Science.gov

Sample records for analogue microwave photonics

  1. Fully analogue photonic reservoir computer.

    PubMed

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-03-03

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers.

  2. Fully analogue photonic reservoir computer

    PubMed Central

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-01-01

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers. PMID:26935166

  3. Detecting itinerant single microwave photons

    NASA Astrophysics Data System (ADS)

    Sathyamoorthy, Sankar Raman; Stace, Thomas M.; Johansson, Göran

    2016-08-01

    Single-photon detectors are fundamental tools of investigation in quantum optics and play a central role in measurement theory and quantum informatics. Photodetectors based on different technologies exist at optical frequencies and much effort is currently being spent on pushing their efficiencies to meet the demands coming from the quantum computing and quantum communication proposals. In the microwave regime, however, a single-photon detector has remained elusive, although several theoretical proposals have been put forth. In this article, we review these recent proposals, especially focusing on non-destructive detectors of propagating microwave photons. These detection schemes using superconducting artificial atoms can reach detection efficiencies of 90% with the existing technologies and are ripe for experimental investigations.

  4. Microwave background constraints on mixing of photons with hidden photons

    SciTech Connect

    Mirizzi, Alessandro; Redondo, Javier; Sigl, Guenter E-mail: javier.redondo@desy.de

    2009-03-15

    Various extensions of the Standard Model predict the existence of hidden photons kinetically mixing with the ordinary photon. This mixing leads to oscillations between photons and hidden photons, analogous to the observed oscillations between different neutrino flavors. In this context, we derive new bounds on the photon-hidden photon mixing parameters using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of the Cosmic Background Explorer. Requiring the distortions of the CMB induced by the photon-hidden photon mixing to be smaller than experimental upper limits, this leads to a bound on the mixing angle {chi}{sub 0} {approx}< 10{sup -7}-10{sup -5} for hidden photon masses between 10{sup -14} eV and 10{sup -7} eV. This low-mass and low-mixing region of the hidden photon parameter space was previously unconstrained.

  5. Passive silicon photonic devices for microwave photonic signal processing

    NASA Astrophysics Data System (ADS)

    Wu, Jiayang; Peng, Jizong; Liu, Boyu; Pan, Ting; Zhou, Huanying; Mao, Junming; Yang, Yuxing; Qiu, Ciyuan; Su, Yikai

    2016-08-01

    We present our recent progress on microwave signal processing (MSP) using on-chip passive silicon photonic devices, including tunable microwave notch filtering/millimeter-wave (MMW) signal generation based on self-coupled micro-resonators (SCMRs), and tunable radio-frequency (RF) phase shifting implemented by a micro-disk resonator (MDR). These schemes can provide improved flexibility and performances of MSP. The experimental results are in good agreement with theoretical predictions, which validate the effectiveness of the proposed schemes.

  6. A Tutorial on Microwave Photonic Filters

    NASA Astrophysics Data System (ADS)

    Capmany, José; Ortega, Beatriz; Pastor, Daniel

    2006-01-01

    Microwave photonic filters are photonic subsystems designed with the aim of carrying equivalent tasks to those of an ordinary microwave filter within a radio frequency (RF) system or link, bringing supplementary advantages inherent to photonics such as low loss, high bandwidth, immunity to electromagnetic interference (EMI), tunability, and reconfigurability. There is an increasing interest in this subject since, on one hand, emerging broadband wireless access networks and standards spanning from universal mobile telecommunications system (UMTS) to fixed access picocellular networks and including wireless local area network (WLAN), World Interoperability for Microwave Access, Inc. (WIMAX), local multipoint distribution service (LMDS), etc., require an increase in capacity by reducing the coverage area. An enabling technology to obtain this objective is based on radio-over-fiber (RoF) systems where signal processing is carried at a central office to where signals are carried from inexpensive remote antenna units (RAUs). On the other hand, microwave photonic filters can find applications in specialized fields such as radar and photonic beamsteering of phased-arrayed antennas, where dynamical reconfiguration is an added value. This paper provides a tutorial introduction of this subject to the reader not working directly in the field but interested in getting an overall introduction of the subject and also to the researcher wishing to get a comprehensive background before working on the subject.

  7. Nanomechanical coupling between microwave and optical photons

    NASA Astrophysics Data System (ADS)

    Bochmann, Joerg; Vainsencher, Amit; Awschalom, David D.; Cleland, Andrew N.

    2013-11-01

    A variety of nanomechanical systems can now operate at the quantum limit, making quantum phenomena more accessible for applications and providing new opportunities for exploring the fundamentals of quantum physics. Such mechanical quantum devices offer compelling opportunities for quantum-enhanced sensing and quantum information. Furthermore, mechanical modes provide a versatile quantum bus for coupling hybrid quantum systems, supporting a quantum-coherent connection between different physical degrees of freedom. Here, we demonstrate a nanomechanical interface between optical photons and microwave electrical signals, using a piezoelectric optomechanical crystal. We achieve coherent signal transfer between itinerant microwave and optical fields by parametric electro-optical coupling using a localized phonon mode. We perform optical tomography of electrically injected mechanical states and observe coherent interactions between microwave, mechanical and optical modes, manifested as electromechanically induced optical transparency. Our on-chip approach merges integrated photonics with microwave nanomechanics and is fully compatible with superconducting quantum circuits, potentially enabling microwave-to-optical quantum state transfer, and photonic networks of superconducting quantum bits.

  8. Software-defined reconfigurable microwave photonics processor.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Capmany, José

    2015-06-01

    We propose, for the first time to our knowledge, a software-defined reconfigurable microwave photonics signal processor architecture that can be integrated on a chip and is capable of performing all the main functionalities by suitable programming of its control signals. The basic configuration is presented and a thorough end-to-end design model derived that accounts for the performance of the overall processor taking into consideration the impact and interdependencies of both its photonic and RF parts. We demonstrate the model versatility by applying it to several relevant application examples.

  9. A tunable microwave plasma photonic crystal filter

    SciTech Connect

    Wang, B.; Cappelli, M. A.

    2015-10-26

    The integration of gaseous plasma elements into a microwave photonic crystal band gap cavity structure allows for active tuning of the device. An alumina rod array microwave photonic crystal waveguide resonator is simulated and characterized through finite difference time domain methods. A gaseous plasma element is integrated into the cavity structure and the effect of plasma density on the transmission properties of the structure is investigated. We show, through both simulations and experiments, that the permittivity of the plasma can be adjusted to shift the peak resonance to allow for both switching and tunability of transmission. The experimentally measured peak shifts in transmission are compared to those simulated and the electron density of the gaseous plasma element is calculated and compared to values determined from the measured discharge current density.

  10. Microwave Photonics: current challenges towards widespread application.

    PubMed

    Capmany, José; Li, Guifang; Lim, Christina; Yao, Jianping

    2013-09-23

    Microwave Photonics, a symbiotic field of research that brings together the worlds of optics and radio frequency is currently facing several challenges in its transition from a niche to a truly widespread technology essential to support the ever-increasing values for speed, bandwidth, processing capability and dynamic range that will be required in next generation hybrid access networks. We outline these challenges, which are the subject of the contributions to this focus issue.

  11. Microwave Photon Detector in Circuit QED

    NASA Astrophysics Data System (ADS)

    Garcia-Ripoll, Juan Jose; Romero, Guillermo; Solano, Enrique

    2009-03-01

    In this work we propose a design for a microwave photodetector based on elements from circuit QED such as the ones used in qubit designs. Our proposal consists on a microwave guide in which we embed circuital elements that can absorb photons and irreversibly change state. These incoherent absorption processes constitute the measurement itself. We first model this design using a general master equation for the propagating photons and the absorbing elements. We find that the detection efficiency for a single absorber is limited to 50%, and that this efficiency can be quickly increased by adding more elements with a moderate separation, obtaining 80% and 90% for two and three absorbers. Our abstract design has at least one possible implementation in which the absorbers are current biased Josephson junction. We demonstrate that the coupling between the guide and the junctions is strong enough, irrespectively of the microwave guide size, and derivate realistic parameters for high fidelity operation with current experiments. Patent pending No. 200802933, Oficina Espanola de Patentes y Marcas, 17/10/2008.

  12. Photonics for microwave systems and ultra-wideband signal processing

    NASA Astrophysics Data System (ADS)

    Ng, W.

    2016-08-01

    The advantages of using the broadband and low-loss distribution attributes of photonics to enhance the signal processing and sensing capabilities of microwave systems are well known. In this paper, we review the progress made in the topical areas of true-time-delay beamsteering, photonic-assisted analog-to-digital conversion, RF-photonic filtering and link performances. We also provide an outlook on the emerging field of integrated microwave photonics (MWP) that promise to reduce the cost of MWP subsystems and components, while providing significantly improved form-factors for system insertion.

  13. Phase noise measurement of phase modulation microwave photonic links

    NASA Astrophysics Data System (ADS)

    Ye, Quanyi; Chen, Zhengyu; Xu, Zhiguo; Gao, Yingjie

    2015-10-01

    Microwave photonic links (MPLs) can provide many advantages over traditional coaxial and waveguide solutions due to its low loss, small size, lightweight, large bandwidth, superior stability and immunity to external interference. It has been considered in various applications such as: the transmission of radio frequency (RF) signal over optical carriers, video television transmission, radar and communication systems. Stability of phase of the microwave photonic links is a critical issue in several realistic applications. The delay line technique for phase noise measurement of phase modulation microwave photonic links is measured for the first time. Using this approach, the input signal noise and power supply noise can be effectively cancelled, and it does not require phase locking. The phase noise of a microwave photonic links with a 10 GHz sinusoidal signal is experimentally demonstrated.

  14. Holonomic quantum computation on microwave photons with all resonant interactions

    NASA Astrophysics Data System (ADS)

    Dong, Ping; Yu, Long-Bao; Zhou, Jian

    2016-08-01

    The intrinsic difficulties of holonomic quantum computation on superconducting circuits are originated from the use of three levels in superconducting transmon qubits and the complicated dispersive interaction between them. Due to the limited anharmonicity of transmon qubits, the experimental realization seems to be very challenging. However, with recent experimental progress, coherent control over microwave photons in superconducting circuit cavities is well achieved, and thus provides a promising platform for quantum information processing with photonic qubits. Here, with all resonant inter-cavity photon-photon interactions, we propose a scheme for implementing scalable holonomic quantum computation on a circuit QED lattice. In our proposal, three cavities, connected by a SQUID, are used to encode a logical qubit. By tuning the inter-cavity photon-photon interaction, we can construct all the holonomies needed for universal quantum computation in a non-adiabatic way. Therefore, our scheme presents a promising alternative for robust quantum computation with microwave photons.

  15. Passband switchable microwave photonic multiband filter

    PubMed Central

    Ge, Jia; Fok, Mable P.

    2015-01-01

    A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz. The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter. Through polarization state adjustment inside the Lyot loop filter, an optical frequency comb with 12 different comb spacings is achieved, which corresponds to a MWP filter with 12 selectable passbands. Center frequencies of the filter passbands are switchable, while the number of simultaneous passbands is tunable from 1 to 12. Furthermore, the MWP multiband filter can either work as an all-block, single-band or multiband filter with various passband combinations, which provide exceptional operation flexibility. All the passbands have over 30 dB sidelobe suppression and 3-dB bandwidth of 200 MHz, providing good filter selectivity. PMID:26521693

  16. Holonomic quantum computation on microwave photons with all resonant interactions

    NASA Astrophysics Data System (ADS)

    Dong, Ping; Yu, Long-Bao; Zhou, Jian

    2016-08-01

    The intrinsic difficulties of holonomic quantum computation on superconducting circuits are originated from the use of three levels in superconducting transmon qubits and the complicated dispersive interaction between them. Due to the limited anharmonicity of transmon qubits, the experimental realization seems to be very challenging. However, with recent experimental progress, coherent control over microwave photons in superconducting circuit cavities is well achieved, and thus provides a promising platform for quantum information processing with photonic qubits. Here, with all resonant inter-cavity photon–photon interactions, we propose a scheme for implementing scalable holonomic quantum computation on a circuit QED lattice. In our proposal, three cavities, connected by a SQUID, are used to encode a logical qubit. By tuning the inter-cavity photon–photon interaction, we can construct all the holonomies needed for universal quantum computation in a non-adiabatic way. Therefore, our scheme presents a promising alternative for robust quantum computation with microwave photons.

  17. Quantum efficiency of a double quantum dot microwave photon detector

    NASA Astrophysics Data System (ADS)

    Wong, Clement; Vavilov, Maxim

    Motivated by recent interest in implementing circuit quantum electrodynamics with semiconducting quantum dots, we study charge transfer through a double quantum dot (DQD) capacitively coupled to a superconducting cavity subject to a microwave field. We analyze the DQD current response using input-output theory and determine the optimal parameter regime for complete absorption of radiation and efficient conversion of microwave photons to electric current. For experimentally available DQD systems, we show that the cavity-coupled DQD operates as a photon-to-charge converter with quantum efficiencies up to 80% C.W. acknowledges support by the Intelligence Community Postdoctoral Research Fellowship Program.

  18. Microwave photonic comb filter with ultra-fast tunability.

    PubMed

    Jiang, H Y; Yan, L S; Pan, Y; Pan, W; Luo, B; Zou, X H; Eggleton, B J

    2015-11-01

    A microwave comb filter with ultra-fast tunability is proposed based on the fundamental delay-line microwave photonic filter. The central frequency of the passband or stopband in such a filter can be rapidly adjusted, along with the independent tunability of the free spectral range (FSR). Experimental results show that the central frequency of the transfer function is electronically tuned with a frequency difference of half of the FSR at a speed of <100  ps. Such high-speed tunability is vital for high-speed microwave switching, frequency hopping, cognitive radio, and next-generation radar systems. PMID:26512477

  19. Photonic microwave receivers based on high-Q optical resonance

    NASA Astrophysics Data System (ADS)

    Hossein-Zadeh, Mani

    2012-02-01

    The quest for low power and high frequency electro-optical modulator has been one of the important endeavors in microwave photonics. The advent of microdisk electro-optic modulator created a new domain in optical modulator and photonic microwave receiver design by exploiting the unique properties of high quality (high-Q) Whispering-Gallery Mode (WGM) optical cavities. High-Q crystalline WG cavities were the first devices used as compact and low power resonant electro-optical modulators and gradually semiconductor and polymer based microdisk and microring modulators emerged from this core technology. Due to its small size, high sensitivity and limited bandwidth, originally microdisk modulator was developed with the objective of replacing the conventional microwave wireless receiver frontend with a sensitive photonic front-end. Later it was shown that the electro-optic microdisk modulator could also function as a microwave frequency mixer in optical domain. Starting from fundamentals of resonant electro-optic modulation in high-Q WGM cavities, in this paper we review the development of high sensitivity microdisk modulators and the recent progress toward more efficient modulation at higher frequencies. Next related topics such as singlesideband modulation, all-dielectric photonic receiver, and semiconductor microring modulators are briefly discussed. Finally, photonic microwave receiver configurations that employ high-Q optical resonance for modulation, filtering and mixing are presented. We will show that high-Q optical resonance is one of the promising routes toward the general idea of an all-optical microwave receiver free of high frequency electronic transistors, mixers and filters.

  20. Stabilizing Microwave Frequency of a Photonic Oscillator

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Yu, Nan; Tu, Meirong

    2006-01-01

    A scheme for stabilizing the frequency of a microwave signal is proposed that exploits the operational characteristics of a coupled optoelectronic oscillator (COEO) and related optoelectronic equipment. An essential element in the scheme is a fiber mode-locked laser (MLL), the optical frequency of which is locked to an atomic transition. In this scheme, the optical frequency stability of the mode-locked laser is transferred to that of the microwave in the same device. Relative to prior schemes for using wideband optical frequency comb to stabilize microwave signals, this scheme is simpler and lends itself more readily to implementation in relatively compact, rugged equipment. The anticipated development of small, low-power, lightweight, highly stable microwave oscillators based on this scheme would afford great benefits in communication, navigation, metrology, and fundamental sciences. COEOs of various designs, at various stages of development, in some cases called by different names, have been described in a number of prior NASA Tech Briefs articles. A COEO is an optoelectronic apparatus that generates both short (picosecond) optical pulses and a steady microwave signal having an ultrahigh degree of spectral purity. The term "coupled optoelectronic" in the full name of such an apparatus signifies that its optical and electronic oscillations are coupled to each other in a single device. The present frequency-stabilization scheme is best described indirectly by describing the laboratory apparatus used to demonstrate it. The apparatus (see figure) includes a COEO that generates a comb-like optical spectrum, the various frequency components of which interfere, producing short optical pulses. This spectrum is centered at a nominal wavelength of 1,560 nm. The spectrum separation of this comb is about 10 GHz, as determined primarily by the length of an optical loop and the bandpass filter in the microwave feedback loop. The optical loop serves as microwave resonator

  1. Wide-Band Microwave Receivers Using Photonic Processing

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Yu, Nan; Strekalov, Dmitry; Savchenkov, Anatoliy

    2008-01-01

    In wide-band microwave receivers of a type now undergoing development, the incoming microwave signals are electronically preamplified, then frequency-up-converted to optical signals that are processed photonically before being detected. This approach differs from the traditional approach, in which incoming microwave signals are processed by purely electronic means. As used here, wide-band microwave receivers refers especially to receivers capable of reception at any frequency throughout the range from about 90 to about 300 GHz. The advantage expected to be gained by following the up-conversion-and-photonic-processing approach is the ability to overcome the limitations of currently available detectors and tunable local oscillators in the frequency range of interest. In a receiver following this approach (see figure), a preamplified incoming microwave signal is up-converted by the method described in the preceeding article. The frequency up-converter exploits the nonlinearity of the electromagnetic response of a whispering gallery mode (WGM) resonator made of LiNbO3. Up-conversion takes place by three-wave mixing in the resonator. The WGM resonator is designed and fabricated to function simultaneously as an electro-optical modulator and to exhibit resonance at the microwave and optical operating frequencies plus phase matching among the microwave and optical signals circulating in the resonator. The up-conversion is an efficient process, and the efficiency is enhanced by the combination of microwave and optical resonances. The up-converted signal is processed photonically by use of a tunable optical filter or local oscillator, and is then detected. Tunable optical filters can be made to be frequency agile and to exhibit high resonance quality factors (high Q values), thereby making it possible to utilize a variety of signal-processing modalities. Therefore, it is anticipated that when fully developed, receivers of this type will be compact and will be capable of both

  2. Tunable superconducting qudit mediated by microwave photons

    SciTech Connect

    Cho, Sung Un; Bae, Myung-Ho; Kim, Nam; Kang, Kicheon

    2015-08-15

    We have investigated the time-domain characteristics of the Autler-Townes doublet in a superconducting circuit. The transition probabilities between the ground state and the Autler-Townes doublet states are shown to be controlled in a phase-coherent manner using a well-known microwave pulse pattern technique. The experimental results are well explained by a numerical simulation based on the Markovian master equation. Our result indicates that the Autler-Townes doublet states might be useful as a tunable qudit for implementation of quantum information processing, in particular as a multivalued quantum logic element.

  3. An extraordinary transmission analogue for enhancing microwave antenna performance

    SciTech Connect

    Pushpakaran, Sarin V.; Purushothaman, Jayakrishnan M.; Chandroth, Aanandan; Pezholil, Mohanan; Kesavath, Vasudevan

    2015-10-15

    The theory of diffraction limit proposed by H.A Bethe limits the total power transfer through a subwavelength hole. Researchers all over the world have gone through different techniques for boosting the transmission through subwavelength holes resulting in the Extraordinary Transmission (EOT) behavior. We examine computationally and experimentally the concept of EOT nature in the microwave range for enhancing radiation performance of a stacked dipole antenna working in the S band. It is shown that the front to back ratio of the antenna is considerably enhanced without affecting the impedance matching performance of the design. The computational analysis based on Finite Difference Time Domain (FDTD) method reveals that the excitation of Fabry-Perot resonant modes on the slots is responsible for performance enhancement.

  4. Software-defined microwave photonic filter with high reconfigurable resolution

    PubMed Central

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2016-01-01

    Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability. PMID:27759062

  5. Highly tunable microwave and millimeter wave filtering using photonic technology

    NASA Astrophysics Data System (ADS)

    Seregelyi, Joe; Lu, Ping; Paquet, Stéphane; Celo, Dritan; Mihailov, Stephen J.

    2015-05-01

    The design for a photonic microwave filter tunable in both bandwidth and operating frequency is proposed and experimentally demonstrated. The circuit is based on a single sideband modulator used in conjunction with two or more transmission fiber Bragg gratings (FBGs) cascaded in series. It is demonstrated that the optical filtering characteristics of the FBGs are instrumental in defining the shape of the microwave filter, and the numerical modeling was used to optimize these characteristics. A multiphase-shift transmission FBG design is used to increase the dynamic range of the filter, control the filter ripple, and maximize the slope of the filter skirts. Initial measurements confirmed the design theory and demonstrated a working microwave filter with a bandwidth tunable from approximately 2 to 3.5 GHz and an 18 GHz operating frequency tuning range. Further work is required to refine the FBG manufacturing process and reduce the impact of fabrication errors.

  6. Frequency-stabilization of mode-locked laser-based photonic microwave oscillator

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Tu, Meirong; Salik, Ertan; Maleki, Lute

    2005-01-01

    In this paper, we will describe our recent phase-noise measurements of photonic microwave oscillators. We will aslo discuss our investigation of the frequency stability link between the optical and microwave frequencies in the coupled oscillator.

  7. The two-photon excitation cross section of 6MAP, a fluorescent adenine analogue.

    PubMed

    Stanley, Robert J; Hou, Zhanjia; Yang, Aiping; Hawkins, Mary E

    2005-03-01

    6MAP is a fluorescent analogue of adenine that undergoes Watson-Crick base pairing and base stacking in double-stranded DNA. The one-photon absorption spectrum of 6MAP is characterized by a maximum around 330 nm with moderate quantum yield fluorescence centered at about 420 nm. To take advantage of this probe for confocal and single-molecule microscopy, it would be advantageous to be able to excite the analogue via two photons. We report the first determination of the two-photon excitation cross section and spectrum for 6MAP from 614 to 700 nm. The power dependence of the fluorescence indicates that emission results from the absorption of two photons. The one-photon and two-photon emission line shapes are identical within experimental error. A study of the concentration dependence of the fluorescence yield for one-photon excitation shows no measurable quenching up to about 5 microM. The maximum in the two-photon excitation spectrum gives a two-photon cross section, delta(TPE), of 3.4 +/- 0.1 Goeppert-Mayer (G.M.) at 659 nm, which correlates well with the one-photon absorption maximum. This compares quite favorably with cross sections of various naturally fluorescent biological molecules such as flavins and nicotiamide. In addition, we have also obtained the two-photon-induced fluorescence emission spectrum of quinine sulfate. It is approximately the same as that for one-photon excitation, suggesting that two-photon excitation of quinine sulfate may be used for calibration purposes.

  8. The two-photon excitation cross section of 6MAP, a fluorescent adenine analogue.

    PubMed

    Stanley, Robert J; Hou, Zhanjia; Yang, Aiping; Hawkins, Mary E

    2005-03-01

    6MAP is a fluorescent analogue of adenine that undergoes Watson-Crick base pairing and base stacking in double-stranded DNA. The one-photon absorption spectrum of 6MAP is characterized by a maximum around 330 nm with moderate quantum yield fluorescence centered at about 420 nm. To take advantage of this probe for confocal and single-molecule microscopy, it would be advantageous to be able to excite the analogue via two photons. We report the first determination of the two-photon excitation cross section and spectrum for 6MAP from 614 to 700 nm. The power dependence of the fluorescence indicates that emission results from the absorption of two photons. The one-photon and two-photon emission line shapes are identical within experimental error. A study of the concentration dependence of the fluorescence yield for one-photon excitation shows no measurable quenching up to about 5 microM. The maximum in the two-photon excitation spectrum gives a two-photon cross section, delta(TPE), of 3.4 +/- 0.1 Goeppert-Mayer (G.M.) at 659 nm, which correlates well with the one-photon absorption maximum. This compares quite favorably with cross sections of various naturally fluorescent biological molecules such as flavins and nicotiamide. In addition, we have also obtained the two-photon-induced fluorescence emission spectrum of quinine sulfate. It is approximately the same as that for one-photon excitation, suggesting that two-photon excitation of quinine sulfate may be used for calibration purposes. PMID:16851408

  9. Microwave photonic bandgap devices with active plasma elements

    NASA Astrophysics Data System (ADS)

    Wang, Benjamin; Colon Quinones, Roberto; Biggs, David; Underwood, Thomas; Lucca Fabris, Andrea; Cappelli, Mark; Stanford Plasma Physics Laboratory Team

    2015-09-01

    A 3-D alumina rod based microwave photonic crystal device with integrated gaseous plasma elements is designed and characterized. Modulation of the plasma density of the active plasma elements is shown to allow for high fidelity modulation of the output signal of the photonic crystal device. Finite difference time domain (FDTD) simulations of the device are presented, and the functional effects of the plasma electron density, plasma collision frequency, and plasma dimensions are studied. Experimental characterization of the transmission of the device shows active tunability through adjustments of plasma parameters, including discharge current and plasma size. Additional photonic crystal structures with integrated plasma elements are explored. Sponsored by the AFSOR MURI and DOD NDSEG.

  10. Photonic compressive sensing with a micro-ring-resonator-based microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Ding, Yunhong; Zhu, Zhijing; Chi, Hao; Zheng, Shilie; Zhang, Xianmin; Jin, Xiaofeng; Galili, Michael; Yu, Xianbin

    2016-08-01

    A novel approach to realize photonic compressive sensing (CS) with a multi-tap microwave photonic filter is proposed and demonstrated. The system takes both advantages of CS and photonics to capture wideband sparse signals with sub-Nyquist sampling rate. The low-pass filtering function required in the CS is realized in a photonic way by using a frequency comb and a dispersive element. The frequency comb is realized by shaping an amplified spontaneous emission (ASE) source with an on-chip micro-ring resonator, which is beneficial to the integration of photonic CS. A proof-of-concept experiment for a two-tone signal acquisition with frequencies of 350 MHz and 1.25 GHz is experimentally demonstrated with a compression factor up to 16.

  11. Microwave photonics systems based on whispering-gallery-mode resonators.

    PubMed

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K

    2013-08-05

    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.

  12. Microwave photonic delay line signal processing.

    PubMed

    Diehl, John F; Singley, Joseph M; Sunderman, Christopher E; Urick, Vincent J

    2015-11-01

    This paper provides a path for the design of state-of-the-art fiber-optic delay lines for signal processing. The theoretical forms for various radio-frequency system performance metrics are derived for four modulation types: X- and Z-cut Mach-Zehnder modulators, a phase modulator with asymmetric Mach-Zehnder interferometer, and a polarization modulator with control waveplate and polarizing beam splitter. Each modulation type is considered to cover the current and future needs for ideal system designs. System gain, compression point, and third-order output intercept point are derived from the transfer matrices for each modulation type. A discussion of optical amplifier placement and fiber-effect mitigation is offered. The paper concludes by detailing two high-performance delay lines, built for unique applications, that exhibit performance levels an order of magnitude better than commercial delay lines. This paper should serve as a guide to maximizing the performance of future systems and offer a look into current and future research being done to further improve photonics technologies.

  13. All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave

    PubMed Central

    Jung, Kwangyun; Kim, Jungwon

    2015-01-01

    High-impact frequency comb applications that are critically dependent on precise pulse timing (i.e., repetition rate) have recently emerged and include the synchronization of X-ray free-electron lasers, photonic analogue-to-digital conversion and photonic radar systems. These applications have used attosecond-level timing jitter of free-running mode-locked lasers on a fast time scale within ~100 μs. Maintaining attosecond-level absolute jitter over a significantly longer time scale can dramatically improve many high-precision comb applications. To date, ultrahigh quality-factor (Q) optical resonators have been used to achieve the highest-level repetition-rate stabilization of mode-locked lasers. However, ultrahigh-Q optical-resonator-based methods are often fragile, alignment sensitive and complex, which limits their widespread use. Here we demonstrate a fibre-delay line-based repetition-rate stabilization method that enables the all-fibre photonic generation of optical pulse trains with 980-as (20-fs) absolute r.m.s. timing jitter accumulated over 0.01 s (1 s). This simple approach is based on standard off-the-shelf fibre components and can therefore be readily used in various comb applications that require ultra-stable microwave frequency and attosecond optical timing. PMID:26531777

  14. Nonclassical correlation between optical and microwave photons in a hybrid electro-optomechanical system

    NASA Astrophysics Data System (ADS)

    Xie, Hong; Chen, Xiang; Lin, Gongwei; Lin, Xiumin

    2016-10-01

    A scheme to correlate optical and microwave photons is proposed in a hybrid electro-optomechanical system, where mechanical resonator is coupled to both optical and microwave fields. Analytical and numerical simulation results show that the cross-correlation function between Stokes and anti-Stokes photons strongly violates the Cauchy-Schwarz inequality, which confirms the nonclassical correlation between the optical and microwave photons. It is worth noting that the nonclassical photon pairs with vast different wavelengths, which may be useful for quantum communication, are generated under the experimentally accessible weak coupling limit rather than single-photon strong coupling regime. In addition, the protocol provides a possible route to combine the respective advantages of optical photons, microwave photons, and phonons in a hybrid electro-optomechanical system.

  15. Monolithically Integrated Reconfigurable Filters for Microwave Photonic Links

    NASA Astrophysics Data System (ADS)

    Norberg, Erik J.

    For the purposes of commercial communication and military electronic warfare and radar alike, there is an increasing interest in RF systems that can handle very wide instantaneous bandwidths at high center frequencies. Optical signal processing has the capability to reduce latency, improve size, weight and power (SwAP) performance, and overcome the inherent bandwidth limitations of electronic counterparts. By rapidly pre-filtering wide bandwidth microwave signals in the optical domain, the analog-to-digital conversion (ADC) and subsequent digital signal processing (DSP) can be significantly relieved. Compared to channelizing and add/drop filters for wavelength division multiplexing (WDM) applications, the microwave filter application is much more challenging as it requires a more versatile filter, ideally with tunability in both frequency and bandwidth. In this work such a filter was developed using integrated photonics. By integrating the filter on a single InP chip, the stability required for coherent filtering is met, while the active integration platform offers a flexible filter design and higher tolerance in the coupler and fabrication specifications. Using an entirely deep etched fabrication with a single blanket regrowth, a simple fabrication with high yield is achieved. The reconfigurable filter is designed as an array of uncoupled filter stages with each filter stage reconfigurable as a filter pole or zero with arbitrary magnitude and phase. This gives rise to a flexible ffilter synthesis, much like an optical version of DSP filters. Flat-topped bandpass filters are demonstrated with frequency tunability over 30 GHz, bandwidth adjustable between 1.9 and 5.4 GHz, and stopband rejection >32 dB. In order to meet the stringent spurious-free dynamic range (SFDR) requirements of the microwave application, a novel epitaxial layer integration platform is developed. Optimized for high optical saturation power and low propagation loss, it produces semiconductor

  16. Microwave photonic integrator based on a multichannel fiber Bragg grating.

    PubMed

    Zhang, Jiejun; Yao, Jianping

    2016-01-15

    We propose and experimentally demonstrate a microwave photonic integrator based on a multichannel fiber Bragg grating (FBG) working in conjunction with a dispersion compensating fiber (DCF) to provide a step group delay response with no in-channel dispersion-related distortion. The multichannel FBG is designed based on the spectral Talbot effect, which provides a large group delay dispersion (GDD) within each channel. A step group delay response can then be achieved by cascading the multichannel FBG with a DCF having a GDD opposite the in-channel GDD. An optical comb, with each comb line located at the center of each channel of the FBG, is modulated by a microwave signal to be integrated. At the output of the DCF, multiple time-delayed replicas of the optical signal, with equal time delay spacing are obtained and are detected and summed at a photodetector (PD). The entire operation is equivalent to the integration of the input microwave signal. For a multichannel FBG with an in-channel GDD of 730 ps/nm and a DCF with an opposite GDD, an integrator with a bandwidth of 2.9 GHz and an integration time of 7 ns is demonstrated. PMID:26766692

  17. Ultracompact ring resonator microwave photonic filters based on photonic crystal waveguides.

    PubMed

    Shen, Guansheng; Tian, Huiping; Ji, Yuefeng

    2013-02-20

    We design two microwave photonic filters (notch filter and bandpass filter) based on silicon on insulator (SOI) photonic crystal waveguides for a 60 GHz single-sideband signal radio-over-fiber (ROF) system. By perturbing the radii of the first two rows of holes adjacent to the photonic crystal waveguide, we obtained a broad negligible dispersion bandwidth and a corresponding constant low group velocity. With the slow light effect, the delay line of filters can be significantly reduced while providing the same delay time as fiber based delay lines. The simulation results show that the delay-line length of the notch filter is only about 25.9 μm, and it has a free spectral range of 130 GHz, a baseband width (BW) of 4.12 GHz, and a notch depth of 22 dB. The length of the bandpass filter is 62.4 μm, with a 19.6 dB extinction ratio and a 4.02 GHz BW, and the signal-to-noise ratio requirement of received data can be reduced by 9 dB for the 10(-7) bit-error ratio. Demonstrated microwave photonic crystal filters could be used in a future high-frequency millimeter ROF system. PMID:23434992

  18. Preface to the special issue on "Integrated Microwave Photonic Signal Processing"

    NASA Astrophysics Data System (ADS)

    Azaña, José; Yao, Jianping

    2016-08-01

    As Guest Editors, we are pleased to introduce this special issue on "Integrated Microwave Photonic Signal Processing" published by the Elsevier journal Optics Communications. Microwave photonics is a field of growing importance from both scientific and practical application perspectives. The field of microwave photonics is devoted to the study, development and application of optics-based techniques and technologies aimed to the generation, processing, control, characterization and/or distribution of microwave signals, including signals well into the millimeter-wave frequency range. The use of photonic technologies for these microwave applications translates into a number of key advantages, such as the possibility of dealing with high-frequency, wide bandwidth signals with minimal losses and reduced electromagnetic interferences, and the potential for enhanced reconfigurability. The central purpose of this special issue is to provide an overview of the state of the art of generation, processing and characterization technologies for high-frequency microwave signals. It is now widely accepted that the practical success of microwave photonics at a large scale will essentially depend on the realization of high-performance microwave-photonic signal-processing engines in compact and integrated formats, preferably on a chip. Thus, the focus of the issue is on techniques implemented using integrated photonic technologies, with the goal of providing an update of the most recent advances toward realization of this vision.

  19. Interaction of Microwave Photons with Nanostructured Magnetic Metasurfaces

    NASA Astrophysics Data System (ADS)

    Lisenkov, Ivan; Tyberkevych, Vasyl; Levin-Pompetzki, Luke; Bankowski, Elena; Meitzler, Thomas; Nikitov, Sergey; Slavin, Andrei

    2016-06-01

    We develop a theoretical formalism for the description of the interaction of microwave photons with a thin (compared to the photon wavelength) magnetic metasurface comprised of dipolarly interacting nanoscale magnetic elements. We derive a scattering matrix describing the processes of photon transmission and reflection at the metasurface boundary. As an example of the use of the developed formalism, we demonstrate that the introduction of a magnetic metasurface inside a microstrip electromagnetic waveguide quantitatively changes the dispersion relation of the fundamental waveguide mode, opening a nonpropagation frequency band gap in the waveguide spectrum. The frequency position and the width of the band gap are dependent on the waveguide thickness and can be controlled dynamically by switching the magnetic ground state of the metasurface. For sufficiently thin waveguides, the position of the band gap is shifted from the resonance absorption frequency of the metasurface. In such a case, the magnetic metasurface inside a waveguide works as an efficient reflector, as the energy absorption in the metasurface is small, and most of the electromagnetic energy inside the nonpropagation band gap is reflected.

  20. Photonic-assisted microwave signal multiplication and modulation using a silicon Mach-Zehnder modulator.

    PubMed

    Long, Yun; Zhou, Linjie; Wang, Jian

    2016-01-01

    Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach-Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated.

  1. Photonic-assisted microwave signal multiplication and modulation using a silicon Mach–Zehnder modulator

    PubMed Central

    Long, Yun; Zhou, Linjie; Wang, Jian

    2016-01-01

    Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach–Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated. PMID:26832305

  2. Applications of Microwave Photonics in Radio Astronomy and Space Communication

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry R.; Shillue, William P.

    2006-01-01

    An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.

  3. Reconfigurable microwave photonic filter based on polarization modulation

    NASA Astrophysics Data System (ADS)

    Xu, Enming; Pan, Shilong; Li, Peili

    2016-03-01

    A reconfigurable microwave photonic filter based on a polarization modulator (PolM) is proposed and experimentally demonstrated. The PolM together with a polarization controller (PC) and a polarization beam splitter (PBS) implements two complementary intensity modulations in two separated branches. Then, optical components are inserted in the two branches to realize a bandpass filter and an allpass filter, respectively. When the two branches are combined by a second PBS, a filter with a frequency response that equals the subtraction of the frequency responses of the allpass filter and bandpass filter is achieved. By adjusting the PCs placed before the second PBS, a notch filter with a tunable notch depth or a bandpass filter can be achieved.

  4. Brillouin Amplification--A Powerful New Scheme for Microwave Photonic Communications

    NASA Technical Reports Server (NTRS)

    Yao, S.; Maleki, L.

    1997-01-01

    We introduce the Brillouin selective sideband amplification technique and demonstrate many important applications of this technique in photonic microwave systems, including efficient phase modulation to amplitude modulation conversion, photonic frequency multiplication, photonic signal mixing with gain, and frequency multiplied signal up conversion.

  5. Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter.

    PubMed

    Zhu, Dengjian; Zhang, Fangzheng; Zhou, Pei; Pan, Shilong

    2015-04-01

    An approach for phase noise measurement of microwave signal sources based on a microwave photonic frequency down-converter is proposed. Using the same optical carrier, the microwave signal under test is applied to generate two +1st-order optical sidebands by two stages of electro-optical modulations. A time delay is introduced between the two sidebands through a span of fiber. By beating the two +1st-order sidebands at a photodetector, frequency down-conversion is implemented, and phase noise of the signal under test can be calculated thereafter. The system has a very large operation bandwidth thanks to the frequency conversion in the optical domain, and good phase noise measurement sensitivity can be achieved since the signal degradation caused by electrical amplifiers is avoided. An experiment is carried out. The phase noise measured by the proposed system agrees well with that measured by a commercial spectrum analyzer or provided by the datasheet. A large operation bandwidth of 5-40 GHz is demonstrated using the proposed system. Moreover, good phase noise floor is achieved (-123  dBc/Hz at 1 kHz and -137  dBc/Hz at 10 kHz at 10 GHz), which is nearly constant over the full measurement range.

  6. Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter.

    PubMed

    Zhu, Dengjian; Zhang, Fangzheng; Zhou, Pei; Pan, Shilong

    2015-04-01

    An approach for phase noise measurement of microwave signal sources based on a microwave photonic frequency down-converter is proposed. Using the same optical carrier, the microwave signal under test is applied to generate two +1st-order optical sidebands by two stages of electro-optical modulations. A time delay is introduced between the two sidebands through a span of fiber. By beating the two +1st-order sidebands at a photodetector, frequency down-conversion is implemented, and phase noise of the signal under test can be calculated thereafter. The system has a very large operation bandwidth thanks to the frequency conversion in the optical domain, and good phase noise measurement sensitivity can be achieved since the signal degradation caused by electrical amplifiers is avoided. An experiment is carried out. The phase noise measured by the proposed system agrees well with that measured by a commercial spectrum analyzer or provided by the datasheet. A large operation bandwidth of 5-40 GHz is demonstrated using the proposed system. Moreover, good phase noise floor is achieved (-123  dBc/Hz at 1 kHz and -137  dBc/Hz at 10 kHz at 10 GHz), which is nearly constant over the full measurement range. PMID:25831324

  7. Experimental investigation of photonic microwave switching based on XGM in a SOA

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Wu, Huan; Pan, Shilong

    2016-08-01

    The photonic microwave switching performances based on the cross gain modulation (XGM) effect in a semiconductor optical amplifier (SOA) are experimentally investigated. The influences of the key parameters of the system, such as the optical power of the pump and probe signals, the SOA bias current and the modulation depth are experimentally studied and analyzed to optimize the system performance. Important performances of the linearity, the dynamic range and the polarization sensitivity of the photonic microwave switching system are analyzed and discussed. The channel uniformities are also investigated according to the requirements of the photonic microwave switching applications.

  8. Comptonization of cosmic microwave background photons in dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Culverhouse, Thomas L.; Evans, N. Wyn; Colafrancesco, S.

    2006-05-01

    We present theoretical modelling of the electron distribution produced by annihilating neutralino dark matter in dwarf spheroidal galaxies (dSphs). In particular, we follow up the idea of Colafrancesco and find that such electrons distort the cosmic microwave background (CMB) by the Sunyaev-Zeldovich (SZ) effect. For an assumed neutralino mass of 10 GeV and beam size of 1 arcsec, the SZ temperature decrement is of the order of nano-Kelvin for dSph models with a soft core. By contrast, it is of the order of micro-Kelvin for the strongly cusped dSph models favoured by some cosmological simulations. Although this is out of reach of current instruments, it may well be detectable by future mm telescopes, such as the Atacama Large Millimetre Array. We also show that the upscattered CMB photons have energies within reach of upcoming X-ray observatories, but that the flux of such photons is too small to be detectable now. None the less, we conclude that searching for the dark matter induced SZ effect is a promising way of constraining the dark distribution in dSphs, especially if the particles are light.

  9. Qubit-Photon Entanglement and Hong-Ou-Mandel Interference with Propagating Microwaves

    NASA Astrophysics Data System (ADS)

    Eichler, Christopher; Lang, Christian; Fink, Johannes; Govenius, Joonas; Steffen, Lars; Filipp, Stefan; Wallraff, Andreas; Woolley, Matthew; Blais, Alexandre

    2013-03-01

    Itinerant microwave photons offer an attractive carrier of quantum information in superconducting circuits. However, until recently it remained challenging to measure photon statistics and coherence properties of microwave fields beyond the Gaussian level - mainly due to the absence of efficient detectors in this frequency range. Here, we present the on-demand generation and efficient characterization of microwave radiation and its entanglement with stationary qubits. Based on novel tomography techniques and low noise parametric amplification we are able to resolve all relevant quantum correlations between the propagating field and the superconducting qubit to demonstrate entanglement with high fidelity. We have also created entangled microwave fields traveling in two spatially separated modes. Making use of the two-photon interference at a microwave beamsplitter we are able to prepare propagating NOON-type states, which we fully characterize by measuring the joint photon statistics of the two modes. The possibility to synthesize, guide and detect entanglement correlations between itinerant microwave photons and stationary qubits put microwave based quantum network experiments within reach.

  10. Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming

    NASA Astrophysics Data System (ADS)

    Chang, John

    Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic

  11. Engineering entangled microwave photon states through multiphoton interactions between two cavity fields and a superconducting qubit

    PubMed Central

    Zhao, Yan-Jun; Wang, Changqing; Zhu, Xiaobo; Liu, Yu-xi

    2016-01-01

    It has been shown that there are not only transverse but also longitudinal couplings between microwave fields and a superconducting qubit with broken inversion symmetry of the potential energy. Using multiphoton processes induced by longitudinal coupling fields and frequency matching conditions, we design a universal algorithm to produce arbitrary superpositions of two-mode photon states of microwave fields in two separated transmission line resonators, which are coupled to a superconducting qubit. Based on our algorithm, we analyze the generation of evenly-populated states and NOON states. Compared to other proposals with only single-photon process, we provide an efficient way to produce entangled microwave photon states when the interactions between superconducting qubits and microwave fields are in the strong and ultrastrong regime. PMID:27033558

  12. Engineering entangled microwave photon states through multiphoton interactions between two cavity fields and a superconducting qubit

    NASA Astrophysics Data System (ADS)

    Zhao, Yan-Jun; Wang, Changqing; Zhu, Xiaobo; Liu, Yu-Xi

    2016-04-01

    It has been shown that there are not only transverse but also longitudinal couplings between microwave fields and a superconducting qubit with broken inversion symmetry of the potential energy. Using multiphoton processes induced by longitudinal coupling fields and frequency matching conditions, we design a universal algorithm to produce arbitrary superpositions of two-mode photon states of microwave fields in two separated transmission line resonators, which are coupled to a superconducting qubit. Based on our algorithm, we analyze the generation of evenly-populated states and NOON states. Compared to other proposals with only single-photon process, we provide an efficient way to produce entangled microwave photon states when the interactions between superconducting qubits and microwave fields are in the strong and ultrastrong regime.

  13. Influence of an externally modulated photonic link on a microwave communications system

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1994-01-01

    We analyze the influence of an externally modulated photonic link on the performance of a microwave communications system. From the analysis, we deduce limitations on the photocurrent, magnitude of the relaxation oscillation noise of the laser, third-order intercept point of the preamplifier, and other parameters in order for the photonic link to function according to the system specifications. Based on this, we outline a procedure for designing a photonic link that can be integrated in a system with minimal performance degradation.

  14. Using Microwave and Macroscopic Samples of Dielectric Solids to Study the Photonic Properties of Disordered Photonic Bandgap Materials

    PubMed Central

    Hashemizad, Seyed Reza; Tsitrin, Sam; Yadak, Polin; He, Yingquan; Cuneo, Daniel; Williamson, Eric Paul; Liner, Devin; Man, Weining

    2014-01-01

    Recently, disordered photonic materials have been suggested as an alternative to periodic crystals for the formation of a complete photonic bandgap (PBG). In this article we will describe the methods for constructing and characterizing macroscopic disordered photonic structures using microwaves. The microwave regime offers the most convenient experimental sample size to build and test PBG media. Easily manipulated dielectric lattice components extend flexibility in building various 2D structures on top of pre-printed plastic templates. Once built, the structures could be quickly modified with point and line defects to make freeform waveguides and filters. Testing is done using a widely available Vector Network Analyzer and pairs of microwave horn antennas. Due to the scale invariance property of electromagnetic fields, the results we obtained in the microwave region can be directly applied to infrared and optical regions. Our approach is simple but delivers exciting new insight into the nature of light and disordered matter interaction. Our representative results include the first experimental demonstration of the existence of a complete and isotropic PBG in a two-dimensional (2D) hyperuniform disordered dielectric structure. Additionally we demonstrate experimentally the ability of this novel photonic structure to guide electromagnetic waves (EM) through freeform waveguides of arbitrary shape. PMID:25285416

  15. Using microwave and macroscopic samples of dielectric solids to study the photonic properties of disordered photonic bandgap materials.

    PubMed

    Hashemizad, Seyed Reza; Tsitrin, Sam; Yadak, Polin; He, Yingquan; Cuneo, Daniel; Williamson, Eric Paul; Liner, Devin; Man, Weining

    2014-09-26

    Recently, disordered photonic materials have been suggested as an alternative to periodic crystals for the formation of a complete photonic bandgap (PBG). In this article we will describe the methods for constructing and characterizing macroscopic disordered photonic structures using microwaves. The microwave regime offers the most convenient experimental sample size to build and test PBG media. Easily manipulated dielectric lattice components extend flexibility in building various 2D structures on top of pre-printed plastic templates. Once built, the structures could be quickly modified with point and line defects to make freeform waveguides and filters. Testing is done using a widely available Vector Network Analyzer and pairs of microwave horn antennas. Due to the scale invariance property of electromagnetic fields, the results we obtained in the microwave region can be directly applied to infrared and optical regions. Our approach is simple but delivers exciting new insight into the nature of light and disordered matter interaction. Our representative results include the first experimental demonstration of the existence of a complete and isotropic PBG in a two-dimensional (2D) hyperuniform disordered dielectric structure. Additionally we demonstrate experimentally the ability of this novel photonic structure to guide electromagnetic waves (EM) through freeform waveguides of arbitrary shape.

  16. Single microwave-photon detector using an artificial Λ-type three-level system

    NASA Astrophysics Data System (ADS)

    Inomata, Kunihiro; Lin, Zhirong; Koshino, Kazuki; Oliver, William D.; Tsai, Jaw-Shen; Yamamoto, Tsuyoshi; Nakamura, Yasunobu

    2016-07-01

    Single-photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an impedance-matched artificial Λ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. Each signal photon deterministically induces a Raman transition in the Λ system and excites the qubit. The subsequent dispersive readout of the qubit produces a discrete `click'. We attain a high single-photon-detection efficiency of 0.66+/-0.06 with a low dark-count probability of 0.014+/-0.001 and a reset time of ~400 ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing.

  17. Single microwave-photon detector using an artificial Λ-type three-level system.

    PubMed

    Inomata, Kunihiro; Lin, Zhirong; Koshino, Kazuki; Oliver, William D; Tsai, Jaw-Shen; Yamamoto, Tsuyoshi; Nakamura, Yasunobu

    2016-01-01

    Single-photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an impedance-matched artificial Λ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. Each signal photon deterministically induces a Raman transition in the Λ system and excites the qubit. The subsequent dispersive readout of the qubit produces a discrete 'click'. We attain a high single-photon-detection efficiency of 0.66±0.06 with a low dark-count probability of 0.014±0.001 and a reset time of ∼400 ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing.

  18. Single microwave-photon detector using an artificial Λ-type three-level system.

    PubMed

    Inomata, Kunihiro; Lin, Zhirong; Koshino, Kazuki; Oliver, William D; Tsai, Jaw-Shen; Yamamoto, Tsuyoshi; Nakamura, Yasunobu

    2016-01-01

    Single-photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an impedance-matched artificial Λ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. Each signal photon deterministically induces a Raman transition in the Λ system and excites the qubit. The subsequent dispersive readout of the qubit produces a discrete 'click'. We attain a high single-photon-detection efficiency of 0.66±0.06 with a low dark-count probability of 0.014±0.001 and a reset time of ∼400 ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing. PMID:27453153

  19. Single microwave-photon detector using an artificial Λ-type three-level system

    PubMed Central

    Inomata, Kunihiro; Lin, Zhirong; Koshino, Kazuki; Oliver, William D.; Tsai, Jaw-Shen; Yamamoto, Tsuyoshi; Nakamura, Yasunobu

    2016-01-01

    Single-photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an impedance-matched artificial Λ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. Each signal photon deterministically induces a Raman transition in the Λ system and excites the qubit. The subsequent dispersive readout of the qubit produces a discrete ‘click'. We attain a high single-photon-detection efficiency of 0.66±0.06 with a low dark-count probability of 0.014±0.001 and a reset time of ∼400 ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing. PMID:27453153

  20. Photonic compressive sensing for analog-to-information conversion with a delay-line based microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Zhu, Zhijing; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin

    2016-07-01

    Compressive sensing (CS) in the photonic domain is highly promising for analog-to-information conversion of sparse signals due to its potential capability of high input bandwidth and digitization with sub-Nyquist sampling. In this paper, we suggest that the concept of delay-line based microwave photonic filter be used in photonic CS to realize the low-pass filtering (LPF) function which is required in CS. A microwave photonic filter (MPF) with a dispersive element and fiber delay lines is applied in photonic CS to achieve better performance and flexibility. In the approach, the input radio-frequency signal and the pseudorandom bit sequence (PRBS) are modulated on a multi-wavelength optical carrier and propagate through a dispersive element. The modulated optical signal is split into multiple channels with tunable delay lines. The multiple wavelengths, dispersive element and multiple channels constitute a reconfigurable low-pass microwave filter. Experiment and simulations are presented to demonstrate the feasibility and potentials of this approach.

  1. Investigation of a metallic photonic crystal high power microwave mode converter

    SciTech Connect

    Wang, Dong Qin, Fen; Xu, Sha; Yu, Aimin; Wu, Yong

    2015-02-15

    It is demonstrated that an L band metallic photonic crystal TEM-TE{sub 11} mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawatt level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO) as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE{sub 11} mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.

  2. Stabilizing an optoelectronic microwave oscillator with photonic filters

    NASA Technical Reports Server (NTRS)

    Strekalov, D.; Aveline, D.; Yu, N.; Thompson, R.; Matsko, A. B.; Maleki, L.

    2003-01-01

    This paper compares methods of active stabilization of an optoelectronic microwave oscillator (OEO) based on insertion of a source of optical group delay into an OEO loop. The performance of an OEO stabilized with either a high- optical cavity or an atomic cell is analyzed. We show that the elements play a role of narrow-band microwave filters improving an OEO stability.

  3. Ultrahigh energy photons, electrons, and neutrinos, the microwave background, and the universal cosmic-ray hypothesis

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1972-01-01

    The production of ultrahigh energy photons, electrons and neutrinos as the decay products of pions produced in photomeson interactions between cosmic ray nucleons and the blackbody microwave background is discussed in terms of the resultant energy spectra of these particles. Simple asymptotic formulas are given for calculating the ultrahigh energy photon spectrum predicted for the universal cosmic ray hypothesis and the resulting spectra are compared with those obtained previously by numerical means using a different propagation equation for the photons. Approximate analytic solutions for the photon spectra are given in terms of simple power-law energy functions and slowly varying logarithmic functions.

  4. An ultrawide tunable range single passband microwave photonic filter based on stimulated Brillouin scattering.

    PubMed

    Xiao, Yongchuan; Guo, Jing; Wu, Kui; Qu, Pengfei; Qi, Huajuan; Liu, Caixia; Ruan, Shengping; Chen, Weiyou; Dong, Wei

    2013-02-11

    A single passband microwave photonic filter with ultrawide tunable range based on stimulated Brillouin scattering is theoretically analyzed. Combining the gain and loss spectrums, tuning range with 44GHz is obtained without crosstalk by introducing two pumps. Adding more pumps, Tuning range multiplying with the multiplication factor equaling to the total quantity of pump can be achieved, which has potential application in microwave and millimeter wave wireless communication systems.

  5. Photonic generation of tunable microwave signal using Brillouin fiber laser.

    PubMed

    Wang, Rugang; Zhang, Xuping; Hu, Junhui; Wang, Guanghui

    2012-03-10

    A simple approach to generate two bands of tunable microwave signal is proposed and demonstrated. In this scheme, two single-mode fibers with optimized Brillouin frequency shift spacing have been chosen as the scattering medium in two cascaded ring cavities. Two bands of tunable microwave signal from 390 to 453 MHz and 10.863 to 11.076 GHz can be obtained through adjusting the temperature of the fiber and the pump wavelength. The tunable frequency range can be further expanded by using a temperature controller with a wider adjustment range. The generated microwave signal exhibits high stability on frequency.

  6. Optical single photons on-demand teleported from microwave cavities

    NASA Astrophysics Data System (ADS)

    Barzanjeh, Sh; Vitali, D.; Tombesi, P.

    2013-03-01

    We propose a scheme for entangling the optical and microwave output modes of the respective cavities by using a micro mechanical resonator. The micro mechanical resonator, on one side, is capacitively coupled to the microwave cavity and, on the other side, it is coupled to a high-finesses optical cavity. We then show how this continuous variable entanglement can be profitably used to teleport the non-Gaussian number state |1> and the superposition (|0\\rangle +|1\\rangle )/\\sqrt 2 from the microwave cavity output mode onto an output of the optical cavity mode with fidelity much larger than the no-cloning limit.

  7. A 3 to 6 GHz microwave/photonic transceiver for phased-array interconnects

    NASA Astrophysics Data System (ADS)

    Ackerman, Edward; Wanuga, Stephen; Candela, Karen; Scotti, Ronald E.; MacDonald, V. W.; Gates, John V.

    1992-04-01

    The general design and operation of a microwave/photonic transceiver operating in the range 3-6 GHz are presented. The transceiver consists of drop-in submodules with optical fiber pigtails mounted on a brass carrier measuring less than 1 x 1 x 0.1 inch along with MMIC amplifiers and an alumina motherboard. Minimum 3 to 6 GHz return losses of 6 dB have been measured for both the microwave input and the microwave output of the module; the insertion loss is between 19 and 20 dB at most frequencies in the 3-6 GHz band.

  8. Fiber Sensor Systems Based on Fiber Laser and Microwave Photonic Technologies

    PubMed Central

    Fu, Hongyan; Chen, Daru; Cai, Zhiping

    2012-01-01

    Fiber-optic sensors, especially fiber Bragg grating (FBG) sensors are very attractive due to their numerous advantages over traditional sensors, such as light weight, high sensitivity, cost-effectiveness, immunity to electromagnetic interference, ease of multiplexing and so on. Therefore, fiber-optic sensors have been intensively studied during the last several decades. Nowadays, with the development of novel fiber technology, more and more newly invented fiber technologies bring better and superior performance to fiber-optic sensing networks. In this paper, the applications of some advanced photonic technologies including fiber lasers and microwave photonic technologies for fiber sensing applications are reviewed. FBG interrogations based on several kinds of fiber lasers, especially the novel Fourier domain mode locking fiber laser, have been introduced; for the application of microwave photonic technology, examples of microwave photonic filtering utilized as a FBG sensing interrogator and microwave signal generation acting as a transversal loading sensor have been given. Both theoretical analysis and experimental demonstrations have been carried out. The comparison of these advanced photonic technologies for the applications of fiber sensing is carried out and important issues related to the applications have been addressed and the suitable and potential application examples have also been discussed in this paper. PMID:22778591

  9. Microwave photonic filter using multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency shift

    SciTech Connect

    Loh, K. K.; Yeo, K. S.; Shee, Y. G.

    2015-04-24

    A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated.

  10. Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Ong, C. K.

    2009-06-01

    We report the direct observation of photonic nanojets that emerged from the shadow side of a dielectric cylinder illuminated by plane waves in the microwave frequencies (8-13 GHz). Using our recently developed two-dimensional spatial field mapping system, we carried out a point-by-point measurement of both the phase and intensity of spatial electric field distribution inside and around scattering dielectric cylinders. The direct electric field maps confirm the subwavelength waist of the photonic jet. In addition, we also confirmed the superbackscattering enhancement induced by the presence of a particle much smaller than the initial focusing cylinder within the photonic jet.

  11. Demonstration and experimental evaluation of a bi-directional 10-GHz microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Zaldívar-Huerta, I. E.; Correa-Mena, A. G.; Hernández-Nava, P.; García-Juárez, A.; Rodríguez-Asomoza, J.; Lee, Min Won

    2016-09-01

    A bi-directional 10-GHz microwave photonic filter is proposed and experimentally evaluated. Its frequency response consists of a series of microwave band-pass windows obtained by the interaction of externally modulated multimode laser diodes emitting around of 1550 nm associated to the chromatic dispersion parameter of an optical fiber, as well as the length of the optical link. Microwave band-pass windows exhibit on average a-3 dB bandwidth of 378 MHz. This electro-optical system shows an efficient configuration and good performance. Potentially, filtered microwave signals can be used as electrical carriers in optical communication systems to transmit and distribute services such as video, voice and data.

  12. Rigorous numerical study of strong microwave photon-magnon coupling in all-dielectric magnetic multilayers

    SciTech Connect

    Maksymov, Ivan S.; Hutomo, Jessica; Nam, Donghee; Kostylev, Mikhail

    2015-05-21

    We demonstrate theoretically a ∼350-fold local enhancement of the intensity of the in-plane microwave magnetic field in multilayered structures made from a magneto-insulating yttrium iron garnet (YIG) layer sandwiched between two non-magnetic layers with a high dielectric constant matching that of YIG. The enhancement is predicted for the excitation regime when the microwave magnetic field is induced inside the multilayer by the transducer of a stripline Broadband Ferromagnetic Resonance (BFMR) setup. By means of a rigorous numerical solution of the Landau-Lifshitz-Gilbert equation consistently with the Maxwell's equations, we investigate the magnetisation dynamics in the multilayer. We reveal a strong photon-magnon coupling, which manifests itself as anti-crossing of the ferromagnetic resonance magnon mode supported by the YIG layer and the electromagnetic resonance mode supported by the whole multilayered structure. The frequency of the magnon mode depends on the external static magnetic field, which in our case is applied tangentially to the multilayer in the direction perpendicular to the microwave magnetic field induced by the stripline of the BFMR setup. The frequency of the electromagnetic mode is independent of the static magnetic field. Consequently, the predicted photon-magnon coupling is sensitive to the applied magnetic field and thus can be used in magnetically tuneable metamaterials based on simultaneously negative permittivity and permeability achievable thanks to the YIG layer. We also suggest that the predicted photon-magnon coupling may find applications in microwave quantum information systems.

  13. Distortion-free spectrum sliced microwave photonic signal processor: analysis, design and implementation.

    PubMed

    Li, Liwei; Yi, Xiaoke; Huang, Thomas X H; Minasian, Robert A

    2012-05-01

    A new switchable microwave photonic filter based on a novel spectrum slicing technique is presented. The processor enables programmable multi-tap generation with general transfer function characteristics and offers tunability, reconfigurabiliy, and switchability. It is based on connecting a dispersion controlled spectrum slicing filter after the modulated bipolar broadband light source, which consequently generates multiple spectrum slices with bipolarity, and compensates dispersion induced RF degradation simultaneously within a single device. A detailed theoretical model for this microwave photonic filter design is presented. Experimental results are presented which verify the model, and demonstrate a 33 bipolar-tap microwave filter with significant reduction of passband attenuations at high frequencies. The RF response improvement of the new microwave photonic filter is investigated, for both an ideal linear group delay line and for the experimental fiber delay line that has second order group delay and the results show that this new structure is effective for RF filters with various free spectral range values and spectrum slice bandwidths. Finally, a switchable bipolar filter that has a square-top bandpass filter response with more than 30 dB stopband attenuation that can be switched on/off via software control is demonstrated.

  14. Nonlinear microwave photon occupancy of a driven resonator strongly coupled to a transmon qubit

    NASA Astrophysics Data System (ADS)

    Suri, B.; Keane, Z. K.; Bishop, Lev S.; Novikov, S.; Wellstood, F. C.; Palmer, B. S.

    2015-12-01

    We measure photon occupancy in a thin-film superconducting lumped element resonator coupled to a transmon qubit at 20 mK and find a nonlinear dependence on the applied microwave power. The transmon-resonator system was operated in the strong dispersive regime, where the ac Stark shift (2 χ ) due to a single microwave photon present in the resonator was larger than the linewidth (Γ ) of the qubit transition. When the resonator was coherently driven at 5.474 325 GHz, the transition spectrum of the transmon at 4.982 GHz revealed well-resolved peaks, each corresponding to an individual photon number-state of the resonator. From the relative peak heights we obtain the occupancy of the photon states and the average photon occupancy n ¯ of the resonator. We observe a nonlinear variation of n ¯ with the applied drive power Prf for n ¯<5 and compare our results to numerical simulations of the system-bath master equation in the steady state, as well as to a semiclassical model for the resonator that includes the Jaynes-Cummings interaction between the transmon and the resonator. We find good quantitative agreement using both models and analysis reveals that the nonlinear behavior is principally due to shifts in the resonant frequency caused by a qubit-induced Jaynes-Cummings nonlinearity.

  15. Some observations on hyperuniform disordered photonic bandgap materials, from microwave scale study to infrared scale study

    NASA Astrophysics Data System (ADS)

    Tsitrin, Sam; Nahal, Geev; Florescu, Marian; Man, Weining; San Francisco State University Team; University of Surrey Team

    2015-03-01

    A novel class of disordered photonic materials, hyperuniform disordered solids (HUDS), attracted more attention. Recently they have been experimentally proven to provide complete photonic band gap (PBG) when made with Alumina or Si; as well as single-polarization PBG when made with plastic with refract index of 1.6. These PBGs were shown to be real energy gaps with zero density of photonic states, instead of mobility gaps of low transmission due to scattering, etc. Using cm-scale samples and microwave experiments, we reveal the nature of photonic modes existing in these disordered materials by analyzing phase delay and mapping field distribution profile inside them. We also show how to extend the proof-of-concept microwave studies of these materials to proof-of-scale studies for real applications, by designing and fabricating these disordered photonic materials at submicron-scale with functional devices for 1.55 micron wavelength. The intrinsic isotropy of the disordered structure is an inherent advantage associated with the absence of limitations of orientational order, which is shown to provide valuable freedom in defect architecture design impossible in periodical structures. NSF Award DMR-1308084, the University of Surrey's FRSF and Santander awards.

  16. Tuneable on-demand single-photon source in the microwave range

    NASA Astrophysics Data System (ADS)

    Peng, Z. H.; de Graaf, S. E.; Tsai, J. S.; Astafiev, O. V.

    2016-08-01

    An on-demand single-photon source is a key element in a series of prospective quantum technologies and applications. Here we demonstrate the operation of a tuneable on-demand microwave photon source based on a fully controllable superconducting artificial atom strongly coupled to an open-ended transmission line. The atom emits a photon upon excitation by a short microwave π-pulse applied through a control line. The intrinsically limited device efficiency is estimated to be in the range 65-80% in a wide frequency range from 7.75 to 10.5 GHz continuously tuned by an external magnetic field. The actual demonstrated efficiency is also affected by the excited state preparation, which is about 90% in our experiments. The single-photon generation from the single-photon source is additionally confirmed by anti-bunching in the second-order correlation function. The source may have important applications in quantum communication, quantum information processing and sensing.

  17. Tuneable on-demand single-photon source in the microwave range.

    PubMed

    Peng, Z H; de Graaf, S E; Tsai, J S; Astafiev, O V

    2016-01-01

    An on-demand single-photon source is a key element in a series of prospective quantum technologies and applications. Here we demonstrate the operation of a tuneable on-demand microwave photon source based on a fully controllable superconducting artificial atom strongly coupled to an open-ended transmission line. The atom emits a photon upon excitation by a short microwave π-pulse applied through a control line. The intrinsically limited device efficiency is estimated to be in the range 65-80% in a wide frequency range from 7.75 to 10.5 GHz continuously tuned by an external magnetic field. The actual demonstrated efficiency is also affected by the excited state preparation, which is about 90% in our experiments. The single-photon generation from the single-photon source is additionally confirmed by anti-bunching in the second-order correlation function. The source may have important applications in quantum communication, quantum information processing and sensing. PMID:27545689

  18. Tuneable on-demand single-photon source in the microwave range

    PubMed Central

    Peng, Z. H.; de Graaf, S. E.; Tsai, J. S.; Astafiev, O. V.

    2016-01-01

    An on-demand single-photon source is a key element in a series of prospective quantum technologies and applications. Here we demonstrate the operation of a tuneable on-demand microwave photon source based on a fully controllable superconducting artificial atom strongly coupled to an open-ended transmission line. The atom emits a photon upon excitation by a short microwave π-pulse applied through a control line. The intrinsically limited device efficiency is estimated to be in the range 65–80% in a wide frequency range from 7.75 to 10.5 GHz continuously tuned by an external magnetic field. The actual demonstrated efficiency is also affected by the excited state preparation, which is about 90% in our experiments. The single-photon generation from the single-photon source is additionally confirmed by anti-bunching in the second-order correlation function. The source may have important applications in quantum communication, quantum information processing and sensing. PMID:27545689

  19. High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique.

    PubMed

    Wang, Yiping; Wang, Ming; Xia, Wei; Ni, Xiaoqi

    2016-08-01

    In this paper, a new fiber Bragg grating (FBG) sensor exploiting microwave photonics filter technique for transverse load sensing is firstly proposed and experimentally demonstrated. A two-tap incoherent notch microwave photonics filter (MPF) based on a transverse loaded FBG, a polarization beam splitter (PBS), a tunable delay line (TDL) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the transverse load is studied. By detecting the resonance frequency shifts of the notch MPF, the transverse load can be determined. The theoretical and experimental results show that the proposed FBG sensor has a higher resolution than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 2.5 MHz/N for a sensing fiber with a length of 18mm. Moreover, the sensitivity can be easily adjusted. PMID:27505763

  20. Intensity-intensity and intensity-amplitude correlation of microwave photons from a superconducting artificial atom

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Feng, Xunli; Oh, C. H.

    2016-10-01

    We investigate the dynamics of the microwave-frequency nonclassical correlations in a three-level Δ -configuration artificial atom, which is realized by superconducting quantum circuits. The intensity-intensity correlation and intensity field are strongly dependent on the relative phase Φ of the driven fields. It is found that two interference loops are formed in the dressed state picture at Φ =0 or π, which are responsible for the generation of nonclassical microwave photons. When the phase is changed into Φ =π /2 or 3π /2 , the temporal correlation functions exhibit different oscillating behaviors. The phase-sensitive nonclassical correlations of fluorescence photons may find practical application in the design of all-optical switches and quantum information processing.

  1. Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation.

    PubMed

    Wang, Cheng; Raghunathan, Ravi; Schires, Kevin; Chan, Sze-Chun; Lester, Luke F; Grillot, Frédéric

    2016-03-15

    We present an experimental investigation on the period-one dynamics of an optically injected InAs/GaAs quantum dot laser as a photonic microwave source. It is shown that the microwave frequency of the quantum dot laser's period-one oscillation is continuously tunable through the adjustment of the frequency detuning. The microwave power is enhanced by increasing the injection strength providing that the operation is away from the Hopf bifurcation, whereas the second-harmonic distortion of the electrical signal is well reduced by increasing the detuning frequency. Both strong optical injection and high detuning frequency are favorable for obtaining a single sideband optical signal. In addition, particular period-one oscillation points of low sensitivity to the frequency detuning are found close to the Hopf bifurcation line. PMID:26977657

  2. Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation.

    PubMed

    Wang, Cheng; Raghunathan, Ravi; Schires, Kevin; Chan, Sze-Chun; Lester, Luke F; Grillot, Frédéric

    2016-03-15

    We present an experimental investigation on the period-one dynamics of an optically injected InAs/GaAs quantum dot laser as a photonic microwave source. It is shown that the microwave frequency of the quantum dot laser's period-one oscillation is continuously tunable through the adjustment of the frequency detuning. The microwave power is enhanced by increasing the injection strength providing that the operation is away from the Hopf bifurcation, whereas the second-harmonic distortion of the electrical signal is well reduced by increasing the detuning frequency. Both strong optical injection and high detuning frequency are favorable for obtaining a single sideband optical signal. In addition, particular period-one oscillation points of low sensitivity to the frequency detuning are found close to the Hopf bifurcation line.

  3. High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation.

    PubMed

    Wang, Li Xian; Li, Wei; Zheng, Jian Yu; Wang, Hui; Liu, Jian Guo; Zhu, Ning Hua

    2013-02-15

    We propose a scheme for generating millimeter-wave (MMW) ultra-wideband (UWB) signal that is free from low-frequency components and a residual local oscillator. The system consists of two cascaded polarization modulators and is equivalent to a high-speed microwave photonic switch, which truncates a sinusoidal MMW into short pulses. The polarity switchability of the generated MMW-UWB pulse is also demonstrated.

  4. Photonic vector signal generation at microwave/millimeter-wave bands employing an optical frequency quadrupling scheme.

    PubMed

    Lin, Chun-Ting; Shih, Po-Tsung; Jiang, Wen-Jr; Wong, Er-Zih; Chen, Jason Jyehong; Chi, Sien

    2009-07-15

    To the best of our knowledge, a novel photonic architecture to generate vector signals at microwave/millimeter-wave bands employing an optical frequency quadrupling technique based on an external dual-parallel modulator is proposed for the first time. A 312.5 MSym/s quadruple phase-shift keying signal at 25 GHz is experimentally demonstrated using properly precoding driving signal at 6.25 GHz, and optical power penalty is negligible following 50 km single-mode fiber transmission.

  5. Broadband linearized analog intersatellite microwave photonic link using a polarization modulator in a Sagnac loop.

    PubMed

    Zhu, Zihang; Li, Yongjun; Zhao, Shanghong; Li, Xuan; Qu, Kun; Ma, Jiajun

    2016-02-10

    A novel orthogonal polarization optical carrier suppression with carrier (OCS+C) modulation and a coherent balanced detection intersatellite microwave photonic link with improved signal-to-noise and distortion ratio (SNDR) is proposed. By bidirectional use of a polarization modulator in a Sagnac loop in conjunction with a polarization beam splitter and two polarization controllers, only the light wave along the clockwise direction is effectively modulated while the counterclockwise light wave is not modulated due to the velocity mismatch, which generates the orthogonal polarization OCS+C modulation signal to mitigate the third-order intermodulation distortion (IMD3) and the signal-amplifier spontaneous emission beating noise. By demultiplexing and adjusting the polarization of the orthogonal polarization OCS+C modulation signal, coherent balanced detection can be realized without a local oscillator signal in the receiver, which suppresses the second-order distortions. Thus, a broadband linearized intersatellite microwave photonic link with high SNDR is achieved. Simulation results show that the maximum SNDR of 36.2 dB can be obtained when the optimum modulation index is 0.26, which is 8 dB higher than our previously proposed intersatellite microwave photonic link with an optical preamplifier. PMID:26906370

  6. Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters

    NASA Astrophysics Data System (ADS)

    Sun, Wenhui; Wang, Sunlong; Zhong, Xin; Liu, Jianguo; Wang, Wenting; Tong, Youwan; Chen, Wei; Yuan, Haiqing; Yu, Lijuan; Zhu, Ninghua

    2016-08-01

    An integrated wideband optical frequency comb (OFC) based on a semiconductor quantum dot laser is realized with high stability. The OFC module is packaged in our lab. A circuit which is designed to provide a low-ripple current and control the temperature regards as a servo system to enhance the stability of the OFC. The frequency stability of the OFC is 2.7×10-9 (Allan Variance). The free spectral range (FSR) of the OFC is 40 GHz and the number of comb lines is up to 55. The flatness of the OFC over span of 4 nm can be limited to 0.5 dB. Negative coefficients microwave photonic filters with multiple taps are generated based on the proposed OFC. For the 10 taps microwave photonic filter, the pass-band at 8.74 GHz has a 3 dB bandwidth of 630 MHz with 16.58 dB side-lobe suppression. Compared with the published microwave photonic filters, the proposed system is more stable, of more compact structures, and of less power consumption.

  7. One pot synthesis, structural and spectral analysis of some symmetrical curcumin analogues catalyzed by calcium oxide under microwave irradiation

    NASA Astrophysics Data System (ADS)

    Elavarasan, S.; Bhakiaraj, D.; Chellakili, B.; Elavarasan, T.; Gopalakrishnan, M.

    2012-11-01

    A series of sixteen number of curcumin analogues have been synthesized under microwave irradiation using calcium oxide as a catalyst. The synthesized compounds have been characterized using FT-IR, MS, elemental analysis, 1H and 13C NMR spectroscopic techniques. The UV-Vis absorption studies for these compounds have been studied in order to provide the electronic transitions taking place in the molecule. When compared to the curcumin ((1E,4Z,6E)-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one), the absorption maxima, λmax for all the synthesized curcumin analogues with a variety of substituents gets blue shifted i.e., hypsochromic shift was observed. This shift may be assigned to the change of dipole moment within the solvated molecule. Theoretical calculations regarding the optimization of the synthesized molecules, electronic properties like highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and mapped electron density surface diagrams were done. The geometrical energy, dipole moments and heat of formation values have also been calculated using the ArgusLab package by AM1 semi-empirical method.

  8. Catching Microwave Photons in a Superconducing Resonator with Tunable Coupling

    NASA Astrophysics Data System (ADS)

    Wenner, James; Yin, Yi; Chen, Yu; Barends, R.; Chiaro, B.; Kelly, J.; Mariantoni, M.; Megrant, A.; Mutus, J.; Neill, C.; Ohya, S.; Sank, D.; White, T.; Cleland, A. N.; Martinis, John M.

    2013-03-01

    When transferring a quantum state from a freely propagating mode to a resonator, reflections must be minimized to avoid energy loss. Performing this transfer with high fidelity requires tunable coupling. We experimentally studied a 50 Ohm transmission line with tunable coupling to a 6GHz superconducting coplanar waveguide resonator, which in turn is capacitively coupled to a phase qubit for calibration. We classically drove the resonator while measuring the reflected and captured signals using a HEMT amplifier. Following theory by Korotkov (PRB 84, 014510, 2011), we find that the photon capture efficiency is maximized with an exponentially increasing drive; further improvements come from varying pulse duration and dynamic coupling. With these techniques, we reduce reflections so that presently over 80% of the pulse energy is captured by the resonator.

  9. Microwave transmission measurements through wire array photonic crystals

    NASA Astrophysics Data System (ADS)

    Dewar, Graeme; Souther, Nathan; Johnson, Michael

    2008-03-01

    We have measured the microwave transmission between 12.4 and 18.0 GHz through wire arrays formed into two dimensional square lattices. One array made of copper wire 0.16 mm in radius consisted of five rows by 21 columns having a lattice constant of 5.15 mm. This array exhibited a pass band above 15 GHz, in good agreement with the calculated plasma frequency found from an expression for the permittivity^1 derived in the long wavelength limit. A second array was made with wire of radius 18 microns and lattice constant 0.8 mm. This array was filled with dielectric loaded with powdered magnetite. A sample of this metamaterial 5.8 mm thick and with no externally applied magnetic field exhibited a pass band above 16 GHz. Implications for creating metamaterials with a negative index of refraction from wire arrays embedded in a magnetic host will be discussed. ^1G. Dewar, in Complex Mediums III: Beyond Linear Isotropic Dielectrics, Akhlesh Lakhtakai, Graeme Dewar, Martin W. McCall, Editors, Proceedings of SPIE Vol. 4806, 156-166 (2002).

  10. Photonic DPASK/QAM signal generation at microwave/millimeter-wave band based on an electro-optic phase modulator.

    PubMed

    Zhang, Ye; Xu, Kun; Zhu, Ran; Li, Jianqiang; Wu, Jian; Hong, Xiaobin; Lin, Jintong

    2008-10-15

    We have proposed and experimentally demonstrated two novel photonic architectures to generate differential-phase amplitude-shift keying and circular quadrature amplitude modulation signals at microwave/millimeter-wave band based on an electro-optic phase modulator. In our proposed schemes, the electronic driven circuits were greatly simplified by employing the photonic vector modulation technique.

  11. Tunable microwave signal generation based on an Opto-DMD processor and a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Sang, Xin-Zhu; Yan, Bin-Bin; Ai, Qi; Li, Yan; Chen, Xiao; Zhang, Ying; Chen, Gen-Xiang; Song, Fei-Jun; Zhang, Xia; Wang, Kui-Ru; Yuan, Jin-Hui; Yu, Chong-Xiu; Xiao, Feng; Alameh, Kamal

    2014-06-01

    Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature.

  12. Photonic-assisted chirped microwave pulses generation with a flexible and fine parameter manipulation.

    PubMed

    Liu, Xinkai; Pan, Wei; Zou, Xihua; Yan, Lianshan; Luo, Bin; Zheng, Di; Ye, Jia; Lu, Bing

    2016-08-22

    A photonic approach for generating chirped microwave pulses with a flexible and fine parameter manipulation is proposed and experimentally demonstrated. In the proposed system, an intensity modulator (IM) biased at the minimum transmission point is used to generate two ± 1st-order optical sidebands which are then sent to a phase modulator (PM) for implementing large-signal phase modulations. A de-interleaver combined with an optical variable delay line (OVDL) is utilized to introduce a time delay between two phase-modulated optical signals. A second IM that acts as a time domain intensity switch (TDIS) is used to select different phase modulation ranges of the two phase-modulated optical signals. After the optical-electrical conversion in a photodetector (PD), chirped microwave pulses are generated. The key feature of this approach is that the parameters of the generated chirped microwave pulses including central frequency, pulse repetition frequency, and chirp rate can be flexibly and precisely manipulated by the radio frequency (RF) signals applied to modulators. A proof-of-principle experiment is carried out to verify the proposed approach. Consequently, positive or negative chirped microwave pulses with different central frequencies at 20, 22, 24 or 26 GHz and different pulse repetition frequencies at 1.5 or 2 GHz are generated, respectively. PMID:27557237

  13. Boltzmann hierarchy for the cosmic microwave background at second order including photon polarization

    SciTech Connect

    Beneke, M.; Fidler, C.

    2010-09-15

    Non-Gaussianity and B-mode polarization are particularly interesting features of the cosmic microwave background, as--at least in the standard model of cosmology--their only sources to first order in cosmological perturbation theory are primordial, possibly generated during inflation. If the primordial sources are small, the question arises how large is the non-Gaussianity and B-mode background induced in second order from the initially Gaussian and scalar perturbations. In this paper we derive the Boltzmann hierarchy for the microwave background photon phase-space distributions at second order in cosmological perturbation theory including the complete polarization information, providing the basis for further numerical studies. As an aside we note that the second-order collision term contains new sources of B-mode polarization and that no polarization persists in the tight-coupling limit.

  14. Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity.

    PubMed

    Jiang, Fan; Yu, Yuan; Tang, Haitao; Xu, Lu; Zhang, Xinliang

    2016-08-01

    we propose and demonstrate a bandpass microwave photonic filter (MPF) with ultrahigh stopband attenuation and skirt selectivity based on a simple signal cancellation technique. By injecting two phase modulated signals located on opposite sides of two resonant gain peaks of a Fabry-Pérot semiconductor optical amplifier (FP-SOA), two microwave frequency responses can be generated by the two input signals, respectively. The two frequency responses will add together within the passband but cancel each other out within the stopband, thus generating a MPF with simultaneous ultrahigh stopband attenuation and skirt selectivity. In the experiment the obtained MPF exhibits single passband in the range from 0 to 18 GHz and is tunable from 4 to 16 GHz by adjusting the laser wavelengths. During the tuning process the maximum stopband attenuation is 76.3 dB and the minimum 30-dB to 3-dB bandwidth shape factor is 3.5. PMID:27505828

  15. Photonic generation of chirped microwave and millimeter wave pulses based on optical spectral shaping and wavelength-to-time mapping in silicon photonics

    NASA Astrophysics Data System (ADS)

    Chen, Lawrence R.

    2016-08-01

    We provide an overview of photonic generation of chirped microwave and millimeter wave pulses based on optical spectral shaping followed by wavelength-to-time mapping. We summarize results obtained using bulk optic/benchtop and all-fiber spectral shapers, and discuss recent developments on integrated versions in silicon photonics. In particular, we describe devices based on microring resonators and present new results obtained using integrated spectral shapers incorporating chirped Bragg gratings.

  16. The defect mode in a low-dimensional waveguide microwave photonic crystal

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Skripal', A. V.; Posadskii, V. N.; Tyazhlov, V. S.; Baykin, A. V.

    2016-05-01

    It is shown that the violation of periodicity in a low-dimensional waveguide microwave photonic crystal, in which the periodic structure is formed by dielectric layers and adjacent metal plates partly overlapping the waveguide cross section and forming capacitive gaps between the plate edge and wide wall of the waveguide, leads to the appearance of a defect (impurity) mode. It is established that the defect mode position on the frequency scale significantly depends on both the thickness of "disturbed" dielectric layer and the capacitive gap width of diaphragms.

  17. Frequency agile microwave photonic notch filter with anomalously high stopband rejection.

    PubMed

    Marpaung, David; Morrison, Blair; Pant, Ravi; Eggleton, Benjamin J

    2013-11-01

    We report a novel class microwave photonic (MWP) notch filter with a very narrow isolation bandwidth (10 MHz), an ultrahigh stopband rejection (>60 dB), a wide frequency tuning (1-30 GHz), and flexible bandwidth reconfigurability (10-65 MHz). This performance is enabled by a new concept of sideband amplitude and phase controls using an electro-optic modulator and an optical filter. This concept enables energy efficient operation in active MWP notch filters, and opens up a pathway toward enabling low-power nanophotonic devices as high-performance RF filters.

  18. A novel phase noise measurement of phase modulation microwave photonic links

    NASA Astrophysics Data System (ADS)

    Ye, Quanyi; Gao, Yingjie; Yang, Chun

    2016-07-01

    Microwave photonic links can provide many advantages over traditional coaxial due to its low loss, small size, lightweight, large bandwidth and immunity to external interference. In this paper, a novel phase noise measurement system is built, since the input signal and the power supply noise can be effectively cancelled by a two-arm configuration without the phase locking. Using this approach, the phase noise performance of the 10-GHz phase modulation photonic link has been measured for the first time, evaluated the values of -124 dBc/Hz at 1 kHz offset and -132 dBc/Hz at 10 kHz offset is obtained. Theoretical analysis on the phase noise measurement system calibration is also discussed.

  19. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    SciTech Connect

    Tadesse, Semere A.; Li, Huan; Liu, Qiyu; Li, Mo

    2015-11-16

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Our system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.

  20. Microwave-assisted synthesis and biological evaluation of 3,4-diaryl maleic anhydride/N-substituted maleimide derivatives as combretastatin A-4 analogues.

    PubMed

    Guan, Qi; Zuo, Daiying; Jiang, Nan; Qi, Huan; Zhai, Yanpeng; Bai, Zhaoshi; Feng, Dongjie; Yang, Lei; Jiang, Mingyang; Bao, Kai; Li, Chang; Wu, Yingliang; Zhang, Weige

    2015-02-01

    A series of new CA-4 analogues bearing maleic anhydride/N-substituted maleimide moiety were synthesized via a microwave-assisted process. They were evaluated for the anti-proliferative activities against three tumor cell lines (SGC-7901, HT-1080 and KB). Most compounds showed moderate potencies in micromolar range, with the most promising analogue 6f showing active at submicromolar concentration against HT-1080 cancer cells which was selected to investigate the antitumor mechanisms. In addition, molecular docking studies within the colchicine binding site of tubulin were also in good agreement with the tubulin polymerization inhibitory data and provided a basis for further structure-guided design of novel CA-4 analogues. PMID:25529737

  1. Microwave-assisted synthesis and biological evaluation of 3,4-diaryl maleic anhydride/N-substituted maleimide derivatives as combretastatin A-4 analogues.

    PubMed

    Guan, Qi; Zuo, Daiying; Jiang, Nan; Qi, Huan; Zhai, Yanpeng; Bai, Zhaoshi; Feng, Dongjie; Yang, Lei; Jiang, Mingyang; Bao, Kai; Li, Chang; Wu, Yingliang; Zhang, Weige

    2015-02-01

    A series of new CA-4 analogues bearing maleic anhydride/N-substituted maleimide moiety were synthesized via a microwave-assisted process. They were evaluated for the anti-proliferative activities against three tumor cell lines (SGC-7901, HT-1080 and KB). Most compounds showed moderate potencies in micromolar range, with the most promising analogue 6f showing active at submicromolar concentration against HT-1080 cancer cells which was selected to investigate the antitumor mechanisms. In addition, molecular docking studies within the colchicine binding site of tubulin were also in good agreement with the tubulin polymerization inhibitory data and provided a basis for further structure-guided design of novel CA-4 analogues.

  2. Microwave assisted synthesis of unsaturated jasmone heterocyclic analogues as new fragrant substances.

    PubMed

    Pawełczyk, Anna; Zaprutko, Lucjusz

    2009-07-01

    Taking the rising interest in jasmone structure based fragrant compounds into account it has been decided to take up an attempt to synthesize the new heterocyclic derivatives of this 2,3-disubstituted cyclopentenone, which could be characterized by the ability of interaction with the same receptors with which jasmone affects. Obtained structures of unsaturated heterocyclic derivatives are based on pyrrolidinone, oxazolidinone, pyrazolidinone, pyrazolone and thiazolidinone systems with 2-double or 2-triple unsaturated five-carbon side chain. The rapid, highly yielding and ecofriendly microwave assisted organic syntheses (MAOS) have been used to obtain compounds mentioned above. Odor evaluation and relationships between their structure and osmic properties for all synthesized fragrant compounds have been studied. It has been shown that the majority of the obtained compounds have exhibited interesting, very intensive and fixative fragrant properties.

  3. Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED.

    PubMed

    Hua, Ming; Tao, Ming-Jie; Deng, Fu-Guo

    2015-01-01

    Stark shift on a superconducting qubit in circuit quantum electrodynamics (QED) has been used to construct universal quantum entangling gates on superconducting resonators in previous works. It is a second-order coupling effect between the resonator and the qubit in the dispersive regime, which leads to a slow state-selective rotation on the qubit. Here, we present two proposals to construct the fast universal quantum gates on superconducting resonators in a microwave-photon quantum processor composed of multiple superconducting resonators coupled to a superconducting transmon qutrit, that is, the controlled-phase (c-phase) gate on two microwave-photon resonators and the controlled-controlled phase (cc-phase) gates on three resonators, resorting to quantum resonance operations, without any drive field. Compared with previous works, our universal quantum gates have the higher fidelities and shorter operation times in theory. The numerical simulation shows that the fidelity of our c-phase gate is 99.57% within about 38.1 ns and that of our cc-phase gate is 99.25% within about 73.3 ns. PMID:25787147

  4. Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED.

    PubMed

    Hua, Ming; Tao, Ming-Jie; Deng, Fu-Guo

    2015-03-19

    Stark shift on a superconducting qubit in circuit quantum electrodynamics (QED) has been used to construct universal quantum entangling gates on superconducting resonators in previous works. It is a second-order coupling effect between the resonator and the qubit in the dispersive regime, which leads to a slow state-selective rotation on the qubit. Here, we present two proposals to construct the fast universal quantum gates on superconducting resonators in a microwave-photon quantum processor composed of multiple superconducting resonators coupled to a superconducting transmon qutrit, that is, the controlled-phase (c-phase) gate on two microwave-photon resonators and the controlled-controlled phase (cc-phase) gates on three resonators, resorting to quantum resonance operations, without any drive field. Compared with previous works, our universal quantum gates have the higher fidelities and shorter operation times in theory. The numerical simulation shows that the fidelity of our c-phase gate is 99.57% within about 38.1 ns and that of our cc-phase gate is 99.25% within about 73.3 ns.

  5. Microwave generation with photonic frequency octupling using a DPMZM in a Sagnac loop

    NASA Astrophysics Data System (ADS)

    Gao, Yongsheng; Wen, Aijun; Li, Ningning; Wu, Xiaohui; Zhang, Huixing

    2015-09-01

    A photonic microwave signal generation scheme with frequency octupling is proposed and experimentally demonstrated. The scheme is based on bi-directional use of a dual-parallel Mach-Zehnder modulator (DPMZM) in a Sagnac loop. The two sub-modulators in the DPMZM are driven by two low-frequency signals with a π/2 phase difference, and the dc biases of the modulator are all set at the maximum transmission points. Due to the velocity mismatch of the modulator, only the light wave along the clockwise direction is effectively modulated by the drive signals to generate an optical signal with a carrier and ±4th order sidebands, while the modulation of the light wave along the counterclockwise direction is far less effective and can be ignored. By properly adjusting the polarization of the light wave output from the Sagnac loop, the optical carrier can be significantly suppressed at a polarizer, and then an optical signal with only ±4th order sidebands is generated. In the experiment, a pure 24-GHz microwave signal without additional phase noise from the optical system is generated using a 3-GHz local oscillator signal. As no electrical or optical filter is used, the photonic frequency octupler is of good frequency tunability.

  6. Semi-Random Multichromophoric rr-P3HT Analogues for Solar Photon Harvesting

    SciTech Connect

    Burkhart, Beate; Khlyabich, Petr P.; Canak, Tuba Cakir; LaJoie, Travis W.; Thompson, Barry C.

    2011-03-22

    We introduce a new family of semi-random alkylthiophene-based copolymers, which broadly absorb sunlight due to the randomized incorporation of small amounts of acceptors in the polymer backbone. The so-called semi-random structure is defined by a random polymerization that is based on a restricted linkage pattern of the monomers due to regiospecific placement of the reactive functional groups. As a consequence, the polymers are designed to retain a higher degree of structural order than purely random analogues. We have described a family of semi-random donor-acceptor copolymers based on regioregular poly(3-hexylthiophene) (P3HT). In our preliminary investigations, we have found that the attractive properties of P3HT are retained, and despite the randomized polymerization, semicrystalline polymers with high charge carrier mobilities are realized. In addition, broad and intense spectral absorption is achieved with only a limited content (10-17.5%) of acceptor units in the polymer backbone using a simple polymerization method based on easily synthesized monomers. Rigorous optimization of bulk-heterojunction solar cells based on these promising polymers is underway, along with more detailed characterization of the polymer electronic structures and synthesis of tailored structural analogues.

  7. Stability of Continental Lithosphere based on Analogue Experiments with Microwave Induced Internal Heating

    NASA Astrophysics Data System (ADS)

    Fourel, Loic; Limare, Angela; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia; Vilella, Kenny; Farnetani, Cinzia; Kaminski, Edouard; Jaupart, Claude

    2015-04-01

    Continental lithosphere is usually depicted as the upper conductive layer of the Earth. Its formation is achieved through melt depletion that generates a residue that is less dense and more viscous than the underlying convecting mantle. As it is cooled from above, continental lithosphere can develop its own convective currents and may become unstable depending on its thickness and density contrast with the mantle. But chemical differentiation due to mantle magmatism also enriches continental lithosphere in heat producing elements. According to present estimates, the Earth's mantle may have lost as much as half of its radioactive elements in favour of continental crust and this stratified redistribution of heat sources has two main effects. First, mantle convection vigor decreases and becomes increasingly sensitive to heat supply from the core. Second, localized heat production at the top surface increases the continental insulating effects and competes against lithospheric instabilities. In the present study, we focus on the later and we determine which amount of internal heating is required to keep the lithosphere stable for a given rate of cooling from the top. The physics underlying instability triggering corresponds to the problem of a two differentially heated layered system cooled from above, where the top layer is less dense and more viscous than the bottom one, representative of the lithosphere-mantle system. Few studies have been devoted to the intrinsic characteristics of this layered type of convection. Here, we present a state of the art laboratory setup to generate internal heating in controlled conditions based on microwave (MW) absorption. The volumetric heat source can be localized in space and its intensity can be varied in time. Our tank prototype has horizontal dimensions of 30 cm x 30 cm and 5 cm height. A uniform and constant temperature is maintained at the upper boundary by an aluminium heat exchanger and adiabatic conditions are imposed at

  8. Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip

    NASA Astrophysics Data System (ADS)

    Burla, Maurizio; Wang, Xu; Li, Ming; Chrostowski, Lukas; Azaña, José

    2016-09-01

    Photonic-based instantaneous frequency measurement (IFM) of unknown microwave signals offers improved flexibility and frequency range as compared with electronic solutions. However, no photonic platform has ever demonstrated the key capability to perform dynamic IFM, as required in real-world applications. In addition, all demonstrations to date employ bulky components or need high optical power for operation. Here we demonstrate an integrated photonic IFM system that can identify frequency-varying signals in a dynamic manner, without any need for fast measurement instrumentation. The system is based on a fully linear, ultracompact system based on a waveguide Bragg grating on silicon, only 65-μm long and operating up to ~30 GHz with carrier power below 10 mW, significantly outperforming present technologies. These results open a solid path towards identification of dynamically changing signals over tens of GHz bandwidths using a practical, low-cost on-chip implementation for applications from broadband communications to biomedical, astronomy and more.

  9. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter.

    PubMed

    Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris

    2012-11-19

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.

  10. Third-order linearization for self-beating filtered microwave photonic systems using a dual parallel Mach-Zehnder modulator.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein

    2016-09-01

    We develop, analyze and apply a linearization technique based on dual parallel Mach-Zehnder modulator to self-beating microwave photonics systems. The approach enables broadband low-distortion transmission and reception at expense of a moderate electrical power penalty yielding a small optical power penalty (<1 dB). PMID:27607667

  11. Hyperuniform disordered photonic bandgap materials, from microwave to infrared wavelength regime

    NASA Astrophysics Data System (ADS)

    Man, Weining

    Recently, we have introduced a new class of hyperuniform disordered (HUD) photonic bandgap (PBG) materials enabled by a novel constrained optimization method for engineering the material's Fourier transform to be continuous, isotropic and stealthy. Their structure factor S (k) is equal to zero for small kand exhibits a broad ring of maximum values around a characteristic wave-length range. Experimentally, an isotropic complete PBG (at all angles and for all polarizations) in an alumina-based HUD structure and single-polarized PBGs for plastic-based HUD structure have been demonstrated. Using measured and simulated transmission and phase delay information through these HUD structures, we also unfolded their band structures and reconstructed the effective dispersion relations of propagating electromagnetic modes in them. The intrinsic isotropy in these disordered structures is an inherent advantage associated with the lack of crystalline order, offering unprecedented freedom for functional defect design impossible to achieve in photonic crystals. In the microwave regime, we have shown the creation of freeform waveguides, which can channel photons robustly along arbitrarily curved paths and around sharp bends, and be decorated with defects to produce sharply resonant structures useful for filtering and frequency splitting. Recent simulation and experimental results for waveguides and modulators based on submicron-scale planar hyperuniform disordered PBG structures further highlight their ability to serve as highly compact, flexible and energy-efficient platforms for photonic integrated circuits. NSF DMR-1308084, EPSRC (UK) DTG Grant KD5050, EPSRC (UK) Strategic Equipment Grant EP/M008576/1, NSF SBIR-1345168, NSF MRI-1040444.

  12. Research of dual-band microwave photonic filter for WLAN based on optical frequency comb.

    PubMed

    Zhang, Qi; Li, Jiaqi; Jiang, Lingke; Pan, Linbing; Dong, Wei; Zhang, Xindong; Ruan, Shengping

    2016-07-20

    This paper presents a dual-band microwave photonic filter for a wireless local area networks with independently tunable passband center frequencies and bandwidths. The two bands of the filter were 2.4 GHz and 5.725 GHz, respectively. The filter was based on a stimulated Brillouin scattering and an optical frequency comb (OFC) scheme. We created this filter using OFC pumps instead of a single pump. The OFC scheme consists of a cascaded Mach-Zehnder modulator (MZM) and a dual-parallel MZM (DPMZM) hybrid modulation that generated seven and 11 lines. The experimental results show that the two passbands of the filter were 80 and 130 MHz. PMID:27463899

  13. Microwave photonic link with improved phase noise using a balanced detection scheme

    NASA Astrophysics Data System (ADS)

    Hu, Jingjing; Gu, Yiying; Tan, Wengang; Zhu, Wenwu; Wang, Linghua; Zhao, Mingshan

    2016-07-01

    A microwave photonic link (MPL) with improved phase noise performance using a dual output Mach-Zehnder modulator (DP-MZM) and balanced detection is proposed and experimentally demonstrated. The fundamental concept of the approach is based on the two complementary outputs of DP-MZM and the destructive combination of the photocurrent in balanced photodetector (BPD). Theoretical analysis is performed to numerical evaluate the additive phase noise performance and shows a good agreement with the experiment. Experimental results are presented for 4 GHz, 8 GHz and 12 GHz transmission link and an 11 dB improvement of phase noise performance at 10 MHz offset is achieved compared to the conventional intensity-modulation and direct-detection (IMDD) MPL.

  14. Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar.

    PubMed

    Emami, Hossein; Sarkhosh, Niusha

    2014-06-01

    A microwave photonic in-phase and quadrature detector is conceived and practically demonstrated. The detector has the ability to become electronically reconfigured to operate at any frequency over a wide range. This makes it an excellent candidate for frequency agile radars and other electronic warfare systems based on frequency hopping. The detector exhibits a very low amplitude and phase imbalance, which removes the need for any imbalance compensation technique. The system is designed based on the transversal filtering concept and reconfigurability is achieved via wavelength control in a dispersive fiber. The system operation was demonstrated over a frequency range of 3.5-35 GHz, with a maximum of -32 dB amplitude imbalance.

  15. Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing

    NASA Astrophysics Data System (ADS)

    Preussler, Stefan; Schneider, Thomas

    2016-03-01

    Stimulated Brillouin scattering (SBS) is one of the most dominant nonlinear effects in standard single-mode fibers and its unique spectral characteristics, especially the narrow bandwidth, enable many different applications. Most of the applications would benefit from a narrower bandwidth. Different methods for the bandwidth reduction of SBS in optical fibers are presented and discussed. A bandwidth reduction down to 17% of the natural gain can be achieved by the superposition of the gain with two losses or the utilization of a multistage system. Furthermore, applications in the field of microwave photonics and optical signal processing like high-resolution spectroscopy of communication signals, the storage of optical data packets as well as the processing of frequency combs including generation of millimeter waves and ideal sinc-shaped Nyquist pulses are presented.

  16. Single crystal silicon capacitors with low microwave loss in the single photon regime

    NASA Astrophysics Data System (ADS)

    Weber, S. J.; Murch, K. W.; Slichter, D. H.; Vijay, R.; Siddiqi, I.

    2011-04-01

    We have fabricated superconducting microwave resonators in a lumped element geometry using single crystal silicon dielectric parallel plate capacitors with C >2 pF. Aluminum devices with resonant frequencies between 4.0 and 6.5 GHz exhibited an average internal quality factor Qi of 2×105 in the single photon excitation regime at T =20 mK. Attributing the observed loss solely to the capacitive element, our measurements place an upper bound on the loss tangent of the silicon dielectric layer of tan δi=5×10-6. This level of loss is an order of magnitude lower than is currently observed in structures incorporating amorphous dielectric materials, thus making single crystal silicon capacitors an attractive, robust route for realizing long-lived quantum circuits.

  17. Frequency switched narrow linewidth microwave signal photonic generation based on a double-Brillouin-frequency spaced fiber laser.

    PubMed

    Zhang, Peng; Wang, Tianshu; Jia, Qingsong; Sun, Hongwei; Dong, Keyan; Liu, Xin; Kong, Mei; Jiang, Huilin

    2014-04-10

    A simple photonic approach to generate microwave frequency switched microwave signal is proposed and experimentally demonstrated. In this scheme, a Brillouin fiber laser with double-Brillouin-frequency spacing is used. The Brillouin ring configuration suppresses incoming Brillouin pump and even-order Stokes signals in the cavity. In addition, it also allows propagation of the odd-order Brillouin Stokes signals from configuration to output coupler. A dual-wavelength optical signal is heterodyned at the high-speed photodetector to produce a microwave signal. Frequency switched microwave signals, at 10.75 and 21.39 GHz, respectively, can be obtained through adjusting the polarization controller (PC) and loss of the variable optical attenuator (VOA).

  18. Two-photon microwave transitions and strong-field effects in a room-temperature Rydberg-atom gas

    NASA Astrophysics Data System (ADS)

    Anderson, D. A.; Schwarzkopf, A.; Miller, S. A.; Thaicharoen, N.; Raithel, G.; Gordon, J. A.; Holloway, C. L.

    2014-10-01

    We investigate two-photon Autler-Townes splitting and strong-field effects of 85Rb Rydberg atoms in a room-temperature vapor cell. To observe the level structure we employ electromagnetically induced transparency. We first study the two-photon 62 S1 /2-63 S1 /2 microwave transition using an electric-field reference measurement obtained with the one-photon 62 S1 /2-62 P3 /2 transition. We then study the 61 D5 /2-62 D5 /2 transition where the microwave electric-field range is extended up to ˜40 V /m . A Floquet analysis is used to model field-induced level shifts and state-mixing effects present in the strongly driven quantum systems under consideration. Calculations are found to be in good agreement with experimental observations.

  19. Design and optimization of polymer ring resonator modulators for analog microwave photonic applications

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.

    2016-02-01

    Efficient modulation of electrical signals onto an optical carrier remains the main challenge in full implementation of microwave photonic links (MPLs) for applications such as antenna remoting and wireless access networks. Current MPLs utilize Mach-Zehnder Interferometers (MZI) with sinusoidal transfer function as electro-optic modulators causing nonlinear distortions in the link. Recently ring resonator modulators (RRM) consisting of a ring resonator coupled to a base waveguide attracted interest to enhance linearity, reduce the size and power consumption in MPLs. Fabrication of a RRM is more challenging than the MZI not only in fabrication process but also in designing and optimization steps. Although RRM can be analyzed theoretically for MPLs, physical structures need to be designed and optimized utilizing simulation techniques in both optical and microwave regimes with consideration of specific material properties. Designing and optimization steps are conducted utilizing full-wave simulation software package and RRM function analyzed in both passive and active forms and confirmed through theoretical analysis. It is shown that RRM can be completely designed and analyzed utilizing full-wave simulation techniques and as a result linearity effect of the modulator on MPLs can be studied and optimized. The material nonlinearity response can be determined computationally and included in modulator design and readily adaptable for analyzing other materials such as silicon or structures where theoretical analysis is not easily achieved.

  20. Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Wan, Ren-Gang; Yao, Zhi-Hai

    2016-10-01

    The spontaneous emission from a microwave-driven four-level atom embedded in an anisotropic photonic crystal is studied. Due to the modified density of state (DOS) in the anisotropic photonic band gap (PBG) and the coherent control induced by the coupling fields, spontaneous emission can be significantly enhanced when the position of the spontaneous emission peak gets close to the band gap edge. As a result of the closed-loop interaction between the fields and the atom, the spontaneous emission depends on the dynamically induced Autler-Townes splitting and its position relative to the PBG. Interesting phenomena, such as spectral-line suppression, enhancement and narrowing, and fluorescence quenching, appear in the spontaneous emission spectra, which are modulated by amplitudes and phases of the coherently driven fields and the effect of PBG. This theoretical study can provide us with more efficient methods to manipulate the atomic spontaneous emission. Project supported by the National Natural Science Foundation of China (Grant Nos. 11447232, 11204367, 11447157, and 11305020).

  1. Analogue of Rashba pseudo-spin-orbit coupling in photonic lattices by gauge field engineering

    NASA Astrophysics Data System (ADS)

    Plotnik, Y.; Bandres, M. A.; Stützer, S.; Lumer, Y.; Rechtsman, M. C.; Szameit, A.; Segev, M.

    2016-07-01

    We present, theoretically and experimentally, the observation of the Rashba effect in photonic lattices, where the effect is brought about by an artificial gauge field, induced by the geometry of the system. In doing that, we demonstrate a particular form of coupling between pseudospin and momentum, resulting in spin-dependent shifts in the spectrum. Our system consists of two coupled, oppositely tilted waveguide arrays, where the evolution of an optical beam allows for probing the dynamics of the evolving wave packets, and the formation of spectral splitting. We show that the Rashba effect can be amplified or decreased through optical nonlinear effects, which correspond to mean-field interactions in various systems such as cold-atom lattices and exciton-polariton condensates.

  2. Dynamics of a three-level V-type atom driven by a cavity photon and microwave field

    NASA Astrophysics Data System (ADS)

    Yan-Li, Xue; Shi-Deng, Zhu; Ju, Liu; Ting-Hui, Xiao; Bao-Hua, Feng; Zhi-Yuan, Li

    2016-04-01

    We discuss the dynamics of a three-level V-type atom driven simultaneously by a cavity photon and microwave field by examining the atomic population evolution. Owing to the coupling effect of the cavity photon, periodical oscillation of the population between the two upper states and the ground state takes place, which is the well-known vacuum Rabi oscillation. Meanwhile, the population exchange between the upmost level and the middle level can occur due to the driving action of the external microwave field. The general dynamic behavior is the superposition of a fast and a slow periodical oscillation under the cooperative and competitive effect of the cavity photon and the microwave field. Numerical results demonstrate that the time evolution of the population is strongly dependent on the atom-cavity coupling coefficient g and Rabi frequency Ω e that reflects the intensity of the external microwave field. By modulating the two parameters g and Ω e, a large number of population transfer behaviors can be achieved. Project supported by the National Natural Science Foundation of China (Grant Nos. 11434017 and 11374357) and the National Basics Research Program of China (Grant No. 2013CB632704).

  3. Structure Determination of Cisplatin-Amino Acid Analogues by Infrared Multiple Photon Dissociation Action Spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Chenchen; Bao, Xun; Zhu, Yanlong; Strobehn, Stephen; Kimutai, Bett; Nei, Y.-W.; Chow, C. S.; Rodgers, M. T.; Gao, Juehan; Oomens, J.

    2015-06-01

    To gain a better understanding of the binding mechanism and assist in the optimization of relevant drug and chemical probe design, both experimental and theoretical studies were performed on a series of amino acid-linked cisplatin derivatives, including glycine-, lysine-, and ornithine-linked cisplatin, Gplatin, Kplatin, and Oplatin, respectively. Cisplatin, the first FDA-approved platinum-based anticancer drug, has been widely used in cancer chemotherapy. Its pharmacological mechanism has been identified as its ability to coordinate to genomic DNA, and guanine is its major target. In previous reports, cisplatin was successfully utilized as a chemical probe to detect solvent accessible sites in ribosomal RNA (rRNA). Among the amino-acid-linked cisplatin derivatives, Oplatin exhibits preference for adenine over guanine. The mechanism behind its different selectivity compared to cisplatin may relate to its potential of forming a hydrogen bond between the carboxylate group in Pt (II) complex and the 6-amino moiety of adenosine stabilizes A-Oplatin products. Tandem mass spectrometry analysis also indicates that different coordination sites of Oplatin on adenosine affect glycosidic bond stability. Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments were performed on all three amino acid-linked cisplatin to characterize their structures. An extensive theoretical study has been performed on Gplatin to guide the selection of the most effective theory and basis set based on its geometric information. The results for Gplatin provide the foundation for characterization of the more complex amino acid-linked cisplatin derivatives, Oplatin and Kplatin. Structural and energetic information elucidated for these compounds, particularly Oplatin reveal the reason for its alternative selectivity compared to cisplatin.

  4. Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system

    NASA Astrophysics Data System (ADS)

    Klingler, S.; Maier-Flaig, H.; Gross, R.; Hu, C.-M.; Huebl, H.; Goennenwein, S. T. B.; Weiler, M.

    2016-08-01

    Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of geff /2π = 63 MHz. The combined BLS and MA data allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.

  5. Influence of the modulation index of Mach-Zehnder modulator on intersatellite microwave photonics links with multiple RF signals

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Li, Yongjun; Chu, Xingchun; Hou, Rui

    2013-04-01

    A generalized intersatellite microwave photonics links model to study the influence of the modulation index of Mach-Zehnder modulator on the receiver sensitivity with multiple radio frequency (RF) signals is presented. An exact analytical solution of signal-to-noise and distortion ratio (SNDR) for optical double-sideband (ODSB) and optical single-sideband (OSSB) modulation is deduced with Bessel expansion and Graf's addition theorem. Numerical results show that the receiver sensitivity increases and then decreases as the increase in modulation index, there is an optimum modulation index that maximizes the receiver sensitivity and the larger channel numbers lead to lower receiver sensitivity for maintaining the SNDR at the desired level. In addition, ODSB modulation can be more attractive than OSSB modulation in intersatellite microwave photonics links, since the maximum receiver sensitivity for ODSB modulation is better than that for OSSB modulation.

  6. Organic-based electro-optic modulators for microwave photonic applications

    NASA Astrophysics Data System (ADS)

    Eng, David

    As cutting-edge microwave photonic systems with higher complexity and stringent device requirement are being developed, the demand higher performance modulators with lower drive voltages and higher bandwidth is beginning to overtake the physical limitations of existing modulators based in LiNbO3. To address this growing demand, groundbreaking work in the field of organic electro-optic materials has been achieved over the past 10--15 years that has resulted in materials with electro-optic coefficients up to 10 times that of LiNbO3 and with demonstrated response times into the THz regime. This dissertation details work towards developing low drive-voltage, high bandwidth organic-based electro-optic modulators to support next generation microwave photonic systems. Initial efforts were focused on designing an organic electro-optic material based low frequency phase modulator and developing a fabrication procedure that successfully integrates the material without compromising its electro optic activity. Additionally a procedure for inducing the high electro-optic activity in the waveguide core through a process known as 'poling' was developed. The phase modulators were then characterized to confirm the expected high electro-optic activity and correspondingly low drive voltages. To transition from low frequency modulation to broadband operation it was necessary to gather some dielectric information of the waveguide materials for RF design. Because traditional RF dielectric constant measurements assume thick substrates on the order of 100s of microns, a modified microstrip ring resonator technique was developed to measure the dielectric constant of thin, polymer waveguide films on the order of 10 mum out to 110 GHz. A high frequency traveling wave microstrip modulator was then designed and optimized for operation up to 50 GHz, and efforts were turned towards RF packaging of the microstrip modulators for practical utilization and integration. To feed the RF signals a

  7. Photonic generation of phase-stable and wideband chirped microwave signals based on phase-locked dual optical frequency combs.

    PubMed

    Tong, Yitian; Zhou, Qian; Han, Daming; Li, Baiyu; Xie, Weilin; Liu, Zhangweiyi; Qin, Jie; Wang, Xiaocheng; Dong, Yi; Hu, Weisheng

    2016-08-15

    A photonics-based scheme is presented for generating wideband and phase-stable chirped microwave signals based on two phase-locked combs with fixed and agile repetition rates. By tuning the difference of the two combs' repetition rates and extracting different order comb tones, a wideband linearly frequency-chirped microwave signal with flexible carrier frequency and chirped range is obtained. Owing to the scheme of dual-heterodyne phase transfer and phase-locked loop, extrinsic phase drift and noise induced by the separated optical paths is detected and suppressed efficiently. Linearly frequency-chirped microwave signals from 5 to 15 GHz and 237 to 247 GHz with 30 ms duration are achieved, respectively, contributing to the time-bandwidth product of 3×108. And less than 1.3×10-5 linearity errors (RMS) are also obtained. PMID:27519089

  8. Photonic generation of microwave frequency shift keying signal using a single-drive Mach-Zehnder modulator.

    PubMed

    Cao, Pan; Hu, Xiaofeng; Zhang, Liang; Wu, Jiayang; Jiang, Xinhong; Su, Yikai

    2014-06-16

    We propose and experimentally demonstrate a new scheme for photonic generation of microwave frequency shift keying (FSK) signal by employing one single-drive Mach-Zehnder modulator (MZM). In the proposed method, an electrical signal with different radio frequency (RF) amplitudes and direct current (DC) components for bit '0' and bit '1' is generated. After amplification, the signal is fed into a single-drive MZM which is biased at the quadrature and null points of its transmission curve for bit '0' and bit '1', respectively. Due to the different RF amplitudes, a microwave FSK signal can be obtained after photodetection, where the space frequency is the same as the RF frequency and the mark frequency is twice as large as the RF frequency. The feasibility of the proposed scheme is verified by a proof-of-concept experiment. 5/10-GHz and 10/20-GHz microwave FSK signals with different bit rates are successfully demonstrated.

  9. Photonic generation of a phase-coded microwave signal based on a single dual-drive Mach-Zehnder modulator.

    PubMed

    Tang, Zhenzhou; Zhang, Tingting; Zhang, Fangzheng; Pan, Shilong

    2013-12-15

    A compact scheme for photonic generation of a phase-coded microwave signal using a dual-drive Mach-Zehnder modulator (DMZM) is proposed and experimentally demonstrated. In the proposed scheme, the radio frequency (RF) carrier and the coding signal are sent to the two RF ports of the DMZM, respectively. By properly setting the amplitude of the coding signal and the bias voltage of the DMZM, an exact π-phase-shift phase-coded microwave signal is generated. The proposed scheme has a simple structure since only a single DMZM is required. In addition, good frequency tunability is achieved because no frequency-dependent electrical devices or wavelength-dependent optical devices are applied. The feasibility of the proposed scheme is verified by experiment. 2 or 2.5 Gb/s phase-coded 10 and 20 GHz microwave signals are successfully generated.

  10. A microwave photonic filter based on multi-wavelength fiber laser and infinite impulse response

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Cao, Ye; Zhao, Ai-hong; Tong, Zheng-rong

    2016-09-01

    A microwave photonic filter (MPF) based on multi-wavelength fiber laser and infinite impulse response (IIR) is proposed. The filter uses a multi-wavelength fiber laser as the light source, two sections of polarization maintaining fiber (PMF) and three polarization controllers (PCs) as the laser frequency selection device. By adjusting the PC to change the effective length of the PMF, the laser can obtain three wavelength spacings, which are 0.44 nm, 0.78 nm and 1.08 nm, respectively. And the corresponding free spectral ranges ( FSRs) are 8.46 GHz, 4.66 GHz and 3.44 GHz, respectively. Thus changing the wavelength spacing of the laser can make the FSR variable. An IIR filter is introduced based on a finite impulse response (FIR) filter. Then the 3-dB bandwidth of the MPF is reduced, and the main side-lobe suppression ratio ( MSSR) is increased. By adjusting the gain of the radio frequency (RF) signal amplifier, the frequency response of the filter can be enhanced.

  11. Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation.

    PubMed

    Cao, Yuan; Guo, Tuan; Wang, Xudong; Sun, Dandan; Ran, Yang; Feng, Xinhuan; Guan, Bai-ou

    2015-10-19

    In situ bio-sensing system based on microwave photonics filter (MPF) interrogation method with improved resolution is proposed and experimentally demonstrated. A microfiber Bragg grating (mFBG) is used as sensing probe for DNA hybridization detection. Different from the traditional wavelength monitoring technique, we use the frequency interrogation scheme for resolution-improved bio-sensing detection. Experimental results show that the frequency shift of MPF notch presents a linear response to the surrounding refractive index (SRI) change over the range of 1.33 to 1.38, with a SRI resolution up to 2.6 × 10(-5) RIU, which has been increased for almost two orders of magnitude compared with the traditional fundamental mode monitoring technique (~3.6 × 10(-3) RIU). Due to the high Q value (about 27), the whole process of DNA hybridization can be in situ monitored. The proposed MPF-based bio-sensing system provides a new interrogation method over the frequency domain with improved sensing resolution and rapid interrogation rate for biochemical and environmental measurement.

  12. Simplified photonic-assisted digitalized microwave frequency measurement with improved coding efficiency and sensitivity

    NASA Astrophysics Data System (ADS)

    Lu, Bing; Pan, Wei; Zou, Xihua; Yan, Lianshan; Luo, Bin; Liu, Xinkai; Li, Peixuan; Yan, Xianglei

    2016-08-01

    A simplified photonic approach to implement digitalized microwave frequency measurement with improved coding efficiency and receiving sensitivity is proposed and experimentally demonstrated. In the proposed approach, an optical phase-shifted filter array and multiple optical filters with multiplied FSRs are designed to obtain digitalized results in the form of binary encoding. Thanks to the complementary outputs, an adaptive threshold decision implemented using balanced receivers is employed to perform binary encoding, instead of a fixed power ratio threshold of 0.5, leading to an improvement in the receiving sensitivity. Besides, a high coding efficiency and a fine measurement resolution are achieved with relaxed accuracy requirement on phase shifts of the optical filters. In particular, compared with the previous approaches, larger tolerances on the phase shifts of the optical phase-shifted filters are provided in the proposed approach having the same coding efficiency and resolution. Therefore, the proposed system is easy to be implemented and robust to noise. A proof-of-concept experiment is then performed. 6-bit binary digital results with a 5-bit effective number are obtained in the range from 10 GHz to 40 GHz. In addition, an integrated version of such a filter array is designed and analyzed in simulation.

  13. Microwave-driven plasmas in Hollow-Core Photonic Crystal Fibres

    NASA Astrophysics Data System (ADS)

    Alves, L. L.; Leroy, O.; Boisse-Laporte, C.; Leprince, P.; Debord, B.; Gerome, F.; Jamier, R.; Benabid, F.

    2013-09-01

    This paper reports on a novel solution to ignite and maintain micro-plasmas in gas-filled Hollow-Core Photonic Crystal Fibres (HC-PCFs), using CW microwave excitation (2.45 GHz). The original concept is based on a surfatron, generating argon micro-plasmas of few centimetres in length within a 100 μm core-diameter Kagome HC-PCF, at ~1 mbar on-gap gas-pressure using low powers (< 50 W). Diagnostics of the coupled power evidence high ionization degrees (~10-2) , for moderate gas temperatures (~1300 K at the centre of the fibre, estimated by OES), with no damage to the host structure. This counter intuitive result is studied using a 1D-radial fluid model that describes the charged particle and the electron energy transport, the electromagnetic excitation and the gas heating. We analyze the modification of the plasma and the gas heating mechanisms with changes in the work conditions (core diameter, pressure and electron density). Work supported by ANR and DGA (ASTRID-2011-UVfactor) and by FCT (Pest-OE/SADG/LA0010/2011).

  14. Nonlinearity modelling of an on-board microwave photonics system based on Mach-Zehnder modulator

    NASA Astrophysics Data System (ADS)

    Zhu, Zi-hang; Zhao, Shang-hong; Yao, Zhou-shi; Tan, Qing-gui; Li, Yong-jun; Chu, Xing-chun; Wang, Xiang; Zhao, Gu-hao

    2012-11-01

    For the nonlinearity distortion problem of Mach-Zehnder modulator (MZM) applied in the on-board microwave photonics system, the situation for two input radio frequency (RF) signals with different frequencies and phases is discussed, and an exact analytical solution is derived with the method of expanding Bessel series and Graf addition theory. According to the analytical expression, the nonlinearity characteristics of the modulator can be precisely predicted, and the system performance can be optimized. The correctness of the analytical solution is approved by simulation results. Analytical results indicate that the nonlinearity distortion is suppressed as the decrease of modulation index, the increase of direct current bias phase shift and phase difference between two input RF signals. When the phase difference equals zero or π and the direct current bias phase shift is π/2, there are only odd-order distortion terms. When the phase difference equals zero or π and the direct current bias phase shift is π, there are only even-order distortion terms.

  15. Quantum simulation with interacting photons

    NASA Astrophysics Data System (ADS)

    Hartmann, Michael J.

    2016-10-01

    Enhancing optical nonlinearities so that they become appreciable on the single photon level and lead to nonclassical light fields has been a central objective in quantum optics for many years. After this has been achieved in individual micro-cavities representing an effectively zero-dimensional volume, this line of research has shifted its focus towards engineering devices where such strong optical nonlinearities simultaneously occur in extended volumes of multiple nodes of a network. Recent technological progress in several experimental platforms now opens the possibility to employ the systems of strongly interacting photons, these give rise to as quantum simulators. Here we review the recent development and current status of this research direction for theory and experiment. Addressing both, optical photons interacting with atoms and microwave photons in networks of superconducting circuits, we focus on analogue quantum simulations in scenarios where effective photon-photon interactions exceed dissipative processes in the considered platforms.

  16. Optically tunable full 360° microwave photonic phase shifter using three cascaded silicon-on-insulator microring resonators

    NASA Astrophysics Data System (ADS)

    Ehteshami, Nasrin; Zhang, Weifeng; Yao, Jianping

    2016-08-01

    A broadband optically tunable microwave phase shifter with a tunable phase shift covering the entire 360° range using three cascaded silicon-on-insulator (SOI) microring resonators (MRRs) that are optically pumped is proposed and experimentally demonstrated. The phase tuning is implemented based on the thermal nonlinear effect in the MRRs. By optically pumping the MRRs, the stored light in the MRRs is absorbed due to two photon absorption (TPA) to generate free carriers, which result in free carrier absorption (FCA). The FCA effect would lead to the heating of the MRRs and cause a redshift in the phase response, which is used to implement a microwave phase shifter with a tunable phase shift. The device is designated and fabricated on an SOI platform, which is experimentally evaluated. The experimental results show that by optically pumping the MRRs, a broadband microwave photonic phase shifter with a bandwidth of 7 GHz from 16 to 23 GHz with a tunable phase shift covering the entire 360° phase shift range is achieved.

  17. Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator

    NASA Astrophysics Data System (ADS)

    Zhang, Zan; Huang, Beiju; Zhang, Zanyun; Cheng, Chuantong; Chen, Hongda

    2013-12-01

    A bandpass microwave photonic filter based on an integrated optical signal processor is proposed and demonstrated by numerical simulation. The optical signal processor consisting of double-bus-coupled and series-cascaded silicon microrings (MRs) is used to produce two bandpass responses to process optical carrier signal and sideband signal separately. Because of the tunability of MRs, variable -3 dB bandwidth and tunable operating frequency are achieved. The -3 dB bandwidth and operating frequency can be tuned from 1.5 to 12 GHz and from 15 to 34 GHz, respectively. The loss impact, tuning method, and fabrication error tolerance are also discussed.

  18. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator.

    PubMed

    Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah

    2016-05-15

    We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components. PMID:27176984

  19. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator.

    PubMed

    Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah

    2016-05-15

    We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.

  20. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2010-03-15

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360 degrees microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz). The proposed device exploits the phenomenon of coherent population oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations of the suggested technique, dictated by the underlying physics, are also analyzed.

  1. Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting.

    PubMed

    Zhang, Zhonghai; Yang, Xiulin; Hedhili, Mohamed Nejib; Ahmed, Elaf; Shi, Le; Wang, Peng

    2014-01-01

    In this article, we report that the combination of microwave heating and ethylene glycol, a mild reducing agent, can induce Ti(3+) self-doping in TiO2. A hierarchical TiO2 nanotube array with the top layer serving as TiO2 photonic crystals (TiO2 NTPCs) was selected as the base photoelectrode. The self-doped TiO2 NTPCs demonstrated a 10-fold increase in visible-light photocurrent density compared to the nondoped one, and the optimized saturation photocurrent density under simulated AM 1.5G illumination was identified to be 2.5 mA cm(-2) at 1.23 V versus reversible hydrogen electrode, which is comparable to the highest values ever reported for TiO2-based photoelectrodes. The significant enhancement of photoelectrochemical performance can be ascribed to the rational coupling of morphological and electronic features of the self-doped TiO2 NTPCs: (1) the periodically morphological structure of the photonic crystal layer traps broadband visible light, (2) the electronic interband state induced from self-doping of Ti(3+) can be excited in the visible-light region, and (3) the captured light by the photonic crystal layer is absorbed by the self-doped interbands.

  2. Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber.

    PubMed

    Chen, Guojie; Huang, Dexiu; Zhang, Xinliang; Cao, Hui

    2008-03-15

    A novel approach to generate microwave signals is presented by employing a dual-wavelength erbium-doped fiber ring laser. By using a delay interferometer as a comb filter cascaded with a tunable bandpass filter and a saturable absorber formed by an unpumped polarization-maintaining erbium-doped fiber, a stable wavelength-tunable dual-wavelength single longitudinal-mode laser is achieved. A microwave signal at 20.07 GHz with a linewidth of <25 kHz is demonstrated by beating the two wavelengths at a photodetector.

  3. A single source microwave photonic filter using a novel single-mode fiber to multimode fiber coupling technique.

    PubMed

    Chang, John; Fok, Mable P; Meister, James; Prucnal, Paul R

    2013-03-11

    In this paper we present a fully tunable and reconfigurable single-laser multi-tap microwave photonic FIR filter that utilizes a special SM-to-MM combiner to sum the taps. The filter requires only a single laser source for all the taps and a passive component, a SM-to-MM combiner, for incoherent summing of signal. The SM-to-MM combiner does not produce optical interference during signal merging and is phase-insensitive. We experimentally demonstrate an eight-tap filter with both positive and negative programmable coefficients with excellent correspondence between predicted and measured values. The magnitude response shows a clean and accurate function across the entire bandwidth, and proves successful operation of the FIR filter using a SM-to-MM combiner.

  4. A monolithically integrated dual-mode laser for photonic microwave generation and all-optical clock recovery

    NASA Astrophysics Data System (ADS)

    Yu, Liqiang; Zhou, Daibing; Zhao, Lingjuan

    2014-09-01

    We demonstrate a monolithically integrated dual-mode laser (DML) with narrow-beat-linewidth and wide-beat-tunability. Using a monolithic DFB laser subjected to amplified feedback, photonic microwave generation of up to 45 GHz is obtained with higher than 15 GHz beat frequency tunability. Thanks to the high phase correlation of the two modes and the narrow mode linewidth, a RF linewidth of lower than 50 kHz is measured. Simulations are also carried out to illustrate the dual-mode beat characteristic. Furthermore, using the DML, an all-optical clock recovery for 40  Gbaud NRZ-QPSK signals is demonstrated. Timing jitter of lower than 363 fs (integrated within a frequency range from 100 Hz to 1 GHz) is obtained.

  5. Photon-assisted tunnelling with nonclassical microwaves in hybrid circuit QED systems

    NASA Astrophysics Data System (ADS)

    Souquet, Jean-René; Woolley, Matthew; Gabelli, Julien; Simon, Pascal; Clerk, Aashish

    2015-03-01

    Motivated by recent experiments where superconducting microwave circuits have been coupled to electrons in semiconductor nanostructures, we study theoretically the interplay of non-classical light produced in a cavity with electron transport through a tunnel junction. We demonstrate that this basic light-matter interaction is naturally characterized by non-positive definite quasi-probability distributions which are intimately connected to the Glauber-Sudarshan P-function. We further demonstrate that this negative quasiprobability has unequivocal signatures on the differential conductance that should be easily detectable in state of art experiments. This thus turns the tunnel junction into a non-trivial probe of the microwave state. We also discuss the non-trivial backaction of the junction current on the cavity.

  6. Whispering-gallery-mode electro-optic modulator and photonic microwave receiver

    NASA Astrophysics Data System (ADS)

    Ilchenko, Vladimir S.; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Maleki, Lute

    2003-02-01

    We report on the experimental observation of efficient all-resonant three-wave mixing using high-Q whispering-gallery modes. The modes were excited in a millimeter size toroidal cavity fabricated from LiNbO3. We implemented a low-noise resonant electro-optic modulator based on this wave mixing process. We observe an efficient modulation of light with coherent microwave pumping at 9 GHz with applied power of approximately 10 mW. Used as a receiver, the modulator allows us to detect nanowatt microwave radiation. Preliminary results with a 33-GHz modulator prototype are also reported. We present a theoretical interpretation of the experimental results and discuss possible applications of the device.

  7. Microwave photonics for space-time compression of ultrabroadband signals through multipath wireless channels.

    PubMed

    Dezfooliyan, Amir; Weiner, Andrew M

    2013-12-01

    We employed photonic radio frequency (RF) arbitrary waveform generation to demonstrate space-time compression of ultrabroadband wireless signals through highly scattering multipath channels. To the best of our knowledge, this is the first experimental report that explores an RF-photonic transmitter to both characterize channel dispersions in real wireless environments and generate predistorted waveforms to achieve focusing through the multipath channels. Our experiments span a three octave frequency range of 2-18 GHz, nearly an order of magnitude beyond the ~2 GHz instantaneous bandwidth reported in previous spatiotemporal focusing experiments relying on electronic waveform generators.

  8. Photonic generation of microwave signal using a dual-wavelength erbium-doped fiber ring laser with CMFBG filter and saturable absorber

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Lu, Shaohua; Peng, Wanjing; Li, Qi; Qi, Chunhui; Feng, Ting; Jian, Shuisheng

    2013-02-01

    A simple approach for photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser is proposed and demonstrated. For the first time as we know, a chirped moiré fiber Bragg grating (CMFBG) filter with ultra-narrow transmission band and a chirped fiber Bragg grating (FBG) are used to select the laser longitudinal mode. The stable SLM operation of the fiber laser is guaranteed by the combination of the CMFBG filter and 3 m unpumped EDF acting as a saturable absorber. Stable dual-wavelength SLM fiber laser with a wavelength spacing of approximately 0.140 nm is experimentally realized. By beating the dual-wavelength fiber laser at a photodetector, photonic generation of microwave signal at 17.682 GHz is successfully obtained.

  9. High-directivity planar antenna using controllable photonic bandgap material at microwave frequencies

    SciTech Connect

    de Lustrac, A.; Gadot, F.; Akmansoy, E.; Brillat, T.

    2001-06-25

    In this letter, we experimentally demonstrate the capability of a controllable photonic bandgap (CPBG) material to conform the emitted radiation of a planar antenna at 12 GHz. The CPBG material is a variable conductance lattice fabricated with high-frequency PIN diodes soldered along metallic stripes on dielectric printed boards. Depending on the diode bias, the emitted radiation of the antenna can be either transmitted or totally reflected by the material. In the transmission state, the antenna radiation is spatially filtered by the CPBG material in a sharp beam perpendicular to the surface of the material. {copyright} 2001 American Institute of Physics.

  10. High-performance GaAs/AlGaAs optical phase modulators for microwave/photonic integrated circuits

    SciTech Connect

    Hietala, V.M.; Kravitz, S.H.; Armendariz, M.G.; Vawter, G.A.; Carson, R.F.; Leibenguth, R.E.

    1993-12-31

    High-speed high-performance optical phase modulators are being developed for use in a coherent Photonic Integrated Circuit (PIC) technology. These phase modulators are the critical component of a PIC program at Sandia National Laboratories targeted for microwave/millimeter-wave signal processing and control including phased-array antenna control. The primary design goals for these modulators are amenability for integration into PICs, high ``figure of merit`` (FOM -- phase shift per unit length-voltage), and large bandwidths allowing for operation at millimeter wave frequencies. Depletion-edge-translation optical phase modulators (GaAs/AlGaAs based) have been selected as the device technology of choice due to their high FOM (>60{degree}/V{center_dot}mm @ 1.3 {mu}m). These modulators unfortunately suffer from a large terminal capacitance which greatly limits speed. To overcome this problem, a distributed electrode design based on the use of slow-wave coplanar strips has been developed. Device design and measurements are presented in this paper.

  11. Low-Pressure Microwave Excited Microplasmas as Sources of VUV Photons and Metastable Excited Atoms: Experimental Measurements

    NASA Astrophysics Data System (ADS)

    Cooley, James; Xue, Jun; Urdahl, Randall

    2011-10-01

    Microplasma discharges are typically operated at high pressure due to pd scaling. However, there are a number of potential applications for which lower pressure operation offers advantages. These applications, including spatially precise surface processing, treatment of soft materials, and chemical analysis, require energetic plasma products such as excited state species, VUV photons, or high-energy ions while taking advantage of the small size and high specific power a microdischarge offers. To this end, microwave-excited microplasma sources in rare gases operating at pressures of < 10 Torr are being developed. The microplasmas are sustained in ceramic cavities having cross sectional dimensions of <= 1 mm, excited by a split-ring resonator antenna operated at 2.45 GHz at power levels of a few W. Experimental measurements, focused on the production of energetic plasma products, will be discussed. These will include emission spectroscopy, photodiode measurements of total VUV emission, diode laser absorption measurements of excited-state densities, and measurements of electron density through RF reflectometry. The effects of varying gas flow rate, composition, and RF power will be explored.

  12. Low-Pressure Microwave Excited Microplasmas as Sources of VUV Photons and Metastable Excited Atoms: Modeling

    NASA Astrophysics Data System (ADS)

    Kushner, Mark; Cooley, James; Xue, Jun; Urdhal, Randall

    2011-10-01

    Low pressure plasmas sustained in rare gases and rare gas mixtures can be efficient sources of VUV light from resonant optical transitions. Many applications would benefit from having small, inexpensive sources of plasma produced VUV light. To address this need, microwave wave excited microplasma sources in rare gases operating at pressures of <10 Torr are being developed. The microplasmas are sustained in ceramic cavities having cross sectional dimensions of <=1 mm, excited by a split-ring resonator antenna operated at 2.45 GHz. Power deposition is a few W. Hybrid computer modeling of microplasmas sustained in Ar has been performed to develop scaling laws for increasing the efficiency of VUV light production. The model includes a Monte Carlo simulation for the electron energy distribution and for radiation transport. Results from those studies will be discussed for plasma densities, electron energy distributions, VUV light production and excited state densities as a function of power, pressure and aspect ratio of the microplasma cavities. Modeling results will be compared to laser absorption spectroscopy of Ar excited state densities. Work supported by Agilent Technologies.

  13. Photonic generation of tunable microwave signals from a dual-wavelength distributed-Bragg-reflector highly Er3+/Yb3+ co-doped phosphate fiber laser

    NASA Astrophysics Data System (ADS)

    Mo, Shupei; Feng, Zhouming; Xu, Shanhui; Zhang, Weinan; Chen, Dongdan; Yang, Tong; Yang, Changsheng; Li, Can; Yang, Zhongmin

    2013-12-01

    The photonic generation of tunable microwave signal from a dual-wavelength distributed-Bragg-reflector (DW-DBR) highly Er3+/Yb3+ co-doped phosphate fiber laser is presented. Microwave signals centered at ˜15, ˜22 and ˜25 GHz with <10 kHz linewidth were obtained. The laser cavity of the fiber laser consists of a dual-channel narrowband fiber-Bragg-grating (DC-NB-FBG), a 0.4-cm-long Er3+/Yb3+ co-doped phosphate fiber and a wideband FBG (WB-FBG). The wavelength selecting gratings are spatially separated to create partially separated resonant cavities. Er3+/Yb3+ co-doped phosphate fiber ensures that mode competition is relative weak under low pump power. The short cavity length and the DC-NB-FBG ensure that only one longitudinal mode is supported by each reflection peak. Dual-wavelength single-frequency lasing with laser linewidths of <4 kHz is achieved.

  14. Microwave Radiation Detector

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1984-01-01

    Direct photon detector responds to microwave frequencies. Method based on trapped-ion frequency-generation standards proposed to detect radio-frequency (RF) radiation at 40.5 GHz. Technique used for directdetection (RF) communication, radar, and radio astronomy.

  15. High Q-factor sapphire whispering gallery mode microwave resonator at single photon energies and millikelvin temperatures

    NASA Astrophysics Data System (ADS)

    Creedon, Daniel L.; Reshitnyk, Yarema; Farr, Warrick; Martinis, John M.; Duty, Timothy L.; Tobar, Michael E.

    2011-05-01

    The microwave properties of a crystalline sapphire dielectric whispering gallery mode resonator have been measured at very low excitation strength (E /ℏω≈1) and low temperatures (T ≈30 mK). The measurements were sensitive enough to observe saturation due to a highly detuned electron spin resonance, which limited the loss tangent of the material to about 2×10-8 measured at 13.868 and 13.259 GHz. Small power dependent frequency shifts were also measured which correspond to an added magnetic susceptibility of order 10-9. This work shows that quantum limited microwave resonators with Q-factors >108 are possible with the implementation of a sapphire whispering gallery mode system.

  16. Invited Article: Electrically tunable silicon-based on-chip microdisk resonator for integrated microwave photonic applications

    NASA Astrophysics Data System (ADS)

    Zhang, Weifeng; Yao, Jianping

    2016-11-01

    Silicon photonics with advantages of small footprint, compatibility with the mature CMOS fabrication technology, and its potential for seamless integration with electronics is making a significant difference in realizing on-chip integration of photonic systems. A microdisk resonator (MDR) with a strong capacity in trapping and storing photons is a versatile element in photonic integrated circuits. Thanks to the large index contrast, a silicon-based MDR with an ultra-compact footprint has a great potential for large-scale and high-density integrations. However, the existence of multiple whispering gallery modes (WGMs) and resonance splitting in an MDR imposes inherent limitations on its widespread applications. In addition, the waveguide structure of an MDR is incompatible with that of a lateral PN junction, which leads to the deprivation of its electrical tunability. To circumvent these limitations, in this paper we propose a novel design of a silicon-based MDR by introducing a specifically designed slab waveguide to surround the disk and the lateral sides of the bus waveguide to suppress higher-order WGMs and to support the incorporation of a lateral PN junction for electrical tunability. An MDR based on the proposed design is fabricated and its optical performance is evaluated. The fabricated MDR exhibits single-mode operation with a free spectral range of 28.85 nm. Its electrical tunability is also demonstrated and an electro-optic frequency response with a 3-dB modulation bandwidth of ˜30.5 GHz is measured. The use of the fabricated MDR for the implementation of an electrically tunable optical delay-line and a tunable fractional-order temporal photonic differentiator is demonstrated.

  17. High-performance GaAs/AlGaAs optical phase modulators for microwave photonic integrated circuits

    SciTech Connect

    Hietala, V.M.; Kravitz, S.H.; Armendariz, M.G.; Vawter, G.A.; Carson, R.F.

    1994-03-01

    A high-performance high-speed optical phase modulator for photonic integrated circuit (PIC) use is described. Integration of these optical phase modulators into a real system (compass) is also discussed. The optical phase modulators are based on depletion-edge translation and have experimentally provided optical phase shifts in excess of 60{degrees}/V{center_dot}mm with approximately 4 dB/cm loss while simultaneously demonstrating bandwidths in excess of 10 GHz.

  18. Flat-top bandpass microwave photonic filter with tunable bandwidth and center frequency based on a Fabry-Pérot semiconductor optical amplifier.

    PubMed

    Jiang, Fan; Yu, Yuan; Cao, Tong; Tang, Haitao; Dong, Jianji; Zhang, Xinliang

    2016-07-15

    We propose a flat-top bandpass microwave photonic filter (MPF) with flexible tunability of the bandwidth and center frequency based on optical nonlinearities in a Fabry-Pérot semiconductor optical amplifier (FP-SOA). Phase-inverted modulation induced by cross-gain modulation (XGM) and optical spectral broadening induced by self-phase modulation (SPM) are exploited to achieve flat-top and bandwidth tuning, respectively. Wideband and continuous tuning of the center frequency is achieved by altering the bias current of the FP-SOA. Experimental results demonstrate a flat-top single-passband MPF with its center frequency tunable from 6.0 to 18.3 GHz by adjusting the bias current from 54.05 to 107.85 mA. The 3-dB bandwidth of the passband when centered at 10.0 GHz is shown to be variable from 680 to 1.43 GHz, by increasing the injected optical power from -1 to +5  dBm. During the bandwidth tuning, the amplitude ripple within the passband is maintained at less than ±0.5  dB. Excellent main to secondary sidelobe ratio exceeding 45 dB is achieved when the MPF is centered at 18.3 GHz.

  19. Flat-top bandpass microwave photonic filter with tunable bandwidth and center frequency based on a Fabry-Pérot semiconductor optical amplifier.

    PubMed

    Jiang, Fan; Yu, Yuan; Cao, Tong; Tang, Haitao; Dong, Jianji; Zhang, Xinliang

    2016-07-15

    We propose a flat-top bandpass microwave photonic filter (MPF) with flexible tunability of the bandwidth and center frequency based on optical nonlinearities in a Fabry-Pérot semiconductor optical amplifier (FP-SOA). Phase-inverted modulation induced by cross-gain modulation (XGM) and optical spectral broadening induced by self-phase modulation (SPM) are exploited to achieve flat-top and bandwidth tuning, respectively. Wideband and continuous tuning of the center frequency is achieved by altering the bias current of the FP-SOA. Experimental results demonstrate a flat-top single-passband MPF with its center frequency tunable from 6.0 to 18.3 GHz by adjusting the bias current from 54.05 to 107.85 mA. The 3-dB bandwidth of the passband when centered at 10.0 GHz is shown to be variable from 680 to 1.43 GHz, by increasing the injected optical power from -1 to +5  dBm. During the bandwidth tuning, the amplitude ripple within the passband is maintained at less than ±0.5  dB. Excellent main to secondary sidelobe ratio exceeding 45 dB is achieved when the MPF is centered at 18.3 GHz. PMID:27420520

  20. Simultaneous even- and third-order distortion suppression in a microwave photonic link based on orthogonal polarization modulation, balanced detection, and optical sideband filtering.

    PubMed

    Han, Xiuyou; Chen, Xiang; Yao, Jianping

    2016-06-27

    A microwave photonic link (MPL) with simultaneous suppression of the even-order and third-order distortions using a polarization modulator (PolM), an optical bandpass filter (OBPF), and a balanced photodetector (BPD) is proposed and experimentally demonstrated. The even-order distortions are suppressed by utilizing orthogonal polarization modulation based on the PolM and balanced differential detection based on the BPD. The third-order distortions (IMD3) are suppressed by optimizing the spectral response of the OBPF with an optimal power ratio between the optical carrier and the sidebands of the phase-modulated signals from the PolM. Since the suppression of the IMD3 is achieved when the MPL is optimized for even-order distortion suppression, the proposed MPL can operate with simultaneous suppression of the even-order and third-order distortions. The proposed MPL is analyzed theoretically and is verified by an experiment. For a two-tone RF signal of f1 = 10 GHz and f2 = 19.95 GHz, the spurious-free dynamic range (SFDR2) is enhanced by 23.4 dB for the second harmonic (2f1), and 29.1 and 27.6 dB for the second intermodulation (f2-f1 and f1 + f2), as compared with a conventional MPL. For a two-tone RF signal of f1 = 9.95 GHz and f2 = 10 GHz, the SFDR3 is increased by 13.1 dB as compared with a conventional MPL. PMID:27410633

  1. Nonlinear stimulated Brillouin scattering based photonic signal processors

    SciTech Connect

    Minasian, Robert A.

    2014-10-06

    Recent new methods in photonic signal processing based on stimulated Brillouin scattering, that enable the realization of photonic mixers with high conversion efficiency, ultra-wide continuously tunable high-resolution microwave photonic filters and programmable switchable microwave photonic tunable filters, are presented. These processors provide new capabilities for the realisation of high-performance and high-resolution signal processing.

  2. A fully photonics-based coherent radar system.

    PubMed

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-20

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system. PMID:24646997

  3. A fully photonics-based coherent radar system

    NASA Astrophysics Data System (ADS)

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-01

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system.

  4. Influence of turn (or fold) and local charge in fragmentation of the peptide analogue molecule CH3CO-Gly-NH2 following single-photon VUV (118.22 nm) ionization.

    PubMed

    Bhattacharya, Atanu; Bernstein, Elliot R

    2011-10-01

    The radical cationic reactivity of the peptide analogue molecule CH(3)CO-Gly-NH(2) is addressed both experimentally and theoretically. The radical cation intermediate of CH(3)CO-Gly-NH(2) is created by single-photon ionization of this molecule at 118.22 nm (~10.5 eV). The two most stable conformers (C(7) and C(5)) of this molecule exhibit different folds along the backbone: the C(7) conformer has a γ-turn structure, and the C(5) conformer has a β-strand structure. The experimental results show that the radical cation intermediate of CH(3)CO-Gly-NH(2) dissociates and generates a fragment-ion signal at 73 amu that is observed through TOFMS. Theoretical results show how the fragment-ion signal at 73 amu is generated by only one conformer of CH(3)CO-Gly-NH(2) (C(7)) and how local charge and specific hydrogen bonding in the molecule influence fragmentation of the radical cation intermediate of CH(3)CO-Gly-NH(2). The specific fold of the molecule controls fragmentation of this reactive radical cation intermediate. Whereas the radical cation of the C(7) conformer dissociates through a hydrogen-transfer mechanism followed by HNCO elimination, the radical cation of the C(5) conformer does not dissociate at all. CASSCF calculations show that positive charge in the radical cationic C(7) conformer is localized at the NH(2)CO moiety of the molecular ion. This site-specific localization of the positive charge enhances the acidity of the terminal NH(2) group, facilitating hydrogen transfer from the NH(2) to the COCH(3) end of the molecular ion. Positive charge in the C(5) conformer of the CH(3)CO-Gly-NH(2) radical cation is, however, localized at the COCH(3) end of the molecular ion, and this conformer does not have enough energy to surmount the energy barrier to dissociation on the ion potential energy surface. CASSCF results show that conformation-specific localization of charge in the CH(3)CO-Gly-NH(2) molecular ion occurs as a result of the different hydrogen

  5. Photonic approach for microwave frequency measurement with adjustable measurement range and resolution using birefringence effect in highly non-linear fiber.

    PubMed

    Feng, Danqi; Xie, Heng; Qian, Lifen; Bai, Qinhong; Sun, Junqiang

    2015-06-29

    We experimentally demonstrate a novel approach for microwave frequency measurement utilizing birefringence effect in the highly non-linear fiber (HNLF). A detailed theoretical analysis is presented to implement the adjustable measurement range and resolution. By stimulating a complementary polarization-domain interferometer pair in the HNLF, a mathematical expression that relates the microwave frequency and amplitude comparison function is developed. We carry out a proof-to-concept experiment. A frequency measurement range of 2.5-30 GHz with a measurement error within 0.5 GHz is achieved except 16-17.5 GHz. This method is all-optical and requires no high-speed electronic components. PMID:26191769

  6. Ultrastable Multigigahertz Photonic Oscillator

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T., Jr.

    1996-01-01

    Novel photonic oscillator developed to serve as ultrastable source of microwave and millimeter-wave signals. In system, oscillations generated photonically, then converted to electronic form. Includes self-mode-locked semiconductor laser producing stream of pulses, detected and fed back to laser as input. System also includes fiber-optic-delay-line discriminator, which detects fluctuations of self-mode-locking frequency and generates error signal used in negative-feedback loop to stabilize pulse-repetition frequency.

  7. Survey of Analogue Spacetimes

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    Analogue spacetimes (and more boldly, analogue models both of and for gravity), have attracted significant and increasing attention over the last decade and a half. Perhaps the most straightforward physical example, which serves as a template for most of the others, is Bill Unruh's model for a dumb hole,(mute black hole, acoustic black hole), wherein sound is dragged along by a moving fluid—and can even be trapped behind an acoustic horizon. This and related analogue models for curved spacetimes are useful in many ways: analogue spacetimes provide general relativists with extremely concrete physical models to help focus their thinking, and conversely the techniques of curved spacetime can sometimes help improve our understanding of condensed matter and/or optical systems by providing an unexpected and countervailing viewpoint. In this chapter, I shall provide a few simple examples of analogue spacetimes as general background for the rest of the contributions.

  8. Microwave Ovens

    MedlinePlus

    ... Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting and Recordkeeping Requirements for ... Microwave Ovens (PDF) (PDF - 2.5MB) FDA eSubmitter Industry Guidance - Documents of Interest Notifications to Industry (PDF ...

  9. Nonstationary analogue black holes

    NASA Astrophysics Data System (ADS)

    Eskin, Gregory

    2014-12-01

    We study the existence of analogue nonstationary spherically symmetric black holes. The prime example is the acoustic model see Unruh (1981 Phys. Rev. Lett. 46 1351). We consider also a more general class of metrics that could be useful in other physical models of analogue black and white holes. We give examples of the appearance of black holes and of disappearance of white holes. We also discuss the relation between the apparent and the event horizons for the case of analogue black holes. In the end we study the inverse problem of determination of black or white holes by boundary measurements for the spherically symmetric nonstationary metrics.

  10. Proposal for an Optomechanical Microwave Sensor at the Subphoton Level

    NASA Astrophysics Data System (ADS)

    Zhang, Keye; Bariani, Francesco; Dong, Ying; Zhang, Weiping; Meystre, Pierre

    2015-03-01

    Because of their low energy content, microwave signals at the single-photon level are extremely challenging to measure. Guided by recent progress in single-photon optomechanics and hybrid optomechanical systems, we propose a multimode optomechanical transducer that can detect intensities significantly below the single-photon level via adiabatic transfer of the microwave signal to the optical frequency domain where the measurement is then performed. The influence of intrinsic quantum and thermal fluctuations is also discussed.

  11. Biodegradable analogues of DDT*

    PubMed Central

    Metcalf, Robert L.; Kapoor, Inder P.; Hirwe, Asha S.

    1971-01-01

    Despite the immense utility of DDT for vector control its usefulness is prejudiced by its stability in the environment and by the low rate at which it can be degraded biologically. Metabolic studies in insects, in mice, and in a model ecosystem with several food chains have shown that DDT analogues with substituent groups readily attacked by multifunction oxidases undergo a substantial degree of biological degradation and do not appear to be stored readily in animal tissues or concentrated in food chains. Detailed metabolic pathways have been worked out and it is clear that comparative biochemistry can be used to develop DDT analogues that are adequately persistent yet biodegradable. A number of new DDT analogues have been evaluated for insecticidal activity against flies and mosquitos and for their potential usefulness as safe, persistent, and biodegradable insecticides. PMID:5315354

  12. Charge Qubit Coupled to an Intense Microwave Electromagnetic Field in a Superconducting Nb Device: Evidence for Photon-Assisted Quasiparticle Tunneling

    NASA Astrophysics Data System (ADS)

    de Graaf, S. E.; Leppäkangas, J.; Adamyan, A.; Danilov, A. V.; Lindström, T.; Fogelström, M.; Bauch, T.; Johansson, G.; Kubatkin, S. E.

    2013-09-01

    We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stückelberg interference structure of a longitudinally driven two-level system. For even stronger drives, we observe a significant change in the Landau-Zener-Stückelberg pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning, and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.

  13. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  14. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  15. Photon-photon collisions

    SciTech Connect

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  16. Photon-photon colliders

    SciTech Connect

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  17. Storage and control of optical photons using Rydberg polaritons.

    PubMed

    Maxwell, D; Szwer, D J; Paredes-Barato, D; Busche, H; Pritchard, J D; Gauguet, A; Weatherill, K J; Jones, M P A; Adams, C S

    2013-03-01

    We use a microwave field to control the quantum state of optical photons stored in a cold atomic cloud. The photons are stored in highly excited collective states (Rydberg polaritons) enabling both fast qubit rotations and control of photon-photon interactions. Through the collective read-out of these pseudospin rotations it is shown that the microwave field modifies the long-range interactions between polaritons. This technique provides a powerful interface between the microwave and optical domains, with applications in quantum simulations of spin liquids, quantum metrology and quantum networks.

  18. Photon-photon colliders

    SciTech Connect

    Sessler, Andrew M.

    1996-01-01

    Since the seminal work by Ginsburg, et al., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention [1]. A 1990 article by V.I. Telnov describes the situation at that time [2]. In March 1994, the first workshop on this subject was held [3]. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons—the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  19. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  20. Natural Analogue Synthesis Report

    SciTech Connect

    A. M. Simmons

    2002-05-01

    The purpose of this report is to present analogue studies and literature reviews designed to provide qualitative and quantitative information to test and provide added confidence in process models abstracted for performance assessment (PA) and model predictions pertinent to PA. This report provides updates to studies presented in the ''Yucca Mountain Site Description'' (CRWMS M and O 2000 [151945], Section 13) and new examples gleaned from the literature, along with results of quantitative studies conducted specifically for the Yucca Mountain Site Characterization Project (YMP). The intent of the natural analogue studies was to collect corroborative evidence from analogues to demonstrate additional understanding of processes expected to occur during postclosure at a potential Yucca Mountain repository. The report focuses on key processes by providing observations and analyses of natural and anthropogenic (human-induced) systems to improve understanding and confidence in the operation of these processes under conditions similar to those that could occur in a nuclear waste repository. The process models include those that represent both engineered and natural barrier processes. A second purpose of this report is to document the various applications of natural analogues to geologic repository programs, focusing primarily on the way analogues have been used by the YMP. This report is limited to providing support for PA in a confirmatory manner and to providing corroborative inputs for process modeling activities. Section 1.7 discusses additional limitations of this report. Key topics for this report are analogues to emplacement drift degradation, waste form degradation, waste package degradation, degradation of other materials proposed for the engineered barrier, seepage into drifts, radionuclide flow and transport in the unsaturated zone (UZ), analogues to coupled thermal-hydrologic-mechanical-chemical processes, saturated zone (SZ) transport, impact of radionuclide

  1. Microwave signal processing in two-frequency domain for ROF systems implementation: training course

    NASA Astrophysics Data System (ADS)

    Morozov, Oleg G.; Morozov, Gennady A.

    2014-04-01

    This article is presented materials from two tutorials: "Optical two-frequency domain reflectometry1, 2" and "Microwave technologies in industry, living systems and telecommunications3". These materials were prepared for master training courses and listed in the "SPIE Optical Education Directory" for 2013/2014. The main its theme is microwave photonics. Microwave photonics has been defined as the study of photonic devices operating at microwave frequencies and their application to microwave and optical systems. Its initial rationale was to use the advantages of photonic technologies to provide functions in microwave systems that are very complex or even impossible to carry out directly in the radiofrequency domain. But microwave photonics is also succeeding in incorporating a variety of techniques used in microwave engineering to improve the performance of photonic communication networks and systems. Three parts of this chapter are devoted to applications and construction principles of systems forming microwave photonic filters, measuring instantaneous frequency of microwave heterodyne signals and characterizing stimulated Mandelstam- Brillouin scattering spectrum in ROF systems. The main emphasis is on the use of the two-frequency symmetric radiation, generated by the Il'in-Morozov's method4, in given systems. It is forming radiation for the synthesis of optical filters coefficients, it's application and processing determine the increase in the signal-to-noise ratio during heterodyne frequencies monitoring and characterization of nonlinear effects spectrum.

  2. Bidirectional conversion between microwave and light via ferromagnetic magnons

    NASA Astrophysics Data System (ADS)

    Hisatomi, R.; Osada, A.; Tabuchi, Y.; Ishikawa, T.; Noguchi, A.; Yamazaki, R.; Usami, K.; Nakamura, Y.

    2016-05-01

    Coherent conversion of microwave and optical photons in the single quantum level can significantly expand our ability to process signals in various fields. Efficient up-conversion of a feeble signal in the microwave domain to the optical domain will lead to quantum-noise-limited microwave amplifiers. Coherent exchange between optical photons and microwave photons will also be a stepping stone to realize long-distance quantum communication. Here we demonstrate bidirectional and coherent conversion between microwave and light using collective spin excitations in a ferromagnet. The converter consists of two harmonic oscillator modes, a microwave cavity mode and a magnetostatic mode called the Kittel mode, where microwave photons and magnons in the respective modes are strongly coupled and hybridized. An itinerant microwave field and a traveling optical field can be coupled through the hybrid system, where the microwave field is coupled to the hybrid system through the cavity mode, while the optical field addresses the hybrid system through the Kittel mode via Faraday and inverse Faraday effects. The conversion efficiency is theoretically analyzed and experimentally evaluated. The possible schemes for improving the efficiency are also discussed.

  3. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  4. Aspartame and Its Analogues

    NASA Astrophysics Data System (ADS)

    Pavlova, L. A.; Komarova, T. V.; Davidovich, Yurii A.; Rogozhin, S. V.

    1981-04-01

    The results of studies on the biochemistry of the sweet taste are briefly reviewed. The methods of synthesis of "aspartame" — a sweet dipeptide — are considered, its structural analogues are described, and quantitative estimates are made of the degree of sweetness relative to sucrose. Attention is concentrated mainly on problems of the relation between the structure of the substance and its taste in the series of aspartyl derivatives. The bibliography includes 118 references.

  5. Quantum analogue computing.

    PubMed

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  6. Microwave generator

    DOEpatents

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  7. Microwave annealing

    NASA Astrophysics Data System (ADS)

    Lee, Yao-Jen; Cho, T.-C.; Chuang, S.-S.; Hsueh, F.-K.; Lu, Y.-L.; Sung, P.-J.; Chen, S.-J.; Lo, C.-H.; Lai, C.-H.; Current, Michael I.; Tseng, T.-Y.; Chao, T.-S.; Yang, F.-L.

    2012-11-01

    Microwave annealing of dopants in Si has been reported to produce highly activated junctions at temperatures far below those needed for comparable results using conventional thermal processes. However the details of the kinetics and mechanisms for microwave annealing are far from well understood. Comparisons between MWA and RTA of dopants in implanted Si has been investigated to produce highly activated junctions. First, As, 31P, and BF 2 implants in Si substrate were annealed by MWA at temperatures below 550 °C.

  8. Compact Microwave Fourier Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  9. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  10. Photonic topological insulators.

    PubMed

    Khanikaev, Alexander B; Mousavi, S Hossein; Tse, Wang-Kong; Kargarian, Mehdi; MacDonald, Allan H; Shvets, Gennady

    2013-03-01

    Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal-invariant topological insulators. A remarkable and useful property of these materials is that they support unidirectional spin-polarized propagation at their surfaces. Unfortunately topological insulators are rare among solid-state materials. Using suitably designed electromagnetic media (metamaterials) we theoretically demonstrate a photonic analogue of a topological insulator. We show that metacrystals-superlattices of metamaterials with judiciously designed properties-provide a platform for designing topologically non-trivial photonic states, similar to those that have been identified for condensed-matter topological insulators. The interfaces of the metacrystals support helical edge states that exhibit spin-polarized one-way propagation of photons, robust against disorder. Our results demonstrate the possibility of attaining one-way photon transport without application of external magnetic fields or breaking of time-reversal symmetry. Such spin-polarized one-way transport enables exotic spin-cloaked photon sources that do not obscure each other.

  11. Microwave Cooling of Josephson Plasma Oscillations

    NASA Astrophysics Data System (ADS)

    Hammer, J.; Aprili, M.; Petković, I.

    2011-07-01

    An extended Josephson junction can be described as a microwave cavity coupled to a Josephson oscillator. This is formally equivalent to a Fabry-Perot cavity with a freely vibrating mirror, where it has been shown that radiation pressure from photons in the cavity can reduce (increase) the vibrations of the mirror, effectively cooling (heating) it. We demonstrate that, similarly, the superconducting phase difference across a Josephson junction—the Josephson phase—can be “cooled” or “heated” by microwave excitation of the junction and that both these effects increase with microwave power.

  12. Using and interpreting analogue designs.

    PubMed

    Cook, Bryan G; Rumrill, Phillip D

    2005-01-01

    Researchers in rehabilitation counseling and disability studies sometimes use analogue research, which involves materials that approximate or describe reality (e.g., written vignettes, videotaped exemplars) rather than investigating phenomena in real-world settings. Analogue research often utilizes experimental designs, and it thereby frequently possesses a high degree of internal validity. Analogue research allows investigators to exercise tight control over the implementation of the independent or treatment variable and over potentially confounding variables, which enables them to isolate the effects of those treatment variables on selected outcome measures. However, the simulated nature of analogue research presents an important threat to external validity. As such, the generalizability of analogue research to real-life settings and situations may be problematic. These and other issues germane to analogue research in vocational rehabilitation are discussed in this article, illustrated with examples from the contemporary literature.

  13. Microwave-assisted transport through a quantum dot

    NASA Astrophysics Data System (ADS)

    McEuen, P. L.; Kouwenhoven, L. P.; Jauhar, S.; Orenstein, J.; McCormick, K.; Dixon, D.; Nazarov, Yu V.; van der Vaart, N. C.; Foxon, C. T.

    1996-12-01

    We present results on microwave-assisted transport through quantum dots. First, the important energy/frequency scales are discussed. Then, measurements of the current versus gate voltage characteristics in the presence of microwaves are presented. At finite source-drain bias, microwave-induced features are observed, and at zero source-drain bias, an oscillating photocurrent is observed. A model of photon-assisted transport is discussed that can account for the experimental observations.

  14. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  15. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  16. Microwave-assisted solvothermal synthesis of zirconium oxide based metal-organic frameworks.

    PubMed

    Liang, Weibin; D'Alessandro, Deanna M

    2013-05-01

    Zirconium oxide based Metal-Organic Frameworks were synthesised using a rapid and efficient microwave-assisted solvothermal method that produced purer phases and higher quality crystalline products in significantly (>95%) less time than the conventional heating method. A new amino-functionalised analogue has been synthesised exclusively using this microwave-assisted methodology.

  17. Tunable resonant structures for photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Ptasinski, Joanna Nina

    Photonics is an evolving field allowing for optical devices to be made cost effectively using standard semiconductor fabrication techniques, which in turn enables integration with microelectronic chips. Chip scale photonics will play an increasing role in the future of communications as the demand for bandwidth and reduced power consumption per bit continues to grow. Tunable optical circuit components are one of the essential technologies in the development of photonic analogues for classical electronic devices, where tunable photonic resonant structures allow for altering of their electromagnetic spectrum and find applications in optical switching, filtering, buffering, lasers and biosensors. The scope of this work is focused on tunable resonant structures for photonic integrated circuits. Specifically, this work demonstrates active tuning of silicon photonic resonant structures using the properties of dye doped nematic liquid crystals, temperature stabilization of silicon photonics using the passive properties of liquid crystals, and the effects of low density plasma enhanced chemical vapor deposition (PECVD) claddings on ring resonator device performance.

  18. Analogue-to-Digital and Digital-to-Analogue Conversion.

    ERIC Educational Resources Information Center

    Gregory, Martin

    1997-01-01

    Discusses circuits for three-bit and four-bit analogue digital converters and digital analogue converters. These circuits feature slow operating speeds that enable the circuitry to be used to demonstrate the mode of operation using oscilloscopes and signal generators. (DDR)

  19. Quantization of the superconducting energy gap in an intense microwave field

    NASA Astrophysics Data System (ADS)

    Boris, A. A.; Krasnov, V. M.

    2015-11-01

    We study experimentally photon-assisted tunneling in Nb /AlOx/Nb Josephson junctions. We perform a quantitative calibration of the microwave field inside the junction. This allows direct verification of the quantum efficiency of microwave photon detection, which corresponds to tunneling of one electron per one absorbed microwave photon. We observe that voltages of photon-assisted tunneling steps vary both with the microwave power and the tunneling current. However, this variation is not monotonous but staircaselike. The phenomenon is caused by mutual locking of positive and negative step series. A similar locking is observed with Shapiro steps. As a result, the superconducting gap assumes quantized values equal to multiples of the quarter of the photon energy. The quantization is a manifestation of nonequilibrium tuning (suppression or enhancement) of superconductivity by the microwave field.

  20. Active microwaves

    NASA Technical Reports Server (NTRS)

    Evans, D.; Vidal-Madjar, D.

    1994-01-01

    Research on the use of active microwaves in remote sensing, presented during plenary and poster sessions, is summarized. The main highlights are: calibration techniques are well understood; innovative modeling approaches have been developed which increase active microwave applications (segmentation prior to model inversion, use of ERS-1 scatterometer, simulations); polarization angle and frequency diversity improves characterization of ice sheets, vegetation, and determination of soil moisture (X band sensor study); SAR (Synthetic Aperture Radar) interferometry potential is emerging; use of multiple sensors/extended spectral signatures is important (increase emphasis).

  1. Towards four-dimensional photonics

    NASA Astrophysics Data System (ADS)

    Price, Hannah M.; Ozawa, Tomoki; Goldman, Nathan; Zilberberg, Oded; Carusotto, Iacopo

    2016-03-01

    Recent advances in silicon ring-resonator arrays have stimulated the development of topological lattices for photons, with potential applications in integrated photonic devices. Taking inspiration from ultracold atoms, we propose how such arrays can be extended into an additional synthetic dimension by coupling together the different modes of each ring resonator.1 In this way, a 1D resonator chain can become an effective 2D system, while a 3D resonator array can be exploited as a 4D photonic lattice. As an example of the power of this approach, we discuss how to experimentally realise an optical analogue of the 4D quantum Hall effect for the first time. This opens up the way towards the exploration of higher-dimensional lattices in integrated photonics.

  2. Mammary Analogue Secretory Carcinoma.

    PubMed

    Stevens, Todd M; Parekh, Vishwas

    2016-09-01

    Mammary analogue secretory carcinoma (MASC) is a recently described salivary gland tumor that shares the same histologic appearance and ETV6 gene (12p13) rearrangement as secretory carcinoma of the breast. Prior to its recognition, MASC cases were commonly labeled acinic cell carcinoma and adenocarcinoma, not otherwise specified. Despite distinctive histologic features, MASC may be difficult to distinguish from other salivary gland tumors, in particular zymogen-poor acinic cell carcinoma and low-grade salivary duct carcinoma. Although characteristic morphologic and immunohistochemical features form the basis of a diagnosis of MASC, the presence of an ETV6-NTRK3 gene fusion is confirmatory. Given its recent recognition the true prognostic import of MASC is not yet clearly defined. PMID:27575269

  3. Providing reference standards and metrology for the few photon-photon counting community

    NASA Astrophysics Data System (ADS)

    Beaumont, Andrew R.; Cheung, Jessica Y.; Chunnilall, Christopher J.; Ireland, Jane; White, Malcolm G.

    2009-10-01

    The main drivers for developing few-photon metrological techniques are the rapidly progressing field of quantum information processing, which requires the development of high-efficiency photon-counting detectors, and the wider use of photon-counting technology in biology, medical physics and nuclear physics. This paper will focus on the provision of standards for the few photon community and the development of techniques for the characterisation of photon-counting detectors. At the high-power end, microwatts, we are developing a low-power absolute radiometer as a primary standard that will be used to provide traceability over a much broader spectral range. At the few photon-photon-counting level we are developing a conventional calibration technique, which is traceable to the primary standard through a reference trap detector. This method can be used in both analogue and photon-counting modes and provides a convenient route for providing customer calibration at few-photon levels across the optical spectrum. At the photon-counting/single-photon level we are developing a technique based on correlated photons. These are produced via parametric downconversion and can be used to measure directly the detection efficiency of photon-counting detectors. A cross-validation of the correlated photon and conventional technique is reported. Finally we discuss this work in the context of an EU project, that is aimed at establishing the route towards the re-definition of the candela, the SI unit for optical radiation.

  4. NASA/ESMD Analogue Mission Plans

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2007-01-01

    A viewgraph presentation exploring Earth and its analogues is shown. The topics include: 1) ESMD Goals for the Use of Earth Analogues; 2) Stakeholders Summary; 3) Issues with Current Analogue Situation; 4) Current state of Analogues; 5) External Implementation Plan (Second Step); 6) Recent Progress in Utilizing Analogues; 7) Website Layout Example-Home Page; 8) Website Layout Example-Analogue Site; 9) Website Layout Example-Analogue Mission; 10) Objectives of ARDIG Analog Initiatives; 11) Future Plans; 12) Example: Cold-Trap Sample Return; 13) Example: Site Characterization Matrix; 14) Integrated Analogue Studies-Prerequisites for Human Exploration; and 15) Rating Scale Definitions.

  5. Sensing feeble microwave signals via an optomechanical transducer

    NASA Astrophysics Data System (ADS)

    Zhang, Keye; Bariani, Francesco; Dong, Ying; Zhang, Weiping; Meystre, Pierre

    2015-05-01

    Due to their low energy content microwave signals at the single-photon level are extremely challenging to measure. Guided by recent progress in single-photon optomechanics and hybrid optomechanical systems, we propose a multimode optomechanical transducer that can detect intensities significantly below the single-photon level via off-resonant adiabatic transfer of the microwave signal to the optical frequency domain where the measurement is then performed. The influence of intrinsic quantum and thermal fluctuations on the performance of this detector are considered in detail. We acknowledge financial support from National Basic Research Program of China, NSF, ARO and the DARPA QuaSAR and ORCHID programs.

  6. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.

    PubMed

    Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  7. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    PubMed Central

    Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  8. Photonic Floquet topological insulators.

    PubMed

    Rechtsman, Mikael C; Zeuner, Julia M; Plotnik, Yonatan; Lumer, Yaakov; Podolsky, Daniel; Dreisow, Felix; Nolte, Stefan; Segev, Mordechai; Szameit, Alexander

    2013-04-11

    Topological insulators are a new phase of matter, with the striking property that conduction of electrons occurs only on their surfaces. In two dimensions, electrons on the surface of a topological insulator are not scattered despite defects and disorder, providing robustness akin to that of superconductors. Topological insulators are predicted to have wide-ranging applications in fault-tolerant quantum computing and spintronics. Substantial effort has been directed towards realizing topological insulators for electromagnetic waves. One-dimensional systems with topological edge states have been demonstrated, but these states are zero-dimensional and therefore exhibit no transport properties. Topological protection of microwaves has been observed using a mechanism similar to the quantum Hall effect, by placing a gyromagnetic photonic crystal in an external magnetic field. But because magnetic effects are very weak at optical frequencies, realizing photonic topological insulators with scatter-free edge states requires a fundamentally different mechanism-one that is free of magnetic fields. A number of proposals for photonic topological transport have been put forward recently. One suggested temporal modulation of a photonic crystal, thus breaking time-reversal symmetry and inducing one-way edge states. This is in the spirit of the proposed Floquet topological insulators, in which temporal variations in solid-state systems induce topological edge states. Here we propose and experimentally demonstrate a photonic topological insulator free of external fields and with scatter-free edge transport-a photonic lattice exhibiting topologically protected transport of visible light on the lattice edges. Our system is composed of an array of evanescently coupled helical waveguides arranged in a graphene-like honeycomb lattice. Paraxial diffraction of light is described by a Schrödinger equation where the propagation coordinate (z) acts as 'time'. Thus the helicity of the

  9. Photonic Floquet topological insulators.

    PubMed

    Rechtsman, Mikael C; Zeuner, Julia M; Plotnik, Yonatan; Lumer, Yaakov; Podolsky, Daniel; Dreisow, Felix; Nolte, Stefan; Segev, Mordechai; Szameit, Alexander

    2013-04-11

    Topological insulators are a new phase of matter, with the striking property that conduction of electrons occurs only on their surfaces. In two dimensions, electrons on the surface of a topological insulator are not scattered despite defects and disorder, providing robustness akin to that of superconductors. Topological insulators are predicted to have wide-ranging applications in fault-tolerant quantum computing and spintronics. Substantial effort has been directed towards realizing topological insulators for electromagnetic waves. One-dimensional systems with topological edge states have been demonstrated, but these states are zero-dimensional and therefore exhibit no transport properties. Topological protection of microwaves has been observed using a mechanism similar to the quantum Hall effect, by placing a gyromagnetic photonic crystal in an external magnetic field. But because magnetic effects are very weak at optical frequencies, realizing photonic topological insulators with scatter-free edge states requires a fundamentally different mechanism-one that is free of magnetic fields. A number of proposals for photonic topological transport have been put forward recently. One suggested temporal modulation of a photonic crystal, thus breaking time-reversal symmetry and inducing one-way edge states. This is in the spirit of the proposed Floquet topological insulators, in which temporal variations in solid-state systems induce topological edge states. Here we propose and experimentally demonstrate a photonic topological insulator free of external fields and with scatter-free edge transport-a photonic lattice exhibiting topologically protected transport of visible light on the lattice edges. Our system is composed of an array of evanescently coupled helical waveguides arranged in a graphene-like honeycomb lattice. Paraxial diffraction of light is described by a Schrödinger equation where the propagation coordinate (z) acts as 'time'. Thus the helicity of the

  10. Quantum and wave dynamical chaos in superconducting microwave billiards

    SciTech Connect

    Dietz, B. Richter, A.

    2015-09-15

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.

  11. Theory of the Rydberg-atom two-photon micromaser

    SciTech Connect

    Brune, M.; Raimond, J.M.; Haroche, S.

    1987-01-01

    A continuous-wave maser operating on a two-photon transition between Rydberg levels is expected to oscillate with about one atom and a few tens of microwave photons at any time in its superconducting cavity. We analyze in detail the characteristics of this new microscopic quantum electronics device presently under construction in our laboratory.

  12. Photon absorptiometry

    SciTech Connect

    Velchik, M.G.

    1987-01-01

    Recently, there has been a renewed interest in the detection and treatment of osteoporosis. This paper is a review of the merits and limitations of the various noninvasive modalities currently available for the measurement of bone mineral density with special emphasis placed upon the nuclear medicine techniques of single-photon and dual-photon absorptiometry. The clinicians should come away with an understanding of the relative advantages and disadvantages of photon absorptiometry and its optimal clinical application. 49 references.

  13. Similarity in drugs: reflections on analogue design.

    PubMed

    Wermuth, Camille G

    2006-04-01

    A survey of novel small-molecule therapeutics reveals that the majority of them result from analogue design and that their market value represents two-thirds of all small-molecule sales. In natural science, the term analogue, derived from the Latin and Greek analogia, has always been used to describe structural and functional similarity. Extended to drugs, this definition implies that the analogue of an existing drug molecule shares structural and pharmacological similarities with the original compound. Formally, this definition allows the establishment of three categories of drug analogues: analogues possessing chemical and pharmacological similarities (direct analogues); analogues possessing structural similarities only (structural analogues); and chemically different compounds displaying similar pharmacological properties (functional analogues). PMID:16580977

  14. Microwave alcohol fuel sensor

    SciTech Connect

    Kimura, K.; Endo, A.; Morozumi, H.; Shibata, T.

    1984-06-05

    A microwave alcohol fuel sensor comprises a microwave oscillator, a microwave receiver, and a microwave transmission circuit connected to the oscillator and the receiver. The microwave transmission circuit comprises a dielectric substrate and, a strip line mounted on the substrate so that microwaves leak from the substrate to an alcohol gasoline fuel, and the microwaves attenuate by alcohol dielectric loss, whereby output voltage from the receiver corresponds to alcohol content rate. The dielectric substrate is formed tubular so that a constant amount of the fuel is fed the sensor.

  15. Hidden-sector photon and axion searches using photonic band gap structures

    NASA Astrophysics Data System (ADS)

    Seviour, Rebecca; Bailey, Ian; Woollett, Nathan; Williams, Peter

    2014-03-01

    Many proposed extensions of the standard model of particle physics predict the existence of weakly interacting sub-eV particles (WISPs) such as hidden-sector photons and axions, which are also of interest as dark matter candidates. In this paper we propose a novel experimental approach in which microwave photonic lattice structures form part of a ‘light shining through the wall’-type experiment to search for WISPs. We demonstrate the potential to match and exceed the sensitivities of conventional experiments operating in the microwave regime.

  16. Radiating dipoles in photonic crystals

    PubMed

    Busch; Vats; John; Sanders

    2000-09-01

    The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.

  17. The photon

    NASA Astrophysics Data System (ADS)

    Collins, Russell L.

    2009-10-01

    There are no TEM waves, only photons. Lets build a photon, using a radio antenna. A short antenna (2L<< λ) simplifies the calculation, letting B fall off everywhere as 1/r^2. The Biot-Savart law finds B = (μ0/4π)(LI0/r^2)θφt. The magnetic flux thru a semi-circle of radius λ/2 is set equal to the flux quantum h/e, determining the needed source strength, LI0. From this, one can integrate the magnetic energy density over a sphere of radius λ/2 and finds it to be 1.0121 hc/λ. Pretty close. A B field collapses when the current ceases, but the photon evades this by creating a ɛ0E / t displacement current at center that fully supports the toroidal B assembly as it moves at c. This E=vxB arises because the photon moves at c. Stopped, a photon decays. At every point along the photon's path, an observer will note a transient oscillation of an E field. This sources the EM ``guiding wave'', carrying little or no energy and expanding at c. At the head of the photon, all these spherical guiding waves gather ``in-phase'' as a planar wavefront. This model speaks to all the many things we know about light. The photon is tiny, but its guiding wave is huge.

  18. A cavity experiment to search for hidden sector photons

    NASA Astrophysics Data System (ADS)

    Jaeckel, Joerg; Ringwald, Andreas

    2008-01-01

    We propose a cavity experiment to search for low mass extra U(1) gauge bosons with gauge-kinetic mixing with the ordinary photon, so-called paraphotons. The setup consists of two microwave cavities shielded from each other. In one cavity, paraphotons are produced via photon-paraphoton oscillations. The second, resonant, cavity is then driven by the paraphotons that permeate the shielding and reconvert into photons. This setup resembles the classic "light shining through a wall" setup. However, the high quality factors achievable for microwave cavities and the good sensitivity of microwave detectors allow for a projected sensitivity for photon-paraphoton mixing of the order of χ ∼10-12-10-8, for paraphotons with masses in the μeV to meV range-exceeding the current laboratory and astrophysics-based limits by several orders of magnitude. Therefore, this experiment bears significant discovery potential for hidden sector physics.

  19. Signatures of a hidden cosmic microwave background.

    PubMed

    Jaeckel, Joerg; Redondo, Javier; Ringwald, Andreas

    2008-09-26

    If there is a light Abelian gauge boson gamma' in the hidden sector its kinetic mixing with the photon can produce a hidden cosmic microwave background (HCMB). For meV masses, resonant oscillations gamma<-->gamma' happen after big bang nucleosynthesis (BBN) but before CMB decoupling, increasing the effective number of neutrinos Nnu(eff) and the baryon to photon ratio, and distorting the CMB blackbody spectrum. The agreement between BBN and CMB data provides new constraints. However, including Lyman-alpha data, Nnu(eff) > 3 is preferred. It is tempting to attribute this effect to the HCMB. The interesting parameter range will be tested in upcoming laboratory experiments. PMID:18851438

  20. Antenna-coupled microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Day, P. K.; Leduc, H. G.; Goldin, A.; Vayonakis, T.; Mazin, B. A.; Kumar, S.; Gao, J.; Zmuidzinas, J.

    2006-04-01

    We report on the development of Microwave Kinetic Inductance Detectors (MKIDs) coupled to planar antennas for millimeter/submillimeter wavelengths. The MKID is a relatively new type of superconducting photon detector which is applicable from millimeter-wave frequencies to X-rays. Photons are absorbed in a superconductor, producing quasiparticle excitations, which change the surface reactance (kinetic inductance) of the superconductor. The changes in kinetic inductance are monitored using microwave high-Q thin-film superconducting resonators. Because the MKID is particularly amenable to frequency-domain multiplexing, with likely detector multiplexing factors of ˜103 or more per cryogenic amplifier, these detectors are well suited for use in large arrays. We have fabricated MKIDs coupled to submillimeter slot-array antennas using microstrip lines and have detected power from a thermal radiation source. We discuss the potential of antenna-coupled MKID arrays for ground and space-based millimeter/submillimeter imaging.

  1. Slow microwaves in left-handed materials

    NASA Astrophysics Data System (ADS)

    di Gennaro, E.; Parimi, P. V.; Lu, W. T.; Sridhar, S.; Derov, J. S.; Turchinetz, B.

    2005-07-01

    Remarkably slow propagation of microwaves in two different classes of left-handed materials (LHM’s) is reported from microwave-pulse and continuous-wave transmission measurements. Microwave dispersion in a composite LHM made of split-ring resonators and wire strips reveals group velocity vg˜c/50 , where c is the free-space light velocity. Photonic crystals (PhC’s) made of dielectric Al2O3 rods reveal vg˜c/10 . Group delay dispersion of both the composite LHM and PhC’s determined from the experiment is in complete agreement with that obtained from theory. The slow group velocities are quantitatively described by the strong dispersion observed in these materials.

  2. Coherent Excited States in Superconductors due to a Microwave Field.

    PubMed

    Semenov, A V; Devyatov, I A; de Visser, P J; Klapwijk, T M

    2016-07-22

    We describe theoretically the depairing effect of a microwave field on diffusive s-wave superconductors. The ground state of the superconductor is altered qualitatively in analogy to the depairing due to a dc current. In contrast to dc depairing, the density of states acquires, for microwaves with frequency ω_{0}, steps at multiples of the photon energy Δ±nℏω_{0} and shows an exponential-like tail in the subgap regime. We show that this ac depairing explains the measured frequency shift of a superconducting resonator with microwave power at low temperatures. PMID:27494495

  3. Coherent Excited States in Superconductors due to a Microwave Field

    NASA Astrophysics Data System (ADS)

    Semenov, A. V.; Devyatov, I. A.; de Visser, P. J.; Klapwijk, T. M.

    2016-07-01

    We describe theoretically the depairing effect of a microwave field on diffusive s -wave superconductors. The ground state of the superconductor is altered qualitatively in analogy to the depairing due to a dc current. In contrast to dc depairing, the density of states acquires, for microwaves with frequency ω0, steps at multiples of the photon energy Δ ±n ℏω0 and shows an exponential-like tail in the subgap regime. We show that this ac depairing explains the measured frequency shift of a superconducting resonator with microwave power at low temperatures.

  4. Cavity Microwave Searches for Cosmological Axions

    SciTech Connect

    Carosi, G; van Bibber, K

    2007-01-22

    This chapter will cover the search for dark matter axions based on microwave cavity experiments proposed by Pierre Sikivie. We will start with a brief overview of halo dark matter and the axion as a candidate. The principle of resonant conversion of axions in an external magnetic field will be described as well as practical considerations in optimizing the experiment as a signal-to-noise problem. A major focus of this chapter will be the two complementary strategies for ultra-low noise detection of the microwave photons--the 'photon-as-wave' approach (i.e. conventional heterojunction amplifiers and soon to be quantum-limited SQUID devices), and 'photon-as-particle' (i.e. Rydberg-atom single-quantum detection). Experimental results will be presented; these experiments have already reached well into the range of sensitivity to exclude plausible axion models, for limited ranges of mass. The section will conclude with a discussion of future plans and challenges for the microwave cavity experiment.

  5. Photon generator

    DOEpatents

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  6. Photonic lanterns

    NASA Astrophysics Data System (ADS)

    Leon-Saval, Sergio G.; Argyros, Alexander; Bland-Hawthorn, Joss

    2013-12-01

    Multimode optical fibers have been primarily (and almost solely) used as "light pipes" in short distance telecommunications and in remote and astronomical spectroscopy. The modal properties of the multimode waveguides are rarely exploited and mostly discussed in the context of guiding light. Until recently, most photonic applications in the applied sciences have arisen from developments in telecommunications. However, the photonic lantern is one of several devices that arose to solve problems in astrophotonics and space photonics. Interestingly, these devices are now being explored for use in telecommunications and are likely to find commercial use in the next few years, particularly in the development of compact spectrographs. Photonic lanterns allow for a low-loss transformation of a multimode waveguide into a discrete number of single-mode waveguides and vice versa, thus enabling the use of single-mode photonic technologies in multimode systems. In this review, we will discuss the theory and function of the photonic lantern, along with several different variants of the technology. We will also discuss some of its applications in more detail. Furthermore, we foreshadow future applications of this technology to the field of nanophotonics.

  7. Microwave Radiometer (MWR) Handbook

    SciTech Connect

    Morris, VR

    2006-08-01

    The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is essentially a sensitive microwave receiver. That is, it is tuned to measure the microwave emissions of the vapor and liquid water molecules in the atmosphere at specific frequencies.

  8. Microwave Workshop for Windows.

    ERIC Educational Resources Information Center

    White, Colin

    1998-01-01

    "Microwave Workshop for Windows" consists of three programs that act as teaching aid and provide a circuit design utility within the field of microwave engineering. The first program is a computer representation of a graphical design tool; the second is an accurate visual and analytical representation of a microwave test bench; the third is a more…

  9. Phosphonate analogue substrates for enolase.

    PubMed

    Anderson, V E; Cleland, W W

    1990-11-20

    Phosphonate analogues in which the bridge between C-2 and phosphorus is a CH2 group are slow substrates for yeast enolase. The pH variation of the kinetic parameters for the methylene analogue of 2-phosphoglycerate suggests that the substrate binds as a dianion and that Mg2+ can bind subsequently only if a metal ligand and the catalytic base are unprotonated. Primary deuterium isotope effects of 4-8 on V/KMg, but ones of only 1.15-1.32 on V for dehydration, show that proton removal to give the carbanion intermediate largely limits V/KMg and that a slow step follows which largely limits V (presumably carbanion breakdown). Since there is a D2O solvent isotope effect on V for the reverse reaction of 5, but not an appreciable one on the forward reaction, it appears that the slow rates with phosphonate analogues result from the fact that the carbanion intermediate is more stable than that formed from the normal substrates, and its reaction in both directions limits V. Increased stability as a result of replacement of oxygen by carbon at C-2 of the carbanion is the expected chemical behavior. PMID:2271661

  10. Substrate analogues for isoprenoid enzymes

    SciTech Connect

    Stremler, K.E.

    1987-01-01

    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  11. Policy issues in space analogues

    NASA Astrophysics Data System (ADS)

    Auger, Robin N.; Facktor, Debra D.

    Space mission planning is increasingly focusing on destinations beyond Earth orbit. Advancements in technology will inevitably be required to enable long-duration human spaceflight missions, and breakthroughs in the policy arena will also be needed to achieve success in such missions. By exploring how policy issues have been addressed in analogous extreme environments, policymakers can develop a framework for addressing these issues as they apply to long-term human spaceflight. Policy issues that need to be addressed include: crew selection, training, organization, and activities, medical testing, illness, injury, and death; communication; legal accountability and liability; mission safety and risk management; and environmental contamination. This paper outlines the approach of a study underway by The George Washington University and ANSER to examine how these policy issues have been addressed in several analogues and how the experiences of these analogues can help formulate policies for long-duration human spaceflight missions. Analogues being studied include Antarctic bases, submarine voyages, undersea stations, Biosphere 2, and the U.S. Skylab and Russian Mir space stations.

  12. Photonic Band Engineering

    NASA Astrophysics Data System (ADS)

    Yabonovitch, Eli

    2001-09-01

    Scientists at UCLA, Caltech, and Polytechnic University have developed a new concept in Electromagnetics called "Photonic Bandgaps' that permits unprecedented control of Electromagnetic Waves, at both radio frequencies, and optical frequencies. This new paradigm of Electromagnetics is based on Nature's design for semiconductor crystals, but it is a crystal structure that is artificially engineered for electromagnetic waves rather than for electron waves. Beginning in 1996, new frontiers in the engineered control of electromagnetic waves have emerged from this design paradigm. For example, the very tiniest, most miniaturized electromagnetic cavity ever created was engineered, and demonstrated, under this MURI; trapping optical energy in the smallest volume ever achieved. This world's most tiny light trap was also made into the most miniaturized laser ever made, occupying a volume smaller than a cubic wavelength. At the same time this MURI advanced the electromagnetic bandgap concept into microwaves and radio waves that are so important for military systems. This required new concepts that permitted the bandgap structure to be much smaller than the electromagnetic wavelength. As in the optical version of photonic crystals, these electromagnetic bandgaps permit unprecedented control over radio frequency electromagnetic waves. For example new antenna structures have been invented that permit near field control over radio emissions from antennas, so that the hand-held radio transmitters can be more efficient.

  13. Non-Gaussian Photon Probability Distribution

    NASA Astrophysics Data System (ADS)

    Solomon, Benjamin T.

    2010-01-01

    This paper investigates the axiom that the photon's probability distribution is a Gaussian distribution. The Airy disc empirical evidence shows that the best fit, if not exact, distribution is a modified Gamma mΓ distribution (whose parameters are α = r, βr/√u ) in the plane orthogonal to the motion of the photon. This modified Gamma distribution is then used to reconstruct the probability distributions along the hypotenuse from the pinhole, arc from the pinhole, and a line parallel to photon motion. This reconstruction shows that the photon's probability distribution is not a Gaussian function. However, under certain conditions, the distribution can appear to be Normal, thereby accounting for the success of quantum mechanics. This modified Gamma distribution changes with the shape of objects around it and thus explains how the observer alters the observation. This property therefore places additional constraints to quantum entanglement experiments. This paper shows that photon interaction is a multi-phenomena effect consisting of the probability to interact Pi, the probabilistic function and the ability to interact Ai, the electromagnetic function. Splitting the probability function Pi from the electromagnetic function Ai enables the investigation of the photon behavior from a purely probabilistic Pi perspective. The Probabilistic Interaction Hypothesis is proposed as a consistent method for handling the two different phenomena, the probability function Pi and the ability to interact Ai, thus redefining radiation shielding, stealth or cloaking, and invisibility as different effects of a single phenomenon Pi of the photon probability distribution. Sub wavelength photon behavior is successfully modeled as a multi-phenomena behavior. The Probabilistic Interaction Hypothesis provides a good fit to Otoshi's (1972) microwave shielding, Schurig et al. (2006) microwave cloaking, and Oulton et al. (2008) sub wavelength confinement; thereby providing a strong case that

  14. Microwave sintering of ceramics

    SciTech Connect

    Snyder, W.B.

    1989-01-01

    Successful adaptation of microwave heating to the densification of ceramic materials require a marriage of microwave and materials technologies. Using an interdisciplinary team of microwave and materials engineers, we have successfully demonstrated the ability to density ceramic materials over a wide range of temperatures. Microstructural evolution during microwave sintering has been found to be significantly different from that observed in conventional sintering. Our results and those of others indicate that microwave sintering has the potential to fabricate components to near net shape with mechanical properties equivalent to hot pressed or hot isostatically pressed material. 6 refs., 11 figs.

  15. 1,2,3-Triazole-based analogue of benznidazole displays remarkable activity against Trypanosoma cruzi.

    PubMed

    de Andrade, Peterson; Galo, Oswaldo A; Carvalho, Marcelo R; Lopes, Carla D; Carneiro, Zumira A; Sesti-Costa, Renata; de Melo, Eduardo Borges; Silva, João S; Carvalho, Ivone

    2015-11-01

    The current treatment of Chagas disease is based on the use of two drugs, nifurtimox and benznidazole, which present limited efficacy in the chronic stage of the disease and toxic side effects. Although some progress has been made in the development of new drugs to treat this disease, the discovery of novel compounds is urgently required. In this work we report the synthesis and biological evaluation of 1,2,3-triazole-based analogues of benznidazole. A small series of 27 compounds was successfully synthesized via microwave-assisted copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) from N-benzyl-2-azidoacetamide (1) and a set of commercial terminal alkynes. Analogues 24 (IC50 40 μM) and 28 (IC50 50 μM) showed comparable activities to benznidazole (IC50 34 μM) against trypomastigote form and analogue 15 (IC50 7 μM) was found to be the most active. Regarding the cytotoxicity assessment of the series, most compounds were not cytotoxic. This work shows that the designed strategy is efficiently capable of generating novel benzindazole analogues and reveals one analogue is more active than benznidazole. PMID:26476667

  16. Robust reconfigurable electromagnetic pathways within a photonic topological insulator.

    PubMed

    Cheng, Xiaojun; Jouvaud, Camille; Ni, Xiang; Mousavi, S Hossein; Genack, Azriel Z; Khanikaev, Alexander B

    2016-05-01

    The discovery of topological photonic states has revolutionized our understanding of electromagnetic propagation and scattering. Endowed with topological robustness, photonic edge modes are not reflected from structural imperfections and disordered regions. Here we demonstrate robust propagation along reconfigurable pathways defined by synthetic gauge fields within a topological photonic metacrystal. The flow of microwave radiation in helical edge modes following arbitrary contours of the synthetic gauge field between bianisotropic metacrystal domains is unimpeded. This is demonstrated in measurements of the spectrum of transmission and time delay along the topological domain walls. These results provide a framework for freely steering electromagnetic radiation within photonic structures.

  17. Robust reconfigurable electromagnetic pathways within a photonic topological insulator.

    PubMed

    Cheng, Xiaojun; Jouvaud, Camille; Ni, Xiang; Mousavi, S Hossein; Genack, Azriel Z; Khanikaev, Alexander B

    2016-05-01

    The discovery of topological photonic states has revolutionized our understanding of electromagnetic propagation and scattering. Endowed with topological robustness, photonic edge modes are not reflected from structural imperfections and disordered regions. Here we demonstrate robust propagation along reconfigurable pathways defined by synthetic gauge fields within a topological photonic metacrystal. The flow of microwave radiation in helical edge modes following arbitrary contours of the synthetic gauge field between bianisotropic metacrystal domains is unimpeded. This is demonstrated in measurements of the spectrum of transmission and time delay along the topological domain walls. These results provide a framework for freely steering electromagnetic radiation within photonic structures. PMID:26901513

  18. Waveguide circuits in three-dimensional photonic crystals

    SciTech Connect

    Biswas, Rana; Christensen, C.; Muehlmeier, J.; Tuttle, G.; Ho, K.-M.

    2008-04-07

    Waveguide circuits in three-dimensional photonic crystals with complete photonic band gaps are simulated with finite difference time domain (FDTD) simulations, and compared with measurements on microwave scale photonic crystals. The transmission through waveguide bends critically depends on the photonic crystal architecture in the bend region. We have found experimentally and theoretically, a new waveguide bend configuration consisting of overlapping rods in the bend region, that performs better than the simple waveguide bend of terminated rods, especially in the higher frequency portion of the band. Efficient beam splitters with this junction geometry are also simulated.

  19. High brightness microwave lamp

    DOEpatents

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  20. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  1. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  2. Vesicle Photonics

    SciTech Connect

    Vasdekis, Andreas E.; Scott, E. A.; Roke, Sylvie; Hubbell, J. A.; Psaltis, D.

    2013-04-03

    Thin membranes, under appropriate boundary conditions, can self-assemble into vesicles, nanoscale bubbles that encapsulate and hence protect or transport molecular payloads. In this paper, we review the types and applications of light fields interacting with vesicles. By encapsulating light-emitting molecules (e.g. dyes, fluorescent proteins, or quantum dots), vesicles can act as particles and imaging agents. Vesicle imaging can take place also under second harmonic generation from vesicle membrane, as well as employing mass spectrometry. Light fields can also be employed to transport vesicles using optical tweezers (photon momentum) or directly pertrurbe the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy).

  3. Photons Revisited

    NASA Astrophysics Data System (ADS)

    Batic, Matej; Begalli, Marcia; Han, Min Cheol; Hauf, Steffen; Hoff, Gabriela; Kim, Chan Hyeong; Kim, Han Sung; Grazia Pia, Maria; Saracco, Paolo; Weidenspointner, Georg

    2014-06-01

    A systematic review of methods and data for the Monte Carlo simulation of photon interactions is in progress: it concerns a wide set of theoretical modeling approaches and data libraries available for this purpose. Models and data libraries are assessed quantitatively with respect to an extensive collection of experimental measurements documented in the literature to determine their accuracy; this evaluation exploits rigorous statistical analysis methods. The computational performance of the associated modeling algorithms is evaluated as well. An overview of the assessment of photon interaction models and results of the experimental validation are presented.

  4. Green photonics

    NASA Astrophysics Data System (ADS)

    Quan, Frederic

    2012-02-01

    Photonics, the broad merger of electronics with the optical sciences, encompasses such a wide swath of technology that its impact is almost universal in our everyday lives. This is a broad overview of some aspects of the industry and their contribution to the ‘green’ or environmental movement. The rationale for energy conservation is briefly discussed and the impact of photonics on our everyday lives and certain industries is described. Some opinions from industry are presented along with market estimates. References are provided to some of the most recent research in these areas.

  5. A readout for large arrays of microwave kinetic inductance detectors.

    PubMed

    McHugh, Sean; Mazin, Benjamin A; Serfass, Bruno; Meeker, Seth; O'Brien, Kieran; Duan, Ran; Raffanti, Rick; Werthimer, Dan

    2012-04-01

    Microwave kinetic inductance detectors (MKIDs) are superconducting detectors capable of counting single photons and measuring their energy in the UV, optical, and near-IR. MKIDs feature intrinsic frequency domain multiplexing (FDM) at microwave frequencies, allowing the construction and readout of large arrays. Due to the microwave FDM, MKIDs do not require the complex cryogenic multiplexing electronics used for similar detectors, such as transition edge sensors, but instead transfer this complexity to room temperature electronics where they present a formidable signal processing challenge. In this paper, we describe the first successful effort to build a readout for a photon counting optical/near-IR astronomical instrument, the ARray Camera for Optical to Near-infrared Spectrophotometry. This readout is based on open source hardware developed by the Collaboration for Astronomy Signal Processing and Electronics Research. Designed principally for radio telescope backends, it is flexible enough to be used for a variety of signal processing applications.

  6. A readout for large arrays of microwave kinetic inductance detectors.

    PubMed

    McHugh, Sean; Mazin, Benjamin A; Serfass, Bruno; Meeker, Seth; O'Brien, Kieran; Duan, Ran; Raffanti, Rick; Werthimer, Dan

    2012-04-01

    Microwave kinetic inductance detectors (MKIDs) are superconducting detectors capable of counting single photons and measuring their energy in the UV, optical, and near-IR. MKIDs feature intrinsic frequency domain multiplexing (FDM) at microwave frequencies, allowing the construction and readout of large arrays. Due to the microwave FDM, MKIDs do not require the complex cryogenic multiplexing electronics used for similar detectors, such as transition edge sensors, but instead transfer this complexity to room temperature electronics where they present a formidable signal processing challenge. In this paper, we describe the first successful effort to build a readout for a photon counting optical/near-IR astronomical instrument, the ARray Camera for Optical to Near-infrared Spectrophotometry. This readout is based on open source hardware developed by the Collaboration for Astronomy Signal Processing and Electronics Research. Designed principally for radio telescope backends, it is flexible enough to be used for a variety of signal processing applications. PMID:22559560

  7. FUNCTION GENERATOR FOR ANALOGUE COMPUTERS

    DOEpatents

    Skramstad, H.K.; Wright, J.H.; Taback, L.

    1961-12-12

    An improved analogue computer is designed which can be used to determine the final ground position of radioactive fallout particles in an atomic cloud. The computer determines the fallout pattern on the basis of known wind velocity and direction at various altitudes, and intensity of radioactivity in the mushroom cloud as a function of particle size and initial height in the cloud. The output is then displayed on a cathode-ray tube so that the average or total luminance of the tube screen at any point represents the intensity of radioactive fallout at the geographical location represented by that point. (AEC)

  8. Photon-assisted tunneling through a quantum dot

    SciTech Connect

    Kouwenhoven, L.P.; Jauhar, S.; McCormick, K.; Dixon, D.; McEuen, P.L. Materials Science Division, Lawrence Berkeley Laboratories, Mail Stop 2-200, Berkeley, California 94720 ); Nazarov, Y.V.; van der Vaart, N.C. ); Foxon, C.T. )

    1994-07-15

    We study single-electron tunneling in a two-junction device in the presence of microwave radiation. We introduce a model for numerical simulations that extends the Tien-Gordon theory for photon-assisted tunneling to encompass correlated single-electron tunneling. We predict sharp current jumps which reflect the discrete photon energy [ital hf], and a zero-bias current whose sign changes when an electron is added to the central island of the device. Measurements on split-gate quantum dots show microwave-induced features that are in good agreement with the model.

  9. Microwave-assisted extraction of solanesol from tobacco leaves.

    PubMed

    Zhou, Hua-Ying; Liu, Chun-Zhao

    2006-09-29

    Solanesol is the starting material for many high-value biochemicals, including co-enzyme Q10 and Vitamin K analogues. In the present study, a microwave-assisted extraction (MAE) technique has been developed for the fast extraction of solanesol from tobacco leaves. Compared to heat-reflux extraction, MAE reduced extraction time and obtained higher percentage extracted of solanesol. The effect of microwave on cell destruction of plant material was observed by scanning electron microscopy (SEM). The microwave-assisted extraction efficiency was further improved by adding NaOH into the extraction solvent, and the maximum percentage extracted of solanesol reached 0.91% (weight solanesol/weight tobacco) in 40 min at an optimum NaOH concentration of 0.05 M. The developed MAE integrated with saponification process provided an efficient method for solanesol recovery from tobacco leaf materials, and it also alleviated emulsification in the following separation and purification procedure as well.

  10. Photon-photon collisions via relativisitic mirrors

    SciTech Connect

    Koga, James K.

    2012-07-11

    Photon-photon scattering at low energies has been predicted theoretically for many years. However, due to the extremely small cross section there has been no experimental confirmation of this. Due to the rapid increase in laser irradiances and projected peak irradiances in planned facilities regimes could be reached where photon-photon scattering could be experimentally observed. We will first review basic aspects of photon-photon collisions concentrating on the calculation of the photon-photon scattering cross section. Then we will discuss the possibilities for observing these phenomena in ultra-high irradiance laser-plasma interactions involving relativistic mirrors.

  11. RF Photonic Technology in Optical Fiber Links

    NASA Astrophysics Data System (ADS)

    Chang, William S. C.

    2007-06-01

    List of contributors; Introduction and preface; 1. Figures of merit and performance analysis of photonic microwave links Charles Cox and William S. C. Chang; 2. RF subcarrier links in local access networks Xiaolin Lu; 3. Analog modulation of semiconductor lasers Joachim Piprek and John E. Bowers; 4. LiNbO3 external modulators and their use in high performance analog links Gary E. Betts; 5. Broadband traveling wave modulators in LiNbO3 Marta M. Howerton and William K. Burns; 6. Multiple quantum well electroabsorption modulators for RF photonic links William S. C. Chang; 7. Polymer modulators for RF photonics Timothy Van Eck; 8. Photodiodes for high performance analog links P. K. L. Yu and Ming C. Wu; 9. Opto-electronic oscillators X. Steve Yao; 10. Photonic link techniques for microwave frequency conversion Stephen A. Pappert, Roger Helkey and Ronald T. Logan Jr; 11. Antenna-coupled millimeter-wave electro-optical modulators William B. Bridges; 12. System design and performance of wideband photonic phased array antennas Greg L. Tangonan, Willie Ng, Daniel Yap and Ron Stephens; Acknowledgements; References; Index.

  12. The Canadian Analogue Research Network (CARN): Opportunities for Terrestrial Analogue Studies in Canada and Abroad

    NASA Astrophysics Data System (ADS)

    Hipkin, V.; Osinski, G. R.; Berinstain, A.; Léveillé, R.

    2007-03-01

    We will present an overview of the Canadian Analogue Research Network (CARN), including a description of the various analogue sites in CARN, potential new sites, and a discussion regarding how CARN is applicable to the global exploration strategy.

  13. Microwave spectroscopy on a double quantum dot with an on-chip Josephson oscillator

    NASA Astrophysics Data System (ADS)

    Holleitner, A. W.; Qin, H.; Simmel, F.; Irmer, B.; Blick, R. H.; Kotthaus, J. P.; Ustinov, A. V.; Eberl, K.

    2000-02-01

    We present measurements on microwave spectroscopy on a double quantum dot with an on-chip microwave source. The quantum dots are realized in the two-dimensional electron gas of an AlGaAs/GaAs heterostructure and are weakly coupled in series by a tunnelling barrier forming an `ionic' molecular state. We employ a Josephson oscillator formed by a long Nb/Al-AlOx /Nb junction as a microwave source. We find photon-assisted tunnelling sidebands induced by the Josephson oscillator, and compare the results with those obtained using an externally operated microwave source.

  14. Optical technology for microwave applications IV; Proceedings of the Meeting, Orlando, FL, Mar. 28, 29, 1989

    NASA Technical Reports Server (NTRS)

    Yao, Shi-Kay (Editor)

    1989-01-01

    Among the topics discussed at the meeting are high-speed laser and electrooptical technologies, detectors and detector arrays, microwave delay lines, and photon-microwave interactions. In addition, optical link applications are discussed, along with electronic warfare receivers and acoustooptical signal processing. Emphasis is placed on laser diode technology, direct modulation of laser diodes, external electrooptical laser modulation techniques, and microwave fiber-optic delay lines. Attention is given to such optical link applications as multigigahertz links as well as to signal processing for phased-array antennas and channelized microwave receiver technologies.

  15. Spin pumping in strongly coupled magnon-photon systems

    NASA Astrophysics Data System (ADS)

    Maier-Flaig, H.; Harder, M.; Gross, R.; Huebl, H.; Goennenwein, S. T. B.

    2016-08-01

    We experimentally investigate magnon polaritons arising in ferrimagnetic resonance experiments in a microwave cavity with a tunable quality factor. To this end, we simultaneously measure the electrically detected spin pumping signal and the microwave reflection (the ferrimagnetic resonance signal) of a yttrium iron garnet (YIG)/platinum (Pt) bilayer in the microwave cavity. The coupling strength of the fundamental magnetic resonance mode and the cavity is determined from the microwave reflection data. All features of the magnetic resonance spectra predicted by first principle calculations and an input-output formalism agree with our experimental observations. By changing the decay rate of the cavity at constant magnon-photon coupling rate, we experimentally tune in and out of the strong coupling regime and successfully model the corresponding change of the spin pumping signal and microwave reflection. Furthermore, we observe the coupling and spin pumping of several spin wave modes and provide a quantitative analysis of their coupling rates to the cavity.

  16. Piezoelectric tunable microwave superconducting cavity

    NASA Astrophysics Data System (ADS)

    Carvalho, N. C.; Fan, Y.; Tobar, M. E.

    2016-09-01

    In the context of engineered quantum systems, there is a demand for superconducting tunable devices, able to operate with high-quality factors at power levels equivalent to only a few photons. In this work, we developed a 3D microwave re-entrant cavity with such characteristics ready to provide a very fine-tuning of a high-Q resonant mode over a large dynamic range. This system has an electronic tuning mechanism based on a mechanically amplified piezoelectric actuator, which controls the resonator dominant mode frequency by changing the cavity narrow gap by very small displacements. Experiments were conducted at room and dilution refrigerator temperatures showing a large dynamic range up to 4 GHz and 1 GHz, respectively, and were compared to a finite element method model simulated data. At elevated microwave power input, nonlinear thermal effects were observed to destroy the superconductivity of the cavity due to the large electric fields generated in the small gap of the re-entrant cavity.

  17. The Valles natural analogue project

    SciTech Connect

    Stockman, H.; Krumhansl, J.; Ho, C.; McConnell, V.

    1994-12-01

    The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a highlevel waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, X-ray diffraction; and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and {sup 39}Ar/{sup 4O} isotopic composition. Overall,the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 meters of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks.

  18. Photon Collider Physics with Real Photon Beams

    SciTech Connect

    Gronberg, J; Asztalos, S

    2005-11-03

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  19. Imaging Photon Lattice States by Scanning Defect Microscopy

    NASA Astrophysics Data System (ADS)

    Underwood, D. L.; Shanks, W. E.; Li, Andy C. Y.; Ateshian, Lamia; Koch, Jens; Houck, A. A.

    2016-04-01

    Microwave photons inside lattices of coupled resonators and superconducting qubits can exhibit surprising matterlike behavior. Realizing such open-system quantum simulators presents an experimental challenge and requires new tools and measurement techniques. Here, we introduce scanning defect microscopy as one such tool and illustrate its use in mapping the normal-mode structure of microwave photons inside a 49-site kagome lattice of coplanar waveguide resonators. Scanning is accomplished by moving a probe equipped with a sapphire tip across the lattice. This locally perturbs resonator frequencies and induces shifts of the lattice resonance frequencies, which we determine by measuring the transmission spectrum. From the magnitude of mode shifts, we can reconstruct photon field amplitudes at each lattice site and thus create spatial images of the photon-lattice normal modes.

  20. Novel High Cooperativity Photon-Magnon Cavity QED

    NASA Astrophysics Data System (ADS)

    Tobar, Michael; Bourhill, Jeremy; Kostylev, Nikita; G, Maxim; Creedon, Daniel

    Novel microwave cavities are presented, which couple photons and magnons in YIG spheres in a super- and ultra-strong way at around 20 mK in temperature. Few/Single photon couplings (or normal mode splitting, 2g) of more than 6 GHz at microwave frequencies are obtained. Types of cavities include multiple post reentrant cavities, which co-couple photons at different frequencies with a coupling greater that the free spectral range, as well as spherical loaded dielectric cavity resonators. In such cavities we show that the bare dielectric properties can be obtained by polarizing all magnon modes to high energy using a 7 Tesla magnet. We also show that at zero-field, collective effects of the spins significantly perturb the photon modes. Other effects like time-reversal symmetry breaking are observed.

  1. Magnetometer Based on Optoelectronic Microwave Oscillator

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Strekalov, Dmitry; Matsko, Andrey

    2005-01-01

    proposed instrument, intended mainly for use as a magnetometer, would include an optoelectronic oscillator (OEO) stabilized by an atomic cell that could play the role of a magnetically tunable microwave filter. The microwave frequency would vary with the magnetic field in the cell, thereby providing an indication of the magnetic field. The proposed magnetometer would offer a combination of high accuracy and high sensitivity, characterized by flux densities of less than a picotesla. In comparison with prior magnetometers, the proposed magnetometer could, in principle, be constructed as a compact, lightweight instrument: It could fit into a package of about 10 by 10 by 10 cm and would have a mass <0.5 kg. As described in several prior NASA Tech Briefs articles, an OEO is a hybrid of photonic and electronic components that generates highly spectrally pure microwave radiation, and optical radiation modulated by the microwave radiation, through direct conversion between laser light and microwave radiation in an optoelectronic feedback loop. As used here, "atomic cell" signifies a cell containing a vapor, the constituent atoms of which can be made to undergo transitions between quantum states, denoted hyperfine levels, when excited by light in a suitable wavelength range. The laser light must be in this range. The energy difference between the hyperfine levels defines the microwave frequency. In the proposed instrument (see figure), light from a laser would be introduced into an electro-optical modulator (EOM). Amplitude-modulated light from the exit port of the EOM would pass through a fiber-optic splitter having two output branches. The light in one branch would be sent through an atomic cell to a photodiode. The light in the other branch would constitute the microwave-modulated optical output. Part of the light leaving the atomic cell could also be used to stabilize the laser at a frequency in the vicinity of the desired hyperfine or other quantum transition. The

  2. Microwave Lightcraft concept

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Looking like an alien space ship or a flying saucer the Microwave Lightcraft is an unconventional launch vehicle approach for delivering payload to orbit using power transmitted via microwaves. Microwaves re beamed from either a ground station or an orbiting solar power satellite to the lightcraft. The energy received breaks air molecules into a plasma and a magnetohydrodynamic fanjet provides the lifting force. Only a small amount of propellant is required for circulation, attitude control and deorbit.

  3. Microalgae photonics

    NASA Astrophysics Data System (ADS)

    Floume, Timmy; Coquil, Thomas; Sylvestre, Julien

    2011-05-01

    Due to their metabolic flexibility and fast growth rate, microscopic aquatic phototrophs like algae have a potential to become industrial photochemical converters. Algae photosynthesis could enable the large scale production of clean and renewable liquid fuels and chemicals with major environmental, economic and societal benefits. Capital and operational costs are the main issues to address through optical, process and biochemical engineering improvements. In this perspective, a variety of photonic approaches have been proposed - we introduce them here and describe their potential, limitations and compatibility with separate biotechnology and engineering progresses. We show that only sunlight-based approaches are economically realistic. One of photonics' main goals in the algae field is to dilute light to overcome photosaturation effects that impact upon cultures exposed to full sunlight. Among other approaches, we introduce a widely-compatible broadband spectral adaptation technique called AlgoSun® that uses luminescence to optimize sunlight spectrum in view of the bioconverter's requirements.

  4. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  5. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  6. Plasma enhanced microwave joining

    SciTech Connect

    Yiin, T.; Barmatz, M.; Sayir, A.

    1995-12-31

    A new method for plasma enhanced microwave joining of high purity (99.8%) alumina has been developed. The controlled application of a plasma between the adjoining surfaces of two rods initially heats the microwave-low-absorbing alumina rods to temperatures high enough for them to absorb microwave energy efficiently. With this technology, the adjacent surfaces of alumina rods can be melted and welded together in less than three minutes using approximately 400 watts of microwave energy. Four point bending tests measured fracture strengths of up to 130 MPa at the joined interface. Optical and SEM micrographs indicated that exaggerated grain growth prevailed for all joints studied.

  7. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  8. Time Reversal Symmetry Breaking Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Owens, John C.; Lachapelle, Aman; Yoon, Taekwan; Ma, Ruichao; Schuster, David; Simon, Jonathan

    In this talk we present our work towards realizing high Q, superconducting circulators to be employed in topological circuit QED lattices. These circulators generate gauge fields that produce protected edge states. We couple magnon excitations in spheres of the ferrite Yttrium Iron Garnet (YIG) to microwave cavity fields in order to break the degeneracy between modes that precess with different handedness. The YIG sphere only couples strongly (1GHz) to cavity modes that precess with the same handedness. We tune the YIG sphere into resonance with degenerate cavity modes to shift only the frequency of the modes with the same handedness, leaving the uncoupled mode at its original frequency. Since this mode is dark to the YIG excitation, its quality factor is dependent only on the characteristics of the cavity. We make the cavities out of the Type II superconductor Niobium Titanium so that we achieve high quality factors while also tolerating the large magnetic fields acting on the YIG spheres within the cavities. These cavities can be evanescently coupled to create topologically nontrivial lattices. Photon-photon interactions can then be added via couplings to qubits to create fractional quantum hall states for microwave photons.

  9. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  10. Fast tuning of superconducting microwave cavities

    SciTech Connect

    Sandberg, M.; Wilson, C. M.; Persson, F.; Johansson, G.; Shumeiko, V.; Bauch, T.; Duty, T.; Delsing, P.

    2008-11-07

    Photons are fundamental excitations of electromagnetic fields and can be captured in cavities. For a given cavity with a certain size, the fundamental mode has a fixed frequency f which gives the photons a specific 'color'. The cavity also has a typical lifetime {tau}, which results in a finite linewidth {delta}f. If the size of the cavity is changed fast compared to {tau}, and so that the frequency change {delta}f>>{delta}f, then it is possible to change the 'color' of the captured photons. Here we demonstrate superconducting microwave cavities, with tunable effective lengths. The tuning is obtained by varying a Josephson inductance at one end of the cavity. We show data on four different samples and demonstrate tuning by several hundred linewidths in a time {delta}t<<{tau}. Working in the few photon limit, we show that photons stored in the cavity at one frequency will leak out from the cavity with the new frequency after the detuning. The characteristics of the measured devices make them suitable for different applications such as dynamic coupling of qubits and parametric amplification.

  11. IDENTIFYING THE RADIO BUBBLE NATURE OF THE MICROWAVE HAZE

    SciTech Connect

    Dobler, Gregory

    2012-11-20

    Using seven-year data from the Wilkinson Microwave Anisotropy Probe, I identify a sharp 'edge' in the microwave haze at high southern Galactic latitude (-55 Degree-Sign < b < -35 Degree-Sign ) that is spatially coincident with the southern edge of the 'Fermi haze/bubbles'. This finding proves conclusively that the edge in the gamma rays is real (and not a processing artifact), demonstrates explicitly that the microwave haze and the gamma-ray bubbles are indeed the same structure observed at multiple wavelengths, and strongly supports the interpretation of the microwave haze as a separate component of Galactic synchrotron (likely generated by a transient event) as opposed to a simple variation of the spectral index of disk synchrotron. In addition, combining these data sets allows for the first determination of the magnetic field within a radio bubble using microwaves and gamma rays by taking advantage of the fact that the inverse Compton gamma rays are primarily generated by scattering of cosmic microwave background photons at these latitudes, thus minimizing uncertainty in the target radiation field. Assuming uniform volume emissivity, I find that the magnetic field within the southern Galactic microwave/gamma-ray bubble is {approx}5 {mu}G above 6 kpc off of the Galactic plane.

  12. Three-photon coherence of Rydberg atomic states

    NASA Astrophysics Data System (ADS)

    Kwak, Hyo Min; Jeong, Taek; Lee, Yoon-Seok; Moon, Han Seb

    2016-05-01

    We investigated three-photon coherence effects of the Rydberg state in a four-level ladder-type atomic system for the 5 S1/2 (F = 3) - 5 P3/2 (F' = 4) - 50 D5/2 - 51 P3/2 transition of 85 Rb atoms. By adding a resonant electric field of microwave (MW) at electromagnetically induced transparency (EIT) in Rydberg state scheme, we observed experimentally that splitting of EIT signal appears under the condition of three-photon resonance in the Doppler-broadened atomic system. Discriminating the two- and three-photon coherence terms from the calculated spectrum in a simple four-level ladder-type Doppler-broadened atomic system, we found that the physical origin of splitting of EIT was three-photon coherence effect, but not three-photon quantum interference phenomena such as three-photon electromagnetically induced absorption (TPEIA).

  13. Continuous analogues of matrix factorizations

    PubMed Central

    Townsend, Alex; Trefethen, Lloyd N.

    2015-01-01

    Analogues of singular value decomposition (SVD), QR, LU and Cholesky factorizations are presented for problems in which the usual discrete matrix is replaced by a ‘quasimatrix’, continuous in one dimension, or a ‘cmatrix’, continuous in both dimensions. Two challenges arise: the generalization of the notions of triangular structure and row and column pivoting to continuous variables (required in all cases except the SVD, and far from obvious), and the convergence of the infinite series that define the cmatrix factorizations. Our generalizations of triangularity and pivoting are based on a new notion of a ‘triangular quasimatrix’. Concerning convergence of the series, we prove theorems asserting convergence provided the functions involved are sufficiently smooth. PMID:25568618

  14. MICROWAVES IN ORGANIC SYNTHESIS

    EPA Science Inventory

    The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...

  15. Microwave device investigations

    NASA Technical Reports Server (NTRS)

    Choudhury, K. K. D.; Haddad, G. I.; Kwok, S. P.; Masnari, N. A.; Trew, R. J.

    1972-01-01

    Materials, devices and novel schemes for generation, amplification and detection of microwave and millimeter wave energy are studied. Considered are: (1) Schottky-barrier microwave devices; (2) intermodulation products in IMPATT diode amplifiers; and (3) harmonic generation using Read diode varactors.

  16. Television Microwave--1971.

    ERIC Educational Resources Information Center

    Peterson, Roger E.

    Since it became a reality just before World War II, terrestrial microwave has improved in systems and equipments, but with the improvements have come higher costs. Television microwave costs are so high because users are demanding more capability, land prices have increased, operating costs are higher, and there is frequency congestion along many…

  17. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1993-01-01

    Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

  18. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1993-04-01

    Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

  19. Variable frequency microwave heating apparatus

    DOEpatents

    Bible, Don W.; Lauf, Robert J.; Johnson, Arvid C.; Thigpen, Larry T.

    1999-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  20. Variable frequency microwave heating apparatus

    SciTech Connect

    Bible, D.W.; Lauf, R.J.; Johnson, A.C.; Thigpen, L.T.

    1999-10-05

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  1. Microwave synthesizer using an on-chip Brillouin oscillator.

    PubMed

    Li, Jiang; Lee, Hansuek; Vahala, Kerry J

    2013-01-01

    Low-phase-noise microwave oscillators are important to a wide range of subjects, including communications, radar and metrology. Photonic-based microwave-wave sources now provide record, close-to-carrier phase-noise performance, and compact sources using microcavities are available commercially. Photonics-based solutions address a challenging scaling problem in electronics, increasing attenuation with frequency. A second scaling challenge, however, is to maintain low phase noise in reduced form factor and even integrated systems. On this second front, there has been remarkable progress in the area of microcavity devices with large storage time (high optical quality factor). Here we report generation of highly coherent microwaves using a chip-based device that derives stability from high optical quality factor. The device has a record low electronic white-phase-noise floor for a microcavity-based oscillator and is used as the optical, voltage-controlled oscillator in the first demonstration of a photonic-based, microwave frequency synthesizer. The synthesizer performance is comparable to mid-range commercial devices. PMID:23811993

  2. Photon Calorimeter

    DOEpatents

    Chow, Tze-Show

    1989-01-01

    A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

  3. Photon calorimeter

    DOEpatents

    Chow, Tze-Show

    1988-04-22

    A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.

  4. An efficient green synthesis of 2-arylbenzothiazole analogues as potent antibacterial and anticancer agents.

    PubMed

    Chhabra, Mohit; Sinha, Sohini; Banerjee, Swagata; Paira, Priyankar

    2016-01-01

    We have demonstrated a novel and green approach for the synthesis of 2-substituted benzothiazole analogues. A number of 2-aryl and heteroaryl benzothiazole scaffolds were synthesized using Amberlite IR-120 resin under microwave irradiation. The catalytic role and reusability of the resin was well established here. 2-Substituted benzothiazole analogues (3a-l) were also tested against several bacterial strains (Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Salmonella) and cancer cell lines (MCF-7 and HeLa). The stability of compound 2-phenyl benzothiazole (3a) and 2-pyridin-2-yl-benzothiazole (3k) in GSH (0.01mM dissolved in DMSO) was measured by UV-Vis spectroscopy. Compound 3k also shows remarkable fluorescence in MeOH.

  5. Microwave hydrology: A trilogy

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.

    1985-01-01

    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.

  6. Microwave ion source

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  7. Microwave radiation hazards around large microwave antenna.

    NASA Technical Reports Server (NTRS)

    Klascius, A.

    1973-01-01

    The microwave radiation hazards associated with the use of large antennas become increasingly more dangerous to personnel as the transmitters go to ever higher powers. The near-field area is of the greatest concern. It has spill over from subreflector and reflections from nearby objects. Centimeter waves meeting in phase will reinforce each other and create hot spots of microwave energy. This has been measured in front of and around several 26-meter antennas. Hot spots have been found and are going to be the determining factor in delineating safe areas for personnel to work. Better techniques and instruments to measure these fields are needed for the evaluation of hazard areas.

  8. Plant Volatile Analogues Strengthen Attractiveness to Insect

    PubMed Central

    Sun, Yufeng; Yu, Hao; Zhou, Jing-Jiang; Pickett, John A.; Wu, Kongming

    2014-01-01

    Green leaf bug Apolygus lucorum (Meyer-Dür) is one of the major pests in agriculture. Management of A. lucorum was largely achieved by using pesticides. However, the increasing population of A. lucorum since growing Bt cotton widely and the increased awareness of ecoenvironment and agricultural product safety makes their population-control very challenging. Therefore this study was conducted to explore a novel ecological approach, synthetic plant volatile analogues, to manage the pest. Here, plant volatile analogues were first designed and synthesized by combining the bioactive components of β-ionone and benzaldehyde. The stabilities of β-ionone, benzaldehyde and analogue 3 g were tested. The electroantennogram (EAG) responses of A. lucorum adult antennae to the analogues were recorded. And the behavior assay and filed experiment were also conducted. In this study, thirteen analogues were acquired. The analogue 3 g was demonstrated to be more stable than β-ionone and benzaldehyde in the environment. Many of the analogues elicited EAG responses, and the EAG response values to 3 g remained unchanged during seven-day period. 3 g was also demonstrated to be attractive to A. lucorum adults in the laboratory behavior experiment and in the field. Its attractiveness persisted longer than β-ionone and benzaldehyde. This indicated that 3 g can strengthen attractiveness to insect and has potential as an attractant. Our results suggest that synthetic plant volatile analogues can strengthen attractiveness to insect. This is the first published study about synthetic plant volatile analogues that have the potential to be used in pest control. Our results will support a new ecological approach to pest control and it will be helpful to ecoenvironment and agricultural product safety. PMID:24911460

  9. Synthesis and biological evaluation of febrifugine analogues.

    PubMed

    Mai, Huong Doan Thi; Thanh, Giang Vo; Tran, Van Hieu; Vu, Van Nam; Vu, Van Loi; Le, Cong Vinh; Nguyen, Thuy Linh; Phi, Thi Dao; Truong, Bich Ngan; Chau, Van Minh; Pham, Van Cuong

    2014-12-01

    A series of febrifugine analogues were designed and synthesized. Antimalarial activity evaluation of the synthetic compounds indicated that these derivatives had a strong inhibition against both chloroquine-sensitive and -resistant Plasmodium falciparum parasites. Many of them were found to be more active than febrifugine hydrochloride. The tested analogues had also a significant cytotoxicity against four cancer cell lines (KB, MCF7, LU1 and HepG2). Among the synthetic analogues, two compounds 17b and 17h displayed a moderate cytotoxicity while they exhibited a remarkable antimalarial activity. PMID:25632466

  10. Single-Photon-Resolved Cross-Kerr Interaction for Autonomous Stabilization of Photon-Number States.

    PubMed

    Holland, E T; Vlastakis, B; Heeres, R W; Reagor, M J; Vool, U; Leghtas, Z; Frunzio, L; Kirchmair, G; Devoret, M H; Mirrahimi, M; Schoelkopf, R J

    2015-10-30

    Quantum states can be stabilized in the presence of intrinsic and environmental losses by either applying an active feedback condition on an ancillary system or through reservoir engineering. Reservoir engineering maintains a desired quantum state through a combination of drives and designed entropy evacuation. We propose and implement a quantum-reservoir engineering protocol that stabilizes Fock states in a microwave cavity. This protocol is realized with a circuit quantum electrodynamics platform where a Josephson junction provides direct, nonlinear coupling between two superconducting waveguide cavities. The nonlinear coupling results in a single-photon-resolved cross-Kerr effect between the two cavities enabling a photon-number-dependent coupling to a lossy environment. The quantum state of the microwave cavity is discussed in terms of a net polarization and is analyzed by a measurement of its steady state Wigner function. PMID:26565448

  11. Robust photon entanglement via quantum interference in optomechanical interfaces.

    PubMed

    Tian, Lin

    2013-06-01

    Entanglement is a key element in quantum information processing. Here, we present schemes to generate robust photon entanglement via optomechanical quantum interfaces in the strong coupling regime. The schemes explore the excitation of the Bogoliubov dark mode and the destructive quantum interference between the bright modes of the interface, similar to electromagnetically induced transparency, to eliminate leading-order effects of the mechanical noise. Both continuous-variable and discrete-state entanglements that are robust against the mechanical noise can be achieved. The schemes can be used to generate entanglement in hybrid quantum systems between, e.g., microwave photon and optical photon.

  12. Experimental demonstration of self-collimation inside a three-dimensional photonic crystal.

    PubMed

    Lu, Zhaolin; Shi, Shouyuan; Murakowski, Janusz A; Schneider, Garrett J; Schuetz, Christopher A; Prather, Dennis W

    2006-05-01

    We present our experimental demonstration of self-collimation inside a three-dimensional (3D) simple cubic photonic crystal at microwave frequencies. The photonic crystal was designed with unique dispersion property and fabricated by a high precision computer-controlled machine. The self-collimation modes were excited by a grounded waveguide feeding and detected by a scanning monopole. Self-collimation of electromagnetic waves in the 3D photonic crystal was demonstrated by measuring the 3D field distribution, which was shown as a narrow collimated beam inside the 3D photonic crystal but a diverged beam in the absence of the photonic crystal. PMID:16712297

  13. Microwave bonding of MEMS component

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Mai, John D. (Inventor); Jackson, Henry W. (Inventor); Budraa, Nasser K. (Inventor); Pike, William T. (Inventor)

    2005-01-01

    Bonding of MEMs materials is carried out using microwave. High microwave absorbing films are placed within a microwave cavity, and excited to cause selective heating in the skin of the material. This causes heating in one place more than another. Thereby minimizing the effects of the bonding microwave energy.

  14. Design of photonic crystal splitters/combiners

    NASA Astrophysics Data System (ADS)

    Kim, Sangin; Park, Ikmo; Lim, Hanjo

    2004-10-01

    Photonic band gap (PBG) structures or photonic crystals have attracted a lot of interest since one of their promising applications is to build compact photonic integrated circuits (PIC). One of key components in PICs is a 1 x 2 optical power splitter or a 2 x 1 combiner. Design of 1 x 2 optical power splitters based on photonic crystal has been investigated by several research groups, but no attention has been paid to the design of 2 x 1 optical combiners. In conventional dielectric waveguide based circuits, optical combiners are obtained just by operating the splitters in the opposite direction and the isolation between two input ports in the combiners is naturally achieved. In photonic crystal based circuits, however, we have found that reciprocal operation of the splitters as combiners will not provide proper isolation between the input ports of the combiners. In this work, microwave-circuit concept has been adopted to obtain isolation between two input ports of the combiner and compact optical power splitters/combiners of good performance have been designed using 2-D photonic crystal. Numerical analysis of the designed splitters/combiners has been performed with the finite-difference time-domain method. The designed splitters/combiners show good isolation between input ports in combiner operation with small return losses.

  15. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    SciTech Connect

    Kawate, T.; Nishizuka, N.; Oi, A.; Ohyama, M.; Nakajima, H.

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  16. Microwave drilling of bones.

    PubMed

    Eshet, Yael; Mann, Ronit Rachel; Anaton, Abby; Yacoby, Tomer; Gefen, Amit; Jerby, Eli

    2006-06-01

    This paper presents a feasibility study of drilling in fresh wet bone tissue in vitro using the microwave drill method [Jerby et al, 2002], toward testing its applicability in orthopaedic surgery. The microwave drill uses a near-field focused energy (typically, power under approximately 200 W at 2.45-GHz frequency) in order to penetrate bone in a drilling speed of approximately 1 mm/s. The effect of microwave drilling on mechanical properties of whole ovine tibial and chicken femoral bones drilled in vitro was studied using three-point-bending strength and fatigue tests. Properties were compared to those of geometrically similar bones that were equivalently drilled using the currently accepted mechanical rotary drilling method. Strength of mid-shaft, elastic moduli, and cycles to failure in fatigue were statistically indistinguishable between specimen groups assigned for microwave and mechanical drilling. Carbonized margins around the microwave-drilled hole were approximately 15% the hole diameter. Optical and scanning electron microscopy studies showed that the microwave drill produces substantially smoother holes in cortical bone than those produced by a mechanical drill. The hot spot produced by the microwave drill has the potential for overcoming two major problems presently associated with mechanical drilling in cortical and trabecular bone during orthopaedic surgeries: formation of debris and rupture of bone vasculature during drilling.

  17. Jets and Photons

    NASA Astrophysics Data System (ADS)

    Ellis, Stephen D.; Roy, Tuhin S.; Scholtz, Jakub

    2013-03-01

    This Letter applies the concept of “jets,” as constructed from calorimeter cell four-vectors, to jets composed (primarily) of photons (or leptons). Thus jets become a superset of both traditional objects such as QCD jets, photons, and electrons, and more unconventional objects such as photon jets and electron jets, defined as collinear photons and electrons, respectively. Since standard objects such as single photons become a subset of jets in this approach, standard jet substructure techniques are incorporated into the photon finder toolbox. Using a (reasonably) realistic calorimeter model we demonstrate that, for a single photon identification efficiency of 80% or above, the use of jet substructure techniques reduces the number of QCD jets faking photons by factors of 2.5 to 4. Depending on the topology of the photon jets, the substructure variables reduce the number of photon jets faking single photons by factors of 10 to 103 at a single photon identification efficiency of 80%.

  18. Antimicrobial activity of resveratrol analogues.

    PubMed

    Chalal, Malik; Klinguer, Agnès; Echairi, Abdelwahad; Meunier, Philippe; Vervandier-Fasseur, Dominique; Adrian, Marielle

    2014-01-01

    Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity. PMID:24918540

  19. Space analogue studies in Antarctica.

    PubMed

    Lugg, D; Shepanek, M

    1999-01-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mitogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  20. Antimicrobial activity of resveratrol analogues.

    PubMed

    Chalal, Malik; Klinguer, Agnès; Echairi, Abdelwahad; Meunier, Philippe; Vervandier-Fasseur, Dominique; Adrian, Marielle

    2014-06-10

    Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity.

  1. Space analogue studies in Antarctica

    NASA Technical Reports Server (NTRS)

    Lugg, D.; Shepanek, M.

    1999-01-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mitogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  2. Space analogue studies in Antarctica

    NASA Astrophysics Data System (ADS)

    Lugg, D.; Shepanek, M.

    1999-09-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mltogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  3. Condensed matter analogues of cosmology

    NASA Astrophysics Data System (ADS)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  4. Microwave coupler and method

    DOEpatents

    Holcombe, Cressie E.

    1985-01-01

    The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

  5. Microwave coupler and method

    DOEpatents

    Holcombe, C.E.

    1984-11-29

    The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

  6. Microwave vision for robots

    NASA Technical Reports Server (NTRS)

    Lewandowski, Leon; Struckman, Keith

    1994-01-01

    Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.

  7. Monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  8. Microwave sterilization of enterobacteria.

    PubMed

    Rosaspina, S; Anzanel, D; Salvatorelli, G

    1993-01-01

    A new method is described which makes it possible to treat metal materials with microwaves. In consequence scalpel blades as well as cover glasses contaminated with four species of bacteria (Salmonella typhi, Proteus mirabilis, Escherichia coli and Pseudomonas aeruginosa) were sterilized. With this method sterilization can be achieved quite rapidly (1.5-2 min). Scanning electron microscopy revealed a progressive alteration in the morphology of micro-organisms and this proved proportional to the microwave exposure time. Only in Proteus mirabilis were no modifications found, even after long periods of microwave exposure. PMID:8302204

  9. Resonance formation in photon-photon collisions

    SciTech Connect

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the ..gamma gamma..* production of spin-one resonances. 37 refs., 17 figs., 5 tabs.

  10. Microwave thawing apparatus and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  11. Sulfur analogues of psychotomimetic agents. Monothio analogues of mescaline and isomescaline.

    PubMed

    Jacob, P; Shulgin, A T

    1981-11-01

    Two monothio analogues of mescaline and three monothio analogues of 2,3,4-trimethoxyphenethylamine (isomescaline) have been synthesized and characterized. Only the two mescaline analogues (3-and 4-thiomescaline) were found to be psychotomimetics in man, being 6 and 12 times more potent than mescaline, respectively. All five compounds can serve as substrates for bovine plasma monoamine oxidase in vitro, but no positive correlation is apparent between the extent of enzymatic degradation and human psychotomimetic potency.

  12. Approaching perfect microwave photodetection in circuit QED

    SciTech Connect

    Peropadre, B.; Garcia-Ripoll, J. J.; Romero, G.; Johansson, G.; Wilson, C. M.; Solano, E.

    2011-12-15

    In order to apply all ideas from quantum optics to the field of quantum circuits, one of the missing ingredients is a high-efficiency single-photon detector. In this work we propose a design for such a device which successfully reaches 100% efficiency with only one absorber. Our photon detector consists of a three-level system (a phase qubit) coupled to a semi-infinite one-dimensional waveguide (a microwave transmission line) which performs highly efficient photodetection in a simplified manner as compared to previous proposals. Using the tools of quantum optics we extensively study the scattering properties of realistic wave packets against this device, thereby computing the efficiency of the detector. We find that the detector has many operating modes, can detect detuned photons, is robust against design imperfections, and can be made broadband by using more than one absorbing element in the design. Many of these ideas could be translated to other single-mode photonic or plasmonic waveguides interacting with three-level atoms or quantum dots.

  13. The structure activity relationship of discodermolide analogues.

    PubMed

    Shaw, Simon J

    2008-03-01

    The marine polyketide discodermolide is a member of a class of natural products that stabilize microtubules. Many analogues have been synthesized suggesting that few changes can be made to the internal carbon backbone. Both ends of the molecule, however, can be modified. The majority of analogues have been generated via modification of the lactone region. This suggests that significant simplifications can be made in this region provided that the lactone moiety is maintained.

  14. Phosphorous-containing analogues of aspartame.

    PubMed

    Nelson, V; Mastalerz, P

    1984-12-01

    Four analogues of aspartame (aspartylphenylalanine methyl ester) were prepared in which one of the carboxylate groups was replaced by a phosphonate group. None of the peptides so obtained was sweet, in contrast with the parent compound which is over 100 times sweeter than sucrose. These results contrast with several published reports of phosphonate analogues of amino acids and peptides which are potent inhibitors of enzymes containing acceptor sites for the parent compound.

  15. Cosmic Microwave Background spectral distortions from cosmic string loops

    NASA Astrophysics Data System (ADS)

    Anthonisen, Madeleine; Brandenberger, Robert; Laguë, Alex; Morrison, Ian A.; Xia, Daixi

    2016-02-01

    Cosmic string loops contain cusps which decay by emitting bursts of particles. A significant fraction of the released energy is in the form of photons. These photons are injected non-thermally and can hence cause spectral distortions of the Cosmic Microwave Background (CMB). Under the assumption that cusps are robust against gravitational back-reaction, we compute the fractional energy density released as photons in the redshift interval where such non-thermal photon injection causes CMB spectral distortions. Whereas current constraints on such spectral distortions are not strong enough to constrain the string tension, future missions such as the PIXIE experiment will be able to provide limits which rule out a range of string tensions between G μ ~ 10-15 and G μ ~ 10-12, thus ruling out particle physics models yielding these kind of intermediate-scale cosmic strings.

  16. Microwave-to-Optical Conversion in WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute

    2008-01-01

    Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.

  17. Experiment and simulation on one-dimensional plasma photonic crystals

    SciTech Connect

    Zhang, Lin; Ouyang, Ji-Ting

    2014-10-15

    The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend on the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range.

  18. Protection layers on a superconducting microwave resonator toward a hybrid quantum system

    SciTech Connect

    Lee, Jongmin; Park, Dong Hun

    2015-10-07

    We propose a protection scheme of a superconducting microwave resonator to realize a hybrid quantum system, where cold neutral atoms are coupled with a single microwave photon through magnetic dipole interaction at an interface inductor. The evanescent field atom trap, such as a waveguide/nanofiber atom trap, brings both surface-scattered photons and absorption-induced broadband blackbody radiation which result in quasiparticles and a low quality factor at the resonator. A proposed multiband protection layer consists of pairs of two dielectric layers and a thin nanogrid conductive dielectric layer above the interface inductor. We show numerical simulations of quality factors and reflection/absorption spectra, indicating that the proposed multilayer structure can protect a lumped-element microwave resonator from optical photons and blackbody radiation while maintaining a reasonably high quality factor.

  19. Emitron: microwave diode

    DOEpatents

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  20. Microwave Oven Observations.

    ERIC Educational Resources Information Center

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  1. Microwave sensing from orbit

    NASA Technical Reports Server (NTRS)

    Kritikos, H. N.; Shiue, J.

    1979-01-01

    Microwave sensors, used in conjunction with the traditional sensors of visible and infrared light to extend present capabilities of global weather forecasts and local storm watches, are discussed. The great advantage of these sensors is that they can penetrate or 'see' through cloud formations to monitor temperature, humidity and wind fields below the clouds. Other uses are that they can penetrate the earth deeper than optical and IR systems; they can control their own angle of incidence; they can detect oil spills; and they can enhance the studies of the upper atmosphere through measurement of temperature, water vapor and other gaseous species. Two types of microwave sensors, active and passive, are examined. Special attention is given to the study of the microwave radiometer and the corresponding temperature resolution as detected by the antenna. It is determined that not only will the microwave remote sensors save lives by allowing close monitoring of developing storms, but also save approximately $172 million/year.

  2. Microwave beam power

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.

    1989-01-01

    Information on microwave beam power is given in viewgraph form. Information is given on orbit transfer proulsion applications, costs of delivering 100 kWe of usable power, and costs of delivering a 1 kg payload into orbit.

  3. The microwave drill.

    PubMed

    Jerby, E; Dikhtyar, V; Aktushev, O; Grosglick, U

    2002-10-18

    We present a drilling method that is based on the phenomenon of local hot spot generation by near-field microwave radiation. The microwave drill is implemented by a coaxial near-field radiator fed by a conventional microwave source. The near-field radiator induces the microwave energy into a small volume in the drilled material under its surface, and a hot spot evolves in a rapid thermal-runaway process. The center electrode of the coaxial radiator itself is then inserted into the softened material to form the hole. The method is applicable for drilling a variety of nonconductive materials. It does not require fast rotating parts, and its operation makes no dust or noise. PMID:12386331

  4. Microwave fluid flow meter

    DOEpatents

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  5. Microwave emissions from snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1984-01-01

    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow properties

  6. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  7. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  8. Spaceborne Microwave Imagers

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1991-01-01

    Monograph presents comprehensive overview of science and technology of spaceborne microwave-imaging systems. Microwave images used as versatile orbiting, remote-sensing systems to investigate atmospheres and surfaces of planets. Detect surface objects through canopies of clouds, measure distributions of raindrops in clouds that their views penetrate, find meandering rivers in rain forests and underground water in arid regions, and provide information on ocean currents, wakes, ice/water boundaries, aircraft, ships, buoys, and bridges.

  9. Non-Gaussian Photon Probability Distribution

    SciTech Connect

    Solomon, Benjamin T.

    2010-01-28

    This paper investigates the axiom that the photon's probability distribution is a Gaussian distribution. The Airy disc empirical evidence shows that the best fit, if not exact, distribution is a modified Gamma mGAMMA distribution (whose parameters are alpha = r, betar/sq root(u)) in the plane orthogonal to the motion of the photon. This modified Gamma distribution is then used to reconstruct the probability distributions along the hypotenuse from the pinhole, arc from the pinhole, and a line parallel to photon motion. This reconstruction shows that the photon's probability distribution is not a Gaussian function. However, under certain conditions, the distribution can appear to be Normal, thereby accounting for the success of quantum mechanics. This modified Gamma distribution changes with the shape of objects around it and thus explains how the observer alters the observation. This property therefore places additional constraints to quantum entanglement experiments. This paper shows that photon interaction is a multi-phenomena effect consisting of the probability to interact P{sub i}, the probabilistic function and the ability to interact A{sub i}, the electromagnetic function. Splitting the probability function P{sub i} from the electromagnetic function A{sub i} enables the investigation of the photon behavior from a purely probabilistic P{sub i} perspective. The Probabilistic Interaction Hypothesis is proposed as a consistent method for handling the two different phenomena, the probability function P{sub i} and the ability to interact A{sub i}, thus redefining radiation shielding, stealth or cloaking, and invisibility as different effects of a single phenomenon P{sub i} of the photon probability distribution. Sub wavelength photon behavior is successfully modeled as a multi-phenomena behavior. The Probabilistic Interaction Hypothesis provides a good fit to Otoshi's (1972) microwave shielding, Schurig et al.(2006) microwave cloaking, and Oulton et al.(2008) sub

  10. Multiphoton processes at cyclotron resonance subharmonics in a two-dimensional electron system under dc and microwave excitation

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Hatke, A. T.; Engel, L. W.; Watson, J. D.; Manfra, M. J.

    2014-11-01

    We investigate a two-dimensional electron system (2DES) under microwave illumination at cyclotron resonance subharmonics. The 2DES carries sufficient direct current, I , that the differential resistivity oscillates as I is swept. At magnetic fields sufficient to resolve individual Landau levels, we find the number of oscillations within an I range systematically changes with increasing microwave power. Microwave absorption and emission of N photons, where N is controlled by the microwave power, describes our observations in the framework of the displacement mechanism of impurity scattering between Hall-field tilted Landau levels.

  11. Photoreactivity of condensed species on Titan's aerosols analogues

    NASA Astrophysics Data System (ADS)

    Fleury, Benjamin; Gudipati, Murthy; Carrasco, Nathalie

    2016-10-01

    Titan's aerosols formation is initiated in the upper atmospheric layers at about 1000 km by the dissociation and the ionization of N2 and CH4 by the VUV solar photons [1]. Then, they aggregate and sediment to the surface. The temperatures of the stratosphere and the troposphere [3] (measured by the HASI instrument onboard the Huygens probe [2]) allow the condensation of many volatile organics on the solid aerosols, forming organic ice coating on the aerosol polymers. We will present an experimental study simulating this process and discuss the photoreactivity of condensed species on Titan's aerosols analogues in the atmosphere and on the surface. We demonstrated experimentally that the organic aerosols, which cover the Titan's surface, drive the photoreactivity of condensed species such as acetylene when they are irradiated with long wavelength photons (λ > 300 nm). This result highlights that Titan's surface remains active despite the absorption of the most energetic photons by the atmosphere.AcknowledgmentsThis work is supported by NASA Solar System Workings grant " Photochemistry in Titan's Lower Atmosphere". The research work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. NC acknowledges the European Research Council for their financial support (ERC Starting Grant PRIMCHEM, grant agreement n°636829).References[1] Waite, J. H., et al., The process of Tholin formation in Titan's upper atmosphere, (2007), Science 316, 870-875.[2] Fulchignoni, M., et al., In situ measurements of the physical characteristics of Titan's environment, (2005), Nature 438, 785-791[3] Lavvas, P., et al., Condensation in Titan's atmosphere at the Huygens landing site, (2011), Icarus 215, 732-750.

  12. Microwave quantum illumination.

    PubMed

    Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano

    2015-02-27

    Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.

  13. Microwave quantum illumination.

    PubMed

    Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano

    2015-02-27

    Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy. PMID:25768743

  14. Microwave interaction with air

    NASA Astrophysics Data System (ADS)

    Bollen, W. M.; Pershing, D.

    1985-06-01

    Microwave breakdown studies of gaseous elements have been carried out extensively over a wide range of pressures and for several microwave frequencies using CW and pulsed radiation sources. The main emphasis in these studies was on the determination of the breakdown power threshold and its dependence on the gas pressure and the microwave frequency. The coupling of mircowave energy into the breakdown plasma and neutral gas has not been studied in detail. The reason for this is that, until recently, no high-power microwave sources have been available to perform such studies. Most of the early work performed on breakdown thresholds was performed using high Q-cavities to obtain the necessary electric field to break down the gas. Once breakdown of the gas occurred, the Q of the cavity dropped and the interaction changed. Using the NRL high-power gyrotron facility, we have been able to eliminate the need for cavities and have performed experiments using a focused geometry to examine the coupling of microwave energy to nitrogen gas during breakdown. We have also modeled the experiments using a 1-D computer simulation code. Simulations were performed in a spherical geometry using a self-consistent, nitrogen chemistry, wave optics, microwave breakdown simulation code, MINI. The main emphasis of past work was on the ionization front created during nitrogen breakdown and its motion and plasma properties, as observed experimentally.

  15. Microwaves and Alzheimer's disease

    PubMed Central

    Zhang, Xia; Huang, Wen-Juan; Chen, Wei-Wei

    2016-01-01

    Alzheimer's diseases (AD) is the most common type of dementia and a neurodegenerative disease that occurs when the nerve cells in the brain die. The cause and treatment of AD remain unknown. However, AD is a disease that affects the brain, an organ that controls behavior. Accordingly, anything that can interact with the brain may affect this organ positively or negatively, thereby protecting or encouraging AD. In this regard, modern life encompasses microwaves for all issues including industrial, communications, medical and domestic tenders, and among all applications, the cell phone wave, which directly exposes the brain, continues to be the most used. Evidence suggests that microwaves may produce various biological effects on the central nervous system (CNS) and many arguments relay the possibility that microwaves may be involved in the pathophysiology of CNS disease, including AD. By contrast, previous studies have reported some beneficial cognitive effects and that microwaves may protect against cognitive impairment in AD. However, although many of the beneficial effects of microwaves are derived from animal models, but can easily be extrapolated to humans, whether microwaves cause AD is an important issue that is to be addressed in the current review. PMID:27698682

  16. Microwaves and Alzheimer's disease

    PubMed Central

    Zhang, Xia; Huang, Wen-Juan; Chen, Wei-Wei

    2016-01-01

    Alzheimer's diseases (AD) is the most common type of dementia and a neurodegenerative disease that occurs when the nerve cells in the brain die. The cause and treatment of AD remain unknown. However, AD is a disease that affects the brain, an organ that controls behavior. Accordingly, anything that can interact with the brain may affect this organ positively or negatively, thereby protecting or encouraging AD. In this regard, modern life encompasses microwaves for all issues including industrial, communications, medical and domestic tenders, and among all applications, the cell phone wave, which directly exposes the brain, continues to be the most used. Evidence suggests that microwaves may produce various biological effects on the central nervous system (CNS) and many arguments relay the possibility that microwaves may be involved in the pathophysiology of CNS disease, including AD. By contrast, previous studies have reported some beneficial cognitive effects and that microwaves may protect against cognitive impairment in AD. However, although many of the beneficial effects of microwaves are derived from animal models, but can easily be extrapolated to humans, whether microwaves cause AD is an important issue that is to be addressed in the current review.

  17. Behavioral effects of microwaves

    SciTech Connect

    Stern, S.

    1980-01-01

    Microwaves can produce sensations of warmth and sound in humans. In other species, they also can serve as cues, they may be avoided, and they can disrupt ongoing behavior. These actions appear to be due to heat produced by energy absorption. The rate of absorption depends on the microwave parameters and the electrical and geometric properties of the subject. We therefore, cannot predict the human response to microwaves based on data from other animals without appropriate scaling considerations. At low levels of exposure, microwaves can produce changes in behavior without large, or even measureable, changes in body temperature. Thermoregulatory behavior may respond to those low levels of heat, and thereby affect other behavior occurring concurrently. There are no data that demonstrate that behavioral effects of microwaves depend on any mechanism other than reactions to heat. Our interpretation of whether a reported behavioral effect indicates that microwaves may be hazardous depends on our having a complete description of the experiment and on our criteria of behavioral toxicity.

  18. Planetary habitability: lessons learned from terrestrial analogues

    NASA Astrophysics Data System (ADS)

    Preston, Louisa J.; Dartnell, Lewis R.

    2014-01-01

    Terrestrial analogue studies underpin almost all planetary missions and their use is essential in the exploration of our Solar system and in assessing the habitability of other worlds. Their value relies on the similarity of the analogue to its target, either in terms of their mineralogical or geochemical context, or current physical or chemical environmental conditions. Such analogue sites offer critical ground-truthing for astrobiological studies on the habitability of different environmental parameter sets, the biological mechanisms for survival in extreme environments and the preservation potential and detectability of biosignatures. The 33 analogue sites discussed in this review have been selected on the basis of their congruence to particular extraterrestrial locations. Terrestrial field sites that have been used most often in the literature, as well as some lesser known ones which require greater study, are incorporated to inform on the astrobiological potential of Venus, Mars, Europa, Enceladus and Titan. For example, the possibility of an aerial habitable zone on Venus has been hypothesized based on studies of life at high-altitudes in the terrestrial atmosphere. We also demonstrate why many different terrestrial analogue sites are required to satisfactorily assess the habitability of the changing environmental conditions throughout Martian history, and recommend particular sites for different epochs or potential niches. Finally, habitable zones within the aqueous environments of the icy moons of Europa and Enceladus and potentially in the hydrocarbon lakes of Titan are discussed and suitable analogue sites proposed. It is clear from this review that a number of terrestrial analogue sites can be applied to multiple planetary bodies, thereby increasing their value for astrobiological exploration. For each analogue site considered here, we summarize the pertinent physiochemical environmental features they offer and critically assess the fidelity with which

  19. Study of photon-magnon coupling in a YIG-film split-ring resonant system

    NASA Astrophysics Data System (ADS)

    Bhoi, B.; Cliff, T.; Maksymov, I. S.; Kostylev, M.; Aiyar, R.; Venkataramani, N.; Prasad, S.; Stamps, R. L.

    2014-12-01

    By using the stripline Microwave Vector-Network Analyser Ferromagnetic Resonance and Time Domain spectroscopy techniques, we study a strong coupling regime of magnons to microwave photons in the planar geometry of a lithographically formed split-ring resonator (SRR) loaded by a single-crystal epitaxial yttrium-iron-garnet (YIG) film. Strong anti-crossing of the photon modes of SRR and of the magnon modes of the YIG film is observed in the applied-magnetic-field resolved measurements. The coupling strength extracted from the experimental data reaches 9% at 3 GHz. Theoretically, we propose an equivalent circuit model of the SRR loaded by a magnetic film. This model follows from the results of our numerical simulations of the microwave field structure of the SRR and of the magnetisation dynamics in the YIG film driven by the microwave currents in the SRR. The results obtained with the equivalent-circuit model are in good agreement with the experiment. This model provides a simple physical explanation of the process of mode anti-crossing. Our findings are important for future applications in microwave quantum photonic devices as well as in nonlinear and magnetically tuneable metamaterials exploiting the strong coupling of magnons to microwave photons.

  20. Microwave excitation of spin wave beams in thin ferromagnetic films

    PubMed Central

    Gruszecki, P.; Kasprzak, M.; Serebryannikov, A. E.; Krawczyk, M.; Śmigaj, W.

    2016-01-01

    An inherent element of research and applications in photonics is a beam of light. In magnonics, which is the magnetic counterpart of photonics, where spin waves are used instead of electromagnetic waves to transmit and process information, the lack of a beam source limits exploration. Here, we present an approach enabling generation of narrow spin wave beams in thin homogeneous nanosized ferromagnetic films by microwave current. We show that the desired beam-type behavior can be achieved with the aid of a properly designed coplanar waveguide transducer generating a nonuniform microwave magnetic field. We test this idea using micromagnetic simulations, confirming numerically that the resulting spin wave beams propagate over distances of several micrometers. The proposed approach requires neither inhomogeneity of the ferromagnetic film nor nonuniformity of the biasing magnetic field. It can be generalized to different magnetization configurations and yield multiple spin wave beams of different width at the same frequency. PMID:26971711

  1. Presence of cobalamin analogues in animal tissues

    PubMed Central

    Kondo, Haruki; Kolhouse, Fred; Allen, Robert H.

    1980-01-01

    Cobalamin (Cbl, vitamin B-12) has been extracted and isolated from a number of animal tissues by using (i) reverse-affinity chromatography on R protein-Sepharose followed by adsorption to and elution from charcoal-coated agarose and (ii) paper chromatography. Radioisotope dilution assays showed that only 75-97% of the Cbl chromatographed in the position of crystalline Cbl. The remaining 3-25% was present in a number of slower and faster moving fractions. This suggested that Cbl analogues are present in animal tissues because appropriate controls ruled out the possibility that this material was artifactually derived from Cbl during the extraction and purification procedures. With a large-scale isolation from rabbit kidney, the material in five such fractions contained cobalt and had absorption spectra that were similar to but different from the spectrum of Cbl, indicating that they were Cbl analogues. Compared to Cbl, these Cbl analogues had decreased but definite affinities for Cbl-binding proteins with the following order of strength of binding: R protein > transcobalamin II > intrinsic factor. Compared to Cbl, they also had decreased but definite growth-promoting activity for two microorganisms, Euglena gracilis and Lactobacillus leichmannii, which require Cbl for growth. These Cbl analogues differed from each other and from 18 synthetic Cbl analogues, including the most common Cbl analogues synthesized by microorganisms, in at least one of the above features. These studies indicate that animal tissues contain a number of Cbl analogues whose origins, structures, and biologic activities remain to be determined. PMID:6928681

  2. Path Entanglement of Continuous-Variable Quantum Microwaves

    NASA Astrophysics Data System (ADS)

    Menzel, E. P.; Deppe, F.; Eder, P.; Zhong, L.; Haeberlein, M.; Baust, A.; Hoffmann, E.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ballester, D.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.

    2013-03-01

    Entanglement is a quantum mechanical phenomenon playing a key role in quantum communication and information processing protocols. Here, we report on frequency-degenerate entanglement between continuous-variable quantum microwaves propagating along two separated paths. In our experiment, we combine a squeezed and a vacuum state via a beam splitter. Overcoming the challenges imposed by the low photon energies in the microwave regime, we reconstruct the squeezed state and, independently from this, detect and quantify the produced entanglement via correlation measurements (E. P. Menzel et al., arXiv:1210.4413). Our work paves the way towards quantum communication and teleportation with continuous variables in the microwave regime. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED and PROMISCE, MEXT Kakenhi ``Quantum Cybernetics'', JSPS FIRST Program, the NICT Commissioned Research, EPSRC EP/H050434/1, Basque Government IT472-10, and Spanish MICINN FIS2009-12773-C02-01.

  3. Microwaves and particle accelerators: a fundamental link

    SciTech Connect

    Chattopadhyay, Swapan

    2011-07-01

    John Cockcroft's splitting of the atom and Ernest Lawrence's invention of the cyclotron in the first half of the twentieth century ushered in the grand era of ever higher energy particle accelerators to probe deeper into matter. It also forged a link, bonding scientific discovery with technological innovation that continues today in the twenty first century. The development of radar and high power vacuum electronics, especially microwave power tubes like the magnetrons and the klystrons in the pre-second world war era, was instrumental in the rapid development of circular and linear charged particle accelerators in the second half of the twentieth century. We had harnessed the powerful microwave radio-frequency sources from few tens of MHz to up to 90 GHz spanning L-band to W-band frequencies. Simultaneously in the second half of the twentieth century, lasers began to offer very first opportunities of controlling charged particles at smaller resolutions on the scale of wavelengths of visible light. We also witnessed in this period the emergence of the photon and neutron sciences driven by accelerators built-by-design producing tailored and ultra-bright pulses of bright photons and neutrons to probe structure and function of matter from aggregate to individual molecular and atomic scales in unexplored territories in material and life sciences. As we enter the twenty first century, the race for ever higher energies, brightness and luminosity to probe atto-metric and atto-second domains of the ultra-small structures and ultra-fast processes continues. These developments depend crucially on yet further advancements in the production and control of high power and high frequency microwaves and light sources, often intricately coupled in their operation to the high energy beams themselves. We give a glimpse of the recent developments and innovations in the electromagnetic production and control of charged particle beams in the service of science and society. (author)

  4. Coulomb Bound States of Strongly Interacting Photons

    NASA Astrophysics Data System (ADS)

    Maghrebi, M. F.; Gullans, M. J.; Bienias, P.; Choi, S.; Martin, I.; Firstenberg, O.; Lukin, M. D.; Büchler, H. P.; Gorshkov, A. V.

    2015-09-01

    We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasibound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wave function resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.

  5. Standoff detection of large organic molecules using Rydberg fingerprint spectroscopy and microwave Rayleigh scattering

    SciTech Connect

    Rudakov, Fedor M; Zhang, Zhili

    2012-01-01

    We present a technique for nonintrusive and standoff detection of large organic molecules using coherent microwave Rayleigh scattering from plasma produced by structure sensitive photoionization through Rydberg states. We test the method on 1,4-diazobicyclooctane. Transitions between the 3s Rydberg state and higher lying Rydberg states are probed using two-color photoionization with 266?nm photons and photons in the range of 460-2400 nm. Photoionization is detected using microwave radiation, which is scattered by the unbounded electrons. Highly resolved Rydberg spectra are acquired in vacuum and in air.

  6. The Canadian Analogue Research Network (CARN): Opportunities for Mars Analogue Studies in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Berinstain, A.; Lebeuf, M.; Léveillé, R.

    2006-10-01

    The Canadian Analogue Research Network has been established by the Canadian Space Agency. This network of analogue sites, many of which are in the Arctic, provides a unique opportunity to further our understanding of the polar regions of Earth and Mars.

  7. Specific effects in microwave chemistry explored through reactor vessel design, theory, and spectroscopy.

    PubMed

    Ashley, Bridgett; Lovingood, Derek D; Chiu, Yu-Che; Gao, Hanwei; Owens, Jeffery; Strouse, Geoffrey F

    2015-11-01

    Microwave chemistry has revolutionized synthetic methodology for the preparation of organics, pharmaceuticals, materials, and peptides. The enhanced reaction rates commonly observed in a microwave have led to wide speculation about the function of molecular microwave absorption and whether the absorption leads to microwave specific effects and enhanced molecular heating. The comparison of theoretical modeling, reactor vessel design, and dielectric spectroscopy allows the nuance of the interaction to be directly understood. The study clearly shows an unaltered silicon carbide vessel allows measurable microwave penetration and therefore, molecular absorption of the microwave photons by the reactants within the reaction vessel cannot be ignored when discussing the role of molecular heating in enhanced molecular reactivity for microwave synthesis. The results of the study yield an improved microwave reactor vessel design that eliminates microwave leakage into the reaction volume by incorporating a noble metal surface layer onto a silicon carbide reaction vessel. The systematic study provides the necessary theory and measurements to better inform the arguments in the field.

  8. Microwave-induced direct spin-flip transitions in mesoscopic Pd/Co heterojunctions

    NASA Astrophysics Data System (ADS)

    Pietsch, Torsten; Egle, Stefan; Keller, Martin; Fridtjof-Pernau, Hans; Strigl, Florian; Scheer, Elke

    2016-09-01

    We experimentally investigate the effect of resonant microwave absorption on the magneto-conductance of tunable Co/Pd point contacts. At the interface a non-equilibrium spin accumulation is created via microwave absorption and can be probed via point contact spectroscopy. We interpret the results as a signature of direct spin-flip excitations in Zeeman-split spin-subbands within the Pd normal metal part of the junction. The inverse effect, which is associated with the emission of a microwave photon in a ferromagnet/normal metal point contact, can also be detected via its unique signature in transport spectroscopy.

  9. Optical Measurements of Strong Microwave Fields with Rydberg Atoms in a Vapor Cell

    NASA Astrophysics Data System (ADS)

    Anderson, D. A.; Miller, S. A.; Raithel, G.; Gordon, J. A.; Butler, M. L.; Holloway, C. L.

    2016-03-01

    We present a spectral analysis of Rydberg atoms in strong microwave fields using electromagnetically induced transparency (EIT) as an all-optical readout. The measured spectroscopic response enables optical, atom-based electric-field measurements of high-power microwaves. In our experiments, microwaves are irradiated into a room-temperature rubidium vapor cell. The microwaves are tuned near the two-photon 65 D -66 D Rydberg transition and reach an electric-field strength of 230 V /m , about 20% of the microwave-ionization threshold of these atoms. A Floquet treatment is used to model the Rydberg-level energies and their excitation rates. We arrive at an empirical model for the field-strength distribution inside the spectroscopic cell that yields excellent overall agreement between the measured and calculated Rydberg EIT-Floquet spectra. Using spectral features in the Floquet maps, we achieve an absolute strong-field measurement precision of 6%.

  10. Microwave platform as a valuable tool for characterization of nanophotonic devices

    PubMed Central

    Shishkin, Ivan; Baranov, Dmitry; Slobozhanyuk, Alexey; Filonov, Dmitry; Lukashenko, Stanislav; Samusev, Anton; Belov, Pavel

    2016-01-01

    The rich potential of the microwave experiments for characterization and optimization of optical devices is discussed. While the control of the light fields together with their spatial mapping at the nanoscale is still laborious and not always clear, the microwave setup allows to measure both amplitude and phase of initially determined magnetic and electric field components without significant perturbation of the near-field. As an example, the electromagnetic properties of an add-drop filter, which became a well-known workhorse of the photonics, is experimentally studied with the aid of transmission spectroscopy measurements in optical and microwave ranges and through direct mapping of the near fields at microwave frequencies. We demonstrate that the microwave experiments provide a unique platform for the comprehensive studies of electromagnetic properties of micro- and nanophotonic devices, and allow to obtain data which are hardly acquirable by conventional optical methods. PMID:27759058

  11. RR photons

    NASA Astrophysics Data System (ADS)

    Cámara, Pablo G.; Ibáñez, Luis E.; Marchesano, Fernando

    2011-09-01

    Type II string compactifications to 4d generically contain massless Ramond-Ramond U(1) gauge symmetries. However there is no massless matter charged under these U(1)'s, which makes a priori difficult to measure any physical consequences of their existence. There is however a window of opportunity if these RR U(1)'s mix with the hypercharge U(1) Y (hence with the photon). In this paper we study in detail different avenues by which U(1) RR bosons may mix with D-brane U(1)'s. We concentrate on Type IIA orientifolds and their M-theory lift, and provide geometric criteria for the existence of such mixing, which may occur either via standard kinetic mixing or via the mass terms induced by Stückelberg couplings. The latter case is particularly interesting, and appears whenever D-branes wrap torsional p-cycles in the compactification manifold. We also show that in the presence of torsional cycles discrete gauge symmetries and Aharanov-Bohm strings and particles appear in the 4d effective action, and that type IIA Stückelberg couplings can be understood in terms of torsional (co)homology in M-theory. We provide examples of Type IIA Calabi-Yau orientifolds in which the required torsional cycles exist and kinetic mixing induced by mass mixing is present. We discuss some phenomenological consequences of our findings. In particular, we find that mass mixing may induce corrections relevant for hypercharge gauge coupling unification in F-theory SU(5) GUT's.

  12. New opportunities and emerging themes of research in microwave spectroscopy.

    PubMed

    Walker, Nicholas R

    2007-12-15

    It is easy to set a frisbee spinning but hard to flip a javelin end-over-end. The properties of a rotating body are determined by its moment of inertia. Changes in the energy associated with the rotation of a single molecule are incremental, or quantized, in contrast with the everyday examples of the frisbee and the javelin. Only photons with energies that correspond to specific discrete frequencies of electromagnetic radiation can be absorbed or emitted to cause transitions between different rotational energy levels. Photons that cause rotational transitions generally have microwave or millimetre-wave frequencies. Microwave spectroscopy thus provides a basis for exploring molecular structure through studies of molecular rotation. The first experiments involving microwave spectroscopy exploited technology developed for radio detection and ranging during the Second World War. Microwave spectroscopy is now being applied to study chemical reactions significant in atmospheric chemistry and to probe superfluidity in Hen clusters. This article reviews the research themes that were the focus of the past 50 years and surveys new opportunities.

  13. Photon-Photon Collisions -- Past and Future

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2005-12-02

    I give a brief review of the history of photon-photon physics and a survey of its potential at future electron-positron colliders. Exclusive hadron production processes in photon-photon and electron-photon collisions provide important tests of QCD at the amplitude level, particularly as measures of hadron distribution amplitudes. There are also important high energy {gamma}{gamma} and e{gamma} tests of quantum chromodynamics, including the production of jets in photon-photon collisions, deeply virtual Compton scattering on a photon target, and leading-twist single-spin asymmetries for a photon polarized normal to a production plane. Since photons couple directly to all fundamental fields carrying the electromagnetic current including leptons, quarks, W's and supersymmetric particles, high energy {gamma}{gamma} collisions will provide a comprehensive laboratory for Higgs production and exploring virtually every aspect of the Standard Model and its extensions. High energy back-scattered laser beams will thus greatly extend the range of physics of the International Linear Collider.

  14. Carbon and silicate grains in the laboratory as analogues of cosmic dust.

    PubMed

    Mennella, V; Brucato, J R; Colangeli, L

    2001-03-15

    Carbon and silicate grains are the two main components of cosmic dust. There is increasing spectroscopic evidence that their composition varies according to the cosmic environment and the experienced processing. Irradiation from ultraviolet photons and cosmic rays, as well as chemical interactions with the interstellar gas play a crucial role for grain transformation. The study of 'laboratory analogues' represents a powerful tool to better understand the nature and evolution of cosmic materials. In particular, simulations of grain processing are fundamental to outline an evolutionary pathway for interstellar particles. In the present work, we discuss the ultraviolet and infrared spectral changes induced by thermal annealing, ultraviolet irradiation, ion irradiation and hydrogen atom bombardment in carbon and silicate analogue materials. The laboratory results give the opportunity to shed light on the long-standing problems of the attribution of ultraviolet and infrared interstellar spectral features.

  15. Microwave readout of Majorana qubits

    NASA Astrophysics Data System (ADS)

    Ohm, C.; Hassler, F.

    2015-02-01

    Majorana qubits offer a promising way to store and manipulate quantum information by encoding it into the state of Majorana zero modes. As the information is stored in a topological property of the system, local noise cannot lead to decoherence. Manipulation of the information is achieved by braiding the zero modes. The measurement, however, is challenging as the information is well hidden and thus inherently hard to access. Here, we discuss a setup for measuring the state of a Majorana qubit by employing standard tools of microwave engineering. The basic physical effect that we employ is the fact that a voltage-biased Josephson junction hosting Majorana fermions allows photons to be emitted and absorbed at half the Josephson frequency. We show that in the dispersive regime, our setup allows us to perform a quantum nondemolition measurement and to reach the quantum limit. An appealing feature of our setup is that the interaction of the Majorana qubit with the measurement device can be turned on and off at will by changing the dc bias of the junction.

  16. MICROWAVE TECHNOLOGY CHEMICAL SYNTHESIS APPLICATIONS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses in various solvents as well as under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although th...

  17. Synthesis and anticancer evaluation of spermatinamine analogues.

    PubMed

    Moosa, Basem A; Sagar, Sunil; Li, Song; Esau, Luke; Kaur, Mandeep; Khashab, Niveen M

    2016-03-15

    Spermatinamine was isolated from an Australian marine sponge, Pseudoceratina sp. as an inhibitor of isoprenylcysteine carboxyl methyltransferase (Icmt), an attractive and novel anticancer target. Herein, we report the synthesis of spermatinamine analogues and their cytotoxic evaluation against three human cancer cell lines, that is, cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF-7), and prostate carcinoma (DU145). Analogues 12, 14 and 15 were found to be the most potent against one or more cell lines with the IC50 values in the range of 5-10 μM. The obtained results suggested that longer polyamine linker along with aromatic oxime substitution provided the most potent analogue compounds against cancer cell lines. PMID:26874403

  18. Dolastatin 11 conformations, analogues and pharmacophore.

    PubMed

    Ali, Md Ahad; Bates, Robert B; Crane, Zackary D; Dicus, Christopher W; Gramme, Michelle R; Hamel, Ernest; Marcischak, Jacob; Martinez, David S; McClure, Kelly J; Nakkiew, Pichaya; Pettit, George R; Stessman, Chad C; Sufi, Bilal A; Yarick, Gayle V

    2005-07-01

    Twenty analogues of the natural antitumor agent dolastatin 11, including majusculamide C, were synthesized and tested for cytotoxicity against human cancer cells and stimulation of actin polymerization. Only analogues containing the 30-membered ring were active. Molecular modeling and NMR evidence showed the low-energy conformations. The amide bonds are all trans except for the one between the Tyr and Val units, which is cis. Since an analogue restricted to negative 2-3-4-5 angles stimulated actin polymerization but was inactive in cells, the binding conformation (most likely the lowest-energy conformation in water) has a negative 2-3-4-5 angle, whereas a conformation with a positive 2-3-4-5 angle (most likely the lowest energy conformation in chloroform) goes through cell walls. The highly active R alcohol from borohydride reduction of dolastatin 11 is a candidate for conversion to prodrugs.

  19. Nuclear photonics

    SciTech Connect

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-09

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of

  20. Nuclear photonics

    NASA Astrophysics Data System (ADS)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  1. Stability of carbonaceous dust analogues and glycine under UV irradiation and electron bombardment.

    PubMed

    Maté, Belén; Tanarro, Isabel; Moreno, Miguel A; Jiménez-Redondo, Miguel; Escribano, Rafael; Herrero, Víctor J

    2014-01-01

    The effect of UV photon (120-200 nm) and electron (2 keV) irradiation of analogues of interstellar carbonaceous dust and of glycine were investigated by means of IR spectroscopy. Films of hydrogenated amorphous carbon (HAC), taken as dust analogues, were found to be stable under UV photon and electron bombardment. High fluences of photons and electrons, of the order of 10(19) cm(-2), were needed for a film depletion of a few percent. UV photons were energetically more effective than electrons for depletion and led to a certain dehydrogenation of the HAC samples, whereas electrons led seemingly to a gradual erosion with no appreciable changes in the hydrocarbon structure. The rates of change observed may be relevant over the lifetime of a diffuse cloud, but cannot account for the rapid changes in hydrocarbon IR bands during the evolution of some proto-planetary nebulae. Glycine samples under the same photon and electron fluxes decay at a much faster rate, but tend usually to an equilibrium value different from zero, especially at low temperatures. Reversible reactions re-forming glycine, or the build-up of less transparent products, could explain this behavior. CO2 and methylamine were identified as UV photoproducts. Electron irradiation led to a gradual disappearance of the glycine layers, also with formation of CO2. No other reaction products were clearly identified. The thicker glycine layers (a few hundred nm) were not wholly depleted, but a film of the order of the electron penetration depth (80 nm), was totally destroyed with an electron fluence of -1 x 10(18) cm(-2). A 60 nm ice layer on top of glycine provided only partial shielding from the 2 keV electrons. From an energetic point of view, 2 keV electrons are less efficient than UV photons and, according to literature data, much less efficient than MeV protons for the destruction of glycine. The use of keV electrons to simulate effects of cosmic rays on analogues of interstellar grains should be taken with

  2. Uniform batch processing using microwaves

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Jackson, Henry W. (Inventor)

    2000-01-01

    A microwave oven and microwave heating method generates microwaves within a cavity in a predetermined mode such that there is a known region of uniform microwave field. Samples placed in the region will then be heated in a relatively identical manner. Where perturbations induced by the samples are significant, samples are arranged in a symmetrical distribution so that the cumulative perturbation at each sample location is the same.

  3. Classical Simulated Annealing Using Quantum Analogues

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.; Troupe, James E.; Mark, Hans M.

    2016-08-01

    In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simultaneous spin flips at each annealing step as an analogue to quantum spin coherence as well as modifications of the Boltzmann acceptance probability to mimic quantum tunneling. We find that the use of multiple spin flips can indeed be advantageous under certain annealing schedules, but only for long anneal times.

  4. Optomechanics with microwave light

    NASA Astrophysics Data System (ADS)

    Lehnert, Konrad

    2009-03-01

    Recently, superconducting circuits resonant at microwave frequencies have revolutionized the measurement of astrophysical detectors [1] and superconducting qubits [2]. In this talk, I will describe how we extend this technique to measuring and manipulating nanomechanical oscillators. By strongly coupling the motion of a nanomechanical oscillator to the resonance of the microwave circuit we create structures where the dominant dissipative force acting on the oscillator is the radiation pressure of microwave ``light'' [3]. These devices are ultrasensitive force detectors and they allow us to cool the oscillator towards its motional ground state. [4pt] [1] P. K. Day et al., Nature 425, 817 (2003).[0pt] [2] A. Wallraff et al., Nature 431, 162 (2004).[0pt] [3] J. D. Teufel, J. W. Harlow, C. A. Regal and K. W. Lehnert, Phys. Rev. Lett., 101, 197203 (2008).

  5. Physics of the Microwave Oven

    ERIC Educational Resources Information Center

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  6. Microwave-assisted Chemical Transformations

    EPA Science Inventory

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  7. Aqueous microwaves assisted cross-coupling reactions applied to unprotected nucleosides.

    NASA Astrophysics Data System (ADS)

    Len, Christophe; Hervé, Gwénaelle

    2015-02-01

    Nucleoside analogues have attracted much attention due to their potential biological activities. Amongst all synthetic nucleosides, C5-modified pyrimidines and C7- or C8-modified purines have mostly been prepared using palladium cross-coupling reactions and then studied as antitumoral and antiviral agents. Our objective is to focus this review on the Suzuki-Miyaura and on the Heck cross-couplings of nucleosides using microwave irradiations which are an alternative technology compatible with green chemistry and sustainable development.

  8. Microwave Frequency Polarizers

    NASA Technical Reports Server (NTRS)

    Ha, Vien The; Mirel, Paul; Kogut, Alan J.

    2013-01-01

    This article describes the fabrication and analysis of microwave frequency polarizing grids. The grids are designed to measure polarization from the cosmic microwave background. It is effective in the range of 500 to 1500 micron wavelength. It is cryogenic compatible and highly robust to high load impacts. Each grid is fabricated using an array of different assembly processes which vary in the types of tension mechanisms to the shape and size of the grids. We provide a comprehensive study on the analysis of the grids' wire heights, diameters, and spacing.

  9. High power microwave generator

    DOEpatents

    Minich, Roger W.

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  10. Metallic photonic crystals for thermophotovoltaic applications

    NASA Astrophysics Data System (ADS)

    Walsh, Timothy A.

    can be measured. It is found that by concentrating the thermal emission in a narrow band at the photovoltaic cell bandgap energy, the photonic crystal radiator can produce approximate 80% of the electrical power density that is possible with the blackbody while increasing the efficiency of the energy conversion by a significant amount. Photonic crystal manufacture is studied with the fabrication of a six layer copper woodpile structure. The fabrication proceeds with a layer by layer technique utilizing 8" silicon wafer substrates. Back end of the line integrated circuit manufacturing techniques are used to fabricate this interconnected multilayer structure. The completed wafers show good uniformity die to die and within a single die, demonstrating the feasibility of large scale production of woodpile photonic crystal structures. Structural and optical characterization of the fabricated woodpile are presented. The final section of this work deals with materials considerations for short wavelength high temperature photonic crystal emitters. In the mid infrared and microwave region of the electromagnetic spectrum, all metals effectively behave as ideal conductors. However at shorter wavelengths, material absorption increases and has a significant effect on the optical properties of a woodpile photonic crystal designed for operation at these wavelengths. Tungsten was explored for woodpile photonic crystal thermal emitters due to its high melting point, however the optical properties are not well suited to devices with emission peaks below ˜2 mum. Iridium is an alternate high temperature material with more ideal optical behavior in the 1--2 mum range than tungsten. It is found that by coating tungsten woodpile structures with a thin layer of iridium using atomic layer deposition, the photonic band edge can be moved below 1 mum, which was not possible in tungsten simply by scaling the feature sizes to smaller values.

  11. Entanglement transfer from microwaves to diamond NV centers

    NASA Astrophysics Data System (ADS)

    Gomez, Angela V.; Rodriguez, Ferney J.; Quiroga, Luis

    2014-03-01

    Strong candidates to create quantum entangled states in solid-state environments are the nitrogen-vacancy (NV) defect centers in diamond. By the combination of radiation from different wavelength (optical, microwave and radio-frequency), several protocols have been proposed to create entangled states of different NVs. Recently, experimental sources of non-classical microwave radiation have been successfully realized. Here, we consider the entanglement transfer from spatially separated two-mode microwave squeezed (entangled) photons to a pair of NV centers by exploiting the fact that the spin triplet ground state of a NV has a natural splitting with a frequency on the order of GHz (microwave range). We first demonstrate that the transfer process in the simplest case of a single pair of spatially separated NVs is feasible. Moreover, we proceed to extend the previous results to more realistic scenarios where 13C nuclear spin baths surrounding each NV are included, quantifying the degradation of the entanglement transfer by the dephasing/dissipation effects produced by the nuclear baths. Finally, we address the issue of assessing the possibility of entanglement transfer from the squeezed microwave light to two nuclear spins closely linked to different NV center electrons. Facultad de Ciencias Uniandes.

  12. Cotton-yarn/TiO {2} dispersed resin photonic crystals with straight and wavy structures

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.; Kobayashi, T.; Kirihara, S.; Miyamoto, Y.; Sakoda, K.

    2004-06-01

    The feasibility of three-dimensional (3-D) photonic crystals made using textile technology was investigated. Three different textures consisting of the cotton-yarn and TiO2 dispersed resin; a crossed linear-yarn laminated fabric, a multi layered woven fabric, and a 3-D woven fabric, were fabricated. The microwave attenuation of the transmission amplitude through these photonic crystals was measured. The straight cotton-yarn as well as the wavy cotton-yarn/TiO2 dispersed resin photonic crystals exhibited band gaps in the 6 to 15 GHz range. Thus, we could fabricate successfully 3-D photonic crystals using textile technology.

  13. Microwave Oscillators Based on Nonlinear WGM Resonators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry

    2006-01-01

    Optical oscillators that exploit resonantly enhanced four-wave mixing in nonlinear whispering-gallery-mode (WGM) resonators are under investigation for potential utility as low-power, ultra-miniature sources of stable, spectrally pure microwave signals. There are numerous potential uses for such oscillators in radar systems, communication systems, and scientific instrumentation. The resonator in an oscillator of this type is made of a crystalline material that exhibits cubic Kerr nonlinearity, which supports the four-photon parametric process also known as four-wave mixing. The oscillator can be characterized as all-optical in the sense that the entire process of generation of the microwave signal takes place within the WGM resonator. The resonantly enhanced four-wave mixing yields coherent, phase-modulated optical signals at frequencies governed by the resonator structure. The frequency of the phase-modulation signal, which is in the microwave range, equals the difference between the frequencies of the optical signals; hence, this frequency is also governed by the resonator structure. Hence, further, the microwave signal is stable and can be used as a reference signal. The figure schematically depicts the apparatus used in a proof-of-principle experiment. Linearly polarized pump light was generated by an yttrium aluminum garnet laser at a wavelength of 1.32 microns. By use of a 90:10 fiber-optic splitter and optical fibers, some of the laser light was sent into a delay line and some was transmitted to one face of glass coupling prism, that, in turn, coupled the laser light into a crystalline CaF2 WGM disk resonator that had a resonance quality factor (Q) of 6x10(exp 9). The output light of the resonator was collected via another face of the coupling prism and a single-mode optical fiber, which transmitted the light to a 50:50 fiber-optic splitter. One output of this splitter was sent to a slow photodiode to obtain a DC signal for locking the laser to a particular

  14. Transient evolution of a photon gas in the nonlinear QED vacuum

    SciTech Connect

    Wu, S Q; Hartemann, F V

    2011-10-04

    Thermally induced vacuum polarization stemming from QED radiative corrections to the electromagnetic field equations is studied. The physical behavior of thermal radiation, in the nonlinear QED vacuum first described by Heisenberg and Euler, is a problem of some theoretical importance in view of its relation to the cosmic microwave background (CMB), early universe evolution, and Hawking-Unruh radiation. The questions of evolution toward equilibrium, stability, and invariance of thermal radiation under such conditions are of great interest. Our analysis presents novel aspects associated with photon-photon scattering in a photon gas in the framework of quantum kinetic theory. Within the context of the Euler-Heisenberg theory, we show that a homogeneous, isotropic photon gas with arbitrary spectral distribution function evolves toward an equilibrium state with a Bose-Einstein distribution. The transient evolution toward equilibrium of a gas of photons undergoing photon-photon scattering is studied in detail via the Boltzmann transport equation.

  15. Controllable photon source

    NASA Astrophysics Data System (ADS)

    Oszetzky, Dániel; Nagy, Attila; Czitrovszky, Aladár

    2006-10-01

    We have developed our pervious experimental setup using correlated photon pairs (to the calibration of photo detectors) to realize a controllable photon source. For the generation of such photon pairs we use the non-linear process of parametric down conversion. When a photon of the pump beam is incident to a nonlinear crystal with phase matching condition, a pair of photons (signal and idler) is created at the same time with certain probability. We detect the photons in the signal beam with a single photon counting module (SPCM), while delaying those in the idler beam. Recently we have developed a fast electronic unit to control an optical shutter (a Pockels cell) placed to the optical output of the idler beam. When we detect a signal photon with the controlling electronic unit we are also able to open or close the fast optical shutter. Thus we can control which idler photons can propagate through the Pockels cell. So with this photon source we are able to program the number of photons in a certain time window. This controllable photon source that is able to generate a known number of photons with specified wavelength, direction, and polarization could be useful for applications in high-accuracy optical characterisation of photometric devices at the ultra-low intensities. This light source can also serve as a standard in testing of optical image intensifiers, night vision devices, and in the accurate measurement of spectral distribution of transmission and absorption in optical materials.

  16. Non-military microwave applications

    NASA Astrophysics Data System (ADS)

    Bierman, Howard

    1990-04-01

    The nonmilitary applications of microwave technology in medicine, communications, and agriculture are discussed. Particular attention is given to a microwave multichannel multipoint video distribution system (a broadcasting system with up to 20 programs drawn from satellites, video tape libraries, and locally generated material); microwaves used in DBS distribution; satellite receivers for data communications; microwave thermography used for early cancer detection, brain temperature measurements, and appendicitis diagnosis; an experimental Doppler radar assembly for guiding robots walking on a factory floor; and an agricultural application where microwaves are used to break down slugs in soil and thus improve potato and grain crops. Schematic diagrams are included.

  17. Advantages of Photon Counting Detectors for Terahertz Astronomy

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroshi; Ezawa, Hajime

    2016-08-01

    For astronomical observation at terahertz frequencies, a variety of cryogenic detector technologies are being developed to achieve background-limited observation from space, where a noise equivalent power (NEP) of less than 10^{-18} W/Hz^{0.5} is often required. When each photon signal is resolved in time, the requirements on NEP are reduced and 1 ns time resolution corresponds to an NEP of approximately 10^{-17} W/Hz^{0.5} at THz frequencies. Furthermore, fast photon counting detectors have a high dynamic range to observe bright terahertz sources such as stars and active galactic nuclei. Applications of photon counting detector are discussed for cosmic microwave background and photon counting terahertz interferometry.

  18. One Photon Can Simultaneously Excite Two or More Atoms.

    PubMed

    Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-22

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  19. One Photon Can Simultaneously Excite Two or More Atoms.

    PubMed

    Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-22

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems. PMID:27494471

  20. One Photon Can Simultaneously Excite Two or More Atoms

    NASA Astrophysics Data System (ADS)

    Garziano, Luigi; Macrı, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-01

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  1. Pyridopyrimidine analogues as novel adenosine kinase inhibitors.

    PubMed

    Zheng, G Z; Lee, C; Pratt, J K; Perner, R J; Jiang, M Q; Gomtsyan, A; Matulenko, M A; Mao, Y; Koenig, J R; Kim, K H; Muchmore, S; Yu, H; Kohlhaas, K; Alexander, K M; McGaraughty, S; Chu, K L; Wismer, C T; Mikusa, J; Jarvis, M F; Marsh, K; Kowaluk, E A; Bhagwat, S S; Stewart, A O

    2001-08-20

    A novel series of pyridopyrimidine analogues 9 was identified as potent adenosine kinase inhibitors based on the SAR and computational studies. Substitution of the C7 position of the pyridopyrimidino core with C2' substituted pyridino moiety increased the in vivo potency and enhanced oral bioavailability of these adenosine kinase inhibitors.

  2. Analogues of thiolactomycin as potential antimalarial agents.

    PubMed

    Jones, Simon M; Urch, Jonathan E; Kaiser, Marcel; Brun, Reto; Harwood, John L; Berry, Colin; Gilbert, Ian H

    2005-09-22

    Analogues of the natural antibiotic thiolactomycin (TLM), an inhibitor of the condensing reactions of type II fatty acid synthase, were synthesized and evaluated for their ability to inhibit the growth of the malaria parasite Plasmodium falciparum. Alkylation of the C4 hydroxyl group led to the most significant increase in growth inhibition (over a 100-fold increase in activity compared to TLM). To investigate the mode of action, the P. falciparum KASIII enzyme was produced for inhibitor assay. A number of TLM derivatives were identified that showed improved inhibition of this enzyme compared to TLM. Structure-activity relationships for enzyme inhibition were identified for some series of TLM analogues, and these also showed weak correlation with inhibition of parasite growth, but this did not hold for other series. On the basis of the lack of a clear correlation between inhibition of pfKASIII activity and parasite growth, we conclude that pfKASIII is not the primary target of TLM analogues. Some of the analogues also inhibited the growth of the parasitic protozoa Trypanosoma cruzi, T. brucei, and Leishmania donovani.

  3. Dumb holes: analogues for black holes.

    PubMed

    Unruh, W G

    2008-08-28

    The use of sonic analogues to black and white holes, called dumb or deaf holes, to understand the particle production by black holes is reviewed. The results suggest that the black hole particle production is a low-frequency and low-wavenumber process.

  4. Stilbenophane analogues of deoxycombretastatin A-4.

    PubMed

    Mateo, Carmen; Pérez-Melero, Concepción; Peláez, Rafael; Medarde, Manuel

    2005-08-01

    A new family of polyoxygenated stilbenophanes has been synthesized as conformationally restricted analogues of antimitotic combretastatins. By means of the McMurry olefination process, compounds derived from diethyleneglycol and 1,6-hexanediol were obtained, whereas Grubbs' catalyst failed in producing the ring-closing metathesis to this kind of macrocyclic products.

  5. Analogue Representations of Spatial Objects and Tranformations.

    ERIC Educational Resources Information Center

    Cooper, Lynn A.

    Considerable discussion and debate have been devoted to the extent and nature of structural or functional correspondence between internal representations and their external visual counterparts. An analogue representation or process is one in which the relational structure of external events is preserved in the corresponding internal…

  6. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-03-01

    Project overview provides background on carbonic anhydrase transport mechanism for CO2 in the human body and proposed approach for ARPA-E project to create a synthetic enzyme analogue and utilize it in a membrane for CO2 capture from flue gas.

  7. Synthesis and antimicrobial activity of squalamine analogue.

    PubMed

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine. PMID:11003150

  8. Photonic crystal light source

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  9. Photonic Design for Photovoltaics

    SciTech Connect

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  10. Understanding Microwave Radiometers

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1986-01-01

    Report presents principles of microwave receivers for observing planetary surfaces from space. Report is tutorial and explains operation of receivers in detail to enable reader to specify and qualify them for spaceborne operation. Gives many examples to illustrate practical design procedures.

  11. Leakage of Microwave Ovens

    ERIC Educational Resources Information Center

    Abdul-Razzaq, W.; Bushey, R.; Winn, G.

    2011-01-01

    Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…

  12. Variable frequency microwave furnace system

    DOEpatents

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  13. Variable frequency microwave furnace system

    DOEpatents

    Bible, Don W.; Lauf, Robert J.

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  14. [Dmt(1)]DALDA analogues modified with tyrosine analogues at position 1.

    PubMed

    Cai, Yunxin; Lu, Dandan; Chen, Zhen; Ding, Yi; Chung, Nga N; Li, Tingyou; Schiller, Peter W

    2016-08-01

    Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent μ opioid agonist peptide with mitochondria-targeted antioxidant activity were prepared by replacing Dmt with various 2',6'-dialkylated Tyr analogues, including 2',4',6'-trimethyltyrosine (Tmt), 2'-ethyl-6'-methyltyrosine (Emt), 2'-isopropyl-6'-methyltyrosine (Imt) and 2',6'-diethyltyrosine (Det). All compounds were selective μ opioid agonists and the Tmt(1)-, Emt(1) and Det(1)-analogues showed subnanomolar μ opioid receptor binding affinities. The Tmt(1)- and Emt(1)-analogues showed improved antioxidant activity compared to the Dmt(1)-parent peptide in the DPPH radical-scavenging capacity assay, and thus are of interest as drug candidates for neuropathic pain treatment.

  15. [Dmt(1)]DALDA analogues modified with tyrosine analogues at position 1.

    PubMed

    Cai, Yunxin; Lu, Dandan; Chen, Zhen; Ding, Yi; Chung, Nga N; Li, Tingyou; Schiller, Peter W

    2016-08-01

    Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent μ opioid agonist peptide with mitochondria-targeted antioxidant activity were prepared by replacing Dmt with various 2',6'-dialkylated Tyr analogues, including 2',4',6'-trimethyltyrosine (Tmt), 2'-ethyl-6'-methyltyrosine (Emt), 2'-isopropyl-6'-methyltyrosine (Imt) and 2',6'-diethyltyrosine (Det). All compounds were selective μ opioid agonists and the Tmt(1)-, Emt(1) and Det(1)-analogues showed subnanomolar μ opioid receptor binding affinities. The Tmt(1)- and Emt(1)-analogues showed improved antioxidant activity compared to the Dmt(1)-parent peptide in the DPPH radical-scavenging capacity assay, and thus are of interest as drug candidates for neuropathic pain treatment. PMID:27301366

  16. The effective penetration distance of ultrahigh-energy electrons and photons traversing a cosmic blackbody photon gas

    NASA Technical Reports Server (NTRS)

    Gould, R. J.; Rephaeli, Y.

    1978-01-01

    The effective average energy loss for an energetic (at least about 10 to the 15th power eV) particle traversing the microwave background radiation is evaluated. Electron-photon transformations by Compton scattering and pair production (in photon-photon collisions) are computed, with the energy loss considered to be carried away by the least energetic of the outgoing particles. Considering the most energetic of the outgoing particles as the high-energy particle, the relative probability and mean time for the particle to be a photon or electron (or positron) is evaluated. The effects of synchrotron losses for electrons and positrons are emphasized and compared with Compton losses to determine a critical energy (for given magnetic field) above which synchrotron losses dominate. Magnetic deflections are also treated for the case where the magnetic field is disordered, having a characteristic 'cell' size.

  17. Sisyphus Thermalization of Photons in a Cavity-Coupled Double Quantum Dot.

    PubMed

    Gullans, M J; Stehlik, J; Liu, Y-Y; Eichler, C; Petta, J R; Taylor, J M

    2016-07-29

    We investigate the nonclassical states of light that emerge in a microwave resonator coupled to a periodically driven electron in a nanowire double quantum dot (DQD). Under certain drive configurations, we find that the resonator approaches a thermal state at the temperature of the surrounding substrate with a chemical potential given by a harmonic of the drive frequency. Away from these thermal regions we find regions of gain and loss, where the system can lase, or regions where the DQD acts as a single-photon source. These effects are observable in current devices and have broad utility for quantum optics with microwave photons. PMID:27517784

  18. High-Q Microsphere Cavity for Laser Stabilization and Optoelectronic Microwave

    NASA Technical Reports Server (NTRS)

    Ilchenko, V.; Yao, X.; Maleki, L.

    1999-01-01

    With submillimeter size and optical Q up to 10(sup 10), microspheres with whispering-gallery (WG) modes are attractive new component for fiber-optics/photonics applications and a potential core in ultra-compact high-spectral-purity optical and microwave oscillators.

  19. Ultrathin conformal coating for complex magneto-photonic structures.

    PubMed

    Pascu, Oana; Caicedo, José Manuel; López-García, Martín; Canalejas, Víctor; Blanco, Álvaro; López, Cefe; Arbiol, Jordi; Fontcuberta, Josep; Roig, Anna; Herranz, Gervasi

    2011-11-01

    We report on an extremely fast and versatile synthetic approach, based on microwave assisted sol-gel chemistry, that allows a conformal nanometric coating of intricate three-dimensional structures. Using this methodology, we have achieved a conformal coverage of large areas of three-dimensional opals with a superparamagnetic manganese ferrite layer, yielding magneto-photonic crystals with excellent quality. The use of a ternary oxide for the ultrathin coating demonstrates the potential of this methodology to realize three-dimensional structures with complex materials that may find applications beyond photonics, such as energy, sensing or catalysis. PMID:21987109

  20. Difference between a Photon's Momentum and an Atom's Recoil

    SciTech Connect

    Gibble, Kurt

    2006-08-18

    When an atom absorbs a photon from a laser beam that is not an infinite plane wave, the atom's recoil is less than ({Dirac_h}/2{pi})k in the propagation direction. We show that the recoils in the transverse directions produce a lensing of the atomic wave functions, which leads to a frequency shift that is not discrete but varies linearly with the field amplitude and strongly depends on the atomic state detection. The same lensing effect is also important for microwave atomic clocks. The frequency shifts are of the order of the naive recoil shift for the transverse wave vector of the photons.

  1. Pendellösung effect in photonic crystals

    NASA Astrophysics Data System (ADS)

    Savo, S.; di Gennaro, E.; Miletto, C.; Andreone, A.; Dardano, P.; Moretti, L.; Mocella, V.

    2008-06-01

    At the exit surface of a photonic crystal, the intensity of the diffracted wave can be periodically modulated, showing a maximum in the "positive" (forward diffracted) or in the "negative" (diffracted) direction, depending on the slab thickness. This thickness dependence is a direct result of the so-called Pendellosung phenomenon, consisting of the periodic exchange inside the crystal of the energy between direct and diffracted beams. We report the experimental observation of this effect in the microwave region at about 14 GHz by irradiating 2D photonic crystal slabs of different thickness and detecting the intensity distribution of the electromagnetic field at the exit surface and inside the crystal itself.

  2. Weak microwave can alleviate water deficit induced by osmotic stress in wheat seedlings.

    PubMed

    Chen, Yi-Ping; Jia, Jing-Fen; Han, Xiao-Ling

    2009-01-01

    The aim of the investigation is to determine the effect of microwave pretreatment of wheat seeds on the resistance of seedlings to osmotic stress. Changes in biophysical, physiological and biochemical characters were measured. The results showed: (1) The magnetic field intensity and seeds temperature increased progressively with microwave pretreatments of 5, 10, 15, 20 s and 25 s compared with controls. Although each microwave pretreatment resulted in an increase in alpha-amylase activity and photon emission intensity, the increase of alpha-amylase activity and photon emission intensity was maximal at a microwave pretreatment of 10 s. (2) Osmotic stress induced by PEG treatment enhanced the concentration of malondialdehyde, while decreasing the activities of nitricoxide synthase, catalase, peroxidase, superoxide dismutase and the concentration of nitric oxide, ascorbic acid, glutathione in the seedlings compared with controls. However, compared to osmotic stress alone, in the seedlings treated with microwave irradiation plus osmotic stress the concentration of malondialdehyde decreased, while the activities of nitricoxide synthase, catalase, peroxidase, superoxide dismutase and the concentration of nitric oxide, ascorbic acid and glutathione increased. These results suggest that a suitable dose of microwave radiation can enhance the capability to eliminate free radicals induced by osmotic stress in wheat seedlings resulting in an increase in resistance to osmotic stress.

  3. Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data: A wavelet analysis

    SciTech Connect

    Cabella, Paolo; Silk, Joseph; Natoli, Paolo

    2007-12-15

    We perform a wavelet analysis of the temperature and polarization maps of the cosmic microwave background (CMB) delivered by the Wilkinson Microwave Anisotropy Probe experiment in search for a parity-violating signal. Such a signal could be seeded by new physics beyond the standard model, for which the Lorentz and CPT symmetries may not hold. Under these circumstances, the linear polarization direction of a CMB photon may get rotated during its cosmological journey, a phenomenon also called cosmological birefringence. Recently, Feng et al. have analyzed a subset of the Wilkinson Microwave Anisotropy Probe and BOOMERanG 2003 angular power spectra of the CMB, deriving a constraint that mildly favors a nonzero rotation. By using wavelet transforms we set a tighter limit on the CMB photon rotation angle {delta}{alpha}=-2.5{+-}3.0 ({delta}{alpha}=-2.5{+-}6.0) at the one (two) {sigma} level, consistent with a null detection.

  4. Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors

    SciTech Connect

    Mazin, Benjamin A.; Bumble, Bruce; Day, Peter K.; Eckart, Megan E.; Golwala, Sunil; Zmuidzinas, Jonas; Harrison, Fiona A.

    2006-11-27

    The surface impedance of a superconductor changes when energy is absorbed and Cooper pairs are broken to produce single electron (quasiparticle) excitations. This change may be sensitively measured using a thin-film resonant circuit called a microwave kinetic inductance detector (MKID). The practical application of MKIDs for photon detection requires a method of efficiently coupling the photon energy to the MKID. The authors present results on position sensitive x-ray detectors made by using two aluminum MKIDs on either side of a tantalum photon absorber strip. Diffusion constants, recombination times, and energy resolution are reported. MKIDs can easily be scaled into large arrays.

  5. Evaluation the microwave heating of spinel crystals in high-level waste glass

    SciTech Connect

    Christian, J. H.; Washington, A. L.

    2015-08-18

    In this report, the microwave heating of a crystal-free and a partially (24 wt%) trevorite-crystallized waste glass simulant were evaluated. The results show that a 500 mg piece of partially crystallized waste glass can be heated from room-temperature to above 1600 °C (as measured by infrared radiometry) within 2 minutes using a single mode, highly focused, 2.45 GHz microwave, operating at 300 W. X-ray diffraction measurements show that the partially crystallized glass experiences an 87 % reduction in trevorite following irradiation and thermal quenching. When a crystal-free analogue of the same waste glass simulant composition is exposed to the same microwave radiation it could not be heated above 450 °C regardless of the heating time.

  6. Recent Developments in Microwave Ion Clocks

    NASA Astrophysics Data System (ADS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    We review the development of microwave-frequency standards based on trapped ions. Following two distinct paths, microwave ion clocks have evolved greatly in the last twenty years since the earliest Paul-trap-based units. Laser-cooled ion frequency standards reduce the second-order Doppler shift from ion micromotion and thermal secular motion achieving good signal-to-noise ratios via cycling transitions where as many as ~10^8 photons per second per ion may be scattered. Today, laser-cooled ion standards are based on linear Paul traps which hold ions near the node line of the trapping electric field, minimizing micromotion at the trapping-field frequency and the consequent second-order Doppler frequency shift. These quadrupole (radial) field traps tightly confine tens of ions to a crystalline single-line structure. As more ions are trapped, space charge forces some ions away from the node-line axis and the second-order Doppler effect grows larger, even at negligibly small secular temperatures. Buffer-gas-cooled clocks rely on large numbers of ions, typically ~10^7, optically pumped by a discharge lamp at a scattering rate of a few photons per second per ion. To reduce the second-order Doppler shift from space charge repulsion of ions from the trap node line, novel multipole ion traps are now being developed where ions are weakly bound with confining fields that are effectively zero through the trap interior and grow rapidly near the trap electrode ``walls''.

  7. Ultra High-Speed Radio Frequency Switch Based on Photonics

    PubMed Central

    Ge, Jia; Fok, Mable P.

    2015-01-01

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches. PMID:26608349

  8. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  9. Observing fermionic statistics with photons in arbitrary processes

    PubMed Central

    Matthews, Jonathan C. F.; Poulios, Konstantinos; Meinecke, Jasmin D. A.; Politi, Alberto; Peruzzo, Alberto; Ismail, Nur; Wörhoff, Kerstin; Thompson, Mark G.; O'Brien, Jeremy L.

    2013-01-01

    Quantum mechanics defines two classes of particles-bosons and fermions-whose exchange statistics fundamentally dictate quantum dynamics. Here we develop a scheme that uses entanglement to directly observe the correlated detection statistics of any number of fermions in any physical process. This approach relies on sending each of the entangled particles through identical copies of the process and by controlling a single phase parameter in the entangled state, the correlated detection statistics can be continuously tuned between bosonic and fermionic statistics. We implement this scheme via two entangled photons shared across the polarisation modes of a single photonic chip to directly mimic the fermion, boson and intermediate behaviour of two-particles undergoing a continuous time quantum walk. The ability to simulate fermions with photons is likely to have applications for verifying boson scattering and for observing particle correlations in analogue simulation using any physical platform that can prepare the entangled state prescribed here. PMID:23531788

  10. Scalarized photon analysis of spontaneous emission in the uniform magnetic field free-electron laser

    NASA Astrophysics Data System (ADS)

    Soln, Josip

    1990-04-01

    The recently developed concept of scalarized photons (formally photons of any polarization) is used to analyze the spontaneous emission in the uniform magnetic field free-electron laser in the microwave spectral region. With the electron beam energy of up to 10 MeV and the uniform magnetic field of up to 4 Tesla, the radiation (occurring with the fundamental and higher harmonic frequencies) can easily cover a 10- to 10,000 GHz spectral region.

  11. Microwave Cavity R&D for ADMX-HF

    NASA Astrophysics Data System (ADS)

    Simanovskaia, Maria; Backes, Kelly; Carosi, Gianpaolo; Kenany, Saad; Lewis, Samantha; Root, Jaben; van Bibber, Karl; ADMX-HF Collaboration

    2016-03-01

    Dark matter axions may be detected by their resonant conversion to photons in a tunable microwave cavity permeated by a strong magnetic field. The Axion Dark Matter eXperiment - High Frequency is both a test-bed for innovative cavity and amplifier concepts and a data pathfinder for the 5-25 GHz range. We are focusing on two major issues in the microwave cavity axion search. The first is increasing the cavity quality factor, Q, which enters linearly into the signal power and thus mass scan rate. Toward this end, we are developing a RF plasma deposition technique for making and characterizing superconducting NbTiN thin films. Multilayers of these thin films deposited on cylindrical surfaces of the microwave cavity may improve the Q by an order of magnitude. The second is applying Photonic Band Gap structures to make resonators of higher frequency and isolate the desired TM010 mode. The density of mode crossings between the axion-coupling TM010 mode and axion-noncoupling TE and TEM modes is the greatest limitation to the experiment's mass scan rate through loss of continuous frequency coverage. This work was supported by the NSF under Grant PHY-1306729, the US DOE under Contract DE AC52-07NA27344, and an award from the Heising-Simons Foundation.

  12. Synthesis and biological evaluation of hydrazidomycin analogues.

    PubMed

    Meyer, Florian; Ueberschaar, Nico; Dahse, Hans-Martin; Hertweck, Christian

    2013-11-15

    Hydrazidomycin A is an unusual secondary metabolite of Streptomyces atratus that features a rare enehydrazide core. To learn more about structure-activity relationships of the reported cytotoxic and antiproliferative agent several synthetic routes were explored to synthesize a variety of hydrazidomycin derivatives. Specifically, the size of the side chains, the nature of the double bond and the polar head group were altered. Overall, fourteen analogues were tested for their cytotoxic and antiproliferative effects. Re-examination of synthetic hydrazidomycin A suggests that the antiproliferative activity is attributed to a yet unknown compound that results from degradation or rearrangement. Several of the less complex analogues, however, show antiproliferative activities against individual cancer cell lines and turned out to be more potent than hydrazidomycin A.

  13. Synthesis of constrained analogues of tryptophan

    PubMed Central

    Negrato, Marco; Abbiati, Giorgio; Dell’Acqua, Monica

    2015-01-01

    Summary A Lewis acid-catalysed diastereoselective [4 + 2] cycloaddition of vinylindoles and methyl 2-acetamidoacrylate, leading to methyl 3-acetamido-1,2,3,4-tetrahydrocarbazole-3-carboxylate derivatives, is described. Treatment of the obtained cycloadducts under hydrolytic conditions results in the preparation of a small library of compounds bearing the free amino acid function at C-3 and pertaining to the class of constrained tryptophan analogues. PMID:26664620

  14. Platinum analogues in preclinical and clinical development.

    PubMed

    Hamilton, T C; O'Dwyer, P J; Ozols, R F

    1993-11-01

    The impact of cisplatin on chemotherapy for solid tumors has led to the synthesis of many molecules with platinum as their central building block. These so-called platinum analogues have been developed with the obvious goals of improving the antitumor activity of cisplatin and hopefully, at the same time, altering the dose-limiting side effects of the prototype drug. At least 10 such molecules are in clinical development, whereas several others are at various stages of preclinical testing. PMID:8305533

  15. The Brookhaven electron analogue, 1953--1957

    SciTech Connect

    Plotkin, M.

    1991-12-18

    The following topics are discussed on the Brookhaven electron analogue: L.J. Haworth and E.L. VanHorn letters; Original G.K. Green outline for report; General description; Parameter list; Mechanical Assembly; Alignment; Degaussing; Vacuum System; Injection System; The pulsed inflector; RF System; Ferrite Cavity; Pick-up electrodes and preamplifiers; Radio Frequency power amplifier; Lens supply; Controls and Power; and RF acceleration summary.

  16. The cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1989-01-01

    Recent observational and theoretical investigations of the cosmic microwave background radiation (CMBR) are reviewed. Particular attention is given to spectral distortions and CMBR temperature anisotropies at large, intermediate, and small angular scales. The implications of the observations for inflationary cosmological models with curvature fluctuation are explored, and it is shown that the limits determined for intermediate-scale CMBR anisotropy almost rule out a baryon-dominated cosmology.

  17. Microwave solidification project overview

    SciTech Connect

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.

  18. New microwave coupler material

    SciTech Connect

    Holcombe, C.E.

    1983-12-01

    The unexpected coupling of urania (UO/sub x/, with 2 less than or equal to x less than or equal to 3) to microwave energy has previously been reported. The present study screened several different materials for coupling with microwave energy using a 1.6 kW, 2450 MHz system. Materials were nominally -100 mesh powder, >99% pure. Those which showed minimal or no heating with the microwave energy included Y/sub 2/O/sub 3/, Al/sub 2/O/sub 3/, SiO/sub 2/, BN, graphite, and unstabilized ZrO/sub 2/. Pronounced heating occurred with B/sub 4/C. This discovery led to the following evaluation/comparison of the coupling ability of B/sub 4/C with water, structurally similar materials (boron suboxide, B/sub 6/O - prepared from zinc oxide and boron, microcrystalline or amorphous boron, ..cap alpha..-type), and UO/sub 2/. In order to compare relative heating rates, the materials were placed into 50 mL beakers, covered with alumina-silica felt insulation, and subjected to 30 s at full power (both top and bottom sources on). The temperature was measured at the end of the test, after the door automatically opened, by inserting a type K thermocouple into the material. For the powders, the thermocouple was moved about to obtain the highest reading, although only a 10% or so variation occurred before the temperature dropped from heat losses. 4 references, 1 table.

  19. Blood Loss Estimation Using Gauze Visual Analogue

    PubMed Central

    Ali Algadiem, Emran; Aleisa, Abdulmohsen Ali; Alsubaie, Huda Ibrahim; Buhlaiqah, Noora Radhi; Algadeeb, Jihad Bagir; Alsneini, Hussain Ali

    2016-01-01

    Background Estimating intraoperative blood loss can be a difficult task, especially when blood is mostly absorbed by gauze. In this study, we have provided an improved method for estimating blood absorbed by gauze. Objectives To develop a guide to estimate blood absorbed by surgical gauze. Materials and Methods A clinical experiment was conducted using aspirated blood and common surgical gauze to create a realistic amount of absorbed blood in the gauze. Different percentages of staining were photographed to create an analogue for the amount of blood absorbed by the gauze. Results A visual analogue scale was created to aid the estimation of blood absorbed by the gauze. The absorptive capacity of different gauze sizes was determined when the gauze was dripping with blood. The amount of reduction in absorption was also determined when the gauze was wetted with normal saline before use. Conclusions The use of a visual analogue may increase the accuracy of blood loss estimation and decrease the consequences related to over or underestimation of blood loss. PMID:27626017

  20. Blood Loss Estimation Using Gauze Visual Analogue

    PubMed Central

    Ali Algadiem, Emran; Aleisa, Abdulmohsen Ali; Alsubaie, Huda Ibrahim; Buhlaiqah, Noora Radhi; Algadeeb, Jihad Bagir; Alsneini, Hussain Ali

    2016-01-01

    Background Estimating intraoperative blood loss can be a difficult task, especially when blood is mostly absorbed by gauze. In this study, we have provided an improved method for estimating blood absorbed by gauze. Objectives To develop a guide to estimate blood absorbed by surgical gauze. Materials and Methods A clinical experiment was conducted using aspirated blood and common surgical gauze to create a realistic amount of absorbed blood in the gauze. Different percentages of staining were photographed to create an analogue for the amount of blood absorbed by the gauze. Results A visual analogue scale was created to aid the estimation of blood absorbed by the gauze. The absorptive capacity of different gauze sizes was determined when the gauze was dripping with blood. The amount of reduction in absorption was also determined when the gauze was wetted with normal saline before use. Conclusions The use of a visual analogue may increase the accuracy of blood loss estimation and decrease the consequences related to over or underestimation of blood loss.

  1. On-chip microwave signal generation based on a silicon microring modulator.

    PubMed

    Shao, Haifeng; Yu, Hui; Li, Xia; Li, Yan; Jiang, Jianfei; Wei, Huan; Wang, Gencheng; Dai, Tingge; Chen, Qimei; Yang, Jianyi; Jiang, Xiaoqing

    2015-07-15

    A photonic-assisted microwave signal generator based on a silicon microring modulator is demonstrated. The microring cavity incorporates an embedded PN junction that enables a microwave signal to modulate the lightwave circling inside. The DC component of the modulated light is trapped in the cavity, while the high-order sideband components are able to exit the cavity and then generate microwave signals at new frequencies in a photodetector. In our proof-of-concept experiment, a 10 GHz microwave signal is converted to a 20 GHz signal in the optical domain with an electrical harmonic suppression ratio of 22 dB. An analytic model is also established to explain the operation mechanism, which agrees well with the measured data.

  2. Seeing through Walls at the Nanoscale: Microwave Microscopy of Enclosed Objects and Processes in Liquids.

    PubMed

    Tselev, Alexander; Velmurugan, Jeyavel; Ievlev, Anton V; Kalinin, Sergei V; Kolmakov, Andrei

    2016-03-22

    Noninvasive in situ nanoscale imaging in liquid environments is a current imperative in the analysis of delicate biomedical objects and electrochemical processes at reactive liquid-solid interfaces. Microwaves of a few gigahertz frequencies offer photons with energies of ≈10 μeV, which can affect neither electronic states nor chemical bonds in condensed matter. Here, we describe an implementation of scanning near-field microwave microscopy for imaging in liquids using ultrathin molecular impermeable membranes separating scanning probes from samples enclosed in environmental cells. We imaged a model electroplating reaction as well as individual live cells. Through a side-by-side comparison of the microwave imaging with scanning electron microscopy, we demonstrate the advantage of microwaves for artifact-free imaging. PMID:26866377

  3. Seeing through walls at the nanoscale: Microwave microscopy of enclosed objects and processes in liquids

    DOE PAGES

    Velmurugan, Jeyavel; Kalinin, Sergei V.; Kolmakov, Andrei; Tselev, Alexander; Ievlev, Anton V.

    2016-02-11

    Here, noninvasive in situ nanoscale imaging in liquid environments is a current imperative in the analysis of delicate biomedical objects and electrochemical processes at reactive liquid–solid interfaces. Microwaves of a few gigahertz frequencies offer photons with energies of ≈10 μeV, which can affect neither electronic states nor chemical bonds in condensed matter. Here, we describe an implementation of scanning near-field microwave microscopy for imaging in liquids using ultrathin molecular impermeable membranes separating scanning probes from samples enclosed in environmental cells. We imaged a model electroplating reaction as well as individual live cells. Through a side-by-side comparison of the microwave imagingmore » with scanning electron microscopy, we demonstrate the advantage of microwaves for artifact-free imaging.« less

  4. Microwave-Assisted Olefin Metathesis

    NASA Astrophysics Data System (ADS)

    Nicks, François; Borguet, Yannick; Sauvage, Xavier; Bicchielli, Dario; Delfosse, Sébastien; Delaude, Lionel; Demonceau, Albert

    Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers have been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared to conventional heating methods. The present contribution aims at illustrating the advantages of this technology in olefin metathesis and, when data are available, at comparing microwave-heated and conventionally heated experiments

  5. A cryogenically coolable microwave limiter

    PubMed

    Rinard; Quine; Eaton

    1999-02-01

    A microwave (ca. 3 GHz) limiter, constructed using a GaAs PIN diode and microstrip impedance transformation circuit, limited 300-ns long 11-W microwave pulses to 70 mW at ca. 4.2 K. This limiter was implemented in a pulsed electron paramagnetic resonance (EPR) spectrometer to protect a low-noise microwave preamplifier from the high-power pulses. Copyright 1999 Academic Press. PMID:9986762

  6. Single-photon sources

    NASA Astrophysics Data System (ADS)

    Lounis, Brahim; Orrit, Michel

    2005-05-01

    The concept of the photon, central to Einstein's explanation of the photoelectric effect, is exactly 100 years old. Yet, while photons have been detected individually for more than 50 years, devices producing individual photons on demand have only appeared in the last few years. New concepts for single-photon sources, or 'photon guns', have originated from recent progress in the optical detection, characterization and manipulation of single quantum objects. Single emitters usually deliver photons one at a time. This so-called antibunching of emitted photons can arise from various mechanisms, but ensures that the probability of obtaining two or more photons at the same time remains negligible. We briefly recall basic concepts in quantum optics and discuss potential applications of single-photon states to optical processing of quantum information: cryptography, computing and communication. A photon gun's properties are significantly improved by coupling it to a resonant cavity mode, either in the Purcell or strong-coupling regimes. We briefly recall early production of single photons with atomic beams, and the operation principles of macroscopic parametric sources, which are used in an overwhelming majority of quantum-optical experiments. We then review the photophysical and spectroscopic properties and compare the advantages and weaknesses of various single nanometre-scale objects used as single-photon sources: atoms or ions in the gas phase and, in condensed matter, organic molecules, defect centres, semiconductor nanocrystals and heterostructures. As new generations of sources are developed, coupling to cavities and nano-fabrication techniques lead to improved characteristics, delivery rates and spectral ranges. Judging from the brisk pace of recent progress, we expect single photons to soon proceed from demonstrations to applications and to bring with them the first practical uses of quantum information.

  7. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    The AgRISTARS Soil Moisture Project has made significant progress in the quantification of microwave sensor capabilities for soil moisture remote sensing. The 21-cm wavelength has been verified to be the best single channel for radiometric observations of soil moisture. It has also been found that other remote sensing approaches used in conjunction with L-band passive data are more successful than multiple wavelength microwave radiometry in this application. AgRISTARS studies have also improved current understanding of noise factors affecting the interpretability of microwave emission data. The absorption of soil emission by vegetation has been quantified, although this effect is less important than absorption effects for microwave radiometry.

  8. Microwave effects on plasmid DNA

    SciTech Connect

    Sagripanti, J.L.; Swicord, M.L.; Davis, C.C.

    1987-05-01

    The exposure of purified plasmid DNA to microwave radiation at nonthermal levels in the frequency range from 2.00 to 8.75 GHz produces single- and double-strand breaks that are detected by agarose gel electrophoresis. Microwave-induced damage to DNA depends on the presence of small amounts of copper. This effect is dependent upon both the microwave power and the duration of the exposure. Cuprous, but not cupric, ions were able to mimic the effects produced by microwaves on DNA.

  9. Microwave NDE for Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Melapudi, Vikram R.; Rothwell, Edward J.; Udpa, Lalita; Udpa, Satish S.

    2006-03-01

    Nondestructive assessment of the integrity of civil structures is of paramount importance for ensuring safety. In concrete imaging, radiography, ground penetrating radar and infrared thermography are some of the widely used techniques for health monitoring. Other emerging technologies that are gaining impetus for detecting and locating flaws in steel reinforcement bar include radioactive computed tomography, microwave holography, microwave and acoustic tomography. Of all the emerging techniques, microwave NDT is a promising imaging modality largely due to their ability to penetrate thick concrete structures, contrast between steel rebar and concrete and their non-radioactive nature. This paper investigates the feasibility of a far field microwave NDE technique for reinforced concrete structures.

  10. Function photonic crystals

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Yao; Zhang, Bai-Jun; Yang, Jing-Hai; Liu, Xiao-Jing; Ba, Nuo; Wu, Yi-Heng; Wang, Qing-Cai

    2011-07-01

    In this paper, we present a new kind of function photonic crystals (PCs), whose refractive index is a function of space position. Conventional PCs structure grows from two materials, A and B, with different dielectric constants εA and εB. Based on Fermat principle, we give the motion equations of light in one-dimensional, two-dimensional and three-dimensional function photonic crystals. For one-dimensional function photonic crystals, we give the dispersion relation, band gap structure and transmissivity, and compare them with conventional photonic crystals, and we find the following: (1) For the vertical and non-vertical incidence light of function photonic crystals, there are band gap structures, and for only the vertical incidence light, the conventional PCs have band gap structures. (2) By choosing various refractive index distribution functions n( z), we can obtain more wider or more narrower band gap structure than conventional photonic crystals.

  11. First-photon imaging.

    PubMed

    Kirmani, Ahmed; Venkatraman, Dheera; Shin, Dongeek; Colaço, Andrea; Wong, Franco N C; Shapiro, Jeffrey H; Goyal, Vivek K

    2014-01-01

    Imagers that use their own illumination can capture three-dimensional (3D) structure and reflectivity information. With photon-counting detectors, images can be acquired at extremely low photon fluxes. To suppress the Poisson noise inherent in low-flux operation, such imagers typically require hundreds of detected photons per pixel for accurate range and reflectivity determination. We introduce a low-flux imaging technique, called first-photon imaging, which is a computational imager that exploits spatial correlations found in real-world scenes and the physics of low-flux measurements. Our technique recovers 3D structure and reflectivity from the first detected photon at each pixel. We demonstrate simultaneous acquisition of sub-pulse duration range and 4-bit reflectivity information in the presence of high background noise. First-photon imaging may be of considerable value to both microscopy and remote sensing.

  12. ADMX Microwave Cavity R&D Status

    NASA Astrophysics Data System (ADS)

    Stern, Ian; ADMX Collaboration

    2015-04-01

    The Axion Dark Matter eXperiment (ADMX), a direct-detection axion search, has begun taking data with a redesigned system. Earlier phases conducted axion searches in the mass range of 1.9-3.5 μeV (460-850 MHz) setting upper limits below the theoretical KSVZ coupling strength of the axion to two photons. The current upgrades will allow ADMX to detect axions with even the most pessimistic (DFSZ) couplings in this frequency range. In order to expand the mass reach of the detector, ADMX is conducting extensive research and development of microwave cavities. Prototype development programs include photonic band-gaps, multi-vane cavities, partitioned cavities, in-phase coupled cavities, and superconducting hybrid cavities. Additional studies include techniques for mode detection and mode-crossing suppression, and strategic planning. The various projects are in different phases of analysis, fabrication, and/or testing. The current status and near term objectives will be presented. Supported by DOE Grants DE-SC0010280, DE-FG02-96ER40956, DE- AC52-07NA27344, DE-AC03-76SF00098, NSF Grant 1067242, and the Livermore LDRD program.

  13. Two-photon physics

    SciTech Connect

    Bardeen, W.A.

    1981-10-01

    A new experimental frontier has recently been opened to the study of two photon processes. The first results of many aspects of these reactions are being presented at this conference. In contrast, the theoretical development of research ito two photon processes has a much longer history. This talk reviews the many different theoretical ideas which provide a detailed framework for our understanding of two photon processes.

  14. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  15. Photonic Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Merritt, Scott; Krainak, Michael

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  16. Photon simulated desorption revisited

    NASA Astrophysics Data System (ADS)

    Menzel, D.

    A promising new method for surface investigations is discussed: Photon stimulated desorption. The electronic excitations of adsorbate complexes on surfaces, either by electron impact or photon absorption, which can lead to repulsive states of the complex and therefore to expulsion of ions and neutrals are considered. Such processes are termed electron (or photon) stimulated desorption, ESD and PSD, respectively. Apart from the primary agent (electrons or photons), these processes are similar, and common label "desorption induced by electronic transitions" (acronym DIET) was proposed. Desorption effects, intrinsic photoneffects, and some of the advantages of PSD over ESD are discussed.

  17. EDITORIAL: The next photonic revolution The next photonic revolution

    NASA Astrophysics Data System (ADS)

    Zheludev, Nikolay I.

    2009-11-01

    This special section on Nanophotonics and Metamaterials is a follow-up to the second European Topical Meeting of the NANOMETA series of meetings (see www.nanometa.org) which took place on 5-8 January 2009, in Seefeld, Austria. The main idea of the first NANOMETA meeting held in 2007 was to bring together the mature community of microwave electrical engineers with the emerging community of photonics researchers interested in the physics of light coupled to nanostructures. In recent years the research landscape has shifted dramatically. A wider proliferation of nanofabrication techniques such as electron beam lithography, nanoimprint and focused ion beam milling, diagnostics techniques such as near-field scanning imaging, cathodoluminescence with nanoscale resolution and micro-spectrometry, and the availability of affordable broadband and ultrafast optical sources, have moved the research focus of the NANOMETA community to the optical domain. Quite naturally the ideas of the nonlinearity of materials and the coherency of light in the nanoscale realm have been widely discussed. Driven by the dream of untapped device and material functionality, nonlinear and switchable nanophotonic devices and photonic metamaterials, along with the concept of tailoring the electromagnetic space with metamaterials, appear to be the main avenues along which the subject will develop in the coming years. Indeed, in the last 20 years photonics has played a key role in creating the world as we know it, with enormous beneficial social impact worldwide. It is impossible to imagine modern society without the globe-spanning broadband internet and mobile telephony made possible by the implementation of optical fibre core networks, optical disc data storage (underpinned by the development of compact semiconductor lasers), modern image display technologies and laser-assisted manufacturing. We now anticipate that the next photonic revolution will continue to grow, explosively fuelled by a new

  18. Feasibility of tunable MEMS photonic crystal devices.

    PubMed

    Rajic, S; Corbeil, J L; Datskos, P G

    2003-01-01

    Periodic photonic crystal structures channel electromagnetic waves much as semiconductors/quantum wells channel electrons. Photonic bandgap crystals (PBC) are fabricated by arranging sub-wavelength alternating materials with high and low dielectric constants to produce a desired effective bandgap. Photons with energy within this bandgap cannot propagate through the structure. This property has made these structures useful for microwave applications such as frequency-selective surfaces, narrowband filters, and antenna substrates when the dimensions are on the order of millimeters. They are also potentially very useful, albeit much more difficult to fabricate, in the visible/near-infrared region for various applications when the smallest dimensions are at the edge of current micro-lithography fabrication tools. We micro-fabricated suspended free standing micro-structure bridge waveguides to serve as substrates for PBC features. These micro-bridges were fabricated onto commercial silicon-on-insulator wafers. Nanoscale periodic features were fabricated onto these micro-structure bridges to form a tunable system. When this combined structure is perturbed, such as mechanical deflection of the suspended composite structure at resonance, there can be a realtime shift in the material effective bandgap due to slight geometric alterations due to the induced mechanical stress. Extremely high resonance frequencies/device speeds are possible with these very small dimension MEMS.

  19. All-optical signal processing at 10 GHz using a photonic crystal molecule

    SciTech Connect

    Combrié, Sylvain; Lehoucq, Gaëlle; Junay, Alexandra; De Rossi, Alfredo; Malaguti, Stefania; Bellanca, Gaetano; Trillo, Stefano; Ménager, Loic; Peter Reithmaier, Johann

    2013-11-04

    We report on 10 GHz operation of an all-optical gate based on an Indium Phosphide Photonic Crystal Molecule. Wavelength conversion and all-optical mixing of microwave signals are demonstrated using the 2 mW output of a mode locked diode laser. The spectral separation of the optical pump and signal is crucial in suppressing optical cross-talk.

  20. Photonic arbitrary waveform generation based on crossed frequency to time mapping.

    PubMed

    Jiang, H-Y; Yan, L-S; Sun, Y-F; Ye, J; Pan, W; Luo, B; Zou, X-H

    2013-03-11

    Microwave photonic arbitrary waveform generation based on incoherent frequency-to-time-mapping (FTTM) accompanied by intersymbol interference, so called crossed FTTM (CFTTM). The pulse shape can be defined and tuned by properly adjusting the spectrum shaper (symbol shape) and the degree of intersymbol interference. UWB-, triangular-, rectangle-, comb- and user-defined pulse shapes are experimentally obtained.

  1. Properties of a photonic crystal formed in a solution featuring the Briggs-Rauscher oscillating reaction

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Rytik, A. P.

    2016-06-01

    It is shown that a solution featuring the Briggs-Rauscher (BR) oscillating chemical reaction can exhibit the properties of a photonic crystal with alternating bandgap width. Thicknesses and dielectric permittivities of structural elements in the BR reaction solution have been determined by measuring the reflection and transmission spectra of microwave radiation in the range of 5-8 GHz.

  2. Microwave and Pulsed Power

    SciTech Connect

    Freytag, E.K.

    1993-03-01

    The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. (1) We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. (2) We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. (3) We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO{sub x} from various effluent sources. (4) We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. (5) We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. (6) We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

  3. Microwave sintering of multiple articles

    DOEpatents

    Blake, Rodger D.; Katz, Joel D.

    1993-01-01

    Apparatus and method for producing articles of alumina and of alumina and silicon carbide in which the articles are sintered at high temperatures using microwave radiation. The articles are placed in a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled.

  4. CHEMICAL SYNTHESIS & TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    A historical account of the utility of microwaves in a variety of chemical synthesis applications will be presented, including a solvent-free strategy that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such...

  5. High-Sensitivity Microwave Optics.

    ERIC Educational Resources Information Center

    Nunn, W. M., Jr.

    1981-01-01

    Describes a 3.33-cm wavelength (9 GHz) microwave system that achieves a high overall signal sensitivity and a well-collimated beam with moderate-size equipment. The system has been used to develop microwave versions of the Michelson interferometer, Bragg reflector, Brewster's law and total internal reflection, and Young's interference experiment.…

  6. Microwave Sterilization in School Microbiology.

    ERIC Educational Resources Information Center

    Wynn, Brian; Dixon, Angela

    1988-01-01

    Described are two investigations carried out in a high school biology department using a domestic microwave oven to compare the relative attributes of the autoclave and microwave oven in school use. Discussed are equipment, methods, and results of each investigation. (Author/CW)

  7. Microwave Properties of Quiet Seas

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1987-01-01

    Microwave fluxes from three quiet seas documented for five microwave frequencies. Measurements taken by satellite in Earth orbit with mechanically scanned antenna. 10-channel receiver used to record simultaneously signal intensities in both horizontal and vertical polarizations at each frequency. Comparisons of flux measurements of three quiet seas drawn, and results discussed and analyzed.

  8. Computer-Generated Microwave Holograms.

    ERIC Educational Resources Information Center

    Leming, Charles W.; Hastings, Orestes Patterson, III

    1980-01-01

    Described is the phasor method of superposition of waves. The intensity pattern from a system of microwave sources is calculated point by point on a plane corresponding to a film emulsion, and then printed and directly converted to a hologram for 3-cm microwaves. Calculations, construction, and viewing of holograms are included. (Author/DS)

  9. GREENER SYNTHETIC TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    Microwave irradiation has been used for a variety of organic transformations wherein chemical reactions are expedited because of selective adsorption of microwave (MW) energy by polar molecules, non-polar molecules being inert to the MW dielectric loss. The MW application under s...

  10. More Experiments with Microwave Ovens

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter; Karstadt, Detlef

    2004-01-01

    Microwave ovens can be used to perform exciting demonstrations that illustrate a variety of physics topics. Experiments discussed here show superheating, visualize the inhomogeneous heating that takes place in a microwave and also show how to use a mobile phone to detect radiation leaking from the oven. Finally eggs can give some spectacular…

  11. Microwave drying of seed cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A small lab dryer was designed for use in drying seed cotton with components of a microwave generator mounted thereon. The magnetron emitted radiation directly into the seed cotton and a fan directed air cross-flow to the radiation direction. The microwave components were a 1.1 kW magnetron, trans...

  12. Resonances in photon-photon scattering

    SciTech Connect

    Chanowitz, M.S.

    1984-11-01

    A quantity called stickiness is introduced which should be largest for J not equal to 0 glueballs and can be measured in two photon scattering and radiative J/psi decay. An argument is reviewed suggesting that light J = 0 glueballs may have large couplings to two photons. The analysis of radiative decays of eta and eta' is reviewed and a plea made to desist from false claims that they are related to GAMMA(..pi../sup 0/ ..-->.. ..gamma gamma..) by SU(3) symmetry. It is shown that two photon studies can refute the difficult-to-refute hypothesis that xi(2220) or zeta(8320) are Higgs bosons. A gallery of rogue resonances and resonance candidates is presented which would usefully be studied in ..gamma gamma.. scattering, including especially the low mass dipion. 34 references.

  13. Microwave PASER Experiment

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Antipov, S.; Poluektov, O.; Jing, C.

    2009-01-22

    The PASER (Particle Acceleration by Stimulated Emission of Radiation) concept for particle acceleration entails the direct transfer of energy from an active medium to a charged particle beam. The PASER was originally formulated for optical (laser) media; we are planning a PASER demonstration experiment based on an optically pumped X-band paramagnetic medium consisting of porphyrin or fullerene (C{sub 60}) derivatives in a toluene solution or polystyrene matrix. We discuss the background of this project and report on the status of the experiment to measure the acceleration of electrons using the microwave PASER.

  14. Direct microwave demodulation

    NASA Astrophysics Data System (ADS)

    Marsac, J. P.

    1985-03-01

    The technical characteristics, advantages and disadvantages of three types of coherent direct microwave demodulators are discussed. Bypassing the intermediate frequencies normally present in radio circuitry is a means to lowering equipment costs and enhancing reliability. The phase, frequency and spectral demodulators described all allow carrier recapture with a Costas loop. In all cases, the demodulation is performed at an intermediate frequency after transposition of the modulated carrier wave. MSK, 4 PSK and 16 QAM modulations are considered, together with circuitry for each and experimental results. Finally, the progress toward development of an integrated receiver is assessed.

  15. The cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1991-01-01

    Recent limits on spectral distortions and angular anisotropies in the cosmic microwave background are reviewed. The various backgrounds are described, and the theoretical implications are assessed. Constraints on inflationary cosmology dominated by cold dark matter (CDM) and on open cosmological models dominated by baryonic dark matter (BDM), with, respectively, primordial random phase scale-invariant curvature fluctuations or non-gaussian isocurvature fluctuations are described. More exotic theories are addressed, and I conclude with the 'bottom line': what theorists expect experimentalists to be measuring within the next two to three years without having to abandon their most cherished theories.

  16. Constraining resonant photon-axion conversions in the early universe

    SciTech Connect

    Mirizzi, Alessandro; Redondo, Javier; Sigl, Günter E-mail: javier.redondo@desy.de

    2009-08-01

    The presence of a primordial magnetic field would have induced resonant conversions between photons and axion-like particles (ALPs) during the thermal history of the Universe. These conversions would have distorted the blackbody spectrum of the cosmic microwave background (CMB). In this context, we derive bounds on the photon-ALP resonant conversions using the high precision CMB spectral data collected by the FIRAS instrument on board of the Cosmic Background Explorer. We obtain upper limits on the product of the photon-ALP coupling constant g times the magnetic field strength B down to gB ∼< 10{sup −13} GeV{sup −1} nG for ALP masses below the eV scale.

  17. Study of narrowband single photon emitters in polycrystalline diamond films

    SciTech Connect

    Sandstrom, Russell G.; Shimoni, Olga; Martin, Aiden A.; Aharonovich, Igor

    2014-11-03

    Quantum information processing and integrated nanophotonics require robust generation of single photon emitters on demand. In this work, we demonstrate that diamond films grown on a silicon substrate by microwave plasma chemical vapor deposition can host bright, narrowband single photon emitters in the visible—near infra-red spectral range. The emitters possess fast lifetime (∼several ns), absolute photostability, and exhibit full polarization at excitation and emission. Pulsed and continuous laser excitations confirm their quantum behaviour at room temperature, while low temperature spectroscopy is performed to investigate inhomogeneous broadening. Our results advance the knowledge of solid state single photon sources and open pathways for their practical implementation in quantum communication and quantum information processing.

  18. Field locked to a Fock state by quantum feedback with single photon corrections.

    PubMed

    Zhou, X; Dotsenko, I; Peaudecerf, B; Rybarczyk, T; Sayrin, C; Gleyzes, S; Raimond, J M; Brune, M; Haroche, S

    2012-06-15

    Fock states with photon numbers n up to 7 are prepared on demand in a microwave superconducting cavity by a quantum feedback procedure that reverses decoherence-induced quantum jumps. Circular Rydberg atoms are used as quantum nondemolition sensors or as single-photon emitter or absorber actuators. The quantum nature of these actuators matches the correction of single-photon quantum jumps due to relaxation. The flexibility of this method is suited to the generation of arbitrary sequences of Fock states. PMID:23004271

  19. Tunability of two dimensional n-doped semiconductor photonic crystals based on the Faraday effect.

    PubMed

    Aly, Arafa H; El-Naggar, Sahar A; Elsayed, Hussein A

    2015-06-01

    In this paper, we theoretically investigate the effect of an external magnetic field on the properties of photonic band structures in two-dimensional n-doped semiconductor photonic crystals. We used the frequency-dependent plane wave expansion method. The numerical results reveal that the external magnetic field has a significant effect on the permittivity of the semiconductor materials. Therefore, the photonic band structures can be strongly tuned and controlled. The proposed structure is a good candidate for many applications, including filters, switches, and modulators in optoelectronics and microwave devices.

  20. Digitoxin Analogues with Improved Anticytomegalovirus Activity

    PubMed Central

    2014-01-01

    Cardiac glycosides are potent inhibitors of cancer cell growth and possess antiviral activities at nanomolar concentrations. In this study we evaluated the anticytomegalovirus (CMV) activity of digitoxin and several of its analogues. We show that sugar type and sugar length attached to the steroid core structure affects its anticytomegalovirus activity. Structure–activity relationship (SAR) studies identified the l-sugar containing cardiac glycosides as having improved anti-CMV activity and may lead to better understanding of how these compounds inhibit CMV replication. PMID:24900847

  1. Materials analogue of zero-stiffness structures

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Subramaniam, Anandh

    2011-04-01

    Anglepoise lamps and certain tensegrities are examples of zero-stiffness structures. These structures are in a state of neutral equilibrium with respect to changes in configuration of the system. Using Eshelby's example of an edge dislocation in a thin plate that can bend, we report the discovery of a non-trivial new class of material structures as an analogue to zero-stiffness structures. For extended positions of the edge dislocation in these structures, the dislocation experiences a zero image force. Salient features of these material structures along with the key differences from conventional zero-stiffness structures are pointed out.

  2. Spectroscopic study of solar twins and analogues

    NASA Astrophysics Data System (ADS)

    Datson, Juliet; Flynn, Chris; Portinari, Laura

    2015-02-01

    Context. Many large stellar surveys have been and are still being carried out, providing huge amounts of data, for which stellar physical parameters will be derived. Solar twins and analogues provide a means to test the calibration of these stellar catalogues because the Sun is the best-studied star and provides precise fundamental parameters. Solar twins should be centred on the solar values. Aims: This spectroscopic study of solar analogues selected from the Geneva-Copenhagen Survey (GCS) at a resolution of 48 000 provides effective temperatures and metallicities for these stars. We test whether our spectroscopic parameters, as well as the previous photometric calibrations, are properly centred on the Sun. In addition, we search for more solar twins in our sample. Methods: The methods used in this work are based on literature methods for solar twin searches and on methods we developed in previous work to distinguish the metallicity-temperature degeneracies in the differential comparison of spectra of solar analogues versus a reference solar reflection spectrum. Results: We derive spectroscopic parameters for 148 solar analogues (about 70 are new entries to the literature) and verify with a-posteriori differential tests that our values are well-centred on the solar values. We use our dataset to assess the two alternative calibrations of the GCS parameters; our methods favour the latest revision. We show that the choice of spectral line list or the choice of asteroid or time of observation does not affect the results. We also identify seven solar twins in our sample, three of which are published here for the first time. Conclusions: Our methods provide an independent means to differentially test the calibration of stellar catalogues around the values of a well-known benchmark star, which makes our work interesting for calibration tests of upcoming Galactic surveys. Based on observations made with ESO Telescopes at the La Silla Observatory under programme ID 077.D

  3. Analogue models of pull-apart basins

    NASA Astrophysics Data System (ADS)

    McClay, Ken; Dooley, Tim

    1995-08-01

    Sandbox analogue models of pull-apart basins that developed in sedimentary strata above releasing steps in underlying basement faults are characterized by rhombic basins that are flat-bottomed box grabens with a subhorizontal synkinematic basin infill. Steep to nearly vertical, sigmoidal oblique-slip and segmented oblique-extensional faults are the dominant bounding structures of the pull-apart basins. Cross-basin, short-cut faults link the offset principal displacement zones that are characterized by flower structure development. The structural architectures of the physical models compare directly in form and dimensions to natural examples of strike-slip pull-apart basins.

  4. U.S. Nuclear Regulatory Commission natural analogue research program

    SciTech Connect

    Kovach, L.A.; Ott, W.R.

    1995-09-01

    This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process.

  5. CO2 Removal using a Synthetic Analogue of Carbonic Anhydrase

    SciTech Connect

    Cordatos, Harry

    2010-09-14

    Project attempts to develop a synthetic analogue for carbonic anhydrase and incorporate it in a membrane for separation of CO2 from coal power plant flue gas. Conference poster presents result of first 9 months of project progress including concept, basic system architecture and membrane properties target, results of molecular modeling for analogue - CO2 interaction, and next steps of testing analogue resistance to flue gas contaminants.

  6. Photon mass from inflation.

    PubMed

    Prokopec, Tomislav; Törnkvist, Ola; Woodard, Richard

    2002-09-01

    We consider vacuum polarization from massless scalar electrodynamics in de Sitter inflation. The theory exhibits a 3+1 dimensional analog of the Schwinger mechanism in which a photon mass is dynamically generated. The mechanism is generic for light scalar fields that couple minimally to gravity. The nonvanishing of the photon mass during inflation may result in magnetic fields on cosmological scales.

  7. Photonic layered media

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  8. Spin-orbit photonics

    NASA Astrophysics Data System (ADS)

    Cardano, Filippo; Marrucci, Lorenzo

    2015-12-01

    Spin-orbit optical phenomena involve the interaction of the photon spin with the light wave propagation and spatial distribution, mediated by suitable optical media. Here we present a short overview of the emerging photonic applications that rely on such effects.

  9. Photon beam position monitor

    DOEpatents

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  10. Photon beam position monitor

    DOEpatents

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  11. Chirality in photonic systems

    NASA Astrophysics Data System (ADS)

    Solnyshkov, Dmitry; Malpuech, Guillaume

    2016-10-01

    The optical modes of photonic structures are the so-called TE and TM modes that bring intrinsic spin-orbit coupling and chirality to these systems. This, combined with the unique flexibility of design of the photonic potential, and the possibility to mix photon states with excitonic resonances, sensitive to magnetic field and interactions, allows us to achieve many phenomena, often analogous to other solid-state systems. In this contribution, we review in a qualitative and comprehensive way several of these realizations, namely the optical spin Hall effect, the creation of spin currents protected by a non-trivial geometry, the Berry curvature for photons, and the photonic/polaritonic topological insulator.

  12. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  13. A novel photonic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1995-01-01

    We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.

  14. Nonlinear Photonics 2014: introduction.

    PubMed

    Akhmediev, N; Kartashov, Yaroslav

    2015-01-12

    International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.

  15. Microwave hematoma detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.; Matthews, Dennis L.

    2001-01-01

    The Microwave Hematoma Detector is a non-invasive device designed to detect and localize blood pooling and clots near the outer surface of the body. While being geared towards finding sub-dural and epi-dural hematomas, the device can be used to detect blood pooling anywhere near the surface of the body. Modified versions of the device can also detect pneumothorax, organ hemorrhage, atherosclerotic plaque in the carotid arteries, evaluate perfusion (blood flow) at or near the body surface, body tissue damage at or near the surface (especially for burn assessment) and be used in a number of NDE applications. The device is based on low power pulsed microwave technology combined with a specialized antenna, signal processing/recognition algorithms and a disposable cap worn by the patient which will facilitate accurate mapping of the brain and proper function of the instrument. The invention may be used for rapid, non-invasive detection of sub-dural or epi-dural hematoma in human or animal patients, detection of hemorrhage within approximately 5 cm of the outer surface anywhere on a patient's body.

  16. Tuning Broadband Microwave Amplifiers

    SciTech Connect

    Alaniz, Gabriel

    2003-09-05

    The PEP-II/DA {Phi} NE/ALS longitudinal feedback systems are complex wide bandwidth systems requiring analog, digital and microwave circuits. The solid-state amplifier is one of the components in the microwave circuit that is required to suppress the coupled bunch instabilities that exist in the PEP-II accelerator. The suppression is achieved by using an antenna as a kicker structure that provides an electric field in order to increase or decrease the energy of particles passing through the structure. The amplifier is made up of sixteen 30 to 35W microstrip GaAs FET modules that are combined to obtain 500W over a bandwidth of 850MHz to 1850MHz. The amplifier malfunctioned causing a reduction in the functionality and power output of the individual GaAs FET modules. The amplifier must be repaired. After repair, the amplifier must be tuned to optimize the gain while maintaining proper power output. The amplifier is tuned using microstrip circuit techniques. A variety of microstrip methods are used to obtain the proper line impedance. The result is a working amplifier that operates efficiently.

  17. Transcatheter Microwave Antenna

    NASA Technical Reports Server (NTRS)

    Arndt, Dickey G. (Inventor); Carl, James R. (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)

    2001-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  18. Diffuse Microwave Emission Survey

    NASA Astrophysics Data System (ADS)

    Shafer, R. A.; Mather, J.; Kogut, A.; Fixsen, D. J.; Seiffert, M.; Lubin, P. M.; Levin, S. M.

    1996-12-01

    The Diffuse Microwave Emission Survey (DIMES) is a mission concept selected by NASA in 1995 to answer fundamental questions about the content and history of the universe. DIMES will use a set of absolutely calibrated cryogenic radiometers from a space platform to measure the frequency spectrum of the cosmic microwave background (CMB) at wavelengths 15--0.3 cm (frequency 2--100 GHz) to precision 0.1 mK or better. Measurements at centimeter wavelengths probe different physical processes than the COBE-FIRAS spectra at shorter wavelengths, and complement the anisotropy measurements from DMR, balloon and ground-based instruments, and the planned MAP and COBRAS/SAMBA satellites. DIMES will observe the free-free signal from early photoionization to establish the precise epoch of structure formation, and will measure or limit energy release at redshift 10(4) < z < 10(7) by measuring the chemical potential distortion of the CMB spectrum. Both are likely under current cosmological theory and allowed by current measurement limits; even an upper limit at the expected sensitivity 10(-5) MJy/sr will place important constraints on the matter content, structure, and evolution of the universe. Detecting these distortions or showing that they do not exist constitutes the last frontier of CMB observations.

  19. Roadmap on silicon photonics

    NASA Astrophysics Data System (ADS)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  20. Generation and efficient measurement of single photons from fixed-frequency superconducting qubits

    NASA Astrophysics Data System (ADS)

    Kindel, William F.; Schroer, M. D.; Lehnert, K. W.

    2016-03-01

    We demonstrate and evaluate an on-demand source of single itinerant microwave photons. Photons are generated using a highly coherent, fixed-frequency qubit-cavity system, and a protocol where the microwave control field is far detuned from the photon emission frequency. By using a Josephson parametric amplifier (JPA), we perform efficient single-quadrature detection of the state emerging from the cavity. We characterize the imperfections of the photon generation and detection, including detection inefficiency and state infidelity caused by measurement back-action over a range of JPA gains from 17 to 33 dB. We observe that both detection efficiency and undesirable back-action increase with JPA gain. We find that the density matrix has its maximum single-photon component ρ11=0.36 ±0.01 at 29 dB JPA gain. At this gain, back-action of the JPA creates cavity photon number fluctuations that we model as a thermal distribution with an average photon number n ¯=0.041 ±0.003 .

  1. Qubit dephasing due to photon shot noise from coherent and thermal sources

    NASA Astrophysics Data System (ADS)

    Gustavsson, S.; Yan, F.; Kamal, A.; Orlando, T. P.; Oliver, W. D.; Birenbaum, J.; Sears, A.; Hover, D.; Gudmundsen, T.; Yoder, J.

    We investigate qubit dephasing due to photon shot noise in a superconducting flux qubit transversally coupled to a coplanar microwave resonator. Due to the AC Stark effect, photon fluctuations in the resonator cause frequency shifts of the qubit, which in turn lead to dephasing. While this is universally understood, we have made the first quantitative spectroscopy of this noise for both thermal (i.e., residual photons from higher temperature stages) and coherent photons (residual photons from the readout and control pulses). We find that the bandwidth of the shot noise from thermal and coherent photons differ by approximately a factor of two, which we attribute to differences in the correlation time for the two noise sources. By comparing the results with noise spectra measured without any externally applied photons, we conclude that the qubit coherence times in our setup were limited by photon shot noise from thermal radiation, with an average resonator photon population of 0.006. Equipped with this knowledge, we improved the filtering for thermal noise and thereby improved the qubit coherence times by more than a factor of two, with T2 echo times approaching 100 us. From the measured T2 decay, we determine an upper bound on the residual photon population of 0.0004. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT LL under Air Force Contract No. FA8721-05-C-0002.

  2. Self-Powered Analogue Smart Skin.

    PubMed

    Shi, Mayue; Zhang, Jinxin; Chen, Haotian; Han, Mengdi; Shankaregowda, Smitha A; Su, Zongming; Meng, Bo; Cheng, Xiaoliang; Zhang, Haixia

    2016-04-26

    The progress of smart skin technology presents unprecedented opportunities for artificial intelligence. Resolution enhancement and energy conservation are critical to improve the perception and standby time of robots. Here, we present a self-powered analogue smart skin for detecting contact location and velocity of the object, based on a single-electrode contact electrification effect and planar electrostatic induction. Using an analogue localizing method, the resolution of this two-dimensional smart skin can be achieved at 1.9 mm with only four terminals, which notably decreases the terminal number of smart skins. The sensitivity of this smart skin is remarkable, which can even perceive the perturbation of a honey bee. Meanwhile, benefiting from the triboelectric mechanism, extra power supply is unnecessary for this smart skin. Therefore, it solves the problems of batteries and connecting wires for smart skins. With microstructured poly(dimethylsiloxane) films and silver nanowire electrodes, it can be covered on the skin with transparency, flexibility, and high sensitivity. PMID:27010713

  3. Long-term predictions using natural analogues

    SciTech Connect

    Ewing, R.C.

    1995-09-01

    One of the unique and scientifically most challenging aspects of nuclear waste isolation is the extrapolation of short-term laboratory data (hours to years) to the long time periods (10{sup 3}-10{sup 5} years) required by regulatory agencies for performance assessment. The direct validation of these extrapolations is not possible, but methods must be developed to demonstrate compliance with government regulations and to satisfy the lay public that there is a demonstrable and reasonable basis for accepting the long-term extrapolations. Natural systems (e.g., {open_quotes}natural analogues{close_quotes}) provide perhaps the only means of partial {open_quotes}validation,{close_quotes} as well as data that may be used directly in the models that are used in the extrapolation. Natural systems provide data on very large spatial (nm to km) and temporal (10{sup 3}-10{sup 8} years) scales and in highly complex terranes in which unknown synergisms may affect radionuclide migration. This paper reviews the application (and most importantly, the limitations) of data from natural analogue systems to the {open_quotes}validation{close_quotes} of performance assessments.

  4. Magnetohydrodynamical Analogue of a Black Hole

    NASA Astrophysics Data System (ADS)

    Zamorano, Nelson; Asenjo, Felipe

    2014-03-01

    We study the conditions that a plasma fluid and its container should meet to generate a magneto-acoustic horizon. This effect becomes an alternative to the analogue black hole found in a transonic fluid flow setting. In this context we use the magnetohydrodynamic formalism (MHD) to analyze the evolution of an irrotational plasma fluid interacting with an external constant magnetic field. Under certain plausible approximations, the dynamic of the field perturbations is described by a scalar field potential that follows a second order differential equation. As we prove here, this equation corresponds to the wave equation associated to a scalar field in a curved space-time. This horizon emerges when the local speed of the medium grows larger than the sound velocity. The magnetic field generates an effective pressure which contributes to the magneto-acoustic speed. We compare these results with the known physics of analogue black holes. We will also refer to our ongoing experiment that, in its first stage, attempts to reproduce the wave horizons found in an open channel with an obstacle: PRL 106, 021302 (2011).

  5. Cosmic microwave background anisotropy from nonlinear structures in accelerating universes

    SciTech Connect

    Sakai, Nobuyuki; Inoue, Kaiki Taro

    2008-09-15

    We study the cosmic microwave background (CMB) anisotropy due to spherically symmetric nonlinear structures in flat universes with dust and a cosmological constant. By modeling a time-evolving spherical compensated void/lump by Lemaitre-Tolman-Bondi spacetimes, we numerically solve the null geodesic equations with the Einstein equations. We find that a nonlinear void redshifts the CMB photons that pass through it regardless of the distance to it. In contrast, a nonlinear lump blueshifts (or redshifts) the CMB photons if it is located near (or sufficiently far from) us. The present analysis comprehensively covers previous works based on a thin-shell approximation and a linear/second-order perturbation method and the effects of shell thickness and full nonlinearity. Our results indicate that, if quasilinear and large (> or approx.100 Mpc) voids/lumps would exist, they could be observed as cold or hot spots with temperature variance > or approx. 10{sup -5} K in the CMB sky.

  6. Coupling graphene mechanical resonators to superconducting microwave cavities.

    PubMed

    Weber, P; Güttinger, J; Tsioutsios, I; Chang, D E; Bachtold, A

    2014-05-14

    Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies, quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the motion and external systems for efficient readout and manipulation. Here, we report on a novel approach, in which we capacitively couple a high-Q graphene mechanical resonator (Q ≈ 10(5)) to a superconducting microwave cavity. The initial devices exhibit a large single-photon coupling of ∼10 Hz. Remarkably, we can electrostatically change the graphene equilibrium position and thereby tune the single photon coupling, the mechanical resonance frequency, and the sign and magnitude of the observed Duffing nonlinearity. The strong tunability opens up new possibilities, such as the tuning of the optomechanical coupling strength on a time scale faster than the inverse of the cavity line width. With realistic improvements, it should be possible to enter the regime of quantum optomechanics. PMID:24745803

  7. Microwave memristive behavior in split-ring resonator metamaterials

    NASA Astrophysics Data System (ADS)

    Wu, H. Y.; Shi, S. K.; Wang, C. H.; Jiang, X. J.; Yu, G.; Qin, G. Q.; Fu, H.; Zhou, J.

    2016-07-01

    Photonic memristors, which behave as memristors operating with electromagnetic fields, present an effective means to achieve all-optical networking, and can promote the development of optical communications and computer technology. In this paper, we report a microwave memristive phenomenon at room temperature in metamaterials consisting of negative temperature coefficient thermistor ceramic disk and split-ring resonator (SRR). Hysteretic transmission-incident field power loops, the area of which varies with the scan rate of power, (similar to the fingerprint of memristors) were observed in the metamaterials. These effects are attributed to the increasing conductivity of the ceramic disk with increasing temperature generated by the interaction between electromagnetic waves and metamaterials. This work offers new opportunities for the development of photonic memristors.

  8. Introduction of DC line structures into a superconducting microwave 3D cavity

    SciTech Connect

    Kong, Wei-Cheng; Deng, Guang-Wei; Li, Shu-Xiao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping

    2015-02-15

    We report a technique that can noninvasively add multiple DC wires into a 3D superconducting microwave cavity for electronic devices that require DC electrical terminals. We studied the influence of our DC lines on the cavity performance systematically. We found that the quality factor of the cavity is reduced if any of the components of the electrical wires cross the cavity equipotential planes. Using this technique, we were able to incorporate a quantum dot (QD) device into a 3D cavity. We then controlled and measured the QD transport signal using the DC lines. We have also studied the heating effects of the QD by the microwave photons in the cavity.

  9. Quantum dynamics of a microwave driven superconducting phase qubit coupled to a two-level system

    NASA Astrophysics Data System (ADS)

    Sun, Guozhu; Wen, Xueda; Mao, Bo; Zhou, Zhongyuan; Yu, Yang; Wu, Peiheng; Han, Siyuan

    2010-10-01

    We present an analytical and comprehensive description of the quantum dynamics of a microwave resonantly driven superconducting phase qubit coupled to a microscopic two-level system (TLS), covering a wide range of the external microwave field strength. Our model predicts several interesting phenomena in such an ac driven four-level bipartite system including anomalous Rabi oscillations, high-contrast beatings of Rabi oscillations, and extraordinary two-photon transitions. Our experimental results in a coupled qubit-TLS system agree quantitatively very well with the predictions of the theoretical model.

  10. ATOMIC AND MOLECULAR PHYSICS: Lithium atom population transfer by population trapping in a chirped microwave pulse

    NASA Astrophysics Data System (ADS)

    Jia, Guang-Rui; Zhang, Xian-Zhou; Ren, Zhen-Zhong; Wu, Su-Ling

    2009-12-01

    Using a time-dependent multilevel approach, we demonstrate that lithium atoms can be transferred to states of lower principle quantum number by exposing them to a frequency chirped microwave pulse. The population transfer from n = 79 to n = 70 states of lithium atoms with more than 80% efficiency is achieved by means of the sequential two-photon Δn = -1 transitions. It is shown that the coherent control of the population transfer can be accomplished by the optimization of the chirping parameters and microwave field strength. The calculation results agree well with the experimental ones and novel explanations have been given to understand the experimental results.

  11. Microwave-driven ultraviolet light sources

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  12. Spin pumping in electrodynamically coupled magnon-photon systems

    NASA Astrophysics Data System (ADS)

    Bai, Lihui

    The electronics industry is quickly approaching the limitation of Moore's Law due to Joule heating in high density-integrated devices. To achieve new higher-speed devices and reduce energy consumption, researchers are turning to spintronics where the intrinsic spin, rather than the charge of electrons, is used to carry information in devices. Advances in spintronics have led to the discovery of giant magnetoresistance (GMR), spin transfer torque etc. Another subject, cavity electrodynamics, promises a completely new quantum algorithm by studying the properties of a single electron interacting with photons inside of a cavity. By merging both spintronics and cavity electrodynamics, a new cutting edge field called Cavity Spintronics is forming, which draws on the advantages of both subjects to develop new spintronics devices utilizing light-matter interaction. In this work, we use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling in a microwave cavity at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling. Co-authored with M. Harder, C.-M. Hu from University of Manitoba, Y. P. Chen, J. Q. Xiao from University of Delaware, and X. Fan from Univeristy of Denver.

  13. Indistinguishability of independent single photons

    NASA Astrophysics Data System (ADS)

    Sun, F. W.; Wong, C. W.

    2009-01-01

    The indistinguishability of independent single photons is presented by decomposing the single photon pulse into the mixed state of different transform-limited pulses. The entanglement between single photons and outer environment or other photons induces the distribution of the center frequencies of those transform-limited pulses and makes photons distinguishable. Only the single photons with the same transform-limited form are indistinguishable. In details, the indistinguishability of single photons from the solid-state quantum emitter and spontaneous parametric down-conversion is examined with two-photon Hong-Ou-Mandel interferometer. Moreover, experimental methods to enhance the indistinguishability are discussed, where the usage of spectral filter is highlighted.

  14. Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering

    PubMed Central

    Kneipp, Janina; Kneipp, Harald; Kneipp, Katrin

    2006-01-01

    Two-photon excitation is gaining rapidly in interest and significance in spectroscopy and microscopy. Here we introduce a new approach that suggests versatile optical labels suitable for both one- and two-photon excitation and also two-photon-excited ultrasensitive, nondestructive chemical probing. The underlying spectroscopic effect is the incoherent inelastic scattering of two photons on the vibrational quantum states called hyper-Raman scattering (HRS). The rather weak effect can be strengthened greatly if HRS takes place in the local optical fields of gold and silver nanostructures. This so-called surface-enhanced HRS (SEHRS) is the two-photon analogue to surface-enhanced Raman scattering (SERS). SEHRS provides structurally sensitive vibrational information complementary to those obtained by SERS. SEHRS combines the advantages of two-photon spectroscopy with the structural information of vibrational spectroscopy and the high-sensitivity and nanometer-scale local confinement of plasmonics-based spectroscopy. We infer effective two-photon cross-sections for SEHRS on the order of 10−46 to 10−45 cm4·s, similar to or higher than the best “action” cross-sections (product of the two-photon absorption cross-section and fluorescence quantum yield) for two-photon fluorescence, and we demonstrate HRS on biological structures such as single cells after incubation with gold nanoparticles. PMID:17088534

  15. High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber.

    PubMed

    Fedotov, I V; Blakley, S M; Serebryannikov, E E; Hemmer, P; Scully, M O; Zheltikov, A M

    2016-02-01

    We demonstrate high-resolution magnetic field imaging with a scanning fiber-optic probe which couples nitrogen-vacancy (NV) centers in diamond to a high-numerical-aperture photonic-crystal fiber integrated with a two-wire microwave transmission line. Magnetic resonance excitation of NV centers driven by the microwave field is read out through optical interrogation through the photonic-crystal fiber to enable high-speed, high-sensitivity magnetic field imaging with sub 30 μm spatial resolution. PMID:26907400

  16. Investigating photonic quantum computation

    NASA Astrophysics Data System (ADS)

    Myers, Casey Robert

    The use of photons as qubits is a promising implementation for quantum computation. The inability of photons to interact, especially with the environment, makes them an ideal physical candidate. However, this also makes them a difficult system to perform two qubit gates on. Recent breakthroughs in photonic quantum computing have shown methods around the requirement of direct photon-photon interaction. In this thesis we study three recently discovered schemes for optical quantum computation. We first investigate the so called linear optical quantum computing (LOQC) scheme, exploring a method to improve the original proposal by constructing a photon-number QND detector that succeeds with a high probability. In doing this we present a new type of LOQC teleporter, one that can detect the presence of a single photon in an arbitrary polarisation state when the input state is a sum of vacuum and multi-photon terms. This new type of teleporter is an improvement on the original scheme in that the entangled states required can be made offline with fewer entangling operations. We next investigate the so called quantum bus (qubus) scheme for photonic quantum computing. We show a scheme to measure the party of n qubit states by using a single qubus mode, controlled rotations and displacements. This allows for the syndrome measurements of any stabilizer quantum error correcting code. We extend these results to a fault tolerant scheme to measure an arbitrary Pauli operator of weight n, incorporating so called single bit teleportations. We investigate the construction of a Toffoli gate by using a single qubus mode, controlled rotations and displacements that works with a success probability of at least 25%. We also investigate the use of single bit teleportations to construct a universal set of gates on coherent state type logic and in the construction of cluster states. We finally investigate the optical Zeno gate, a gate that uses the Zeno effect in the form of two photon

  17. The Liverpool Microwave Palaeointensity System

    NASA Astrophysics Data System (ADS)

    Hill, Mimi; Biggin, Andrew; Hawkins, Louise; Hodgson, Emma; Hurst, Elliot

    2016-04-01

    The motivation for the group at Liverpool in the 1990s (led by John Shaw and Derek Walton) to start experimenting with using microwaves to demagnetise and remagnetise palaeomagnetic samples, rather than heating using conventional ovens, was to reduce laboratory induced alteration in absolute palaeointensity experiments. As with other methods, the non-ideal effects of grain size and naturally altered remanence must still be addressed. From humble beginnings using a domestic microwave oven the current 4th generation microwave system (MWS) has developed in to an integrated combined 14 GHz microwave resonant cavity and SQUID magnetometer system. The MWS is designed to investigate one 5 mm diameter sample at a time with microwave exposure (the equivalent of a heating step in conventional experiments) ranging from a few seconds up to around a minute. Each experiment (protocol, checks, direction and strength of applied field, number of steps etc) can be tailored to the behaviour of each individual sample. There have been many published studies demonstrating the equivalence of conventional thermal (Thellier) and microwave techniques using both artificial and natural remanence and also that the microwave method can indeed reduce laboratory induced alteration. Here an overview of the present MWS including a discussion of the physical processes occurring will be given. Examples of current projects (both archaeological and geological) utilising the method will also be described. Finally, future developments and applications of the method will be discussed.

  18. Fluctuations in the electron system of a superconductor exposed to a photon flux

    PubMed Central

    de Visser, P. J.; Baselmans, J. J. A.; Bueno, J.; Llombart, N.; Klapwijk, T. M.

    2014-01-01

    In a superconductor, in which electrons are paired, the density of unpaired electrons should become zero when approaching zero temperature. Therefore, radiation detectors based on breaking of pairs promise supreme sensitivity, which we demonstrate using an aluminium superconducting microwave resonator. Here we show that the resonator also enables the study of the response of the electron system of the superconductor to pair-breaking photons, microwave photons and varying temperatures. A large range in radiation power (at 1.54 THz) can be chosen by carefully filtering the radiation from a blackbody source. We identify two regimes. At high radiation power, fluctuations in the electron system caused by the random arrival rate of the photons are resolved, giving a straightforward measure of the optical efficiency (48±8%) and showing an unprecedented detector sensitivity. At low radiation power, fluctuations are dominated by excess quasiparticles, the number of which is measured through their recombination lifetime. PMID:24496036

  19. Photonic Beamformer Model Based on Analog Fiber-Optic Links’ Components

    NASA Astrophysics Data System (ADS)

    Volkov, V. A.; Gordeev, D. A.; Ivanov, S. I.; Lavrov, A. P.; Saenko, I. I.

    2016-08-01

    The model of photonic beamformer for wideband microwave phased array antenna is investigated. The main features of the photonic beamformer model based on true-time-delay technique, DWDM technology and fiber chromatic dispersion are briefly analyzed. The performance characteristics of the key components of photonic beamformer for phased array antenna in the receive mode are examined. The beamformer model composed of the components available on the market of fiber-optic analog communication links is designed and tentatively investigated. Experimental demonstration of the designed model beamforming features includes actual measurement of 5-element microwave linear array antenna far-field patterns in 6-16 GHz frequency range for antenna pattern steering up to 40°. The results of experimental testing show good accordance with the calculation estimates.

  20. Ultrastable Cryogenic Microwave Oscillators

    NASA Astrophysics Data System (ADS)

    Mann, Anthony G.

    Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10-14 to a few times 10-16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 x10^-14 /τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10-14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator's linewidth is typically limited by electronics noise to about 1ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the ``whispering gallery'' (WG) mode sapphire resonator-oscillators of NASA's Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University's superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency