, Mariana; Ruiz Trejo, Cesar; Espejo Fonseca, Ruby
2014-11-01
Mammography is the best tool for early detection of Breast Cancer. In this diagnostic radiology modality it is necessary to establish the criteria to ensure the proper use and operation of the equipment used to obtain mammographic images in order to contribute to the safe use of ionizing radiation. The aim of the work was to implement at FUCAM-AC the radiation protection program which must be established for patients and radiation workers according to Mexican standards [1-4]. To achieve this goal, radiation protection and quality control manuals were elaborated [5]. Furthermore, a quality control program (QCP) in the mammography systems (analog/digital), darkroom included, has been implemented. Daily sensitometry, non-variability of the image quality, visualizing artifacts, revision of the equipment mechanical stability, compression force and analysis of repetition studies are some of the QCP routine tests that must be performed by radiological technicians of this institution as a set of actions to ensure the protection of patients. Image quality and patients dose assessment were performed on 4 analog equipment installed in 2 mobile units. In relation to dose assessment, all equipment passed the acceptance criteria (<3 mGy per projection). The image quality test showed that most images (70%)- presented artifacts. A brief summary of the results of quality control tests applied to the equipment and film processor are presented. To maintain an adequate level of quality and safety at FUCAM-AC is necessary that the proposed radiation protection program in this work is applied.
The Analog (Computer) As a Physiology Adjunct.
ERIC Educational Resources Information Center
Stewart, Peter A.
1979-01-01
Defines and discusses the analog computer and its use in a physiology laboratory. Includes two examples: (1) The Respiratory Control Function and (2) CO-Two Control in the Respiratory System. Presents diagrams and mathematical models. (MA)
Stored program concept for analog computers
NASA Technical Reports Server (NTRS)
Hannauer, G., III; Patmore, J. R.
1971-01-01
Optimization of three-stage matrices, modularization, and black boxes design techniques provides for automatically interconnecting computing component inputs and outputs in general purpose analog computer. Design also produces relatively inexpensive and less complex automatic patching system.
Stellar flare oscillations: evidence for oscillatory reconnection and evolution of MHD modes
NASA Astrophysics Data System (ADS)
Doyle, J. G.; Shetye, J.; Antonova, A. E.; Kolotkov, D. Y.; Srivastava, A. K.; Stangalini, M.; Gupta, G. R.; Avramova, A.; Mathioudakis, M.
2018-04-01
Here, we report on the detection of a range of quasi-periodic pulsations (20-120 s; QPPs) observed during flaring activity of several magnetically active dMe stars, namely AF Psc, CR Dra, GJ 3685A, Gl 65, SDSS J084425.9+513830, and SDSS J144738.47+035312.1 in the GALEX NUV filter. Based on a solar analogy, this work suggests that many of these flares may be triggered by external drivers creating a periodic reconnection in the flare current sheet or an impulsive energy release giving rise to an avalanche of periodic bursts that occur at time intervals that correspond to the detected periods, thus generating QPPs in their rising and peak phases. Some of these flares also show fast QPPs in their decay phase, indicating the presence of fast sausage mode oscillations either driven externally by periodic reconnection or intrinsically in the post-flare loop system during the flare energy release.
A 256 pixel magnetoresistive biosensor microarray in 0.18μm CMOS
Hall, Drew A.; Gaster, Richard S.; Makinwa, Kofi; Wang, Shan X.; Murmann, Boris
2014-01-01
Magnetic nanotechnologies have shown significant potential in several areas of nanomedicine such as imaging, therapeutics, and early disease detection. Giant magnetoresistive spin-valve (GMR SV) sensors coupled with magnetic nanotags (MNTs) possess great promise as ultra-sensitive biosensors for diagnostics. We report an integrated sensor interface for an array of 256 GMR SV biosensors designed in 0.18 μm CMOS. Arranged like an imager, each of the 16 column level readout channels contains an analog front- end and a compact ΣΔ modulator (0.054 mm2) with 84 dB of dynamic range and an input referred noise of 49 nT/√Hz. Performance is demonstrated through detection of an ovarian cancer biomarker, secretory leukocyte peptidase inhibitor (SLPI), spiked at concentrations as low as 10 fM. This system is designed as a replacement for optical protein microarrays while also providing real-time kinetics monitoring. PMID:24761029
The Characterization of Biosignatures in Caves Using an Instrument Suite
NASA Astrophysics Data System (ADS)
Uckert, Kyle; Chanover, Nancy J.; Getty, Stephanie; Voelz, David G.; Brinckerhoff, William B.; McMillan, Nancy; Xiao, Xifeng; Boston, Penelope J.; Li, Xiang; McAdam, Amy; Glenar, David A.; Chavez, Arriana
2017-12-01
The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques.
Choi, Subin; Park, Kyeonghwan; Lee, Seungwook; Lim, Yeongjin; Oh, Byungjoo; Chae, Hee Young; Park, Chan Sam; Shin, Heugjoo; Kim, Jae Joon
2018-03-02
This paper presents a resolution-reconfigurable wide-range resistive sensor readout interface for wireless multi-gas monitoring applications that displays results on a smartphone. Three types of sensing resolutions were selected to minimize processing power consumption, and a dual-mode front-end structure was proposed to support the detection of a variety of hazardous gases with wide range of characteristic resistance. The readout integrated circuit (ROIC) was fabricated in a 0.18 μm CMOS process to provide three reconfigurable data conversions that correspond to a low-power resistance-to-digital converter (RDC), a 12-bit successive approximation register (SAR) analog-to-digital converter (ADC), and a 16-bit delta-sigma modulator. For functional feasibility, a wireless sensor system prototype that included in-house microelectromechanical (MEMS) sensing devices and commercial device products was manufactured and experimentally verified to detect a variety of hazardous gases.
Krzemien, Magali; Jemel, Boutheina; Maillart, Christelle
2017-01-01
Analogical reasoning is a human ability that maps systems of relations. It develops along with relational knowledge, working memory and executive functions such as inhibition. It also maintains a mutual influence on language development. Some authors have taken a greater interest in the analogical reasoning ability of children with language disorders, specifically those with specific language impairment (SLI). These children apparently have weaker analogical reasoning abilities than their aged-matched peers without language disorders. Following cognitive theories of language acquisition, this deficit could be one of the causes of language disorders in SLI, especially those concerning productivity. To confirm this deficit and its link to language disorders, we use a scene analogy task to evaluate the analogical performance of SLI children and compare them to controls of the same age and linguistic abilities. Results show that children with SLI perform worse than age-matched peers, but similar to language-matched peers. They are more influenced by increased task difficulty. The association between language disorders and analogical reasoning in SLI can be confirmed. The hypothesis of limited processing capacity in SLI is also being considered.
Lewis hybrid computing system, users manual
NASA Technical Reports Server (NTRS)
Bruton, W. M.; Cwynar, D. S.
1979-01-01
The Lewis Research Center's Hybrid Simulation Lab contains a collection of analog, digital, and hybrid (combined analog and digital) computing equipment suitable for the dynamic simulation and analysis of complex systems. This report is intended as a guide to users of these computing systems. The report describes the available equipment' and outlines procedures for its use. Particular is given to the operation of the PACER 100 digital processor. System software to accomplish the usual digital tasks such as compiling, editing, etc. and Lewis-developed special purpose software are described.
Lunar and Planetary Science XXXV: Outer Solar System
NASA Technical Reports Server (NTRS)
2004-01-01
The session 'Outer Solar System" inlcuded:Monte Carlo Modeling of [O I] 630 nm Auroral Emission on Io; The Detection of Iron Sulfide on Io; Io and Loki in 2003 as Seen from the Infrared Telescope Facility Using Mutual Satellite and Jupiter Occultations; Mapping of the Zamama-Thor Region of Io; First Solar System Results of the Spitzer Space Telescope; Mapping the Surface of Pluto with the Hubble Space Telescope; Experimental Study on Fischer-Tropsch Catalysis in the Circum-Saturnian Subnebula; New High-Pressure Phases of Ammonia Dihydrate; Gas Hydrate Stability at Low Temperatures and High Pressures with Applications to Mars and Europa; Laboratory UV Photolysis of Planetary Ice Analogs Containing H2O + CO2 (1:1); The OH Stretch Infrared Band of Water Ice and Its Temperature and Radiation Dependence; Band Position Variations in Reflectance Spectra of the Jovian Satellite Ganymede; Comparison of Porosity and Radar Models for Europa s Near Surface; Combined Effects of Diurnal and Nonsynchronous Surface Stresses on Europa; Europa s Northern Trailing Hemisphere: Lineament Stratigraphic Framework; Europa at the Highest Resolution: Implications for Surface Processes and Landing Sites; Comparison of Methods to Determine Furrow System Centers on Ganymede and Callisto; Resurfacing of Ganymede by Liquid-Water Volcanism; Layered Ejecta Craters on Ganymede: Comparisons with Martian Analogs; Evaluation of the Possible Presence of CO2-Clathrates in Europa s Icy Shell or Seafloor; Geosciences at Jupiter s Icy Moons: The Midas Touch; Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor); and In Situ Surveying of Saturn s Rings.
Hall, Gordon H; Sloan, David L; Ma, Tianchi; Couse, Madeline H; Martel, Stephane; Elliott, Duncan G; Glerum, D Moira; Backhouse, Christopher J
2014-07-04
Electrophoresis is an integral part of many molecular diagnostics protocols and an inexpensive implementation would greatly facilitate point-of-care (POC) applications. However, the high instrumentation cost presents a substantial barrier, much of it associated with fluorescence detection. The cost of such systems could be substantially reduced by placing the fluidic channel and photodiode directly above the detector in order to collect a larger portion of the fluorescent light. In future, this could be achieved through the integration and monolithic fabrication of photoresist microchannels on complementary metal-oxide semiconductor microelectronics (CMOS). However, the development of such a device is expensive due to high non-recurring engineering costs. To facilitate that development, we present a system that utilises an optical relay to integrate low-cost polymeric microfluidics with a CMOS chip that provides a photodiode, analog-digital conversion and a standard serial communication interface. This system embodies an intermediate level of microelectronic integration, and significantly decreases development costs. With a limit of detection of 1.3±0.4nM of fluorescently end-labeled deoxyribonucleic acid (DNA), it is suitable for diagnostic applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Design of extensible meteorological data acquisition system based on FPGA
NASA Astrophysics Data System (ADS)
Zhang, Wen; Liu, Yin-hua; Zhang, Hui-jun; Li, Xiao-hui
2015-02-01
In order to compensate the tropospheric refraction error generated in the process of satellite navigation and positioning. Temperature, humidity and air pressure had to be used in concerned models to calculate the value of this error. While FPGA XC6SLX16 was used as the core processor, the integrated silicon pressure sensor MPX4115A and digital temperature-humidity sensor SHT75 are used as the basic meteorological parameter detection devices. The core processer was used to control the real-time sampling of ADC AD7608 and to acquire the serial output data of SHT75. The data was stored in the BRAM of XC6SLX16 and used to generate standard meteorological parameters in NEMA format. The whole design was based on Altium hardware platform and ISE software platform. The system was described in the VHDL language and schematic diagram to realize the correct detection of temperature, humidity, air pressure. The 8-channel synchronous sampling characteristics of AD7608 and programmable external resources of FPGA laid the foundation for the increasing of analog or digital meteorological element signal. The designed meteorological data acquisition system featured low cost, high performance, multiple expansions.
Mineralogy and Astrobiology Detection Using Laser Remote Sensing Instrument
NASA Technical Reports Server (NTRS)
Abedin, M. Nurul; Bradley, Arthur T.; Sharma, Shiv K.; Misra, Anupam K.; Lucey, Paul G.; Mckay, Chistopher P.; Ismail, Syed; Sandford, Stephen P.
2015-01-01
A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100 m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20 km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters. OCIS codes: (120.0280) Remote sensing and sensors; (130.0250) Optoelectronics; (280.3640) Lidar; (300.2530) Fluorescence, laser-induced; (300.6450) Spectroscopy, Raman; (300.6365) Spectroscopy, laser induced breakdown
Hung, Szu-Ying; Shih, Ya-Chen; Tseng, Wei-Lung
2015-02-01
This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the determination of adenosine in urine. Copyright © 2014 Elsevier B.V. All rights reserved.
Method and apparatus for determining viscosity
Chu, Benjamin; Dhadwal, Harbans S.
1990-01-01
A capillary viscometer is provided which includes a fiber-optic probe and a phototransistor which produces an output signal as a liquid meniscus falls through the field of view of a detecting fiber bundle. An analog circuit is employed for receiving the signal and starting or stopping a digital counter in response thereto. The circuit includes first and second differentiators and a zero detection portion for detecting zero value outputs from the second differentiator. The counter is started or stopped upon the generation of a triggering pulse at the time such zero value is detected.
Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits
Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.
1995-01-01
A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.
Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits
Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.
1995-11-07
A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.
Two-Dimensional Edge Detection by Guided Mode Resonant Metasurface
NASA Astrophysics Data System (ADS)
Saba, Amirhossein; Tavakol, Mohammad Reza; Karimi-Khoozani, Parisa; Khavasi, Amin
2018-05-01
In this letter, a new approach to perform edge detection is presented using an all-dielectric CMOS-compatible metasurface. The design is based on guided-mode resonance which provides a high quality factor resonance to make the edge detection experimentally realizable. The proposed structure that is easy to fabricate, can be exploited for detection of edges in two dimensions due to its symmetry. Also, the trade-off between gain and resolution of edge detection is discussed which can be adjusted by appropriate design parameters. The proposed edge detector has also the potential to be used in ultrafast analog computing and image processing.
Koenig, Cynthia S; Platt, Richard D; Griggs, Richard A
2007-07-01
Using the analogical transfer paradigm, the present study investigated the competing explanations of Girotto and Legrenzi (Psychological Research 51: 129-135, 1993) and Griggs, Platt, Newstead, and Jackson (Thinking and Reasoning 4: 1-14, 1998) for facilitation on the SARS version of the THOG problem, a hypothetico-deductive reasoning task. Girotto and Legrenzi argue that facilitation is based on logical analysis of the task [System 2 reasoning in Evans's (Trends in Cognitive Sciences 7: 454-459, 2003) dual-process account of reasoning] while Griggs et al. maintain that facilitation is due to an attentional heuristic produced by the wording of the problem (System 1 reasoning). If Girotto and Legrenzi are correct, then System 2 reasoning, which is volitional and responsible for deductive reasoning, should be elicited, and participants should comprehend the solution principle of the THOG task and exhibit analogical transfer. However, if Griggs et al. are correct, then System 1 reasoning, which is responsible for heuristic problem solving strategies such as an attentional heuristic, should occur, and participants should not abstract the solution principle and transfer should not occur. Significant facilitation (68 and 82% correct) was only observed for the two SARS source problems, but significant analogical transfer did not occur. This lack of transfer suggests that System 1 reasoning was responsible for the facilitation observed in the SARS problem, supporting Griggs et al.'s attentional heuristic explanation. The present results also underscore the explanatory value of using analogical transfer rather than facilitation as the criterion for problem understanding.