Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.
Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg
2009-11-01
G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.
Linear regression metamodeling as a tool to summarize and present simulation model results.
Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M
2013-10-01
Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.
A method for fitting regression splines with varying polynomial order in the linear mixed model.
Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W
2006-02-15
The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.
Bennett, Bradley C; Husby, Chad E
2008-03-28
Botanical pharmacopoeias are non-random subsets of floras, with some taxonomic groups over- or under-represented. Moerman [Moerman, D.E., 1979. Symbols and selectivity: a statistical analysis of Native American medical ethnobotany, Journal of Ethnopharmacology 1, 111-119] introduced linear regression/residual analysis to examine these patterns. However, regression, the commonly-employed analysis, suffers from several statistical flaws. We use contingency table and binomial analyses to examine patterns of Shuar medicinal plant use (from Amazonian Ecuador). We first analyzed the Shuar data using Moerman's approach, modified to better meet requirements of linear regression analysis. Second, we assessed the exact randomization contingency table test for goodness of fit. Third, we developed a binomial model to test for non-random selection of plants in individual families. Modified regression models (which accommodated assumptions of linear regression) reduced R(2) to from 0.59 to 0.38, but did not eliminate all problems associated with regression analyses. Contingency table analyses revealed that the entire flora departs from the null model of equal proportions of medicinal plants in all families. In the binomial analysis, only 10 angiosperm families (of 115) differed significantly from the null model. These 10 families are largely responsible for patterns seen at higher taxonomic levels. Contingency table and binomial analyses offer an easy and statistically valid alternative to the regression approach.
Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L
2018-01-01
Aims A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R2), using R2 as the primary metric of assay agreement. However, the use of R2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. Methods We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Results Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. Conclusions The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. PMID:28747393
Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L
2018-02-01
A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R 2 ), using R 2 as the primary metric of assay agreement. However, the use of R 2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Henrard, S; Speybroeck, N; Hermans, C
2015-11-01
Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.
Terza, Joseph V; Bradford, W David; Dismuke, Clara E
2008-01-01
Objective To investigate potential bias in the use of the conventional linear instrumental variables (IV) method for the estimation of causal effects in inherently nonlinear regression settings. Data Sources Smoking Supplement to the 1979 National Health Interview Survey, National Longitudinal Alcohol Epidemiologic Survey, and simulated data. Study Design Potential bias from the use of the linear IV method in nonlinear models is assessed via simulation studies and real world data analyses in two commonly encountered regression setting: (1) models with a nonnegative outcome (e.g., a count) and a continuous endogenous regressor; and (2) models with a binary outcome and a binary endogenous regressor. Principle Findings The simulation analyses show that substantial bias in the estimation of causal effects can result from applying the conventional IV method in inherently nonlinear regression settings. Moreover, the bias is not attenuated as the sample size increases. This point is further illustrated in the survey data analyses in which IV-based estimates of the relevant causal effects diverge substantially from those obtained with appropriate nonlinear estimation methods. Conclusions We offer this research as a cautionary note to those who would opt for the use of linear specifications in inherently nonlinear settings involving endogeneity. PMID:18546544
High correlations between MRI brain volume measurements based on NeuroQuant® and FreeSurfer.
Ross, David E; Ochs, Alfred L; Tate, David F; Tokac, Umit; Seabaugh, John; Abildskov, Tracy J; Bigler, Erin D
2018-05-30
NeuroQuant ® (NQ) and FreeSurfer (FS) are commonly used computer-automated programs for measuring MRI brain volume. Previously they were reported to have high intermethod reliabilities but often large intermethod effect size differences. We hypothesized that linear transformations could be used to reduce the large effect sizes. This study was an extension of our previously reported study. We performed NQ and FS brain volume measurements on 60 subjects (including normal controls, patients with traumatic brain injury, and patients with Alzheimer's disease). We used two statistical approaches in parallel to develop methods for transforming FS volumes into NQ volumes: traditional linear regression, and Bayesian linear regression. For both methods, we used regression analyses to develop linear transformations of the FS volumes to make them more similar to the NQ volumes. The FS-to-NQ transformations based on traditional linear regression resulted in effect sizes which were small to moderate. The transformations based on Bayesian linear regression resulted in all effect sizes being trivially small. To our knowledge, this is the first report describing a method for transforming FS to NQ data so as to achieve high reliability and low effect size differences. Machine learning methods like Bayesian regression may be more useful than traditional methods. Copyright © 2018 Elsevier B.V. All rights reserved.
Development of Super-Ensemble techniques for ocean analyses: the Mediterranean Sea case
NASA Astrophysics Data System (ADS)
Pistoia, Jenny; Pinardi, Nadia; Oddo, Paolo; Collins, Matthew; Korres, Gerasimos; Drillet, Yann
2017-04-01
Short-term ocean analyses for Sea Surface Temperature SST in the Mediterranean Sea can be improved by a statistical post-processing technique, called super-ensemble. This technique consists in a multi-linear regression algorithm applied to a Multi-Physics Multi-Model Super-Ensemble (MMSE) dataset, a collection of different operational forecasting analyses together with ad-hoc simulations produced by modifying selected numerical model parameterizations. A new linear regression algorithm based on Empirical Orthogonal Function filtering techniques is capable to prevent overfitting problems, even if best performances are achieved when we add correlation to the super-ensemble structure using a simple spatial filter applied after the linear regression. Our outcomes show that super-ensemble performances depend on the selection of an unbiased operator and the length of the learning period, but the quality of the generating MMSE dataset has the largest impact on the MMSE analysis Root Mean Square Error (RMSE) evaluated with respect to observed satellite SST. Lower RMSE analysis estimates result from the following choices: 15 days training period, an overconfident MMSE dataset (a subset with the higher quality ensemble members), and the least square algorithm being filtered a posteriori.
Use of probabilistic weights to enhance linear regression myoelectric control
NASA Astrophysics Data System (ADS)
Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.
2015-12-01
Objective. Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Approach. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts’ law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Main results. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p < 0.05) by preventing extraneous movement at additional DOFs. Similar results were seen in experiments with two transradial amputees. Though goodness-of-fit evaluations suggested that the EMG feature distributions showed some deviations from the Gaussian, equal-covariance assumptions used in this experiment, the assumptions were sufficiently met to provide improved performance compared to linear regression control. Significance. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.
Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa
2008-01-01
This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.
Pütter, Carolin; Pechlivanis, Sonali; Nöthen, Markus M; Jöckel, Karl-Heinz; Wichmann, Heinz-Erich; Scherag, André
2011-01-01
Genome-wide association studies have identified robust associations between single nucleotide polymorphisms and complex traits. As the proportion of phenotypic variance explained is still limited for most of the traits, larger and larger meta-analyses are being conducted to detect additional associations. Here we investigate the impact of the study design and the underlying assumption about the true genetic effect in a bimodal mixture situation on the power to detect associations. We performed simulations of quantitative phenotypes analysed by standard linear regression and dichotomized case-control data sets from the extremes of the quantitative trait analysed by standard logistic regression. Using linear regression, markers with an effect in the extremes of the traits were almost undetectable, whereas analysing extremes by case-control design had superior power even for much smaller sample sizes. Two real data examples are provided to support our theoretical findings and to explore our mixture and parameter assumption. Our findings support the idea to re-analyse the available meta-analysis data sets to detect new loci in the extremes. Moreover, our investigation offers an explanation for discrepant findings when analysing quantitative traits in the general population and in the extremes. Copyright © 2011 S. Karger AG, Basel.
Multiple linear regression models are often used to predict levels of fecal indicator bacteria (FIB) in recreational swimming waters based on independent variables (IVs) such as meteorologic, hydrodynamic, and water-quality measures. The IVs used for these analyses are traditiona...
O'Leary, Neil; Chauhan, Balwantray C; Artes, Paul H
2012-10-01
To establish a method for estimating the overall statistical significance of visual field deterioration from an individual patient's data, and to compare its performance to pointwise linear regression. The Truncated Product Method was used to calculate a statistic S that combines evidence of deterioration from individual test locations in the visual field. The overall statistical significance (P value) of visual field deterioration was inferred by comparing S with its permutation distribution, derived from repeated reordering of the visual field series. Permutation of pointwise linear regression (PoPLR) and pointwise linear regression were evaluated in data from patients with glaucoma (944 eyes, median mean deviation -2.9 dB, interquartile range: -6.3, -1.2 dB) followed for more than 4 years (median 10 examinations over 8 years). False-positive rates were estimated from randomly reordered series of this dataset, and hit rates (proportion of eyes with significant deterioration) were estimated from the original series. The false-positive rates of PoPLR were indistinguishable from the corresponding nominal significance levels and were independent of baseline visual field damage and length of follow-up. At P < 0.05, the hit rates of PoPLR were 12, 29, and 42%, at the fifth, eighth, and final examinations, respectively, and at matching specificities they were consistently higher than those of pointwise linear regression. In contrast to population-based progression analyses, PoPLR provides a continuous estimate of statistical significance for visual field deterioration individualized to a particular patient's data. This allows close control over specificity, essential for monitoring patients in clinical practice and in clinical trials.
On the equivalence of case-crossover and time series methods in environmental epidemiology.
Lu, Yun; Zeger, Scott L
2007-04-01
The case-crossover design was introduced in epidemiology 15 years ago as a method for studying the effects of a risk factor on a health event using only cases. The idea is to compare a case's exposure immediately prior to or during the case-defining event with that same person's exposure at otherwise similar "reference" times. An alternative approach to the analysis of daily exposure and case-only data is time series analysis. Here, log-linear regression models express the expected total number of events on each day as a function of the exposure level and potential confounding variables. In time series analyses of air pollution, smooth functions of time and weather are the main confounders. Time series and case-crossover methods are often viewed as competing methods. In this paper, we show that case-crossover using conditional logistic regression is a special case of time series analysis when there is a common exposure such as in air pollution studies. This equivalence provides computational convenience for case-crossover analyses and a better understanding of time series models. Time series log-linear regression accounts for overdispersion of the Poisson variance, while case-crossover analyses typically do not. This equivalence also permits model checking for case-crossover data using standard log-linear model diagnostics.
Friedrich, Nele; Schneider, Harald J; Spielhagen, Christin; Markus, Marcello Ricardo Paulista; Haring, Robin; Grabe, Hans J; Buchfelder, Michael; Wallaschofski, Henri; Nauck, Matthias
2011-10-01
Prolactin (PRL) is involved in immune regulation and may contribute to an atherogenic phenotype. Previous results on the association of PRL with inflammatory biomarkers have been conflicting and limited by small patient studies. Therefore, we used data from a large population-based sample to assess the cross-sectional associations between serum PRL concentration and high-sensitivity C-reactive protein (hsCRP), fibrinogen, interleukin-6 (IL-6), and white blood cell (WBC) count. From the population-based Study of Health in Pomerania (SHIP), a total of 3744 subjects were available for the present analyses. PRL and inflammatory biomarkers were measured. Linear and logistic regression models adjusted for age, sex, body-mass-index, total cholesterol and glucose were analysed. Multivariable linear regression models revealed a positive association of PRL with WBC. Multivariable logistic regression analyses showed a significant association of PRL with increased IL-6 in non-smokers [highest vs lowest quintile: odds ratio 1·69 (95% confidence interval 1·10-2·58), P = 0·02] and smokers [OR 2·06 (95%-CI 1·10-3·89), P = 0·02]. Similar results were found for WBC in non-smokers [highest vs lowest quintile: OR 2·09 (95%-CI 1·21-3·61), P = 0·01)] but not in smokers. Linear and logistic regression analyses revealed no significant associations of PRL with hsCRP or fibrinogen. Serum PRL concentrations are associated with inflammatory biomarkers including IL-6 and WBC, but not hsCRP or fibrinogen. The suggested role of PRL in inflammation needs further investigation in future prospective studies. © 2011 Blackwell Publishing Ltd.
Scale of association: hierarchical linear models and the measurement of ecological systems
Sean M. McMahon; Jeffrey M. Diez
2007-01-01
A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...
Estimating effects of limiting factors with regression quantiles
Cade, B.S.; Terrell, J.W.; Schroeder, R.L.
1999-01-01
In a recent Concepts paper in Ecology, Thomson et al. emphasized that assumptions of conventional correlation and regression analyses fundamentally conflict with the ecological concept of limiting factors, and they called for new statistical procedures to address this problem. The analytical issue is that unmeasured factors may be the active limiting constraint and may induce a pattern of unequal variation in the biological response variable through an interaction with the measured factors. Consequently, changes near the maxima, rather than at the center of response distributions, are better estimates of the effects expected when the observed factor is the active limiting constraint. Regression quantiles provide estimates for linear models fit to any part of a response distribution, including near the upper bounds, and require minimal assumptions about the form of the error distribution. Regression quantiles extend the concept of one-sample quantiles to the linear model by solving an optimization problem of minimizing an asymmetric function of absolute errors. Rank-score tests for regression quantiles provide tests of hypotheses and confidence intervals for parameters in linear models with heteroscedastic errors, conditions likely to occur in models of limiting ecological relations. We used selected regression quantiles (e.g., 5th, 10th, ..., 95th) and confidence intervals to test hypotheses that parameters equal zero for estimated changes in average annual acorn biomass due to forest canopy cover of oak (Quercus spp.) and oak species diversity. Regression quantiles also were used to estimate changes in glacier lily (Erythronium grandiflorum) seedling numbers as a function of lily flower numbers, rockiness, and pocket gopher (Thomomys talpoides fossor) activity, data that motivated the query by Thomson et al. for new statistical procedures. Both example applications showed that effects of limiting factors estimated by changes in some upper regression quantile (e.g., 90-95th) were greater than if effects were estimated by changes in the means from standard linear model procedures. Estimating a range of regression quantiles (e.g., 5-95th) provides a comprehensive description of biological response patterns for exploratory and inferential analyses in observational studies of limiting factors, especially when sampling large spatial and temporal scales.
Bhamidipati, Ravi Kanth; Syed, Muzeeb; Mullangi, Ramesh; Srinivas, Nuggehally
2018-02-01
1. Dalbavancin, a lipoglycopeptide, is approved for treating gram-positive bacterial infections. Area under plasma concentration versus time curve (AUC inf ) of dalbavancin is a key parameter and AUC inf /MIC ratio is a critical pharmacodynamic marker. 2. Using end of intravenous infusion concentration (i.e. C max ) C max versus AUC inf relationship for dalbavancin was established by regression analyses (i.e. linear, log-log, log-linear and power models) using 21 pairs of subject data. 3. The predictions of the AUC inf were performed using published C max data by application of regression equations. The quotient of observed/predicted values rendered fold difference. The mean absolute error (MAE)/root mean square error (RMSE) and correlation coefficient (r) were used in the assessment. 4. MAE and RMSE values for the various models were comparable. The C max versus AUC inf exhibited excellent correlation (r > 0.9488). The internal data evaluation showed narrow confinement (0.84-1.14-fold difference) with a RMSE < 10.3%. The external data evaluation showed that the models predicted AUC inf with a RMSE of 3.02-27.46% with fold difference largely contained within 0.64-1.48. 5. Regardless of the regression models, a single time point strategy of using C max (i.e. end of 30-min infusion) is amenable as a prospective tool for predicting AUC inf of dalbavancin in patients.
How is the weather? Forecasting inpatient glycemic control
Saulnier, George E; Castro, Janna C; Cook, Curtiss B; Thompson, Bithika M
2017-01-01
Aim: Apply methods of damped trend analysis to forecast inpatient glycemic control. Method: Observed and calculated point-of-care blood glucose data trends were determined over 62 weeks. Mean absolute percent error was used to calculate differences between observed and forecasted values. Comparisons were drawn between model results and linear regression forecasting. Results: The forecasted mean glucose trends observed during the first 24 and 48 weeks of projections compared favorably to the results provided by linear regression forecasting. However, in some scenarios, the damped trend method changed inferences compared with linear regression. In all scenarios, mean absolute percent error values remained below the 10% accepted by demand industries. Conclusion: Results indicate that forecasting methods historically applied within demand industries can project future inpatient glycemic control. Additional study is needed to determine if forecasting is useful in the analyses of other glucometric parameters and, if so, how to apply the techniques to quality improvement. PMID:29134125
Parker, Kristin M; Wilson, Mark G; Vandenberg, Robert J; DeJoy, David M; Orpinas, Pamela
2009-10-01
This study tests the hypothesis that employees with comorbid physical health conditions and mental health symptoms are less productive than other employees. Self-reported health status and productivity measures were collected from 1723 employees of a national retail organization. chi2, analysis of variance, and linear contrast analyses were conducted to evaluate whether health status groups differed on productivity measures. Multivariate linear regression and multinomial logistic regression analyses were conducted to analyze how predictive health status was of productivity. Those with comorbidities were significantly less productive on all productivity measures compared with all other health status groups and those with only physical health conditions or mental health symptoms. Health status also significantly predicted levels of employee productivity. These findings provide evidence for the relationship between health statuses and productivity, which has potential programmatic implications.
Logistic regression for circular data
NASA Astrophysics Data System (ADS)
Al-Daffaie, Kadhem; Khan, Shahjahan
2017-05-01
This paper considers the relationship between a binary response and a circular predictor. It develops the logistic regression model by employing the linear-circular regression approach. The maximum likelihood method is used to estimate the parameters. The Newton-Raphson numerical method is used to find the estimated values of the parameters. A data set from weather records of Toowoomba city is analysed by the proposed methods. Moreover, a simulation study is considered. The R software is used for all computations and simulations.
Regression Is a Univariate General Linear Model Subsuming Other Parametric Methods as Special Cases.
ERIC Educational Resources Information Center
Vidal, Sherry
Although the concept of the general linear model (GLM) has existed since the 1960s, other univariate analyses such as the t-test and the analysis of variance models have remained popular. The GLM produces an equation that minimizes the mean differences of independent variables as they are related to a dependent variable. From a computer printout…
High-flow oxygen therapy: pressure analysis in a pediatric airway model.
Urbano, Javier; del Castillo, Jimena; López-Herce, Jesús; Gallardo, José A; Solana, María J; Carrillo, Ángel
2012-05-01
The mechanism of high-flow oxygen therapy and the pressures reached in the airway have not been defined. We hypothesized that the flow would generate a low continuous positive pressure, and that elevated flow rates in this model could produce moderate pressures. The objective of this study was to analyze the pressure generated by a high-flow oxygen therapy system in an experimental model of the pediatric airway. An experimental in vitro study was performed. A high-flow oxygen therapy system was connected to 3 types of interface (nasal cannulae, nasal mask, and oronasal mask) and applied to 2 types of pediatric manikin (infant and neonatal). The pressures generated in the circuit, in the airway, and in the pharynx were measured at different flow rates (5, 10, 15, and 20 L/min). The experiment was conducted with and without a leak (mouth sealed and unsealed). Linear regression analyses were performed for each set of measurements. The pressures generated with the different interfaces were very similar. The maximum pressure recorded was 4 cm H(2)O with a flow of 20 L/min via nasal cannulae or nasal mask. When the mouth of the manikin was held open, the pressures reached in the airway and pharynxes were undetectable. Linear regression analyses showed a similar linear relationship between flow and pressures measured in the pharynx (pressure = -0.375 + 0.138 × flow) and in the airway (pressure = -0.375 + 0.158 × flow) with the closed mouth condition. According to our hypothesis, high-flow oxygen therapy systems produced a low-level CPAP in an experimental pediatric model, even with the use of very high flow rates. Linear regression analyses showed similar linear relationships between flow and pressures measured in the pharynx and in the airway. This finding suggests that, at least in part, the effects may be due to other mechanisms.
Drivers willingness to pay progressive rate for street parking.
DOT National Transportation Integrated Search
2015-01-01
This study finds willingness to pay and price elasticity for on-street parking demand using stated : preference data obtained from 238 respondents. Descriptive, statistical and economic analyses including : regression, generalized linear model, and f...
SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.
Chu, Annie; Cui, Jenny; Dinov, Ivo D
2009-03-01
The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models.
Air Pollution and urban climatology at Norfolk, Virginia
W. Maurice Pritchard; Kuldip P. Chopra
1977-01-01
The atmosphere at Norfolk is usually stable, with no strongly prevailing wind direction. Linear regression analyses of visibility data indicate a generally decreasing visibility trend between 1960 and 1972, with a possible trend reversal in later years. A 44 percent increase in the annual frequency of 0-4-mile visibility occurred in 1960-72. Similar analyses of...
Relationship between age and elite marathon race time in world single age records from 5 to 93 years
2014-01-01
Background The aims of the study were (i) to investigate the relationship between elite marathon race times and age in 1-year intervals by using the world single age records in marathon running from 5 to 93 years and (ii) to evaluate the sex difference in elite marathon running performance with advancing age. Methods World single age records in marathon running in 1-year intervals for women and men were analysed regarding changes across age for both men and women using linear and non-linear regression analyses for each age for women and men. Results The relationship between elite marathon race time and age was non-linear (i.e. polynomial regression 4th degree) for women and men. The curve was U-shaped where performance improved from 5 to ~20 years. From 5 years to ~15 years, boys and girls performed very similar. Between ~20 and ~35 years, performance was quite linear, but started to decrease at the age of ~35 years in a curvilinear manner with increasing age in both women and men. The sex difference increased non-linearly (i.e. polynomial regression 7th degree) from 5 to ~20 years, remained unchanged at ~20 min from ~20 to ~50 years and increased thereafter. The sex difference was lowest (7.5%, 10.5 min) at the age of 49 years. Conclusion Elite marathon race times improved from 5 to ~20 years, remained linear between ~20 and ~35 years, and started to increase at the age of ~35 years in a curvilinear manner with increasing age in both women and men. The sex difference in elite marathon race time increased non-linearly and was lowest at the age of ~49 years. PMID:25120915
Abu Bakar, S N; Aspalilah, A; AbdelNasser, I; Nurliza, A; Hairuliza, M J; Swarhib, M; Das, S; Mohd Nor, F
2017-01-01
Stature is one of the characteristics that could be used to identify human, besides age, sex and racial affiliation. This is useful when the body found is either dismembered, mutilated or even decomposed, and helps in narrowing down the missing person's identity. The main aim of the present study was to construct regression functions for stature estimation by using lower limb bones in the Malaysian population. The sample comprised 87 adult individuals (81 males, 6 females) aged between 20 to 79 years. The parameters such as thigh length, lower leg length, leg length, foot length, foot height and foot breadth were measured. They were measured by a ruler and measuring tape. Statistical analysis involved independent t-test to analyse the difference between lower limbs in male and female. The Pearson's correlation test was used to analyse correlations between lower limb parameters and stature, and the linear regressions were used to form equations. The paired t-test was used to compare between actual stature and estimated stature by using the equations formed. Using independent t-test, there was a significant difference (p< 0.05) in the measurement between males and females with regard to leg length, thigh length, lower leg length, foot length and foot breadth. The thigh length, leg length and foot length were observed to have strong correlations with stature with p= 0.75, p= 0.81 and p= 0.69, respectively. Linear regressions were formulated for stature estimation. Paired t-test showed no significant difference between actual stature and estimated stature. It is concluded that regression functions can be used to estimate stature to identify skeletal remains in the Malaysia population.
ERIC Educational Resources Information Center
Levin, Kate; Inchley, Jo; Currie, Dorothy; Currie, Candace
2012-01-01
Purpose: The aim of this paper is to examine the impact of the health promoting school (HPS) on adolescent well-being. Design/methodology/approach: Data from the 2006 Health Behaviour in School-aged Children: WHO-collaborative Study in Scotland were analysed using multilevel linear regression analyses for outcome measures: happiness, confidence,…
Advanced Statistics for Exotic Animal Practitioners.
Hodsoll, John; Hellier, Jennifer M; Ryan, Elizabeth G
2017-09-01
Correlation and regression assess the association between 2 or more variables. This article reviews the core knowledge needed to understand these analyses, moving from visual analysis in scatter plots through correlation, simple and multiple linear regression, and logistic regression. Correlation estimates the strength and direction of a relationship between 2 variables. Regression can be considered more general and quantifies the numerical relationships between an outcome and 1 or multiple variables in terms of a best-fit line, allowing predictions to be made. Each technique is discussed with examples and the statistical assumptions underlying their correct application. Copyright © 2017 Elsevier Inc. All rights reserved.
An approach to checking case-crossover analyses based on equivalence with time-series methods.
Lu, Yun; Symons, James Morel; Geyh, Alison S; Zeger, Scott L
2008-03-01
The case-crossover design has been increasingly applied to epidemiologic investigations of acute adverse health effects associated with ambient air pollution. The correspondence of the design to that of matched case-control studies makes it inferentially appealing for epidemiologic studies. Case-crossover analyses generally use conditional logistic regression modeling. This technique is equivalent to time-series log-linear regression models when there is a common exposure across individuals, as in air pollution studies. Previous methods for obtaining unbiased estimates for case-crossover analyses have assumed that time-varying risk factors are constant within reference windows. In this paper, we rely on the connection between case-crossover and time-series methods to illustrate model-checking procedures from log-linear model diagnostics for time-stratified case-crossover analyses. Additionally, we compare the relative performance of the time-stratified case-crossover approach to time-series methods under 3 simulated scenarios representing different temporal patterns of daily mortality associated with air pollution in Chicago, Illinois, during 1995 and 1996. Whenever a model-be it time-series or case-crossover-fails to account appropriately for fluctuations in time that confound the exposure, the effect estimate will be biased. It is therefore important to perform model-checking in time-stratified case-crossover analyses rather than assume the estimator is unbiased.
Partitioning sources of variation in vertebrate species richness
Boone, R.B.; Krohn, W.B.
2000-01-01
Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species richness and environmental variation, identifying the importance of linear relationships between reptiles and the environment, and nonlinear relationships between birds and woody plants, for example. Conservation planners should capture climatic variation in broad-scale designs; temperatures may shift during climate change, but the underlying correlations between the environment and species richness will presumably remain.
NASA Astrophysics Data System (ADS)
Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N. J.; Martikainen, P. J.; Alm, J.; Wilmking, M.
2007-07-01
Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach was justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatland sites in Finland and a tundra site in Siberia. The flux measurements were performed using transparent chambers on vegetated surfaces and opaque chambers on bare peat surfaces. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes and even lower for longer closure times. The degree of underestimation increased with increasing CO2 flux strength and is dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.
ERIC Educational Resources Information Center
Hester, Yvette
Least squares methods are sophisticated mathematical curve fitting procedures used in all classical parametric methods. The linear least squares approximation is most often associated with finding the "line of best fit" or the regression line. Since all statistical analyses are correlational and all classical parametric methods are least…
Mathematics Readiness of First-Year University Students
ERIC Educational Resources Information Center
Atuahene, Francis; Russell, Tammy A.
2016-01-01
The majority of high school students, particularly underrepresented minorities (URMs) from low socioeconomic backgrounds are graduating from high school less prepared academically for advanced-level college mathematics. Using 2009 and 2010 course enrollment data, several statistical analyses (multiple linear regression, Cochran Mantel Haenszel…
Yokoo, Takeshi; Serai, Suraj D; Pirasteh, Ali; Bashir, Mustafa R; Hamilton, Gavin; Hernando, Diego; Hu, Houchun H; Hetterich, Holger; Kühn, Jens-Peter; Kukuk, Guido M; Loomba, Rohit; Middleton, Michael S; Obuchowski, Nancy A; Song, Ji Soo; Tang, An; Wu, Xinhuai; Reeder, Scott B; Sirlin, Claude B
2018-02-01
Purpose To determine the linearity, bias, and precision of hepatic proton density fat fraction (PDFF) measurements by using magnetic resonance (MR) imaging across different field strengths, imager manufacturers, and reconstruction methods. Materials and Methods This meta-analysis was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A systematic literature search identified studies that evaluated the linearity and/or bias of hepatic PDFF measurements by using MR imaging (hereafter, MR imaging-PDFF) against PDFF measurements by using colocalized MR spectroscopy (hereafter, MR spectroscopy-PDFF) or the precision of MR imaging-PDFF. The quality of each study was evaluated by using the Quality Assessment of Studies of Diagnostic Accuracy 2 tool. De-identified original data sets from the selected studies were pooled. Linearity was evaluated by using linear regression between MR imaging-PDFF and MR spectroscopy-PDFF measurements. Bias, defined as the mean difference between MR imaging-PDFF and MR spectroscopy-PDFF measurements, was evaluated by using Bland-Altman analysis. Precision, defined as the agreement between repeated MR imaging-PDFF measurements, was evaluated by using a linear mixed-effects model, with field strength, imager manufacturer, reconstruction method, and region of interest as random effects. Results Twenty-three studies (1679 participants) were selected for linearity and bias analyses and 11 studies (425 participants) were selected for precision analyses. MR imaging-PDFF was linear with MR spectroscopy-PDFF (R 2 = 0.96). Regression slope (0.97; P < .001) and mean Bland-Altman bias (-0.13%; 95% limits of agreement: -3.95%, 3.40%) indicated minimal underestimation by using MR imaging-PDFF. MR imaging-PDFF was precise at the region-of-interest level, with repeatability and reproducibility coefficients of 2.99% and 4.12%, respectively. Field strength, imager manufacturer, and reconstruction method each had minimal effects on reproducibility. Conclusion MR imaging-PDFF has excellent linearity, bias, and precision across different field strengths, imager manufacturers, and reconstruction methods. © RSNA, 2017 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on October 2, 2017.
Jacob, Benjamin J; Krapp, Fiorella; Ponce, Mario; Gottuzzo, Eduardo; Griffith, Daniel A; Novak, Robert J
2010-05-01
Spatial autocorrelation is problematic for classical hierarchical cluster detection tests commonly used in multi-drug resistant tuberculosis (MDR-TB) analyses as considerable random error can occur. Therefore, when MDRTB clusters are spatially autocorrelated the assumption that the clusters are independently random is invalid. In this research, a product moment correlation coefficient (i.e., the Moran's coefficient) was used to quantify local spatial variation in multiple clinical and environmental predictor variables sampled in San Juan de Lurigancho, Lima, Peru. Initially, QuickBird 0.61 m data, encompassing visible bands and the near infra-red bands, were selected to synthesize images of land cover attributes of the study site. Data of residential addresses of individual patients with smear-positive MDR-TB were geocoded, prevalence rates calculated and then digitally overlaid onto the satellite data within a 2 km buffer of 31 georeferenced health centers, using a 10 m2 grid-based algorithm. Geographical information system (GIS)-gridded measurements of each health center were generated based on preliminary base maps of the georeferenced data aggregated to block groups and census tracts within each buffered area. A three-dimensional model of the study site was constructed based on a digital elevation model (DEM) to determine terrain covariates associated with the sampled MDR-TB covariates. Pearson's correlation was used to evaluate the linear relationship between the DEM and the sampled MDR-TB data. A SAS/GIS(R) module was then used to calculate univariate statistics and to perform linear and non-linear regression analyses using the sampled predictor variables. The estimates generated from a global autocorrelation analyses were then spatially decomposed into empirical orthogonal bases using a negative binomial regression with a non-homogeneous mean. Results of the DEM analyses indicated a statistically non-significant, linear relationship between georeferenced health centers and the sampled covariate elevation. The data exhibited positive spatial autocorrelation and the decomposition of Moran's coefficient into uncorrelated, orthogonal map pattern components revealed global spatial heterogeneities necessary to capture latent autocorrelation in the MDR-TB model. It was thus shown that Poisson regression analyses and spatial eigenvector mapping can elucidate the mechanics of MDR-TB transmission by prioritizing clinical and environmental-sampled predictor variables for identifying high risk populations.
SOCR Analyses – an Instructional Java Web-based Statistical Analysis Toolkit
Chu, Annie; Cui, Jenny; Dinov, Ivo D.
2011-01-01
The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test. The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website. In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models. PMID:21546994
NASA Astrophysics Data System (ADS)
Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N. J.; Martikainen, P. J.; Alm, J.; Wilmking, M.
2007-11-01
Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach has been justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatlands sites in Finland and a tundra site in Siberia. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. However, a rather large percentage of the exponential regression functions showed curvatures not consistent with the theoretical model which is considered to be caused by violations of the underlying model assumptions. Especially the effects of turbulence and pressure disturbances by the chamber deployment are suspected to have caused unexplainable curvatures. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes. The degree of underestimation increased with increasing CO2 flux strength and was dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.
Protocol Analysis as a Tool in Function and Task Analysis
1999-10-01
Autocontingency The use of log-linear and logistic regression methods to analyse sequential data seems appealing , and is strongly advocated by...collection and analysis of observational data. Behavior Research Methods, Instruments, and Computers, 23(3), 415-429. Patrick, J. D. (1991). Snob : A
Independent contrasts and PGLS regression estimators are equivalent.
Blomberg, Simon P; Lefevre, James G; Wells, Jessie A; Waterhouse, Mary
2012-05-01
We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives.
A parameter estimation subroutine package
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Nead, W. M.
1977-01-01
Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. FORTRAN subroutines have been developed to facilitate analyses of a variety of parameter estimation problems. Easy to use multipurpose sets of algorithms are reported that are reasonably efficient and which use a minimal amount of computer storage. Subroutine inputs, outputs, usage and listings are given, along with examples of how these routines can be used.
Harris, Michael; Radtke, Arthur S.
1976-01-01
Linear regression and discriminant analyses techniques were applied to gold, mercury, arsenic, antimony, barium, copper, molybdenum, lead, zinc, boron, tellurium, selenium, and tungsten analyses from drill holes into unoxidized gold ore at the Carlin gold mine near Carlin, Nev. The statistical treatments employed were used to judge proposed hypotheses on the origin and geochemical paragenesis of this disseminated gold deposit.
NASA Astrophysics Data System (ADS)
Abunama, Taher; Othman, Faridah
2017-06-01
Analysing the fluctuations of wastewater inflow rates in sewage treatment plants (STPs) is essential to guarantee a sufficient treatment of wastewater before discharging it to the environment. The main objectives of this study are to statistically analyze and forecast the wastewater inflow rates into the Bandar Tun Razak STP in Kuala Lumpur, Malaysia. A time series analysis of three years’ weekly influent data (156weeks) has been conducted using the Auto-Regressive Integrated Moving Average (ARIMA) model. Various combinations of ARIMA orders (p, d, q) have been tried to select the most fitted model, which was utilized to forecast the wastewater inflow rates. The linear regression analysis was applied to testify the correlation between the observed and predicted influents. ARIMA (3, 1, 3) model was selected with the highest significance R-square and lowest normalized Bayesian Information Criterion (BIC) value, and accordingly the wastewater inflow rates were forecasted to additional 52weeks. The linear regression analysis between the observed and predicted values of the wastewater inflow rates showed a positive linear correlation with a coefficient of 0.831.
Random regression analyses using B-splines to model growth of Australian Angus cattle
Meyer, Karin
2005-01-01
Regression on the basis function of B-splines has been advocated as an alternative to orthogonal polynomials in random regression analyses. Basic theory of splines in mixed model analyses is reviewed, and estimates from analyses of weights of Australian Angus cattle from birth to 820 days of age are presented. Data comprised 84 533 records on 20 731 animals in 43 herds, with a high proportion of animals with 4 or more weights recorded. Changes in weights with age were modelled through B-splines of age at recording. A total of thirteen analyses, considering different combinations of linear, quadratic and cubic B-splines and up to six knots, were carried out. Results showed good agreement for all ages with many records, but fluctuated where data were sparse. On the whole, analyses using B-splines appeared more robust against "end-of-range" problems and yielded more consistent and accurate estimates of the first eigenfunctions than previous, polynomial analyses. A model fitting quadratic B-splines, with knots at 0, 200, 400, 600 and 821 days and a total of 91 covariance components, appeared to be a good compromise between detailedness of the model, number of parameters to be estimated, plausibility of results, and fit, measured as residual mean square error. PMID:16093011
The effects of climate change on harp seals (Pagophilus groenlandicus).
Johnston, David W; Bowers, Matthew T; Friedlaender, Ari S; Lavigne, David M
2012-01-01
Harp seals (Pagophilus groenlandicus) have evolved life history strategies to exploit seasonal sea ice as a breeding platform. As such, individuals are prepared to deal with fluctuations in the quantity and quality of ice in their breeding areas. It remains unclear, however, how shifts in climate may affect seal populations. The present study assesses the effects of climate change on harp seals through three linked analyses. First, we tested the effects of short-term climate variability on young-of-the year harp seal mortality using a linear regression of sea ice cover in the Gulf of St. Lawrence against stranding rates of dead harp seals in the region during 1992 to 2010. A similar regression of stranding rates and North Atlantic Oscillation (NAO) index values was also conducted. These analyses revealed negative correlations between both ice cover and NAO conditions and seal mortality, indicating that lighter ice cover and lower NAO values result in higher mortality. A retrospective cross-correlation analysis of NAO conditions and sea ice cover from 1978 to 2011 revealed that NAO-related changes in sea ice may have contributed to the depletion of seals on the east coast of Canada during 1950 to 1972, and to their recovery during 1973 to 2000. This historical retrospective also reveals opposite links between neonatal mortality in harp seals in the Northeast Atlantic and NAO phase. Finally, an assessment of the long-term trends in sea ice cover in the breeding regions of harp seals across the entire North Atlantic during 1979 through 2011 using multiple linear regression models and mixed effects linear regression models revealed that sea ice cover in all harp seal breeding regions has been declining by as much as 6 percent per decade over the time series of available satellite data.
Huang, Li-Shan; Myers, Gary J; Davidson, Philip W; Cox, Christopher; Xiao, Fenyuan; Thurston, Sally W; Cernichiari, Elsa; Shamlaye, Conrad F; Sloane-Reeves, Jean; Georger, Lesley; Clarkson, Thomas W
2007-11-01
Studies of the association between prenatal methylmercury exposure from maternal fish consumption during pregnancy and neurodevelopmental test scores in the Seychelles Child Development Study have found no consistent pattern of associations through age 9 years. The analyses for the most recent 9-year data examined the population effects of prenatal exposure, but did not address the possibility of non-homogeneous susceptibility. This paper presents a regression tree approach: covariate effects are treated non-linearly and non-additively and non-homogeneous effects of prenatal methylmercury exposure are permitted among the covariate clusters identified by the regression tree. The approach allows us to address whether children in the lower or higher ends of the developmental spectrum differ in susceptibility to subtle exposure effects. Of 21 endpoints available at age 9 years, we chose the Weschler Full Scale IQ and its associated covariates to construct the regression tree. The prenatal mercury effect in each of the nine resulting clusters was assessed linearly and non-homogeneously. In addition we reanalyzed five other 9-year endpoints that in the linear analysis had a two-tailed p-value <0.2 for the effect of prenatal exposure. In this analysis, motor proficiency and activity level improved significantly with increasing MeHg for 53% of the children who had an average home environment. Motor proficiency significantly decreased with increasing prenatal MeHg exposure in 7% of the children whose home environment was below average. The regression tree results support previous analyses of outcomes in this cohort. However, this analysis raises the intriguing possibility that an effect may be non-homogeneous among children with different backgrounds and IQ levels.
The Effects of Climate Change on Harp Seals (Pagophilus groenlandicus)
Johnston, David W.; Bowers, Matthew T.; Friedlaender, Ari S.; Lavigne, David M.
2012-01-01
Harp seals (Pagophilus groenlandicus) have evolved life history strategies to exploit seasonal sea ice as a breeding platform. As such, individuals are prepared to deal with fluctuations in the quantity and quality of ice in their breeding areas. It remains unclear, however, how shifts in climate may affect seal populations. The present study assesses the effects of climate change on harp seals through three linked analyses. First, we tested the effects of short-term climate variability on young-of-the year harp seal mortality using a linear regression of sea ice cover in the Gulf of St. Lawrence against stranding rates of dead harp seals in the region during 1992 to 2010. A similar regression of stranding rates and North Atlantic Oscillation (NAO) index values was also conducted. These analyses revealed negative correlations between both ice cover and NAO conditions and seal mortality, indicating that lighter ice cover and lower NAO values result in higher mortality. A retrospective cross-correlation analysis of NAO conditions and sea ice cover from 1978 to 2011 revealed that NAO-related changes in sea ice may have contributed to the depletion of seals on the east coast of Canada during 1950 to 1972, and to their recovery during 1973 to 2000. This historical retrospective also reveals opposite links between neonatal mortality in harp seals in the Northeast Atlantic and NAO phase. Finally, an assessment of the long-term trends in sea ice cover in the breeding regions of harp seals across the entire North Atlantic during 1979 through 2011 using multiple linear regression models and mixed effects linear regression models revealed that sea ice cover in all harp seal breeding regions has been declining by as much as 6 percent per decade over the time series of available satellite data. PMID:22238591
Artes, Paul H; Crabb, David P
2010-01-01
To investigate why the specificity of the Moorfields Regression Analysis (MRA) of the Heidelberg Retina Tomograph (HRT) varies with disc size, and to derive accurate normative limits for neuroretinal rim area to address this problem. Two datasets from healthy subjects (Manchester, UK, n = 88; Halifax, Nova Scotia, Canada, n = 75) were used to investigate the physiological relationship between the optic disc and neuroretinal rim area. Normative limits for rim area were derived by quantile regression (QR) and compared with those of the MRA (derived by linear regression). Logistic regression analyses were performed to quantify the association between disc size and positive classifications with the MRA, as well as with the QR-derived normative limits. In both datasets, the specificity of the MRA depended on optic disc size. The odds of observing a borderline or outside-normal-limits classification increased by approximately 10% for each 0.1 mm(2) increase in disc area (P < 0.1). The lower specificity of the MRA with large optic discs could be explained by the failure of linear regression to model the extremes of the rim area distribution (observations far from the mean). In comparison, the normative limits predicted by QR were larger for smaller discs (less specific, more sensitive), and smaller for larger discs, such that false-positive rates became independent of optic disc size. Normative limits derived by quantile regression appear to remove the size-dependence of specificity with the MRA. Because quantile regression does not rely on the restrictive assumptions of standard linear regression, it may be a more appropriate method for establishing normative limits in other clinical applications where the underlying distributions are nonnormal or have nonconstant variance.
Wired: Energy Drinks, Jock Identity, Masculine Norms, and Risk Taking
ERIC Educational Resources Information Center
Miller, Kathleen E.
2008-01-01
Objective: The author examined gendered links among sport-related identity, endorsement of conventional masculine norms, risk taking, and energy-drink consumption. Participants: The author surveyed 795 undergraduate students enrolled in introductory-level courses at a public university. Methods: The author conducted linear regression analyses of…
Regression and multivariate models for predicting particulate matter concentration level.
Nazif, Amina; Mohammed, Nurul Izma; Malakahmad, Amirhossein; Abualqumboz, Motasem S
2018-01-01
The devastating health effects of particulate matter (PM 10 ) exposure by susceptible populace has made it necessary to evaluate PM 10 pollution. Meteorological parameters and seasonal variation increases PM 10 concentration levels, especially in areas that have multiple anthropogenic activities. Hence, stepwise regression (SR), multiple linear regression (MLR) and principal component regression (PCR) analyses were used to analyse daily average PM 10 concentration levels. The analyses were carried out using daily average PM 10 concentration, temperature, humidity, wind speed and wind direction data from 2006 to 2010. The data was from an industrial air quality monitoring station in Malaysia. The SR analysis established that meteorological parameters had less influence on PM 10 concentration levels having coefficient of determination (R 2 ) result from 23 to 29% based on seasoned and unseasoned analysis. While, the result of the prediction analysis showed that PCR models had a better R 2 result than MLR methods. The results for the analyses based on both seasoned and unseasoned data established that MLR models had R 2 result from 0.50 to 0.60. While, PCR models had R 2 result from 0.66 to 0.89. In addition, the validation analysis using 2016 data also recognised that the PCR model outperformed the MLR model, with the PCR model for the seasoned analysis having the best result. These analyses will aid in achieving sustainable air quality management strategies.
Survival Data and Regression Models
NASA Astrophysics Data System (ADS)
Grégoire, G.
2014-12-01
We start this chapter by introducing some basic elements for the analysis of censored survival data. Then we focus on right censored data and develop two types of regression models. The first one concerns the so-called accelerated failure time models (AFT), which are parametric models where a function of a parameter depends linearly on the covariables. The second one is a semiparametric model, where the covariables enter in a multiplicative form in the expression of the hazard rate function. The main statistical tool for analysing these regression models is the maximum likelihood methodology and, in spite we recall some essential results about the ML theory, we refer to the chapter "Logistic Regression" for a more detailed presentation.
School Climate, Principal Support and Collaboration among Portuguese Teachers
ERIC Educational Resources Information Center
Castro Silva, José; Amante, Lúcia; Morgado, José
2017-01-01
This article analyses the relationship between school principal support and teacher collaboration among Portuguese teachers. Data were collected from a random sample of 234 teachers in middle and secondary schools. The use of a combined approach using linear and multiple regression tests concluded that the school principal support, through the…
Predicting South Korean University Students' Happiness through Social Support and Efficacy Beliefs
ERIC Educational Resources Information Center
Lee, Diane Sookyoung; Padilla, Amado M.
2016-01-01
This study investigated the adversity and coping experiences of 198 South Korean university students and takes a cultural lens in understanding how social and individual factors shape their happiness. Hierarchical linear regression analyses suggest that Korean students' perceptions of social support significantly predicted their happiness,…
ERIC Educational Resources Information Center
Everson, Howard T.; And Others
This paper explores the feasibility of neural computing methods such as artificial neural networks (ANNs) and abductory induction mechanisms (AIM) for use in educational measurement. ANNs and AIMS methods are contrasted with more traditional statistical techniques, such as multiple regression and discriminant function analyses, for making…
Gene set analysis using variance component tests.
Huang, Yen-Tsung; Lin, Xihong
2013-06-28
Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data.
Ecologic regression analysis and the study of the influence of air quality on mortality.
Selvin, S; Merrill, D; Wong, L; Sacks, S T
1984-01-01
This presentation focuses entirely on the use and evaluation of regression analysis applied to ecologic data as a method to study the effects of ambient air pollution on mortality rates. Using extensive national data on mortality, air quality and socio-economic status regression analyses are used to study the influence of air quality on mortality. The analytic methods and data are selected in such a way that direct comparisons can be made with other ecologic regression studies of mortality and air quality. Analyses are performed by use of two types of geographic areas, age-specific mortality of both males and females and three pollutants (total suspended particulates, sulfur dioxide and nitrogen dioxide). The overall results indicate no persuasive evidence exists of a link between air quality and general mortality levels. Additionally, a lack of consistency between the present results and previous published work is noted. Overall, it is concluded that linear regression analysis applied to nationally collected ecologic data cannot be used to usefully infer a causal relationship between air quality and mortality which is in direct contradiction to other major published studies. PMID:6734568
Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming
2016-01-01
Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.
Suzuki, Taku; Iwamoto, Takuji; Shizu, Kanae; Suzuki, Katsuji; Yamada, Harumoto; Sato, Kazuki
2017-05-01
This retrospective study was designed to investigate prognostic factors for postoperative outcomes for cubital tunnel syndrome (CubTS) using multiple logistic regression analysis with a large number of patients. Eighty-three patients with CubTS who underwent surgeries were enrolled. The following potential prognostic factors for disease severity were selected according to previous reports: sex, age, type of surgery, disease duration, body mass index, cervical lesion, presence of diabetes mellitus, Workers' Compensation status, preoperative severity, and preoperative electrodiagnostic testing. Postoperative severity of disease was assessed 2 years after surgery by Messina's criteria which is an outcome measure specifically for CubTS. Bivariate analysis was performed to select candidate prognostic factors for multiple linear regression analyses. Multiple logistic regression analysis was conducted to identify the association between postoperative severity and selected prognostic factors. Both bivariate and multiple linear regression analysis revealed only preoperative severity as an independent risk factor for poor prognosis, while other factors did not show any significant association. Although conflicting results exist regarding prognosis of CubTS, this study supports evidence from previous studies and concludes early surgical intervention portends the most favorable prognosis. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Kang, Kun-Tai; Chiu, Shuenn-Nan; Weng, Wen-Chin; Lee, Pei-Lin; Hsu, Wei-Chung
2017-03-01
To compare office blood pressure (BP) and 24-hour ambulatory BP (ABP) monitoring to facilitate the diagnosis and management of hypertension in children with obstructive sleep apnea (OSA). Children aged 4-16 years with OSA-related symptoms were recruited from a tertiary referral medical center. All children underwent overnight polysomnography, office BP, and 24-hour ABP studies. Multiple linear regression analyses were applied to elucidate the association between the apnea-hypopnea index and BP. Correlation and consistency between office BP and 24-hour ABP were measured by Pearson correlation, intraclass correlation, and Bland-Altman analyses. In the 163 children enrolled (mean age, 8.2 ± 3.3 years; 67% male). The prevalence of systolic hypertension at night was significantly higher in children with moderate-to-severe OSA than in those with primary snoring (44.9% vs 16.1%, P = .006). Pearson correlation and intraclass correlation analyses revealed associations between office BP and 24-hour BP, and Bland-Altman analysis indicated an agreement between office and 24-hour BP measurements. However, multiple linear regression analyses demonstrated that 24-hour BP (nighttime systolic BP and mean arterial pressure), unlike office BP, was independently associated with the apnea-hypopnea index, after adjustment for adiposity variables. Twenty-four-hour ABP is more strongly correlated with OSA in children, compared with office BP. Copyright © 2016 Elsevier Inc. All rights reserved.
Murphy, Kevin; Birn, Rasmus M.; Handwerker, Daniel A.; Jones, Tyler B.; Bandettini, Peter A.
2009-01-01
Low-frequency fluctuations in fMRI signal have been used to map several consistent resting state networks in the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found not only positive correlations in the default mode network but negative correlations in another resting state network related to attentional processes. The interpretation is that the human brain is intrinsically organized into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal regression method has been shown to introduce negative activation measures in standard fMRI analyses. The topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state networks in functional connectivity analyses. Here we show that, after global signal regression, correlation values to a seed voxel must sum to a negative value. Simulations also show that small phase differences between regions can lead to spurious negative correlation values. A combination breath holding and visual task demonstrates that the relative phase of global and local signals can affect connectivity measures and that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on zero. Finally, analyses of negatively correlated networks in resting state data show that global signal regression is most likely the cause of anti-correlations. These results call into question the interpretation of negatively correlated regions in the brain when using global signal regression as an initial processing step. PMID:18976716
Murphy, Kevin; Birn, Rasmus M; Handwerker, Daniel A; Jones, Tyler B; Bandettini, Peter A
2009-02-01
Low-frequency fluctuations in fMRI signal have been used to map several consistent resting state networks in the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found not only positive correlations in the default mode network but negative correlations in another resting state network related to attentional processes. The interpretation is that the human brain is intrinsically organized into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal regression method has been shown to introduce negative activation measures in standard fMRI analyses. The topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state networks in functional connectivity analyses. Here we show that, after global signal regression, correlation values to a seed voxel must sum to a negative value. Simulations also show that small phase differences between regions can lead to spurious negative correlation values. A combination breath holding and visual task demonstrates that the relative phase of global and local signals can affect connectivity measures and that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on zero. Finally, analyses of negatively correlated networks in resting state data show that global signal regression is most likely the cause of anti-correlations. These results call into question the interpretation of negatively correlated regions in the brain when using global signal regression as an initial processing step.
A new approach to assess COPD by identifying lung function break-points
Eriksson, Göran; Jarenbäck, Linnea; Peterson, Stefan; Ankerst, Jaro; Bjermer, Leif; Tufvesson, Ellen
2015-01-01
Purpose COPD is a progressive disease, which can take different routes, leading to great heterogeneity. The aim of the post-hoc analysis reported here was to perform continuous analyses of advanced lung function measurements, using linear and nonlinear regressions. Patients and methods Fifty-one COPD patients with mild to very severe disease (Global Initiative for Chronic Obstructive Lung Disease [GOLD] Stages I–IV) and 41 healthy smokers were investigated post-bronchodilation by flow-volume spirometry, body plethysmography, diffusion capacity testing, and impulse oscillometry. The relationship between COPD severity, based on forced expiratory volume in 1 second (FEV1), and different lung function parameters was analyzed by flexible nonparametric method, linear regression, and segmented linear regression with break-points. Results Most lung function parameters were nonlinear in relation to spirometric severity. Parameters related to volume (residual volume, functional residual capacity, total lung capacity, diffusion capacity [diffusion capacity of the lung for carbon monoxide], diffusion capacity of the lung for carbon monoxide/alveolar volume) and reactance (reactance area and reactance at 5Hz) were segmented with break-points at 60%–70% of FEV1. FEV1/forced vital capacity (FVC) and resonance frequency had break-points around 80% of FEV1, while many resistance parameters had break-points below 40%. The slopes in percent predicted differed; resistance at 5 Hz minus resistance at 20 Hz had a linear slope change of −5.3 per unit FEV1, while residual volume had no slope change above and −3.3 change per unit FEV1 below its break-point of 61%. Conclusion Continuous analyses of different lung function parameters over the spirometric COPD severity range gave valuable information additional to categorical analyses. Parameters related to volume, diffusion capacity, and reactance showed break-points around 65% of FEV1, indicating that air trapping starts to dominate in moderate COPD (FEV1 =50%–80%). This may have an impact on the patient’s management plan and selection of patients and/or outcomes in clinical research. PMID:26508849
A reliable and cost effective approach for radiographic monitoring in nutritional rickets.
Chatterjee, D; Gupta, V; Sharma, V; Sinha, B; Samanta, S
2014-04-01
Radiological scoring is particularly useful in rickets, where pre-treatment radiographical findings can reflect the disease severity and can be used to monitor the improvement. However, there is only a single radiographic scoring system for rickets developed by Thacher and, to the best of our knowledge, no study has evaluated radiographic changes in rickets based on this scoring system apart from the one done by Thacher himself. The main objective of this study is to compare and analyse the pre-treatment and post-treatment radiographic parameters in nutritional rickets with the help of Thacher's scoring technique. 176 patients with nutritional rickets were given a single intramuscular injection of vitamin D (600 000 IU) along with oral calcium (50 mg kg(-1)) and vitamin D (400 IU per day) until radiological resolution and followed for 1 year. Pre- and post-treatment radiological parameters were compared and analysed statistically based on Thacher's scoring system. Radiological resolution was complete by 6 months. Time for radiological resolution and initial radiological score were linearly associated on regression analysis. The distal ulna was the last to heal in most cases except when the initial score was 10, when distal femur was the last to heal. Thacher's scoring system can effectively monitor nutritional rickets. The formula derived through linear regression has prognostic significance. The distal femur is a better indicator in radiologically severe rickets and when resolution is delayed. Thacher's scoring is very useful for monitoring of rickets. The formula derived through linear regression can predict the expected time for radiological resolution.
Advanced statistics: linear regression, part I: simple linear regression.
Marill, Keith A
2004-01-01
Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.
Time Advice and Learning Questions in Computer Simulations
ERIC Educational Resources Information Center
Rey, Gunter Daniel
2011-01-01
Students (N = 101) used an introductory text and a computer simulation to learn fundamental concepts about statistical analyses (e.g., analysis of variance, regression analysis and General Linear Model). Each learner was randomly assigned to one cell of a 2 (with or without time advice) x 3 (with learning questions and corrective feedback, with…
ERIC Educational Resources Information Center
Fulmer, Gavin W.; Polikoff, Morgan S.
2014-01-01
An essential component in school accountability efforts is for assessments to be well-aligned with the standards or curriculum they are intended to measure. However, relatively little prior research has explored methods to determine statistical significance of alignment or misalignment. This study explores analyses of alignment as a special case…
Do Nondomestic Undergraduates Choose a Major Field in Order to Maximize Grade Point Averages?
ERIC Educational Resources Information Center
Bergman, Matthew E.; Fass-Holmes, Barry
2016-01-01
The authors investigated whether undergraduates attending an American West Coast public university who were not U.S. citizens (nondomestic) maximized their grade point averages (GPA) through their choice of major field. Multiple regression hierarchical linear modeling analyses showed that major field's effect size was small for these…
Measuring the Impact of Inquiry-Based Learning on Outcomes and Student Satisfaction
ERIC Educational Resources Information Center
Zafra-Gómez, José Luis; Román-Martínez, Isabel; Gómez-Miranda, María Elena
2015-01-01
The aim of this study is to determine the impact of inquiry-based learning (IBL) on students' academic performance and to assess their satisfaction with the process. Linear and logistic regression analyses show that examination grades are positively related to attendance at classes and tutorials; moreover, there is a positive significant…
Reading Cooperatively or Independently? Study on ELL Student Reading Development
ERIC Educational Resources Information Center
Liu, Siping; Wang, Jian
2015-01-01
This study examines the effectiveness of cooperative reading teaching activities and independent reading activities for English language learner (ELL) students at 4th grade level. Based on simple linear regression and correlational analyses of data collected from two large data bases, PIRLS and NAEP, the study found that cooperative reading…
What Is the Relationship between Teacher Quality and Student Achievement? An Exploratory Study
ERIC Educational Resources Information Center
Stronge, James H.; Ward, Thomas J.; Tucker, Pamela D.; Hindman, Jennifer L.
2007-01-01
The major purpose of the study was to examine what constitutes effective teaching as defined by measured increases in student learning with a focus on the instructional behaviors and practices. Ordinary least squares (OLS) regression analyses and hierarchical linear modeling (HLM) were used to identify teacher effectiveness levels while…
The Use of Structure Coefficients to Address Multicollinearity in Sport and Exercise Science
ERIC Educational Resources Information Center
Yeatts, Paul E.; Barton, Mitch; Henson, Robin K.; Martin, Scott B.
2017-01-01
A common practice in general linear model (GLM) analyses is to interpret regression coefficients (e.g., standardized ß weights) as indicators of variable importance. However, focusing solely on standardized beta weights may provide limited or erroneous information. For example, ß weights become increasingly unreliable when predictor variables are…
ERIC Educational Resources Information Center
Strayhorn, Terrell L.
2010-01-01
Using data from the National Education Longitudinal Study (NELS;1988/2000), the author conducted hierarchical linear regression analyses, with a nested design, to estimate the influence of affective variables--parent involvement, teacher perceptions, and school environments--on Black students' math achievement in grade 10. Drawing on…
Prosocial Motivation, Stress and Burnout among Direct Support Workers
ERIC Educational Resources Information Center
Hickey, Robert
2014-01-01
Aim: This study explores whether the desire to engage in work that is beneficial to others moderates the effects of stress on burnout. Method: Based on a survey of 1570 direct support professionals in Ontario, this study conducted linear regression analyses and tested for the interaction effects of prosocial motivation on occupational stress and…
The relative toxic response of 27 selected phenols in the 96-hr acute flowthrough Pimephales promelas (fathead minnow) and the 48- to 60-hr chronic static Tetrahymena pyriformis (ciliate protozoan) test systems was evaluated. Log Kow-dependent linear regression analyses revealed ...
ERIC Educational Resources Information Center
Musekamp, Frank; Pearce, Jacob
2016-01-01
The goal of this paper is to examine the relationship of student motivation and achievement in low-stakes assessment contexts. Using Pearson product-moment correlations and hierarchical linear regression modelling to analyse data on 794 tertiary students who undertook a low-stakes engineering mechanics assessment (along with the questionnaire of…
Gender/racial Differences in Jock Identity, Dating, and Adolescent Sexual Risk.
ERIC Educational Resources Information Center
Miller, Kathleen E.; Farrell, Michael P.; Barnes, Grace M.; Melnick, Merrill J.; Sabo, Don
2005-01-01
Despite recent declines in overall sexual activity, sexual risk-taking remains a substantial danger to US youth. Existing research points to athletic participation as a promising venue for reducing these risks. Linear regressions and multiple analyses of covariance were performed on a longitudinal sample of nearly 600 Western New York adolescents…
Baqué, Michèle; Amendt, Jens
2013-01-01
Developmental data of juvenile blow flies (Diptera: Calliphoridae) are typically used to calculate the age of immature stages found on or around a corpse and thus to estimate a minimum post-mortem interval (PMI(min)). However, many of those data sets don't take into account that immature blow flies grow in a non-linear fashion. Linear models do not supply a sufficient reliability on age estimates and may even lead to an erroneous determination of the PMI(min). According to the Daubert standard and the need for improvements in forensic science, new statistic tools like smoothing methods and mixed models allow the modelling of non-linear relationships and expand the field of statistical analyses. The present study introduces into the background and application of these statistical techniques by analysing a model which describes the development of the forensically important blow fly Calliphora vicina at different temperatures. The comparison of three statistical methods (linear regression, generalised additive modelling and generalised additive mixed modelling) clearly demonstrates that only the latter provided regression parameters that reflect the data adequately. We focus explicitly on both the exploration of the data--to assure their quality and to show the importance of checking it carefully prior to conducting the statistical tests--and the validation of the resulting models. Hence, we present a common method for evaluating and testing forensic entomological data sets by using for the first time generalised additive mixed models.
Møller, Anne; Reventlow, Susanne; Hansen, Åse Marie; Andersen, Lars L; Siersma, Volkert; Lund, Rikke; Avlund, Kirsten; Andersen, Johan Hviid; Mortensen, Ole Steen
2015-01-01
Objectives Our aim was to study associations between physical exposures throughout working life and physical function measured as chair-rise performance in midlife. Methods The Copenhagen Aging and Midlife Biobank (CAMB) provided data about employment and measures of physical function. Individual job histories were assigned exposures from a job exposure matrix. Exposures were standardised to ton-years (lifting 1000 kg each day in 1 year), stand-years (standing/walking for 6 h each day in 1 year) and kneel-years (kneeling for 1 h each day in 1 year). The associations between exposure-years and chair-rise performance (number of chair-rises in 30 s) were analysed in multivariate linear and non-linear regression models adjusted for covariates. Results Mean age among the 5095 participants was 59 years in both genders, and, on average, men achieved 21.58 (SD=5.60) and women 20.38 (SD=5.33) chair-rises in 30 s. Physical exposures were associated with poorer chair-rise performance in both men and women, however, only associations between lifting and standing/walking and chair-rise remained statistically significant among men in the final model. Spline regression analyses showed non-linear associations and confirmed the findings. Conclusions Higher physical exposure throughout working life is associated with slightly poorer chair-rise performance. The associations between exposure and outcome were non-linear. PMID:26537502
Prunier, J G; Colyn, M; Legendre, X; Nimon, K F; Flamand, M C
2015-01-01
Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses. © 2014 John Wiley & Sons Ltd.
Reid, Natasha; Keogh, Justin W; Swinton, Paul; Gardiner, Paul A; Henwood, Timothy R
2018-06-18
This study investigated the association of sitting time with sarcopenia and physical performance in residential aged care residents at baseline and 18-month follow-up. Measures included the International Physical Activity Questionnaire (sitting time), European Working Group definition of sarcopenia, and the short physical performance battery (physical performance). Logistic regression and linear regression analyses were used to investigate associations. For each hour of sitting, the unadjusted odds ratio of sarcopenia was 1.16 (95% confidence interval [0.98, 1.37]). Linear regression showed that each hour of sitting was significantly associated with a 0.2-unit lower score for performance. Associations of baseline sitting with follow-up sarcopenia status and performance were nonsignificant. Cross-sectionally, increased sitting time in residential aged care may be detrimentally associated with sarcopenia and physical performance. Based on current reablement models of care, future studies should investigate if reducing sedentary time improves performance among adults in end of life care.
Feuerhahn, Nicolas; Stamov-Roßnagel, Christian; Wolfram, Maren; Bellingrath, Silja; Kudielka, Brigitte M
2013-10-01
We investigate how emotional exhaustion (EE), the core component of burnout, relates to cognitive performance, job performance and health. Cognitive performance was assessed by self-rated cognitive stress symptoms, self-rated and peer-rated cognitive impairments in everyday tasks and a neuropsychological test of learning and memory (LGT-3); job performance and physical health were gauged by self-reports. Cross-sectional linear regression analyses in a sample of 100 teachers confirm that EE is negatively related to cognitive performance as assessed by self-rating and peer-rating as well as neuropsychological testing (all p < .05). Longitudinal linear regression analyses confirm similar trends (p < .10) for self-rated and peer-rated cognitive performance. Executive control deficits might explain impaired cognitive performance in EE. In longitudinal analyses, EE also significantly predicts physical health. Contrary to our expectations, EE does not affect job performance. When reversed causation is tested, none of the outcome variables at Time 1 predict EE at Time 2. This speaks against cognitive dysfunctioning serving as a vulnerability factor for exhaustion. In sum, results underpin the negative consequences of EE for cognitive performance and health, which are relevant for individuals and organizations alike. In this way, findings might contribute to the understanding of the burnout syndrome. Copyright © 2012 John Wiley & Sons, Ltd.
Suminski, Richard R; Robertson, Robert J; Goss, Fredric L; Olvera, Norma
2008-08-01
Whether the translation of verbal descriptors from English to Spanish affects the validity of the Children's OMNI Scale of Perceived Exertion is not known, so the validity of a Spanish version of the OMNI was examined with 32 boys and 36 girls (9 to 12 years old) for whom Spanish was the primary language. Oxygen consumption, ventilation, respiratory rate, respiratory exchange ratio, heart rate, and ratings of perceived exertion for the overall body (RPE-O) were measured during an incremental treadmill test. All response values displayed significant linear increases across test stages. The linear regression analyses indicated RPE-O values were distributed as positive linear functions of oxygen consumption, ventilation, respiratory rate, respiratory exchange ratio, heart rate, and percent of maximal oxygen consumption. All regression models were statistically significant. The Spanish OMNI Scale is valid for estimating exercise effort during walking and running amongst Hispanic youth whose primary language is Spanish.
Tan, Kok Chooi; Lim, Hwee San; Matjafri, Mohd Zubir; Abdullah, Khiruddin
2012-06-01
Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.
Detecting trends in raptor counts: power and type I error rates of various statistical tests
Hatfield, J.S.; Gould, W.R.; Hoover, B.A.; Fuller, M.R.; Lindquist, E.L.
1996-01-01
We conducted simulations that estimated power and type I error rates of statistical tests for detecting trends in raptor population count data collected from a single monitoring site. Results of the simulations were used to help analyze count data of bald eagles (Haliaeetus leucocephalus) from 7 national forests in Michigan, Minnesota, and Wisconsin during 1980-1989. Seven statistical tests were evaluated, including simple linear regression on the log scale and linear regression with a permutation test. Using 1,000 replications each, we simulated n = 10 and n = 50 years of count data and trends ranging from -5 to 5% change/year. We evaluated the tests at 3 critical levels (alpha = 0.01, 0.05, and 0.10) for both upper- and lower-tailed tests. Exponential count data were simulated by adding sampling error with a coefficient of variation of 40% from either a log-normal or autocorrelated log-normal distribution. Not surprisingly, tests performed with 50 years of data were much more powerful than tests with 10 years of data. Positive autocorrelation inflated alpha-levels upward from their nominal levels, making the tests less conservative and more likely to reject the null hypothesis of no trend. Of the tests studied, Cox and Stuart's test and Pollard's test clearly had lower power than the others. Surprisingly, the linear regression t-test, Collins' linear regression permutation test, and the nonparametric Lehmann's and Mann's tests all had similar power in our simulations. Analyses of the count data suggested that bald eagles had increasing trends on at least 2 of the 7 national forests during 1980-1989.
A parameter estimation subroutine package
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Nead, M. W.
1978-01-01
Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. A library of FORTRAN subroutines were developed to facilitate analyses of a variety of estimation problems. An easy to use, multi-purpose set of algorithms that are reasonably efficient and which use a minimal amount of computer storage are presented. Subroutine inputs, outputs, usage and listings are given, along with examples of how these routines can be used. The routines are compact and efficient and are far superior to the normal equation and Kalman filter data processing algorithms that are often used for least squares analyses.
Tuuli, Methodius G; Odibo, Anthony O
2011-08-01
The objective of this article is to discuss the rationale for common statistical tests used for the analysis and interpretation of prenatal diagnostic imaging studies. Examples from the literature are used to illustrate descriptive and inferential statistics. The uses and limitations of linear and logistic regression analyses are discussed in detail.
Instructional Advice, Time Advice and Learning Questions in Computer Simulations
ERIC Educational Resources Information Center
Rey, Gunter Daniel
2010-01-01
Undergraduate students (N = 97) used an introductory text and a computer simulation to learn fundamental concepts about statistical analyses (e.g., analysis of variance, regression analysis and General Linear Model). Each learner was randomly assigned to one cell of a 2 (with or without instructional advice) x 2 (with or without time advice) x 2…
ERIC Educational Resources Information Center
Pratt, Charlotte; Webber, Larry S.; Baggett, Chris D.; Ward, Dianne; Pate, Russell R.; Murray, David; Lohman, Timothy; Lytle, Leslie; Elder, John P.
2008-01-01
This study describes the relationships between sedentary activity and body composition in 1,458 sixth-grade girls from 36 middle schools across the United States. Multivariate associations between sedentary activity and body composition were examined with regression analyses using general linear mixed models. Mean age, body mass index, and…
Using Generalized Additive Models to Analyze Single-Case Designs
ERIC Educational Resources Information Center
Shadish, William; Sullivan, Kristynn
2013-01-01
Many analyses for single-case designs (SCDs)--including nearly all the effect size indicators-- currently assume no trend in the data. Regression and multilevel models allow for trend, but usually test only linear trend and have no principled way of knowing if higher order trends should be represented in the model. This paper shows how Generalized…
ERIC Educational Resources Information Center
Luthra, Rohini; Abramovitz, Robert; Greenberg, Rick; Schoor, Alan; Newcorn, Jeffrey; Schmeidler, James; Levine, Paul; Nomura, Yoko; Chemtob, Claude M.
2009-01-01
This study examines the association between trauma exposure and posttraumatic stress disorder (PTSD) among 157 help-seeking children (aged 8-17). Structured clinical interviews are carried out, and linear and logistic regression analyses are conducted to examine the relationship between PTSD and type of trauma exposure controlling for age, gender,…
Ecological and Topographic Features of Volcanic Ash-Influenced Forest Soils
Mark Kimsey; Brian Gardner; Alan Busacca
2007-01-01
Volcanic ash distribution and thickness were determined for a forested region of north-central Idaho. Mean ash thickness and multiple linear regression analyses were used to model the effect of environmental variables on ash thickness. Slope and slope curvature relationships with volcanic ash thickness varied on a local spatial scale across the study area. Ash...
Correlation and simple linear regression.
Eberly, Lynn E
2007-01-01
This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.
Aadal, Lena; Fog, Lisbet; Pedersen, Asger Roer
2016-12-01
Investigation of a possible relation between body temperature measurements by the current generation of tympanic ear and rectal thermometers. In Denmark, a national guideline recommends the rectal measurement. Subsequently, the rectal thermometers and tympanic ear devices are the most frequently used and first choice in Danish hospital wards. Cognitive changes constitute challenges with cooperating in rectal temperature assessments. With regard to diagnosing, ethics, safety and the patients' dignity, the tympanic ear thermometer might comprise a desirable alternative to rectal noninvasive measurement of body temperature during in-hospital-based neurorehabilitation. A prospective, descriptive cohort study. Consecutive inclusion of 27 patients. Linear regression models were used to analyse 284 simultaneous temperature measurements. Ethical approval for this study was granted by the Danish Data Protection Agency, and the study was completed in accordance with the Helsinki Declaration 2008. About 284 simultaneous rectal and ear temperature measurements on 27 patients were analysed. The patient-wise variability of measured temperatures was significantly higher for the ear measurements. Patient-wise linear regressions for the 25 patients with at least three pairs of simultaneous ear and rectal temperature measurements showed large interpatient variability of the association. A linear relationship between the rectal body temperature assessment and the temperature assessment employing the tympanic thermometer is weak. Both measuring methods reflect variance in temperature, but ear measurements showed larger variation. © 2016 Nordic College of Caring Science.
A reliable and cost effective approach for radiographic monitoring in nutritional rickets
Gupta, V; Sharma, V; Sinha, B; Samanta, S
2014-01-01
Objective: Radiological scoring is particularly useful in rickets, where pre-treatment radiographical findings can reflect the disease severity and can be used to monitor the improvement. However, there is only a single radiographic scoring system for rickets developed by Thacher and, to the best of our knowledge, no study has evaluated radiographic changes in rickets based on this scoring system apart from the one done by Thacher himself. The main objective of this study is to compare and analyse the pre-treatment and post-treatment radiographic parameters in nutritional rickets with the help of Thacher's scoring technique. Methods: 176 patients with nutritional rickets were given a single intramuscular injection of vitamin D (600 000 IU) along with oral calcium (50 mg kg−1) and vitamin D (400 IU per day) until radiological resolution and followed for 1 year. Pre- and post-treatment radiological parameters were compared and analysed statistically based on Thacher's scoring system. Results: Radiological resolution was complete by 6 months. Time for radiological resolution and initial radiological score were linearly associated on regression analysis. The distal ulna was the last to heal in most cases except when the initial score was 10, when distal femur was the last to heal. Conclusion: Thacher's scoring system can effectively monitor nutritional rickets. The formula derived through linear regression has prognostic significance. Advances in knowledge: The distal femur is a better indicator in radiologically severe rickets and when resolution is delayed. Thacher's scoring is very useful for monitoring of rickets. The formula derived through linear regression can predict the expected time for radiological resolution. PMID:24593231
Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald; Knechtle, Beat
2015-01-01
We analysed (i) the gender difference in cycling speed and (ii) the age of winning performers in the 508-mile "Furnace Creek 508". Changes in cycling speeds and gender differences from 1983 to 2012 were analysed using linear, non-linear and hierarchical multi-level regression analyses for the annual three fastest women and men. Cycling speed increased non-linearly in men from 14.6 (s = 0.3) km · h(-1) (1983) to 27.1 (s = 0.7) km · h(-1) (2012) and non-linearly in women from 11.0 (s = 0.3) km · h(-1) (1984) to 24.2 (s = 0.2) km · h(-1) (2012). The gender difference in cycling speed decreased linearly from 26.2 (s = 0.5)% (1984) to 10.7 (s = 1.9)% (2012). The age of winning performers increased from 26 (s = 2) years (1984) to 43 (s = 11) years (2012) in women and from 33 (s = 6) years (1983) to 50 (s = 5) years (2012) in men. To summarise, these results suggest that (i) women will be able to narrow the gender gap in cycling speed in the near future in an ultra-endurance cycling race such as the "Furnace Creek 508" due to the linear decrease in gender difference and (ii) the maturity of these athletes has changed during the last three decades where winning performers become older and faster across years.
Application of conditional moment tests to model checking for generalized linear models.
Pan, Wei
2002-06-01
Generalized linear models (GLMs) are increasingly being used in daily data analysis. However, model checking for GLMs with correlated discrete response data remains difficult. In this paper, through a case study on marginal logistic regression using a real data set, we illustrate the flexibility and effectiveness of using conditional moment tests (CMTs), along with other graphical methods, to do model checking for generalized estimation equation (GEE) analyses. Although CMTs provide an array of powerful diagnostic tests for model checking, they were originally proposed in the econometrics literature and, to our knowledge, have never been applied to GEE analyses. CMTs cover many existing tests, including the (generalized) score test for an omitted covariate, as special cases. In summary, we believe that CMTs provide a class of useful model checking tools.
Pots, Wendy T M; Trompetter, Hester R; Schreurs, Karlein M G; Bohlmeijer, Ernst T
2016-05-23
Acceptance and Commitment Therapy (ACT) has been demonstrated to be effective in reducing depressive symptoms. However, little is known how and for whom therapeutic change occurs, specifically in web-based interventions. This study focuses on the mediators, moderators and predictors of change during a web-based ACT intervention. Data from 236 adults from the general population with mild to moderate depressive symptoms, randomized to either web-based ACT (n = 82) or one of two control conditions (web-based Expressive Writing (EW; n = 67) and a waiting list (n = 87)), were analysed. Single and multiple mediation analyses, and exploratory linear regression analyses were performed using PROCESS and linear regression analyses, to examine mediators, moderators and predictors on pre- to post- and follow-up treatment change of depressive symptoms. The treatment effect of ACT versus the waiting list was mediated by psychological flexibility and two mindfulness facets. The treatment effect of ACT versus EW was not significantly mediated. The moderator analyses demonstrated that the effects of web-based ACT did not vary according to baseline patient characteristics when compared to both control groups. However, higher baseline depressive symptoms and positive mental health and lower baseline anxiety were identified as predictors of outcome across all conditions. Similar results are found for follow-up. The findings of this study corroborate the evidence that psychological flexibility and mindfulness are distinct process mechanisms that mediate the effects of web-based ACT intervention. The results indicate that there are no restrictions to the allocation of web-based ACT intervention and that web-based ACT can work for different subpopulations. Netherlands Trial Register NTR2736 . Registered 6 February 2011.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.
Xiao, Xiao; White, Ethan P; Hooten, Mevin B; Durham, Susan L
2011-10-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain.
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-01-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-12-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.
Physician burnout, work engagement and the quality of patient care.
Loerbroks, A; Glaser, J; Vu-Eickmann, P; Angerer, P
2017-07-01
Research suggests that burnout in physicians is associated with poorer patient care, but evidence is inconclusive. More recently, the concept of work engagement has emerged (i.e. the beneficial counterpart of burnout) and has been associated with better care. Evidence remains markedly sparse however. To examine the associations of burnout and work engagement with physicians' self-perceived quality of care. We drew on cross-sectional data from physicians in Germany. We used a six-item version of the Maslach Burnout Inventory measuring exhaustion and depersonalization. We employed the nine-item Utrecht Work Engagement Scale to assess work engagement and its subcomponents: vigour, dedication and absorption. We measured physicians' own perceptions of their quality of care by a six-item instrument covering practices and attitudes. We used continuous and categorized dependent and independent variables in linear and logistic regression analyses. There were 416 participants. In multivariable linear regression analyses, increasing burnout total scores were associated with poorer perceived quality of care [unstandardized regression coefficient (b) = 0.45, 95% confidence interval (CI) 0.37, 0.54]. This association was stronger for depersonalization (b = 0.37, 95% CI 0.29, 0.44) than for exhaustion (b = 0.26, 95% CI 0.18, 0.33). Increasing work engagement was associated with higher perceived quality care (b for the total score = -0.20, 95% CI -0.28, -0.11). This was confirmed for each subcomponent with stronger associations for vigour (b = -0.21, 95% CI -0.29, -0.13) and dedication (b = -0.16, 95% CI -0.24, -0.09) than for absorption (b = -0.12, 95% CI -0.20, -0.04). Logistic regression analyses yielded comparable results. Physician burnout was associated with self-perceived poorer patient care, while work engagement related to self-reported better care. Studies are needed to corroborate these findings, particularly for work engagement. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Karan, S.; Sebok, E.; Engesgaard, P. K.
2016-12-01
For identifying groundwater seepage locations in small streams within a headwater catchment, we present a method expanding on the linear regression of air and stream temperatures. Thus, by measuring the temperatures in dual-depth; in the stream column and at the streambed-water interface (SWI), we apply metrics from linear regression analysis of temperatures between air/stream and air/SWI (linear regression slope, intercept and coefficient of determination), and the daily mean temperatures (temperature variance and the average difference between the minimum and maximum daily temperatures). Our study show that using metrics from single-depth stream temperature measurements only are not sufficient to identify substantial groundwater seepage locations within a headwater stream. Conversely, comparing the metrics from dual-depth temperatures show significant differences so that at groundwater seepage locations, temperatures at the SWI, merely explain 43-75 % of the variation opposed to ≥91 % at the corresponding stream column temperatures. The figure showing a box-plot of the variation in daily mean temperature depict that at several locations there is great variation in the range the upper and lower loggers due to groundwater seepage. In general, the linear regression show that at these locations at the SWI, the slopes (<0.25) and intercepts (>6.5oC) are substantially lower and higher, while the mean diel amplitudes (<0.98oC) are decreased compared to remaining locations. The dual-depth approach was applied in a post-glacial fluvial setting, where metrics analyses overall corresponded to field measurements of groundwater fluxes deduced from vertical streambed temperatures and stream flow accretions. Thus, we propose a method reliably identifying groundwater seepage locations along streambed in such settings.
ERIC Educational Resources Information Center
Lee, Jaekyung; Reeves, Todd
2012-01-01
This study examines the impact of high-stakes school accountability, capacity, and resources under NCLB on reading and math achievement outcomes through comparative interrupted time-series analyses of 1990-2009 NAEP state assessment data. Through hierarchical linear modeling latent variable regression with inverse probability of treatment…
Mediating Effects of Social Support on Quality of Life for Parents of Adults with Autism
ERIC Educational Resources Information Center
Marsack, Christina N.; Samuel, Preethy S.
2017-01-01
The aim of this study was to examine the mediating effect of formal and informal social support on the relationship of caregiver burden and quality of life (QOL), using a sample of 320 parents (aged 50 or older) of adult children with autism spectrum disorder (ASD). Multiple linear regression and mediation analyses indicated that caregiver burden…
ERIC Educational Resources Information Center
Leos-Urbel, Jacob
2015-01-01
This article examines the relationship between after-school program quality, program attendance, and academic outcomes for a sample of low-income after-school program participants. Regression and hierarchical linear modeling analyses use a unique longitudinal data set including 29 after-school programs that served 5,108 students in Grades 4 to 8…
ERIC Educational Resources Information Center
Arnold, Carolyn L.; Kaufman, Phillip D.
This report examines the effects of both student and school characteristics on mathematics and science achievement levels in the third, seventh, and eleventh grades using data from the 1985-86 National Assessment of Educational Progress (NAEP). Analyses feature hierarchical linear models (HLM), a regression-like statistical technique that…
ERIC Educational Resources Information Center
Hobin, Erin P.; Leatherdale, Scott; Manske, Steve; Dubin, Joel A.; Elliott, Susan; Veugelers, Paul
2013-01-01
Background: This study examined differences in students' time spent in physical activity (PA) across secondary schools in rural, suburban, and urban environments and identified the environment-level factors associated with these between school differences in students' PA. Methods: Multilevel linear regression analyses were used to examine the…
Predictors of Word-Reading Ability in 7-Year-Olds: Analysis of Data from a U.K. Cohort Study
ERIC Educational Resources Information Center
Russell, Ginny; Ukoumunne, Obioha C.; Ryder, Denise; Golding, Jean; Norwich, Brahm
2018-01-01
Previous U.K. population-based studies have found associations amongst early speech and language difficulties, socioeconomic disadvantage and children's word-reading ability later on. We examine the strength of these associations in a recent U.K. population-based birth cohort. Analyses were based on 13,680 participants. Linear regression models…
ERIC Educational Resources Information Center
Gaylord-Harden, Noni K.; Cunningham, Jamila A.; Zelencik, Brett
2011-01-01
The purpose of the current study was to examine the linear and curvilinear associations of exposure to community violence to internalizing symptoms in 251 African American adolescents (mean age = 12.86, SD = 1.28). Participants reported on exposure to community violence, anxiety symptoms, and depressive symptoms. Regression analyses were used to…
ERIC Educational Resources Information Center
Deering, Pamela Rose
2014-01-01
This research compares and contrasts two approaches to predictive analysis of three years' of school district data to investigate relationships between student and teacher characteristics and math achievement as measured by the state-mandated Maryland School Assessment mathematics exam. The sample for the study consisted of 3,514 students taught…
ERIC Educational Resources Information Center
Kandiko, C. B.
2008-01-01
To compare college and university student engagement in two countries with different responses to global forces, Canada and the United States (US), a series of hierarchical linear regression (HLM) models were developed to analyse data from the 2006 administration of the National Survey of Student Engagement (NSSE). Overall, students in the U.S.…
Paul G. Schaberg; Brynne E. Lazarus; Gary J. Hawley; Joshua M. Halman; Catherine H. Borer; Christopher F. Hansen
2011-01-01
Despite considerable study, it remains uncertain what environmental factors contribute to red spruce (Picea rubens Sarg.) foliar winter injury and how much this injury influences tree C stores. We used a long-term record of winter injury in a plantation in New Hampshire and conducted stepwise linear regression analyses with local weather and regional...
Meta-regression analysis of the effect of trans fatty acids on low-density lipoprotein cholesterol.
Allen, Bruce C; Vincent, Melissa J; Liska, DeAnn; Haber, Lynne T
2016-12-01
We conducted a meta-regression of controlled clinical trial data to investigate quantitatively the relationship between dietary intake of industrial trans fatty acids (iTFA) and increased low-density lipoprotein cholesterol (LDL-C). Previous regression analyses included insufficient data to determine the nature of the dose response in the low-dose region and have nonetheless assumed a linear relationship between iTFA intake and LDL-C levels. This work contributes to the previous work by 1) including additional studies examining low-dose intake (identified using an evidence mapping procedure); 2) investigating a range of curve shapes, including both linear and nonlinear models; and 3) using Bayesian meta-regression to combine results across trials. We found that, contrary to previous assumptions, the linear model does not acceptably fit the data, while the nonlinear, S-shaped Hill model fits the data well. Based on a conservative estimate of the degree of intra-individual variability in LDL-C (0.1 mmoL/L), as an estimate of a change in LDL-C that is not adverse, a change in iTFA intake of 2.2% of energy intake (%en) (corresponding to a total iTFA intake of 2.2-2.9%en) does not cause adverse effects on LDL-C. The iTFA intake associated with this change in LDL-C is substantially higher than the average iTFA intake (0.5%en). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Siegrist, K; Rödel, A; Hessel, A; Brähler, E
2006-01-01
The aim of this study was to test hypotheses on the consequences of gender role expectations with regard to the extent of work stress, selected health-related measures and their associations. Data on psychosocial workload (questionnaire of effort-reward imbalance), sick leave (self-reports of the duration of medically certified sick leave during the past two years) and health-related well being were collected in a representative sample of German full-time employees (n = 666). Hypotheses were tested using analyses of variance (ANOVA) and covariance (ANCOVA) and moderated linear regression analyses. Women reported lower health-related well-being as compared to men while effort-reward imbalance and sick leave did not differ between the sexes. Parents reported slightly longer durations of sick leave during the past two years than childless participants (not significant). The results of stratified linear regression analyses show stronger associations between effort-reward imbalance and both health-related measures for women with children than for men with children, while single men and women do not differ in this regard. Evidence of this kind can be useful for the purposeful planning and implementation of health promotion measures at work. Women with children would be a group deserving special attention. The findings also point to continuing differences in gender role expectations in the family context.
Wang, Lucy; Crawford, John D; Reppermund, Simone; Trollor, Julian; Campbell, Lesley; Baune, Bernhard T; Sachdev, Perminder; Brodaty, Henry; Samaras, Katherine; Smith, Evelyn
2018-06-07
While obesity has been linked with lower quality of life in the general adult population, the prospective effects of present obesity on future quality of life amongst the elderly is unclear. This article investigates the cross-sectional and longitudinal relationships between obesity and aspects of quality of life in community-dwelling older Australians. A 2-year longitudinal sample of community dwellers aged 70-90 years at baseline, derived from the Sydney Memory and Ageing Study (MAS), was chosen for the study. Of the 1037 participants in the original MAS sample, a baseline (Wave 1) sample of 926 and a 2-year follow-up (Wave 2) sample of 751 subjects were retained for these analyses. Adiposity was measured using body mass index (BMI) and waist circumference (WC). Quality of life was measured using the Assessment of Quality of Life (6 dimensions) questionnaire (AQoL-6D) as well as the Satisfaction with Life Scale (SWLS). Linear regression and analysis of covariance (ANCOVA) were used to examine linear and non-linear relationships between BMI and WC and measures of health-related quality of life (HRQoL) and satisfaction with life, adjusting for age, sex, education, asthma, osteoporosis, depression, hearing and visual impairment, mild cognitive impairment, physical activity, and general health. Where a non-linear relationship was found, established BMI or WC categories were used in ANCOVA. Greater adiposity was associated with lower HRQoL but not life satisfaction. Regression modelling in cross-sectional analyses showed that higher BMI and greater WC were associated with lower scores for independent living, relationships, and pain (i.e. worse pain) on the AQoL-6D. In planned contrasts within a series of univariate analyses, obese participants scored lower in independent living and relationships, compared to normal weight and overweight participants. Longitudinal analyses found that higher baseline BMI and WC were associated with lower independent living scores at Wave 2. Obesity is associated with and predicts lower quality of life in elderly adults aged 70-90 years, and the areas most affected are independent living, social relationships, and the experience of pain.
Kwon, Jin-Woo; Choi, Jin A; La, Tae Yoon
2016-11-01
The aim of this article was to assess the associations of serum 25-hydroxyvitamin D [25(OH)D] and daily sun exposure time with myopia in Korean adults.This study is based on the Korea National Health and Nutrition Examination Survey (KNHANES) of Korean adults in 2010-2012; multiple logistic regression analyses were performed to examine the associations of serum 25(OH)D levels and daily sun exposure time with myopia, defined as spherical equivalent ≤-0.5D, after adjustment for age, sex, household income, body mass index (BMI), exercise, intraocular pressure (IOP), and education level. Also, multiple linear regression analyses were performed to examine the relationship between serum 25(OH)D levels with spherical equivalent after adjustment for daily sun exposure time in addition to the confounding factors above.Between the nonmyopic and myopic groups, spherical equivalent, age, IOP, BMI, waist circumference, education level, household income, and area of residence differed significantly (all P < 0.05). Compared with subjects with daily sun exposure time <2 hour, subjects with sun exposure time ≥2 to <5 hour, and those with sun exposure time ≥5 hour had significantly less myopia (P < 0.001). In addition, compared with subjects were categorized into quartiles of serum 25(OH)D, the higher quartiles had gradually lower prevalences of myopia after adjustment for confounding factors (P < 0.001). In multiple linear regression analyses, spherical equivalent was significantly associated with serum 25(OH)D concentration after adjustment for confounding factors (P = 0.002).Low serum 25(OH)D levels and shorter daily sun exposure time may be independently associated with a high prevalence of myopia in Korean adults. These data suggest a direct role for vitamin D in the development of myopia.
Brouwer-Brolsma, E M; van de Rest, O; Godschalk, R; Zeegers, M P A; Gielen, M; de Groot, R H M
2017-11-01
Concentrations of the fish fatty acids EPA and DHA are low among Dutch women of reproductive age. As the human brain incorporates high concentrations of these fatty acids in utero, particularly during third trimester of gestation, these low EPA and DHA concentrations may have adverse consequences for fetal brain development and functioning. Analyses were conducted using longitudinal observational data of 292 mother-child pairs participating in the MEFAB cohort. Maternal AA, DHA, and EPA were determined in plasma phospholipids - obtained in three trimesters - by gas-liquid chromatography. Cognitive function was assessed at 7 years of age, using the Kaufman Assessment Battery for Children, resulting in three main outcome parameters: sequential processing (short-term memory), simultaneous processing (problem-solving skills), and the mental processing composite score. Spline regression and linear regression analyses were used to analyse the data, while adjusting for potential relevant covariates. Only 2% of the children performed more than one SD below the mental processing composite norm score. Children with lower test scores (<25%) were more likely to have a younger mother with a higher pre-gestational BMI, less likely to be breastfed, and more likely to be born with a lower birth weight, compared to children with higher test scores (≥25%). Fully-adjusted linear regression models did not show associations of maternal AA, DHA, or EPA status during any of the pregnancy trimesters with childhood sequential and simultaneous processing. Maternal fatty acid status during pregnancy was not associated with cognitive performance in Dutch children at age 7. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hanssen, Denise J C; Naarding, Paul; Collard, Rose M; Comijs, Hannie C; Oude Voshaar, Richard C
2014-10-01
Late-life depression and pain more often co-occur than can be explained by chance. Determinants of pain in late-life depression are unknown, even though knowledge on possible determinants of pain in depression is important for clinical practice. Therefore, the objectives of the present study were 1) to describe pain characteristics of depressed older adults and a nondepressed comparison group, and 2) to explore physical, lifestyle, psychological, and social determinants of acute and chronic pain intensity, disability, and multisite pain in depressed older adults. Data from the Netherlands Study of Depression in Older Persons cohort, consisting of 378 depressed persons, diagnosed according to Diagnostic and Statistical Manual of Mental Disorders, 4th edition criteria, and 132 nondepressed persons aged 60 years and older, were used in a cross-sectional design. Pain characteristics were measured by the Chronic Graded Pain Scale. Multiple linear regression analyses were performed to explore the contribution of physical, lifestyle, psychological, and social determinants to outcomes pain intensity, disability, and the number of pain locations. Depressed older adults more often reported chronic pain and experienced their pain as more intense and disabling compared to nondepressed older adults. Adjusted for demographic, physical, and lifestyle characteristics, multinomial logistic regression analyses showed increased odds ratios (OR) for depression in acute pain (OR 3.010; P=0.005) and chronic pain (OR 4.544, P<0.001). In addition, linear regression analyses showed that acute and chronic pain intensity, disability, and multisite pain were associated with several biopsychosocial determinants, of which anxiety was most pronounced. Further research could focus on the temporal relationship between anxiety, late-life depression, and pain. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Caffeine and Insomnia in People Living With HIV From the Miami Adult Studies on HIV (MASH) Cohort.
Ramamoorthy, Venkataraghavan; Campa, Adriana; Rubens, Muni; Martinez, Sabrina S; Fleetwood, Christina; Stewart, Tiffanie; Liuzzi, Juan P; George, Florence; Khan, Hafiz; Li, Yinghui; Baum, Marianna K
We explored the relationship between caffeine consumption, insomnia, and HIV disease progression (CD4+ T cell counts and HIV viral loads). Caffeine intake and insomnia levels were measured using the Modified Caffeine Consumption Questionnaire and the Pittsburgh Insomnia Rating Scale (PIRS) in 130 clinically stable participants who were living with HIV, taking antiretroviral therapy, and recruited from the Miami Adult Studies on HIV cohort. Linear regressions showed that caffeine consumption was significantly and adversely associated with distress score, quality-of-life score, and global PIRS score. Linear regression analyses also showed that global PIRS score was significantly associated with lower CD4+ T cell counts and higher HIV viral loads. Caffeine could have precipitated insomnia in susceptible people living with HIV, which could be detrimental to their disease progression states. Copyright © 2017 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.
Compulsive buying: Earlier illicit drug use, impulse buying, depression, and adult ADHD symptoms.
Brook, Judith S; Zhang, Chenshu; Brook, David W; Leukefeld, Carl G
2015-08-30
This longitudinal study examined the association between psychosocial antecedents, including illicit drug use, and adult compulsive buying (CB) across a 29-year time period from mean age 14 to mean age 43. Participants originally came from a community-based random sample of residents in two upstate New York counties. Multivariate linear regression analysis was used to study the relationship between the participant's earlier psychosocial antecedents and adult CB in the fifth decade of life. The results of the multivariate linear regression analyses showed that gender (female), earlier adult impulse buying (IB), depressive mood, illicit drug use, and concurrent ADHD symptoms were all significantly associated with adult CB at mean age 43. It is important that clinicians treating CB in adults should consider the role of drug use, symptoms of ADHD, IB, depression, and family factors in CB. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Compulsive Buying: Earlier Illicit Drug Use, Impulse Buying, Depression, and Adult ADHD Symptoms
Brook, Judith S.; Zhang, Chenshu; Brook, David W.; Leukefeld, Carl G.
2015-01-01
This longitudinal study examined the association between psychosocial antecedents, including illicit drug use, and adult compulsive buying (CB) across a 29-year time period from mean age 14 to mean age 43. Participants originally came from a community-based random sample of residents in two upstate New York counties. Multivariate linear regression analysis was used to study the relationship between the participant’s earlier psychosocial antecedents and adult CB in the fifth decade of life. The results of the multivariate linear regression analyses showed that gender (female), earlier adult impulse buying (IB), depressive mood, illicit drug use, and concurrent ADHD symptoms were all significantly associated with adult CB at mean age 43. It is important that clinicians treating CB in adults should consider the role of drug use, symptoms of ADHD, IB, depression, and family factors in CB. PMID:26165963
Mutter, Brigitte; Alcorn, Mark B; Welsh, Marilyn
2006-06-01
This study of the relationship between theory of mind and executive function examined whether on the false-belief task age differences between 3 and 5 ears of age are related to development of working-memory capacity and inhibitory processes. 72 children completed tasks measuring false belief, working memory, and inhibition. Significant age effects were observed for false-belief and working-memory performance, as well as for the false-alarm and perseveration measures of inhibition. A simultaneous multiple linear regression specified the contribution of age, inhibition, and working memory to the prediction of false-belief performance. This model was significant, explaining a total of 36% of the variance. To examine the independent contributions of the working-memory and inhibition variables, after controlling for age, two hierarchical multiple linear regressions were conducted. These multiple regression analyses indicate that working memory and inhibition make small, overlapping contributions to false-belief performance after accounting for age, but that working memory, as measured in this study, is a somewhat better predictor of false-belief understanding than is inhibition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callister, Stephen J.; Barry, Richard C.; Adkins, Joshua N.
2006-02-01
Central tendency, linear regression, locally weighted regression, and quantile techniques were investigated for normalization of peptide abundance measurements obtained from high-throughput liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR MS). Arbitrary abundances of peptides were obtained from three sample sets, including a standard protein sample, two Deinococcus radiodurans samples taken from different growth phases, and two mouse striatum samples from control and methamphetamine-stressed mice (strain C57BL/6). The selected normalization techniques were evaluated in both the absence and presence of biological variability by estimating extraneous variability prior to and following normalization. Prior to normalization, replicate runs from each sample setmore » were observed to be statistically different, while following normalization replicate runs were no longer statistically different. Although all techniques reduced systematic bias, assigned ranks among the techniques revealed significant trends. For most LC-FTICR MS analyses, linear regression normalization ranked either first or second among the four techniques, suggesting that this technique was more generally suitable for reducing systematic biases.« less
An overview of longitudinal data analysis methods for neurological research.
Locascio, Joseph J; Atri, Alireza
2011-01-01
The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models.
Kumar, K Vasanth
2007-04-02
Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.
Incorporating nonlinearity into mediation analyses.
Knafl, George J; Knafl, Kathleen A; Grey, Margaret; Dixon, Jane; Deatrick, Janet A; Gallo, Agatha M
2017-03-21
Mediation is an important issue considered in the behavioral, medical, and social sciences. It addresses situations where the effect of a predictor variable X on an outcome variable Y is explained to some extent by an intervening, mediator variable M. Methods for addressing mediation have been available for some time. While these methods continue to undergo refinement, the relationships underlying mediation are commonly treated as linear in the outcome Y, the predictor X, and the mediator M. These relationships, however, can be nonlinear. Methods are needed for assessing when mediation relationships can be treated as linear and for estimating them when they are nonlinear. Existing adaptive regression methods based on fractional polynomials are extended here to address nonlinearity in mediation relationships, but assuming those relationships are monotonic as would be consistent with theories about directionality of such relationships. Example monotonic mediation analyses are provided assessing linear and monotonic mediation of the effect of family functioning (X) on a child's adaptation (Y) to a chronic condition by the difficulty (M) for the family in managing the child's condition. Example moderated monotonic mediation and simulation analyses are also presented. Adaptive methods provide an effective way to incorporate possibly nonlinear monotonicity into mediation relationships.
Quantile regression for the statistical analysis of immunological data with many non-detects.
Eilers, Paul H C; Röder, Esther; Savelkoul, Huub F J; van Wijk, Roy Gerth
2012-07-07
Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects. Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects. Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.
Heun, Manfred; Abbo, Shahal; Lev-Yadun, Simcha; Gopher, Avi
2012-07-01
The recent review by Fuller et al. (2012a) in this journal is part of a series of papers maintaining that plant domestication in the Near East was a slow process lasting circa 4000 years and occurring independently in different locations across the Fertile Crescent. Their protracted domestication scenario is based entirely on linear regression derived from the percentage of domesticated plant remains at specific archaeological sites and the age of these sites themselves. This paper discusses why estimates like haldanes and darwins cannot be applied to the seven founder crops in the Near East (einkorn and emmer wheat, barley, peas, chickpeas, lentils, and bitter vetch). All of these crops are self-fertilizing plants and for this reason they do not fulfil the requirements for performing calculations of this kind. In addition, the percentage of domesticates at any site may be the result of factors other than those that affect the selection for domesticates growing in the surrounding area. These factors are unlikely to have been similar across prehistoric sites of habitation, societies, and millennia. The conclusion here is that single crop analyses are necessary rather than general reviews drawing on regression analyses based on erroneous assumptions. The fact that all seven of these founder crops are self-fertilizers should be incorporated into a comprehensive domestication scenario for the Near East, as self-fertilization naturally isolates domesticates from their wild progenitors.
NASA Technical Reports Server (NTRS)
Flynn, Clare; Pickering, Kenneth E.; Crawford, James H.; Lamsol, Lok; Krotkov, Nickolay; Herman, Jay; Weinheimer, Andrew; Chen, Gao; Liu, Xiong; Szykman, James;
2014-01-01
To investigate the ability of column (or partial column) information to represent surface air quality, results of linear regression analyses between surface mixing ratio data and column abundances for O3 and NO2 are presented for the July 2011 Maryland deployment of the DISCOVER-AQ mission. Data collected by the P-3B aircraft, ground-based Pandora spectrometers, Aura/OMI satellite instrument, and simulations for July 2011 from the CMAQ air quality model during this deployment provide a large and varied data set, allowing this problem to be approached from multiple perspectives. O3 columns typically exhibited a statistically significant and high degree of correlation with surface data (R(sup 2) > 0.64) in the P- 3B data set, a moderate degree of correlation (0.16 < R(sup 2) < 0.64) in the CMAQ data set, and a low degree of correlation (R(sup 2) < 0.16) in the Pandora and OMI data sets. NO2 columns typically exhibited a low to moderate degree of correlation with surface data in each data set. The results of linear regression analyses for O3 exhibited smaller errors relative to the observations than NO2 regressions. These results suggest that O3 partial column observations from future satellite instruments with sufficient sensitivity to the lower troposphere can be meaningful for surface air quality analysis.
Redmond, Tony; O'Leary, Neil; Hutchison, Donna M; Nicolela, Marcelo T; Artes, Paul H; Chauhan, Balwantray C
2013-12-01
A new analysis method called permutation of pointwise linear regression measures the significance of deterioration over time at each visual field location, combines the significance values into an overall statistic, and then determines the likelihood of change in the visual field. Because the outcome is a single P value, individualized to that specific visual field and independent of the scale of the original measurement, the method is well suited for comparing techniques with different stimuli and scales. To test the hypothesis that frequency-doubling matrix perimetry (FDT2) is more sensitive than standard automated perimetry (SAP) in identifying visual field progression in glaucoma. Patients with open-angle glaucoma and healthy controls were examined by FDT2 and SAP, both with the 24-2 test pattern, on the same day at 6-month intervals in a longitudinal prospective study conducted in a hospital-based setting. Only participants with at least 5 examinations were included. Data were analyzed with permutation of pointwise linear regression. Permutation of pointwise linear regression is individualized to each participant, in contrast to current analyses in which the statistical significance is inferred from population-based approaches. Analyses were performed with both total deviation and pattern deviation. Sixty-four patients and 36 controls were included in the study. The median age, SAP mean deviation, and follow-up period were 65 years, -2.6 dB, and 5.4 years, respectively, in patients and 62 years, +0.4 dB, and 5.2 years, respectively, in controls. Using total deviation analyses, statistically significant deterioration was identified in 17% of patients with FDT2, in 34% of patients with SAP, and in 14% of patients with both techniques; in controls these percentages were 8% with FDT2, 31% with SAP, and 8% with both. Using pattern deviation analyses, statistically significant deterioration was identified in 16% of patients with FDT2, in 17% of patients with SAP, and in 3% of patients with both techniques; in controls these values were 3% with FDT2 and none with SAP. No evidence was found that FDT2 is more sensitive than SAP in identifying visual field deterioration. In about one-third of healthy controls, age-related deterioration with SAP reached statistical significance.
A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield
NASA Astrophysics Data System (ADS)
Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan
2018-04-01
In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.
Anderson, Carl A; McRae, Allan F; Visscher, Peter M
2006-07-01
Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.
Coping Styles in Heart Failure Patients with Depressive Symptoms
Trivedi, Ranak B.; Blumenthal, James A.; O'Connor, Christopher; Adams, Kirkwood; Hinderliter, Alan; Sueta-Dupree, Carla; Johnson, Kristy; Sherwood, Andrew
2009-01-01
Objective Elevated depressive symptoms have been linked to poorer prognosis in heart failure (HF) patients. Our objective was to identify coping styles associated with depressive symptoms in HF patients. Methods 222 stable HF patients (32.75% female, 45.4% non-Hispanic Black) completed multiple questionnaires. Beck Depression Inventory (BDI) assessed depressive symptoms, Life Orientation Test (LOT-R) assessed optimism, ENRICHD Social Support Inventory (ESSI) and Perceived Social Support Scale (PSSS) assessed social support, and COPE assessed coping styles. Linear regression analyses were employed to assess the association of coping styles with continuous BDI scores. Logistic regression analyses were performed using BDI scores dichotomized into BDI<10 versus BDI≥10, to identify coping styles accompanying clinically significant depressive symptoms. Results In linear regression models, higher BDI scores were associated with lower scores on the acceptance (β=-.14), humor (β=-.15), planning (β=-.15), and emotional support (β=-.14) subscales of the COPE, and higher scores on the behavioral disengagement (β=.41), denial (β=.33), venting (β=.25), and mental disengagement (β=.22) subscales. Higher PSSS and ESSI scores were associated with lower BDI scores (β=-.32 and -.25, respectively). Higher LOT-R scores were associated with higher BDI scores (β=.39, p<.001). In logistical regression models, BDI≥10 was associated with greater likelihood of behavioral disengagement (OR=1.3), denial (OR=1.2), mental disengagement (OR=1.3), venting (OR=1.2), and pessimism (OR=1.2), and lower perceived social support measured by PSSS (OR=.92) and ESSI (OR=.92). Conclusion Depressive symptoms in HF patients are associated with avoidant coping, lower perceived social support, and pessimism. Results raise the possibility that interventions designed to improve coping may reduce depressive symptoms. PMID:19773027
Mauer, Michael; Caramori, Maria Luiza; Fioretto, Paola; Najafian, Behzad
2015-06-01
Studies of structural-functional relationships have improved understanding of the natural history of diabetic nephropathy (DN). However, in order to consider structural end points for clinical trials, the robustness of the resultant models needs to be verified. This study examined whether structural-functional relationship models derived from a large cohort of type 1 diabetic (T1D) patients with a wide range of renal function are robust. The predictability of models derived from multiple regression analysis and piecewise linear regression analysis was also compared. T1D patients (n = 161) with research renal biopsies were divided into two equal groups matched for albumin excretion rate (AER). Models to explain AER and glomerular filtration rate (GFR) by classical DN lesions in one group (T1D-model, or T1D-M) were applied to the other group (T1D-test, or T1D-T) and regression analyses were performed. T1D-M-derived models explained 70 and 63% of AER variance and 32 and 21% of GFR variance in T1D-M and T1D-T, respectively, supporting the substantial robustness of the models. Piecewise linear regression analyses substantially improved predictability of the models with 83% of AER variance and 66% of GFR variance explained by classical DN glomerular lesions alone. These studies demonstrate that DN structural-functional relationship models are robust, and if appropriate models are used, glomerular lesions alone explain a major proportion of AER and GFR variance in T1D patients. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Huang, Li-Shan; Myers, Gary J.; Davidson, Philip W.; Cox, Christopher; Xiao, Fenyuan; Thurston, Sally W.; Cernichiari, Elsa; Shamlaye, Conrad F.; Sloane-Reeves, Jean; Georger, Lesley; Clarkson, Thomas W.
2007-01-01
Studies of the association between prenatal methylmercury exposure from maternal fish consumption during pregnancy and neurodevelopmental test scores in the Seychelles Child Development Study have found no consistent pattern of associations through age nine years. The analyses for the most recent nine-year data examined the population effects of prenatal exposure, but did not address the possibility of non-homogeneous susceptibility. This paper presents a regression tree approach: covariate effects are treated nonlinearly and non-additively and non-homogeneous effects of prenatal methylmercury exposure are permitted among the covariate clusters identified by the regression tree. The approach allows us to address whether children in the lower or higher ends of the developmental spectrum differ in susceptibility to subtle exposure effects. Of twenty-one endpoints available at age nine years, we chose the Weschler Full Scale IQ and its associated covariates to construct the regression tree. The prenatal mercury effect in each of the nine resulting clusters was assessed linearly and non-homogeneously. In addition we reanalyzed five other nine-year endpoints that in the linear analysis has a two-tailed p-value <0.2 for the effect of prenatal exposure. In this analysis, motor proficiency and activity level improved significantly with increasing MeHg for 53% of the children who had an average home environment. Motor proficiency significantly decreased with increasing prenatal MeHg exposure in 7% of the children whose home environment was below average. The regression tree results support previous analyses of outcomes in this cohort. However, this analysis raises the intriguing possibility that an effect may be non-homogeneous among children with different backgrounds and IQ levels. PMID:17942158
Coping styles in heart failure patients with depressive symptoms.
Trivedi, Ranak B; Blumenthal, James A; O'Connor, Christopher; Adams, Kirkwood; Hinderliter, Alan; Dupree, Carla; Johnson, Kristy; Sherwood, Andrew
2009-10-01
Elevated depressive symptoms have been linked to poorer prognosis in heart failure (HF) patients. Our objective was to identify coping styles associated with depressive symptoms in HF patients. A total of 222 stable HF patients (32.75% female, 45.4% non-Hispanic black) completed multiple questionnaires. Beck Depression Inventory (BDI) assessed depressive symptoms, Life Orientation Test (LOT-R) assessed optimism, ENRICHD Social Support Inventory (ESSI) and Perceived Social Support Scale (PSSS) assessed social support, and COPE assessed coping styles. Linear regression analyses were employed to assess the association of coping styles with continuous BDI scores. Logistic regression analyses were performed using BDI scores dichotomized into BDI<10 vs. BDI> or =10, to identify coping styles accompanying clinically significant depressive symptoms. In linear regression models, higher BDI scores were associated with lower scores on the acceptance (beta=-.14), humor (beta=-.15), planning (beta=-.15), and emotional support (beta=-.14) subscales of the COPE, and higher scores on the behavioral disengagement (beta=.41), denial (beta=.33), venting (beta=.25), and mental disengagement (beta=.22) subscales. Higher PSSS and ESSI scores were associated with lower BDI scores (beta=-.32 and -.25, respectively). Higher LOT-R scores were associated with higher BDI scores (beta=.39, P<.001). In logistical regression models, BDI> or =10 was associated with greater likelihood of behavioral disengagement (OR=1.3), denial (OR=1.2), mental disengagement (OR=1.3), venting (OR=1.2), and pessimism (OR=1.2), and lower perceived social support measured by PSSS (OR=.92) and ESSI (OR=.92). Depressive symptoms in HF patients are associated with avoidant coping, lower perceived social support, and pessimism. Results raise the possibility that interventions designed to improve coping may reduce depressive symptoms.
ERIC Educational Resources Information Center
Levin, Kate Ann; Dallago, Lorenza; Currie, Candace
2012-01-01
The study sought to examine young people's life satisfaction in the context of the family environment, using data from the 2006 HBSC: WHO-collaborative Study in Scotland (N = 5,126). Multilevel linear regression analyses were carried out for 11-, 13- and 15-year old boys and girls, with outcome measure ridit-transformed life satisfaction. The…
[Visual field progression in glaucoma: cluster analysis].
Bresson-Dumont, H; Hatton, J; Foucher, J; Fonteneau, M
2012-11-01
Visual field progression analysis is one of the key points in glaucoma monitoring, but distinction between true progression and random fluctuation is sometimes difficult. There are several different algorithms but no real consensus for detecting visual field progression. The trend analysis of global indices (MD, sLV) may miss localized deficits or be affected by media opacities. Conversely, point-by-point analysis makes progression difficult to differentiate from physiological variability, particularly when the sensitivity of a point is already low. The goal of our study was to analyse visual field progression with the EyeSuite™ Octopus Perimetry Clusters algorithm in patients with no significant changes in global indices or worsening of the analysis of pointwise linear regression. We analyzed the visual fields of 162 eyes (100 patients - 58 women, 42 men, average age 66.8 ± 10.91) with ocular hypertension or glaucoma. For inclusion, at least six reliable visual fields per eye were required, and the trend analysis (EyeSuite™ Perimetry) of visual field global indices (MD and SLV), could show no significant progression. The analysis of changes in cluster mode was then performed. In a second step, eyes with statistically significant worsening of at least one of their clusters were analyzed point-by-point with the Octopus Field Analysis (OFA). Fifty four eyes (33.33%) had a significant worsening in some clusters, while their global indices remained stable over time. In this group of patients, more advanced glaucoma was present than in stable group (MD 6.41 dB vs. 2.87); 64.82% (35/54) of those eyes in which the clusters progressed, however, had no statistically significant change in the trend analysis by pointwise linear regression. Most software algorithms for analyzing visual field progression are essentially trend analyses of global indices, or point-by-point linear regression. This study shows the potential role of analysis by clusters trend. However, for best results, it is preferable to compare the analyses of several tests in combination with morphologic exam. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Røislien, Jo; Lossius, Hans Morten; Kristiansen, Thomas
2015-01-01
Background Trauma is a leading global cause of death. Trauma mortality rates are higher in rural areas, constituting a challenge for quality and equality in trauma care. The aim of the study was to explore population density and transport time to hospital care as possible predictors of geographical differences in mortality rates, and to what extent choice of statistical method might affect the analytical results and accompanying clinical conclusions. Methods Using data from the Norwegian Cause of Death registry, deaths from external causes 1998–2007 were analysed. Norway consists of 434 municipalities, and municipality population density and travel time to hospital care were entered as predictors of municipality mortality rates in univariate and multiple regression models of increasing model complexity. We fitted linear regression models with continuous and categorised predictors, as well as piecewise linear and generalised additive models (GAMs). Models were compared using Akaike's information criterion (AIC). Results Population density was an independent predictor of trauma mortality rates, while the contribution of transport time to hospital care was highly dependent on choice of statistical model. A multiple GAM or piecewise linear model was superior, and similar, in terms of AIC. However, while transport time was statistically significant in multiple models with piecewise linear or categorised predictors, it was not in GAM or standard linear regression. Conclusions Population density is an independent predictor of trauma mortality rates. The added explanatory value of transport time to hospital care is marginal and model-dependent, highlighting the importance of exploring several statistical models when studying complex associations in observational data. PMID:25972600
Optimizing methods for linking cinematic features to fMRI data.
Kauttonen, Janne; Hlushchuk, Yevhen; Tikka, Pia
2015-04-15
One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film 'At Land' by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved a feasible method for ordering the ICs based on their functional relevance to the annotated cinematic features. The novelty of our method is - in comparison to the hypothesis-driven manual pre-selection and observation of some individual regressors biased by choice - in applying data-driven approach to all content features simultaneously. We found especially the combination of regularized regression and ICA useful when analyzing fMRI data obtained using non-narrative movie stimulus with a large set of complex and correlated features. Copyright © 2015. Published by Elsevier Inc.
Jelenkovic, Aline; Yokoyama, Yoshie; Sund, Reijo; Pietiläinen, Kirsi H; Hur, Yoon-Mi; Willemsen, Gonneke; Bartels, Meike; van Beijsterveldt, Toos CEM; Ooki, Syuichi; Saudino, Kimberly J; Stazi, Maria A; Fagnani, Corrado; D’Ippolito, Cristina; Nelson, Tracy L; Whitfield, Keith E; Knafo-Noam, Ariel; Mankuta, David; Abramson, Lior; Heikkilä, Kauko; Cutler, Tessa L; Hopper, John L; Wardle, Jane; Llewellyn, Clare H; Fisher, Abigail; Corley, Robin P; Huibregtse, Brooke M; Derom, Catherine A; Vlietinck, Robert F; Loos, Ruth JF; Bjerregaard-Andersen, Morten; Beck-Nielsen, Henning; Sodemann, Morten; Tarnoki, Adam D; Tarnoki, David L; Burt, S Alexandra; Klump, Kelly L; Ordoñana, Juan R; Sánchez-Romera, Juan F; Colodro-Conde, Lucia; Dubois, Lise; Boivin, Michel; Brendgen, Mara; Dionne, Ginette; Vitaro, Frank; Harris, Jennifer R; Brandt, Ingunn; Nilsen, Thomas Sevenius; Craig, Jeffrey M; Saffery, Richard; Rasmussen, Finn; Tynelius, Per; Bayasgalan, Gombojav; Narandalai, Danshiitsoodol; Haworth, Claire MA; Plomin, Robert; Ji, Fuling; Ning, Feng; Pang, Zengchang; Rebato, Esther; Krueger, Robert F; McGue, Matt; Pahlen, Shandell; Boomsma, Dorret I; Sørensen, Thorkild IA; Kaprio, Jaakko; Silventoinen, Karri
2017-01-01
Abstract Background There is evidence that birthweight is positively associated with body mass index (BMI) in later life, but it remains unclear whether this is explained by genetic factors or the intrauterine environment. We analysed the association between birthweight and BMI from infancy to adulthood within twin pairs, which provides insights into the role of genetic and environmental individual-specific factors. Methods This study is based on the data from 27 twin cohorts in 17 countries. The pooled data included 78 642 twin individuals (20 635 monozygotic and 18 686 same-sex dizygotic twin pairs) with information on birthweight and a total of 214 930 BMI measurements at ages ranging from 1 to 49 years. The association between birthweight and BMI was analysed at both the individual and within-pair levels using linear regression analyses. Results At the individual level, a 1-kg increase in birthweight was linearly associated with up to 0.9 kg/m2 higher BMI (P < 0.001). Within twin pairs, regression coefficients were generally greater (up to 1.2 kg/m2 per kg birthweight, P < 0.001) than those from the individual-level analyses. Intra-pair associations between birthweight and later BMI were similar in both zygosity groups and sexes and were lower in adulthood. Conclusions These findings indicate that environmental factors unique to each individual have an important role in the positive association between birthweight and later BMI, at least until young adulthood. PMID:28369451
Linear regression crash prediction models : issues and proposed solutions.
DOT National Transportation Integrated Search
2010-05-01
The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...
Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment
ERIC Educational Resources Information Center
Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos
2013-01-01
In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…
Møller, Anne; Reventlow, Susanne; Hansen, Åse Marie; Andersen, Lars L; Siersma, Volkert; Lund, Rikke; Avlund, Kirsten; Andersen, Johan Hviid; Mortensen, Ole Steen
2015-11-04
Our aim was to study associations between physical exposures throughout working life and physical function measured as chair-rise performance in midlife. The Copenhagen Aging and Midlife Biobank (CAMB) provided data about employment and measures of physical function. Individual job histories were assigned exposures from a job exposure matrix. Exposures were standardised to ton-years (lifting 1000 kg each day in 1 year), stand-years (standing/walking for 6 h each day in 1 year) and kneel-years (kneeling for 1 h each day in 1 year). The associations between exposure-years and chair-rise performance (number of chair-rises in 30 s) were analysed in multivariate linear and non-linear regression models adjusted for covariates. Mean age among the 5095 participants was 59 years in both genders, and, on average, men achieved 21.58 (SD=5.60) and women 20.38 (SD=5.33) chair-rises in 30 s. Physical exposures were associated with poorer chair-rise performance in both men and women, however, only associations between lifting and standing/walking and chair-rise remained statistically significant among men in the final model. Spline regression analyses showed non-linear associations and confirmed the findings. Higher physical exposure throughout working life is associated with slightly poorer chair-rise performance. The associations between exposure and outcome were non-linear. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Mendez, Javier; Monleon-Getino, Antonio; Jofre, Juan; Lucena, Francisco
2017-10-01
The present study aimed to establish the kinetics of the appearance of coliphage plaques using the double agar layer titration technique to evaluate the feasibility of using traditional coliphage plaque forming unit (PFU) enumeration as a rapid quantification method. Repeated measurements of the appearance of plaques of coliphages titrated according to ISO 10705-2 at different times were analysed using non-linear mixed-effects regression to determine the most suitable model of their appearance kinetics. Although this model is adequate, to simplify its applicability two linear models were developed to predict the numbers of coliphages reliably, using the PFU counts as determined by the ISO after only 3 hours of incubation. One linear model, when the number of plaques detected was between 4 and 26 PFU after 3 hours, had a linear fit of: (1.48 × Counts 3 h + 1.97); and the other, values >26 PFU, had a fit of (1.18 × Counts 3 h + 2.95). If the number of plaques detected was <4 PFU after 3 hours, we recommend incubation for (18 ± 3) hours. The study indicates that the traditional coliphage plating technique has a reasonable potential to provide results in a single working day without the need to invest in additional laboratory equipment.
Tu, Yu-Kang; Krämer, Nicole; Lee, Wen-Chung
2012-07-01
In the analysis of trends in health outcomes, an ongoing issue is how to separate and estimate the effects of age, period, and cohort. As these 3 variables are perfectly collinear by definition, regression coefficients in a general linear model are not unique. In this tutorial, we review why identification is a problem, and how this problem may be tackled using partial least squares and principal components regression analyses. Both methods produce regression coefficients that fulfill the same collinearity constraint as the variables age, period, and cohort. We show that, because the constraint imposed by partial least squares and principal components regression is inherent in the mathematical relation among the 3 variables, this leads to more interpretable results. We use one dataset from a Taiwanese health-screening program to illustrate how to use partial least squares regression to analyze the trends in body heights with 3 continuous variables for age, period, and cohort. We then use another dataset of hepatocellular carcinoma mortality rates for Taiwanese men to illustrate how to use partial least squares regression to analyze tables with aggregated data. We use the second dataset to show the relation between the intrinsic estimator, a recently proposed method for the age-period-cohort analysis, and partial least squares regression. We also show that the inclusion of all indicator variables provides a more consistent approach. R code for our analyses is provided in the eAppendix.
Borges, Germana Jayme; Ruiz, Luis Fernando Naldi; de Alencar, Ana Helena Gonçalves; Porto, Olavo César Lyra; Estrela, Carlos
2015-01-01
The objective of the present study was to assess cone-beam computed tomography (CBCT) as a diagnostic method for determination of gingival thickness (GT) and distance between gingival margin and vestibular (GMBC-V) and interproximal bone crests (GMBC-I). GT and GMBC-V were measured in 348 teeth and GMBC-I was measured in 377 tooth regions of 29 patients with gummy smile. GT was assessed using transgingival probing (TP), ultrasound (US), and CBCT, whereas GMBC-V and GMBC-I were assessed by transsurgical clinical evaluation (TCE) and CBCT. Statistical analyses used independent t-test, Pearson's correlation coefficient, and simple linear regression. Difference was observed for GT: between TP, CBCT, and US considering all teeth; between TP and CBCT and between TP and US in incisors and canines; between TP and US in premolars and first molars. TP presented the highest means for GT. Positive correlation and linear regression were observed between TP and CBCT, TP and US, and CBCT and US. Difference was observed for GMBC-V and GMBC-I using TCE and CBCT, considering all teeth. Correlation and linear regression results were significant for GMBC-V and GMBC-I in incisors, canines, and premolars. CBCT is an effective diagnostic method to visualize and measure GT, GMBC-V, and GMBC-I. PMID:25918737
The Application of the Cumulative Logistic Regression Model to Automated Essay Scoring
ERIC Educational Resources Information Center
Haberman, Shelby J.; Sinharay, Sandip
2010-01-01
Most automated essay scoring programs use a linear regression model to predict an essay score from several essay features. This article applied a cumulative logit model instead of the linear regression model to automated essay scoring. Comparison of the performances of the linear regression model and the cumulative logit model was performed on a…
Linear models for calculating digestibile energy for sheep diets.
Fonnesbeck, P V; Christiansen, M L; Harris, L E
1981-05-01
Equations for estimating the digestible energy (DE) content of sheep diets were generated from the chemical contents and a factorial description of diets fed to lambs in digestion trials. The diet factors were two forages (alfalfa and grass hay), harvested at three stages of maturity (late vegetative, early bloom and full bloom), fed in two ingredient combinations (all hay or a 50:50 hay and corn grain mixture) and prepared by two forage texture processes (coarsely chopped or finely chopped and pelleted). The 2 x 3 x 2 x 2 factorial arrangement produced 24 diet treatments. These were replicated twice, for a total of 48 lamb digestion trials. In model 1 regression equations, DE was calculated directly from chemical composition of the diet. In model 2, regression equations predicted the percentage of digested nutrient from the chemical contents of the diet and then DE of the diet was calculated as the sum of the gross energy of the digested organic components. Expanded forms of model 1 and model 2 were also developed that included diet factors as qualitative indicator variables to adjust the regression constant and regression coefficients for the diet description. The expanded forms of the equations accounted for significantly more variation in DE than did the simple models and more accurately estimated DE of the diet. Information provided by the diet description proved as useful as chemical analyses for the prediction of digestibility of nutrients. The statistics indicate that, with model 1, neutral detergent fiber and plant cell wall analyses provided as much information for the estimation of DE as did model 2 with the combined information from crude protein, available carbohydrate, total lipid, cellulose and hemicellulose. Regression equations are presented for estimating DE with the most currently analyzed organic components, including linear and curvilinear variables and diet factors that significantly reduce the standard error of the estimate. To estimate De of a diet, the user utilizes the equation that uses the chemical analysis information and diet description most effectively.
Mosing, Martina; Waldmann, Andreas D.; MacFarlane, Paul; Iff, Samuel; Auer, Ulrike; Bohm, Stephan H.; Bettschart-Wolfensberger, Regula; Bardell, David
2016-01-01
This study evaluated the breathing pattern and distribution of ventilation in horses prior to and following recovery from general anaesthesia using electrical impedance tomography (EIT). Six horses were anaesthetised for 6 hours in dorsal recumbency. Arterial blood gas and EIT measurements were performed 24 hours before (baseline) and 1, 2, 3, 4, 5 and 6 hours after horses stood following anaesthesia. At each time point 4 representative spontaneous breaths were analysed. The percentage of the total breath length during which impedance remained greater than 50% of the maximum inspiratory impedance change (breath holding), the fraction of total tidal ventilation within each of four stacked regions of interest (ROI) (distribution of ventilation) and the filling time and inflation period of seven ROI evenly distributed over the dorso-ventral height of the lungs were calculated. Mixed effects multi-linear regression and linear regression were used and significance was set at p<0.05. All horses demonstrated inspiratory breath holding until 5 hours after standing. No change from baseline was seen for the distribution of ventilation during inspiration. Filling time and inflation period were more rapid and shorter in ventral and slower and longer in most dorsal ROI compared to baseline, respectively. In a mixed effects multi-linear regression, breath holding was significantly correlated with PaCO2 in both the univariate and multivariate regression. Following recovery from anaesthesia, horses showed inspiratory breath holding during which gas redistributed from ventral into dorsal regions of the lungs. This suggests auto-recruitment of lung tissue which would have been dependent and likely atelectic during anaesthesia. PMID:27331910
High school science enrollment of black students
NASA Astrophysics Data System (ADS)
Goggins, Ellen O.; Lindbeck, Joy S.
How can the high school science enrollment of black students be increased? School and home counseling and classroom procedures could benefit from variables identified as predictors of science enrollment. The problem in this study was to identify a set of variables which characterize science course enrollment by black secondary students. The population consisted of a subsample of 3963 black high school seniors from The High School and Beyond 1980 Base-Year Survey. Using multiple linear regression, backward regression, and correlation analyses, the US Census regions and grades mostly As and Bs in English were found to be significant predictors of the number of science courses scheduled by black seniors.
The impact of intrinsic and extrinsic factors on the job satisfaction of dentists.
Goetz, K; Campbell, S M; Broge, B; Dörfer, C E; Brodowski, M; Szecsenyi, J
2012-10-01
The Two-Factor Theory of job satisfaction distinguishes between intrinsic-motivation (i.e. recognition, responsibility) and extrinsic-hygiene (i.e. job security, salary, working conditions) factors. The presence of intrinsic-motivation facilitates higher satisfaction and performance, whereas the absences of extrinsic factors help mitigate against dissatisfaction. The consideration of these factors and their impact on dentists' job satisfaction is essential for the recruitment and retention of dentists. The objective of the study is to assess the level of job satisfaction of German dentists and the factors that are associated with it. This cross-sectional study was based on a job satisfaction survey. Data were collected from 147 dentists working in 106 dental practices. Job satisfaction was measured with the 10-item Warr-Cook-Wall job satisfaction scale. Organizational characteristics were measured with two items. Linear regression analyses were performed in which each of the nine items of the job satisfaction scale (excluding overall satisfaction) were handled as dependent variables. A stepwise linear regression analysis was performed with overall job satisfaction as the dependent outcome variable, the nine items of job satisfaction and the two items of organizational characteristics controlled for age and gender as predictors. The response rate was 95.0%. Dentists were satisfied with 'freedom of working method' and mostly dissatisfied with their 'income'. Both variables are extrinsic factors. The regression analyses identified five items that were significantly associated with each item of the job satisfaction scale: 'age', 'mean weekly working time', 'period in the practice', 'number of dentist's assistant' and 'working atmosphere'. Within the stepwise linear regression analysis the intrinsic factor 'opportunity to use abilities' (β = 0.687) showed the highest score of explained variance (R(2) = 0.468) regarding overall job satisfaction. With respect to the Two-Factor Theory of job satisfaction both components, intrinsic and extrinsic, are essential for dentists but the presence of intrinsic motivating factors like the opportunity to use abilities has most positive impact on job satisfaction. The findings of this study will be helpful for further activities to improve the working conditions of dentists and to ensure quality of care. © 2012 John Wiley & Sons A/S.
Hays, Ron D; Revicki, Dennis A; Feeny, David; Fayers, Peter; Spritzer, Karen L; Cella, David
2016-10-01
Preference-based health-related quality of life (HR-QOL) scores are useful as outcome measures in clinical studies, for monitoring the health of populations, and for estimating quality-adjusted life-years. This was a secondary analysis of data collected in an internet survey as part of the Patient-Reported Outcomes Measurement Information System (PROMIS(®)) project. To estimate Health Utilities Index Mark 3 (HUI-3) preference scores, we used the ten PROMIS(®) global health items, the PROMIS-29 V2.0 single pain intensity item and seven multi-item scales (physical functioning, fatigue, pain interference, depressive symptoms, anxiety, ability to participate in social roles and activities, sleep disturbance), and the PROMIS-29 V2.0 items. Linear regression analyses were used to identify significant predictors, followed by simple linear equating to avoid regression to the mean. The regression models explained 48 % (global health items), 61 % (PROMIS-29 V2.0 scales), and 64 % (PROMIS-29 V2.0 items) of the variance in the HUI-3 preference score. Linear equated scores were similar to observed scores, although differences tended to be larger for older study participants. HUI-3 preference scores can be estimated from the PROMIS(®) global health items or PROMIS-29 V2.0. The estimated HUI-3 scores from the PROMIS(®) health measures can be used for economic applications and as a measure of overall HR-QOL in research.
NASA Astrophysics Data System (ADS)
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui
2014-07-01
The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui
2014-07-01
The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.
An Overview of Longitudinal Data Analysis Methods for Neurological Research
Locascio, Joseph J.; Atri, Alireza
2011-01-01
The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models. PMID:22203825
Application of artificial neural network to fMRI regression analysis.
Misaki, Masaya; Miyauchi, Satoru
2006-01-15
We used an artificial neural network (ANN) to detect correlations between event sequences and fMRI (functional magnetic resonance imaging) signals. The layered feed-forward neural network, given a series of events as inputs and the fMRI signal as a supervised signal, performed a non-linear regression analysis. This type of ANN is capable of approximating any continuous function, and thus this analysis method can detect any fMRI signals that correlated with corresponding events. Because of the flexible nature of ANNs, fitting to autocorrelation noise is a problem in fMRI analyses. We avoided this problem by using cross-validation and an early stopping procedure. The results showed that the ANN could detect various responses with different time courses. The simulation analysis also indicated an additional advantage of ANN over non-parametric methods in detecting parametrically modulated responses, i.e., it can detect various types of parametric modulations without a priori assumptions. The ANN regression analysis is therefore beneficial for exploratory fMRI analyses in detecting continuous changes in responses modulated by changes in input values.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws
Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.
2011-01-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.
Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F
2018-06-01
This study outlines two robust regression approaches, namely least median of squares (LMS) and iteratively re-weighted least squares (IRLS) to investigate their application in instrument analysis of nutraceuticals (that is, fluorescence quenching of merbromin reagent upon lipoic acid addition). These robust regression methods were used to calculate calibration data from the fluorescence quenching reaction (∆F and F-ratio) under ideal or non-ideal linearity conditions. For each condition, data were treated using three regression fittings: Ordinary Least Squares (OLS), LMS and IRLS. Assessment of linearity, limits of detection (LOD) and quantitation (LOQ), accuracy and precision were carefully studied for each condition. LMS and IRLS regression line fittings showed significant improvement in correlation coefficients and all regression parameters for both methods and both conditions. In the ideal linearity condition, the intercept and slope changed insignificantly, but a dramatic change was observed for the non-ideal condition and linearity intercept. Under both linearity conditions, LOD and LOQ values after the robust regression line fitting of data were lower than those obtained before data treatment. The results obtained after statistical treatment indicated that the linearity ranges for drug determination could be expanded to lower limits of quantitation by enhancing the regression equation parameters after data treatment. Analysis results for lipoic acid in capsules, using both fluorimetric methods, treated by parametric OLS and after treatment by robust LMS and IRLS were compared for both linearity conditions. Copyright © 2018 John Wiley & Sons, Ltd.
Levine, Matthew E; Albers, David J; Hripcsak, George
2016-01-01
Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating how multivariate lagged regression models' explicit handling of context-based variables can provide a simple way to probe for health-care processes that confound analyses of EHR data.
Lamm, Steven H; Ferdosi, Hamid; Dissen, Elisabeth K; Li, Ji; Ahn, Jaeil
2015-12-07
High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1-1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100-150 µg/L arsenic.
Mothers' education and childhood mortality in Ghana.
Buor, Daniel
2003-06-01
The significant extent to which maternal education affects child health has been advanced in several sociodemographic-medical literature, but not much has been done in analysing the spatial dimension of the problem; and also using graphic and linear regression models of representation. In Ghana, very little has been done to relate the two variables and offer pragmatic explanations. The need to correlate the two, using a regression model, which is rarely applied in previous studies, is a methodological necessity. The paper examines the impact of mothers' education on childhood mortality in Ghana using, primarily, Ghana Demographic and Health Survey data of 1998 and World Bank data of 2000. The survey has emphatically established that there is an inverse relationship between mothers' education and child survivorship. The use of basic health facilities that relate to childhood survival shows a direct relationship with mothers' education. Recommendations for policy initiatives to simultaneously emphasise the education of the girl-child, and to ensure adequate access to maternal and child health services, have been made. The need for an experimental project of integrating maternal education and child health services has also been recommended. A linear regression model that illustrates the relationship between maternal education and childhood survival has emerged.
Lamm, Steven H.; Ferdosi, Hamid; Dissen, Elisabeth K.; Li, Ji; Ahn, Jaeil
2015-01-01
High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1–1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100–150 µg/L arsenic. PMID:26690190
Are your covariates under control? How normalization can re-introduce covariate effects.
Pain, Oliver; Dudbridge, Frank; Ronald, Angelica
2018-04-30
Many statistical tests rely on the assumption that the residuals of a model are normally distributed. Rank-based inverse normal transformation (INT) of the dependent variable is one of the most popular approaches to satisfy the normality assumption. When covariates are included in the analysis, a common approach is to first adjust for the covariates and then normalize the residuals. This study investigated the effect of regressing covariates against the dependent variable and then applying rank-based INT to the residuals. The correlation between the dependent variable and covariates at each stage of processing was assessed. An alternative approach was tested in which rank-based INT was applied to the dependent variable before regressing covariates. Analyses based on both simulated and real data examples demonstrated that applying rank-based INT to the dependent variable residuals after regressing out covariates re-introduces a linear correlation between the dependent variable and covariates, increasing type-I errors and reducing power. On the other hand, when rank-based INT was applied prior to controlling for covariate effects, residuals were normally distributed and linearly uncorrelated with covariates. This latter approach is therefore recommended in situations were normality of the dependent variable is required.
1974-01-01
REGRESSION MODEL - THE UNCONSTRAINED, LINEAR EQUALITY AND INEQUALITY CONSTRAINED APPROACHES January 1974 Nelson Delfino d’Avila Mascarenha;? Image...Report 520 DIGITAL IMAGE RESTORATION UNDER A REGRESSION MODEL THE UNCONSTRAINED, LINEAR EQUALITY AND INEQUALITY CONSTRAINED APPROACHES January...a two- dimensional form adequately describes the linear model . A dis- cretization is performed by using quadrature methods. By trans
Element enrichment factor calculation using grain-size distribution and functional data regression.
Sierra, C; Ordóñez, C; Saavedra, A; Gallego, J R
2015-01-01
In environmental geochemistry studies it is common practice to normalize element concentrations in order to remove the effect of grain size. Linear regression with respect to a particular grain size or conservative element is a widely used method of normalization. In this paper, the utility of functional linear regression, in which the grain-size curve is the independent variable and the concentration of pollutant the dependent variable, is analyzed and applied to detrital sediment. After implementing functional linear regression and classical linear regression models to normalize and calculate enrichment factors, we concluded that the former regression technique has some advantages over the latter. First, functional linear regression directly considers the grain-size distribution of the samples as the explanatory variable. Second, as the regression coefficients are not constant values but functions depending on the grain size, it is easier to comprehend the relationship between grain size and pollutant concentration. Third, regularization can be introduced into the model in order to establish equilibrium between reliability of the data and smoothness of the solutions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Who Will Win?: Predicting the Presidential Election Using Linear Regression
ERIC Educational Resources Information Center
Lamb, John H.
2007-01-01
This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…
Robinson, J J; Wharrad, H
2001-05-01
The relationship between attendance at birth and maternal mortality rates: an exploration of United Nations' data sets including the ratios of physicians and nurses to population, GNP per capita and female literacy. This is the third and final paper drawing on data taken from United Nations (UN) data sets. The first paper examined the global distribution of health professionals (as measured by ratios of physicians and nurses to population), and its relationship to gross national product per capita (GNP) (Wharrad & Robinson 1999). The second paper explored the relationships between the global distribution of physicians and nurses, GNP, female literacy and the health outcome indicators of infant and under five mortality rates (IMR and u5MR) (Robinson & Wharrad 2000). In the present paper, the global distribution of health professionals is explored in relation to maternal mortality rates (MMRs). The proportion of births attended by medical and nonmedical staff defined as "attendance at birth by trained personnel" (physicians, nurses, midwives or primary health care workers trained in midwifery skills), is included as an additional independent variable in the regression analyses, together with the ratio of physicians and nurses to population, female literacy and GNP. To extend our earlier analyses by considering the relationships between the global distribution of health professionals (ratios of physicians and nurses to population, and the proportion of births attended by trained health personnel), GNP, female literacy and MMR.
Wang, T T; Jiang, L
2017-10-01
Objective: To investigate the prognostic value of highly sensitive cardiac Troponin T (hs-cTn T) for sepsis in critically ill patients. Methods: Patients estimated to stay in the ICU of Fuxing Hospital for more than 24h were enrolled at from March 2014 to December 2014. Serum hs-cTn T was tested within two hours. Univariate and multivariate linear regression analyses were used to determine the association of variables with the hs-cTn T. Multivariable logistic regression analysis was used to evaluate the risk factors of 28-day mortality. Results: A total of 125 patients were finally enrolled including 68 patients with sepsis and 57 without. The levels of hs-cTn T in sepsis and non-sepsis groups were significantly different[52.0(32.5, 87.5) ng/L vs 14.0(6.5, 29.0) ng/L respectively, P <0.001]. In sepsis group, hs-cTn T among common sepsis, severe sepsis and septic shock were similar. Hs-cTn T was significantly higher in non-survivors than survivors [27(13, 52)ng/L vs 44.5(28.8, 83.5)ng/L, P <0.001]. Age, sepsis, serum creatinine were independent risk factors affecting hs-cTn T by multivariate linear regression analyses. But hs-cTn T was not a risk factor for death. Conclusion: Patients with sepsis had higher serum hs-cTn T than those without sepsis. but it was not found to be associated with the severity of sepsis.
Holsclaw, Tracy; Hallgren, Kevin A; Steyvers, Mark; Smyth, Padhraic; Atkins, David C
2015-12-01
Behavioral coding is increasingly used for studying mechanisms of change in psychosocial treatments for substance use disorders (SUDs). However, behavioral coding data typically include features that can be problematic in regression analyses, including measurement error in independent variables, non normal distributions of count outcome variables, and conflation of predictor and outcome variables with third variables, such as session length. Methodological research in econometrics has shown that these issues can lead to biased parameter estimates, inaccurate standard errors, and increased Type I and Type II error rates, yet these statistical issues are not widely known within SUD treatment research, or more generally, within psychotherapy coding research. Using minimally technical language intended for a broad audience of SUD treatment researchers, the present paper illustrates the nature in which these data issues are problematic. We draw on real-world data and simulation-based examples to illustrate how these data features can bias estimation of parameters and interpretation of models. A weighted negative binomial regression is introduced as an alternative to ordinary linear regression that appropriately addresses the data characteristics common to SUD treatment behavioral coding data. We conclude by demonstrating how to use and interpret these models with data from a study of motivational interviewing. SPSS and R syntax for weighted negative binomial regression models is included in online supplemental materials. (c) 2016 APA, all rights reserved).
Holsclaw, Tracy; Hallgren, Kevin A.; Steyvers, Mark; Smyth, Padhraic; Atkins, David C.
2015-01-01
Behavioral coding is increasingly used for studying mechanisms of change in psychosocial treatments for substance use disorders (SUDs). However, behavioral coding data typically include features that can be problematic in regression analyses, including measurement error in independent variables, non-normal distributions of count outcome variables, and conflation of predictor and outcome variables with third variables, such as session length. Methodological research in econometrics has shown that these issues can lead to biased parameter estimates, inaccurate standard errors, and increased type-I and type-II error rates, yet these statistical issues are not widely known within SUD treatment research, or more generally, within psychotherapy coding research. Using minimally-technical language intended for a broad audience of SUD treatment researchers, the present paper illustrates the nature in which these data issues are problematic. We draw on real-world data and simulation-based examples to illustrate how these data features can bias estimation of parameters and interpretation of models. A weighted negative binomial regression is introduced as an alternative to ordinary linear regression that appropriately addresses the data characteristics common to SUD treatment behavioral coding data. We conclude by demonstrating how to use and interpret these models with data from a study of motivational interviewing. SPSS and R syntax for weighted negative binomial regression models is included in supplementary materials. PMID:26098126
Kim, Joohan; Seok, Jeong-Ho; Choi, Kang; Jon, Duk-In; Hong, Hyun Ju; Hong, Narei; Lee, Eunjeong
2015-11-01
Early life stress (ELS) may induce long-lasting psychological complications in adulthood. The protective role of resilience against the development of psychopathology is also important. The purpose of this study was to investigate the relationships among ELS, resilience, depression, anxiety, and aggression in young adults. Four hundred sixty-one army inductees gave written informed consent and participated in this study. We assessed psychopathology using the Korea Military Personality Test, ELS using the Childhood Abuse Experience Scale, and resilience with the resilience scale. Analyses of variance, correlation analyses, and hierarchical multiple linear regression analyses were conducted for statistical analyses. The regression model explained 35.8%, 41.0%, and 23.3% of the total variance in the depression, anxiety, and aggression indices, respectively. We can find that even though ELS experience is positively associated with depression, anxiety, and aggression, resilience may have significant attenuating effect against the ELS effect on severity of these psychopathologies. Emotion regulation showed the most beneficial effect among resilience factors on reducing severity of psychopathologies. To improve mental health for young adults, ELS assessment and resilience enhancement program should be considered.
Kim, Joohan; Choi, Kang; Jon, Duk-In; Hong, Hyun Ju; Hong, Narei; Lee, Eunjeong
2015-01-01
Early life stress (ELS) may induce long-lasting psychological complications in adulthood. The protective role of resilience against the development of psychopathology is also important. The purpose of this study was to investigate the relationships among ELS, resilience, depression, anxiety, and aggression in young adults. Four hundred sixty-one army inductees gave written informed consent and participated in this study. We assessed psychopathology using the Korea Military Personality Test, ELS using the Childhood Abuse Experience Scale, and resilience with the resilience scale. Analyses of variance, correlation analyses, and hierarchical multiple linear regression analyses were conducted for statistical analyses. The regression model explained 35.8%, 41.0%, and 23.3% of the total variance in the depression, anxiety, and aggression indices, respectively. We can find that even though ELS experience is positively associated with depression, anxiety, and aggression, resilience may have significant attenuating effect against the ELS effect on severity of these psychopathologies. Emotion regulation showed the most beneficial effect among resilience factors on reducing severity of psychopathologies. To improve mental health for young adults, ELS assessment and resilience enhancement program should be considered. PMID:26539013
The microcomputer scientific software series 2: general linear model--regression.
Harold M. Rauscher
1983-01-01
The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...
Jelenkovic, Aline; Yokoyama, Yoshie; Sund, Reijo; Pietiläinen, Kirsi H; Hur, Yoon-Mi; Willemsen, Gonneke; Bartels, Meike; van Beijsterveldt, Toos C E M; Ooki, Syuichi; Saudino, Kimberly J; Stazi, Maria A; Fagnani, Corrado; D'Ippolito, Cristina; Nelson, Tracy L; Whitfield, Keith E; Knafo-Noam, Ariel; Mankuta, David; Abramson, Lior; Heikkilä, Kauko; Cutler, Tessa L; Hopper, John L; Wardle, Jane; Llewellyn, Clare H; Fisher, Abigail; Corley, Robin P; Huibregtse, Brooke M; Derom, Catherine A; Vlietinck, Robert F; Loos, Ruth J F; Bjerregaard-Andersen, Morten; Beck-Nielsen, Henning; Sodemann, Morten; Tarnoki, Adam D; Tarnoki, David L; Burt, S Alexandra; Klump, Kelly L; Ordoñana, Juan R; Sánchez-Romera, Juan F; Colodro-Conde, Lucia; Dubois, Lise; Boivin, Michel; Brendgen, Mara; Dionne, Ginette; Vitaro, Frank; Harris, Jennifer R; Brandt, Ingunn; Nilsen, Thomas Sevenius; Craig, Jeffrey M; Saffery, Richard; Rasmussen, Finn; Tynelius, Per; Bayasgalan, Gombojav; Narandalai, Danshiitsoodol; Haworth, Claire M A; Plomin, Robert; Ji, Fuling; Ning, Feng; Pang, Zengchang; Rebato, Esther; Krueger, Robert F; McGue, Matt; Pahlen, Shandell; Boomsma, Dorret I; Sørensen, Thorkild I A; Kaprio, Jaakko; Silventoinen, Karri
2017-10-01
There is evidence that birthweight is positively associated with body mass index (BMI) in later life, but it remains unclear whether this is explained by genetic factors or the intrauterine environment. We analysed the association between birthweight and BMI from infancy to adulthood within twin pairs, which provides insights into the role of genetic and environmental individual-specific factors. This study is based on the data from 27 twin cohorts in 17 countries. The pooled data included 78 642 twin individuals (20 635 monozygotic and 18 686 same-sex dizygotic twin pairs) with information on birthweight and a total of 214 930 BMI measurements at ages ranging from 1 to 49 years. The association between birthweight and BMI was analysed at both the individual and within-pair levels using linear regression analyses. At the individual level, a 1-kg increase in birthweight was linearly associated with up to 0.9 kg/m2 higher BMI (P < 0.001). Within twin pairs, regression coefficients were generally greater (up to 1.2 kg/m2 per kg birthweight, P < 0.001) than those from the individual-level analyses. Intra-pair associations between birthweight and later BMI were similar in both zygosity groups and sexes and were lower in adulthood. These findings indicate that environmental factors unique to each individual have an important role in the positive association between birthweight and later BMI, at least until young adulthood. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association
Costa, Patrício; de Carvalho-Filho, Marco Antonio; Schweller, Marcelo; Thiemann, Pia; Salgueira, Ana; Benson, John; Costa, Manuel João; Quince, Thelma
2017-06-01
Understanding medical student empathy is important to future patient care; however, the definition and development of clinical empathy remain unclear. The authors sought to examine the underlying constructs of two of the most widely used self-report instruments-Davis's Interpersonal Reactivity Index (IRI) and the Jefferson Scale of Empathy version for medical students (JSE-S)-plus, the distinctions and associations between these instruments. Between 2007 and 2014, the authors administered the IRI and JSE-S in three separate studies in five countries, (Brazil, Ireland, New Zealand, Portugal, and the United Kingdom). They collected data from 3,069 undergraduate medical students and performed exploratory factor analyses, correlation analyses, and multiple linear regression analyses. Exploratory factor analysis yielded identical results in each country, confirming the subscale structures of each instrument. Results of correlation analyses indicated significant but weak correlations (r = 0.313) between the total IRI and JSE-S scores. All intercorrelations of IRI and JSE-S subscale scores were statistically significant but weak (range r = -0.040 to 0.306). Multiple linear regression models revealed that the IRI subscales were weak predictors of all JSE-S subscale and total scores. The IRI subscales explained between 9.0% and 15.3% of variance for JSE-S subscales and 19.5% for JSE-S total score. The IRI and JSE-S are only weakly related, suggesting that they may measure different constructs. To better understand this distinction, more studies using both instruments and involving students at different stages in their medical education, as well as more longitudinal and qualitative studies, are needed.
Kawasaki, Y; Tamaura, Y; Akamatsu, R; Sakai, M; Fujiwara, K
2018-01-01
Nursing staff have an important role in patients' nutritional care. The aim of this study was to demonstrate how the practice of sharing a patient's nutritional status with colleagues was affected by the nursing staff's attitude, knowledge and their priority to provide nutritional care. The participants were 492 nursing staff. We obtained participants' demographic data, the practice of sharing patients' nutritional information and information about participants' knowledge, attitude and priority of providing nutritional care by the questionnaire. We performed partial correlation analyses and linear regression analyses to describe the relationship between the total scores of the practice of sharing patients' nutritional information based on their knowledge, attitude and priority to provide nutritional care. Among the 492 participants, 396 nursing staff (80.5%) completed the questionnaire and were included in analyses. Mean±s.d. of total score of the 396 participants was 8.4±3.1. Nursing staff shared information when they had a high nutritional knowledge (r=0.36, P<0.01) and attitude (r=0.13, P<0.05); however, their correlation coefficients were low. In the linear regression analyses, job categories (β=-0.28, P<0.01), knowledge (β=0.33, P<0.01) and attitude (β=0.10, P<0.05) were independently associated with the practice of sharing information. Nursing staff's priority to provide nutritional care practice was not significantly associated with the practice of sharing information. Knowledge and attitude were independently associated with the practice of sharing patients' nutrition information with colleagues, regardless of their priority to provide nutritional care. An effective approach should be taken to improve the practice of providing nutritional care practice.
Jacobsen, Henrik Børsting; Reme, Silje Endresen; Sembajwe, Grace; Hopcia, Karen; Stiles, Tore C.; Sorensen, Glorian; Porter, James H.; Marino, Miguel; Buxton, Orfeu M.
2014-01-01
Objectives The aim of this study was to investigate the longitudinal effect of work-related stress, sleep deficiency and physical activity on 10-year cardiometabolic risk among an all-female worker population. Methods Data on patient care workers (n=99) was collected two years apart. Baseline measures included: job stress, physical activity, night work and sleep deficiency. Biomarkers and objective measurements were used to estimate 10-year cardiometabolic risk at follow-up. Significant associations (P<0.05) from baseline analyses were used to build a multivariable linear regression model. Results The participants were mostly white nurses with a mean age of 41 years. Adjusted linear regression showed that having sleep maintenance problems, a different occupation than nurse, and/or not exercising at recommended levels at baseline increased the 10-year cardiometabolic risk at follow-up. Conclusions In female workers prone to work-related stress and sleep deficiency, maintaining sleep and exercise patterns had a strong impact on modifiable 10-year cardiometabolic risk. PMID:24809311
de Freitas, Mariana V; Marquez-Bernardes, Liandra F; de Arvelos, Letícia R; Paraíso, Lara F; Gonçalves E Oliveira, Ana Flávia M; Mascarenhas Netto, Rita de C; Neto, Morun Bernardino; Garrote-Filho, Mario S; de Souza, Paulo César A; Penha-Silva, Nilson
2014-10-01
To evaluate the influence of age on the relationships between biochemical and hematological variables and stability of erythrocyte membrane in relation to the sodium dodecyl sulfate (SDS) in population of 105 female volunteers between 20 and 90 years. The stability of RBC membrane was determined by non-linear regression of the dependency of the absorbance of hemoglobin released as a function of SDS concentration, represented by the half-transition point of the curve (D50) and the variation in the concentration of the detergent to promote lysis (dD). There was an age-dependent increase in the membrane stability in relation to SDS. Analyses by multiple linear regression showed that this stability increase is significantly related to the hematological variable red cell distribution width (RDW) and the biochemical variables blood albumin and cholesterol. The positive association between erythrocyte stability and RDW may reflect one possible mechanism involved in the clinical meaning of this hematological index.
Jacobsen, Henrik B; Reme, Silje E; Sembajwe, Grace; Hopcia, Karen; Stiles, Tore C; Sorensen, Glorian; Porter, James H; Marino, Miguel; Buxton, Orfeu M
2014-08-01
The aim of this study was to investigate the longitudinal effect of work-related stress, sleep deficiency, and physical activity on 10-year cardiometabolic risk among an all-female worker population. Data on patient care workers (n=99) was collected 2 years apart. Baseline measures included: job stress, physical activity, night work, and sleep deficiency. Biomarkers and objective measurements were used to estimate 10-year cardiometabolic risk at follow-up. Significant associations (P<0.05) from baseline analyses were used to build a multivariable linear regression model. The participants were mostly white nurses with a mean age of 41 years. Adjusted linear regression showed that having sleep maintenance problems, a different occupation than nurse, and/or not exercising at recommended levels at baseline increased the 10-year cardiometabolic risk at follow-up. In female workers prone to work-related stress and sleep deficiency, maintaining sleep and exercise patterns had a strong impact on modifiable 10-year cardiometabolic risk. © 2014 Wiley Periodicals, Inc.
Wolf, Dominik; Fischer, Florian U; Scheurich, Armin; Fellgiebel, Andreas
2015-01-01
Cerebral amyloid-β accumulation and changes in white matter (WM) microstructure are imaging characteristics in clinical Alzheimer's disease and have also been reported in cognitively healthy older adults. However, the relationship between amyloid deposition and WM microstructure is not well understood. Here, we investigated the impact of quantitative cerebral amyloid load on WM microstructure in a group of cognitively healthy older adults. AV45-positron emission tomography and diffusion tensor imaging (DTI) scans of forty-four participants (age-range: 60 to 89 years) from the Alzheimer's Disease Neuroimaging Initiative were analyzed. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (DR), and axial diffusivity (DA) were calculated to characterize WM microstructure. Regression analyses demonstrated non-linear (quadratic) relationships between amyloid deposition and FA, MD, as well as RD in widespread WM regions. At low amyloid burden, higher deposition was associated with increased FA as well as decreased MD and DR. At higher amyloid burden, higher deposition was associated with decreased FA as well as increased MD and DR. Additional regression analyses demonstrated an interaction effect between amyloid load and global WM FA, MD, DR, and DA on cognition, suggesting that cognition is only affected when amyloid is increasing and WM integrity is decreasing. Thus, increases in FA and decreases in MD and RD with increasing amyloid load at low levels of amyloid burden may indicate compensatory processes that preserve cognitive functioning. Potential mechanisms underlying the observed non-linear association between amyloid deposition and DTI metrics of WM microstructure are discussed.
Statistical approach to the analysis of olive long-term pollen season trends in southern Spain.
García-Mozo, H; Yaezel, L; Oteros, J; Galán, C
2014-03-01
Analysis of long-term airborne pollen counts makes it possible not only to chart pollen-season trends but also to track changing patterns in flowering phenology. Changes in higher plant response over a long interval are considered among the most valuable bioindicators of climate change impact. Phenological-trend models can also provide information regarding crop production and pollen-allergen emission. The interest of this information makes essential the election of the statistical analysis for time series study. We analysed trends and variations in the olive flowering season over a 30-year period (1982-2011) in southern Europe (Córdoba, Spain), focussing on: annual Pollen Index (PI); Pollen Season Start (PSS), Peak Date (PD), Pollen Season End (PSE) and Pollen Season Duration (PSD). Apart from the traditional Linear Regression analysis, a Seasonal-Trend Decomposition procedure based on Loess (STL) and an ARIMA model were performed. Linear regression results indicated a trend toward delayed PSE and earlier PSS and PD, probably influenced by the rise in temperature. These changes are provoking longer flowering periods in the study area. The use of the STL technique provided a clearer picture of phenological behaviour. Data decomposition on pollination dynamics enabled the trend toward an alternate bearing cycle to be distinguished from the influence of other stochastic fluctuations. Results pointed to show a rising trend in pollen production. With a view toward forecasting future phenological trends, ARIMA models were constructed to predict PSD, PSS and PI until 2016. Projections displayed a better goodness of fit than those derived from linear regression. Findings suggest that olive reproductive cycle is changing considerably over the last 30years due to climate change. Further conclusions are that STL improves the effectiveness of traditional linear regression in trend analysis, and ARIMA models can provide reliable trend projections for future years taking into account the internal fluctuations in time series. Copyright © 2013 Elsevier B.V. All rights reserved.
A regularization corrected score method for nonlinear regression models with covariate error.
Zucker, David M; Gorfine, Malka; Li, Yi; Tadesse, Mahlet G; Spiegelman, Donna
2013-03-01
Many regression analyses involve explanatory variables that are measured with error, and failing to account for this error is well known to lead to biased point and interval estimates of the regression coefficients. We present here a new general method for adjusting for covariate error. Our method consists of an approximate version of the Stefanski-Nakamura corrected score approach, using the method of regularization to obtain an approximate solution of the relevant integral equation. We develop the theory in the setting of classical likelihood models; this setting covers, for example, linear regression, nonlinear regression, logistic regression, and Poisson regression. The method is extremely general in terms of the types of measurement error models covered, and is a functional method in the sense of not involving assumptions on the distribution of the true covariate. We discuss the theoretical properties of the method and present simulation results in the logistic regression setting (univariate and multivariate). For illustration, we apply the method to data from the Harvard Nurses' Health Study concerning the relationship between physical activity and breast cancer mortality in the period following a diagnosis of breast cancer. Copyright © 2013, The International Biometric Society.
Baldi, F; Alencar, M M; Albuquerque, L G
2010-12-01
The objective of this work was to estimate covariance functions using random regression models on B-splines functions of animal age, for weights from birth to adult age in Canchim cattle. Data comprised 49,011 records on 2435 females. The model of analysis included fixed effects of contemporary groups, age of dam as quadratic covariable and the population mean trend taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were modelled through a step function with four classes. The direct and maternal additive genetic effects, and animal and maternal permanent environmental effects were included as random effects in the model. A total of seventeen analyses, considering linear, quadratic and cubic B-splines functions and up to seven knots, were carried out. B-spline functions of the same order were considered for all random effects. Random regression models on B-splines functions were compared to a random regression model on Legendre polynomials and with a multitrait model. Results from different models of analyses were compared using the REML form of the Akaike Information criterion and Schwarz' Bayesian Information criterion. In addition, the variance components and genetic parameters estimated for each random regression model were also used as criteria to choose the most adequate model to describe the covariance structure of the data. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most adequate to describe the covariance structure of the data. Random regression models using B-spline functions as base functions fitted the data better than Legendre polynomials, especially at mature ages, but higher number of parameters need to be estimated with B-splines functions. © 2010 Blackwell Verlag GmbH.
Pega, Frank; Blakely, Tony; Glymour, M Maria; Carter, Kristie N; Kawachi, Ichiro
2016-02-15
In previous studies, researchers estimated short-term relationships between financial credits and health outcomes using conventional regression analyses, but they did not account for time-varying confounders affected by prior treatment (CAPTs) or the credits' cumulative impacts over time. In this study, we examined the association between total number of years of receiving New Zealand's Family Tax Credit (FTC) and self-rated health (SRH) in 6,900 working-age parents using 7 waves of New Zealand longitudinal data (2002-2009). We conducted conventional linear regression analyses, both unadjusted and adjusted for time-invariant and time-varying confounders measured at baseline, and fitted marginal structural models (MSMs) that more fully adjusted for confounders, including CAPTs. Of all participants, 5.1%-6.8% received the FTC for 1-3 years and 1.8%-3.6% for 4-7 years. In unadjusted and adjusted conventional regression analyses, each additional year of receiving the FTC was associated with 0.033 (95% confidence interval (CI): -0.047, -0.019) and 0.026 (95% CI: -0.041, -0.010) units worse SRH (on a 5-unit scale). In the MSMs, the average causal treatment effect also reflected a small decrease in SRH (unstabilized weights: β = -0.039 unit, 95% CI: -0.058, -0.020; stabilized weights: β = -0.031 unit, 95% CI: -0.050, -0.007). Cumulatively receiving the FTC marginally reduced SRH. Conventional regression analyses and MSMs produced similar estimates, suggesting little bias from CAPTs. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H
2017-05-10
We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P value
Yang, Ruiqi; Wang, Fei; Zhang, Jialing; Zhu, Chonglei; Fan, Limei
2015-05-19
To establish the reference values of thalamus, caudate nucleus and lenticular nucleus diameters through fetal thalamic transverse section. A total of 265 fetuses at our hospital were randomly selected from November 2012 to August 2014. And the transverse and length diameters of thalamus, caudate nucleus and lenticular nucleus were measured. SPSS 19.0 statistical software was used to calculate the regression curve of fetal diameter changes and gestational weeks of pregnancy. P < 0.05 was considered as having statistical significance. The linear regression equation of fetal thalamic length diameter and gestational week was: Y = 0.051X+0.201, R = 0.876, linear regression equation of thalamic transverse diameter and fetal gestational week was: Y = 0.031X+0.229, R = 0.817, linear regression equation of fetal head of caudate nucleus length diameter and gestational age was: Y = 0.033X+0.101, R = 0.722, linear regression equation of fetal head of caudate nucleus transverse diameter and gestational week was: R = 0.025 - 0.046, R = 0.711, linear regression equation of fetal lentiform nucleus length diameter and gestational week was: Y = 0.046+0.229, R = 0.765, linear regression equation of fetal lentiform nucleus diameter and gestational week was: Y = 0.025 - 0.05, R = 0.772. Ultrasonic measurement of diameter of fetal thalamus caudate nucleus, and lenticular nucleus through thalamic transverse section is simple and convenient. And measurements increase with fetal gestational weeks and there is linear regression relationship between them.
Local Linear Regression for Data with AR Errors.
Li, Runze; Li, Yan
2009-07-01
In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.
Orthogonal Regression: A Teaching Perspective
ERIC Educational Resources Information Center
Carr, James R.
2012-01-01
A well-known approach to linear least squares regression is that which involves minimizing the sum of squared orthogonal projections of data points onto the best fit line. This form of regression is known as orthogonal regression, and the linear model that it yields is known as the major axis. A similar method, reduced major axis regression, is…
Mortality rates in OECD countries converged during the period 1990-2010.
Bremberg, Sven G
2017-06-01
Since the scientific revolution of the 18th century, human health has gradually improved, but there is no unifying theory that explains this improvement in health. Studies of macrodeterminants have produced conflicting results. Most studies have analysed health at a given point in time as the outcome; however, the rate of improvement in health might be a more appropriate outcome. Twenty-eight OECD member countries were selected for analysis in the period 1990-2010. The main outcomes studied, in six age groups, were the national rates of decrease in mortality in the period 1990-2010. The effects of seven potential determinants on the rates of decrease in mortality were analysed in linear multiple regression models using least squares, controlling for country-specific history constants, which represent the mortality rate in 1990. The multiple regression analyses started with models that only included mortality rates in 1990 as determinants. These models explained 87% of the intercountry variation in the children aged 1-4 years and 51% in adults aged 55-74 years. When added to the regression equations, the seven determinants did not seem to significantly increase the explanatory power of the equations. The analyses indicated a decrease in mortality in all nations and in all age groups. The development of mortality rates in the different nations demonstrated significant catch-up effects. Therefore an important objective of the national public health sector seems to be to reduce the delay between international research findings and the universal implementation of relevant innovations.
Association between Personality Traits and Sleep Quality in Young Korean Women
Kim, Han-Na; Cho, Juhee; Chang, Yoosoo; Ryu, Seungho
2015-01-01
Personality is a trait that affects behavior and lifestyle, and sleep quality is an important component of a healthy life. We analyzed the association between personality traits and sleep quality in a cross-section of 1,406 young women (from 18 to 40 years of age) who were not reporting clinically meaningful depression symptoms. Surveys were carried out from December 2011 to February 2012, using the Revised NEO Personality Inventory and the Pittsburgh Sleep Quality Index (PSQI). All analyses were adjusted for demographic and behavioral variables. We considered beta weights, structure coefficients, unique effects, and common effects when evaluating the importance of sleep quality predictors in multiple linear regression models. Neuroticism was the most important contributor to PSQI global scores in the multiple regression models. By contrast, despite being strongly correlated with sleep quality, conscientiousness had a near-zero beta weight in linear regression models, because most variance was shared with other personality traits. However, conscientiousness was the most noteworthy predictor of poor sleep quality status (PSQI≥6) in logistic regression models and individuals high in conscientiousness were least likely to have poor sleep quality, which is consistent with an OR of 0.813, with conscientiousness being protective against poor sleep quality. Personality may be a factor in poor sleep quality and should be considered in sleep interventions targeting young women. PMID:26030141
Liu, Chaoqun; Zhong, Chunrong; Zhou, Xuezhen; Chen, Renjuan; Wu, Jiangyue; Wang, Weiye; Li, Xiating; Ding, Huisi; Guo, Yanfang; Gao, Qin; Hu, Xingwen; Xiong, Guoping; Yang, Xuefeng; Hao, Liping; Xiao, Mei; Yang, Nianhong
2017-01-01
Bilirubin concentrations have been recently reported to be negatively associated with type 2 diabetes mellitus. We examined the association between bilirubin concentrations and gestational diabetes mellitus. In a prospective cohort study, 2969 pregnant women were recruited prior to 16 weeks of gestation and were followed up until delivery. The value of bilirubin was tested and oral glucose tolerance test was conducted to screen gestational diabetes mellitus. The relationship between serum bilirubin concentration and gestational weeks was studied by two-piecewise linear regression. A subsample of 1135 participants with serum bilirubin test during 16-18 weeks gestation was conducted to research the association between serum bilirubin levels and risk of gestational diabetes mellitus by logistic regression. Gestational diabetes mellitus developed in 8.5 % of the participants (223 of 2969). Two-piecewise linear regression analyses demonstrated that the levels of bilirubin decreased with gestational week up to the turning point 23 and after that point, levels of bilirubin were increased slightly. In multiple logistic regression analysis, the relative risk of developing gestational diabetes mellitus was lower in the highest tertile of direct bilirubin than that in the lowest tertile (RR 0.60; 95 % CI, 0.35-0.89). The results suggested that women with higher serum direct bilirubin levels during the second trimester of pregnancy have lower risk for development of gestational diabetes mellitus.
Kumar, Rajesh; Dogra, Vishal; Rani, Khushbu; Sahu, Kanti
2017-01-01
District level determinants of total fertility rate in Empowered Action Group states of India can help in ongoing population stabilization programs in India. Present study intends to assess the role of district level determinants in predicting total fertility rate among districts of the Empowered Action Group states of India. Data from Annual Health Survey (2011-12) was analysed using STATA and R software packages. Multiple linear regression models were built and evaluated using Akaike Information Criterion. For further understanding, recursive partitioning was used to prepare a regression tree. Female married illiteracy positively associated with total fertility rate and explained more than half (53%) of variance. Under multiple linear regression model, married illiteracy, infant mortality rate, Ante natal care registration, household size, median age of live birth and sex ratio explained 70% of total variance in total fertility rate. In regression tree, female married illiteracy was the root node and splits at 42% determined TFR <= 2.7. The next left side branch was again married illiteracy with splits at 23% to determine TFR <= 2.1. We conclude that female married illiteracy is one of the most important determinants explaining total fertility rate among the districts of an Empowered Action Group states. Focus on female literacy is required to stabilize the population growth in long run.
NASA Astrophysics Data System (ADS)
Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto
2000-12-01
The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.
The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.
de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A
2017-08-01
The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.
Woo, John H; Wang, Sumei; Melhem, Elias R; Gee, James C; Cucchiara, Andrew; McCluskey, Leo; Elman, Lauren
2014-01-01
To assess the relationship between clinically assessed Upper Motor Neuron (UMN) disease in Amyotrophic Lateral Sclerosis (ALS) and local diffusion alterations measured in the brain corticospinal tract (CST) by a tractography-driven template-space region-of-interest (ROI) analysis of Diffusion Tensor Imaging (DTI). This cross-sectional study included 34 patients with ALS, on whom DTI was performed. Clinical measures were separately obtained including the Penn UMN Score, a summary metric based upon standard clinical methods. After normalizing all DTI data to a population-specific template, tractography was performed to determine a region-of-interest (ROI) outlining the CST, in which average Mean Diffusivity (MD) and Fractional Anisotropy (FA) were estimated. Linear regression analyses were used to investigate associations of DTI metrics (MD, FA) with clinical measures (Penn UMN Score, ALSFRS-R, duration-of-disease), along with age, sex, handedness, and El Escorial category as covariates. For MD, the regression model was significant (p = 0.02), and the only significant predictors were the Penn UMN Score (p = 0.005) and age (p = 0.03). The FA regression model was also significant (p = 0.02); the only significant predictor was the Penn UMN Score (p = 0.003). Measured by the template-space ROI method, both MD and FA were linearly associated with the Penn UMN Score, supporting the hypothesis that DTI alterations reflect UMN pathology as assessed by the clinical examination.
Practical Session: Simple Linear Regression
NASA Astrophysics Data System (ADS)
Clausel, M.; Grégoire, G.
2014-12-01
Two exercises are proposed to illustrate the simple linear regression. The first one is based on the famous Galton's data set on heredity. We use the lm R command and get coefficients estimates, standard error of the error, R2, residuals …In the second example, devoted to data related to the vapor tension of mercury, we fit a simple linear regression, predict values, and anticipate on multiple linear regression. This pratical session is an excerpt from practical exercises proposed by A. Dalalyan at EPNC (see Exercises 1 and 2 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_4.pdf).
Peluso, Marco E M; Munnia, Armelle; Ceppi, Marcello
2014-11-05
Exposures to bisphenol-A, a weak estrogenic chemical, largely used for the production of plastic containers, can affect the rodent behaviour. Thus, we examined the relationships between bisphenol-A and the anxiety-like behaviour, spatial skills, and aggressiveness, in 12 toxicity studies of rodent offspring from females orally exposed to bisphenol-A, while pregnant and/or lactating, by median and linear splines analyses. Subsequently, the meta-regression analysis was applied to quantify the behavioural changes. U-shaped, inverted U-shaped and J-shaped dose-response curves were found to describe the relationships between bisphenol-A with the behavioural outcomes. The occurrence of anxiogenic-like effects and spatial skill changes displayed U-shaped and inverted U-shaped curves, respectively, providing examples of effects that are observed at low-doses. Conversely, a J-dose-response relationship was observed for aggressiveness. When the proportion of rodents expressing certain traits or the time that they employed to manifest an attitude was analysed, the meta-regression indicated that a borderline significant increment of anxiogenic-like effects was present at low-doses regardless of sexes (β)=-0.8%, 95% C.I. -1.7/0.1, P=0.076, at ≤120 μg bisphenol-A. Whereas, only bisphenol-A-males exhibited a significant inhibition of spatial skills (β)=0.7%, 95% C.I. 0.2/1.2, P=0.004, at ≤100 μg/day. A significant increment of aggressiveness was observed in both the sexes (β)=67.9,C.I. 3.4, 172.5, P=0.038, at >4.0 μg. Then, bisphenol-A treatments significantly abrogated spatial learning and ability in males (P<0.001 vs. females). Overall, our study showed that developmental exposures to low-doses of bisphenol-A, e.g. ≤120 μg/day, were associated to behavioural aberrations in offspring. Copyright © 2014. Published by Elsevier Ireland Ltd.
Morse Code, Scrabble, and the Alphabet
ERIC Educational Resources Information Center
Richardson, Mary; Gabrosek, John; Reischman, Diann; Curtiss, Phyliss
2004-01-01
In this paper we describe an interactive activity that illustrates simple linear regression. Students collect data and analyze it using simple linear regression techniques taught in an introductory applied statistics course. The activity is extended to illustrate checks for regression assumptions and regression diagnostics taught in an…
Zinc Levels in Left Ventricular Hypertrophy.
Huang, Lei; Teng, Tianming; Bian, Bo; Yao, Wei; Yu, Xuefang; Wang, Zhuoqun; Xu, Zhelong; Sun, Yuemin
2017-03-01
Zinc is one of the most important trace elements in the body and zinc homeostasis plays a critical role in maintaining cellular structure and function. Zinc dyshomeostasis can lead to many diseases, such as cardiovascular disease. Our aim was to investigate whether there is a relationship between zinc and left ventricular hypertrophy (LVH). A total of 519 patients was enrolled and their serum zinc levels were measured in this study. We performed analyses on the relationship between zinc levels and LVH and the four LV geometry pattern patients: normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH. We performed further linear and multiple regression analyses to confirm the relationship between zinc and left ventricular mass (LVM), left ventricular mass index (LVMI), and relative wall thickness (RWT). Our data showed that zinc levels were 710.2 ± 243.0 μg/L in the control group and were 641.9 ± 215.2 μg/L in LVH patients. We observed that zinc levels were 715 ± 243.5 μg/L, 694.2 ± 242.7 μg/L, 643.7 ± 225.0 μg/L, and 638.7 ± 197.0 μg/L in normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH patients, respectively. We further found that there was a significant inverse linear relationship between zinc and LVM (p = 0.001) and LVMI (p = 0.000) but did not show a significant relationship with RWT (p = 0.561). Multiple regression analyses confirmed that the linear relationship between zinc and LVM and LVMI remained inversely significant. The present study revealed that serum zinc levels were significantly decreased in the LVH patients, especially in the eccentric LVH and concentric LVH patients. Furthermore, zinc levels were significantly inversely correlated with LVM and LVMI.
Do age and gender contribute to workers' burnout symptoms?
Marchand, A; Blanc, M-E; Beauregard, N
2018-06-15
Despite mounting evidence on the association between work stress and burnout, there is limited knowledge about the extent to which workers' age and gender are associated with burnout. To evaluate the relationship between age, gender and their interaction with burnout in a sample of Canadian workers. Data were collected in 2009-12 from a sample of 2073 Canadian workers from 63 workplaces in the province of Quebec. Data were analysed with multilevel regression models to test for linear and non-linear relationships between age and burnout. Analyses adjusted for marital status, parental status, educational level and number of working hours were conducted on the total sample and stratified by gender. Data were collected from a sample of 2073 Canadian workers (response rate 73%). Age followed a non-linear relationship with emotional exhaustion and total burnout, while it was linearly related to cynicism and reduced professional efficacy. Burnout level reduced with increasing age in men, but the association was bimodal in women, with women aged between 20-35 and over 55 years showing the highest burnout level. These results suggest that burnout symptoms varied greatly according to different life stages of working men and women. Younger men, and women aged between 20-35 and 55 years and over are particularly susceptible and should be targeted for programmes to reduce risk of burnout.
Grosso, Giuseppe; Micek, Agnieszka; Godos, Justyna; Pajak, Andrzej; Sciacca, Salvatore; Bes-Rastrollo, Maira; Galvano, Fabio; Martinez-Gonzalez, Miguel A
2017-08-17
To perform a dose-response meta-analysis of prospective cohort studies investigating the association between long-term coffee intake and risk of hypertension. An online systematic search of studies published up to November 2016 was performed. Linear and non-linear dose-response meta-analyses were conducted; potential evidence of heterogeneity, publication bias, and confounding effect of selected variables were investigated through sensitivity and meta-regression analyses. Seven cohorts including 205,349 individuals and 44,120 cases of hypertension were included. In the non-linear analysis, there was a 9% significant decreased risk of hypertension per seven cups of coffee a day, while, in the linear dose-response association, there was a 1% decreased risk of hypertension for each additional cup of coffee per day. Among subgroups, there were significant inverse associations for females, caffeinated coffee, and studies conducted in the US with longer follow-up. Analysis of potential confounders revealed that smoking-related variables weakened the strength of association between coffee consumption and risk of hypertension. Increased coffee consumption is associated with a modest decrease in risk of hypertension in prospective cohort studies. Smoking status is a potential effect modifier on the association between coffee consumption and risk of hypertension.
Users manual for flight control design programs
NASA Technical Reports Server (NTRS)
Nalbandian, J. Y.
1975-01-01
Computer programs for the design of analog and digital flight control systems are documented. The program DIGADAPT uses linear-quadratic-gaussian synthesis algorithms in the design of command response controllers and state estimators, and it applies covariance propagation analysis to the selection of sampling intervals for digital systems. Program SCHED executes correlation and regression analyses for the development of gain and trim schedules to be used in open-loop explicit-adaptive control laws. A linear-time-varying simulation of aircraft motions is provided by the program TVHIS, which includes guidance and control logic, as well as models for control actuator dynamics. The programs are coded in FORTRAN and are compiled and executed on both IBM and CDC computers.
Advanced statistics: linear regression, part II: multiple linear regression.
Marill, Keith A
2004-01-01
The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.
NASA Astrophysics Data System (ADS)
Kang, Pilsang; Koo, Changhoi; Roh, Hokyu
2017-11-01
Since simple linear regression theory was established at the beginning of the 1900s, it has been used in a variety of fields. Unfortunately, it cannot be used directly for calibration. In practical calibrations, the observed measurements (the inputs) are subject to errors, and hence they vary, thus violating the assumption that the inputs are fixed. Therefore, in the case of calibration, the regression line fitted using the method of least squares is not consistent with the statistical properties of simple linear regression as already established based on this assumption. To resolve this problem, "classical regression" and "inverse regression" have been proposed. However, they do not completely resolve the problem. As a fundamental solution, we introduce "reversed inverse regression" along with a new methodology for deriving its statistical properties. In this study, the statistical properties of this regression are derived using the "error propagation rule" and the "method of simultaneous error equations" and are compared with those of the existing regression approaches. The accuracy of the statistical properties thus derived is investigated in a simulation study. We conclude that the newly proposed regression and methodology constitute the complete regression approach for univariate linear calibrations.
A comparison of methods for the analysis of binomial clustered outcomes in behavioral research.
Ferrari, Alberto; Comelli, Mario
2016-12-01
In behavioral research, data consisting of a per-subject proportion of "successes" and "failures" over a finite number of trials often arise. This clustered binary data are usually non-normally distributed, which can distort inference if the usual general linear model is applied and sample size is small. A number of more advanced methods is available, but they are often technically challenging and a comparative assessment of their performances in behavioral setups has not been performed. We studied the performances of some methods applicable to the analysis of proportions; namely linear regression, Poisson regression, beta-binomial regression and Generalized Linear Mixed Models (GLMMs). We report on a simulation study evaluating power and Type I error rate of these models in hypothetical scenarios met by behavioral researchers; plus, we describe results from the application of these methods on data from real experiments. Our results show that, while GLMMs are powerful instruments for the analysis of clustered binary outcomes, beta-binomial regression can outperform them in a range of scenarios. Linear regression gave results consistent with the nominal level of significance, but was overall less powerful. Poisson regression, instead, mostly led to anticonservative inference. GLMMs and beta-binomial regression are generally more powerful than linear regression; yet linear regression is robust to model misspecification in some conditions, whereas Poisson regression suffers heavily from violations of the assumptions when used to model proportion data. We conclude providing directions to behavioral scientists dealing with clustered binary data and small sample sizes. Copyright © 2016 Elsevier B.V. All rights reserved.
Factors associated to quality of life in active elderly.
Alexandre, Tiago da Silva; Cordeiro, Renata Cereda; Ramos, Luiz Roberto
2009-08-01
To analyze whether quality of life in active, healthy elderly individuals is influenced by functional status and sociodemographic characteristics, as well as psychological parameters. Study conducted in a sample of 120 active elderly subjects recruited from two open universities of the third age in the cities of São Paulo and São José dos Campos (Southeastern Brazil) between May 2005 and April 2006. Quality of life was measured using the abbreviated Brazilian version of the World Health Organization Quality of Live (WHOQOL-bref) questionnaire. Sociodemographic, clinical and functional variables were measured through crossculturally validated assessments by the Mini Mental State Examination, Geriatric Depression Scale, Functional Reach, One-Leg Balance Test, Timed Up and Go Test, Six-Minute Walk Test, Human Activity Profile and a complementary questionnaire. Simple descriptive analyses, Pearson's correlation coefficient, Student's t-test for non-related samples, analyses of variance, linear regression analyses and variance inflation factor were performed. The significance level for all statistical tests was set at 0.05. Linear regression analysis showed an independent correlation without colinearity between depressive symptoms measured by the Geriatric Depression Scale and four domains of the WHOQOL-bref. Not having a conjugal life implied greater perception in the social domain; developing leisure activities and having an income over five minimum wages implied greater perception in the environment domain. Functional status had no influence on the Quality of Life variable in the analysis models in active elderly. In contrast, psychological factors, as assessed by the Geriatric Depression Scale, and sociodemographic characteristics, such as marital status, income and leisure activities, had an impact on quality of life.
Botha, J; de Ridder, J H; Potgieter, J C; Steyn, H S; Malan, L
2013-10-01
A recently proposed model for waist circumference cut points (RPWC), driven by increased blood pressure, was demonstrated in an African population. We therefore aimed to validate the RPWC by comparing the RPWC and the Joint Statement Consensus (JSC) models via Logistic Regression (LR) and Neural Networks (NN) analyses. Urban African gender groups (N=171) were stratified according to the JSC and RPWC cut point models. Ultrasound carotid intima media thickness (CIMT), blood pressure (BP) and fasting bloods (glucose, high density lipoprotein (HDL) and triglycerides) were obtained in a well-controlled setting. The RPWC male model (LR ROC AUC: 0.71, NN ROC AUC: 0.71) was practically equal to the JSC model (LR ROC AUC: 0.71, NN ROC AUC: 0.69) to predict structural vascular -disease. Similarly, the female RPWC model (LR ROC AUC: 0.84, NN ROC AUC: 0.82) and JSC model (LR ROC AUC: 0.82, NN ROC AUC: 0.81) equally predicted CIMT as surrogate marker for structural vascular disease. Odds ratios supported validity where prediction of CIMT revealed -clinical -significance, well over 1, for both the JSC and RPWC models in African males and females (OR 3.75-13.98). In conclusion, the proposed RPWC model was substantially validated utilizing linear and non-linear analyses. We therefore propose ethnic-specific WC cut points (African males, ≥90 cm; -females, ≥98 cm) to predict a surrogate marker for structural vascular disease. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.
Liu, Guorui; Cai, Zongwei; Zheng, Minghui; Jiang, Xiaoxu; Nie, Zhiqiang; Wang, Mei
2015-01-01
Identifying marker congeners of unintentionally produced polychlorinated naphthalenes (PCNs) from industrial thermal sources might be useful for predicting total PCN (∑2-8PCN) emissions by the determination of only indicator congeners. In this study, potential indicator congeners were identified based on the PCN data in 122 stack gas samples from over 60 plants involved in more than ten industrial thermal sources reported in our previous case studies. Linear regression analyses identified that the concentrations of CN27/30, CN52/60, and CN66/67 correlated significantly with ∑2-8PCN (R(2)=0.77, 0.80, and 0.58, respectively; n=122, p<0.05), which might be good candidates for indicator congeners. Equations describing relationships between indicators and ∑2-8PCN were established. The linear regression analyses involving 122 samples showed that the relationships between the indicator congeners and ∑2-8PCN were not significantly affected by factors such as industry types, raw materials used, or operating conditions. Hierarchical cluster analysis and similarity calculations for the 122 stack gas samples were adopted to group those samples and evaluating their similarity and difference based on the PCN homolog distributions from different industrial thermal sources. Generally, the fractions of less chlorinated homologs comprised of di-, tri-, and tetra-homologs were much higher than that of more chlorinated homologs for up to 111 stack gas samples contained in group 1 and 2, which indicating the dominance of lower chlorinated homologs in stack gas from industrial thermal sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi
2012-01-01
The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.
Quality of life in breast cancer patients--a quantile regression analysis.
Pourhoseingholi, Mohamad Amin; Safaee, Azadeh; Moghimi-Dehkordi, Bijan; Zeighami, Bahram; Faghihzadeh, Soghrat; Tabatabaee, Hamid Reza; Pourhoseingholi, Asma
2008-01-01
Quality of life study has an important role in health care especially in chronic diseases, in clinical judgment and in medical resources supplying. Statistical tools like linear regression are widely used to assess the predictors of quality of life. But when the response is not normal the results are misleading. The aim of this study is to determine the predictors of quality of life in breast cancer patients, using quantile regression model and compare to linear regression. A cross-sectional study conducted on 119 breast cancer patients that admitted and treated in chemotherapy ward of Namazi hospital in Shiraz. We used QLQ-C30 questionnaire to assessment quality of life in these patients. A quantile regression was employed to assess the assocciated factors and the results were compared to linear regression. All analysis carried out using SAS. The mean score for the global health status for breast cancer patients was 64.92+/-11.42. Linear regression showed that only grade of tumor, occupational status, menopausal status, financial difficulties and dyspnea were statistically significant. In spite of linear regression, financial difficulties were not significant in quantile regression analysis and dyspnea was only significant for first quartile. Also emotion functioning and duration of disease statistically predicted the QOL score in the third quartile. The results have demonstrated that using quantile regression leads to better interpretation and richer inference about predictors of the breast cancer patient quality of life.
Interpretation of commonly used statistical regression models.
Kasza, Jessica; Wolfe, Rory
2014-01-01
A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
Holtschlag, David J.; Shively, Dawn; Whitman, Richard L.; Haack, Sheridan K.; Fogarty, Lisa R.
2008-01-01
Regression analyses and hydrodynamic modeling were used to identify environmental factors and flow paths associated with Escherichia coli (E. coli) concentrations at Memorial and Metropolitan Beaches on Lake St. Clair in Macomb County, Mich. Lake St. Clair is part of the binational waterway between the United States and Canada that connects Lake Huron with Lake Erie in the Great Lakes Basin. Linear regression, regression-tree, and logistic regression models were developed from E. coli concentration and ancillary environmental data. Linear regression models on log10 E. coli concentrations indicated that rainfall prior to sampling, water temperature, and turbidity were positively associated with bacteria concentrations at both beaches. Flow from Clinton River, changes in water levels, wind conditions, and log10 E. coli concentrations 2 days before or after the target bacteria concentrations were statistically significant at one or both beaches. In addition, various interaction terms were significant at Memorial Beach. Linear regression models for both beaches explained only about 30 percent of the variability in log10 E. coli concentrations. Regression-tree models were developed from data from both Memorial and Metropolitan Beaches but were found to have limited predictive capability in this study. The results indicate that too few observations were available to develop reliable regression-tree models. Linear logistic models were developed to estimate the probability of E. coli concentrations exceeding 300 most probable number (MPN) per 100 milliliters (mL). Rainfall amounts before bacteria sampling were positively associated with exceedance probabilities at both beaches. Flow of Clinton River, turbidity, and log10 E. coli concentrations measured before or after the target E. coli measurements were related to exceedances at one or both beaches. The linear logistic models were effective in estimating bacteria exceedances at both beaches. A receiver operating characteristic (ROC) analysis was used to determine cut points for maximizing the true positive rate prediction while minimizing the false positive rate. A two-dimensional hydrodynamic model was developed to simulate horizontal current patterns on Lake St. Clair in response to wind, flow, and water-level conditions at model boundaries. Simulated velocity fields were used to track hypothetical massless particles backward in time from the beaches along flow paths toward source areas. Reverse particle tracking for idealized steady-state conditions shows changes in expected flow paths and traveltimes with wind speeds and directions from 24 sectors. The results indicate that three to four sets of contiguous wind sectors have similar effects on flow paths in the vicinity of the beaches. In addition, reverse particle tracking was used for transient conditions to identify expected flow paths for 10 E. coli sampling events in 2004. These results demonstrate the ability to track hypothetical particles from the beaches, backward in time, to likely source areas. This ability, coupled with a greater frequency of bacteria sampling, may provide insight into changes in bacteria concentrations between source and sink areas.
2003-01-01
Hawaii) is described. The response of tubeworms (Hydroides elegans, Hydroides dianthus ), oysters (Ostrea sp., Crassostrea sp.) and barnacles (Balanus...8 and Hydroides dianthus ) and oysters (Ostrea sp. and Crassostrea sp.) to the silicone coatings were measured using ASTM D 5618-94 (1994), in which...Oyster (Crassostrea sp.) and tubeworm (H. dianthus ) attachment strengths at the Indian River Lagoon site Linear regression analyses of the adhesion
Simplified large African carnivore density estimators from track indices.
Winterbach, Christiaan W; Ferreira, Sam M; Funston, Paul J; Somers, Michael J
2016-01-01
The range, population size and trend of large carnivores are important parameters to assess their status globally and to plan conservation strategies. One can use linear models to assess population size and trends of large carnivores from track-based surveys on suitable substrates. The conventional approach of a linear model with intercept may not intercept at zero, but may fit the data better than linear model through the origin. We assess whether a linear regression through the origin is more appropriate than a linear regression with intercept to model large African carnivore densities and track indices. We did simple linear regression with intercept analysis and simple linear regression through the origin and used the confidence interval for ß in the linear model y = αx + ß, Standard Error of Estimate, Mean Squares Residual and Akaike Information Criteria to evaluate the models. The Lion on Clay and Low Density on Sand models with intercept were not significant ( P > 0.05). The other four models with intercept and the six models thorough origin were all significant ( P < 0.05). The models using linear regression with intercept all included zero in the confidence interval for ß and the null hypothesis that ß = 0 could not be rejected. All models showed that the linear model through the origin provided a better fit than the linear model with intercept, as indicated by the Standard Error of Estimate and Mean Square Residuals. Akaike Information Criteria showed that linear models through the origin were better and that none of the linear models with intercept had substantial support. Our results showed that linear regression through the origin is justified over the more typical linear regression with intercept for all models we tested. A general model can be used to estimate large carnivore densities from track densities across species and study areas. The formula observed track density = 3.26 × carnivore density can be used to estimate densities of large African carnivores using track counts on sandy substrates in areas where carnivore densities are 0.27 carnivores/100 km 2 or higher. To improve the current models, we need independent data to validate the models and data to test for non-linear relationship between track indices and true density at low densities.
Chen, Yi; Pouillot, Régis; S Burall, Laurel; Strain, Errol A; Van Doren, Jane M; De Jesus, Antonio J; Laasri, Anna; Wang, Hua; Ali, Laila; Tatavarthy, Aparna; Zhang, Guodong; Hu, Lijun; Day, James; Sheth, Ishani; Kang, Jihun; Sahu, Surasri; Srinivasan, Devayani; Brown, Eric W; Parish, Mickey; Zink, Donald L; Datta, Atin R; Hammack, Thomas S; Macarisin, Dumitru
2017-01-16
A precise and accurate method for enumeration of low level of Listeria monocytogenes in foods is critical to a variety of studies. In this study, paired comparison of most probable number (MPN) and direct plating enumeration of L. monocytogenes was conducted on a total of 1730 outbreak-associated ice cream samples that were naturally contaminated with low level of L. monocytogenes. MPN was performed on all 1730 samples. Direct plating was performed on all samples using the RAPID'L.mono (RLM) agar (1600 samples) and agar Listeria Ottaviani and Agosti (ALOA; 130 samples). Probabilistic analysis with Bayesian inference model was used to compare paired direct plating and MPN estimates of L. monocytogenes in ice cream samples because assumptions implicit in ordinary least squares (OLS) linear regression analyses were not met for such a comparison. The probabilistic analysis revealed good agreement between the MPN and direct plating estimates, and this agreement showed that the MPN schemes and direct plating schemes using ALOA or RLM evaluated in the present study were suitable for enumerating low levels of L. monocytogenes in these ice cream samples. The statistical analysis further revealed that OLS linear regression analyses of direct plating and MPN data did introduce bias that incorrectly characterized systematic differences between estimates from the two methods. Published by Elsevier B.V.
Using the social cognitive theory to understand physical activity among dialysis patients.
Patterson, Megan S; Umstattd Meyer, M Renée; Beaujean, A Alexander; Bowden, Rodney G
2014-08-01
The purpose of this study was to use the social cognitive theory (SCT) constructs self-efficacy, outcome expectations, and self-regulation to better understand associations of physical activity (PA) behaviors among dialysis patients after controlling for demographic and health-related factors. This study was cross-sectional in design. Participants (N = 115; mean age = 61.51 years, SD = 14.01) completed self-report questionnaires during a regularly scheduled dialysis treatment session. Bivariate and hierarchical linear regression analyses were conducted to examine relationships among SCT constructs and PA. Significant relationships between PA and self-efficacy (r = .336), self-regulation (r = .280), and outcome expectations (r = .265) were detected among people on dialysis in bivariate analyses. Hierarchical linear regression revealed significant increases in variance explained for the addition of self-efficacy, self-regulation, and covariates (p < .01). Younger age, self-efficacy, and self-regulation were associated (p < .10) with greater participation in physical activity in the final model (R² = .272). Conclusion/Implication: This research supports the use of SCT in understanding PA among people undergoing dialysis treatment. The findings of this study can help health educators and health care practitioners better understand PA and how to promote it among this population. Future research should further investigate which activities dialysis patients participate in across the life span of their disease. Future PA programs should focus on increasing a patient's self-efficacy and self-regulation.
Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming
Clow, David W.
2010-01-01
Trends in the timing of snowmelt and associated runoff in Colorado were evaluated for the 1978-2007 water years using the regional Kendall test (RKT) on daily snow-water equivalent (SWE) data from snowpack telemetry (SNOTEL) sites and daily streamflow data from headwater streams. The RKT is a robust, nonparametric test that provides an increased power of trend detection by grouping data from multiple sites within a given geographic region. The RKT analyses indicated strong, pervasive trends in snowmelt and streamflow timing, which have shifted toward earlier in the year by a median of 2-3 weeks over the 29-yr study period. In contrast, relatively few statistically significant trends were detected using simple linear regression. RKT analyses also indicated that November-May air temperatures increased by a median of 0.9 degrees C decade-1, while 1 April SWE and maximum SWE declined by a median of 4.1 and 3.6 cm decade-1, respectively. Multiple linear regression models were created, using monthly air temperatures, snowfall, latitude, and elevation as explanatory variables to identify major controlling factors on snowmelt timing. The models accounted for 45% of the variance in snowmelt onset, and 78% of the variance in the snowmelt center of mass (when half the snowpack had melted). Variations in springtime air temperature and SWE explained most of the interannual variability in snowmelt timing. Regression coefficients for air temperature were negative, indicating that warm temperatures promote early melt. Regression coefficients for SWE, latitude, and elevation were positive, indicating that abundant snowfall tends to delay snowmelt, and snowmelt tends to occur later at northern latitudes and high elevations. Results from this study indicate that even the mountains of Colorado, with their high elevations and cold snowpacks, are experiencing substantial shifts in the timing of snowmelt and snowmelt runoff toward earlier in the year.
Biomass Stoves and Lens Opacity and Cataract in Nepalese Women
Pokhrel, Amod K.; Bates, Michael N.; Shrestha, Sachet P.; Bailey, Ian L.; DiMartino, Robert B.; Smith, Kirk R.; Joshi, N. D.
2014-01-01
Purpose Cataract is the most prevalent cause of blindness in Nepal. Several epidemiologic studies have associated cataracts with use of biomass cookstoves. These studies, however, have had limitations, including potential control selection bias and limited adjustment for possible confounding. This study, in Pokhara city, in an area of Nepal where biomass cookstoves are widely used without direct venting of the smoke to the outdoors, focuses on pre-clinical measures of opacity, while avoiding selection bias and taking into account comprehensive data on potential confounding factors Methods Using a cross-sectional study design, severity of lenticular damage, judged on the LOCS III scales, was investigated in females (n=143), aged 20-65 years, without previously diagnosed cataract. Linear and logistic regression analyses were used to examine the relationships with stove type and length of use. Clinically significant cataract, used in the logistic regression models, was defined as a LOCS III score > 2. Results Using gas cookstoves as the reference group, logistic regression analysis for nuclear cataract showed the evidence of relationships with stove type: for biomass stoves, the odds ratio (OR) was 2.58 (95% confidence interval [CI]: 1.22-5.46) and, for kerosene stoves, the OR was 5.18 (95% CI: 0.88-30.38). Similar results were found for nuclear color (LOCS III score > 2), but no association was found with cortical cataracts. Supporting a relationship between biomass stoves and nuclear cataract was a trend with years of exposure to biomass cookstoves (p=0.01). Linear regression analyses did not show clear evidence of an association between lenticular damage and stove types. Biomass fuel used for heating was not associated with any form of opacity. Conclusions This study provides support for associations of biomass and kerosene cookstoves with nuclear opacity and change in nuclear color. The novel associations with kerosene cookstove use deserve further investigation. PMID:23400024
Canales, Cecilia; Elsayes, Ali; Yeh, D Dante; Belcher, Donna; Nakayama, Anna; McCarthy, Caitlin M; Chokengarmwong, Nalin; Quraishi, Sadeq A
2018-05-30
Malnutrition influences clinical outcomes. Although various screening tools are available to assess nutrition status, their use in the intensive care unit (ICU) has not been rigorously studied. Our goal was to compare the Nutrition Risk in Critically Ill (NUTRIC) to the Nutritional Risk Screening (NRS) 2002 in terms of their associations with macronutrient deficit in ICU patients. We performed a retrospective analysis to investigate the relationship between NUTRIC vs NRS 2002 and macronutrient deficit (protein and calories) in critically ill patients. We performed linear regression analyses, controlling for age, sex, race, body mass index, and ICU length of stay. We then dichotomized our primary exposures and outcomes to perform logistic regression analyses, controlling for the same covariates. The analytic cohort included 312 adults. Mean NUTRIC and NRS 2002 scores were 4 ± 2 and 4 ± 1, respectively. Linear regression demonstrated that each increment in NUTRIC score was associated with a 49 g higher protein deficit (β = 48.70: 95% confidence interval [CI] 29.23-68.17) and a 752 kcal higher caloric deficit (β = 751.95; 95% CI 447.80-1056.09). Logistic regression demonstrated that NUTRIC scores >4 had over twice the odds of protein deficits ≥300 g (odds ratio [OR] 2.35; 95% CI 1.43-3.85) and caloric deficits ≥6000 kcal (OR 2.73; 95% CI 1.66-4.50) compared with NUTRIC scores ≤4. We did not observe an association of NRS 2002 scores with macronutrient deficit. Our data suggest that NUTRIC is superior to NRS 2002 for assessing malnutrition risk in ICU patients. Randomized, controlled studies are needed to determine whether nutrition interventions, stratified by NUTRIC score, can improve patient outcomes. © 2018 American Society for Parenteral and Enteral Nutrition.
Kanamori, Shogo; Castro, Marcia C; Sow, Seydou; Matsuno, Rui; Cissokho, Alioune; Jimba, Masamine
2016-01-01
The 5S method is a lean management tool for workplace organization, with 5S being an abbreviation for five Japanese words that translate to English as Sort, Set in Order, Shine, Standardize, and Sustain. In Senegal, the 5S intervention program was implemented in 10 health centers in two regions between 2011 and 2014. To identify the impact of the 5S intervention program on the satisfaction of clients (patients and caretakers) who visited the health centers. A standardized 5S intervention protocol was implemented in the health centers using a quasi-experimental separate pre-post samples design (four intervention and three control health facilities). A questionnaire with 10 five-point Likert items was used to measure client satisfaction. Linear regression analysis was conducted to identify the intervention's effect on the client satisfaction scores, represented by an equally weighted average of the 10 Likert items (Cronbach's alpha=0.83). Additional regression analyses were conducted to identify the intervention's effect on the scores of each Likert item. Backward stepwise linear regression ( n= 1,928) indicated a statistically significant effect of the 5S intervention, represented by an increase of 0.19 points in the client satisfaction scores in the intervention group, 6 to 8 months after the intervention ( p= 0.014). Additional regression analyses showed significant score increases of 0.44 ( p= 0.002), 0.14 ( p= 0.002), 0.06 ( p= 0.019), and 0.17 ( p= 0.044) points on four items, which, respectively were healthcare staff members' communication, explanations about illnesses or cases, and consultation duration, and clients' overall satisfaction. The 5S has the potential to improve client satisfaction at resource-poor health facilities and could therefore be recommended as a strategic option for improving the quality of healthcare service in low- and middle-income countries. To explore more effective intervention modalities, further studies need to address the mechanisms by which 5S leads to attitude changes in healthcare staff.
Wang, Ningjian; Han, Bing; Li, Qin; Chen, Yi; Chen, Yingchao; Xia, Fangzhen; Lin, Dongping; Jensen, Michael D; Lu, Yingli
2015-07-16
To date, no study has explored the association between androgen levels and 25-hydroxyvitamin D (25(OH)D) levels in Chinese men. We aimed to investigate the relationship between 25(OH)D levels and total and free testosterone (T), sex hormone binding globulin (SHBG), estradiol, and hypogonadism in Chinese men. Our data, which were based on the population, were collected from 16 sites in East China. There were 2,854 men enrolled in the study, with a mean (SD) age of 53.0 (13.5) years. Hypogonadism was defined as total T <11.3 nmol/L or free T <22.56 pmol/L. The 25(OH)D, follicle-stimulating hormone, luteinizing hormone, total T, estradiol and SHBG were measured using chemiluminescence and free T by enzyme-linked immune-sorbent assay. The associations between 25(OH)D and reproductive hormones and hypogonadism were analyzed using linear regression and binary logistic regression analyses, respectively. A total of 713 (25.0 %) men had hypogonadism with significantly lower 25(OH)D levels but greater BMI and HOMA-IR. Using linear regression, after fully adjusting for age, residence area, economic status, smoking, BMI, HOMA-IR, diabetes and systolic pressure, 25(OH)D was associated with total T and estradiol (P < 0.05). In the logistic regression analyses, increased quartiles of 25(OH)D were associated with significantly decreased odds ratios of hypogonadism (P for trend <0.01). This association, which was considerably attenuated by BMI and HOMA-IR, persisted in the fully adjusted model (P for trend <0.01) in which for the lowest compared with the highest quartile of 25(OH)D, the odds ratio of hypogonadism was 1.50 (95 % CI, 1.14, 1.97). A lower vitamin D level was associated with a higher prevalence of hypogonadism in Chinese men. This association might, in part, be explained by adiposity and insulin resistance and warrants additional investigation.
[From clinical judgment to linear regression model.
Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O
2013-01-01
When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.
Samokhvalov, Andriy V; Rehm, Jürgen; Roerecke, Michael
2015-12-01
Pancreatitis is a highly prevalent medical condition associated with a spectrum of endocrine and exocrine pancreatic insufficiencies. While high alcohol consumption is an established risk factor for pancreatitis, its relationship with specific types of pancreatitis and a potential threshold have not been systematically examined. We conducted a systematic literature search for studies on the association between alcohol consumption and pancreatitis based on PRISMA guidelines. Non-linear and linear random-effect dose-response meta-analyses using restricted cubic spline meta-regressions and categorical meta-analyses in relation to abstainers were conducted. Seven studies with 157,026 participants and 3618 cases of pancreatitis were included into analyses. The dose-response relationship between average volume of alcohol consumption and risk of pancreatitis was monotonic with no evidence of non-linearity for chronic pancreatitis (CP) for both sexes (p = 0.091) and acute pancreatitis (AP) in men (p = 0.396); it was non-linear for AP in women (p = 0.008). Compared to abstention, there was a significant decrease in risk (RR = 0.76, 95%CI: 0.60-0.97) of AP in women below the threshold of 40 g/day. No such association was found in men (RR = 1.1, 95%CI: 0.69-1.74). The RR for CP at 100 g/day was 6.29 (95%CI: 3.04-13.02). The dose-response relationships between alcohol consumption and risk of pancreatitis were monotonic for CP and AP in men, and non-linear for AP in women. Alcohol consumption below 40 g/day was associated with reduced risk of AP in women. Alcohol consumption beyond this level was increasingly detrimental for any type of pancreatitis. The work was financially supported by a grant from the National Institute on Alcohol Abuse and Alcoholism (R21AA023521) to the last author.
Samokhvalov, Andriy V.; Rehm, Jürgen; Roerecke, Michael
2015-01-01
Background Pancreatitis is a highly prevalent medical condition associated with a spectrum of endocrine and exocrine pancreatic insufficiencies. While high alcohol consumption is an established risk factor for pancreatitis, its relationship with specific types of pancreatitis and a potential threshold have not been systematically examined. Methods We conducted a systematic literature search for studies on the association between alcohol consumption and pancreatitis based on PRISMA guidelines. Non-linear and linear random-effect dose–response meta-analyses using restricted cubic spline meta-regressions and categorical meta-analyses in relation to abstainers were conducted. Findings Seven studies with 157,026 participants and 3618 cases of pancreatitis were included into analyses. The dose–response relationship between average volume of alcohol consumption and risk of pancreatitis was monotonic with no evidence of non-linearity for chronic pancreatitis (CP) for both sexes (p = 0.091) and acute pancreatitis (AP) in men (p = 0.396); it was non-linear for AP in women (p = 0.008). Compared to abstention, there was a significant decrease in risk (RR = 0.76, 95%CI: 0.60–0.97) of AP in women below the threshold of 40 g/day. No such association was found in men (RR = 1.1, 95%CI: 0.69–1.74). The RR for CP at 100 g/day was 6.29 (95%CI: 3.04–13.02). Interpretation The dose–response relationships between alcohol consumption and risk of pancreatitis were monotonic for CP and AP in men, and non-linear for AP in women. Alcohol consumption below 40 g/day was associated with reduced risk of AP in women. Alcohol consumption beyond this level was increasingly detrimental for any type of pancreatitis. Funding The work was financially supported by a grant from the National Institute on Alcohol Abuse and Alcoholism (R21AA023521) to the last author. PMID:26844279
Hemmila, April; McGill, Jim; Ritter, David
2008-03-01
To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.
Gimelfarb, A.; Willis, J. H.
1994-01-01
An experiment was conducted to investigate the offspring-parent regression for three quantitative traits (weight, abdominal bristles and wing length) in Drosophila melanogaster. Linear and polynomial models were fitted for the regressions of a character in offspring on both parents. It is demonstrated that responses by the characters to selection predicted by the nonlinear regressions may differ substantially from those predicted by the linear regressions. This is true even, and especially, if selection is weak. The realized heritability for a character under selection is shown to be determined not only by the offspring-parent regression but also by the distribution of the character and by the form and strength of selection. PMID:7828818
Wen, Cheng; Dallimer, Martin; Carver, Steve; Ziv, Guy
2018-05-06
Despite the great potential of mitigating carbon emission, development of wind farms is often opposed by local communities due to the visual impact on landscape. A growing number of studies have applied nonmarket valuation methods like Choice Experiments (CE) to value the visual impact by eliciting respondents' willingness to pay (WTP) or willingness to accept (WTA) for hypothetical wind farms through survey questions. Several meta-analyses have been found in the literature to synthesize results from different valuation studies, but they have various limitations related to the use of the prevailing multivariate meta-regression analysis. In this paper, we propose a new meta-analysis method to establish general functions for the relationships between the estimated WTP or WTA and three wind farm attributes, namely the distance to residential/coastal areas, the number of turbines and turbine height. This method involves establishing WTA or WTP functions for individual studies, fitting the average derivative functions and deriving the general integral functions of WTP or WTA against wind farm attributes. Results indicate that respondents in different studies consistently showed increasing WTP for moving wind farms to greater distances, which can be fitted by non-linear (natural logarithm) functions. However, divergent preferences for the number of turbines and turbine height were found in different studies. We argue that the new analysis method proposed in this paper is an alternative to the mainstream multivariate meta-regression analysis for synthesizing CE studies and the general integral functions of WTP or WTA against wind farm attributes are useful for future spatial modelling and benefit transfer studies. We also suggest that future multivariate meta-analyses should include non-linear components in the regression functions. Copyright © 2018. Published by Elsevier B.V.
Shaffer, Kelly M.; Jacobs, Jamie M.; Nipp, Ryan D.; Carr, Alaina; Jackson, Vicki A.; Park, Elyse R.; Pirl, William F.; El-Jawahri, Areej; Gallagher, Emily R.; Greer, Joseph A.; Temel, Jennifer S.
2016-01-01
Purpose Caregiver, relational, and patient factors have been associated with the health of family members and friends providing care to patients with early-stage cancer. Little research has examined whether findings extend to family caregivers of patients with incurable cancer, who experience unique and substantial caregiving burdens. We examined correlates of mental and physical health among caregivers of patients with newly-diagnosed incurable lung or non-colorectal gastrointestinal cancer. Methods At baseline for a trial of early palliative care, caregivers of participating patients (N=275) reported their mental and physical health (Medical Outcome Survey-Short Form-36); patients reported their quality of life (Functional Assessment of Cancer Therapy-General). Analyses used hierarchical linear regression with two-tailed significance tests. Results Caregivers’ mental health was worse than the U.S. national population (M=44.31, p<.001), yet their physical health was better (M=56.20, p<.001). Hierarchical regression analyses testing caregiver, relational, and patient factors simultaneously revealed that younger (B=0.31, p=.001), spousal caregivers (B=−8.70, p=.003), who cared for patients reporting low emotional well-being (B=0.51, p=.01) reported worse mental health; older (B=−0.17, p=.01) caregivers with low educational attainment (B=4.36, p<.001) who cared for patients reporting low social well-being (B=0.35, p=.05) reported worse physical health. Conclusions In this large sample of family caregivers of patients with incurable cancer, caregiver demographics, relational factors, and patient-specific factors were all related to caregiver mental health, while caregiver demographics were primarily associated with caregiver physical health. These findings help identify characteristics of family caregivers at highest risk of poor mental and physical health who may benefit from greater supportive care. PMID:27866337
Sundh, Josefin; Ställberg, Björn; Lisspers, Karin; Kämpe, Mary; Janson, Christer; Montgomery, Scott
2016-01-01
The COPD Assessment Test (CAT) and the Clinical COPD Questionnaire (CCQ) are both clinically useful health status instruments. The main objective was to compare CAT and CCQ measurement instruments. CAT and CCQ forms were completed by 432 randomly selected primary and secondary care patients with a COPD diagnosis. Correlation and linear regression analyses of CAT and CCQ were performed. Standardised scores were created for the CAT and CCQ scores, and separate multiple linear regression analyses for CAT and CCQ examined associations with sex, age (≤ 60, 61-70 and >70 years), exacerbations (≥ 1 vs 0 in the previous year), body mass index (BMI), heart disease, anxiety/depression and lung function (subgroup with n = 246). CAT and CCQ correlated well (r = 0.88, p < 0.0001), as did CAT ≥ 10 and CCQ ≥ 1 (r = 0.78, p < 0.0001). CCQ 1.0 corresponded to CAT 9.93 and CAT 10 to CCQ 1.29. Both instruments were associated with BMI < 20 (standardised adjusted regression coefficient (95%CI) for CAT 0.56 (0.18 to 0.93) and CCQ 0.56 (0.20 to 0.92)), exacerbations (CAT 0.77 (0.58 to 0.95) and CCQ 0.94 (0.76 to 1.12)), heart disease (CAT 0.38 (0.17 to 0.59) and CCQ 0.23 (0.03 to 0.43)), anxiety/depression (CAT 0.35 (0.15 to 0.56) and CCQ 0.41 (0.21 to 0.60)) and COPD stage (CAT 0.19 (0.05 to 0.34) and CCQ 0.22 (0.07 to 0.36)). CAT and CCQ correlate well with each other. Heart disease, anxiety/depression, underweight, exacerbations, and low lung function are associated with worse health status assessed by both instruments.
Brudvig, Jean M; Swenson, Cheryl L
2015-12-01
Rapid and precise measurement of total and differential nucleated cell counts is a crucial diagnostic component of cavitary and synovial fluid analyses. The objectives of this study included (1) evaluation of reliability and precision of canine and equine fluid total nucleated cell count (TNCC) determined by the benchtop Abaxis VetScan HM5, in comparison with the automated reference instruments ADVIA 120 and the scil Vet abc, respectively, and (2) comparison of automated with manual canine differential nucleated cell counts. The TNCC and differential counts in canine pleural and peritoneal, and equine synovial fluids were determined on the Abaxis VetScan HM5 and compared with the ADVIA 120 and Vet abc analyzer, respectively. Statistical analyses included correlation, least squares fit linear regression, Passing-Bablok regression, and Bland-Altman difference plots. In addition, precision of the total cell count generated by the VetScan HM5 was determined. Agreement was excellent without significant constant or proportional bias for canine cavitary fluid TNCC. Automated and manual differential counts had R(2) < .5 for individual cell types (least squares fit linear regression). Equine synovial fluid TNCC agreed but with some bias due to the VetScan HM5 overestimating TNCC compared to the Vet abc. Intra-assay precision of the VetScan HM5 in 3 fluid samples was 2-31%. The Abaxis VetScan HM5 provided rapid, reliable TNCC for canine and equine fluid samples. The differential nucleated cell count should be verified microscopically as counts from the VetScan HM5 and also from the ADVIA 120 were often incorrect in canine fluid samples. © 2015 American Society for Veterinary Clinical Pathology.
Quantification of trace metals in infant formula premixes using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Cama-Moncunill, Raquel; Casado-Gavalda, Maria P.; Cama-Moncunill, Xavier; Markiewicz-Keszycka, Maria; Dixit, Yash; Cullen, Patrick J.; Sullivan, Carl
2017-09-01
Infant formula is a human milk substitute generally based upon fortified cow milk components. In order to mimic the composition of breast milk, trace elements such as copper, iron and zinc are usually added in a single operation using a premix. The correct addition of premixes must be verified to ensure that the target levels in infant formulae are achieved. In this study, a laser-induced breakdown spectroscopy (LIBS) system was assessed as a fast validation tool for trace element premixes. LIBS is a promising emission spectroscopic technique for elemental analysis, which offers real-time analyses, little to no sample preparation and ease of use. LIBS was employed for copper and iron determinations of premix samples ranging approximately from 0 to 120 mg/kg Cu/1640 mg/kg Fe. LIBS spectra are affected by several parameters, hindering subsequent quantitative analyses. This work aimed at testing three matrix-matched calibration approaches (simple-linear regression, multi-linear regression and partial least squares regression (PLS)) as means for precision and accuracy enhancement of LIBS quantitative analysis. All calibration models were first developed using a training set and then validated with an independent test set. PLS yielded the best results. For instance, the PLS model for copper provided a coefficient of determination (R2) of 0.995 and a root mean square error of prediction (RMSEP) of 14 mg/kg. Furthermore, LIBS was employed to penetrate through the samples by repetitively measuring the same spot. Consequently, LIBS spectra can be obtained as a function of sample layers. This information was used to explore whether measuring deeper into the sample could reduce possible surface-contaminant effects and provide better quantifications.
Diez-Martin, J; Moreno-Ortega, M; Bagney, A; Rodriguez-Jimenez, R; Padilla-Torres, D; Sanchez-Morla, E M; Santos, J L; Palomo, T; Jimenez-Arriero, M A
2014-01-01
To assess insight in a large sample of patients with schizophrenia and to study its relationship with set shifting as an executive function. The insight of a sample of 161 clinically stable, community-dwelling patients with schizophrenia was evaluated by means of the Scale to Assess Unawareness of Mental Disorder (SUMD). Set shifting was measured using the Trail-Making Test time required to complete part B minus the time required to complete part A (TMT B-A). Linear regression analyses were performed to investigate the relationships of TMT B-A with different dimensions of general insight. Regression analyses revealed a significant association between TMT B-A and two of the SUMD general components: 'awareness of mental disorder' and 'awareness of the efficacy of treatment'. The 'awareness of social consequences' component was not significantly associated with set shifting. Our results show a significant relation between set shifting and insight, but not in the same manner for the different components of the SUMD general score. Copyright © 2013 S. Karger AG, Basel.
Znachor, Petr; Nedoma, Jiří; Hejzlar, Josef; Seďa, Jaromír; Kopáček, Jiří; Boukal, David; Mrkvička, Tomáš
2018-05-15
Man-made reservoirs are common across the world and provide a wide range of ecological services. Environmental conditions in riverine reservoirs are affected by the changing climate, catchment-wide processes and manipulations with the water level, and water abstraction from the reservoir. Long-term trends of environmental conditions in reservoirs thus reflect a wider range of drivers in comparison to lakes, which makes the understanding of reservoir dynamics more challenging. We analysed a 32-year time series of 36 environmental variables characterising weather, land use in the catchment, reservoir hydrochemistry, hydrology and light availability in the small, canyon-shaped Římov Reservoir in the Czech Republic to detect underlying trends, trend reversals and regime shifts. To do so, we fitted linear and piecewise linear regression and a regime shift model to the time series of mean annual values of each variable and to principal components produced by Principal Component Analysis. Models were weighted and ranked using Akaike information criterion and the model selection approach. Most environmental variables exhibited temporal changes that included time-varying trends and trend reversals. For instance, dissolved organic carbon showed a linear increasing trend while nitrate concentration or conductivity exemplified trend reversal. All trend reversals and cessations of temporal trends in reservoir hydrochemistry (except total phosphorus concentrations) occurred in the late 1980s and during 1990s as a consequence of dramatic socioeconomic changes. After a series of heavy rains in the late 1990s, an administrative decision to increase the flood-retention volume of the reservoir resulted in a significant regime shift in reservoir hydraulic conditions in 1999. Our analyses also highlight the utility of the model selection framework, based on relatively simple extensions of linear regression, to describe temporal trends in reservoir characteristics. This approach can provide a solid basis for a better understanding of processes in freshwater reservoirs. Copyright © 2017 Elsevier B.V. All rights reserved.
Kupek, Emil
2006-03-15
Structural equation modelling (SEM) has been increasingly used in medical statistics for solving a system of related regression equations. However, a great obstacle for its wider use has been its difficulty in handling categorical variables within the framework of generalised linear models. A large data set with a known structure among two related outcomes and three independent variables was generated to investigate the use of Yule's transformation of odds ratio (OR) into Q-metric by (OR-1)/(OR+1) to approximate Pearson's correlation coefficients between binary variables whose covariance structure can be further analysed by SEM. Percent of correctly classified events and non-events was compared with the classification obtained by logistic regression. The performance of SEM based on Q-metric was also checked on a small (N = 100) random sample of the data generated and on a real data set. SEM successfully recovered the generated model structure. SEM of real data suggested a significant influence of a latent confounding variable which would have not been detectable by standard logistic regression. SEM classification performance was broadly similar to that of the logistic regression. The analysis of binary data can be greatly enhanced by Yule's transformation of odds ratios into estimated correlation matrix that can be further analysed by SEM. The interpretation of results is aided by expressing them as odds ratios which are the most frequently used measure of effect in medical statistics.
Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.
Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C
2014-03-01
In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.
Fisher, Charles K; Mehta, Pankaj
2015-06-01
Feature selection, identifying a subset of variables that are relevant for predicting a response, is an important and challenging component of many methods in statistics and machine learning. Feature selection is especially difficult and computationally intensive when the number of variables approaches or exceeds the number of samples, as is often the case for many genomic datasets. Here, we introduce a new approach--the Bayesian Ising Approximation (BIA)-to rapidly calculate posterior probabilities for feature relevance in L2 penalized linear regression. In the regime where the regression problem is strongly regularized by the prior, we show that computing the marginal posterior probabilities for features is equivalent to computing the magnetizations of an Ising model with weak couplings. Using a mean field approximation, we show it is possible to rapidly compute the feature selection path described by the posterior probabilities as a function of the L2 penalty. We present simulations and analytical results illustrating the accuracy of the BIA on some simple regression problems. Finally, we demonstrate the applicability of the BIA to high-dimensional regression by analyzing a gene expression dataset with nearly 30 000 features. These results also highlight the impact of correlations between features on Bayesian feature selection. An implementation of the BIA in C++, along with data for reproducing our gene expression analyses, are freely available at http://physics.bu.edu/∼pankajm/BIACode. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Unitary Response Regression Models
ERIC Educational Resources Information Center
Lipovetsky, S.
2007-01-01
The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…
An Expert System for the Evaluation of Cost Models
1990-09-01
contrast to the condition of equal error variance, called homoscedasticity. (Reference: Applied Linear Regression Models by John Neter - page 423...normal. (Reference: Applied Linear Regression Models by John Neter - page 125) Click Here to continue -> Autocorrelation Click Here for the index - Index...over time. Error terms correlated over time are said to be autocorrelated or serially correlated. (REFERENCE: Applied Linear Regression Models by John
Sex differences in the effect of aging on dry eye disease.
Ahn, Jong Ho; Choi, Yoon-Hyeong; Paik, Hae Jung; Kim, Mee Kum; Wee, Won Ryang; Kim, Dong Hyun
2017-01-01
Aging is a major risk factor in dry eye disease (DED), and understanding sexual differences is very important in biomedical research. However, there is little information about sex differences in the effect of aging on DED. We investigated sex differences in the effect of aging and other risk factors for DED. This study included data of 16,824 adults from the Korea National Health and Nutrition Examination Survey (2010-2012), which is a population-based cross-sectional survey. DED was defined as the presence of frequent ocular dryness or a previous diagnosis by an ophthalmologist. Basic sociodemographic factors and previously known risk factors for DED were included in the analyses. Linear regression modeling and multivariate logistic regression modeling were used to compare the sex differences in the effect of risk factors for DED; we additionally performed tests for interactions between sex and other risk factors for DED in logistic regression models. In our linear regression models, the prevalence of DED symptoms in men increased with age ( R =0.311, P =0.012); however, there was no association between aging and DED in women ( P >0.05). Multivariate logistic regression analyses showed that aging in men was not associated with DED (DED symptoms/diagnosis: odds ratio [OR] =1.01/1.04, each P >0.05), while aging in women was protectively associated with DED (DED symptoms/diagnosis: OR =0.94/0.91, P =0.011/0.003). Previous ocular surgery was significantly associated with DED in both men and women (men/women: OR =2.45/1.77 [DED symptoms] and 3.17/2.05 [DED diagnosis], each P <0.001). Tests for interactions of sex revealed significantly different aging × sex and previous ocular surgery × sex interactions ( P for interaction of sex: DED symptoms/diagnosis - 0.044/0.011 [age] and 0.012/0.006 [previous ocular surgery]). There were distinct sex differences in the effect of aging on DED in the Korean population. DED following ocular surgery also showed sexually different patterns. Age matching and sex matching are strongly recommended in further studies about DED, especially DED following ocular surgery.
Wartberg, L; Kriston, L; Kramer, M; Schwedler, A; Lincoln, T M; Kammerl, R
2017-06-01
Internet gaming disorder (IGD) has been included in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Currently, associations between IGD in early adolescence and mental health are largely unexplained. In the present study, the relation of IGD with adolescent and parental mental health was investigated for the first time. We surveyed 1095 family dyads (an adolescent aged 12-14 years and a related parent) with a standardized questionnaire for IGD as well as for adolescent and parental mental health. We conducted linear (dimensional approach) and logistic (categorical approach) regression analyses. Both with dimensional and categorical approaches, we observed statistically significant associations between IGD and male gender, a higher degree of adolescent antisocial behavior, anger control problems, emotional distress, self-esteem problems, hyperactivity/inattention and parental anxiety (linear regression model: corrected R 2 =0.41, logistic regression model: Nagelkerke's R 2 =0.41). IGD appears to be associated with internalizing and externalizing problems in adolescents. Moreover, the findings of the present study provide first evidence that not only adolescent but also parental mental health is relevant to IGD in early adolescence. Adolescent and parental mental health should be considered in prevention and intervention programs for IGD in adolescence. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
A Regression Framework for Effect Size Assessments in Longitudinal Modeling of Group Differences
Feingold, Alan
2013-01-01
The use of growth modeling analysis (GMA)--particularly multilevel analysis and latent growth modeling--to test the significance of intervention effects has increased exponentially in prevention science, clinical psychology, and psychiatry over the past 15 years. Model-based effect sizes for differences in means between two independent groups in GMA can be expressed in the same metric (Cohen’s d) commonly used in classical analysis and meta-analysis. This article first reviews conceptual issues regarding calculation of d for findings from GMA and then introduces an integrative framework for effect size assessments that subsumes GMA. The new approach uses the structure of the linear regression model, from which effect sizes for findings from diverse cross-sectional and longitudinal analyses can be calculated with familiar statistics, such as the regression coefficient, the standard deviation of the dependent measure, and study duration. PMID:23956615
An introduction to using Bayesian linear regression with clinical data.
Baldwin, Scott A; Larson, Michael J
2017-11-01
Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to standard frequentist methods. This article provides researchers with an introduction to fundamental ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to illustrate Bayesian models. Specifically, the models examine the relationship between error-related negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered include: how to set up a regression model in a Bayesian framework, specifying priors, examining convergence of the model, visualizing and interpreting posterior distributions, interval estimates, expected and predicted values, and model comparison tools. We also discuss situations where Bayesian methods can outperform frequentist methods as well has how to specify more complicated regression models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian methods in their own research. We provide data and R code for replicating our analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xenopoulos, M. A.; Vogt, R. J.
2014-12-01
There is now increasing evidence that non-linearity is a common response in ecological systems to pressures caused by human activities. There is also increasing evidence that exogenous environmental drivers, such as climate, induce spatial and temporal synchrony in a wide range of ecological variables. Using Moran's I and Pearson's correlation, we quantified the synchrony of dissolved organic carbon concentration (DOC) and quality (DOM; e.g., specific UV absorbance, Fluorescence Index, PARAFAC), nutrients, discharge and temperature in 40 streams that span an agriculture gradient (0 to >70% cropland), over 10 years. We then used breakpoint regression, 2D-Kolmogorov-Smirnov test and significant zero crossings (SiZer) analyses to quantify the prevalence of nonlinearity and ecological thresholds (breakpoints) where applicable. There was a high degree of synchrony in DOM quality (r > 0.7) but not DOC (r < 0.4). The degree of synchrony was driven in part by the catchment's land use. With respect to the nonlinear analyses we found non-linearity in ~50% of bivariate datasets analyzed. Non-linearity was also driven in part by the catchment's land use. Breakpoints defined different DOM properties. Nonlinearity and synchronous behaviour in DOM are intimately linked to land use.
He, Bing; Huang, Shengbin; Jing, Junjun; Hao, Yuqing
2010-02-01
The aim of this study was to measure the hydroxyapatite (HAP) density and Knoop hardness (KHN) of enamel slabs and to analyse the relationship between them. Twenty enamel slabs (10 lingual sides and 10 buccal sides) were prepared and scanned with micro-CT. Tomographic images of each slab from dental cusp to dentinoenamel junction (DEJ) were reconstructed. On these three-dimensional (3D) images, regions of interest (ROIs) were defined at an interval of 50 microm, and the HAP density for each ROI was calculated. Then the polished surfaces were indented from cusp to DEJ at intervals of 50 microm with a Knoop indenter. Finally, the data were analysed with one-way ANOVA, Student's t-test, and linear regression analysis. The HAP density and KHN decreased from the dental cusp to DEJ. Both HAP density and KHN in the outer-layer enamel were significantly higher than those in the middle- or inner-layer enamel (P<0.05). The HAP density showed no significant difference between the buccal and lingual sides for enamel in the outer, middle and inner layers, respectively (P>0.05). The KHN in the outer-layer enamel of the lingual sides was significantly lower than that of the buccal sides (P<0.05); there was no significant difference between the lingual and buccal sides in the middle or inner layer. Linear regression analysis revealed a linear relationship between the mean KHN and the mean HAP density (r=0.87). Both HAP density and KHN decrease simultaneously from dental cusp to DEJ, and the two properties are highly correlated. Copyright 2009 Elsevier Ltd. All rights reserved.
Liu, Chia-Chuan; Shih, Chih-Shiun; Pennarun, Nicolas; Cheng, Chih-Tao
2016-01-01
The feasibility and radicalism of lymph node dissection for lung cancer surgery by a single-port technique has frequently been challenged. We performed a retrospective cohort study to investigate this issue. Two chest surgeons initiated multiple-port thoracoscopic surgery in a 180-bed cancer centre in 2005 and shifted to a single-port technique gradually after 2010. Data, including demographic and clinical information, from 389 patients receiving multiport thoracoscopic lobectomy or segmentectomy and 149 consecutive patients undergoing either single-port lobectomy or segmentectomy for primary non-small-cell lung cancer were retrieved and entered for statistical analysis by multivariable linear regression models and Box-Cox transformed multivariable analysis. The mean number of total dissected lymph nodes in the lobectomy group was 28.5 ± 11.7 for the single-port group versus 25.2 ± 11.3 for the multiport group; the mean number of total dissected lymph nodes in the segmentectomy group was 19.5 ± 10.8 for the single-port group versus 17.9 ± 10.3 for the multiport group. In linear multivariable and after Box-Cox transformed multivariable analyses, the single-port approach was still associated with a higher total number of dissected lymph nodes. The total number of dissected lymph nodes for primary lung cancer surgery by single-port video-assisted thoracoscopic surgery (VATS) was higher than by multiport VATS in univariable, multivariable linear regression and Box-Cox transformed multivariable analyses. This study confirmed that highly effective lymph node dissection could be achieved through single-port VATS in our setting. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Grantz, Erin; Haggard, Brian; Scott, J Thad
2018-06-12
We calculated four median datasets (chlorophyll a, Chl a; total phosphorus, TP; and transparency) using multiple approaches to handling censored observations, including substituting fractions of the quantification limit (QL; dataset 1 = 1QL, dataset 2 = 0.5QL) and statistical methods for censored datasets (datasets 3-4) for approximately 100 Texas, USA reservoirs. Trend analyses of differences between dataset 1 and 3 medians indicated percent difference increased linearly above thresholds in percent censored data (%Cen). This relationship was extrapolated to estimate medians for site-parameter combinations with %Cen > 80%, which were combined with dataset 3 as dataset 4. Changepoint analysis of Chl a- and transparency-TP relationships indicated threshold differences up to 50% between datasets. Recursive analysis identified secondary thresholds in dataset 4. Threshold differences show that information introduced via substitution or missing due to limitations of statistical methods biased values, underestimated error, and inflated the strength of TP thresholds identified in datasets 1-3. Analysis of covariance identified differences in linear regression models relating transparency-TP between datasets 1, 2, and the more statistically robust datasets 3-4. Study findings identify high-risk scenarios for biased analytical outcomes when using substitution. These include high probability of median overestimation when %Cen > 50-60% for a single QL, or when %Cen is as low 16% for multiple QL's. Changepoint analysis was uniquely vulnerable to substitution effects when using medians from sites with %Cen > 50%. Linear regression analysis was less sensitive to substitution and missing data effects, but differences in model parameters for transparency cannot be discounted and could be magnified by log-transformation of the variables.
Estelles-Lopez, Lucia; Ropodi, Athina; Pavlidis, Dimitris; Fotopoulou, Jenny; Gkousari, Christina; Peyrodie, Audrey; Panagou, Efstathios; Nychas, George-John; Mohareb, Fady
2017-09-01
Over the past decade, analytical approaches based on vibrational spectroscopy, hyperspectral/multispectral imagining and biomimetic sensors started gaining popularity as rapid and efficient methods for assessing food quality, safety and authentication; as a sensible alternative to the expensive and time-consuming conventional microbiological techniques. Due to the multi-dimensional nature of the data generated from such analyses, the output needs to be coupled with a suitable statistical approach or machine-learning algorithms before the results can be interpreted. Choosing the optimum pattern recognition or machine learning approach for a given analytical platform is often challenging and involves a comparative analysis between various algorithms in order to achieve the best possible prediction accuracy. In this work, "MeatReg", a web-based application is presented, able to automate the procedure of identifying the best machine learning method for comparing data from several analytical techniques, to predict the counts of microorganisms responsible of meat spoilage regardless of the packaging system applied. In particularly up to 7 regression methods were applied and these are ordinary least squares regression, stepwise linear regression, partial least square regression, principal component regression, support vector regression, random forest and k-nearest neighbours. MeatReg" was tested with minced beef samples stored under aerobic and modified atmosphere packaging and analysed with electronic nose, HPLC, FT-IR, GC-MS and Multispectral imaging instrument. Population of total viable count, lactic acid bacteria, pseudomonads, Enterobacteriaceae and B. thermosphacta, were predicted. As a result, recommendations of which analytical platforms are suitable to predict each type of bacteria and which machine learning methods to use in each case were obtained. The developed system is accessible via the link: www.sorfml.com. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bekkhus, Mona; Lee, Yunsung; Nordhagen, Rannveig; Magnus, Per; Samuelsen, Sven O; Borge, Anne I H
2018-02-01
Prenatal exposure to maternal anxiety has been associated with child emotional difficulties in a number of epidemiological studies. One key concern, however, is that this link is vulnerable to confounding by pleiotropic genes or environmental family factors. Data on 82 383 mothers and children from the population-based Mother and Child Cohort Study and data on 21 980 siblings were used in this study. Mothers filled out questionnaires for each unique pregnancy, for infant difficulties at 6 months and for emotional difficulties at 36 months. The link between prenatal maternal anxiety and child difficulties were examined using logistic regression analyses and multiple linear regression analyses for the full study sample and the sibling sample. In the conventional full-cohort analyses, prenatal exposure to maternal anxiety was associated with child difficulties at both 6 months [odds ratio (OR) = 2.1 (1.94-2.27)] and 36 months [OR = 2.72 (2.47-2.99)]. The findings were essentially the same whether we examined difficulties at 6 months or at 36 months. However, these associations were no longer present once we controlled for potential social and genetic confounders in the sibling comparison analyses, either at 6 months [OR = 1.32 (0.91-1.90)] or at 36 months [OR = 1.28 (0.63-2.60)]. Findings from multiple regression analyses with continuous measures were essentially the same. Our finding lends little support for there being an independent prenatal effect on child emotional difficulties; rather, our findings suggest that the link between prenatal maternal anxiety and child difficulties could be confounded by pleiotropic genes or environmental family factors. © The Author 2017; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association
Fernández, Alberto; Al-Timemy, Ali H; Ferre, Francisco; Rubio, Gabriel; Escudero, Javier
2018-04-26
The lack of a biomarker for Bipolar Disorder (BD) causes problems in the differential diagnosis with other mood disorders such as major depression (MD), and misdiagnosis frequently occurs. Bearing this in mind, we investigated non-linear magnetoencephalography (MEG) patterns in BD and MD. Lempel-Ziv Complexity (LZC) was used to evaluate the resting-state MEG activity in a cross-sectional sample of 60 subjects, including 20 patients with MD, 16 patients with BD type-I, and 24 control (CON) subjects. Particular attention was paid to the role of age. The results were aggregated by scalp region. Overall, MD patients showed significantly higher LZC scores than BD patients and CONs. Linear regression analyses demonstrated distinct tendencies of complexity progression as a function of age, with BD patients showing a divergent tendency as compared with MD and CON groups. Logistic regressions confirmed such distinct relationship with age, which allowed the classification of diagnostic groups. The patterns of neural complexity in BD and MD showed not only quantitative differences in their non-linear MEG characteristics but also divergent trajectories of progression as a function of age. Moreover, neural complexity patterns in BD patients resembled those previously observed in schizophrenia, thus supporting preceding evidence of common neuropathological processes. Copyright © 2018 Elsevier Inc. All rights reserved.
The relationships between empathy, stress and social support among medical students
Kim, Dong-hee; Kim, Seok Kyoung; Yi, Young Hoon; Jeong, Jae Hoon; Chae, Jiun; Hwang, Jiyeon; Roh, HyeRin
2015-01-01
Objectives To examine the relationship between stress, social support, and empathy among medical students. Methods We evaluated the relationships between stress and empathy, and social support and empathy among medical students. The respondents completed a question-naire including demographic information, the Jefferson Scale of Empathy, the Perceived Stress Scale, and the Multidimensional Scale of Perceived Social Support. Corre-lation and linear regression analyses were conducted, along with sub-analyses according to gender, admission system, and study year. Results In total, 2,692 questionnaires were analysed. Empathy and social support positively correlated, and empathy and stress negatively correlated. Similar correla-tion patterns were detected in the sub-analyses; the correla-tion between empathy and stress among female students was negligible. In the regression model, stress and social support predicted empathy among all the samples. In the sub-analysis, stress was not a significant predictor among female and first-year students. Conclusions Stress and social support were significant predictors of empathy among all the students. Medical educators should provide means to foster resilience against stress or stress alleviation, and to ameliorate social support, so as to increase or maintain empathy in the long term. Furthermore, stress management should be emphasised, particularly among female and first-year students. PMID:26342190
Compound Identification Using Penalized Linear Regression on Metabolomics
Liu, Ruiqi; Wu, Dongfeng; Zhang, Xiang; Kim, Seongho
2014-01-01
Compound identification is often achieved by matching the experimental mass spectra to the mass spectra stored in a reference library based on mass spectral similarity. Because the number of compounds in the reference library is much larger than the range of mass-to-charge ratio (m/z) values so that the data become high dimensional data suffering from singularity. For this reason, penalized linear regressions such as ridge regression and the lasso are used instead of the ordinary least squares regression. Furthermore, two-step approaches using the dot product and Pearson’s correlation along with the penalized linear regression are proposed in this study. PMID:27212894
The relationship between severity of violence in the home and dating violence.
Sims, Eva Nowakowski; Dodd, Virginia J Noland; Tejeda, Manuel J
2008-01-01
This study used propositions from the social learning theory to explore the effects of the combined influences of child maltreatment, childhood witness to parental violence, sibling violence, and gender on dating violence perpetration using a modified version of the Conflict Tactics Scale 2 (CTS2). A weighted scoring method was utilized to determine how severity of violence in the home impacts dating violence perpetration. Bivariate correlations and linear regression models indicate significant associations between child maltreatment, sibling violence perpetration, childhood witness to parental violence, gender, and subsequent dating violence perpetration. Multiple regression analyses indicate that for men, history of severe violence victimization (i.e., child maltreatment and childhood witness to parental violence) and severe perpetration (sibling violence) significantly predict dating violence perpetration.
Predicting story goodness performance from cognitive measures following traumatic brain injury.
Lê, Karen; Coelho, Carl; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan
2012-05-01
This study examined the prediction of performance on measures of the Story Goodness Index (SGI; Lê, Coelho, Mozeiko, & Grafman, 2011) from executive function (EF) and memory measures following traumatic brain injury (TBI). It was hypothesized that EF and memory measures would significantly predict SGI outcomes. One hundred sixty-seven individuals with TBI participated in the study. Story retellings were analyzed using the SGI protocol. Three cognitive measures--Delis-Kaplan Executive Function System (D-KEFS; Delis, Kaplan, & Kramer, 2001) Sorting Test, Wechsler Memory Scale--Third Edition (WMS-III; Wechsler, 1997) Working Memory Primary Index (WMI), and WMS-III Immediate Memory Primary Index (IMI)--were entered into a multiple linear regression model for each discourse measure. Two sets of regression analyses were performed, the first with the Sorting Test as the first predictor and the second with it as the last. The first set of regression analyses identified the Sorting Test and IMI as the only significant predictors of performance on measures of the SGI. The second set identified all measures as significant predictors when evaluating each step of the regression function. The cognitive variables predicted performance on the SGI measures, although there were differences in the amount of explained variance. The results (a) suggest that storytelling ability draws on a number of underlying skills and (b) underscore the importance of using discrete cognitive tasks rather than broad cognitive indices to investigate the cognitive substrates of discourse.
Mechanisms behind the estimation of photosynthesis traits from leaf reflectance observations
NASA Astrophysics Data System (ADS)
Dechant, Benjamin; Cuntz, Matthias; Doktor, Daniel; Vohland, Michael
2016-04-01
Many studies have investigated the reflectance-based estimation of leaf chlorophyll, water and dry matter contents of plants. Only few studies focused on photosynthesis traits, however. The maximum potential uptake of carbon dioxide under given environmental conditions is determined mainly by RuBisCO activity, limiting carboxylation, or the speed of photosynthetic electron transport. These two main limitations are represented by the maximum carboxylation capacity, V cmax,25, and the maximum electron transport rate, Jmax,25. These traits were estimated from leaf reflectance before but the mechanisms underlying the estimation remain rather speculative. The aim of this study was therefore to reveal the mechanisms behind reflectance-based estimation of V cmax,25 and Jmax,25. Leaf reflectance, photosynthetic response curves as well as nitrogen content per area, Narea, and leaf mass per area, LMA, were measured on 37 deciduous tree species. V cmax,25 and Jmax,25 were determined from the response curves. Partial Least Squares (PLS) regression models for the two photosynthesis traits V cmax,25 and Jmax,25 as well as Narea and LMA were studied using a cross-validation approach. Analyses of linear regression models based on Narea and other leaf traits estimated via PROSPECT inversion, PLS regression coefficients and model residuals were conducted in order to reveal the mechanisms behind the reflectance-based estimation. We found that V cmax,25 and Jmax,25 can be estimated from leaf reflectance with good to moderate accuracy for a large number of species and different light conditions. The dominant mechanism behind the estimations was the strong relationship between photosynthesis traits and leaf nitrogen content. This was concluded from very strong relationships between PLS regression coefficients, the model residuals as well as the prediction performance of Narea- based linear regression models compared to PLS regression models. While the PLS regression model for V cmax,25 was fully based on the correlation to Narea, the PLS regression model for Jmax,25 was not entirely based on it. Analyses of the contributions of different parts of the reflectance spectrum revealed that the information contributing to the Jmax,25 PLS regression model in addition to the main source of information, Narea, was mainly located in the visible part of the spectrum (500-900 nm). Estimated chlorophyll content could be excluded as potential source of this extra information. The PLS regression coefficients of the Jmax,25 model indicated possible contributions from chlorophyll fluorescence and cytochrome f content. In summary, we found that the main mechanism behind the estimation of V cmax,25 and Jmax,25 from leaf reflectance observations is the correlation to Narea but that there is additional information related to Jmax,25 mainly in the visible part of the spectrum.
Rugulies, Reiner; Martin, Marie H T; Garde, Anne Helene; Persson, Roger; Albertsen, Karen
2012-03-01
Exposure to deadlines at work is increasing in several countries and may affect health. We aimed to investigate cross-sectional and longitudinal associations between frequency of difficult deadlines at work and sleep quality. Study participants were knowledge workers, drawn from a representative sample of Danish employees who responded to a baseline questionnaire in 2006 (n = 363) and a follow-up questionnaire in 2007 (n = 302). Frequency of difficult deadlines was measured by self-report and categorized into low, intermediate, and high. Sleep quality was measured with a Total Sleep Quality Score and two indexes (Awakening Index and Disturbed Sleep Index) derived from the Karolinska Sleep Questionnaire. Analyses on the association between frequency of deadlines and sleep quality scores were conducted with multiple linear regression models, adjusted for potential confounders. In addition, we used multiple logistic regression models to analyze whether frequency of deadlines at baseline predicted caseness of sleep problems at follow-up among participants free of sleep problems at baseline. Frequent deadlines were cross-sectionally and longitudinally associated with poorer sleep quality on all three sleep quality measures. Associations in the longitudinal analyses were greatly attenuated when we adjusted for baseline sleep quality. The logistic regression analyses showed that frequent deadlines at baseline were associated with elevated odds ratios for caseness of sleep problems at follow-up, however, confidence intervals were wide in these analyses. Frequent deadlines at work were associated with poorer sleep quality among Danish knowledge workers. We recommend investigating the relation between deadlines and health endpoints in large-scale epidemiologic studies. Copyright © 2011 Wiley Periodicals, Inc.
Control Variate Selection for Multiresponse Simulation.
1987-05-01
M. H. Knuter, Applied Linear Regression Mfodels, Richard D. Erwin, Inc., Homewood, Illinois, 1983. Neuts, Marcel F., Probability, Allyn and Bacon...1982. Neter, J., V. Wasserman, and M. H. Knuter, Applied Linear Regression .fodels, Richard D. Erwin, Inc., Homewood, Illinois, 1983. Neuts, Marcel F...Aspects of J%,ultivariate Statistical Theory, John Wiley and Sons, New York, New York, 1982. dY Neter, J., W. Wasserman, and M. H. Knuter, Applied Linear Regression Mfodels
ERIC Educational Resources Information Center
Kobrin, Jennifer L.; Sinharay, Sandip; Haberman, Shelby J.; Chajewski, Michael
2011-01-01
This study examined the adequacy of a multiple linear regression model for predicting first-year college grade point average (FYGPA) using SAT[R] scores and high school grade point average (HSGPA). A variety of techniques, both graphical and statistical, were used to examine if it is possible to improve on the linear regression model. The results…
Quantile Regression in the Study of Developmental Sciences
Petscher, Yaacov; Logan, Jessica A. R.
2014-01-01
Linear regression analysis is one of the most common techniques applied in developmental research, but only allows for an estimate of the average relations between the predictor(s) and the outcome. This study describes quantile regression, which provides estimates of the relations between the predictor(s) and outcome, but across multiple points of the outcome’s distribution. Using data from the High School and Beyond and U.S. Sustained Effects Study databases, quantile regression is demonstrated and contrasted with linear regression when considering models with: (a) one continuous predictor, (b) one dichotomous predictor, (c) a continuous and a dichotomous predictor, and (d) a longitudinal application. Results from each example exhibited the differential inferences which may be drawn using linear or quantile regression. PMID:24329596
Schulz, Marcus; Neumann, Daniel; Fleet, David M; Matthies, Michael
2013-12-01
During the last decades, marine pollution with anthropogenic litter has become a worldwide major environmental concern. Standardized monitoring of litter since 2001 on 78 beaches selected within the framework of the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) has been used to identify temporal trends of marine litter. Based on statistical analyses of this dataset a two-part multi-criteria evaluation system for beach litter pollution of the North-East Atlantic and the North Sea is proposed. Canonical correlation analyses, linear regression analyses, and non-parametric analyses of variance were used to identify different temporal trends. A classification of beaches was derived from cluster analyses and served to define different states of beach quality according to abundances of 17 input variables. The evaluation system is easily applicable and relies on the above-mentioned classification and on significant temporal trends implied by significant rank correlations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vyskocil, Erich; Gruther, Wolfgang; Steiner, Irene; Schuhfried, Othmar
2014-07-01
Disease-specific categories of the International Classification of Functioning, Disability and Health have not yet been described for patients with chronic peripheral arterial obstructive disease (PAD). The authors examined the relationship between the categories of the Brief Core Sets for ischemic heart diseases with the Peripheral Artery Questionnaire and the ankle-brachial index to determine which International Classification of Functioning, Disability and Health categories are most relevant for patients with PAD. This is a retrospective cohort study including 77 patients with verified PAD. Statistical analyses of the relationship between International Classification of Functioning, Disability and Health categories as independent variables and the endpoints Peripheral Artery Questionnaire or ankle-brachial index were carried out by simple and stepwise linear regression models adjusting for age, sex, and leg (left vs. right). The stepwise linear regression model with the ankle-brachial index as dependent variable revealed a significant effect of the variables blood vessel functions and muscle endurance functions. Calculating a stepwise linear regression model with the Peripheral Artery Questionnaire as dependent variable, a significant effect of age, emotional functions, energy and drive functions, carrying out daily routine, as well as walking could be observed. This study identifies International Classification of Functioning, Disability and Health categories in the Brief Core Sets for ischemic heart diseases that show a significant effect on the ankle-brachial index and the Peripheral Artery Questionnaire score in patients with PAD. These categories provide fundamental information on functioning of patients with PAD and patient-centered outcomes for rehabilitation interventions.
Kumar, Rajesh; Dogra, Vishal; Rani, Khushbu; Sahu, Kanti
2017-01-01
Background: District level determinants of total fertility rate in Empowered Action Group states of India can help in ongoing population stabilization programs in India. Objective: Present study intends to assess the role of district level determinants in predicting total fertility rate among districts of the Empowered Action Group states of India. Material and Methods: Data from Annual Health Survey (2011-12) was analysed using STATA and R software packages. Multiple linear regression models were built and evaluated using Akaike Information Criterion. For further understanding, recursive partitioning was used to prepare a regression tree. Results: Female married illiteracy positively associated with total fertility rate and explained more than half (53%) of variance. Under multiple linear regression model, married illiteracy, infant mortality rate, Ante natal care registration, household size, median age of live birth and sex ratio explained 70% of total variance in total fertility rate. In regression tree, female married illiteracy was the root node and splits at 42% determined TFR <= 2.7. The next left side branch was again married illiteracy with splits at 23% to determine TFR <= 2.1. Conclusion: We conclude that female married illiteracy is one of the most important determinants explaining total fertility rate among the districts of an Empowered Action Group states. Focus on female literacy is required to stabilize the population growth in long run. PMID:29416999
A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION
We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...
Attachment style and readiness for psychotherapy among psychiatric outpatients.
Kealy, David; Tsai, Michelle; Ogrodniczuk, John S
2017-06-01
Ninety-two adults attending outpatient mental health services completed measures of attachment style and readiness to engage in psychotherapy. Correlation and linear regression analyses found anxious attachment to be positively associated with treatment-seeking distress and found avoidant attachment to be negatively associated with openness to personal disclosure in the therapy relationship. Insecure attachment may influence prospective patients' readiness for psychotherapy. Patients with an avoidant attachment style may need assistance in preparing for the relational aspects of psychotherapy. © 2016 The British Psychological Society.
Perry, Charles A.; Wolock, David M.; Artman, Joshua C.
2004-01-01
Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean flow, and peak-discharge frequency values determined at available gaging stations were used to interpolate the regression-estimated flows for the stream locations where available. Streamflow statistics for locations that had uncontrolled flow were interpolated using data from gaging stations weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled reaches of Kansas streams, the streamflow statistics were interpolated between gaging stations using only gaged data weighted by drainage area.
Association of Alimentary Factors and Nutritional Status with Caries in Children of Leon, Mexico.
Guizar, Juan Manuel; Muñoz, Nathalie; Amador, Norma; Garcia, Gabriela
To determine the association between types of food consumed, nutritional status (BMI) and caries in schoolchildren. A cross-sectional study was performed with 224 schoolchildren 6 to 12 years of age. DMFT/ dmft indices, level of oral hygiene, nutritional status as quantified by BMI and types of food consumed were determined in all participants. Data were analysed using multiple linear regression with significance set at p < 0.05. Caries prevalence was 36%. In the multiple linear regression analysis adjusted for BMI, variables related to a higher number of caries were younger age and lower intake of vitamin D, calcium and fiber, with higher consumption of phosphorous and carbohydrates (R2 = 0.30; p < 0.0001 for the model). Sweetened softdrinks and chewy candy were risk factors for higher caries prevalence, while consuming milk and carrots were protectors. Caries in schoolchildren is highly prevalent in this community and is related to younger age and lower intake of vitamin D, calcium and fiber, but a higher consumption of phosphorous and carbohydrates. No relationship was found between caries and nutritional status.
Brand, Tilman; Samkange-Zeeb, Florence; Ellert, Ute; Keil, Thomas; Krist, Lilian; Dragano, Nico; Jöckel, Karl-Heinz; Razum, Oliver; Reiss, Katharina; Greiser, Karin Halina; Zimmermann, Heiko; Becher, Heiko; Zeeb, Hajo
2017-06-01
We assessed the association between acculturation and health-related quality of life (HRQoL) among persons with a Turkish migrant background in Germany. 1226 adults of Turkish origin were recruited in four German cities. Acculturation was assessed using the Frankfurt Acculturation Scale resulting in four groups (integration, assimilation, separation and marginalization). Short Form-8 physical and mental components were used to assess the HRQoL. Associations were analysed with linear regression models. Of the respondents, 20% were classified as integrated, 29% assimilated, 29% separated and 19% as marginalized. Separation was associated with poorer physical and mental health (linear regression coefficient (RC) = -2.3, 95% CI -3.9 to -0.8 and RC = -2.4, 95% CI -4.4 to -0.5, respectively; reference: integration). Marginalization was associated with poorer mental health in descendants of migrants (RC = -6.4, 95% CI -12.0 to -0.8; reference: integration). Separation and marginalization are associated with a poorer HRQoL. Policies should support the integration of migrants, and health promotion interventions should target separated and marginalized migrants to improve their HRQoL.
Kumar, K Vasanth; Sivanesan, S
2006-08-25
Pseudo second order kinetic expressions of Ho, Sobkowsk and Czerwinski, Blanachard et al. and Ritchie were fitted to the experimental kinetic data of malachite green onto activated carbon by non-linear and linear method. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo second order model were the same. Non-linear regression analysis showed that both Blanachard et al. and Ho have similar ideas on the pseudo second order model but with different assumptions. The best fit of experimental data in Ho's pseudo second order expression by linear and non-linear regression method showed that Ho pseudo second order model was a better kinetic expression when compared to other pseudo second order kinetic expressions. The amount of dye adsorbed at equilibrium, q(e), was predicted from Ho pseudo second order expression and were fitted to the Langmuir, Freundlich and Redlich Peterson expressions by both linear and non-linear method to obtain the pseudo isotherms. The best fitting pseudo isotherm was found to be the Langmuir and Redlich Peterson isotherm. Redlich Peterson is a special case of Langmuir when the constant g equals unity.
Preliminary Survey on TRY Forest Traits and Growth Index Relations - New Challenges
NASA Astrophysics Data System (ADS)
Lyubenova, Mariyana; Kattge, Jens; van Bodegom, Peter; Chikalanov, Alexandre; Popova, Silvia; Zlateva, Plamena; Peteva, Simona
2016-04-01
Forest ecosystems provide critical ecosystem goods and services, including food, fodder, water, shelter, nutrient cycling, and cultural and recreational value. Forests also store carbon, provide habitat for a wide range of species and help alleviate land degradation and desertification. Thus they have a potentially significant role to play in climate change adaptation planning through maintaining ecosystem services and providing livelihood options. Therefore the study of forest traits is such an important issue not just for individual countries but for the planet as a whole. We need to know what functional relations between forest traits exactly can express TRY data base and haw it will be significant for the global modeling and IPBES. The study of the biodiversity characteristics at all levels and functional links between them is extremely important for the selection of key indicators for assessing biodiversity and ecosystem services for sustainable natural capital control. By comparing the available information in tree data bases: TRY, ITR (International Tree Ring) and SP-PAM the 42 tree species are selected for the traits analyses. The dependence between location characteristics (latitude, longitude, altitude, annual precipitation, annual temperature and soil type) and forest traits (specific leaf area, leaf weight ratio, wood density and growth index) is studied by by multiply regression analyses (RDA) using the statistical software package Canoco 4.5. The Pearson correlation coefficient (measure of linear correlation), Kendal rank correlation coefficient (non parametric measure of statistical dependence) and Spearman correlation coefficient (monotonic function relationship between two variables) are calculated for each pair of variables (indexes) and species. After analysis of above mentioned correlation coefficients the dimensional linear regression models, multidimensional linear and nonlinear regression models and multidimensional neural networks models are built. The strongest dependence between It and WD was obtained. The research will support the work on: Strategic Plan for Biodiversity 2011-2020, modelling and implementation of ecosystem-based approaches to climate change adaptation and disaster risk reduction. Key words: Specific leaf area (SLA), Leaf weight ratio (LWR), Wood density (WD), Growth index (It)
Validity of Treadmill-Derived Critical Speed on Predicting 5000-Meter Track-Running Performance.
Nimmerichter, Alfred; Novak, Nina; Triska, Christoph; Prinz, Bernhard; Breese, Brynmor C
2017-03-01
Nimmerichter, A, Novak, N, Triska, C, Prinz, B, and Breese, BC. Validity of treadmill-derived critical speed on predicting 5,000-meter track-running performance. J Strength Cond Res 31(3): 706-714, 2017-To evaluate 3 models of critical speed (CS) for the prediction of 5,000-m running performance, 16 trained athletes completed an incremental test on a treadmill to determine maximal aerobic speed (MAS) and 3 randomly ordered runs to exhaustion at the [INCREMENT]70% intensity, at 110% and 98% of MAS. Critical speed and the distance covered above CS (D') were calculated using the hyperbolic speed-time (HYP), the linear distance-time (LIN), and the linear speed inverse-time model (INV). Five thousand meter performance was determined on a 400-m running track. Individual predictions of 5,000-m running time (t = [5,000-D']/CS) and speed (s = D'/t + CS) were calculated across the 3 models in addition to multiple regression analyses. Prediction accuracy was assessed with the standard error of estimate (SEE) from linear regression analysis and the mean difference expressed in units of measurement and coefficient of variation (%). Five thousand meter running performance (speed: 4.29 ± 0.39 m·s; time: 1,176 ± 117 seconds) was significantly better than the predictions from all 3 models (p < 0.0001). The mean difference was 65-105 seconds (5.7-9.4%) for time and -0.22 to -0.34 m·s (-5.0 to -7.5%) for speed. Predictions from multiple regression analyses with CS and D' as predictor variables were not significantly different from actual running performance (-1.0 to 1.1%). The SEE across all models and predictions was approximately 65 seconds or 0.20 m·s and is therefore considered as moderate. The results of this study have shown the importance of aerobic and anaerobic energy system contribution to predict 5,000-m running performance. Using estimates of CS and D' is valuable for predicting performance over race distances of 5,000 m.
2015-07-15
Long-term effects on cancer survivors’ quality of life of physical training versus physical training combined with cognitive-behavioral therapy ...COMPARISON OF NEURAL NETWORK AND LINEAR REGRESSION MODELS IN STATISTICALLY PREDICTING MENTAL AND PHYSICAL HEALTH STATUS OF BREAST...34Comparison of Neural Network and Linear Regression Models in Statistically Predicting Mental and Physical Health Status of Breast Cancer Survivors
Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage
NASA Astrophysics Data System (ADS)
Cepowski, Tomasz
2017-06-01
The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.
ERIC Educational Resources Information Center
Li, Deping; Oranje, Andreas
2007-01-01
Two versions of a general method for approximating standard error of regression effect estimates within an IRT-based latent regression model are compared. The general method is based on Binder's (1983) approach, accounting for complex samples and finite populations by Taylor series linearization. In contrast, the current National Assessment of…
Do MCAT scores predict USMLE scores? An analysis on 5 years of medical student data.
Gauer, Jacqueline L; Wolff, Josephine M; Jackson, J Brooks
2016-01-01
The purpose of this study was to determine the associations and predictive values of Medical College Admission Test (MCAT) component and composite scores prior to 2015 with U.S. Medical Licensure Exam (USMLE) Step 1 and Step 2 Clinical Knowledge (CK) scores, with a focus on whether students scoring low on the MCAT were particularly likely to continue to score low on the USMLE exams. Multiple linear regression, correlation, and chi-square analyses were performed to determine the relationship between MCAT component and composite scores and USMLE Step 1 and Step 2 CK scores from five graduating classes (2011-2015) at the University of Minnesota Medical School ( N =1,065). The multiple linear regression analyses were both significant ( p <0.001). The three MCAT component scores together explained 17.7% of the variance in Step 1 scores ( p< 0.001) and 12.0% of the variance in Step 2 CK scores ( p <0.001). In the chi-square analyses, significant, albeit weak associations were observed between almost all MCAT component scores and USMLE scores (Cramer's V ranged from 0.05 to 0.24). Each of the MCAT component scores was significantly associated with USMLE Step 1 and Step 2 CK scores, although the effect size was small. Being in the top or bottom scoring range of the MCAT exam was predictive of being in the top or bottom scoring range of the USMLE exams, although the strengths of the associations were weak to moderate. These results indicate that MCAT scores are predictive of student performance on the USMLE exams, but, given the small effect sizes, should be considered as part of the holistic view of the student.
Do MCAT scores predict USMLE scores? An analysis on 5 years of medical student data
Gauer, Jacqueline L.; Wolff, Josephine M.; Jackson, J. Brooks
2016-01-01
Introduction The purpose of this study was to determine the associations and predictive values of Medical College Admission Test (MCAT) component and composite scores prior to 2015 with U.S. Medical Licensure Exam (USMLE) Step 1 and Step 2 Clinical Knowledge (CK) scores, with a focus on whether students scoring low on the MCAT were particularly likely to continue to score low on the USMLE exams. Method Multiple linear regression, correlation, and chi-square analyses were performed to determine the relationship between MCAT component and composite scores and USMLE Step 1 and Step 2 CK scores from five graduating classes (2011–2015) at the University of Minnesota Medical School (N=1,065). Results The multiple linear regression analyses were both significant (p<0.001). The three MCAT component scores together explained 17.7% of the variance in Step 1 scores (p<0.001) and 12.0% of the variance in Step 2 CK scores (p<0.001). In the chi-square analyses, significant, albeit weak associations were observed between almost all MCAT component scores and USMLE scores (Cramer's V ranged from 0.05 to 0.24). Discussion Each of the MCAT component scores was significantly associated with USMLE Step 1 and Step 2 CK scores, although the effect size was small. Being in the top or bottom scoring range of the MCAT exam was predictive of being in the top or bottom scoring range of the USMLE exams, although the strengths of the associations were weak to moderate. These results indicate that MCAT scores are predictive of student performance on the USMLE exams, but, given the small effect sizes, should be considered as part of the holistic view of the student. PMID:27702431
Liu, Bin; Geng, Huizhen; Yang, Juan; Zhang, Ying; Deng, Langhui; Chen, Weiqing; Wang, Zilian
2016-03-17
Hyperlipidemia and high fasting plasma glucose levels at the first prenatal visit (First Visit FPG) are both related to gestational diabetes mellitus, maternal obesity/overweight and fetal overgrowth. The purpose of the present study is to investigate the correlation between First Visit FPG and lipid concentrations, and their potential association with offspring size at delivery. Pregnant women that received regular prenatal care and delivered in our center in 2013 were recruited for the study. Fasting plasma glucose levels were tested at the first prenatal visit (First Visit FPG) and prior to delivery (Before Delivery FPG). HbA1c and lipid profiles were examined at the time of OGTT test. Maternal and neonatal clinical data were collected for analysis. Data was analyzed by independent sample t test, Pearson correlation, and Chi-square test, followed by partial correlation and multiple linear regression analyses to confirm association. Statistical significance level was α =0.05. Analyses were based on 1546 mother-baby pairs. First Visit FPG was not correlated with any lipid parameters after adjusting for maternal pregravid BMI, maternal age and gestational age at First Visit FPG. HbA1c was positively correlated with triglyceride and Apolipoprotein B in the whole cohort and in the NGT group after adjusting for maternal age and maternal BMI at OGTT test. Multiple linear regression analyses showed neonatal birth weight, head circumference and shoulder circumference were all associated with First Visit FPG and triglyceride levels. Fasting plasma glucose at first prenatal visit is not associated with lipid concentrations in mid-pregnancy, but may influence fetal growth together with triglyceride concentration.
Ernst, Anja F; Albers, Casper J
2017-01-01
Misconceptions about the assumptions behind the standard linear regression model are widespread and dangerous. These lead to using linear regression when inappropriate, and to employing alternative procedures with less statistical power when unnecessary. Our systematic literature review investigated employment and reporting of assumption checks in twelve clinical psychology journals. Findings indicate that normality of the variables themselves, rather than of the errors, was wrongfully held for a necessary assumption in 4% of papers that use regression. Furthermore, 92% of all papers using linear regression were unclear about their assumption checks, violating APA-recommendations. This paper appeals for a heightened awareness for and increased transparency in the reporting of statistical assumption checking.
Ernst, Anja F.
2017-01-01
Misconceptions about the assumptions behind the standard linear regression model are widespread and dangerous. These lead to using linear regression when inappropriate, and to employing alternative procedures with less statistical power when unnecessary. Our systematic literature review investigated employment and reporting of assumption checks in twelve clinical psychology journals. Findings indicate that normality of the variables themselves, rather than of the errors, was wrongfully held for a necessary assumption in 4% of papers that use regression. Furthermore, 92% of all papers using linear regression were unclear about their assumption checks, violating APA-recommendations. This paper appeals for a heightened awareness for and increased transparency in the reporting of statistical assumption checking. PMID:28533971
Analyzing industrial energy use through ordinary least squares regression models
NASA Astrophysics Data System (ADS)
Golden, Allyson Katherine
Extensive research has been performed using regression analysis and calibrated simulations to create baseline energy consumption models for residential buildings and commercial institutions. However, few attempts have been made to discuss the applicability of these methodologies to establish baseline energy consumption models for industrial manufacturing facilities. In the few studies of industrial facilities, the presented linear change-point and degree-day regression analyses illustrate ideal cases. It follows that there is a need in the established literature to discuss the methodologies and to determine their applicability for establishing baseline energy consumption models of industrial manufacturing facilities. The thesis determines the effectiveness of simple inverse linear statistical regression models when establishing baseline energy consumption models for industrial manufacturing facilities. Ordinary least squares change-point and degree-day regression methods are used to create baseline energy consumption models for nine different case studies of industrial manufacturing facilities located in the southeastern United States. The influence of ambient dry-bulb temperature and production on total facility energy consumption is observed. The energy consumption behavior of industrial manufacturing facilities is only sometimes sufficiently explained by temperature, production, or a combination of the two variables. This thesis also provides methods for generating baseline energy models that are straightforward and accessible to anyone in the industrial manufacturing community. The methods outlined in this thesis may be easily replicated by anyone that possesses basic spreadsheet software and general knowledge of the relationship between energy consumption and weather, production, or other influential variables. With the help of simple inverse linear regression models, industrial manufacturing facilities may better understand their energy consumption and production behavior, and identify opportunities for energy and cost savings. This thesis study also utilizes change-point and degree-day baseline energy models to disaggregate facility annual energy consumption into separate industrial end-user categories. The baseline energy model provides a suitable and economical alternative to sub-metering individual manufacturing equipment. One case study describes the conjoined use of baseline energy models and facility information gathered during a one-day onsite visit to perform an end-point energy analysis of an injection molding facility conducted by the Alabama Industrial Assessment Center. Applying baseline regression model results to the end-point energy analysis allowed the AIAC to better approximate the annual energy consumption of the facility's HVAC system.
Estimating linear temporal trends from aggregated environmental monitoring data
Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.
2017-01-01
Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.
Comparing The Effectiveness of a90/95 Calculations (Preprint)
2006-09-01
Nachtsheim, John Neter, William Li, Applied Linear Statistical Models , 5th ed., McGraw-Hill/Irwin, 2005 5. Mood, Graybill and Boes, Introduction...curves is based on methods that are only valid for ordinary linear regression. Requirements for a valid Ordinary Least-Squares Regression Model There... linear . For example is a linear model ; is not. 2. Uniform variance (homoscedasticity
Correlation and simple linear regression.
Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G
2003-06-01
In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.
Performance differences between sexes in 50-mile to 3,100-mile ultramarathons.
Zingg, Matthias A; Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A
2015-01-01
Anecdotal reports have assumed that women would be able to outrun men in long-distance running. The aim of this study was to test this assumption by investigating the changes in performance difference between sexes in the best ultramarathoners in 50-mile, 100-mile, 200-mile, 1,000-mile, and 3,100-mile events held worldwide between 1971 and 2012. The sex differences in running speed for the fastest runners ever were analyzed using one-way analysis of variance with subsequent Tukey-Kramer posthoc analysis. Changes in sex difference in running speed of the annual fastest were analyzed using linear and nonlinear regression analyses, correlation analyses, and mixed-effects regression analyses. The fastest men ever were faster than the fastest women ever in 50-mile (17.5%), 100-mile (17.4%), 200-mile (9.7%), 1,000-mile (20.2%), and 3,100-mile (18.6%) events. For the ten fastest finishers ever, men were faster than women in 50-mile (17.1%±1.9%), 100-mile (19.2%±1.5%), and 1,000-mile (16.7%±1.6%) events. No correlation existed between sex difference and running speed for the fastest ever (r (2)=0.0039, P=0.91) and the ten fastest ever (r (2)=0.15, P=0.74) for all distances. For the annual fastest, the sex difference in running speed decreased linearly in 50-mile events from 14.6% to 8.9%, remained unchanged in 100-mile (18.0%±8.4%) and 1,000-mile (13.7%±9.1%) events, and increased in 3,100-mile events from 12.5% to 16.9%. For the annual ten fastest runners, the performance difference between sexes decreased linearly in 50-mile events from 31.6%±3.6% to 8.9%±1.8% and in 100-mile events from 26.0%±4.4% to 24.7%±0.9%. To summarize, the fastest men were ~17%-20% faster than the fastest women for all distances from 50 miles to 3,100 miles. The linear decrease in sex difference for 50-mile and 100-mile events may suggest that women are reducing the sex gap for these distances.
Performance differences between sexes in 50-mile to 3,100-mile ultramarathons
Zingg, Matthias A; Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A
2015-01-01
Anecdotal reports have assumed that women would be able to outrun men in long-distance running. The aim of this study was to test this assumption by investigating the changes in performance difference between sexes in the best ultramarathoners in 50-mile, 100-mile, 200-mile, 1,000-mile, and 3,100-mile events held worldwide between 1971 and 2012. The sex differences in running speed for the fastest runners ever were analyzed using one-way analysis of variance with subsequent Tukey–Kramer posthoc analysis. Changes in sex difference in running speed of the annual fastest were analyzed using linear and nonlinear regression analyses, correlation analyses, and mixed-effects regression analyses. The fastest men ever were faster than the fastest women ever in 50-mile (17.5%), 100-mile (17.4%), 200-mile (9.7%), 1,000-mile (20.2%), and 3,100-mile (18.6%) events. For the ten fastest finishers ever, men were faster than women in 50-mile (17.1%±1.9%), 100-mile (19.2%±1.5%), and 1,000-mile (16.7%±1.6%) events. No correlation existed between sex difference and running speed for the fastest ever (r2=0.0039, P=0.91) and the ten fastest ever (r2=0.15, P=0.74) for all distances. For the annual fastest, the sex difference in running speed decreased linearly in 50-mile events from 14.6% to 8.9%, remained unchanged in 100-mile (18.0%±8.4%) and 1,000-mile (13.7%±9.1%) events, and increased in 3,100-mile events from 12.5% to 16.9%. For the annual ten fastest runners, the performance difference between sexes decreased linearly in 50-mile events from 31.6%±3.6% to 8.9%±1.8% and in 100-mile events from 26.0%±4.4% to 24.7%±0.9%. To summarize, the fastest men were ~17%–20% faster than the fastest women for all distances from 50 miles to 3,100 miles. The linear decrease in sex difference for 50-mile and 100-mile events may suggest that women are reducing the sex gap for these distances. PMID:25653567
Ranking of factors determining potassium mass balance in bicarbonate haemodialysis.
Basile, Carlo; Libutti, Pasquale; Lisi, Piero; Teutonico, Annalisa; Vernaglione, Luigi; Casucci, Francesco; Lomonte, Carlo
2015-03-01
One of the most important pathogenetic factors involved in the onset of intradialysis arrhytmias is the alteration in electrolyte concentration, particularly potassium (K(+)). Two studies were performed: Study A was designed to investigate above all the isolated effect of the factor time t on intradialysis K(+) mass balance (K(+)MB): 11 stable prevalent Caucasian anuric patients underwent one standard (∼4 h) and one long-hour (∼8 h) bicarbonate haemodialysis (HD) session. The latter were pair-matched as far as the dialysate and blood volume processed (90 L) and volume of ultrafiltration are concerned. Study B was designed to identify and rank the other factors determining intradialysis K(+)MB: 63 stable prevalent Caucasian anuric patients underwent one 4-h standard bicarbonate HD session. Dialysate K(+) concentration was 2.0 mmol/L in both studies. Blood samples were obtained from the inlet blood tubing immediately before the onset of dialysis and at t60, t120, t180 min and at end of the 4- and 8-h sessions for the measurement of plasma K(+), blood bicarbonates and blood pH. Additional blood samples were obtained at t360 min for the 8 h sessions. Direct dialysate quantification was utilized for K(+)MBs. Direct potentiometry with an ion-selective electrode was used for K(+) measurements. Study A: mean K(+)MBs were significantly higher in the 8-h sessions (4 h: -88.4 ± 23.2 SD mmol versus 8 h: -101.9 ± 32.2 mmol; P = 0.02). Bivariate linear regression analyses showed that only mean plasma K(+), area under the curve (AUC) of the hourly inlet dialyser diffusion concentration gradient of K(+) (hcgAUCK(+)) and AUC of blood bicarbonates and mean blood bicarbonates were significantly related to K(+)MB in both 4- and 8-h sessions. A multiple linear regression output with K(+)MB as dependent variable showed that only mean plasma K(+), hcgAUCK(+) and duration of HD sessions per se remained statistically significant. Study B: mean K(+)MBs were -86.7 ± 22.6 mmol. Bivariate linear regression analyses showed that only mean plasma K(+), hcgAUCK(+) and mean blood bicarbonates were significantly related to K(+)MB. Again, only mean plasma K(+) and hcgAUCK(+) predicted K(+)MB at the multiple linear regression analysis. Our studies enabled to establish the ranking of factors determining intradialysis K(+)MB: plasma K(+) → dialysate K(+) gradient is the main determinant; acid-base balance plays a much less important role. The duration of HD session per se is an independent determinant of K(+)MB. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
2017-10-01
ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID PROPELLANT GRAIN GEOMETRIES Brian...author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation...U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID
Linear regression in astronomy. II
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.; Babu, Gutti J.
1992-01-01
A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.
A Constrained Linear Estimator for Multiple Regression
ERIC Educational Resources Information Center
Davis-Stober, Clintin P.; Dana, Jason; Budescu, David V.
2010-01-01
"Improper linear models" (see Dawes, Am. Psychol. 34:571-582, "1979"), such as equal weighting, have garnered interest as alternatives to standard regression models. We analyze the general circumstances under which these models perform well by recasting a class of "improper" linear models as "proper" statistical models with a single predictor. We…
Developing a dengue forecast model using machine learning: A case study in China.
Guo, Pi; Liu, Tao; Zhang, Qin; Wang, Li; Xiao, Jianpeng; Zhang, Qingying; Luo, Ganfeng; Li, Zhihao; He, Jianfeng; Zhang, Yonghui; Ma, Wenjun
2017-10-01
In China, dengue remains an important public health issue with expanded areas and increased incidence recently. Accurate and timely forecasts of dengue incidence in China are still lacking. We aimed to use the state-of-the-art machine learning algorithms to develop an accurate predictive model of dengue. Weekly dengue cases, Baidu search queries and climate factors (mean temperature, relative humidity and rainfall) during 2011-2014 in Guangdong were gathered. A dengue search index was constructed for developing the predictive models in combination with climate factors. The observed year and week were also included in the models to control for the long-term trend and seasonality. Several machine learning algorithms, including the support vector regression (SVR) algorithm, step-down linear regression model, gradient boosted regression tree algorithm (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection operator (LASSO) linear regression model and generalized additive model (GAM), were used as candidate models to predict dengue incidence. Performance and goodness of fit of the models were assessed using the root-mean-square error (RMSE) and R-squared measures. The residuals of the models were examined using the autocorrelation and partial autocorrelation function analyses to check the validity of the models. The models were further validated using dengue surveillance data from five other provinces. The epidemics during the last 12 weeks and the peak of the 2014 large outbreak were accurately forecasted by the SVR model selected by a cross-validation technique. Moreover, the SVR model had the consistently smallest prediction error rates for tracking the dynamics of dengue and forecasting the outbreaks in other areas in China. The proposed SVR model achieved a superior performance in comparison with other forecasting techniques assessed in this study. The findings can help the government and community respond early to dengue epidemics.
Choi, Kang; Im, Hyoungjune; Kim, Joohan; Choi, Kwang H; Jon, Duk-In; Hong, Hyunju; Hong, Narei; Lee, Eunjung; Seok, Jeong-Ho
2013-11-01
Early-life stress (ELS) may mediate adjustment problems while resilience may protect individuals against adjustment problems during military service. We investigated the relationship of ELS and resilience with adjustment problem factor scores in the Korea Military Personality Test (KMPT) in candidates for the military service. Four hundred and sixty-one candidates participated in this study. Vulnerability traits for military adjustment, ELS, and resilience were assessed using the KMPT, the Korean Early-Life Abuse Experience Questionnaire, and the Resilience Quotient Test, respectively. Data were analyzed using multiple linear regression analyses. The final model of the multiple linear regression analyses explained 30.2 % of the total variances of the sum of the adjustment problem factor scores of the KMPT. Neglect and exposure to domestic violence had a positive association with the total adjustment problem factor scores of the KMPT, but emotion control, impulse control, and optimism factor scores as well as education and occupational status were inversely associated with the total military adjustment problem score. ELS and resilience are important modulating factors in adjusting to military service. We suggest that neglect and exposure to domestic violence during early life may increase problem with adjustment, but capacity to control emotion and impulse as well as optimistic attitude may play protective roles in adjustment to military life. The screening procedures for ELS and the development of psychological interventions may be helpful for young adults to adjust to military service.
Aortic stiffness is associated with white matter integrity in patients with type 1 diabetes.
Tjeerdema, Nathanja; Van Schinkel, Linda D; Westenberg, Jos J; Van Elderen, Saskia G; Van Buchem, Mark A; Smit, Johannes W; Van der Grond, Jeroen; De Roos, Albert
2014-09-01
To assess the association between aortic pulse wave velocity (PWV) as a marker of arterial stiffness and diffusion tensor imaging of brain white matter integrity in patients with type 1 diabetes using advanced magnetic resonance imaging (MRI) technology. Forty-one patients with type 1 diabetes (23 men, mean age 44 ± 12 years, mean diabetes duration 24 ± 13 years) were included. Aortic PWV was assessed using through-plane velocity-encoded MRI. Brain diffusion tensor imaging (DTI) measurements were performed on 3-T MRI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated for white and grey matter integrity. Pearson correlation and multivariable linear regression analyses including cardiovascular risk factors as covariates were assessed. Multivariable linear regression analyses revealed that aortic PWV is independently associated with white matter integrity FA (β = -0.777, p = 0.008) in patients with type 1 diabetes. This effect was independent of age, gender, mean arterial pressure, body mass index, smoking, duration of diabetes and glycated haemoglobin levels. Aortic PWV was not significantly related to grey matter integrity. Our data suggest that aortic stiffness is independently associated with reduced white matter integrity in patients with type 1 diabetes. Aortic stiffness is associated with brain injury. Aortic stiffness exposes small vessels to high pressure fluctuations and flow. Aortic stiffness is associated with microvascular brain injury in diabetes. This suggests a vascular contribution to early subtle microstructural deficits.
Poverty and Child Development: A Longitudinal Study of the Impact of the Earned Income Tax Credit
Hamad, Rita; Rehkopf, David H.
2016-01-01
Although adverse socioeconomic conditions are correlated with worse child health and development, the effects of poverty-alleviation policies are less understood. We examined the associations of the Earned Income Tax Credit (EITC) on child development and used an instrumental variable approach to estimate the potential impacts of income. We used data from the US National Longitudinal Survey of Youth (n = 8,186) during 1986–2000 to examine effects on the Behavioral Problems Index (BPI) and Home Observation Measurement of the Environment inventory (HOME) scores. We conducted 2 analyses. In the first, we used multivariate linear regressions with child-level fixed effects to examine the association of EITC payment size with BPI and HOME scores; in the second, we used EITC payment size as an instrument to estimate the associations of income with BPI and HOME scores. In linear regression models, higher EITC payments were associated with improved short-term BPI scores (per $1,000, β = −0.57; P = 0.04). In instrumental variable analyses, higher income was associated with improved short-term BPI scores (per $1,000, β = −0.47; P = 0.01) and medium-term HOME scores (per $1,000, β = 0.64; P = 0.02). Our results suggest that both EITC benefits and higher income are associated with modest but meaningful improvements in child development. These findings provide valuable information for health researchers and policymakers for improving child health and development. PMID:27056961
NASA Astrophysics Data System (ADS)
Baasch, Benjamin; Müller, Hendrik; von Dobeneck, Tilo; Oberle, Ferdinand K. J.
2017-05-01
The electric conductivity and magnetic susceptibility of sediments are fundamental parameters in environmental geophysics. Both can be derived from marine electromagnetic profiling, a novel, fast and non-invasive seafloor mapping technique. Here we present statistical evidence that electric conductivity and magnetic susceptibility can help to determine physical grain-size characteristics (size, sorting and mud content) of marine surficial sediments. Electromagnetic data acquired with the bottom-towed electromagnetic profiler MARUM NERIDIS III were analysed and compared with grain size data from 33 samples across the NW Iberian continental shelf. A negative correlation between mean grain size and conductivity (R=-0.79) as well as mean grain size and susceptibility (R=-0.78) was found. Simple and multiple linear regression analyses were carried out to predict mean grain size, mud content and the standard deviation of the grain-size distribution from conductivity and susceptibility. The comparison of both methods showed that multiple linear regression models predict the grain-size distribution characteristics better than the simple models. This exemplary study demonstrates that electromagnetic benthic profiling is capable to estimate mean grain size, sorting and mud content of marine surficial sediments at a very high significance level. Transfer functions can be calibrated using grains-size data from a few reference samples and extrapolated along shelf-wide survey lines. This study suggests that electromagnetic benthic profiling should play a larger role for coastal zone management, seafloor contamination and sediment provenance studies in worldwide continental shelf systems.
Wall, Michael; Zamba, Gideon K D; Artes, Paul H
2018-01-01
It has been shown that threshold estimates below approximately 20 dB have little effect on the ability to detect visual field progression in glaucoma. We aimed to compare stimulus size V to stimulus size III, in areas of visual damage, to confirm these findings by using (1) a different dataset, (2) different techniques of progression analysis, and (3) an analysis to evaluate the effect of censoring on mean deviation (MD). In the Iowa Variability in Perimetry Study, 120 glaucoma subjects were tested every 6 months for 4 years with size III SITA Standard and size V Full Threshold. Progression was determined with three complementary techniques: pointwise linear regression (PLR), permutation of PLR, and linear regression of the MD index. All analyses were repeated on "censored'' datasets in which threshold estimates below a given criterion value were set to equal the criterion value. Our analyses confirmed previous observations that threshold estimates below 20 dB contribute much less to visual field progression than estimates above this range. These findings were broadly similar with stimulus sizes III and V. Censoring of threshold values < 20 dB has relatively little impact on the rates of visual field progression in patients with mild to moderate glaucoma. Size V, which has lower retest variability, performs at least as well as size III for longitudinal glaucoma progression analysis and appears to have a larger useful dynamic range owing to the upper sensitivity limit being higher.
On the design of classifiers for crop inventories
NASA Technical Reports Server (NTRS)
Heydorn, R. P.; Takacs, H. C.
1986-01-01
Crop proportion estimators that use classifications of satellite data to correct, in an additive way, a given estimate acquired from ground observations are discussed. A linear version of these estimators is optimal, in terms of minimum variance, when the regression of the ground observations onto the satellite observations in linear. When this regression is not linear, but the reverse regression (satellite observations onto ground observations) is linear, the estimator is suboptimal but still has certain appealing variance properties. In this paper expressions are derived for those regressions which relate the intercepts and slopes to conditional classification probabilities. These expressions are then used to discuss the question of classifier designs that can lead to low-variance crop proportion estimates. Variance expressions for these estimates in terms of classifier omission and commission errors are also derived.
NASA Astrophysics Data System (ADS)
Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Pashiardis, Stelios; Lange, Manfred A.
2014-01-01
High-resolution gridded daily data sets are essential for natural resource management and the analyses of climate changes and their effects. This study aims to evaluate the performance of 15 simple or complex interpolation techniques in reproducing daily precipitation at a resolution of 1 km2 over topographically complex areas. Methods are tested considering two different sets of observation densities and different rainfall amounts. We used rainfall data that were recorded at 74 and 145 observational stations, respectively, spread over the 5760 km2 of the Republic of Cyprus, in the Eastern Mediterranean. Regression analyses utilizing geographical copredictors and neighboring interpolation techniques were evaluated both in isolation and combined. Linear multiple regression (LMR) and geographically weighted regression methods (GWR) were tested. These included a step-wise selection of covariables, as well as inverse distance weighting (IDW), kriging, and 3D-thin plate splines (TPS). The relative rank of the different techniques changes with different station density and rainfall amounts. Our results indicate that TPS performs well for low station density and large-scale events and also when coupled with regression models. It performs poorly for high station density. The opposite is observed when using IDW. Simple IDW performs best for local events, while a combination of step-wise GWR and IDW proves to be the best method for large-scale events and high station density. This study indicates that the use of step-wise regression with a variable set of geographic parameters can improve the interpolation of large-scale events because it facilitates the representation of local climate dynamics.
Visscher, Corine M; van Wesemael-Suijkerbuijk, Erin A; Lobbezoo, Frank
2016-10-01
The aim of this study was to explore the association between the presence of comorbidities and the pain experience in individual patients with temporomandibular disorder (TMD). This clinical trial comprised 112 patients with TMD pain. For all participants the presence of the following comorbid factors was assessed: pain in the neck; somatization; impaired sleep; and depression. Pain experience was evaluated using the McGill Pain Questionnaire (MPQ). For each subject the TMD-pain experience was assessed for three dimensions - sensory, affective, and evaluative - as specified in the MPQ. The association between comorbid factors and these three dimensions of TMD-pain experience was then evaluated using linear regression models. Univariable regression analyses showed that all comorbid factors, except for one factor, were positively associated with the level of pain, as rated by the sensory description of pain, the affective component of pain, and the evaluative experience of pain. The multivariable regression analyses showed that for all MPQ dimensions, depression showed the strongest associations with pain experience. It was found that in the presence of comorbid disorders, patients with TMD experience elevated levels of TMD pain. This information should be taken into consideration in the diagnostic process, as well as in the choice of treatment. © 2016 Eur J Oral Sci.
Refractive Status at Birth: Its Relation to Newborn Physical Parameters at Birth and Gestational Age
Varghese, Raji Mathew; Sreenivas, Vishnubhatla; Puliyel, Jacob Mammen; Varughese, Sara
2009-01-01
Background Refractive status at birth is related to gestational age. Preterm babies have myopia which decreases as gestational age increases and term babies are known to be hypermetropic. This study looked at the correlation of refractive status with birth weight in term and preterm babies, and with physical indicators of intra-uterine growth such as the head circumference and length of the baby at birth. Methods All babies delivered at St. Stephens Hospital and admitted in the nursery were eligible for the study. Refraction was performed within the first week of life. 0.8% tropicamide with 0.5% phenylephrine was used to achieve cycloplegia and paralysis of accommodation. 599 newborn babies participated in the study. Data pertaining to the right eye is utilized for all the analyses except that for anisometropia where the two eyes were compared. Growth parameters were measured soon after birth. Simple linear regression analysis was performed to see the association of refractive status, (mean spherical equivalent (MSE), astigmatism and anisometropia) with each of the study variables, namely gestation, length, weight and head circumference. Subsequently, multiple linear regression was carried out to identify the independent predictors for each of the outcome parameters. Results Simple linear regression showed a significant relation between all 4 study variables and refractive error but in multiple regression only gestational age and weight were related to refractive error. The partial correlation of weight with MSE adjusted for gestation was 0.28 and that of gestation with MSE adjusted for weight was 0.10. Birth weight had a higher correlation to MSE than gestational age. Conclusion This is the first study to look at refractive error against all these growth parameters, in preterm and term babies at birth. It would appear from this study that birth weight rather than gestation should be used as criteria for screening for refractive error, especially in developing countries where the incidence of intrauterine malnutrition is higher. PMID:19214228
Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert
2012-01-01
Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, p<0.001). Univariate mixture model fits of FDGpre improved R2 from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. Conclusions Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Bentancurt, J. J. V.; Herz, B. R.; Molion, L. B.
1980-01-01
Detection of water quality in Guanabara Bay using multispectral scanning digital data taken from LANDSAT satellites was examined. To test these processes, an empirical (statistical) approach was choosen to observe the degree of relationship between LANDSAT data and the in situ data taken simultaneously. The linear and nonlinear regression analyses were taken from among those developed by INPE in 1978. Results indicate that the major regression was in the number six MSS band, atmospheric effects, which indicated a correction coefficient of 0.99 and an average error of 6.59 micrograms liter. This error was similar to that obtained in the laboratory. The chlorophyll content was between 0 and 100 micrograms/liter, as taken from the MSS of LANDSAT.
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
NASA Astrophysics Data System (ADS)
Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno
2017-03-01
This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four
Szekér, Szabolcs; Vathy-Fogarassy, Ágnes
2018-01-01
Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.
Advanced Statistical Analyses to Reduce Inconsistency of Bond Strength Data.
Minamino, T; Mine, A; Shintani, A; Higashi, M; Kawaguchi-Uemura, A; Kabetani, T; Hagino, R; Imai, D; Tajiri, Y; Matsumoto, M; Yatani, H
2017-11-01
This study was designed to clarify the interrelationship of factors that affect the value of microtensile bond strength (µTBS), focusing on nondestructive testing by which information of the specimens can be stored and quantified. µTBS test specimens were prepared from 10 noncarious human molars. Six factors of µTBS test specimens were evaluated: presence of voids at the interface, X-ray absorption coefficient of resin, X-ray absorption coefficient of dentin, length of dentin part, size of adhesion area, and individual differences of teeth. All specimens were observed nondestructively by optical coherence tomography and micro-computed tomography before µTBS testing. After µTBS testing, the effect of these factors on µTBS data was analyzed by the general linear model, linear mixed effects regression model, and nonlinear regression model with 95% confidence intervals. By the general linear model, a significant difference in individual differences of teeth was observed ( P < 0.001). A significantly positive correlation was shown between µTBS and length of dentin part ( P < 0.001); however, there was no significant nonlinearity ( P = 0.157). Moreover, a significantly negative correlation was observed between µTBS and size of adhesion area ( P = 0.001), with significant nonlinearity ( P = 0.014). No correlation was observed between µTBS and X-ray absorption coefficient of resin ( P = 0.147), and there was no significant nonlinearity ( P = 0.089). Additionally, a significantly positive correlation was observed between µTBS and X-ray absorption coefficient of dentin ( P = 0.022), with significant nonlinearity ( P = 0.036). A significant difference was also observed between the presence and absence of voids by linear mixed effects regression analysis. Our results showed correlations between various parameters of tooth specimens and µTBS data. To evaluate the performance of the adhesive more precisely, the effect of tooth variability and a method to reduce variation in bond strength values should also be considered.
Linear regression analysis of survival data with missing censoring indicators.
Wang, Qihua; Dinse, Gregg E
2011-04-01
Linear regression analysis has been studied extensively in a random censorship setting, but typically all of the censoring indicators are assumed to be observed. In this paper, we develop synthetic data methods for estimating regression parameters in a linear model when some censoring indicators are missing. We define estimators based on regression calibration, imputation, and inverse probability weighting techniques, and we prove all three estimators are asymptotically normal. The finite-sample performance of each estimator is evaluated via simulation. We illustrate our methods by assessing the effects of sex and age on the time to non-ambulatory progression for patients in a brain cancer clinical trial.
An Analysis of COLA (Cost of Living Adjustment) Allocation within the United States Coast Guard.
1983-09-01
books Applied Linear Regression [Ref. 39], and Statistical Methods in Research and Production [Ref. 40], or any other book on regression. In the event...Indexes, Master’s Thesis, Air Force Institute of Technology, Wright-Patterson AFB, 1976. 39. Weisberg, Stanford, Applied Linear Regression , Wiley, 1980. 40
Testing hypotheses for differences between linear regression lines
Stanley J. Zarnoch
2009-01-01
Five hypotheses are identified for testing differences between simple linear regression lines. The distinctions between these hypotheses are based on a priori assumptions and illustrated with full and reduced models. The contrast approach is presented as an easy and complete method for testing for overall differences between the regressions and for making pairwise...
Graphical Description of Johnson-Neyman Outcomes for Linear and Quadratic Regression Surfaces.
ERIC Educational Resources Information Center
Schafer, William D.; Wang, Yuh-Yin
A modification of the usual graphical representation of heterogeneous regressions is described that can aid in interpreting significant regions for linear or quadratic surfaces. The standard Johnson-Neyman graph is a bivariate plot with the criterion variable on the ordinate and the predictor variable on the abscissa. Regression surfaces are drawn…
Teaching the Concept of Breakdown Point in Simple Linear Regression.
ERIC Educational Resources Information Center
Chan, Wai-Sum
2001-01-01
Most introductory textbooks on simple linear regression analysis mention the fact that extreme data points have a great influence on ordinary least-squares regression estimation; however, not many textbooks provide a rigorous mathematical explanation of this phenomenon. Suggests a way to fill this gap by teaching students the concept of breakdown…
Estimating monotonic rates from biological data using local linear regression.
Olito, Colin; White, Craig R; Marshall, Dustin J; Barneche, Diego R
2017-03-01
Accessing many fundamental questions in biology begins with empirical estimation of simple monotonic rates of underlying biological processes. Across a variety of disciplines, ranging from physiology to biogeochemistry, these rates are routinely estimated from non-linear and noisy time series data using linear regression and ad hoc manual truncation of non-linearities. Here, we introduce the R package LoLinR, a flexible toolkit to implement local linear regression techniques to objectively and reproducibly estimate monotonic biological rates from non-linear time series data, and demonstrate possible applications using metabolic rate data. LoLinR provides methods to easily and reliably estimate monotonic rates from time series data in a way that is statistically robust, facilitates reproducible research and is applicable to a wide variety of research disciplines in the biological sciences. © 2017. Published by The Company of Biologists Ltd.
The association of genetic variants of type 2 diabetes with kidney function.
Franceschini, Nora; Shara, Nawar M; Wang, Hong; Voruganti, V Saroja; Laston, Sandy; Haack, Karin; Lee, Elisa T; Best, Lyle G; Maccluer, Jean W; Cochran, Barbara J; Dyer, Thomas D; Howard, Barbara V; Cole, Shelley A; North, Kari E; Umans, Jason G
2012-07-01
Type 2 diabetes is highly prevalent and is the major cause of progressive chronic kidney disease in American Indians. Genome-wide association studies identified several loci associated with diabetes but their impact on susceptibility to diabetic complications is unknown. We studied the association of 18 type 2 diabetes genome-wide association single-nucleotide polymorphisms (SNPs) with estimated glomerular filtration rate (eGFR; MDRD equation) and urine albumin-to-creatinine ratio in 6958 Strong Heart Study family and cohort participants. Center-specific residuals of eGFR and log urine albumin-to-creatinine ratio, obtained from linear regression models adjusted for age, sex, and body mass index, were regressed onto SNP dosage using variance component models in family data and linear regression in unrelated individuals. Estimates were then combined across centers. Four diabetic loci were associated with eGFR and one locus with urine albumin-to-creatinine ratio. A SNP in the WFS1 gene (rs10010131) was associated with higher eGFR in younger individuals and with increased albuminuria. SNPs in the FTO, KCNJ11, and TCF7L2 genes were associated with lower eGFR, but not albuminuria, and were not significant in prospective analyses. Our findings suggest a shared genetic risk for type 2 diabetes and its kidney complications, and a potential role for WFS1 in early-onset diabetic nephropathy in American Indian populations.
Bebbington, Emily; Furniss, Dominic
2015-02-01
We integrated two factors, demographic population shifts and changes in prevalence of disease, to predict future trends in demand for hand surgery in England, to facilitate workforce planning. We analysed Hospital Episode Statistics data for Dupuytren's disease, carpal tunnel syndrome, cubital tunnel syndrome, and trigger finger from 1998 to 2011. Using linear regression, we estimated trends in both diagnosis and surgery until 2030. We integrated this regression with age specific population data from the Office for National Statistics in order to estimate how this will contribute to a change in workload over time. There has been a significant increase in both absolute numbers of diagnoses and surgery for all four conditions. Combined with future population data, we calculate that the total operative burden for these four conditions will increase from 87,582 in 2011 to 170,166 (95% confidence interval 144,517-195,353) in 2030. The prevalence of these diseases in the ageing population, and increasing prevalence of predisposing factors such as obesity and diabetes, may account for the predicted increase in workload. The most cost effective treatments must be sought, which requires high quality clinical trials. Our methodology can be applied to other sub-specialties to help anticipate the need for future service provision. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Bokhari, Syed Akhtar H; Khan, Ayyaz A; Butt, Arshad K; Hanif, Mohammad; Izhar, Mateen; Tatakis, Dimitris N; Ashfaq, Mohammad
2014-11-01
Few studies have examined the relationship of individual periodontal parameters with individual systemic biomarkers. This study assessed the possible association between specific clinical parameters of periodontitis and systemic biomarkers of coronary heart disease risk in coronary heart disease patients with periodontitis. Angiographically proven coronary heart disease patients with periodontitis (n = 317), aged >30 years and without other systemic illness were examined. Periodontal clinical parameters of bleeding on probing (BOP), probing depth (PD), and clinical attachment level (CAL) and systemic levels of high-sensitivity C-reactive protein (CRP), fibrinogen (FIB) and white blood cells (WBC) were noted and analyzed to identify associations through linear and stepwise multiple regression analyses. Unadjusted linear regression showed significant associations between periodontal and systemic parameters; the strongest association (r = 0.629; p < 0.001) was found between BOP and CRP levels, the periodontal and systemic inflammation marker, respectively. Stepwise regression analysis models revealed that BOP was a predictor of systemic CRP levels (p < 0.0001). BOP was the only periodontal parameter significantly associated with each systemic parameter (CRP, FIB, and WBC). In coronary heart disease patients with periodontitis, BOP is strongly associated with systemic CRP levels; this association possibly reflects the potential significance of the local periodontal inflammatory burden for systemic inflammation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Locally linear regression for pose-invariant face recognition.
Chai, Xiujuan; Shan, Shiguang; Chen, Xilin; Gao, Wen
2007-07-01
The variation of facial appearance due to the viewpoint (/pose) degrades face recognition systems considerably, which is one of the bottlenecks in face recognition. One of the possible solutions is generating virtual frontal view from any given nonfrontal view to obtain a virtual gallery/probe face. Following this idea, this paper proposes a simple, but efficient, novel locally linear regression (LLR) method, which generates the virtual frontal view from a given nonfrontal face image. We first justify the basic assumption of the paper that there exists an approximate linear mapping between a nonfrontal face image and its frontal counterpart. Then, by formulating the estimation of the linear mapping as a prediction problem, we present the regression-based solution, i.e., globally linear regression. To improve the prediction accuracy in the case of coarse alignment, LLR is further proposed. In LLR, we first perform dense sampling in the nonfrontal face image to obtain many overlapped local patches. Then, the linear regression technique is applied to each small patch for the prediction of its virtual frontal patch. Through the combination of all these patches, the virtual frontal view is generated. The experimental results on the CMU PIE database show distinct advantage of the proposed method over Eigen light-field method.
Zhou, Qing-he; Zhu, Bo; Wei, Chang-na; Yan, Min
2016-03-24
Studies have shown that abdominal girth and vertebral column length have high predictive value for spinal spread after administering a dose of plain bupivacaine. we designed a study to identify the specific correlations between abdominal girth, vertebral column length and a 0.5% dosage of plain bupivacaine, which should provide a minimum upper block level (T12) and a suitable upper block level (T10) for lower limb surgeries. A suitable dose of 0.5% plain bupivacaine was administered intrathecally between the L3 and L4 vertebrae for lower limb surgeries. If the upper cephalad spread of the patient by loss of pinprick discrimination was T12 or T10, the patient was enrolled in this study. Five patient variables and intrathecal plain bupivacaine dose were recorded. Linear regression and multiple regression analyses were performed. Totals of 111 patients and 121 patients who lost pinprick discrimination at T12 and T10, respectively, were analyzed in this study. Linear regression analysis showed that only abdominal girth and plain bupivacaine dose were strongly correlated (r =-0.827 for T12, r = -0.806 for T10; both p < 0.0001). Multiple linear regression analysis showed that both abdominal girth and vertebral column length were the key determinants of plain bupivacaine dose (both p < 0.0001). R(2) was 0.874 and 0.860 for the loss of pinprick discrimination at T12 and T10, respectively. Our data indicated that vertebral column length and abdominal girth were strongly correlated with the dosage of intrathecal plain bupivacaine for the loss of pinprick discrimination at T12 and T10. The two regression equations were YT12 = 3.547 + 0.045X1-0.044X2 and YT10 = 3.848 + 0.047X1- 0.046X2 (Y, 0.5% plain bupivacaine volume; X1, vertebral column length;and X 2, abdominal girth), which can accurately predict the minimum and suitable intrathecal bupivacaine dose for lower limb surgery to a great extent, separately.
Coker, Freya; Williams, Cylie M; Taylor, Nicholas F; Caspers, Kirsten; McAlinden, Fiona; Wilton, Anita; Shields, Nora; Haines, Terry P
2018-05-10
This protocol considers three allied health staffing models across public health subacute hospitals. This quasi-experimental mixed-methods study, including qualitative process evaluation, aims to evaluate the impact of additional allied health services in subacute care, in rehabilitation and geriatric evaluation management settings, on patient, health service and societal outcomes. This health services research will analyse outcomes of patients exposed to different allied health models of care at three health services. Each health service will have a control ward (routine care) and an intervention ward (additional allied health). This project has two parts. Part 1: a whole of site data extraction for included wards. Outcome measures will include: length of stay, rate of readmissions, discharge destinations, community referrals, patient feedback and staff perspectives. Part 2: Functional Independence Measure scores will be collected every 2-3 days for the duration of 60 patient admissions.Data from part 1 will be analysed by linear regression analysis for continuous outcomes using patient-level data and logistic regression analysis for binary outcomes. Qualitative data will be analysed using a deductive thematic approach. For part 2, a linear mixed model analysis will be conducted using therapy service delivery and days since admission to subacute care as fixed factors in the model and individual participant as a random factor. Graphical analysis will be used to examine the growth curve of the model and transformations. The days since admission factor will be used to examine non-linear growth trajectories to determine if they lead to better model fit. Findings will be disseminated through local reports and to the Department of Health and Human Services Victoria. Results will be presented at conferences and submitted to peer-reviewed journals. The Monash Health Human Research Ethics committee approved this multisite research (HREC/17/MonH/144 and HREC/17/MonH/547). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Marston, Louise; Peacock, Janet L; Yu, Keming; Brocklehurst, Peter; Calvert, Sandra A; Greenough, Anne; Marlow, Neil
2009-07-01
Studies of prematurely born infants contain a relatively large percentage of multiple births, so the resulting data have a hierarchical structure with small clusters of size 1, 2 or 3. Ignoring the clustering may lead to incorrect inferences. The aim of this study was to compare statistical methods which can be used to analyse such data: generalised estimating equations, multilevel models, multiple linear regression and logistic regression. Four datasets which differed in total size and in percentage of multiple births (n = 254, multiple 18%; n = 176, multiple 9%; n = 10 098, multiple 3%; n = 1585, multiple 8%) were analysed. With the continuous outcome, two-level models produced similar results in the larger dataset, while generalised least squares multilevel modelling (ML GLS 'xtreg' in Stata) and maximum likelihood multilevel modelling (ML MLE 'xtmixed' in Stata) produced divergent estimates using the smaller dataset. For the dichotomous outcome, most methods, except generalised least squares multilevel modelling (ML GH 'xtlogit' in Stata) gave similar odds ratios and 95% confidence intervals within datasets. For the continuous outcome, our results suggest using multilevel modelling. We conclude that generalised least squares multilevel modelling (ML GLS 'xtreg' in Stata) and maximum likelihood multilevel modelling (ML MLE 'xtmixed' in Stata) should be used with caution when the dataset is small. Where the outcome is dichotomous and there is a relatively large percentage of non-independent data, it is recommended that these are accounted for in analyses using logistic regression with adjusted standard errors or multilevel modelling. If, however, the dataset has a small percentage of clusters greater than size 1 (e.g. a population dataset of children where there are few multiples) there appears to be less need to adjust for clustering.
Wit, Jan M.; Himes, John H.; van Buuren, Stef; Denno, Donna M.; Suchdev, Parminder S.
2017-01-01
Background/Aims Childhood stunting is a prevalent problem in low- and middle-income countries and is associated with long-term adverse neurodevelopment and health outcomes. In this review, we define indicators of growth, discuss key challenges in their analysis and application, and offer suggestions for indicator selection in clinical research contexts. Methods Critical review of the literature. Results Linear growth is commonly expressed as length-for-age or height-for-age z-score (HAZ) in comparison to normative growth standards. Conditional HAZ corrects for regression to the mean where growth changes relate to previous status. In longitudinal studies, growth can be expressed as ΔHAZ at 2 time points. Multilevel modeling is preferable when more measurements per individual child are available over time. Height velocity z-score reference standards are available for children under the age of 2 years. Adjusting for covariates or confounders (e.g., birth weight, gestational age, sex, parental height, maternal education, socioeconomic status) is recommended in growth analyses. Conclusion The most suitable indicator(s) for linear growth can be selected based on the number of available measurements per child and the child's age. By following a step-by-step algorithm, growth analyses can be precisely and accurately performed to allow for improved comparability within and between studies. PMID:28196362
Steckling, Nadine; Devleesschauwer, Brecht; Winkelnkemper, Julia; Fischer, Florian; Ericson, Bret; Krämer, Alexander; Hornberg, Claudia; Fuller, Richard; Plass, Dietrich; Bose-O'Reilly, Stephan
2017-01-10
In artisanal small-scale gold mining, mercury is used for gold-extraction, putting miners and nearby residents at risk of chronic metallic mercury vapor intoxication (CMMVI). Burden of disease (BoD) analyses allow the estimation of the public health relevance of CMMVI, but until now there have been no specific CMMVI disability weights (DWs). The objective is to derive DWs for moderate and severe CMMVI. Disease-specific and generic health state descriptions of 18 diseases were used in a pairwise comparison survey. Mercury and BoD experts were invited to participate in an online survey. Data were analyzed using probit regression. Local regression was used to make the DWs comparable to the Global Burden of Disease (GBD) study. Alternative survey (visual analogue scale) and data analyses approaches (linear interpolation) were evaluated in scenario analyses. A total of 105 participants completed the questionnaire. DWs for moderate and severe CMMVI were 0.368 (0.261-0.484) and 0.588 (0.193-0.907), respectively. Scenario analyses resulted in higher mean values. The results are limited by the sample size, group of interviewees, questionnaire extent, and lack of generally accepted health state descriptions. DWs were derived to improve the data basis of mercury-related BoD estimates, providing useful information for policy-making. Integration of the results into the GBD DWs enhances comparability.
Gender differences in health-related quality of life of adolescents with cystic fibrosis
Arrington-Sanders, Renata; Yi, Michael S; Tsevat, Joel; Wilmott, Robert W; Mrus, Joseph M; Britto, Maria T
2006-01-01
Background Female patients with cystic fibrosis (CF) have consistently poorer survival rates than males across all ages. To determine if gender differences exist in health-related quality of life (HRQOL) of adolescent patients with CF, we performed a cross-section analysis of CF patients recruited from 2 medical centers in 2 cities during 1997–2001. Methods We used the 87-item child self-report form of the Child Health Questionnaire to measure 12 health domains. Data was also collected on age and forced expiratory volume in 1 second (FEV1). We analyzed data from 98 subjects and performed univariate analyses and linear regression or ordinal logistic regression for multivariable analyses. Results The mean (SD) age was 14.6 (2.5) years; 50 (51.0%) were female; and mean FEV1 was 71.6% (25.6%) of predicted. There were no statistically significant gender differences in age or FEV1. In univariate analyses, females reported significantly poorer HRQOL in 5 of the 12 domains. In multivariable analyses controlling for FEV1 and age, we found that female gender was associated with significantly lower global health (p < 0.05), mental health (p < 0.01), and general health perceptions (p < 0.05) scores. Conclusion Further research will need to focus on the causes of these differences in HRQOL and on potential interventions to improve HRQOL of adolescent patients with CF. PMID:16433917
Steckling, Nadine; Devleesschauwer, Brecht; Winkelnkemper, Julia; Fischer, Florian; Ericson, Bret; Krämer, Alexander; Hornberg, Claudia; Fuller, Richard; Plass, Dietrich; Bose-O’Reilly, Stephan
2017-01-01
In artisanal small-scale gold mining, mercury is used for gold-extraction, putting miners and nearby residents at risk of chronic metallic mercury vapor intoxication (CMMVI). Burden of disease (BoD) analyses allow the estimation of the public health relevance of CMMVI, but until now there have been no specific CMMVI disability weights (DWs). The objective is to derive DWs for moderate and severe CMMVI. Disease-specific and generic health state descriptions of 18 diseases were used in a pairwise comparison survey. Mercury and BoD experts were invited to participate in an online survey. Data were analyzed using probit regression. Local regression was used to make the DWs comparable to the Global Burden of Disease (GBD) study. Alternative survey (visual analogue scale) and data analyses approaches (linear interpolation) were evaluated in scenario analyses. A total of 105 participants completed the questionnaire. DWs for moderate and severe CMMVI were 0.368 (0.261–0.484) and 0.588 (0.193–0.907), respectively. Scenario analyses resulted in higher mean values. The results are limited by the sample size, group of interviewees, questionnaire extent, and lack of generally accepted health state descriptions. DWs were derived to improve the data basis of mercury-related BoD estimates, providing useful information for policy-making. Integration of the results into the GBD DWs enhances comparability. PMID:28075395
Tri-axial tactile sensing element
NASA Astrophysics Data System (ADS)
Castellanos-Ramos, Julián.; Navas-González, Rafael; Vidal-Verdú, F.
2013-05-01
A 13 x 13 square millimetre tri-axial taxel is presented which is suitable for some medical applications, for instance in assistive robotics that involves contact with humans or in prosthetics. Finite Element Analysis is carried out to determine what structure is the best to obtain a uniform distribution of pressure on the sensing areas underneath the structure. This structure has been fabricated in plastic with a 3D printer and a commercial tactile sensor has been used to implement the sensing areas. A three axis linear motorized translation stage with a tri-axial precision force sensor is used to find the parameters of the linear regression model and characterize the proposed taxel. The results are analysed to see to what extent the goal has been reached in this specific implementation.
Stratospheric Ozone Trends and Variability as Seen by SCIAMACHY from 2002 to 2012
NASA Technical Reports Server (NTRS)
Gebhardt, C.; Rozanov, A.; Hommel, R.; Weber, M.; Bovensmann, H.; Burrows, J. P.; Degenstein, D.; Froidevaux, L.; Thompson, A. M.
2014-01-01
Vertical profiles of the rate of linear change (trend) in the altitude range 15-50 km are determined from decadal O3 time series obtained from SCIAMACHY/ENVISAT measurements in limb-viewing geometry. The trends are calculated by using a multivariate linear regression. Seasonal variations, the quasi-biennial oscillation, signatures of the solar cycle and the El Nino-Southern Oscillation are accounted for in the regression. The time range of trend calculation is August 2002-April 2012. A focus for analysis are the zonal bands of 20 deg N - 20 deg S (tropics), 60 - 50 deg N, and 50 - 60 deg S (midlatitudes). In the tropics, positive trends of up to 5% per decade between 20 and 30 km and negative trends of up to 10% per decade between 30 and 38 km are identified. Positive O3 trends of around 5% per decade are found in the upper stratosphere in the tropics and at midlatitudes. Comparisons between SCIAMACHY and EOS MLS show reasonable agreement both in the tropics and at midlatitudes for most altitudes. In the tropics, measurements from OSIRIS/Odin and SHADOZ are also analysed. These yield rates of linear change of O3 similar to those from SCIAMACHY. However, the trends from SCIAMACHY near 34 km in the tropics are larger than MLS and OSIRIS by a factor of around two.
Pre-natal exposures to cocaine and alcohol and physical growth patterns to age 8 years
Lumeng, Julie C.; Cabral, Howard J.; Gannon, Katherine; Heeren, Timothy; Frank, Deborah A.
2007-01-01
Two hundred and two primarily African American/Caribbean children (classified by maternal report and infant meconium as 38 heavier, 74 lighter and 89 not cocaine-exposed) were measured repeatedly from birth to age 8 years to assess whether there is an independent effect of prenatal cocaine exposure on physical growth patterns. Children with fetal alcohol syndrome identifiable at birth were excluded. At birth, cocaine and alcohol exposures were significantly and independently associated with lower weight, length and head circumference in cross-sectional multiple regression analyses. The relationship over time of pre-natal exposures to weight, height, and head circumference was then examined by multiple linear regression using mixed linear models including covariates: child’s gestational age, gender, ethnicity, age at assessment, current caregiver, birth mother’s use of alcohol, marijuana and tobacco during the pregnancy and pre-pregnancy weight (for child’s weight) and height (for child’s height and head circumference). The cocaine effects did not persist beyond infancy in piecewise linear mixed models, but a significant and independent negative effect of pre-natal alcohol exposure persisted for weight, height, and head circumference. Catch-up growth in cocaine-exposed infants occurred primarily by 6 months of age for all growth parameters, with some small fluctuations in growth rates in the preschool age range but no detectable differences between heavier versus unexposed nor lighter versus unexposed thereafter. PMID:17412558
Linking brain-wide multivoxel activation patterns to behaviour: Examples from language and math.
Raizada, Rajeev D S; Tsao, Feng-Ming; Liu, Huei-Mei; Holloway, Ian D; Ansari, Daniel; Kuhl, Patricia K
2010-05-15
A key goal of cognitive neuroscience is to find simple and direct connections between brain and behaviour. However, fMRI analysis typically involves choices between many possible options, with each choice potentially biasing any brain-behaviour correlations that emerge. Standard methods of fMRI analysis assess each voxel individually, but then face the problem of selection bias when combining those voxels into a region-of-interest, or ROI. Multivariate pattern-based fMRI analysis methods use classifiers to analyse multiple voxels together, but can also introduce selection bias via data-reduction steps as feature selection of voxels, pre-selecting activated regions, or principal components analysis. We show here that strong brain-behaviour links can be revealed without any voxel selection or data reduction, using just plain linear regression as a classifier applied to the whole brain at once, i.e. treating each entire brain volume as a single multi-voxel pattern. The brain-behaviour correlations emerged despite the fact that the classifier was not provided with any information at all about subjects' behaviour, but instead was given only the neural data and its condition-labels. Surprisingly, more powerful classifiers such as a linear SVM and regularised logistic regression produce very similar results. We discuss some possible reasons why the very simple brain-wide linear regression model is able to find correlations with behaviour that are as strong as those obtained on the one hand from a specific ROI and on the other hand from more complex classifiers. In a manner which is unencumbered by arbitrary choices, our approach offers a method for investigating connections between brain and behaviour which is simple, rigorous and direct. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Cognitive flexibility correlates with gambling severity in young adults.
Leppink, Eric W; Redden, Sarah A; Chamberlain, Samuel R; Grant, Jon E
2016-10-01
Although gambling disorder (GD) is often characterized as a problem of impulsivity, compulsivity has recently been proposed as a potentially important feature of addictive disorders. The present analysis assessed the neurocognitive and clinical relationship between compulsivity on gambling behavior. A sample of 552 non-treatment seeking gamblers age 18-29 was recruited from the community for a study on gambling in young adults. Gambling severity levels included both casual and disordered gamblers. All participants completed the Intra/Extra-Dimensional Set Shift (IED) task, from which the total adjusted errors were correlated with gambling severity measures, and linear regression modeling was used to assess three error measures from the task. The present analysis found significant positive correlations between problems with cognitive flexibility and gambling severity (reflected by the number of DSM-5 criteria, gambling frequency, amount of money lost in the past year, and gambling urge/behavior severity). IED errors also showed a positive correlation with self-reported compulsive behavior scores. A significant correlation was also found between IED errors and non-planning impulsivity from the BIS. Linear regression models based on total IED errors, extra-dimensional (ED) shift errors, or pre-ED shift errors indicated that these factors accounted for a significant portion of the variance noted in several variables. These findings suggest that cognitive flexibility may be an important consideration in the assessment of gamblers. Results from correlational and linear regression analyses support this possibility, but the exact contributions of both impulsivity and cognitive flexibility remain entangled. Future studies will ideally be able to assess the longitudinal relationships between gambling, compulsivity, and impulsivity, helping to clarify the relative contributions of both impulsive and compulsive features. Copyright © 2016 Elsevier Ltd. All rights reserved.
Socio-economic factors associated with infant mortality in Italy: an ecological study.
Dallolio, Laura; Di Gregori, Valentina; Lenzi, Jacopo; Franchino, Giuseppe; Calugi, Simona; Domenighetti, Gianfranco; Fantini, Maria Pia
2012-08-16
One issue that continues to attract the attention of public health researchers is the possible relationship in high-income countries between income, income inequality and infant mortality (IM). The aim of this study was to assess the associations between IM and major socio-economic determinants in Italy. Associations between infant mortality rates in the 20 Italian regions (2006-2008) and the Gini index of income inequality, mean household income, percentage of women with at least 8 years of education, and percentage of unemployed aged 15-64 years were assessed using Pearson correlation coefficients. Univariate linear regression and multiple stepwise linear regression analyses were performed to determine the magnitude and direction of the effect of the four socio-economic variables on IM. The Gini index and the total unemployment rate showed a positive strong correlation with IM (r = 0.70; p < 0.001 and r = 0.84; p < 0.001 respectively), mean household income showed a strong negative correlation (r = -0.78; p < 0.001), while female educational attainment presented a weak negative correlation (r = -0.45; p < 0.05). Using a multiple stepwise linear regression model, only unemployment rate was independently associated with IM (b = 0.15, p < 0.001). In Italy, a high-income country where health care is universally available, variations in IM were strongly associated with relative and absolute income and unemployment rate. These results suggest that in Italy IM is not only related to income distribution, as demonstrated for other developed countries, but also to economic factors such as absolute income and unemployment. In order to reduce IM and the existing inequalities, the challenge for Italian decision makers is to promote economic growth and enhance employment levels.
Evaluation of job satisfaction and working atmosphere of dental nurses in Germany.
Goetz, Katja; Hasse, Philipp; Campbell, Stephen M; Berger, Sarah; Dörfer, Christof E; Hahn, Karolin; Szecsenyi, Joachim
2016-02-01
The purpose of the study was to assess the level of job satisfaction of dental nurses in ambulatory care and to explore the impact of aspects of working atmosphere on and their association with job satisfaction. This cross-sectional study was based on a job satisfaction survey. Data were collected from 612 dental nurses working in 106 dental care practices. Job satisfaction was measured with the 10-item Warr-Cook-Wall job satisfaction scale. Working atmosphere was measured with five items. Linear regression analyses were performed in which each item of the job satisfaction scale was handled as dependent variables. A stepwise linear regression analysis was performed with overall job satisfaction and the five items of working atmosphere, job satisfaction, and individual characteristics. The response rate was 88.3%. Dental nurses were satisfied with 'colleagues' and least satisfied with 'income.' Different aspects of job satisfaction were mostly associated with the following working atmosphere issues: 'responsibilities within the practice team are clear,' 'suggestions for improvement are taken seriously,' 'working atmosphere in the practice team is good,' and 'made easier to admit own mistakes.' Within the stepwise linear regression analysis, the aspect 'physical working condition' (β = 0.304) showed the highest association with overall job satisfaction. The total explained variance of the 14 associated variables was 0.722 with overall job satisfaction. Working atmosphere within this discrete sample of dental care practice seemed to be an important influence on reported working condition and job satisfaction for dental nurses. Because of the high association of job satisfaction with physical working condition, the importance of paying more attention to an ergonomic working position for dental nurses to ensure optimal quality of care is highlighted. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Linking brain-wide multivoxel activation patterns to behaviour: Examples from language and math
Raizada, Rajeev D.S.; Tsao, Feng-Ming; Liu, Huei-Mei; Holloway, Ian D.; Ansari, Daniel; Kuhl, Patricia K.
2010-01-01
A key goal of cognitive neuroscience is to find simple and direct connections between brain and behaviour. However, fMRI analysis typically involves choices between many possible options, with each choice potentially biasing any brain–behaviour correlations that emerge. Standard methods of fMRI analysis assess each voxel individually, but then face the problem of selection bias when combining those voxels into a region-of-interest, or ROI. Multivariate pattern-based fMRI analysis methods use classifiers to analyse multiple voxels together, but can also introduce selection bias via data-reduction steps as feature selection of voxels, pre-selecting activated regions, or principal components analysis. We show here that strong brain–behaviour links can be revealed without any voxel selection or data reduction, using just plain linear regression as a classifier applied to the whole brain at once, i.e. treating each entire brain volume as a single multi-voxel pattern. The brain–behaviour correlations emerged despite the fact that the classifier was not provided with any information at all about subjects' behaviour, but instead was given only the neural data and its condition-labels. Surprisingly, more powerful classifiers such as a linear SVM and regularised logistic regression produce very similar results. We discuss some possible reasons why the very simple brain-wide linear regression model is able to find correlations with behaviour that are as strong as those obtained on the one hand from a specific ROI and on the other hand from more complex classifiers. In a manner which is unencumbered by arbitrary choices, our approach offers a method for investigating connections between brain and behaviour which is simple, rigorous and direct. PMID:20132896
Job strain and resting heart rate: a cross-sectional study in a Swedish random working sample.
Eriksson, Peter; Schiöler, Linus; Söderberg, Mia; Rosengren, Annika; Torén, Kjell
2016-03-05
Numerous studies have reported an association between stressing work conditions and cardiovascular disease. However, more evidence is needed, and the etiological mechanisms are unknown. Elevated resting heart rate has emerged as a possible risk factor for cardiovascular disease, but little is known about the relation to work-related stress. This study therefore investigated the association between job strain, job control, and job demands and resting heart rate. We conducted a cross-sectional survey of randomly selected men and women in Västra Götalandsregionen, Sweden (West county of Sweden) (n = 1552). Information about job strain, job demands, job control, heart rate and covariates was collected during the period 2001-2004 as part of the INTERGENE/ADONIX research project. Six different linear regression models were used with adjustments for gender, age, BMI, smoking, education, and physical activity in the fully adjusted model. Job strain was operationalized as the log-transformed ratio of job demands over job control in the statistical analyses. No associations were seen between resting heart rate and job demands. Job strain was associated with elevated resting heart rate in the unadjusted model (linear regression coefficient 1.26, 95 % CI 0.14 to 2.38), but not in any of the extended models. Low job control was associated with elevated resting heart rate after adjustments for gender, age, BMI, and smoking (linear regression coefficient -0.18, 95 % CI -0.30 to -0.02). However, there were no significant associations in the fully adjusted model. Low job control and job strain, but not job demands, were associated with elevated resting heart rate. However, the observed associations were modest and may be explained by confounding effects.
Sick of our loans: Student borrowing and the mental health of young adults in the United States.
Walsemann, Katrina M; Gee, Gilbert C; Gentile, Danielle
2015-01-01
Student loans are increasingly important and commonplace, especially among recent cohorts of young adults in the United States. These loans facilitate the acquisition of human capital in the form of education, but may also lead to stress and worries related to repayment. This study investigated two questions: 1) what is the association between the cumulative amount of student loans borrowed over the course of schooling and psychological functioning when individuals are 25-31 years old; and 2) what is the association between annual student loan borrowing and psychological functioning among currently enrolled college students? We also examined whether these relationships varied by parental wealth, college enrollment history (e.g. 2-year versus 4-year college), and educational attainment (for cumulative student loans only). We analyzed data from the National Longitudinal Survey of Youth 1997 (NLSY97), a nationally representative sample of young adults in the United States. Analyses employed multivariate linear regression and within-person fixed-effects models. Student loans were associated with poorer psychological functioning, adjusting for covariates, in both the multivariate linear regression and the within-person fixed effects models. This association varied by level of parental wealth in the multivariate linear regression models only, and did not vary by college enrollment history or educational attainment. The present findings raise novel questions for further research regarding student loan debt and the possible spillover effects on other life circumstances, such as occupational trajectories and health inequities. The study of student loans is even more timely and significant given the ongoing rise in the costs of higher education. Copyright © 2014 Elsevier Ltd. All rights reserved.
Remotely sensing wheat maturation with radar
NASA Technical Reports Server (NTRS)
Bush, T. F.; Ulaby, F. T.
1975-01-01
The scattering properties of wheat were studied in the 8-18 GHz band as a function of frequency, polarization, incidence angle, and crop maturity. Supporting ground truth was collected at the time of measurement. The data indicate that the radar backscattering coefficient is sensitive to both radar system parameters and crop characteristics particularly at incidence angles near nadir. Linear regression analyses of the radar backscattering coefficient on both time and plant moisture content result in rather good correlation. Furthermore, by calculating the average time rate of change of the radar backscattering coefficient it is found that it undergoes rapid variations shortly before and after the wheat is harvested. Both of these analyses suggest methods for estimating wheat maturity and for monitoring the progress of harvest.
Bomfim, Rafael Aiello; Crosato, Edgard; Mazzilli, Luiz Eugênio Nigro; Frias, Antonio Carlos
2015-01-01
This study evaluates the prevalence and risk factors of non-carious cervical lesions (NCCLs) in a Brazilian population of workers exposed and non-exposed to acid mists and chemical products. One hundred workers (46 exposed and 54 non-exposed) were evaluated in a Centro de Referência em Saúde do Trabalhador - CEREST (Worker's Health Reference Center). The workers responded to questionnaires regarding their personal information and about alcohol consumption and tobacco use. A clinical examination was conducted to evaluate the presence of NCCLs, according to WHO parameters. Statistical analyses were performed by unconditional logistic regression and multiple linear regression, with the critical level of p < 0.05. NCCLs were significantly associated with age groups (18-34, 35-44, 45-68 years). The unconditional logistic regression showed that the presence of NCCLs was better explained by age group (OR = 4.04; CI 95% 1.77-9.22) and occupational exposure to acid mists and chemical products (OR = 3.84; CI 95% 1.10-13.49), whereas the linear multiple regression revealed that NCCLs were better explained by years of smoking (p = 0.01) and age group (p = 0.04). The prevalence of NCCLs in the study population was particularly high (76.84%), and the risk factors for NCCLs were age, exposure to acid mists and smoking habit. Controlling risk factors through preventive and educative measures, allied to the use of personal protective equipment to prevent the occupational exposure to acid mists, may contribute to minimizing the prevalence of NCCLs.
Hartmann, Bettina; Leucht, Verena; Loerbroks, Adrian
2017-03-01
Research has suggested that psychological stress is positively associated with asthma morbidity. One major source of stress in adulthood is one's occupation. However, to date, potential links of work stress with asthma control or asthma-specific quality of life have not been examined. We aimed to address this knowledge gap. In 2014/2015, we conducted a cross-sectional study among adults with asthma in Germany (n = 362). For the current analyses that sample was restricted to participants in employment and reporting to have never been diagnosed with chronic obstructive pulmonary disease (n = 94). Work stress was operationalized by the 16-item effort-reward-imbalance (ERI) questionnaire, which measures the subcomponents "effort", "reward" and "overcommitment." Participants further completed the Asthma Control Test and the Asthma Quality of Life Questionnaire-Sydney. Multivariable associations were quantified by linear regression and logistic regression. Effort, reward and their ratio (i.e. ERI ratio) did not show meaningful associations with asthma morbidity. By contrast, increasing levels of overcommitment were associated with poorer asthma control and worse quality of life in both linear regression (ß = -0.26, p = 0.01 and ß = 0.44, p < 0.01, respectively) and logistic regression (odds ratio [OR] = 1.87, 95% confidence interval [CI] = 1.14-3.07 and OR = 2.34, 95% CI = 1.32-4.15, respectively). The present study provides initial evidence of a positive relationship of work-related overcommitment with asthma control and asthma-specific quality of life. Longitudinal studies with larger samples are needed to confirm our findings and to disentangle the potential causality of associations.
Effect of Malmquist bias on correlation studies with IRAS data base
NASA Technical Reports Server (NTRS)
Verter, Frances
1993-01-01
The relationships between galaxy properties in the sample of Trinchieri et al. (1989) are reexamined with corrections for Malmquist bias. The linear correlations are tested and linear regressions are fit for log-log plots of L(FIR), L(H-alpha), and L(B) as well as ratios of these quantities. The linear correlations for Malmquist bias are corrected using the method of Verter (1988), in which each galaxy observation is weighted by the inverse of its sampling volume. The linear regressions are corrected for Malmquist bias by a new method invented here in which each galaxy observation is weighted by its sampling volume. The results of correlation and regressions among the sample are significantly changed in the anticipated sense that the corrected correlation confidences are lower and the corrected slopes of the linear regressions are lower. The elimination of Malmquist bias eliminates the nonlinear rise in luminosity that has caused some authors to hypothesize additional components of FIR emission.
Estimates of Median Flows for Streams on the 1999 Kansas Surface Water Register
Perry, Charles A.; Wolock, David M.; Artman, Joshua C.
2004-01-01
The Kansas State Legislature, by enacting Kansas Statute KSA 82a?2001 et. seq., mandated the criteria for determining which Kansas stream segments would be subject to classification by the State. One criterion for the selection as a classified stream segment is based on the statistic of median flow being equal to or greater than 1 cubic foot per second. As specified by KSA 82a?2001 et. seq., median flows were determined from U.S. Geological Survey streamflow-gaging-station data by using the most-recent 10 years of gaged data (KSA) for each streamflow-gaging station. Median flows also were determined by using gaged data from the entire period of record (all-available hydrology, AAH). Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating median flows for uncontrolled stream segments. The drainage area of the gaging stations on uncontrolled stream segments used in the regression analyses ranged from 2.06 to 12,004 square miles. A logarithmic transformation of the data was needed to develop the best linear relation for computing median flows. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. Tobit analyses of KSA data yielded a model standard error of prediction of 0.285 logarithmic units, and the best equations using Tobit analyses of AAH data had a model standard error of prediction of 0.250 logarithmic units. These regression equations and an interpolation procedure were used to compute median flows for the uncontrolled stream segments on the 1999 Kansas Surface Water Register. Measured median flows from gaging stations were incorporated into the regression-estimated median flows along the stream segments where available. The segments that were uncontrolled were interpolated using gaged data weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled segments of Kansas streams, the median flow information was interpolated between gaging stations using only gaged data weighted by drainage area. Of the 2,232 total stream segments on the Kansas Surface Water Register, 34.5 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second when the KSA analysis was used. When the AAH analysis was used, 36.2 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second. This report supercedes U.S. Geological Survey Water-Resources Investigations Report 02?4292.
Zhang, Fang; Wagner, Anita K; Soumerai, Stephen B; Ross-Degnan, Dennis
2009-02-01
Interrupted time series (ITS) is a strong quasi-experimental research design, which is increasingly applied to estimate the effects of health services and policy interventions. We describe and illustrate two methods for estimating confidence intervals (CIs) around absolute and relative changes in outcomes calculated from segmented regression parameter estimates. We used multivariate delta and bootstrapping methods (BMs) to construct CIs around relative changes in level and trend, and around absolute changes in outcome based on segmented linear regression analyses of time series data corrected for autocorrelated errors. Using previously published time series data, we estimated CIs around the effect of prescription alerts for interacting medications with warfarin on the rate of prescriptions per 10,000 warfarin users per month. Both the multivariate delta method (MDM) and the BM produced similar results. BM is preferred for calculating CIs of relative changes in outcomes of time series studies, because it does not require large sample sizes when parameter estimates are obtained correctly from the model. Caution is needed when sample size is small.
A primer for biomedical scientists on how to execute model II linear regression analysis.
Ludbrook, John
2012-04-01
1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.
Deriving Hounsfield units using grey levels in cone beam computed tomography
Mah, P; Reeves, T E; McDavid, W D
2010-01-01
Objectives An in vitro study was performed to investigate the relationship between grey levels in dental cone beam CT (CBCT) and Hounsfield units (HU) in CBCT scanners. Methods A phantom containing 8 different materials of known composition and density was imaged with 11 different dental CBCT scanners and 2 medical CT scanners. The phantom was scanned under three conditions: phantom alone and phantom in a small and large water container. The reconstructed data were exported as Digital Imaging and Communications in Medicine (DICOM) and analysed with On Demand 3D® by Cybermed, Seoul, Korea. The relationship between grey levels and linear attenuation coefficients was investigated. Results It was demonstrated that a linear relationship between the grey levels and the attenuation coefficients of each of the materials exists at some “effective” energy. From the linear regression equation of the reference materials, attenuation coefficients were obtained for each of the materials and CT numbers in HU were derived using the standard equation. Conclusions HU can be derived from the grey levels in dental CBCT scanners using linear attenuation coefficients as an intermediate step. PMID:20729181
ERIC Educational Resources Information Center
Rocconi, Louis M.
2013-01-01
This study examined the differing conclusions one may come to depending upon the type of analysis chosen, hierarchical linear modeling or ordinary least squares (OLS) regression. To illustrate this point, this study examined the influences of seniors' self-reported critical thinking abilities three ways: (1) an OLS regression with the student…
Have the temperature time series a structural change after 1998?
NASA Astrophysics Data System (ADS)
Werner, Rolf; Valev, Dimitare; Danov, Dimitar
2012-07-01
The global and hemisphere temperature GISS and Hadcrut3 time series were analysed for structural changes. We postulate the continuity of the preceding temperature function depending from the time. The slopes are calculated for a sequence of segments limited by time thresholds. We used a standard method, the restricted linear regression with dummy variables. We performed the calculations and tests for different number of thresholds. The thresholds are searched continuously in determined time intervals. The F-statistic is used to obtain the time points of the structural changes.
Miller, Nathan; Prevatt, Frances
2017-10-01
The purpose of this study was to reexamine the latent structure of ADHD and sluggish cognitive tempo (SCT) due to issues with construct validity. Two proposed changes to the construct include viewing hyperactivity and sluggishness (hypoactivity) as a single continuum of activity level, and viewing inattention as a separate dimension from activity level. Data were collected from 1,398 adults using Amazon's MTurk. A new scale measuring activity level was developed, and scores of Inattention were regressed onto scores of Activity Level using curvilinear regression. The Activity Level scale showed acceptable levels of internal consistency, normality, and unimodality. Curvilinear regression indicates that a quadratic (curvilinear) model accurately explains a small but significant portion of the variance in levels of inattention. Hyperactivity and hypoactivity may be viewed as a continuum, rather than separate disorders. Inattention may have a U-shaped relationship with activity level. Linear analyses may be insufficient and inaccurate for studying ADHD.
Huntington, Susie; Thorne, Claire; Anderson, Jane; Newell, Marie-Louise; Taylor, Graham P; Pillay, Deenan; Hill, Teresa; Tookey, Pat; Sabin, Caroline
2014-03-04
Short-term zidovudine monotherapy (ZDVm) remains an option for some pregnant HIV-positive women not requiring treatment for their own health but may affect treatment responses once antiretroviral therapy (ART) is subsequently started. Data were obtained by linking two UK studies: the UK Collaborative HIV Cohort (UK CHIC) study and the National Study of HIV in Pregnancy and Childhood (NSHPC). Treatment responses were assessed for 2028 women initiating ART at least one year after HIV-diagnosis. Outcomes were compared using logistic regression, proportional hazards regression or linear regression. In adjusted analyses, ART-naïve (n = 1937) and ZDVm-experienced (n = 91) women had similar increases in CD4 count and a similar proportion achieving virological suppression; both groups had a low risk of AIDS. In this setting, antenatal ZDVm exposure did not adversely impact on outcomes once ART was initiated for the woman's health.
Revisiting the relationship between managed care and hospital consolidation.
Town, Robert J; Wholey, Douglas; Feldman, Roger; Burns, Lawton R
2007-02-01
This paper analyzes whether the rise in managed care during the 1990s caused the increase in hospital concentration. We assemble data from the American Hospital Association, InterStudy and government censuses from 1990 to 2000. We employ linear regression analyses on long differenced data to estimate the impact of managed care penetration on hospital consolidation. Instrumental variable analogs of these regressions are also analyzed to control for potential endogeneity. All data are from secondary sources merged at the level of the Health Care Services Area. In 1990, the mean population-weighted hospital Herfindahl-Hirschman index (HHI) in a Health Services Area was .19. By 2000, the HHI had risen to .26. Most of this increase in hospital concentration is due to hospital consolidation. Over the same time frame HMO penetration increased three fold. However, our regression analysis strongly implies that the rise of managed care did not cause the hospital consolidation wave. This finding is robust to a number of different specifications.
The arcsine is asinine: the analysis of proportions in ecology.
Warton, David I; Hui, Francis K C
2011-01-01
The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods.
Revisiting the Relationship between Managed Care and Hospital Consolidation
Town, Robert J; Wholey, Douglas; Feldman, Roger; Burns, Lawton R
2007-01-01
Objective This paper analyzes whether the rise in managed care during the 1990s caused the increase in hospital concentration. Data Sources We assemble data from the American Hospital Association, InterStudy and government censuses from 1990 to 2000. Study Design We employ linear regression analyses on long differenced data to estimate the impact of managed care penetration on hospital consolidation. Instrumental variable analogs of these regressions are also analyzed to control for potential endogeneity. Data Collection All data are from secondary sources merged at the level of the Health Care Services Area. Principle Findings In 1990, the mean population-weighted hospital Herfindahl–Hirschman index (HHI) in a Health Services Area was .19. By 2000, the HHI had risen to .26. Most of this increase in hospital concentration is due to hospital consolidation. Over the same time frame HMO penetration increased three fold. However, our regression analysis strongly implies that the rise of managed care did not cause the hospital consolidation wave. This finding is robust to a number of different specifications. PMID:17355590
Schmidt, Rebecca J; Hansen, Robin L; Hartiala, Jaana; Allayee, Hooman; Sconberg, Jaime L; Schmidt, Linda C; Volk, Heather E; Tassone, Flora
2015-08-01
Vitamin D is essential for proper neurodevelopment and cognitive and behavioral function. We examined associations between autism spectrum disorder (ASD) and common, functional polymorphisms in vitamin D pathways. Children aged 24-60 months enrolled from 2003 to 2009 in the population-based CHARGE case-control study were evaluated clinically and confirmed to have ASD (n=474) or typical development (TD, n=281). Maternal, paternal, and child DNA samples for 384 (81%) families of children with ASD and 234 (83%) families of TD children were genotyped for: TaqI, BsmI, FokI, and Cdx2 in the vitamin D receptor (VDR) gene, and CYP27B1 rs4646536, GC rs4588, and CYP2R1 rs10741657. Case-control logistic regression, family-based log-linear, and hybrid log-linear analyses were conducted to produce risk estimates and 95% confidence intervals (CI) for each allelic variant. Paternal VDR TaqI homozygous variant genotype was significantly associated with ASD in case-control analysis (odds ratio [OR] [CI]: 6.3 [1.9-20.7]) and there was a trend towards increased risk associated with VDR BsmI (OR [CI]: 4.7 [1.6-13.4]). Log-linear triad analyses detected parental imprinting, with greater effects of paternally-derived VDR alleles. Child GC AA-genotype/A-allele was associated with ASD in log-linear and ETDT analyses. A significant association between decreased ASD risk and child CYP2R1 AA-genotype was found in hybrid log-linear analysis. There were limitations of low statistical power for less common alleles due to missing paternal genotypes. This study provides preliminary evidence that paternal and child vitamin D metabolism could play a role in the etiology of ASD; further research in larger study populations is warranted. Copyright © 2015. Published by Elsevier Ireland Ltd.
Estimating energy expenditure from heart rate in older adults: a case for calibration.
Schrack, Jennifer A; Zipunnikov, Vadim; Goldsmith, Jeff; Bandeen-Roche, Karen; Crainiceanu, Ciprian M; Ferrucci, Luigi
2014-01-01
Accurate measurement of free-living energy expenditure is vital to understanding changes in energy metabolism with aging. The efficacy of heart rate as a surrogate for energy expenditure is rooted in the assumption of a linear function between heart rate and energy expenditure, but its validity and reliability in older adults remains unclear. To assess the validity and reliability of the linear function between heart rate and energy expenditure in older adults using different levels of calibration. Heart rate and energy expenditure were assessed across five levels of exertion in 290 adults participating in the Baltimore Longitudinal Study of Aging. Correlation and random effects regression analyses assessed the linearity of the relationship between heart rate and energy expenditure and cross-validation models assessed predictive performance. Heart rate and energy expenditure were highly correlated (r=0.98) and linear regardless of age or sex. Intra-person variability was low but inter-person variability was high, with substantial heterogeneity of the random intercept (s.d. =0.372) despite similar slopes. Cross-validation models indicated individual calibration data substantially improves accuracy predictions of energy expenditure from heart rate, reducing the potential for considerable measurement bias. Although using five calibration measures provided the greatest reduction in the standard deviation of prediction errors (1.08 kcals/min), substantial improvement was also noted with two (0.75 kcals/min). These findings indicate standard regression equations may be used to make population-level inferences when estimating energy expenditure from heart rate in older adults but caution should be exercised when making inferences at the individual level without proper calibration.
Random regression analyses using B-spline functions to model growth of Nellore cattle.
Boligon, A A; Mercadante, M E Z; Lôbo, R B; Baldi, F; Albuquerque, L G
2012-02-01
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
Kanamori, Shogo; Castro, Marcia C.; Sow, Seydou; Matsuno, Rui; Cissokho, Alioune; Jimba, Masamine
2016-01-01
Background The 5S method is a lean management tool for workplace organization, with 5S being an abbreviation for five Japanese words that translate to English as Sort, Set in Order, Shine, Standardize, and Sustain. In Senegal, the 5S intervention program was implemented in 10 health centers in two regions between 2011 and 2014. Objective To identify the impact of the 5S intervention program on the satisfaction of clients (patients and caretakers) who visited the health centers. Design A standardized 5S intervention protocol was implemented in the health centers using a quasi-experimental separate pre-post samples design (four intervention and three control health facilities). A questionnaire with 10 five-point Likert items was used to measure client satisfaction. Linear regression analysis was conducted to identify the intervention's effect on the client satisfaction scores, represented by an equally weighted average of the 10 Likert items (Cronbach's alpha=0.83). Additional regression analyses were conducted to identify the intervention's effect on the scores of each Likert item. Results Backward stepwise linear regression (n=1,928) indicated a statistically significant effect of the 5S intervention, represented by an increase of 0.19 points in the client satisfaction scores in the intervention group, 6 to 8 months after the intervention (p=0.014). Additional regression analyses showed significant score increases of 0.44 (p=0.002), 0.14 (p=0.002), 0.06 (p=0.019), and 0.17 (p=0.044) points on four items, which, respectively were healthcare staff members’ communication, explanations about illnesses or cases, and consultation duration, and clients’ overall satisfaction. Conclusions The 5S has the potential to improve client satisfaction at resource-poor health facilities and could therefore be recommended as a strategic option for improving the quality of healthcare service in low- and middle-income countries. To explore more effective intervention modalities, further studies need to address the mechanisms by which 5S leads to attitude changes in healthcare staff. PMID:27900932
ERIC Educational Resources Information Center
Rocconi, Louis M.
2011-01-01
Hierarchical linear models (HLM) solve the problems associated with the unit of analysis problem such as misestimated standard errors, heterogeneity of regression and aggregation bias by modeling all levels of interest simultaneously. Hierarchical linear modeling resolves the problem of misestimated standard errors by incorporating a unique random…
ERIC Educational Resources Information Center
Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.
2006-01-01
Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…
[Influence of humidex on incidence of bacillary dysentery in Hefei: a time-series study].
Zhang, H; Zhao, K F; He, R X; Zhao, D S; Xie, M Y; Wang, S S; Bai, L J; Cheng, Q; Zhang, Y W; Su, H
2017-11-10
Objective: To investigate the effect of humidex combined with mean temperature and relative humidity on the incidence of bacillary dysentery in Hefei. Methods: Daily counts of bacillary dysentery cases and weather data in Hefei were collected from January 1, 2006 to December 31, 2013. Then, the humidex was calculated from temperature and relative humidity. A Poisson generalized linear regression combined with distributed lag non-linear model was applied to analyze the relationship between humidex and the incidence of bacillary dysentery, after adjusting for long-term and seasonal trends, day of week and other weather confounders. Stratified analyses by gender, age and address were also conducted. Results: The risk of bacillary dysentery increased with the rise of humidex. The adverse effect of high humidex (90 percentile of humidex) appeared in 2-days lag and it was the largest at 4-days lag ( RR =1.063, 95 %CI : 1.037-1.090). Subgroup analyses indicated that all groups were affected by high humidex at lag 2-5 days. Conclusion: High humidex could significantly increase the risk of bacillary dysentery, and the lagged effects were observed.
Prospective Associations Among Assets and Successful Transition to Early Adulthood
Vesely, Sara K.; Aspy, Cheryl B.; Tolma, Eleni L.
2015-01-01
Objectives. We investigated prospective associations among assets (e.g., family communication), which research has shown to protect youths from risk behavior, and successful transition to early adulthood (STEA). Methods. We included participants (n = 651) aged 18 years and older at study wave 5 (2007–2008) of the Youth Asset Study, in the Oklahoma City, Oklahoma, metro area, in the analyses. We categorized 14 assets into individual-, family-, or community-level groups. We included asset groups assessed at wave 1 (2003–2004) in linear regression analyses to predict STEA 4 years later at wave 5. Results. Individual- and community-level assets significantly (P < .05) predicted STEA 4 years later and the associations were generally linear, indicating that the more assets participants possessed the better the STEA outcome. There was a gender interaction for family-level assets suggesting that family-level assets were significant predictors of STEA for males but not for females. Conclusions. Public health programming should focus on community- and family-level youth assets as well as individual-level youth assets to promote positive health outcomes in early adulthood. PMID:25393188
Classical Testing in Functional Linear Models.
Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab
2016-01-01
We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications.
Classical Testing in Functional Linear Models
Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab
2016-01-01
We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications. PMID:28955155
Musuku, Adrien; Tan, Aimin; Awaiye, Kayode; Trabelsi, Fethi
2013-09-01
Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore, examples are given as how to evaluate the linearity over the entire concentration range when only two concentration levels are used for linear regression. To conclude, two-concentration linear regression is accurate and robust enough for routine use in regulated LC-MS bioanalysis and it significantly saves time and cost as well. Copyright © 2013 Elsevier B.V. All rights reserved.
A Linear Regression and Markov Chain Model for the Arabian Horse Registry
1993-04-01
as a tax deduction? Yes No T-4367 68 26. Regardless of previous equine tax deductions, do you consider your current horse activities to be... (Mark one...E L T-4367 A Linear Regression and Markov Chain Model For the Arabian Horse Registry Accesion For NTIS CRA&I UT 7 4:iC=D 5 D-IC JA" LI J:13tjlC,3 lO...the Arabian Horse Registry, which needed to forecast its future registration of purebred Arabian horses . A linear regression model was utilized to
Changes in Clavicle Length and Maturation in Americans: 1840-1980.
Langley, Natalie R; Cridlin, Sandra
2016-01-01
Secular changes refer to short-term biological changes ostensibly due to environmental factors. Two well-documented secular trends in many populations are earlier age of menarche and increasing stature. This study synthesizes data on maximum clavicle length and fusion of the medial epiphysis in 1840-1980 American birth cohorts to provide a comprehensive assessment of developmental and morphological change in the clavicle. Clavicles from the Hamann-Todd Human Osteological Collection (n = 354), McKern and Stewart Korean War males (n = 341), Forensic Anthropology Data Bank (n = 1,239), and the McCormick Clavicle Collection (n = 1,137) were used in the analysis. Transition analysis was used to evaluate fusion of the medial epiphysis (scored as unfused, fusing, or fused). Several statistical treatments were used to assess fluctuations in maximum clavicle length. First, Durbin-Watson tests were used to evaluate autocorrelation, and a local regression (LOESS) was used to identify visual shifts in the regression slope. Next, piecewise regression was used to fit linear regression models before and after the estimated breakpoints. Multiple starting parameters were tested in the range determined to contain the breakpoint, and the model with the smallest mean squared error was chosen as the best fit. The parameters from the best-fit models were then used to derive the piecewise models, which were compared with the initial simple linear regression models to determine which model provided the best fit for the secular change data. The epiphyseal union data indicate a decline in the age at onset of fusion since the early twentieth century. Fusion commences approximately four years earlier in mid- to late twentieth-century birth cohorts than in late nineteenth- and early twentieth-century birth cohorts. However, fusion is completed at roughly the same age across cohorts. The most significant decline in age at onset of epiphyseal union appears to have occurred since the mid-twentieth century. LOESS plots show a breakpoint in the clavicle length data around the mid-twentieth century in both sexes, and piecewise regression models indicate a significant decrease in clavicle length in the American population after 1940. The piecewise model provides a slightly better fit than the simple linear model. Since the model standard error is not substantially different from the piecewise model, an argument could be made to select the less complex linear model. However, we chose the piecewise model to detect changes in clavicle length that are overfitted with a linear model. The decrease in maximum clavicle length is in line with a documented narrowing of the American skeletal form, as shown by analyses of cranial and facial breadth and bi-iliac breadth of the pelvis. Environmental influences on skeletal form include increases in body mass index, health improvements, improved socioeconomic status, and elimination of infectious diseases. Secular changes in bony dimensions and skeletal maturation stipulate that medical and forensic standards used to deduce information about growth, health, and biological traits must be derived from modern populations.
Prediction of pork quality parameters by applying fractals and data mining on MRI.
Caballero, Daniel; Pérez-Palacios, Trinidad; Caro, Andrés; Amigo, José Manuel; Dahl, Anders B; ErsbØll, Bjarne K; Antequera, Teresa
2017-09-01
This work firstly investigates the use of MRI, fractal algorithms and data mining techniques to determine pork quality parameters non-destructively. The main objective was to evaluate the capability of fractal algorithms (Classical Fractal algorithm, CFA; Fractal Texture Algorithm, FTA and One Point Fractal Texture Algorithm, OPFTA) to analyse MRI in order to predict quality parameters of loin. In addition, the effect of the sequence acquisition of MRI (Gradient echo, GE; Spin echo, SE and Turbo 3D, T3D) and the predictive technique of data mining (Isotonic regression, IR and Multiple linear regression, MLR) were analysed. Both fractal algorithm, FTA and OPFTA are appropriate to analyse MRI of loins. The sequence acquisition, the fractal algorithm and the data mining technique seems to influence on the prediction results. For most physico-chemical parameters, prediction equations with moderate to excellent correlation coefficients were achieved by using the following combinations of acquisition sequences of MRI, fractal algorithms and data mining techniques: SE-FTA-MLR, SE-OPFTA-IR, GE-OPFTA-MLR, SE-OPFTA-MLR, with the last one offering the best prediction results. Thus, SE-OPFTA-MLR could be proposed as an alternative technique to determine physico-chemical traits of fresh and dry-cured loins in a non-destructive way with high accuracy. Copyright © 2017. Published by Elsevier Ltd.
An improved multiple linear regression and data analysis computer program package
NASA Technical Reports Server (NTRS)
Sidik, S. M.
1972-01-01
NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.
A parameter estimation subroutine package
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Nead, M. W.
1978-01-01
Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. In this report we document a library of FORTRAN subroutines that have been developed to facilitate analyses of a variety of estimation problems. Our purpose is to present an easy to use, multi-purpose set of algorithms that are reasonably efficient and which use a minimal amount of computer storage. Subroutine inputs, outputs, usage and listings are given along with examples of how these routines can be used. The following outline indicates the scope of this report: Section (1) introduction with reference to background material; Section (2) examples and applications; Section (3) subroutine directory summary; Section (4) the subroutine directory user description with input, output, and usage explained; and Section (5) subroutine FORTRAN listings. The routines are compact and efficient and are far superior to the normal equation and Kalman filter data processing algorithms that are often used for least squares analyses.
Paternal Autonomy Restriction, Neighborhood Safety, and Child Anxiety Trajectory in Community Youth.
Cooper-Vince, Christine E; Chan, Priscilla T; Pincus, Donna B; Comer, Jonathan S
2014-07-01
Intrusive parenting, primarily examined among middle to upper-middle class mothers, has been positively associated with the presence and severity of anxiety in children. This study employed cross-sectional linear regression and longitudinal latent growth curve analyses to evaluate the main and interactive effects of early childhood paternal autonomy restriction (AR) and neighborhood safety (NS) on the trajectory of child anxiety in a sample of 596 community children and fathers from the NICHD SECYD. Longitudinal analyses revealed that greater paternal AR at age 6 was actually associated with greater decreases in child anxiety in later childhood. Cross-sectional analyses revealed main effects for NS across childhood, and interactive effects of paternal AR and NS that were present only in early childhood, whereby children living in safer neighborhoods demonstrated increased anxiety when experiencing lower levels of paternal AR. Findings further clarify for whom and when paternal AR impacts child anxiety in community youth.
Paternal Autonomy Restriction, Neighborhood Safety, and Child Anxiety Trajectory in Community Youth
Cooper-Vince, Christine E.; Chan, Priscilla T.; Pincus, Donna B.; Comer, Jonathan S.
2014-01-01
Intrusive parenting, primarily examined among middle to upper-middle class mothers, has been positively associated with the presence and severity of anxiety in children. This study employed cross-sectional linear regression and longitudinal latent growth curve analyses to evaluate the main and interactive effects of early childhood paternal autonomy restriction (AR) and neighborhood safety (NS) on the trajectory of child anxiety in a sample of 596 community children and fathers from the NICHD SECYD. Longitudinal analyses revealed that greater paternal AR at age 6 was actually associated with greater decreases in child anxiety in later childhood. Cross-sectional analyses revealed main effects for NS across childhood, and interactive effects of paternal AR and NS that were present only in early childhood, whereby children living in safer neighborhoods demonstrated increased anxiety when experiencing lower levels of paternal AR. Findings further clarify for whom and when paternal AR impacts child anxiety in community youth. PMID:25242837
Knibbe, Ronald A; Derickx, Mieke; Allamani, Allaman; Massini, Giulia
2014-10-01
to establish which unplanned (social developments) and planned (alcohol policy measures) factors are related to per capita consumption and alcohol-related harms in the Netherlands. linear regression was used to establish which of the planned and unplanned factors were most strongly connected with alcohol consumption and harms. Artificial Neural Analysis (ANN) was used to inspect the interconnections between all variables. mothers age at birth was most strongly associated with increase in consumption. The ban on selling alcoholic beverages at petrol station was associated with a decrease in consumption. The linear regression of harms did not show any relation between alcohol policy measures and harms. The ANN-analyses indicate a very high interconnectedness between all variables allowing no causal inferences. Exceptions are the relation between price of beer and wine and the consumption of these beverages and the relation between a decrease in transport mortality and the increased use of breathalyzers tests and a restriction of paracommercial selling. unplanned factors are most strongly associated with per capita consumption and harms. ANN-analysis indicates that price of alcoholic beverages, breath testing, and restriction of sales may have had some influence. The study's limitations are noted.
The Correlation Between Metacognition Level with Self-Efficacy of Biology Education College Students
NASA Astrophysics Data System (ADS)
Ridlo, S.; Lutfiya, F.
2017-04-01
Self-efficacy is a strong predictor of academic achievement. Self-efficacy refers to the ability of college students to achieve the desired results. The metacognition level can influence college student’s self-efficacy. This study aims to identify college student’s metacognition level and self-efficacy, as well as determine the relationship between self-efficacy and metacognition level for college students of Biology Education 2013, Semarang State University. The ex-post facto quantitative research was conducted on 99 students Academic Year 2015/2016. Saturation sampling technique determined samples. E-D scale collected data for self-efficacy identification. Data for assess the metacognition level collected by Metacognitive Awareness Inventory. Data were analysed quantitatively by Pearson correlation and linear regression. Most college students have the high level of metacognition and average self-efficacy. Pearson correlation coefficient result was 0.367. This result showed that metacognition level and self-efficacy has a weak relationship. Based on linear regression test, self-efficacy influenced by metacognition level up to 13.5%. The results of the study showed that positive and significant relationships exist between metacognition level and self-efficacy. Therefore, if the metacognition level is high, then self-efficacy will also be high (appropriate).
A comparative look at sunspot cycles
NASA Technical Reports Server (NTRS)
Wilson, R. M.
1984-01-01
On the basis of cycles 8 through 20, spanning about 143 years, observations of sunspot number, smoothed sunspot number, and their temporal properties were used to compute means, standard deviations, ranges, and frequency of occurrence histograms for a number of sunspot cycle parameters. The resultant schematic sunspot cycle was contrasted with the mean sunspot cycle, obtained by averaging smoothed sunspot number as a function of time, tying all cycles (8 through 20) to their minimum occurence date. A relatively good approximation of the time variation of smoothed sunspot number for a given cycle is possible if sunspot cycles are regarded in terms of being either HIGH- or LOW-R(MAX) cycles or LONG- or SHORT-PERIOD cycles, especially the latter. Linear regression analyses were performed comparing late cycle parameters with early cycle parameters and solar cycle number. The early occurring cycle parameters can be used to estimate later occurring cycle parameters with relatively good success, based on cycle 21 as an example. The sunspot cycle record clearly shows that the trend for both R(MIN) and R(MAX) was toward decreasing value between cycles 8 through 14 and toward increasing value between cycles 14 through 20. Linear regression equations were also obtained for several measures of solar activity.
Education, Genetic Ancestry, and Blood Pressure in African Americans and Whites
Gravlee, Clarence C.; Mulligan, Connie J.
2012-01-01
Objectives. We assessed the relative roles of education and genetic ancestry in predicting blood pressure (BP) within African Americans and explored the association between education and BP across racial groups. Methods. We used t tests and linear regressions to examine the associations of genetic ancestry, estimated from a genomewide set of autosomal markers, and education with BP variation among African Americans in the Family Blood Pressure Program. We also performed linear regressions in self-identified African Americans and Whites to explore the association of education with BP across racial groups. Results. Education, but not genetic ancestry, significantly predicted BP variation in the African American subsample (b = −0.51 mm Hg per year additional education; P = .001). Although education was inversely associated with BP in the total population, within-group analyses showed that education remained a significant predictor of BP only among the African Americans. We found a significant interaction (b = 3.20; P = .006) between education and self-identified race in predicting BP. Conclusions. Racial disparities in BP may be better explained by differences in education than by genetic ancestry. Future studies of ancestry and disease should include measures of the social environment. PMID:22698014
A flexible count data regression model for risk analysis.
Guikema, Seth D; Coffelt, Jeremy P; Goffelt, Jeremy P
2008-02-01
In many cases, risk and reliability analyses involve estimating the probabilities of discrete events such as hardware failures and occurrences of disease or death. There is often additional information in the form of explanatory variables that can be used to help estimate the likelihood of different numbers of events in the future through the use of an appropriate regression model, such as a generalized linear model. However, existing generalized linear models (GLM) are limited in their ability to handle the types of variance structures often encountered in using count data in risk and reliability analysis. In particular, standard models cannot handle both underdispersed data (variance less than the mean) and overdispersed data (variance greater than the mean) in a single coherent modeling framework. This article presents a new GLM based on a reformulation of the Conway-Maxwell Poisson (COM) distribution that is useful for both underdispersed and overdispersed count data and demonstrates this model by applying it to the assessment of electric power system reliability. The results show that the proposed COM GLM can provide as good of fits to data as the commonly used existing models for overdispered data sets while outperforming these commonly used models for underdispersed data sets.
O'Connor, Clare; O'Higgins, Amy; Doolan, Anne; Segurado, Ricardo; Stuart, Bernard; Turner, Michael J; Kennelly, Máireád M
2014-01-01
The objective of this investigation was to study fetal thigh volume throughout gestation and explore its correlation with birth weight and neonatal body composition. This novel technique may improve birth weight prediction and lead to improved detection rates for fetal growth restriction. Fractional thigh volume (TVol) using 3D ultrasound, fetal biometry and soft tissue thickness were studied longitudinally in 42 mother-infant pairs. The percentages of neonatal body fat, fat mass and fat-free mass were determined using air displacement plethysmography. Correlation and linear regression analyses were performed. Linear regression analysis showed an association between TVol and birth weight. TVol at 33 weeks was also associated with neonatal fat-free mass. There was no correlation between TVol and neonatal fat mass. Abdominal circumference, estimated fetal weight (EFW) and EFW centile showed consistent correlations with birth weight. Thigh volume demonstrated an additional independent contribution to birth weight prediction when added to the EFW centile from the 38-week scan (p = 0.03). Fractional TVol performed at 33 weeks gestation is correlated with birth weight and neonatal lean body mass. This screening test may highlight those at risk of fetal growth restriction or macrosomia.
Serum Iron Level Is Associated with Time to Antibiotics in Cystic Fibrosis.
Gifford, Alex H; Dorman, Dana B; Moulton, Lisa A; Helm, Jennifer E; Griffin, Mary M; MacKenzie, Todd A
2015-12-01
Serum levels of hepcidin-25, a peptide hormone that reduces blood iron content, are elevated when patients with cystic fibrosis (CF) develop pulmonary exacerbation (PEx). Because hepcidin-25 is unavailable as a clinical laboratory test, we questioned whether a one-time serum iron level was associated with the subsequent number of days until PEx, as defined by the need to receive systemic antibiotics (ABX) for health deterioration. Clinical, biochemical, and microbiological parameters were simultaneously checked in 54 adults with CF. Charts were reviewed to determine when they first experienced a PEx after these parameters were assessed. Time to ABX was compared in subgroups with and without specific attributes. Multivariate linear regression was used to identify parameters that significantly explained variation in time to ABX. In univariate analyses, time to ABX was significantly shorter in subjects with Aspergillus-positive sputum cultures and CF-related diabetes. Multivariate linear regression models demonstrated that shorter time to ABX was associated with younger age, lower serum iron level, and Aspergillus sputum culture positivity. Serum iron, age, and Aspergillus sputum culture positivity are factors associated with shorter time to subsequent PEx in CF adults. © 2015 Wiley Periodicals, Inc.
Outsourcing primary health care services--how politicians explain the grounds for their decisions.
Laamanen, Ritva; Simonsen-Rehn, Nina; Suominen, Sakari; Øvretveit, John; Brommels, Mats
2008-12-01
To explore outsourcing of primary health care (PHC) services in four municipalities in Finland with varying amounts and types of outsourcing: a Southern municipality (SM) which contracted all PHC services to a not-for-profit voluntary organization, and Eastern (EM), South-Western (SWM) and Western (WM) municipalities which had contracted out only a few services to profit or public organizations. A mail survey to all municipality politicians (response rate 52%, N=101) in 2004. Data were analyzed using cross-tabulations, Spearman correlation and linear regression analyses. Politicians were willing to outsource PHC services only partially, and many problems relating to outsourcing were reported. Politicians in all municipalities were least likely to outsource preventive services. A multiple linear regression model showed that reported preference to outsource in EM and in SWM was lower than in SM, and also lower among politicians from "leftist" political parties than "rightist" political parties. Perceived difficulties in local health policy issues were related to reduced preference to outsource. The model explained 27% of the variance of the inclination to outsource PHC services. The findings highlight how important it is to take into account local health policy issues when assessing service-provision models.
Education, genetic ancestry, and blood pressure in African Americans and Whites.
Non, Amy L; Gravlee, Clarence C; Mulligan, Connie J
2012-08-01
We assessed the relative roles of education and genetic ancestry in predicting blood pressure (BP) within African Americans and explored the association between education and BP across racial groups. We used t tests and linear regressions to examine the associations of genetic ancestry, estimated from a genomewide set of autosomal markers, and education with BP variation among African Americans in the Family Blood Pressure Program. We also performed linear regressions in self-identified African Americans and Whites to explore the association of education with BP across racial groups. Education, but not genetic ancestry, significantly predicted BP variation in the African American subsample (b=-0.51 mm Hg per year additional education; P=.001). Although education was inversely associated with BP in the total population, within-group analyses showed that education remained a significant predictor of BP only among the African Americans. We found a significant interaction (b=3.20; P=.006) between education and self-identified race in predicting BP. Racial disparities in BP may be better explained by differences in education than by genetic ancestry. Future studies of ancestry and disease should include measures of the social environment.
NASA Astrophysics Data System (ADS)
Wang, Wei; Zhong, Ming; Cheng, Ling; Jin, Lu; Shen, Si
2018-02-01
In the background of building global energy internet, it has both theoretical and realistic significance for forecasting and analysing the ratio of electric energy to terminal energy consumption. This paper firstly analysed the influencing factors of the ratio of electric energy to terminal energy and then used combination method to forecast and analyse the global proportion of electric energy. And then, construct the cointegration model for the proportion of electric energy by using influence factor such as electricity price index, GDP, economic structure, energy use efficiency and total population level. At last, this paper got prediction map of the proportion of electric energy by using the combination-forecasting model based on multiple linear regression method, trend analysis method, and variance-covariance method. This map describes the development trend of the proportion of electric energy in 2017-2050 and the proportion of electric energy in 2050 was analysed in detail using scenario analysis.
Biostatistics Series Module 6: Correlation and Linear Regression.
Hazra, Avijit; Gogtay, Nithya
2016-01-01
Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.
Biostatistics Series Module 6: Correlation and Linear Regression
Hazra, Avijit; Gogtay, Nithya
2016-01-01
Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient (r). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation (y = a + bx), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous. PMID:27904175
Gaskin, Cadeyrn J; Happell, Brenda
2014-05-01
To (a) assess the statistical power of nursing research to detect small, medium, and large effect sizes; (b) estimate the experiment-wise Type I error rate in these studies; and (c) assess the extent to which (i) a priori power analyses, (ii) effect sizes (and interpretations thereof), and (iii) confidence intervals were reported. Statistical review. Papers published in the 2011 volumes of the 10 highest ranked nursing journals, based on their 5-year impact factors. Papers were assessed for statistical power, control of experiment-wise Type I error, reporting of a priori power analyses, reporting and interpretation of effect sizes, and reporting of confidence intervals. The analyses were based on 333 papers, from which 10,337 inferential statistics were identified. The median power to detect small, medium, and large effect sizes was .40 (interquartile range [IQR]=.24-.71), .98 (IQR=.85-1.00), and 1.00 (IQR=1.00-1.00), respectively. The median experiment-wise Type I error rate was .54 (IQR=.26-.80). A priori power analyses were reported in 28% of papers. Effect sizes were routinely reported for Spearman's rank correlations (100% of papers in which this test was used), Poisson regressions (100%), odds ratios (100%), Kendall's tau correlations (100%), Pearson's correlations (99%), logistic regressions (98%), structural equation modelling/confirmatory factor analyses/path analyses (97%), and linear regressions (83%), but were reported less often for two-proportion z tests (50%), analyses of variance/analyses of covariance/multivariate analyses of variance (18%), t tests (8%), Wilcoxon's tests (8%), Chi-squared tests (8%), and Fisher's exact tests (7%), and not reported for sign tests, Friedman's tests, McNemar's tests, multi-level models, and Kruskal-Wallis tests. Effect sizes were infrequently interpreted. Confidence intervals were reported in 28% of papers. The use, reporting, and interpretation of inferential statistics in nursing research need substantial improvement. Most importantly, researchers should abandon the misleading practice of interpreting the results from inferential tests based solely on whether they are statistically significant (or not) and, instead, focus on reporting and interpreting effect sizes, confidence intervals, and significance levels. Nursing researchers also need to conduct and report a priori power analyses, and to address the issue of Type I experiment-wise error inflation in their studies. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Shaffer, Kelly M; Jacobs, Jamie M; Nipp, Ryan D; Carr, Alaina; Jackson, Vicki A; Park, Elyse R; Pirl, William F; El-Jawahri, Areej; Gallagher, Emily R; Greer, Joseph A; Temel, Jennifer S
2017-03-01
Caregiver, relational, and patient factors have been associated with the health of family members and friends providing care to patients with early-stage cancer. Little research has examined whether findings extend to family caregivers of patients with incurable cancer, who experience unique and substantial caregiving burdens. We examined correlates of mental and physical health among caregivers of patients with newly-diagnosed incurable lung or non-colorectal gastrointestinal cancer. At baseline for a trial of early palliative care, caregivers of participating patients (N = 275) reported their mental and physical health (Medical Outcome Survey-Short Form-36); patients reported their quality of life (Functional Assessment of Cancer Therapy-General). Analyses used hierarchical linear regression with two-tailed significance tests. Caregivers' mental health was worse than the U.S. national population (M = 44.31, p < .001), yet their physical health was better (M = 56.20, p < .001). Hierarchical regression analyses testing caregiver, relational, and patient factors simultaneously revealed that younger (B = 0.31, p = .001), spousal caregivers (B = -8.70, p = .003), who cared for patients reporting low emotional well-being (B = 0.51, p = .01) reported worse mental health; older (B = -0.17, p = .01) caregivers with low educational attainment (B = 4.36, p < .001) who cared for patients reporting low social well-being (B = 0.35, p = .05) reported worse physical health. In this large sample of family caregivers of patients with incurable cancer, caregiver demographics, relational factors, and patient-specific factors were all related to caregiver mental health, while caregiver demographics were primarily associated with caregiver physical health. These findings help identify characteristics of family caregivers at highest risk of poor mental and physical health who may benefit from greater supportive care.
Gíslason, Magnús; Sigurðsson, Sigurður; Guðnason, Vilmundur; Harris, Tamara; Carraro, Ugo; Gargiulo, Paolo
2018-01-01
Sarcopenic muscular degeneration has been consistently identified as an independent risk factor for mortality in aging populations. Recent investigations have realized the quantitative potential of computed tomography (CT) image analysis to describe skeletal muscle volume and composition; however, the optimum approach to assessing these data remains debated. Current literature reports average Hounsfield unit (HU) values and/or segmented soft tissue cross-sectional areas to investigate muscle quality. However, standardized methods for CT analyses and their utility as a comorbidity index remain undefined, and no existing studies compare these methods to the assessment of entire radiodensitometric distributions. The primary aim of this study was to present a comparison of nonlinear trimodal regression analysis (NTRA) parameters of entire radiodensitometric muscle distributions against extant CT metrics and their correlation with lower extremity function (LEF) biometrics (normal/fast gait speed, timed up-and-go, and isometric leg strength) and biochemical and nutritional parameters, such as total solubilized cholesterol (SCHOL) and body mass index (BMI). Data were obtained from 3,162 subjects, aged 66–96 years, from the population-based AGES-Reykjavik Study. 1-D k-means clustering was employed to discretize each biometric and comorbidity dataset into twelve subpopulations, in accordance with Sturges’ Formula for Class Selection. Dataset linear regressions were performed against eleven NTRA distribution parameters and standard CT analyses (fat/muscle cross-sectional area and average HU value). Parameters from NTRA and CT standards were analogously assembled by age and sex. Analysis of specific NTRA parameters with standard CT results showed linear correlation coefficients greater than 0.85, but multiple regression analysis of correlative NTRA parameters yielded a correlation coefficient of 0.99 (P<0.005). These results highlight the specificities of each muscle quality metric to LEF biometrics, SCHOL, and BMI, and particularly highlight the value of the connective tissue regime in this regard. PMID:29513690
Edmunds, Kyle; Gíslason, Magnús; Sigurðsson, Sigurður; Guðnason, Vilmundur; Harris, Tamara; Carraro, Ugo; Gargiulo, Paolo
2018-01-01
Sarcopenic muscular degeneration has been consistently identified as an independent risk factor for mortality in aging populations. Recent investigations have realized the quantitative potential of computed tomography (CT) image analysis to describe skeletal muscle volume and composition; however, the optimum approach to assessing these data remains debated. Current literature reports average Hounsfield unit (HU) values and/or segmented soft tissue cross-sectional areas to investigate muscle quality. However, standardized methods for CT analyses and their utility as a comorbidity index remain undefined, and no existing studies compare these methods to the assessment of entire radiodensitometric distributions. The primary aim of this study was to present a comparison of nonlinear trimodal regression analysis (NTRA) parameters of entire radiodensitometric muscle distributions against extant CT metrics and their correlation with lower extremity function (LEF) biometrics (normal/fast gait speed, timed up-and-go, and isometric leg strength) and biochemical and nutritional parameters, such as total solubilized cholesterol (SCHOL) and body mass index (BMI). Data were obtained from 3,162 subjects, aged 66-96 years, from the population-based AGES-Reykjavik Study. 1-D k-means clustering was employed to discretize each biometric and comorbidity dataset into twelve subpopulations, in accordance with Sturges' Formula for Class Selection. Dataset linear regressions were performed against eleven NTRA distribution parameters and standard CT analyses (fat/muscle cross-sectional area and average HU value). Parameters from NTRA and CT standards were analogously assembled by age and sex. Analysis of specific NTRA parameters with standard CT results showed linear correlation coefficients greater than 0.85, but multiple regression analysis of correlative NTRA parameters yielded a correlation coefficient of 0.99 (P<0.005). These results highlight the specificities of each muscle quality metric to LEF biometrics, SCHOL, and BMI, and particularly highlight the value of the connective tissue regime in this regard.
Li, J C; Silverberg, J I
2015-11-01
Chickenpox infection early in childhood has previously been shown to protect against the development of childhood eczema in line with the hygiene hypothesis. In 1995, the American Academy of Pediatrics recommended routine vaccination against varicella zoster virus in the United States. Subsequently, rates of chickenpox infection have dramatically decreased in childhood. We sought to understand the impact of declining rates of chickenpox infection on the prevalence of eczema. We analysed data from 207 007 children in the 1997-2013 National Health Interview Survey. One-year prevalence of eczema and 'ever had' history of chickenpox were analysed. Associations between chickenpox infection and eczema were tested using survey-weighted logistic regression. The impact of chickenpox on trends of eczema prevalence was tested using survey logistic regression and generalized linear models. Children with a history of chickenpox compared with those without chickenpox had a lower prevalence [survey-weighted logistic regression (95% confidence interval, CI)] of eczema [8·8% (8·5-9·0%) vs. 10·6% (10·4-10·8%)]. In pooled multivariate models controlling for age, sex, race/ethnicity, household income, highest level of household education, insurance coverage, U.S. birthplace and family size, eczema was inversely associated with chickenpox [adjusted odds ratio (95% CI), 0·90 (0·86-0·94), P < 0·001]. The prevalence of eczema significantly increased over time (Tukey post-hoc test, P < 0·001 for comparisons of survey years 2001-13 vs. 1997-2000, 2008-13 vs. 2001-04 and 2008-13 vs. 2005-07). In multivariate generalized linear models, the odds of eczema was not associated with chickenpox in 2001-13 (P ≥ 0·06). These findings suggest that lower rates of chickenpox infection secondary to widespread vaccination against varicella zoster virus are not contributing to higher rates of childhood eczema in the U.S. © 2015 British Association of Dermatologists.
Lohr, Kristine M; Clauser, Amanda; Hess, Brian J; Gelber, Allan C; Valeriano-Marcet, Joanne; Lipner, Rebecca S; Haist, Steven A; Hawley, Janine L; Zirkle, Sarah; Bolster, Marcy B
2015-11-01
The American College of Rheumatology (ACR) Adult Rheumatology In-Training Examination (ITE) is a feedback tool designed to identify strengths and weaknesses in the content knowledge of individual fellows-in-training and the training program curricula. We determined whether scores on the ACR ITE, as well as scores on other major standardized medical examinations and competency-based ratings, could be used to predict performance on the American Board of Internal Medicine (ABIM) Rheumatology Certification Examination. Between 2008 and 2012, 629 second-year fellows took the ACR ITE. Bivariate correlation analyses of assessment scores and multiple linear regression analyses were used to determine whether ABIM Rheumatology Certification Examination scores could be predicted on the basis of ACR ITE scores, United States Medical Licensing Examination scores, ABIM Internal Medicine Certification Examination scores, fellowship directors' ratings of overall clinical competency, and demographic variables. Logistic regression was used to evaluate whether these assessments were predictive of a passing outcome on the Rheumatology Certification Examination. In the initial linear model, the strongest predictors of the Rheumatology Certification Examination score were the second-year fellows' ACR ITE scores (β = 0.438) and ABIM Internal Medicine Certification Examination scores (β = 0.273). Using a stepwise model, the strongest predictors of higher scores on the Rheumatology Certification Examination were second-year fellows' ACR ITE scores (β = 0.449) and ABIM Internal Medicine Certification Examination scores (β = 0.276). Based on the findings of logistic regression analysis, ACR ITE performance was predictive of a pass/fail outcome on the Rheumatology Certification Examination (odds ratio 1.016 [95% confidence interval 1.011-1.021]). The predictive value of the ACR ITE score with regard to predicting performance on the Rheumatology Certification Examination supports use of the Adult Rheumatology ITE as a valid feedback tool during fellowship training. © 2015, American College of Rheumatology.
ERIC Educational Resources Information Center
Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.
2013-01-01
This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)
Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.
2009-01-01
In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.
Synthesis, spectral studies and antimicrobial activities of some 2-naphthyl pyrazoline derivatives
NASA Astrophysics Data System (ADS)
Sakthinathan, S. P.; Vanangamudi, G.; Thirunarayanan, G.
A series of 2-naphthyl pyrazolines were synthesized by the cyclization of 2-naphthyl chalcones and phenylhydrazine hydrochloride in the presence of sodium acetate. The yields of pyrazoline derivatives are more than 80%. The synthesized pyrazolines were characterized by their physical constants, IR, 1H, 13C and MS spectra. From the IR and NMR spectra the Cdbnd N (cm-1) stretches, the pyrazoline ring proton chemical shifts (ppm) of δ, Hb and Hc and also the carbon chemical shifts (ppm) of δCdbnd N are correlated with Hammett substituent constants, F and R, and Swain-Lupton's parameters using single and multi-regression analyses. From the results of linear regression analysis, the effect of substituents on the group frequencies has been predicted. The antimicrobial activities of all synthesized pyrazolines have been studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qichun; Zhang, Xuesong; Xu, Xingya
Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less
Year-round measurements of CH4 exchange in a forested drained peatland using automated chambers
NASA Astrophysics Data System (ADS)
Korkiakoski, Mika; Koskinen, Markku; Penttilä, Timo; Arffman, Pentti; Ojanen, Paavo; Minkkinen, Kari; Laurila, Tuomas; Lohila, Annalea
2016-04-01
Pristine peatlands are usually carbon accumulating ecosystems and sources of methane (CH4). Draining peatlands for forestry increases the thickness of the oxic layer, thus enhancing CH4 oxidation which leads to decreased CH4 emissions. Closed chambers are commonly used in estimating the greenhouse gas exchange between the soil and the atmosphere. However, the closed chamber technique alters the gas concentration gradient making the concentration development against time non-linear. Selecting the correct fitting method is important as it can be the largest source of uncertainty in flux calculation. We measured CH4 exchange rates and their diurnal and seasonal variations in a nutrient-rich drained peatland located in southern Finland. The original fen was drained for forestry in 1970s and now the tree stand is a mixture of Scots pine, Norway spruce and Downy birch. Our system consisted of six transparent polycarbonate chambers and stainless steel frames, positioned on different types of field and moss layer. During winter, the frame was raised above the snowpack with extension collars and the height of the snowpack inside the chamber was measured regularly. The chambers were closed hourly and the sample gas was sucked into a cavity ring-down spectrometer and analysed for CH4, CO2 and H2O concentration with 5 second time resolution. The concentration change in time in the beginning of a closure was determined with linear and exponential fits. The results show that linear regression systematically underestimated the CH4 flux when compared to exponential regression by 20-50 %. On the other hand, the exponential regression seemed not to work reliably with small fluxes (< 3.5 μg CH4 m-2 h-1): using exponential regression in such cases typically resulted in anomalously large fluxes and high deviation. Due to these facts, we recommend first calculating the flux with the linear regression and, if the flux is high enough, calculate the flux again using the exponential regression and use this value in later analysis. The forest floor at the site (including the ground vegetation) acted as a CH4 sink most of the time. CH4 emission peaks were occasionally observed, particularly in spring during the snow melt, and during rainfall events in summer. Diurnal variation was observed mainly in summer. The net CH4 exchange for the two year measurement period in the six chambers varied from -31 to -155 mg CH4 m-2 yr-1, the average being -67 mg CH4 m-2 yr-1. However, this does not include the ditches which typically act as a significant source for CH4.
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.
2017-11-01
This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation
Intake of total and added sugars and nutrient dilution in Australian children and adolescents.
Louie, Jimmy Chun Yu; Tapsell, Linda C
2015-12-14
This analysis aimed to examine the association between intake of sugars (total or added) and nutrient intake with data from a recent Australian national nutrition survey, the 2007 Australian National Children's Nutrition and Physical Activity Survey (2007ANCNPAS). Data from participants (n 4140; 51 % male) who provided 2×plausible 24-h recalls were included in the analysis. The values on added sugars for foods were estimated using a previously published ten-step systematic methodology. Reported intakes of nutrients and foods defined in the 2007ANCNPAS were analysed by age- and sex-specific quintiles of %energy from added sugars (%EAS) or %energy from total sugars (%ETS) using ANCOVA. Linear trends across the quintiles were examined using multiple linear regression. Logistic regression analysis was used to calculate the OR of not meeting a specified nutrient reference values for Australia and New Zealand per unit in %EAS or %ETS. Analyses were adjusted for age, sex, BMI z-score and total energy intake. Small but significant negative associations were seen between %EAS and the intakes of most nutrient intakes (all P<0·001). For %ETS the associations with nutrient intakes were inconsistent; even then they were smaller than that for %EAS. In general, higher intakes of added sugars were associated with lower intakes of most nutrient-rich, 'core' food groups and higher intakes of energy-dense, nutrient-poor 'extra' foods. In conclusion, assessing intakes of added sugars may be a better approach for addressing issues of diet quality compared with intakes of total sugars.
Neuner, Bruno; von Mackensen, Sylvia; Holzhauer, Susanne; Funk, Stephanie; Klamroth, Robert; Kurnik, Karin; Krümpel, Anne; Halimeh, Susan; Reinke, Sarah; Frühwald, Michael; Nowak-Göttl, Ulrike
2016-01-01
Objectives. To investigate self-reported health-related quality of life (HrQoL) in children and adolescents with chronic medical conditions compared with siblings/peers. Methods. Group 1 (6 treatment centers) consisted of 74 children/adolescents aged 8–16 years with hereditary bleeding disorders (HBD), 12 siblings, and 34 peers. Group 2 (one treatment center) consisted of 70 children/adolescents with stroke/transient ischemic attack, 14 siblings, and 72 peers. HrQoL was assessed with the “revised KINDer Lebensqualitätsfragebogen” (KINDL-R) questionnaire. Multivariate analyses within groups were done by one-way ANOVA and post hoc pairwise single comparisons by Student's t-tests. Adjusted pairwise comparisons were done by hierarchical linear regressions with individuals nested within treatment centers (group 1) and by linear regressions (group 2), respectively. Results. No differences were found in multivariate analyses of self-reported HrQoL in group 1, while in group 2 differences occurred in overall wellbeing and all subdimensions. These differences were due to differences between patients and peers. After adjusting for age, gender, number of siblings, and treatment center these differences persisted regarding self-worth (p = .0040) and friend-related wellbeing (p < .001). Conclusions. In children with HBD, HrQoL was comparable to siblings and peers. In children with stroke/TIA HrQoL was comparable to siblings while peers, independently of relevant confounder, showed better self-worth and friend-related wellbeing. PMID:27294108
Bové, Kira Bang; Watt, Torquil; Vogel, Asmus; Hegedüs, Laszlo; Bjoerner, Jakob Bue; Groenvold, Mogens; Bonnema, Steen Joop; Rasmussen, Åse Krogh; Feldt-Rasmussen, Ulla
2014-09-01
Graves' disease has been associated with an increased psychiatric morbidity. It is unclarified whether this relates to Graves' disease or chronic disease per se. The aim of our study was to estimate the prevalence of anxiety and depression symptoms in patients with Graves' disease compared to patients with another chronic thyroid disease, nodular goitre, and to investigate determinants of anxiety and depression in Graves' disease. 157 cross-sectionally sampled patients with Graves' disease, 17 newly diagnosed, 140 treated, and 251 controls with nodular goitre completed the Hospital Anxiety and Depression Scale (HADS). The differences in the mean HADS scores between the groups were analysed using multiple linear regression, controlling for socio-demographic variables. HADS scores were also analysed dichotomized: a score >10 indicating probable 'anxiety'/probable 'depression'. Determinants of anxiety and depression symptoms in Graves' disease were examined using multiple linear regression. In Graves' disease levels of anxiety (p = 0.008) and depression (p = 0.014) were significantly higher than in controls. The prevalence of depression was 10% in Graves' disease versus 4% in nodular goitre (p = 0.038), anxiety was 18 versus 13% (p = 0.131). Symptoms of anxiety (p = 0.04) and depression (p = 0.01) increased with comorbidity. Anxiety symptoms increased with duration of Graves' disease (p = 0.04). Neither thyroid function nor autoantibody levels were associated with anxiety and depression symptoms. Anxiety and depression symptoms were more severe in Graves' disease than in nodular goitre. Symptoms were positively correlated to comorbidity and duration of Graves' disease but neither to thyroid function nor thyroid autoimmunity.
Left frontal cortex connectivity underlies cognitive reserve in prodromal Alzheimer disease
Franzmeier, Nicolai; Duering, Marco; Weiner, Michael; Dichgans, Martin
2017-01-01
Objective: To test whether higher global functional connectivity of the left frontal cortex (LFC) in Alzheimer disease (AD) is associated with more years of education (a proxy of cognitive reserve [CR]) and mitigates the association between AD-related fluorodeoxyglucose (FDG)-PET hypometabolism and episodic memory. Methods: Forty-four amyloid-PET–positive patients with amnestic mild cognitive impairment (MCI-Aβ+) and 24 amyloid-PET–negative healthy controls (HC) were included. Voxel-based linear regression analyses were used to test the association between years of education and FDG-PET in MCI-Aβ+, controlled for episodic memory performance. Global LFC (gLFC) connectivity was computed through seed-based resting-state fMRI correlations between the LFC (seed) and each voxel in the gray matter. In linear regression analyses, education as a predictor of gLFC connectivity and the interaction of gLFC connectivity × FDG-PET hypometabolism on episodic memory were tested. Results: FDG-PET metabolism in the precuneus was reduced in MCI-Aβ+ compared to HC (p = 0.028), with stronger reductions observed in MCI-Aβ+ with more years of education (p = 0.006). In MCI-Aβ+, higher gLFC connectivity was associated with more years of education (p = 0.021). At higher levels of gLFC connectivity, the association between precuneus FDG-PET hypometabolism and lower memory performance was attenuated (p = 0.027). Conclusions: Higher gLFC connectivity is a functional substrate of CR that helps to maintain episodic memory relatively well in the face of emerging FDG-PET hypometabolism in early-stage AD. PMID:28188306
Sexual assault and other types of violence in intimate partner relationships.
Alsaker, Kjersti; Morken, Tone; Baste, Valborg; Campos-Serna, Javier; Moen, Bente E
2012-03-01
To investigate whether sexual assaults are more likely to co-occur with some types of abuse rather than others in violent intimate relationships. Cross-sectional study. A self-administered questionnaire was sent to all Norwegian women's shelters. Women seeking refuge at Norwegian women's shelters in 2002 and 2003. Sexual assault and experiences of intimate partner violence were measured using the Severity of Violence against Women Scale (SVAWS) and psychological violence was measured using the Psychological Maltreatment of Women Inventory (PMWI). Student's t-test analyses were performed between the mean values of the different acts of reported violence, and linear regression analyses were used to examine the association between sexual violence and the other forms of violence reported. Sexual violence correlated significantly with the other eight categories in SVAWS, and with violence directed at the pregnant woman's abdomen and psychological violence in PMWI. When we adjusted all categories for each other by linear regression analysis, sexual intimate partner violence was significantly associated with hair pulling, arm twisting, spanking or biting, dominance and isolation abuse and violence directed at the pregnant woman's abdomen. Sexual assaults are more likely to co-occur with some types of physical and psychological violence than with others. This knowledge may be important for improving our understanding of sexual violence in intimate partner relationships and in the efforts to detect intimate partner violence. Bruises, loss of hair and bite marks may suggest that sexual acts were committed against the victim's will. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.
Quality of search strategies reported in systematic reviews published in stereotactic radiosurgery.
Faggion, Clovis M; Wu, Yun-Chun; Tu, Yu-Kang; Wasiak, Jason
2016-06-01
Systematic reviews require comprehensive literature search strategies to avoid publication bias. This study aimed to assess and evaluate the reporting quality of search strategies within systematic reviews published in the field of stereotactic radiosurgery (SRS). Three electronic databases (Ovid MEDLINE(®), Ovid EMBASE(®) and the Cochrane Library) were searched to identify systematic reviews addressing SRS interventions, with the last search performed in October 2014. Manual searches of the reference lists of included systematic reviews were conducted. The search strategies of the included systematic reviews were assessed using a standardized nine-question form based on the Cochrane Collaboration guidelines and Assessment of Multiple Systematic Reviews checklist. Multiple linear regression analyses were performed to identify the important predictors of search quality. A total of 85 systematic reviews were included. The median quality score of search strategies was 2 (interquartile range = 2). Whilst 89% of systematic reviews reported the use of search terms, only 14% of systematic reviews reported searching the grey literature. Multiple linear regression analyses identified publication year (continuous variable), meta-analysis performance and journal impact factor (continuous variable) as predictors of higher mean quality scores. This study identified the urgent need to improve the quality of search strategies within systematic reviews published in the field of SRS. This study is the first to address how authors performed searches to select clinical studies for inclusion in their systematic reviews. Comprehensive and well-implemented search strategies are pivotal to reduce the chance of publication bias and consequently generate more reliable systematic review findings.
NASA Astrophysics Data System (ADS)
Bernales, A. M.; Antolihao, J. A.; Samonte, C.; Campomanes, F.; Rojas, R. J.; dela Serna, A. M.; Silapan, J.
2016-06-01
The threat of the ailments related to urbanization like heat stress is very prevalent. There are a lot of things that can be done to lessen the effect of urbanization to the surface temperature of the area like using green roofs or planting trees in the area. So land use really matters in both increasing and decreasing surface temperature. It is known that there is a relationship between land use land cover (LULC) and land surface temperature (LST). Quantifying this relationship in terms of a mathematical model is very important so as to provide a way to predict LST based on the LULC alone. This study aims to examine the relationship between LST and LULC as well as to create a model that can predict LST using class-level spatial metrics from LULC. LST was derived from a Landsat 8 image and LULC classification was derived from LiDAR and Orthophoto datasets. Class-level spatial metrics were created in FRAGSTATS with the LULC and LST as inputs and these metrics were analysed using a statistical framework. Multi linear regression was done to create models that would predict LST for each class and it was found that the spatial metric "Effective mesh size" was a top predictor for LST in 6 out of 7 classes. The model created can still be refined by adding a temporal aspect by analysing the LST of another farming period (for rural areas) and looking for common predictors between LSTs of these two different farming periods.
Left frontal cortex connectivity underlies cognitive reserve in prodromal Alzheimer disease.
Franzmeier, Nicolai; Duering, Marco; Weiner, Michael; Dichgans, Martin; Ewers, Michael
2017-03-14
To test whether higher global functional connectivity of the left frontal cortex (LFC) in Alzheimer disease (AD) is associated with more years of education (a proxy of cognitive reserve [CR]) and mitigates the association between AD-related fluorodeoxyglucose (FDG)-PET hypometabolism and episodic memory. Forty-four amyloid-PET-positive patients with amnestic mild cognitive impairment (MCI-Aβ+) and 24 amyloid-PET-negative healthy controls (HC) were included. Voxel-based linear regression analyses were used to test the association between years of education and FDG-PET in MCI-Aβ+, controlled for episodic memory performance. Global LFC (gLFC) connectivity was computed through seed-based resting-state fMRI correlations between the LFC (seed) and each voxel in the gray matter. In linear regression analyses, education as a predictor of gLFC connectivity and the interaction of gLFC connectivity × FDG-PET hypometabolism on episodic memory were tested. FDG-PET metabolism in the precuneus was reduced in MCI-Aβ+ compared to HC ( p = 0.028), with stronger reductions observed in MCI-Aβ+ with more years of education ( p = 0.006). In MCI-Aβ+, higher gLFC connectivity was associated with more years of education ( p = 0.021). At higher levels of gLFC connectivity, the association between precuneus FDG-PET hypometabolism and lower memory performance was attenuated ( p = 0.027). Higher gLFC connectivity is a functional substrate of CR that helps to maintain episodic memory relatively well in the face of emerging FDG-PET hypometabolism in early-stage AD. © 2017 American Academy of Neurology.
NASA Astrophysics Data System (ADS)
He, Baonan; He, Jiangtao; Wang, Jian; Li, Jie; Wang, Fei
2018-01-01
To understand greenhouse gas (GHG) flux in reclaimed water intake area impact on urban climate, 'static chamber' method was used to investigate the spatio-diurnal variations and the influence factors of GHG fluxes at water-air interface from Jian River to Chaobai River. Results showed that the average fluxes of CO2 from the Jian River and the Chaobai River were 73.46 mg(m2·h)-1 and -64.75 mg(m2·h)-1, respectively. CO2 was emitted the most in the Jian River, but it was absorbed from the atmosphere in the Chaobai River. Unary linear regression analyses demonstrated that Chlorophyll a (Chl a) and pH variation controlled the carbon source and sink from the Jian River to the Chaobai River. The diurnal variation of CO2 fluxes was higher at night than in the daytime in the Jian River, and it was the inverse in the Chaobai River, which highly correlated with dissociative CO2 and HCO3- transformation to CO32-. The average fluxes of CH4 from the Jian River and Chaobai River were 0.973 mg(m2·h)-1 and 5.556 mg(m2·h)-1, respectively, which increased along the water flow direction. Unary and multiple linear regression analyses demonstrated that Chl a and total organic carbon (TOC) controlled the increase of CH4 along the flow direction. The diurnal variation of CH4 fluxes was slightly higher in the daytime than at night due to the effect of water temperature.
Usefulness of the Trabecular Bone Score for assessing the risk of osteoporotic fracture.
Redondo, L; Puigoriol, E; Rodríguez, J R; Peris, P; Kanterewicz, E
2018-04-01
The trabecular bone score (TBS) is an imaging technique that assesses the condition of the trabecular microarchitecture. Preliminary results suggest that TBS, along with the bone mineral density assessment, could improve the calculation of the osteoporotic fracture risk. The aim of this study was to analyse TBS values and their relationship with the clinical characteristics, bone mineral density and history of fractures of a cohort of posmenopausal women. We analysed 2,257 posmenopausal women from the FRODOS cohort, which was created to determine the risk factors for osteoporotic fracture through a clinical survey and bone densitometry with vertebral morphometry. TBS was applied to the densitometry images. TBS values ≤1230 were considered indicative of degraded microarchitecture. We performed a simple and multiple linear regression to determine the factors associated with this index. The mean TBS value in L1-L4 was 1.203±0.121. Some 55.3% of the women showed values indicating degraded microarchitecture. In the multiple linear regression analysis, the factors associated with low TBS values were age, weight, height, spinal T-score, glucocorticoid treatment, presence of type 2 diabetes and a history of fractures due to frailty. TBS showed microarchitecture degradation values in the participants of the FRODOS cohort and was associated with anthropometric factors, low bone mineral density values, the presence of fractures, a history of type 2 diabetes mellitus and the use of glucocorticoids. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Glutamatergic system abnormalities in posttraumatic stress disorder.
Nishi, Daisuke; Hashimoto, Kenji; Noguchi, Hiroko; Hamazaki, Kei; Hamazaki, Tomohito; Matsuoka, Yutaka
2015-12-01
Accumulating evidence suggests involvement of the glutamatergic system in the biological mechanisms of posttraumatic stress disorder (PTSD), but few studies have demonstrated an association between glutamatergic system abnormalities and PTSD diagnosis or severity. We aimed to examine whether abnormalities in serum glutamate and in the glutamine/glutamate ratio were associated with PTSD diagnosis and severity in severely injured patients at risk for PTSD and major depressive disorder (MDD). This is a nested case-control study in TPOP (Tachikawa project for prevention of posttraumatic stress disorder with polyunsaturated fatty acid) trial. Diagnosis and severity of PTSD were assessed 3 months after the accidents using the Clinician-Administered PTSD Scale. The associations of glutamate levels and the glutamine/glutamate ratio with diagnosis and severity of PTSD and MDD were investigated by univariate and multiple linear regression analyses. Ninety-seven of 110 participants (88 %) completed assessments at 3 months. Serum glutamate levels were significantly higher for participants with full or partial PTSD than for participants without PTSD (p = 0.049) and for participants with MDD than for participants without MDD (p = 0.048). Multiple linear regression analyses showed serum glutamate levels were significantly positively associated with PTSD severity (p = 0.02) and MDD severity (p = 0.03). The glutamine/glutamate ratio was also significantly inversely associated with PTSD severity (p = 0.03), but not with MDD severity (p = 0.07). These findings suggest that the glutamatergic system may play a major role in the pathogenesis of PTSD and the need for new treatments targeting the glutamatergic system to be developed for PTSD.
Tea Consumption and Health-Related Quality of Life in Older Adults.
Pan, C-W; Ma, Q; Sun, H-P; Xu, Y; Luo, N; Wang, P
2017-01-01
Although tea consumption has been reported to have various health benefits in humans, its association with health-related quality of life (HRQOL) has not been investigated directly. We aimed to examine the relationship between tea consumption and HRQOL among older Chinese adults. We analyzed community-based cross-sectional data of 5,557 older Chinese individuals aged 60 years or older who participated in the Weitang Geriatric Diseases study. Information on tea consumption and HRQOL assessed by the European Quality of Life-5 dimensions (EQ-5D) were collected by questionnaires. We estimated the relationship of tea consumption and the EQ-5D index score using linear regression models and the association between tea consumption and self-reported EQ-5D health problems using logistic regression models. The EQ-5D index score was higher for habitual tea drinkers than their counterparts. In multivariate linear analyses controlling for socio-demographic conditions, health conditions, and lifestyle habits, the differences in ED-5D index score between individuals with and without tea drinking habits was 0.012 (95% confidence interval, 0.006-0.017). In multivariate logistic analyses, habitual tea drinking was inversely associated with reporting of problems in EQ-5D dimensions mobility (odds ration [OR], 0.44; 95% CI: 0.23-0.84); pain/discomfort (OR, 0.74; 95% CI: 0.61-0.90); and anxiety/depression (OR, 0.60; 95% CI: 0.38-0.97). These associations were more evident for black or oolong tea than green tea. Habitual tea consumption was associated with better HRQOL in older adults.
Zamba, Gideon K. D.; Artes, Paul H.
2018-01-01
Purpose It has been shown that threshold estimates below approximately 20 dB have little effect on the ability to detect visual field progression in glaucoma. We aimed to compare stimulus size V to stimulus size III, in areas of visual damage, to confirm these findings by using (1) a different dataset, (2) different techniques of progression analysis, and (3) an analysis to evaluate the effect of censoring on mean deviation (MD). Methods In the Iowa Variability in Perimetry Study, 120 glaucoma subjects were tested every 6 months for 4 years with size III SITA Standard and size V Full Threshold. Progression was determined with three complementary techniques: pointwise linear regression (PLR), permutation of PLR, and linear regression of the MD index. All analyses were repeated on “censored'' datasets in which threshold estimates below a given criterion value were set to equal the criterion value. Results Our analyses confirmed previous observations that threshold estimates below 20 dB contribute much less to visual field progression than estimates above this range. These findings were broadly similar with stimulus sizes III and V. Conclusions Censoring of threshold values < 20 dB has relatively little impact on the rates of visual field progression in patients with mild to moderate glaucoma. Size V, which has lower retest variability, performs at least as well as size III for longitudinal glaucoma progression analysis and appears to have a larger useful dynamic range owing to the upper sensitivity limit being higher. PMID:29356822
Boligon, A A; Baldi, F; Mercadante, M E Z; Lobo, R B; Pereira, R J; Albuquerque, L G
2011-06-28
We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression analyses, all female weight records from birth to eight years of age (data set I) were considered. From this general data set, a subset was created (data set II), which included only nine weight records: at birth, weaning, 365 and 550 days of age, and 2, 3, 4, 5, and 6 years of age. Data set II was analyzed using random regression and multi-trait models. The model of analysis included the contemporary group as fixed effects and age of dam as a linear and quadratic covariable. In the random regression analyses, average growth trends were modeled using a cubic regression on orthogonal polynomials of age. Residual variances were modeled by a step function with five classes. Legendre polynomials of fourth and sixth order were utilized to model the direct genetic and animal permanent environmental effects, respectively, while third-order Legendre polynomials were considered for maternal genetic and maternal permanent environmental effects. Quadratic polynomials were applied to model all random effects in random regression models on B-spline functions. Direct genetic and animal permanent environmental effects were modeled using three segments or five coefficients, and genetic maternal and maternal permanent environmental effects were modeled with one segment or three coefficients in the random regression models on B-spline functions. For both data sets (I and II), animals ranked differently according to expected breeding value obtained by random regression or multi-trait models. With random regression models, the highest gains in accuracy were obtained at ages with a low number of weight records. The results indicate that random regression models provide more accurate expected breeding values than the traditionally finite multi-trait models. Thus, higher genetic responses are expected for beef cattle growth traits by replacing a multi-trait model with random regression models for genetic evaluation. B-spline functions could be applied as an alternative to Legendre polynomials to model covariance functions for weights from birth to mature age.
GIS Tools to Estimate Average Annual Daily Traffic
DOT National Transportation Integrated Search
2012-06-01
This project presents five tools that were created for a geographical information system to estimate Annual Average Daily : Traffic using linear regression. Three of the tools can be used to prepare spatial data for linear regression. One tool can be...
Jose F. Negron; Willis C. Schaupp; Kenneth E. Gibson; John Anhold; Dawn Hansen; Ralph Thier; Phil Mocettini
1999-01-01
Data collected from Douglas-fir stands infected by the Douglas-fir beetle in Wyoming, Montana, Idaho, and Utah, were used to develop models to estimate amount of mortality in terms of basal area killed. Models were built using stepwise linear regression and regression tree approaches. Linear regression models using initial Douglas-fir basal area were built for all...
Ling, Ru; Liu, Jiawang
2011-12-01
To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.
Watanabe, Hiroyuki; Miyazaki, Hiroyasu
2006-01-01
Over- and/or under-correction of QT intervals for changes in heart rate may lead to misleading conclusions and/or masking the potential of a drug to prolong the QT interval. This study examines a nonparametric regression model (Loess Smoother) to adjust the QT interval for differences in heart rate, with an improved fitness over a wide range of heart rates. 240 sets of (QT, RR) observations collected from each of 8 conscious and non-treated beagle dogs were used as the materials for investigation. The fitness of the nonparametric regression model to the QT-RR relationship was compared with four models (individual linear regression, common linear regression, and Bazett's and Fridericia's correlation models) with reference to Akaike's Information Criterion (AIC). Residuals were visually assessed. The bias-corrected AIC of the nonparametric regression model was the best of the models examined in this study. Although the parametric models did not fit, the nonparametric regression model improved the fitting at both fast and slow heart rates. The nonparametric regression model is the more flexible method compared with the parametric method. The mathematical fit for linear regression models was unsatisfactory at both fast and slow heart rates, while the nonparametric regression model showed significant improvement at all heart rates in beagle dogs.
Lam, Lawrence T; Lam, Mary K
2017-12-01
To examine the association between financial literacy and Problematic Internet Shopping in adults. This cross-sectional online survey recruited participants, aged between 18 and 60 years, through an online research facility. The sample consisted of multinational participants from mainly three continents including Europe, North America, and Asia. Problematic Internet Shopping was assessed using the Bergen Shopping Addiction Scale (BSAS). Financial Literacy was measured by the Financial Literacy subscale of the Financial Wellbeing Questionnaire. Multiple linear regression analyses were conducted to elucidate the relationship between the study and outcome variables with adjustment for other potential risk factors. Of the total of 997 respondents with an average age of 30.9 (s.d. = 8.8), 135 (13.8%) could be classified as having a high risk of being Problematic Internet Shoppers. Results from the multiple regression analyses suggested a significant and negative relationship between financial literacy and Problematic Internet Shopping with a regression coefficient of - 0.13, after controlling for the effects of potential risk factors such as age, region of birth, employment, income, shopping frequency, self-regulation and anxiety (t = - 6.42, p < 0.001). The clinical management of PIS should include a financial counselling as a component of the treatment regime. Enhancement of financial literacy in the general population, particularly among young people, will likely have a positive effect on the occurrence of PIS.
Linear regression analysis: part 14 of a series on evaluation of scientific publications.
Schneider, Astrid; Hommel, Gerhard; Blettner, Maria
2010-11-01
Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.
Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William
2016-01-01
Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001) when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001) and slopes (p < 0.001) of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001), which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather than the coefficients. Moreover, use of cubic regression splines provides biological meaningful growth velocity and acceleration curves despite increased complexity in coefficient interpretation. Through this stepwise approach, we provide a set of tools to model longitudinal childhood data for non-statisticians using linear mixed-effect models.
The Association Between Health Program Participation and Employee Retention.
Mitchell, Rebecca J; Ozminkowski, Ronald J; Hartley, Stephen K
2016-09-01
Using health plan membership as a proxy for employee retention, the objective of this study was to examine whether use of health promotion programs was associated with employee retention. Propensity score weighted generalized linear regression models were used to estimate the association between telephonic programs or health risk surveys and retention. Analyses were conducted with six study samples based on type of program participation. Retention rates were highest for employees with either telephonic program activity or health risk surveys and lowest for employees who did not participate in any interventions. Participants ranged from 71% more likely to 5% less likely to remain with their employers compared with nonparticipants, depending on the sample used in analyses. Using health promotion programs in combination with health risk surveys may lead to improvements in employee retention.
NASA Astrophysics Data System (ADS)
Zhenyu, Yu; Luo, Yi; Yang, Kun; Qiongfei, Deng
2017-05-01
Based on the data published by the State Statistical Bureau and the weather station data, the annual mean temperature, wind speed, humidity, light duration and precipitation of Dianchi Lake in 1990 ~ 2014 were analysed. Combined with the population The results show that the climatic changes in Dianchi Lake basin are related to the climatic change in the past 25 years, and the correlation between these factors and the main climatic factors are analysed by linear regression, Mann-Kendall test, cumulative anomaly, R/S and Morlet wavelet analysis. Population, housing construction area growth and other aspects of the correlation trends and changes in the process, revealing the population expansion and housing construction area growth on the climate of the main factors of the cycle tendency of significant impact.
Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach
NASA Astrophysics Data System (ADS)
Bagirov, Adil M.; Mahmood, Arshad; Barton, Andrew
2017-05-01
This paper develops the Clusterwise Linear Regression (CLR) technique for prediction of monthly rainfall. The CLR is a combination of clustering and regression techniques. It is formulated as an optimization problem and an incremental algorithm is designed to solve it. The algorithm is applied to predict monthly rainfall in Victoria, Australia using rainfall data with five input meteorological variables over the period of 1889-2014 from eight geographically diverse weather stations. The prediction performance of the CLR method is evaluated by comparing observed and predicted rainfall values using four measures of forecast accuracy. The proposed method is also compared with the CLR using the maximum likelihood framework by the expectation-maximization algorithm, multiple linear regression, artificial neural networks and the support vector machines for regression models using computational results. The results demonstrate that the proposed algorithm outperforms other methods in most locations.
Regression Model Term Selection for the Analysis of Strain-Gage Balance Calibration Data
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred; Volden, Thomas R.
2010-01-01
The paper discusses the selection of regression model terms for the analysis of wind tunnel strain-gage balance calibration data. Different function class combinations are presented that may be used to analyze calibration data using either a non-iterative or an iterative method. The role of the intercept term in a regression model of calibration data is reviewed. In addition, useful algorithms and metrics originating from linear algebra and statistics are recommended that will help an analyst (i) to identify and avoid both linear and near-linear dependencies between regression model terms and (ii) to make sure that the selected regression model of the calibration data uses only statistically significant terms. Three different tests are suggested that may be used to objectively assess the predictive capability of the final regression model of the calibration data. These tests use both the original data points and regression model independent confirmation points. Finally, data from a simplified manual calibration of the Ames MK40 balance is used to illustrate the application of some of the metrics and tests to a realistic calibration data set.
Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation
Song, Yongsoo; Wang, Shuang; Xia, Yuhou; Jiang, Xiaoqian
2018-01-01
Background Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis. Objective The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression). Methods We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques. Results Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset. Conclusions We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still. PMID:29666041
Burnout does not help predict depression among French school teachers.
Bianchi, Renzo; Schonfeld, Irvin Sam; Laurent, Eric
2015-11-01
Burnout has been viewed as a phase in the development of depression. However, supportive research is scarce. We examined whether burnout predicted depression among French school teachers. We conducted a 2-wave, 21-month study involving 627 teachers (73% female) working in French primary and secondary schools. Burnout was assessed with the Maslach Burnout Inventory and depression with the 9-item depression module of the Patient Health Questionnaire (PHQ-9). The PHQ-9 grades depressive symptom severity and provides a provisional diagnosis of major depression. Depression was treated both as a continuous and categorical variable using linear and logistic regression analyses. We controlled for gender, age, and length of employment. Controlling for baseline depressive symptoms, linear regression analysis showed that burnout symptoms at time 1 (T1) did not predict depressive symptoms at time 2 (T2). Baseline depressive symptoms accounted for about 88% of the association between T1 burnout and T2 depressive symptoms. Only baseline depressive symptoms predicted depressive symptoms at follow-up. Similarly, logistic regression analysis revealed that burnout symptoms at T1 did not predict incident cases of major depression at T2 when depressive symptoms at T1 were included in the predictive model. Only baseline depressive symptoms predicted cases of major depression at follow-up. This study does not support the view that burnout is a phase in the development of depression. Assessing burnout symptoms in addition to "classical" depressive symptoms may not always improve our ability to predict future depression.
Mameli, Chiara; Krakauer, Nir Y; Krakauer, Jesse C; Bosetti, Alessandra; Ferrari, Chiara Matilde; Moiana, Norma; Schneider, Laura; Borsani, Barbara; Genoni, Teresa; Zuccotti, Gianvincenzo
2018-01-01
A Body Shape Index (ABSI) and normalized hip circumference (Hip Index, HI) have been recently shown to be strong risk factors for mortality and for cardiovascular disease in adults. We conducted an observational cross-sectional study to evaluate the relationship between ABSI, HI and cardiometabolic risk factors and obesity-related comorbidities in overweight and obese children and adolescents aged 2-18 years. We performed multivariate linear and logistic regression analyses with BMI, ABSI, and HI age and sex normalized z scores as predictors to examine the association with cardiometabolic risk markers (systolic and diastolic blood pressure, fasting glucose and insulin, total cholesterol and its components, transaminases, fat mass % detected by bioelectrical impedance analysis) and obesity-related conditions (including hepatic steatosis and metabolic syndrome). We recruited 217 patients (114 males), mean age 11.3 years. Multivariate linear regression showed a significant association of ABSI z score with 10 out of 15 risk markers expressed as continuous variables, while BMI z score showed a significant correlation with 9 and HI only with 1. In multivariate logistic regression to predict occurrence of obesity-related conditions and above-threshold values of risk factors, BMI z score was significantly correlated to 7 out of 12, ABSI to 5, and HI to 1. Overall, ABSI is an independent anthropometric index that was significantly associated with cardiometabolic risk markers in a pediatric population affected by overweight and obesity.
Hu, Yin; Niu, Yong; Wang, Dandan; Wang, Ying; Holden, Brien A; He, Mingguang
2015-01-22
Structural changes of retinal vasculature, such as altered retinal vascular calibers, are considered as early signs of systemic vascular damage. We examined the associations of 5-year mean level, longitudinal trend, and fluctuation in fasting plasma glucose (FPG) with retinal vascular caliber in people without established diabetes. A prospective study was conducted in a cohort of Chinese people age ≥40 years in Guangzhou, southern China. The FPG was measured at baseline in 2008 and annually until 2012. In 2012, retinal vascular caliber was assessed using standard fundus photographs and validated software. A total of 3645 baseline nondiabetic participants with baseline and follow-up data on FPG for 3 or more visits was included for statistical analysis. The associations of retinal vascular caliber with 5-year mean FPG level, longitudinal FPG trend (slope of linear regression-FPG), and fluctuation (standard deviation and root mean square error of FPG) were analyzed using multivariable linear regression analyses. Multivariate regression models adjusted for baseline FPG and other potential confounders showed that a 10% annual increase in FPG was associated independently with a 2.65-μm narrowing in retinal arterioles (P = 0.008) and a 3.47-μm widening in venules (P = 0. 0.004). Associations with mean FPG level and fluctuation were not statistically significant. Annual rising trend in FPG, but not its mean level or fluctuation, is associated with altered retinal vasculature in nondiabetic people. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Key performance indicators in intensive care medicine. A retrospective matched cohort study.
Kastrup, M; von Dossow, V; Seeling, M; Ahlborn, R; Tamarkin, A; Conroy, P; Boemke, W; Wernecke, K-D; Spies, Claudia
2009-01-01
Expert panel consensus was used to develop evidence-based process indicators that were independent risk factors for the main clinical outcome parameters of length of stay in the intensive care unit (ICU) and mortality. In a retrospective, matched data analysis of patients from five ICUs at a tertiary university hospital, agreed process indicators (sedation monitoring, pain monitoring, mean arterial pressure [MAP] >or= 60 mmHg, tidal volume [TV]
Kovalska, M P; Bürki, E; Schoetzau, A; Orguel, S F; Orguel, S; Grieshaber, M C
2011-04-01
The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF clusters. © Georg Thieme Verlag KG Stuttgart · New York.
Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.
Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin
2014-10-23
A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.
Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System
Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin
2014-01-01
A field imaging spectrometer system (FISS; 380–870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%–35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector. PMID:25341439
Development of a mobbing short scale in the Gutenberg Health Study.
Garthus-Niegel, Susan; Nübling, Matthias; Letzel, Stephan; Hegewald, Janice; Wagner, Mandy; Wild, Philipp S; Blettner, Maria; Zwiener, Isabella; Latza, Ute; Jankowiak, Sylvia; Liebers, Falk; Seidler, Andreas
2016-01-01
Despite its highly detrimental potential, most standard questionnaires assessing psychosocial stress at work do not include mobbing as a risk factor. In the German standard version of COPSOQ, mobbing is assessed with a single item. In the Gutenberg Health Study, this version was used together with a newly developed short scale based on the Leymann Inventory of Psychological Terror. The purpose of the present study was to evaluate the psychometric properties of these two measures, to compare them and to test their differential impact on relevant outcome parameters. This analysis is based on a population-based sample of 1441 employees participating in the Gutenberg Health Study. Exploratory and confirmatory factor analyses and reliability analyses were used to assess the mobbing scale. To determine their predictive validities, multiple linear regression analyses with six outcome parameters and log-binomial regression models for two of the outcome aspects were run. Factor analyses of the five-item scale confirmed a one-factor solution, reliability was α = 0.65. Both the single-item and the five-item scales were associated with all six outcome scales. Effect sizes were similar for both mobbing measures. Mobbing is an important risk factor for health-related outcomes. For the purpose of psychosocial risk assessment in the workplace, both the single-item and the five-item constructs were psychometrically appropriate. Associations with outcomes were about equivalent. However, the single item has the advantage of parsimony, whereas the five-item construct depicts several distinct forms of mobbing.
Merkel, C; Gatta, A; Bellumat, A; Bolognesi, M; Borsato, L; Caregaro, L; Cavallarin, G; Cielo, R; Cristina, P; Cucci, E; Donada, C; Donadon, V; Enzo, E; Martin, R; Mazzaro, C; Sacerdoti, D; Torboli, P
1996-01-01
To identify the best time-frame for defining bleeding-related death after variceal bleeding in patients with cirrhosis. Prospective long-term evaluation of a cohort of 155 patients admitted with variceal bleeding. Eight medical departments in seven hospitals in north-eastern Italy. Non-linear regression analysis of a hazard curve for death, and Cox's multiple regression analyses using different zero-time points. Cumulative hazard plots gave two slopes, the first corresponding to the risk of death from acute bleeding, the second a baseline risk of death. The first 30 days were outside the confidence limits of the regression curve for the baseline risk of death. Using Cox's regression analysis, the significant predictors of overall mortality risk were balanced between factors related to severity of bleeding and those related to severity of liver disease. If only deaths occurring after 30 days were considered, only predictors related to the severity of liver disease were found to be of importance. Thirty days after bleeding is considered to be a reasonable time-frame for the definition of bleeding-related death in patients with cirrhosis and variceal bleeding.
Scoring and staging systems using cox linear regression modeling and recursive partitioning.
Lee, J W; Um, S H; Lee, J B; Mun, J; Cho, H
2006-01-01
Scoring and staging systems are used to determine the order and class of data according to predictors. Systems used for medical data, such as the Child-Turcotte-Pugh scoring and staging systems for ordering and classifying patients with liver disease, are often derived strictly from physicians' experience and intuition. We construct objective and data-based scoring/staging systems using statistical methods. We consider Cox linear regression modeling and recursive partitioning techniques for censored survival data. In particular, to obtain a target number of stages we propose cross-validation and amalgamation algorithms. We also propose an algorithm for constructing scoring and staging systems by integrating local Cox linear regression models into recursive partitioning, so that we can retain the merits of both methods such as superior predictive accuracy, ease of use, and detection of interactions between predictors. The staging system construction algorithms are compared by cross-validation evaluation of real data. The data-based cross-validation comparison shows that Cox linear regression modeling is somewhat better than recursive partitioning when there are only continuous predictors, while recursive partitioning is better when there are significant categorical predictors. The proposed local Cox linear recursive partitioning has better predictive accuracy than Cox linear modeling and simple recursive partitioning. This study indicates that integrating local linear modeling into recursive partitioning can significantly improve prediction accuracy in constructing scoring and staging systems.
Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan
2017-01-01
This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second degree where the parabola is its graphical representation.
As a fast and effective technique, the multiple linear regression (MLR) method has been widely used in modeling and prediction of beach bacteria concentrations. Among previous works on this subject, however, several issues were insufficiently or inconsistently addressed. Those is...
A simplified competition data analysis for radioligand specific activity determination.
Venturino, A; Rivera, E S; Bergoc, R M; Caro, R A
1990-01-01
Non-linear regression and two-step linear fit methods were developed to determine the actual specific activity of 125I-ovine prolactin by radioreceptor self-displacement analysis. The experimental results obtained by the different methods are superposable. The non-linear regression method is considered to be the most adequate procedure to calculate the specific activity, but if its software is not available, the other described methods are also suitable.
Height and Weight Estimation From Anthropometric Measurements Using Machine Learning Regressions
Fernandes, Bruno J. T.; Roque, Alexandre
2018-01-01
Height and weight are measurements explored to tracking nutritional diseases, energy expenditure, clinical conditions, drug dosages, and infusion rates. Many patients are not ambulant or may be unable to communicate, and a sequence of these factors may not allow accurate estimation or measurements; in those cases, it can be estimated approximately by anthropometric means. Different groups have proposed different linear or non-linear equations which coefficients are obtained by using single or multiple linear regressions. In this paper, we present a complete study of the application of different learning models to estimate height and weight from anthropometric measurements: support vector regression, Gaussian process, and artificial neural networks. The predicted values are significantly more accurate than that obtained with conventional linear regressions. In all the cases, the predictions are non-sensitive to ethnicity, and to gender, if more than two anthropometric parameters are analyzed. The learning model analysis creates new opportunities for anthropometric applications in industry, textile technology, security, and health care. PMID:29651366
NASA Astrophysics Data System (ADS)
Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.
2009-08-01
In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.
Carvalho, Carlos; Gomes, Danielo G.; Agoulmine, Nazim; de Souza, José Neuman
2011-01-01
This paper proposes a method based on multivariate spatial and temporal correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks (WSN). Prediction of data not sent to the sink node is a technique used to save energy in WSNs by reducing the amount of data traffic. However, it may not be very accurate. Simulations were made involving simple linear regression and multiple linear regression functions to assess the performance of the proposed method. The results show a higher correlation between gathered inputs when compared to time, which is an independent variable widely used for prediction and forecasting. Prediction accuracy is lower when simple linear regression is used, whereas multiple linear regression is the most accurate one. In addition to that, our proposal outperforms some current solutions by about 50% in humidity prediction and 21% in light prediction. To the best of our knowledge, we believe that we are probably the first to address prediction based on multivariate correlation for WSN data reduction. PMID:22346626
Welch, Thomas R; Olson, Brad G; Nelsen, Elizabeth; Beck Dallaghan, Gary L; Kennedy, Gloria A; Botash, Ann
2017-09-01
To determine whether training site or prior examinee performance on the US Medical Licensing Examination (USMLE) step 1 and step 2 might predict pass rates on the American Board of Pediatrics (ABP) certifying examination. Data from graduates of pediatric residency programs completing the ABP certifying examination between 2009 and 2013 were obtained. For each, results of the initial ABP certifying examination were obtained, as well as results on National Board of Medical Examiners (NBME) step 1 and step 2 examinations. Hierarchical linear modeling was used to nest first-time ABP results within training programs to isolate program contribution to ABP results while controlling for USMLE step 1 and step 2 scores. Stepwise linear regression was then used to determine which of these examinations was a better predictor of ABP results. A total of 1110 graduates of 15 programs had complete testing results and were subject to analysis. Mean ABP scores for these programs ranged from 186.13 to 214.32. The hierarchical linear model suggested that the interaction of step 1 and 2 scores predicted ABP performance (F[1,1007.70] = 6.44, P = .011). By conducting a multilevel model by training program, both USMLE step examinations predicted first-time ABP results (b = .002, t = 2.54, P = .011). Linear regression analyses indicated that step 2 results were a better predictor of ABP performance than step 1 or a combination of the two USMLE scores. Performance on the USMLE examinations, especially step 2, predicts performance on the ABP certifying examination. The contribution of training site to ABP performance was statistically significant, though contributed modestly to the effect compared with prior USMLE scores. Copyright © 2017 Elsevier Inc. All rights reserved.
Flora, David B.; LaBrish, Cathy; Chalmers, R. Philip
2011-01-01
We provide a basic review of the data screening and assumption testing issues relevant to exploratory and confirmatory factor analysis along with practical advice for conducting analyses that are sensitive to these concerns. Historically, factor analysis was developed for explaining the relationships among many continuous test scores, which led to the expression of the common factor model as a multivariate linear regression model with observed, continuous variables serving as dependent variables, and unobserved factors as the independent, explanatory variables. Thus, we begin our paper with a review of the assumptions for the common factor model and data screening issues as they pertain to the factor analysis of continuous observed variables. In particular, we describe how principles from regression diagnostics also apply to factor analysis. Next, because modern applications of factor analysis frequently involve the analysis of the individual items from a single test or questionnaire, an important focus of this paper is the factor analysis of items. Although the traditional linear factor model is well-suited to the analysis of continuously distributed variables, commonly used item types, including Likert-type items, almost always produce dichotomous or ordered categorical variables. We describe how relationships among such items are often not well described by product-moment correlations, which has clear ramifications for the traditional linear factor analysis. An alternative, non-linear factor analysis using polychoric correlations has become more readily available to applied researchers and thus more popular. Consequently, we also review the assumptions and data-screening issues involved in this method. Throughout the paper, we demonstrate these procedures using an historic data set of nine cognitive ability variables. PMID:22403561
Using the Ridge Regression Procedures to Estimate the Multiple Linear Regression Coefficients
NASA Astrophysics Data System (ADS)
Gorgees, HazimMansoor; Mahdi, FatimahAssim
2018-05-01
This article concerns with comparing the performance of different types of ordinary ridge regression estimators that have been already proposed to estimate the regression parameters when the near exact linear relationships among the explanatory variables is presented. For this situations we employ the data obtained from tagi gas filling company during the period (2008-2010). The main result we reached is that the method based on the condition number performs better than other methods since it has smaller mean square error (MSE) than the other stated methods.
Elevated blood pressure, race/ethnicity, and C-reactive protein levels in children and adolescents.
Lande, Marc B; Pearson, Thomas A; Vermilion, Roger P; Auinger, Peggy; Fernandez, Isabel D
2008-12-01
Adult hypertension is independently associated with elevated C-reactive protein levels, after controlling for obesity and other cardiovascular risk factors. The objective of this study was to determine, with a nationally representative sample of children, whether the relationship between elevated blood pressure and C-reactive protein levels may be evident before adulthood. Cross-sectional data for children 8 to 17 years of age who participated in the National Health and Nutrition Examination Survey between 1999 and 2004 were analyzed. Bivariate analyses compared children with C-reactive protein levels of >3 mg/L versus
Rüst, Christoph Alexander; Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Lepers, Romuald
2012-01-01
Purpose The aims of the present study were to investigate (i) the changes in participation and performance and (ii) the gender difference in Triple Iron ultra-triathlon (11.4 km swimming, 540 km cycling and 126.6 km running) across years from 1988 to 2011. Methods For the cross-sectional data analysis, the association between with overall race times and split times was investigated using simple linear regression analyses and analysis of variance. For the longitudinal data analysis, the changes in race times for the five men and women with the highest number of participations were analysed using simple linear regression analyses. Results During the studied period, the number of finishers were 824 (71.4%) for men and 80 (78.4%) for women. Participation increased for men (r 2=0.27, P<0.01) while it remained stable for women (8%). Total race times were 2,146 ± 127.3 min for men and 2,615 ± 327.2 min for women (P<0.001). Total race time decreased for men (r 2=0.17; P=0.043), while it increased for women (r 2=0.49; P=0.001) across years. The gender difference in overall race time for winners increased from 10% in 1992 to 42% in 2011 (r 2=0.63; P<0.001). The longitudinal analysis of the five women and five men with the highest number of participations showed that performance decreased in one female (r 2=0.45; P=0.01). The four other women as well as all five men showed no change in overall race times across years. Conclusions Participation increased and performance improved for male Triple Iron ultra-triathletes while participation remained unchanged and performance decreased for females between 1988 and 2011. The reasons for the increase of the gap between female and male Triple Iron ultra-triathletes need further investigations. PMID:23012633
Semino, Laura N; Marksteiner, Josef; Brauchle, Gernot; Danay, Erik
2017-04-13
Associations between depression, personality traits, and emotions are complex and reciprocal. The aim of this study is to explore these interactions in dynamical networks and in a linear way over time depending on the severity of depression. Participants included 110 patients with depressive symptoms (DSM-5 criteria) who were recruited between October 2015 and February 2016 during their inpatient stay in a general psychiatric hospital in Hall in Tyrol, Austria. The patients filled out the Beck Depression Inventory-II, a German emotional competence questionnaire (Emotionale Kompetenz Fragebogen), Positive and Negative Affect Schedule, and the German versions of the Big Five Inventory-short form and State-Trait-Anxiety-Depression Inventory regarding symptoms, emotions, and personality during their inpatient stay and at a 3-month follow-up by mail. Network and regression analyses were performed to explore interactions both in a linear and a dynamical way at baseline and 3 months later. Regression analyses showed that emotions and personality traits gain importance for the prediction of depressive symptoms with decreasing symptomatology at follow-up (personality: baseline, adjusted R2 = 0.24, P < .001; follow-up, adjusted R2 = 0.65, P < .001). Network analyses additionally showed that the interaction network of depression, emotions, and personality traits is significantly denser and more interconnected (network comparison test: P = .03) at follow-up than at baseline, meaning that with decreased symptoms interconnections get stronger. During depression, personality traits and emotions are walled off and not strongly interconnected with depressive symptoms in networks. With decreasing depressive symptomatology, interfusing of these areas begins and interconnections become stronger. This finding has practical implications for interventions in an acute depressive state and with decreased symptoms. The network approach offers a new perspective on interactions and is a way to make the complexity of these interactions more tangible. © Copyright 2017 Physicians Postgraduate Press, Inc.
Effect of compression load and temperature on thermomechanical tests for gutta-percha and Resilon®.
Tanomaru-Filho, M; Silveira, G F; Reis, J M S N; Bonetti-Filho, I; Guerreiro-Tanomaru, J M
2011-11-01
To analyse a method used to evaluate the thermomechanical properties of gutta-percha and Resilon(®) at different temperatures and compression loads. Two hundred and seventy specimens measuring 10 mm in diameter and 1.5 mm in height were made from the following materials: conventional gutta-percha (GCO), thermoplastic gutta-percha (GTP) and Resilon(®) cones (RE). After 24 h, the specimens were placed in water at 50 °C, 60 °C or 70 °C for 60 s. After that, specimens were placed between two glass slabs, and loads weighing 1.0, 3.0 or 5.0 kg were applied. Images of the specimens were digitized before and after the test and analysed using imaging software to determine their initial and final areas. The thermomechanical property of each material was determined by the difference between the initial and final areas of the specimens. Data were subjected to anova and SNK tests at 5% significance. To verify a possible correlation between the results of the materials, linear regression coefficients (r) were calculated. Data showed higher flow area values for RE under all compression loads at 70 °C and under the 5.0 kg load at 60 °C (P < 0.05). Regarding gutta-percha, GTP showed higher flow under loads weighing 3.0 and 5.0 kg, at 60 and 70 °C (P < 0.05). GCO presented higher flow at 70 °C with a load of 5.0 kg. Regression analyses showed a poor linear correlation amongst the results of the materials under the different experimental conditions. Gutta-percha and Resilon(®) cones require different compression loads and temperatures for evaluation of their thermomechanical properties. For all materials, the greatest flow occurred at 70 °C under a load of 5.0 kg; therefore, these parameters may be adopted when evaluating endodontic filling materials. © 2011 International Endodontic Journal.
Liao, Chenxi; Liu, Wei; Zhang, Jialing; Shi, Wenming; Wang, Xueying; Cai, Jiao; Zou, Zhijun; Lu, Rongchun; Sun, Chanjuan; Wang, Heng; Huang, Chen; Zhao, Zhuohui
2018-03-01
Exposure to household phthalates has been reported to have adverse effects on children's health. In this paper, we used phthalate metabolites in the first morning urine as indicators of household phthalate exposures and examined their associations with residential characteristics, lifestyles and dietary habits among young children. During 2013-2014, we collected morning urines from children aged 5-10years in Shanghai, China and obtained the related information about analyzed factors in this study by questionnaires. Urinary phthalate metabolites were analyzed by isotope dilution-high performance liquid chromatography (HPLC)-heated electrospray ionization source (HESI) coupled with a triple quadrupole mass spectrometry. ANOVA, the Mann-Whitney or Kruskai-Wallis rank tests, and multivariate linear regression analyses were used to examine the target associations. Ten metabolites of seven phthalates in 434 urine samples were analyzed. The detection rates of eight metabolites (MiBP, MnBP, MEHP, MECPP, MEHHP, MEOHP, MEP, and MMP) were >90%, except for MBzP (51.2%), and MCHP with <10.0% of detection rate was not included in analyses. By multivariate linear regression analyses, factors significantly associated with higher concentrations of metabolites included non-usage household air cleaners (MEP and MEHP), changing the child's pillowcase less than one time a week (DEHP metabolites), dusting furniture in the child's bedroom less than three times a week (MMP and MnBP), using more plastic toys (DEHP metabolites and MEP), often having soft drinks (DEHP metabolites) and candies (MiBP). Our results indicated that phthalate exposures were common among Shanghai children and residential characteristics had less significant associations with urinary phthalate metabolites compared with lifestyles and dietary habits. Using less plastic toys, having less candies and soft drinks, using household air cleaner, as well as frequently changing the child's pillowcase and dusting furniture in the child's bedroom could reduce phthalate exposures among children. Copyright © 2017 Elsevier B.V. All rights reserved.
Consumption of soft drinks and health-related quality of life in the adult population.
Lana, A; Lopez-Garcia, E; Rodríguez-Artalejo, F
2015-11-01
Despite the accumulated evidence on the health risks associated with sugar-sweetened beverages (SSB), the industry has funded mass communication strategies promoting the idea that soft drinks, including SSB, may represent a source of well-being. This study assessed the association between consumption of soft drinks and health-related quality of life (HRQL), as a proxy of well-being, in the adult population of Spain. The cohort was established in 2008-2010 with 8417 individuals representative of the Spanish population aged 18-60 years. Habitual soft drink consumption was assessed with a validated diet history at baseline. HRQL was measured using the SF-12 questionnaire at baseline and in a subsample of 2132 study participants in 2012. The analyses were performed using linear regression and adjusted for the main confounders. In cross-sectional analyses at baseline, those who drank ⩾1 serving/day of SSB had a lower (worse) score on the physical composite summary (PCS) of the SF-12 (adjusted linear regression coefficient: -1.08; 95% confidence interval (CI): -1.60 to -0.54) than those who drank <1 serving/week. Results were similar among individuals younger than 35 years (-1.06; 95% CI: -1.79 to -0.32), those who were not dieting (-1.21; 95% CI: -1.80 to -0.62), those who did not lose >5 kg in the previous 4 years (-0.79; 95% CI: -1.87 to 0.29), and in those without morbidity (-1.18; 95% CI: -1.91 to -0.46). Neither SSBs nor artificially sweetened beverages (ASBs) showed an association with the mental composite summary (MCS) of the SF-12. In the prospective analyses, no association was observed between baseline consumption of SSBs or ASBs and the changes in the PCS and MCS score from 2008/2010 to 2012. No evidence was found that soft drink consumption has a beneficial effect on either the physical or mental dimensions of HRQL.
Zeng, Yanni; Navarro, Pau; Fernandez-Pujals, Ana M; Hall, Lynsey S; Clarke, Toni-Kim; Thomson, Pippa A; Smith, Blair H; Hocking, Lynne J; Padmanabhan, Sandosh; Hayward, Caroline; MacIntyre, Donald J; Wray, Naomi R; Deary, Ian J; Porteous, David J; Haley, Chris S; McIntosh, Andrew M
2017-02-15
Genome-wide association studies (GWASs) of major depressive disorder (MDD) have identified few significant associations. Testing the aggregation of genetic variants, in particular biological pathways, may be more powerful. Regional heritability analysis can be used to detect genomic regions that contribute to disease risk. We integrated pathway analysis and multilevel regional heritability analyses in a pipeline designed to identify MDD-associated pathways. The pipeline was applied to two independent GWAS samples [Generation Scotland: The Scottish Family Health Study (GS:SFHS, N = 6455) and Psychiatric Genomics Consortium (PGC:MDD) (N = 18,759)]. A polygenic risk score (PRS) composed of single nucleotide polymorphisms from the pathway most consistently associated with MDD was created, and its accuracy to predict MDD, using area under the curve, logistic regression, and linear mixed model analyses, was tested. In GS:SFHS, four pathways were significantly associated with MDD, and two of these explained a significant amount of pathway-level regional heritability. In PGC:MDD, one pathway was significantly associated with MDD. Pathway-level regional heritability was significant in this pathway in one subset of PGC:MDD. For both samples the regional heritabilities were further localized to the gene and subregion levels. The NETRIN1 signaling pathway showed the most consistent association with MDD across the two samples. PRSs from this pathway showed competitive predictive accuracy compared with the whole-genome PRSs when using area under the curve statistics, logistic regression, and linear mixed model. These post-GWAS analyses highlight the value of combining multiple methods on multiple GWAS data for the identification of risk pathways for MDD. The NETRIN1 signaling pathway is identified as a candidate pathway for MDD and should be explored in further large population studies. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Kinung’hi, Safari; Magnussen, Pascal; Kaatano, Godfrey
2016-01-01
Background Infection with Schistosoma mansoni negatively impact children’s physical health and may influence their general well-being. The aim of this study was to investigate the effect of S. mansoni infections on a panel of morbidity indicators with emphasis on quality of life (PedsQL; measured in four different dimensions) and physical fitness (measured as VO2 max) among 572 schoolchildren aged 7–8 years. Methodology/Principal findings Prevalence of S. mansoni infections was 58.7%, with an arithmetic mean (95% CI) among positives of 207.3 (169.2–245.4) eggs per gram (epg). Most infections were light (56.5%), while 16.4% had heavy infections. Girls had significantly higher arithmetic mean intensities (95% CI) than boys (247.4 (189.2–305.6) vs. 153.2 (110.6–195.8); P = 0.004). A total of 30.1% were anaemic with no sex difference. Stunting and wasting was found in less than 10% of the population. There was no association between S. mansoni prevalence or intensities and the following parameters: anthropometry, anaemia, liver or spleen pathology in neither univariable nor multivariable linear regression analyses. However, in univariable analyses children with S. mansoni infection had a significantly lower score in emotional PedsQL (95% CI) than uninfected (77.3 (74.5–80.1) vs. 82.7 (79.9–85.5); P = 0.033) and infected children had a higher VO2 max (95% CI) compared to uninfected (51.4 (51.0–51.8) vs. 50.8 (50.3–51.3); P = 0.042). In multivariable linear regression analyses, age, S. mansoni infection, haemoglobin and VO2 max were significant predictors for emotional PedsQL while significant predictors for VO2 max were physical PedsQL, height, age and haemoglobin. S. mansoni infection was thus not retained in the multivariable regression analyses on VO2 max. Conclusions/Significance Of the measured morbidity parameters, S. mansoni infection had a significant effect on the emotional dimension of quality of life, but not on physical fitness. If PedsQL should be a useful tool to measure schistosome related morbidity, more in depth studies are needed in order to refine the tool so it focuses more on aspects of quality of life that may be affected by schistosome infections. PMID:28027317
Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne
2016-04-01
Existing evidence suggests that ambient ultrafine particles (UFPs) (<0.1µm) may contribute to acute cardiorespiratory morbidity. However, few studies have examined the long-term health effects of these pollutants owing in part to a need for exposure surfaces that can be applied in large population-based studies. To address this need, we developed a land use regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Migration intentions and illicit substance use among youth in central Mexico.
Marsiglia, Flavio Francisco; Kulis, Stephen; Hoffman, Steven; Calderón-Tena, Carlos Orestes; Becerra, David; Alvarez, Diana
2011-01-01
This study explored intentions to emigrate and substance use among youth (ages 14-24) from a central Mexico state with high emigration rates. Questionnaires were completed in 2007 by 702 students attending a probability sample of alternative secondary schools serving remote or poor communities. Linear and logistic regression analyses indicated that stronger intentions to emigrate predicted greater access to drugs, drug offers, and use of illicit drugs (marijuana, cocaine, inhalants), but not alcohol or cigarettes. Results are related to the healthy migrant theory and its applicability to youth with limited educational opportunities. The study's limitations are noted.
Prediction of health levels by remote sensing
NASA Technical Reports Server (NTRS)
Rush, M.; Vernon, S.
1975-01-01
Measures of the environment derived from remote sensing were compared to census population/housing measures in their ability to discriminate among health status areas in two urban communities. Three hypotheses were developed to explore the relationships between environmental and health data. Univariate and multiple step-wise linear regression analyses were performed on data from two sample areas in Houston and Galveston, Texas. Environmental data gathered by remote sensing were found to equal or surpass census data in predicting rates of health outcomes. Remote sensing offers the advantages of data collection for any chosen area or time interval, flexibilities not allowed by the decennial census.
Wu, Robert; Glen, Peter; Ramsay, Tim; Martel, Guillaume
2014-06-28
Observational studies dominate the surgical literature. Statistical adjustment is an important strategy to account for confounders in observational studies. Research has shown that published articles are often poor in statistical quality, which may jeopardize their conclusions. The Statistical Analyses and Methods in the Published Literature (SAMPL) guidelines have been published to help establish standards for statistical reporting.This study will seek to determine whether the quality of statistical adjustment and the reporting of these methods are adequate in surgical observational studies. We hypothesize that incomplete reporting will be found in all surgical observational studies, and that the quality and reporting of these methods will be of lower quality in surgical journals when compared with medical journals. Finally, this work will seek to identify predictors of high-quality reporting. This work will examine the top five general surgical and medical journals, based on a 5-year impact factor (2007-2012). All observational studies investigating an intervention related to an essential component area of general surgery (defined by the American Board of Surgery), with an exposure, outcome, and comparator, will be included in this systematic review. Essential elements related to statistical reporting and quality were extracted from the SAMPL guidelines and include domains such as intent of analysis, primary analysis, multiple comparisons, numbers and descriptive statistics, association and correlation analyses, linear regression, logistic regression, Cox proportional hazard analysis, analysis of variance, survival analysis, propensity analysis, and independent and correlated analyses. Each article will be scored as a proportion based on fulfilling criteria in relevant analyses used in the study. A logistic regression model will be built to identify variables associated with high-quality reporting. A comparison will be made between the scores of surgical observational studies published in medical versus surgical journals. Secondary outcomes will pertain to individual domains of analysis. Sensitivity analyses will be conducted. This study will explore the reporting and quality of statistical analyses in surgical observational studies published in the most referenced surgical and medical journals in 2013 and examine whether variables (including the type of journal) can predict high-quality reporting.
Alzheimer's Disease Detection by Pseudo Zernike Moment and Linear Regression Classification.
Wang, Shui-Hua; Du, Sidan; Zhang, Yin; Phillips, Preetha; Wu, Le-Nan; Chen, Xian-Qing; Zhang, Yu-Dong
2017-01-01
This study presents an improved method based on "Gorji et al. Neuroscience. 2015" by introducing a relatively new classifier-linear regression classification. Our method selects one axial slice from 3D brain image, and employed pseudo Zernike moment with maximum order of 15 to extract 256 features from each image. Finally, linear regression classification was harnessed as the classifier. The proposed approach obtains an accuracy of 97.51%, a sensitivity of 96.71%, and a specificity of 97.73%. Our method performs better than Gorji's approach and five other state-of-the-art approaches. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kwan, Johnny S H; Kung, Annie W C; Sham, Pak C
2011-09-01
Selective genotyping can increase power in quantitative trait association. One example of selective genotyping is two-tail extreme selection, but simple linear regression analysis gives a biased genetic effect estimate. Here, we present a simple correction for the bias.
Developing a dengue forecast model using machine learning: A case study in China
Zhang, Qin; Wang, Li; Xiao, Jianpeng; Zhang, Qingying; Luo, Ganfeng; Li, Zhihao; He, Jianfeng; Zhang, Yonghui; Ma, Wenjun
2017-01-01
Background In China, dengue remains an important public health issue with expanded areas and increased incidence recently. Accurate and timely forecasts of dengue incidence in China are still lacking. We aimed to use the state-of-the-art machine learning algorithms to develop an accurate predictive model of dengue. Methodology/Principal findings Weekly dengue cases, Baidu search queries and climate factors (mean temperature, relative humidity and rainfall) during 2011–2014 in Guangdong were gathered. A dengue search index was constructed for developing the predictive models in combination with climate factors. The observed year and week were also included in the models to control for the long-term trend and seasonality. Several machine learning algorithms, including the support vector regression (SVR) algorithm, step-down linear regression model, gradient boosted regression tree algorithm (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection operator (LASSO) linear regression model and generalized additive model (GAM), were used as candidate models to predict dengue incidence. Performance and goodness of fit of the models were assessed using the root-mean-square error (RMSE) and R-squared measures. The residuals of the models were examined using the autocorrelation and partial autocorrelation function analyses to check the validity of the models. The models were further validated using dengue surveillance data from five other provinces. The epidemics during the last 12 weeks and the peak of the 2014 large outbreak were accurately forecasted by the SVR model selected by a cross-validation technique. Moreover, the SVR model had the consistently smallest prediction error rates for tracking the dynamics of dengue and forecasting the outbreaks in other areas in China. Conclusion and significance The proposed SVR model achieved a superior performance in comparison with other forecasting techniques assessed in this study. The findings can help the government and community respond early to dengue epidemics. PMID:29036169
Determining the response of sea level to atmospheric pressure forcing using TOPEX/POSEIDON data
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Pihos, Greg
1994-01-01
The static response of sea level to the forcing of atmospheric pressure, the so-called inverted barometer (IB) effect, is investigated using TOPEX/POSEIDON data. This response, characterized by the rise and fall of sea level to compensate for the change of atmospheric pressure at a rate of -1 cm/mbar, is not associated with any ocean currents and hence is normally treated as an error to be removed from sea level observation. Linear regression and spectral transfer function analyses are applied to sea level and pressure to examine the validity of the IB effect. In regions outside the tropics, the regression coefficient is found to be consistently close to the theoretical value except for the regions of western boundary currents, where the mesoscale variability interferes with the IB effect. The spectral transfer function shows near IB response at periods of 30 degrees is -0.84 +/- 0.29 cm/mbar (1 standard deviation). The deviation from = 1 cm /mbar is shown to be caused primarily by the effect of wind forcing on sea level, based on multivariate linear regression model involving both pressure and wind forcing. The regression coefficient for pressure resulting from the multivariate analysis is -0.96 +/- 0.32 cm/mbar. In the tropics the multivariate analysis fails because sea level in the tropics is primarily responding to remote wind forcing. However, after removing from the data the wind-forced sea level estimated by a dynamic model of the tropical Pacific, the pressure regression coefficient improves from -1.22 +/- 0.69 cm/mbar to -0.99 +/- 0.46 cm/mbar, clearly revealing an IB response. The result of the study suggests that with a proper removal of the effect of wind forcing the IB effect is valid in most of the open ocean at periods longer than 20 days and spatial scales larger than 500 km.
2013-01-01
application of the Hammett equation with the constants rph in the chemistry of organophosphorus compounds, Russ. Chem. Rev. 38 (1969) 795–811. [13...of oximes and OP compounds and the ability of oximes to reactivate OP- inhibited AChE. Multiple linear regression equations were analyzed using...phosphonate pairs, 21 oxime/ phosphoramidate pairs and 12 oxime/phosphate pairs. The best linear regression equation resulting from multiple regression anal
Garrosa, Eva; Rainho, Conceição; Moreno-Jiménez, Bernardo; Monteiro, Maria João
2010-02-01
Nursing is considered as a risk profession with high levels of stress and burnout, and these levels are probably increasing. This study assessed temporal and cross-sectional relationships between job stressors, hardy personality and coping resources on burnout dimensions among nurses. Temporal and cross-sectional effects were evaluated. A sample of 98 nurses from Portugal completed the Nursing Burnout Scale at two time points. The data were analysed using descriptive statistics, Pearson correlations, and hierarchical linear regression analyses regressing Wave 2 burnout dimensions. The study confirmed the specific contribution of control and challenged hardy personality dimensions as the explanation of burnout. However, commitment did not show any effects in this study. Social support and active coping were also relevant predictors of burnout dimensions. Specifically, active coping had an inverse temporal effect on depersonalisation and lack of personal accomplishment. In relation to the burnout process, depersonalisation appeared as an antecedent of lack of personal accomplishment. The present study is an initial step to comprehend the link between job stressors, hardy personality, coping resources and diminishing burnout. Copyright 2009 Elsevier Ltd. All rights reserved.
Choi, Y K; Park, D Y; Kim, Y
2014-11-01
Many health issues have been reported to be associated with poor nutritional status. We sought to examine the association between nutritional intake and oral health status in elderly people. The association between perceived disability in mastication and prosthodontic status was analysed using multiple logistic regression. Multiple linear regression was used to analyse the association between prosthodontic status and nutritional intake. The elderly subjects with partial or full dentures reported chewing difficulties 1.62-fold more frequently (95% CI: 1.06-2.49) than those with natural teeth or a fixed prosthesis after adjusting for gender, TMD (temporomandibular disorder), household income and education level. Additionally, daily nutritional intakes of energy, protein, fat, ash, calcium, phosphorus and thiamine were decreased significantly in elderly with partial or full dentures compared with those with no prosthesis or with a fixed prosthesis (P < 0.05). Our findings underline oral health status and perceived disability in mastication are associated with dietary imbalances in the elderly. We suggest that the evaluation of patients' nutritional status should be considered as a part of an overall plan for dental hygiene care. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
E-cigarette Dual Users, Exclusive Users and Perceptions of Tobacco Products.
Cooper, Maria; Case, Kathleen R; Loukas, Alexandra; Creamer, Melisa R; Perry, Cheryl L
2016-01-01
We examined differences in the characteristics of youth non-users, cigarette-only, e-cigarette-only, and dual e-cigarette and cigarette users. Using weighted, representative data, logistic regression analyses were conducted to examine differences in demographic characteristics and tobacco use behaviors across tobacco usage groups. Multiple linear regression analyses were conducted to examine differences in harm perceptions of various tobacco products and perceived peer use of e-cigarettes by tobacco usage group. Compared to non-users, dual users were more likely to be white, male, and high school students. Dual users had significantly higher prevalence of current use of all products (except hookah) than e-cigarette-only users, and higher prevalence of current use of snus and hookah than the cigarette-only group. Dual users had significantly lower harm perceptions for all tobacco products except for e-cigarettes and hookah as compared to e-cigarette-only users. Dual users reported higher peer use of cigarettes as compared to both exclusive user groups. Findings highlight dual users' higher prevalence of use of most other tobacco products, their lower harm perceptions of most tobacco products compared to e-cigarette-only users, and their higher perceived peer use of cigarettes compared to exclusive users.
Predictors affecting personal health information management skills.
Kim, Sujin; Abner, Erin
2016-01-01
This study investigated major factors affecting personal health records (PHRs) management skills associated with survey respondents' health information management related activities. A self-report survey was used to assess individuals' personal characteristics, health knowledge, PHR skills, and activities. Factors underlying respondents' current PHR-related activities were derived using principal component analysis (PCA). Scale scores were calculated based on the results of the PCA, and hierarchical linear regression analyses were used to identify respondent characteristics associated with the scale scores. Internal consistency of the derived scale scores was assessed with Cronbach's α. Among personal health information activities surveyed (N = 578 respondents), the four extracted factors were subsequently grouped and labeled as: collecting skills (Cronbach's α = 0.906), searching skills (Cronbach's α = 0.837), sharing skills (Cronbach's α = 0.763), and implementing skills (Cronbach's α = 0.908). In the hierarchical regression analyses, education and computer knowledge significantly increased the explanatory power of the models. Health knowledge (β = 0.25, p < 0.001) emerged as a positive predictor of PHR collecting skills. This study confirmed that PHR training and learning should consider a full spectrum of information management skills including collection, utilization and distribution to support patients' care and prevention continua.
Dietary phytoestrogens and plasma lipids in Dutch postmenopausal women; a cross-sectional study.
Kreijkamp-Kaspers, Sanne; Kok, Linda; Bots, Michiel L; Grobbee, Diederick E; van der Schouw, Yvonne T
2005-01-01
Isoflavone supplementation in high doses is associated with plasma lipid, glucose and insulin levels. Little is known about the effects of intake within the range of western diets on these endpoints. We conducted a population-based cross-sectional study in 301 women aged 60-75 years. Dietary isoflavone and lignan intake was assessed with a food frequency questionnaire covering habitual diet during the year preceding enrollment. The outcome measures were total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, Lp(a), fasting glucose and insulin levels. Data were analysed using linear regression and logistic regression models. In the analyses we adjusted for a wide range of potential confounders. High intake of isoflavones was associated with lower Lp(a) levels (tertile three versus tertile one: odds ratio 0.36, 95% CI 0.16; 0.80). No relation was found between blood levels and the other plasma lipids, glucose or insulin was found. The results of this study suggest that an effect of dietary phytoestrogen intake at low levels on plasma lipid levels is of limited magnitude. It is premature to advise postmenopausal women with low phytoestrogen intake to change their diet towards a phytoestrogen rich diet with the sole aim to prevent cardiovascular disease.
Straatmann, Viviane S; Oliveira, Aldair J; Rostila, Mikael; Lopes, Claudia S
2016-09-15
Psychological well-being influences health behaviours differently in adolescent boys and girls. We evaluated the role of psychological well-being in early adolescence in the onset and persistence of insufficient physical activity and exceeding recommended screen time, depending on gender. This work derives from a cohort study called Longitudinal Study of Adolescent Nutritional Assessment conducted among elementary school students from two public and four private schools in Rio de Janeiro, Brazil from 2010-2013. We analysed data from 2010 and 2012 from 526 adolescents. Physical activity was evaluated using the International Physical Activity Questionnaire. Those who performed less than 60 min per day of moderate to vigorous physical activity (MVPA) were classified as insufficiently active. Screen time was evaluated based on daily time spent in front of television, video games, and computers. Those who had 4 h or more screen time per day were classified as exceeding the recommended time. Psychological well-being was assessed using the psychological domain of the KIDSCREEN 27 questionnaire. Linear regression was used to estimate coefficient (β) and r (2) values for continuous variables. Relative risks (RR) and confidence intervals (95 % CI) for onset and persistence of insufficient activity and exceeding recommended screen time were estimated with Poisson regression models. Among girls, linear regression analyses showed a significant inverse association between psychological well-being and screen minutes per day at T2 (r (2) = 0.049/β = -3.81 (95 % CI -7.0, -0.9)), as well as an association between poor psychological well-being and onset of exceeding recommended screen time in categorical analyses (RR crude: 1.3; CI 95 % 1.1, 1.7; RR adjusted: 1.3; CI 95 % 1.0, 1.6). For boys, an association was found between psychological well-being and onset of insufficient activity 2 years later (RR crude: 1.3; CI 95 % 1.2, 1.4; RR adjusted: 1.2; CI 95 % 1.1, 1.4). Adolescence is crucial for the development of unhealthy behaviours related to psychological well-being status in the context of a middle-income country. Gender differences are important because poor psychological well-being seems to affect sedentary behaviour in girls more than in boys, and predicts insufficient activity among boys.
Improved statistical analysis of moclobemide dose effects on panic disorder treatment.
Ross, Donald C; Klein, Donald F; Uhlenhuth, E H
2010-04-01
Clinical trials with several measurement occasions are frequently analyzed using only the last available observation as the dependent variable [last observation carried forward (LOCF)]. This ignores intermediate observations. We reanalyze, with complete data methods, a clinical trial previously reported using LOCF, comparing placebo and five dosage levels of moclobemide in the treatment of outpatients with panic disorder to illustrate the superiority of methods using repeated observations. We initially analyzed unprovoked and situational, major and minor attacks as the four dependent variables, by repeated measures maximum likelihood methods. The model included parameters for linear and curvilinear time trends and regression of measures during treatment on baseline measures. Significance tests using this method take into account the structure of the error covariance matrix. This makes the sphericity assumption irrelevant. Missingness is assumed to be unrelated to eventual outcome and the residuals are assumed to have a multivariate normal distribution. No differential treatment effects for limited attacks were found. Since similar results were obtained for both types of major attack, data for the two types of major attack were combined. Overall downward linear and negatively accelerated downward curvilinear time trends were found. There were highly significant treatment differences in the regression slopes of scores during treatment on baseline observations. For major attacks, all treatment groups improved over time. The flatter regression slopes, obtained with higher doses, indicated that higher doses result in uniformly lower attack rates regardless of initial severity. Lower doses do not lower the attack rate of severely ill patients to those achieved in the less severely ill. The clinical implication is that more severe patients require higher doses to attain best benefit. Further, the significance levels obtained by LOCF analyses were only in the 0.05-0.01 range, while significance levels of <0.00001 were obtained by these repeated measures analyses indicating increased power. The greater sensitivity to treatment effect of this complete data method is illustrated. To increase power, it is often recommended to increase sample size. However, this is often impractical since a major proportion of the cost per subject is due to the initial evaluation. Increasing the number of repeated observations increases power economically and also allows detailed longitudinal trajectory analyses.
Predictors of college-student food security and fruit and vegetable intake differ by housing type.
Mirabitur, Erica; Peterson, Karen E; Rathz, Colleen; Matlen, Stacey; Kasper, Nicole
2016-10-01
We assessed whether college-student characteristics associate with food security and fruit and vegetable (FV) intake and whether these associations differ in students in housing with and without food provision. 514 randomly-sampled students from a large, Midwestern, public university in 2012 and 2013 METHODS: Ordered logistic regression tested how student characteristics associate with food security. Linear regression tested how student characteristics associate with FV intake. Analyses were stratified by housing type - that is, housing with food provision (dormitory, fraternity/sorority house, cooperative) vs. housing without food provision. Only among those living in housing without food provision, males (p = 0.04), students without car access (p = 0.005), and those with marginal (p = 0.001) or low (p = 0.001) food security demonstrated lower FV intake. Housing with food provision may buffer the effects of student characteristics on food.
Prediction of elemental creep. [steady state and cyclic data from regression analysis
NASA Technical Reports Server (NTRS)
Davis, J. W.; Rummler, D. R.
1975-01-01
Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.
Douglas, R K; Nawar, S; Alamar, M C; Mouazen, A M; Coulon, F
2018-03-01
Visible and near infrared spectrometry (vis-NIRS) coupled with data mining techniques can offer fast and cost-effective quantitative measurement of total petroleum hydrocarbons (TPH) in contaminated soils. Literature showed however significant differences in the performance on the vis-NIRS between linear and non-linear calibration methods. This study compared the performance of linear partial least squares regression (PLSR) with a nonlinear random forest (RF) regression for the calibration of vis-NIRS when analysing TPH in soils. 88 soil samples (3 uncontaminated and 85 contaminated) collected from three sites located in the Niger Delta were scanned using an analytical spectral device (ASD) spectrophotometer (350-2500nm) in diffuse reflectance mode. Sequential ultrasonic solvent extraction-gas chromatography (SUSE-GC) was used as reference quantification method for TPH which equal to the sum of aliphatic and aromatic fractions ranging between C 10 and C 35 . Prior to model development, spectra were subjected to pre-processing including noise cut, maximum normalization, first derivative and smoothing. Then 65 samples were selected as calibration set and the remaining 20 samples as validation set. Both vis-NIR spectrometry and gas chromatography profiles of the 85 soil samples were subjected to RF and PLSR with leave-one-out cross-validation (LOOCV) for the calibration models. Results showed that RF calibration model with a coefficient of determination (R 2 ) of 0.85, a root means square error of prediction (RMSEP) 68.43mgkg -1 , and a residual prediction deviation (RPD) of 2.61 outperformed PLSR (R 2 =0.63, RMSEP=107.54mgkg -1 and RDP=2.55) in cross-validation. These results indicate that RF modelling approach is accounting for the nonlinearity of the soil spectral responses hence, providing significantly higher prediction accuracy compared to the linear PLSR. It is recommended to adopt the vis-NIRS coupled with RF modelling approach as a portable and cost effective method for the rapid quantification of TPH in soils. Copyright © 2017 Elsevier B.V. All rights reserved.
Cohen, Jérémie F; Korevaar, Daniël A; Wang, Junfeng; Leeflang, Mariska M; Bossuyt, Patrick M
2016-09-01
To evaluate changes over time in summary estimates from meta-analyses of diagnostic accuracy studies. We included 48 meta-analyses from 35 MEDLINE-indexed systematic reviews published between September 2011 and January 2012 (743 diagnostic accuracy studies; 344,015 participants). Within each meta-analysis, we ranked studies by publication date. We applied random-effects cumulative meta-analysis to follow how summary estimates of sensitivity and specificity evolved over time. Time trends were assessed by fitting a weighted linear regression model of the summary accuracy estimate against rank of publication. The median of the 48 slopes was -0.02 (-0.08 to 0.03) for sensitivity and -0.01 (-0.03 to 0.03) for specificity. Twelve of 96 (12.5%) time trends in sensitivity or specificity were statistically significant. We found a significant time trend in at least one accuracy measure for 11 of the 48 (23%) meta-analyses. Time trends in summary estimates are relatively frequent in meta-analyses of diagnostic accuracy studies. Results from early meta-analyses of diagnostic accuracy studies should be considered with caution. Copyright © 2016 Elsevier Inc. All rights reserved.
Kraal, Jos J; Vromen, Tom; Spee, Ruud; Kemps, Hareld M C; Peek, Niels
2017-10-15
Although exercise-based cardiac rehabilitation improves exercise capacity of coronary artery disease patients, it is unclear which training characteristic determines this improvement. Total energy expenditure and its constituent training characteristics (training intensity, session frequency, session duration and programme length) vary considerably among clinical trials, making it hard to compare studies directly. Therefore, we performed a systematic review and meta-regression analysis to assess the effect of total energy expenditure and its constituent training characteristics on exercise capacity. We identified randomised controlled trials comparing continuous aerobic exercise training with usual care for patients with coronary artery disease. Studies were included when training intensity, session frequency, session duration and programme length was described, and exercise capacity was reported in peakVO 2 . Energy expenditure was calculated from the four training characteristics. The effect of training characteristics on exercise capacity was determined using mixed effects linear regression analyses. The analyses were performed with and without total energy expenditure as covariate. Twenty studies were included in the analyses. The mean difference in peakVO 2 between the intervention group and control group was 3.97ml·min -1 ·kg -1 (p<0.01, 95% CI 2.86 to 5.07). Total energy expenditure was significantly related to improvement of exercise capacity (effect size 0.91ml·min -1 ·kg -1 per 100J·kg, p<0.01, 95% CI 0.77 to 1.06), no effect was found for its constituent training characteristics after adjustment for total energy expenditure. We conclude that the design of an exercise programme should primarily be aimed at optimising total energy expenditure rather than on one specific training characteristic. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Converting positive and negative symptom scores between PANSS and SAPS/SANS.
van Erp, Theo G M; Preda, Adrian; Nguyen, Dana; Faziola, Lawrence; Turner, Jessica; Bustillo, Juan; Belger, Aysenil; Lim, Kelvin O; McEwen, Sarah; Voyvodic, James; Mathalon, Daniel H; Ford, Judith; Potkin, Steven G; Fbirn
2014-01-01
The Scale for the Assessment of Positive Symptoms (SAPS), the Scale for the Assessment of Negative Symptoms (SANS), and the Positive and Negative Syndrome Scale for Schizophrenia (PANSS) are the most widely used schizophrenia symptom rating scales, but despite their co-existence for 25 years no easily usable between-scale conversion mechanism exists. The aim of this study was to provide equations for between-scale symptom rating conversions. Two-hundred-and-five schizophrenia patients [mean age±SD=39.5±11.6, 156 males] were assessed with the SANS, SAPS, and PANSS. Pearson's correlations between symptom scores from each of the scales were computed. Linear regression analyses, on data from 176 randomly selected patients, were performed to derive equations for converting ratings between the scales. Intraclass correlations, on data from the remaining 29 patients, not part of the regression analyses, were performed to determine rating conversion accuracy. Between-scale positive and negative symptom ratings were highly correlated. Intraclass correlations between the original positive and negative symptom ratings and those obtained via conversion of alternative ratings using the conversion equations were moderate to high (ICCs=0.65 to 0.91). Regression-based equations may be useful for conversion between schizophrenia symptom severity as measured by the SANS/SAPS and PANSS, though additional validation is warranted. This study's conversion equations, implemented at http:/converteasy.org, may aid in the comparison of medication efficacy studies, in meta- and mega-analyses examining symptoms as moderator variables, and in retrospective combination of symptom data in multi-center data sharing projects that need to pool symptom rating data when such data are obtained using different scales. Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, Shu-Yuan; Perez, Miguel A; Lau, Nathan
2018-04-01
This study investigated the association between driving safety and seven sleep disorders amongst 3541 participants of the Second Strategic Highway Research Program (SHRP 2) naturalistic driving study. SHRP 2 collected naturalistic driving data from participants between 16 and 98 years old by instrumenting participants' vehicles. The analyses used logistic regression to determine the likelihood of crash or near-crash involvement, Poisson log-linear regression to assess crash or near-crash rate, and ordinal logistic regression to assess driver maneuver appropriateness and crash or near-crash severity. These analyses did not account for any medical treatments for the sleep disorders. Females with restless legs syndrome/Willis-Ekbom disease (RLS/WED), drivers with insomnia or narcolepsy, are associated with significantly higher risk of crash or near-crash. Drivers with shift work sleep disorder (SWSD) are associated with significantly increased crash or near-crash rate. Females with RLS/WED or sleep apnea and drivers with SWSD are associated with less safe driver maneuver and drivers with periodic limb movement disorder are associated with more severe events. The four analyses provide no evidence of safety decrements associated with migraine. This study is the first examination on the association between seven sleep disorders and different measures of driving risk using large-scale naturalistic driving study data. The results corroborate much of the existing simulator and epidemiological research related to sleep-disorder patients and their driving safety, but add ecological validity to those findings. These results contribute to the empirical basis for medical professionals, policy makers, and employers in making decisions to aid individuals with sleep disorders in balancing safety and personal mobility.
Specialization Agreements in the Council for Mutual Economic Assistance
1988-02-01
proportions to stabilize variance (S. Weisberg, Applied Linear Regression , 2nd ed., John Wiley & Sons, New York, 1985, p. 134). If the dependent...27, 1986, p. 3. Weisberg, S., Applied Linear Regression , 2nd ed., John Wiley & Sons, New York, 1985, p. 134. Wiles, P. J., Communist International
Radio Propagation Prediction Software for Complex Mixed Path Physical Channels
2006-08-14
63 4.4.6. Applied Linear Regression Analysis in the Frequency Range 1-50 MHz 69 4.4.7. Projected Scaling to...4.4.6. Applied Linear Regression Analysis in the Frequency Range 1-50 MHz In order to construct a comprehensive numerical algorithm capable of
Due to the complexity of the processes contributing to beach bacteria concentrations, many researchers rely on statistical modeling, among which multiple linear regression (MLR) modeling is most widely used. Despite its ease of use and interpretation, there may be time dependence...
Data Transformations for Inference with Linear Regression: Clarifications and Recommendations
ERIC Educational Resources Information Center
Pek, Jolynn; Wong, Octavia; Wong, C. M.
2017-01-01
Data transformations have been promoted as a popular and easy-to-implement remedy to address the assumption of normally distributed errors (in the population) in linear regression. However, the application of data transformations introduces non-ignorable complexities which should be fully appreciated before their implementation. This paper adds to…
USING LINEAR AND POLYNOMIAL MODELS TO EXAMINE THE ENVIRONMENTAL STABILITY OF VIRUSES
The article presents the development of model equations for describing the fate of viral infectivity in environmental samples. Most of the models were based upon the use of a two-step linear regression approach. The first step employs regression of log base 10 transformed viral t...
Identifying the Factors That Influence Change in SEBD Using Logistic Regression Analysis
ERIC Educational Resources Information Center
Camilleri, Liberato; Cefai, Carmel
2013-01-01
Multiple linear regression and ANOVA models are widely used in applications since they provide effective statistical tools for assessing the relationship between a continuous dependent variable and several predictors. However these models rely heavily on linearity and normality assumptions and they do not accommodate categorical dependent…
Simple and multiple linear regression: sample size considerations.
Hanley, James A
2016-11-01
The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright © 2016 Elsevier Inc. All rights reserved.
Jiang, Feng; Han, Ji-zhong
2018-01-01
Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods. PMID:29623088
Yu, Xu; Lin, Jun-Yu; Jiang, Feng; Du, Jun-Wei; Han, Ji-Zhong
2018-01-01
Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.
Predictors of effects of lifestyle intervention on diabetes mellitus type 2 patients.
Jacobsen, Ramune; Vadstrup, Eva; Røder, Michael; Frølich, Anne
2012-01-01
The main aim of the study was to identify predictors of the effects of lifestyle intervention on diabetes mellitus type 2 patients by means of multivariate analysis. Data from a previously published randomised clinical trial, which compared the effects of a rehabilitation programme including standardised education and physical training sessions in the municipality's health care centre with the same duration of individual counseling in the diabetes outpatient clinic, were used. Data from 143 diabetes patients were analysed. The merged lifestyle intervention resulted in statistically significant improvements in patients' systolic blood pressure, waist circumference, exercise capacity, glycaemic control, and some aspects of general health-related quality of life. The linear multivariate regression models explained 45% to 80% of the variance in these improvements. The baseline outcomes in accordance to the logic of the regression to the mean phenomenon were the only statistically significant and robust predictors in all regression models. These results are important from a clinical point of view as they highlight the more urgent need for and better outcomes following lifestyle intervention for those patients who have worse general and disease-specific health.
Anodic microbial community diversity as a predictor of the power output of microbial fuel cells.
Stratford, James P; Beecroft, Nelli J; Slade, Robert C T; Grüning, André; Avignone-Rossa, Claudio
2014-03-01
The relationship between the diversity of mixed-species microbial consortia and their electrogenic potential in the anodes of microbial fuel cells was examined using different diversity measures as predictors. Identical microbial fuel cells were sampled at multiple time-points. Biofilm and suspension communities were analysed by denaturing gradient gel electrophoresis to calculate the number and relative abundance of species. Shannon and Simpson indices and richness were examined for association with power using bivariate and multiple linear regression, with biofilm DNA as an additional variable. In simple bivariate regressions, the correlation of Shannon diversity of the biofilm and power is stronger (r=0.65, p=0.001) than between power and richness (r=0.39, p=0.076), or between power and the Simpson index (r=0.5, p=0.018). Using Shannon diversity and biofilm DNA as predictors of power, a regression model can be constructed (r=0.73, p<0.001). Ecological parameters such as the Shannon index are predictive of the electrogenic potential of microbial communities. Copyright © 2014 Elsevier Ltd. All rights reserved.
McNamara, P J; Sharief, N
2001-09-01
Near-patient blood glucose monitoring is an essential component of neonatal intensive care but the analysers currently used are unreliable and inaccurate. The aim of this study was to compare a new glucose electrode-based analyser (EML 105) and a non-wipe reflectance photometry method (Advantage) as opposed to a recognized laboratory reference method (Hexokinase). We also investigated the effect of sample route and haematocrit on the accuracy of the glucose readings obtained by each method of analysis. Whole blood glucose concentrations ranging from 0 to 3.5 mmol/l were carefully prepared in a laboratory setting and blood samples from each respective solution were then measured by EML 105 and Advantage analysers. The results obtained were then compared with the corresponding plasma glucose reading obtained by the Hexokinase method, using linear regression analysis. An in vivo study was subsequently performed on 103 neonates, over a 1-y period, using capillary and venous whole blood samples. Whole blood glucose concentration was estimated from each sample using both analysers and compared with the corresponding plasma glucose concentration estimated by the Hexokinase method. Venous blood was centrifuged and haematocrit was estimated using standardized curves. The effect of haematocrit on the agreement between whole blood and plasma glucose was investigated, estimating the degree of correlation on a scatterplot of the results and linear regression analysis. Both the EML 105 and Hexokinase methods were highly accurate, in vitro, with small proportional biases of 2% and 5%, respectively. However, in vivo, both study analysers overestimated neonatal plasma glucose, ranging from at best 0.45 mmol/l (EML 105 venous) to 0.69 mmol/l (EML capillary). There was no significant difference in the agreement of capillary (GD = 0.12, 95% CI, [-0.32,0.08], p = 0.2) or venous samples (GD = 0.05, 95% CI. [0.09, 0.19], p = 0.49) with plasma glucose when analysed by either study method (GD = glucose difference between study analyser and reference method) However, the venous samples analysed by EML 105 estimated plasma glucose significantly better than capillary samples using the same method of analysis (GD = 0.24, 95% CI. [0.09,0.38], p < 0.01). The relationship between haematocrit and the resultant glucose differences was non-linear with correlation coefficients of r = -0.057 (EML 105 capillary), r = 0.145 (EML 105 venous), r = -0.127 (Advantage capillary) and r = -0.275 (Advantage venous). There was no significant difference in the effect of haematocrit on the performance of EML 105 versus Advantage, regardless of the sample route. Both EML 105 and Advantage overestimated plasma glucose, with no significant difference in the performance of either analyser, regardless of the route of analysis. Agreement with plasma glucose was better for venous samples but this was only statistically significant when EML 105 capillary and venous results were compared. Haematocrit is not a significant confounding factor towards the performance of either EML 105 or Advantage in neonates, regardless of the route of sampling. The margin of overestimation of blood glucose prohibits the recommendation of both EML 105 and Advantage for routine neonatal glucose screening. The consequences include failure accurately to diagnose hypoglycaemia and delays in the instigation of therapeutic measures, both of which may potentially result in an adverse, long-term, neurodevelopmental outcome.
NASA Technical Reports Server (NTRS)
Nagabhushanam, J.; Gaonkar, Gopal H.; Mcnulty, Michael J.
1987-01-01
Experiments have been performed with a 1.62 m diameter hingeless rotor in a wind tunnel to investigate flap-lag stability of isolated rotors in forward flight. The three-bladed rotor model closely approaches the simple theoretical concept of a hingeless rotor as a set of rigid, articulated flap-lag blades with offset and spring restrained flap and lag hinges. Lag regressing mode stability data was obtained for advance ratios as high as 0.55 for various combinations of collective pitch and shaft angle. The prediction includes quasi-steady stall effects on rotor trim and Floquet stability analyses. Correlation between data and prediction is presented and is compared with that of an earlier study based on a linear theory without stall effects. While the results with stall effects show marked differences from the linear theory results, the stall theory still falls short of adequate agreement with the experimental data.
SAND: an automated VLBI imaging and analysing pipeline - I. Stripping component trajectories
NASA Astrophysics Data System (ADS)
Zhang, M.; Collioud, A.; Charlot, P.
2018-02-01
We present our implementation of an automated very long baseline interferometry (VLBI) data-reduction pipeline that is dedicated to interferometric data imaging and analysis. The pipeline can handle massive VLBI data efficiently, which makes it an appropriate tool to investigate multi-epoch multiband VLBI data. Compared to traditional manual data reduction, our pipeline provides more objective results as less human interference is involved. The source extraction is carried out in the image plane, while deconvolution and model fitting are performed in both the image plane and the uv plane for parallel comparison. The output from the pipeline includes catalogues of CLEANed images and reconstructed models, polarization maps, proper motion estimates, core light curves and multiband spectra. We have developed a regression STRIP algorithm to automatically detect linear or non-linear patterns in the jet component trajectories. This algorithm offers an objective method to match jet components at different epochs and to determine their proper motions.
The swan-song phenomenon: last-works effects for 172 classical composers.
Simonton, D K
1989-03-01
Creative individuals approaching their final years of life may undergo a transformation in outlook that is reflected in their last works. This hypothesized effect was quantitatively assessed for an extensive sample of 1,919 works by 172 classical composers. The works were independently gauged on seven aesthetic attributes (melodic originality, melodic variation, repertoire popularity, aesthetic significance, listener accessibility, performance duration, and thematic size), and potential last-works effects were operationally defined two separate ways (linearly and exponentially). Statistical controls were introduced for both longitudinal changes (linear, quadratic, and cubic age functions) and individual differences (eminence and lifetime productivity). Hierarchical regression analyses indicated that composers' swan songs tend to score lower in melodic originality and performance duration but higher in repertoire popularity and aesthetic significance. These last-works effects survive control for total compositional output, eminence, and most significantly, the composer's age when the last works were created.
Effects of fatigue on motor unit firing rate versus recruitment threshold relationships.
Stock, Matt S; Beck, Travis W; Defreitas, Jason M
2012-01-01
The purpose of this study was to examine the influence of fatigue on the average firing rate versus recruitment threshold relationships for the vastus lateralis (VL) and vastus medialis. Nineteen subjects performed ten maximum voluntary contractions of the dominant leg extensors. Before and after this fatiguing protocol, the subjects performed a trapezoid isometric muscle action of the leg extensors, and bipolar surface electromyographic signals were detected from both muscles. These signals were then decomposed into individual motor unit action potential trains. For each subject and muscle, the relationship between average firing rate and recruitment threshold was examined using linear regression analyses. For the VL, the linear slope coefficients and y-intercepts for these relationships increased and decreased, respectively, after fatigue. For both muscles, many of the motor units decreased their firing rates. With fatigue, recruitment of higher threshold motor units resulted in an increase in slope for the VL. Copyright © 2011 Wiley Periodicals, Inc.
Cui, Zaixu; Gong, Gaolang
2018-06-02
Individualized behavioral/cognitive prediction using machine learning (ML) regression approaches is becoming increasingly applied. The specific ML regression algorithm and sample size are two key factors that non-trivially influence prediction accuracies. However, the effects of the ML regression algorithm and sample size on individualized behavioral/cognitive prediction performance have not been comprehensively assessed. To address this issue, the present study included six commonly used ML regression algorithms: ordinary least squares (OLS) regression, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic-net regression, linear support vector regression (LSVR), and relevance vector regression (RVR), to perform specific behavioral/cognitive predictions based on different sample sizes. Specifically, the publicly available resting-state functional MRI (rs-fMRI) dataset from the Human Connectome Project (HCP) was used, and whole-brain resting-state functional connectivity (rsFC) or rsFC strength (rsFCS) were extracted as prediction features. Twenty-five sample sizes (ranged from 20 to 700) were studied by sub-sampling from the entire HCP cohort. The analyses showed that rsFC-based LASSO regression performed remarkably worse than the other algorithms, and rsFCS-based OLS regression performed markedly worse than the other algorithms. Regardless of the algorithm and feature type, both the prediction accuracy and its stability exponentially increased with increasing sample size. The specific patterns of the observed algorithm and sample size effects were well replicated in the prediction using re-testing fMRI data, data processed by different imaging preprocessing schemes, and different behavioral/cognitive scores, thus indicating excellent robustness/generalization of the effects. The current findings provide critical insight into how the selected ML regression algorithm and sample size influence individualized predictions of behavior/cognition and offer important guidance for choosing the ML regression algorithm or sample size in relevant investigations. Copyright © 2018 Elsevier Inc. All rights reserved.
Esserman, Denise A.; Moore, Charity G.; Roth, Mary T.
2009-01-01
Older community dwelling adults often take multiple medications for numerous chronic diseases. Non-adherence to these medications can have a large public health impact. Therefore, the measurement and modeling of medication adherence in the setting of polypharmacy is an important area of research. We apply a variety of different modeling techniques (standard linear regression; weighted linear regression; adjusted linear regression; naïve logistic regression; beta-binomial (BB) regression; generalized estimating equations (GEE)) to binary medication adherence data from a study in a North Carolina based population of older adults, where each medication an individual was taking was classified as adherent or non-adherent. In addition, through simulation we compare these different methods based on Type I error rates, bias, power, empirical 95% coverage, and goodness of fit. We find that estimation and inference using GEE is robust to a wide variety of scenarios and we recommend using this in the setting of polypharmacy when adherence is dichotomously measured for multiple medications per person. PMID:20414358
Genetic Programming Transforms in Linear Regression Situations
NASA Astrophysics Data System (ADS)
Castillo, Flor; Kordon, Arthur; Villa, Carlos
The chapter summarizes the use of Genetic Programming (GP) inMultiple Linear Regression (MLR) to address multicollinearity and Lack of Fit (LOF). The basis of the proposed method is applying appropriate input transforms (model respecification) that deal with these issues while preserving the information content of the original variables. The transforms are selected from symbolic regression models with optimal trade-off between accuracy of prediction and expressional complexity, generated by multiobjective Pareto-front GP. The chapter includes a comparative study of the GP-generated transforms with Ridge Regression, a variant of ordinary Multiple Linear Regression, which has been a useful and commonly employed approach for reducing multicollinearity. The advantages of GP-generated model respecification are clearly defined and demonstrated. Some recommendations for transforms selection are given as well. The application benefits of the proposed approach are illustrated with a real industrial application in one of the broadest empirical modeling areas in manufacturing - robust inferential sensors. The chapter contributes to increasing the awareness of the potential of GP in statistical model building by MLR.
Naval Research Logistics Quarterly. Volume 28. Number 3,
1981-09-01
denotes component-wise maximum. f has antone (isotone) differences on C x D if for cl < c2 and d, < d2, NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28...or negative correlations and linear or nonlinear regressions. Given are the mo- ments to order two and, for special cases, (he regression function and...data sets. We designate this bnb distribution as G - B - N(a, 0, v). The distribution admits only of positive correlation and linear regressions
Relationship between mechanical factors and pelvic tilt in adults with and without low back pain.
Król, Anita; Polak, Maciej; Szczygieł, Elżbieta; Wójcik, Paweł; Gleb, Klaudia
2017-01-01
The assessment of the lumbo-pelvic complex parameters is the basic procedure during the examination of the patients with low back pain syndrome (LBP). The aim of the study was to define the relationship between pelvic tilt and following factors: age, BMI, ability to activate deep abdominal muscles, iliopsoas and hamstrings muscles length, lumbar lordosis and thoracic kyphosis angle value, in adults with and without low back pain. The study covered a group of 60 female students aged 20-26. Average age was 22 years ± 1.83 (median = 22.5 years). In order to investigate the relationship between the anterior pelvic tilt and the analysed variables, simple linear regression and multiple linear regression were carried out. Individuals with and without pain differed significantly in terms of age, p < 0.001. There was a statistically significant relationship between the anterior pelvic tilt and the LBP (R2 = 0.07, p = 0.049) and the lumbar lordosis (R2 = 0.13, p = 0.02). The position of the pelvis depends on age, angle value of lumbar lordosis and BMI. Individuals with and without pain differed significantly in terms of the anterior pelvic tilt. The risk of LBP incidence increased with age in the study group.
Coronado-Zarco, Roberto; Diez-García, María del Pilar; Chávez-Arias, Daniel; León-Hernández, Saúl Renán; Cruz-Medina, Eva; Arellano-Hernández, Aurelia
2005-01-01
Bone and skeletal muscle mass loss is related to age. Mechanisms by which they interact have not been well established. To establish a relationship of age with serum levels of IGF-1, skeletal muscle and appendicular muscle mass index, and their influence in isokinetic parameters in osteoporotic female patients. Pearson correlation coefficient and linear regression analyses were used. There were 38 patients with a mean age of 65.16 years (range: 50-84 years), mean appendicular skeletal mass index (ASMI) of 6.3 kg/m2 (range: 4.3-8.3) and mean skeletal mass index (SMI) of 12.4 kg/m2 (range: 9.6-15.7), mean serum IGF-1 levels of 82.97 ng/ml (range: 22-177). Linear regression predicted hip mineral bone density by SMI (p = 0.19) and age (p = 0.017, r = 0.50). Some isokinetic parameters had a positive correlation for work with age. Knee acceleration time had a positive correlation with age. Osteoporosis and sarcopenia may have related pathophysiologic mechanisms. Growth factor study must include the influence of sex hormones. Some isokinetic parameters are determined by the predominant muscle fiber, skeletal mass index and age.
Li, Siyue; Zhang, Quanfa
2011-06-15
Water samples were collected for determination of dissolved trace metals in 56 sampling sites throughout the upper Han River, China. Multivariate statistical analyses including correlation analysis, stepwise multiple linear regression models, and principal component and factor analysis (PCA/FA) were employed to examine the land use influences on trace metals, and a receptor model of factor analysis-multiple linear regression (FA-MLR) was used for source identification/apportionment of anthropogenic heavy metals in the surface water of the River. Our results revealed that land use was an important factor in water metals in the snow melt flow period and land use in the riparian zone was not a better predictor of metals than land use away from the river. Urbanization in a watershed and vegetation along river networks could better explain metals, and agriculture, regardless of its relative location, however slightly explained metal variables in the upper Han River. FA-MLR analysis identified five source types of metals, and mining, fossil fuel combustion, and vehicle exhaust were the dominant pollutions in the surface waters. The results demonstrated great impacts of human activities on metal concentrations in the subtropical river of China. Copyright © 2011 Elsevier B.V. All rights reserved.
2014-01-01
Background It is not well established how psychosocial factors like social support and depression affect health-related quality of life in multimorbid and elderly patients. We investigated whether depressive mood mediates the influence of social support on health-related quality of life. Methods Cross-sectional data of 3,189 multimorbid patients from the baseline assessment of the German MultiCare cohort study were used. Mediation was tested using the approach described by Baron and Kenny based on multiple linear regression, and controlling for socioeconomic variables and burden of multimorbidity. Results Mediation analyses confirmed that depressive mood mediates the influence of social support on health-related quality of life (Sobel’s p < 0.001). Multiple linear regression showed that the influence of depressive mood (β = −0.341, p < 0.01) on health-related quality of life is greater than the influence of multimorbidity (β = −0.234, p < 0.01). Conclusion Social support influences health-related quality of life, but this association is strongly mediated by depressive mood. Depression should be taken into consideration in research on multimorbidity, and clinicians should be aware of its importance when caring for multimorbid patients. Trial registration ISRCTN89818205 PMID:24708815
A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications
Austin, Peter C.
2017-01-01
Summary Data that have a multilevel structure occur frequently across a range of disciplines, including epidemiology, health services research, public health, education and sociology. We describe three families of regression models for the analysis of multilevel survival data. First, Cox proportional hazards models with mixed effects incorporate cluster-specific random effects that modify the baseline hazard function. Second, piecewise exponential survival models partition the duration of follow-up into mutually exclusive intervals and fit a model that assumes that the hazard function is constant within each interval. This is equivalent to a Poisson regression model that incorporates the duration of exposure within each interval. By incorporating cluster-specific random effects, generalised linear mixed models can be used to analyse these data. Third, after partitioning the duration of follow-up into mutually exclusive intervals, one can use discrete time survival models that use a complementary log–log generalised linear model to model the occurrence of the outcome of interest within each interval. Random effects can be incorporated to account for within-cluster homogeneity in outcomes. We illustrate the application of these methods using data consisting of patients hospitalised with a heart attack. We illustrate the application of these methods using three statistical programming languages (R, SAS and Stata). PMID:29307954
Amit, N; Ibrahim, N; Aga Mohd Jaladin, R; Che Din, N
2017-10-01
This research examined the predicting roles of reasons for living and social support on depression, anxiety and stress in Malaysia. This research was carried out on a sample of 263 participants (age range 12-24 years old), from Klang Valley, Selangor. The survey package comprises demographic information, a measure of reasons for living, social support, depression, anxiety and stress. To analyse the data, correlation analysis and a series of linear multiple regression analysis were carried out. Findings showed that there were low negative relationships between all subdomains and the total score of reasons for living and depression. There were also low negative relationships between domain-specific of social support (family and friends) and total social support and depression. In terms of the family alliance, self-acceptance and total score of reasons for living, they were negatively associated with anxiety, whereas family social support was negatively associated with stress. The linear regression analysis showed that only future optimism and family social support found to be the significant predictors for depression. Family alliance and total reasons for living were significant in predicting anxiety, whereas family social support was significant in predicting stress. These findings have the potential to promote awareness related to depression, anxiety, and stress among youth in Malaysia.
Quatman-Yates, Catherine; Bonnette, Scott; Gupta, Resmi; Hugentobler, Jason A; Wade, Shari L; Glauser, Tracy A; Ittenbach, Richard F; Paterno, Mark V; Riley, Michael A
2018-04-01
This study aimed to provide insight into the development of postural control abilities in youth. A total of 276 typically developing adolescents (155 males, 121 females) with a mean age of 13.23 years (range of 7.11-18.80) were recruited for participation. Subjects performed two-minute quiet standing trials in bipedal stance on a force plate. Center of pressure (COP) trajectories were quantified using Sample Entropy (SampEn) in the anterior-posterior direction (SampEn-AP), SampEn in the medial-lateral direction (SampEn-ML), and Path Length (PL) measures. Three separate linear regression analyses were conducted to predict the relationship between age and each of the response variables after adjusting for individuals' physical characteristics. Linear regression models showed an inverse relationship between age and entropy measures after adjusting for body mass index. Results indicated that chronological age was predictive of entropy and path length patterns. Specifically, older adolescents exhibited center of pressure displacement (smaller path length) and less complex, more regular center of pressure displacement patterns (lower SampEn-AP and SampEn-ML values) compared to the younger children. These findings support prior studies suggesting that developmental changes in postural control abilities may continue throughout adolescence and into adulthood. Copyright © 2018 Elsevier B.V. All rights reserved.
Analyses of Field Test Data at the Atucha-1 Spent Fuel Pools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, S.
A field test was conducted at the Atucha-1 spent nuclear fuel pools to validate a software package for gross defect detection that is used in conjunction with the inspection tool, Spent Fuel Neutron Counter (SFNC). A set of measurements was taken with the SFNC and the software predictions were compared with these data and analyzed. The data spanned a wide range of cooling times and a set of burnup levels leading to count rates from the several hundreds to around twenty per second. The current calibration in the software using linear fitting required the use of multiple calibration factors tomore » cover the entire range of count rates recorded. The solution to this was to use power regression data fitting to normalize the predicted response and derive one calibration factor that can be applied to the entire set of data. The resulting comparisons between the predicted and measured responses were generally good and provided a quantitative method of detecting missing fuel in virtually all situations. Since the current version of the software uses the linear calibration method, it would need to be updated with the new power regression method to make it more user-friendly for real time verification and fieldable for the range of responses that will be encountered.« less
Almalik, Osama; Nijhuis, Michiel B; van den Heuvel, Edwin R
2014-01-01
Shelf-life estimation usually requires that at least three registration batches are tested for stability at multiple storage conditions. The shelf-life estimates are often obtained by linear regression analysis per storage condition, an approach implicitly suggested by ICH guideline Q1E. A linear regression analysis combining all data from multiple storage conditions was recently proposed in the literature when variances are homogeneous across storage conditions. The combined analysis is expected to perform better than the separate analysis per storage condition, since pooling data would lead to an improved estimate of the variation and higher numbers of degrees of freedom, but this is not evident for shelf-life estimation. Indeed, the two approaches treat the observed initial batch results, the intercepts in the model, and poolability of batches differently, which may eliminate or reduce the expected advantage of the combined approach with respect to the separate approach. Therefore, a simulation study was performed to compare the distribution of simulated shelf-life estimates on several characteristics between the two approaches and to quantify the difference in shelf-life estimates. In general, the combined statistical analysis does estimate the true shelf life more consistently and precisely than the analysis per storage condition, but it did not outperform the separate analysis in all circumstances.
A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications.
Austin, Peter C
2017-08-01
Data that have a multilevel structure occur frequently across a range of disciplines, including epidemiology, health services research, public health, education and sociology. We describe three families of regression models for the analysis of multilevel survival data. First, Cox proportional hazards models with mixed effects incorporate cluster-specific random effects that modify the baseline hazard function. Second, piecewise exponential survival models partition the duration of follow-up into mutually exclusive intervals and fit a model that assumes that the hazard function is constant within each interval. This is equivalent to a Poisson regression model that incorporates the duration of exposure within each interval. By incorporating cluster-specific random effects, generalised linear mixed models can be used to analyse these data. Third, after partitioning the duration of follow-up into mutually exclusive intervals, one can use discrete time survival models that use a complementary log-log generalised linear model to model the occurrence of the outcome of interest within each interval. Random effects can be incorporated to account for within-cluster homogeneity in outcomes. We illustrate the application of these methods using data consisting of patients hospitalised with a heart attack. We illustrate the application of these methods using three statistical programming languages (R, SAS and Stata).
Automating approximate Bayesian computation by local linear regression.
Thornton, Kevin R
2009-07-07
In several biological contexts, parameter inference often relies on computationally-intensive techniques. "Approximate Bayesian Computation", or ABC, methods based on summary statistics have become increasingly popular. A particular flavor of ABC based on using a linear regression to approximate the posterior distribution of the parameters, conditional on the summary statistics, is computationally appealing, yet no standalone tool exists to automate the procedure. Here, I describe a program to implement the method. The software package ABCreg implements the local linear-regression approach to ABC. The advantages are: 1. The code is standalone, and fully-documented. 2. The program will automatically process multiple data sets, and create unique output files for each (which may be processed immediately in R), facilitating the testing of inference procedures on simulated data, or the analysis of multiple data sets. 3. The program implements two different transformation methods for the regression step. 4. Analysis options are controlled on the command line by the user, and the program is designed to output warnings for cases where the regression fails. 5. The program does not depend on any particular simulation machinery (coalescent, forward-time, etc.), and therefore is a general tool for processing the results from any simulation. 6. The code is open-source, and modular.Examples of applying the software to empirical data from Drosophila melanogaster, and testing the procedure on simulated data, are shown. In practice, the ABCreg simplifies implementing ABC based on local-linear regression.
NASA Astrophysics Data System (ADS)
Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.
2017-12-01
The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.
2014-01-01
Background People with osteoarthritis (OA) frequently report that their joint pain is influenced by weather conditions. This study aimed to examine whether there are differences in perceived joint pain between older people with OA who reported to be weather-sensitive versus those who did not in six European countries with different climates and to identify characteristics of older persons with OA that are most predictive of perceived weather sensitivity. Methods Baseline data from the European Project on OSteoArthritis (EPOSA) were used. ACR classification criteria were used to determine OA. Participants with OA were asked about their perception of weather as influencing their pain. Using a two-week follow-up pain calendar, average self-reported joint pain was assessed (range: 0 (no pain)-10 (greatest pain intensity)). Linear regression analyses, logistic regression analyses and an independent t-test were used. Analyses were adjusted for several confounders. Results The majority of participants with OA (67.2%) perceived the weather as affecting their pain. Weather-sensitive participants reported more pain than non-weather-sensitive participants (M = 4.1, SD = 2.4 versus M = 3.1, SD = 2.4; p < 0.001). After adjusting for several confounding factors, the association between self-perceived weather sensitivity and joint pain remained present (B = 0.37, p = 0.03). Logistic regression analyses revealed that women and more anxious people were more likely to report weather sensitivity. Older people with OA from Southern Europe were more likely to indicate themselves as weather-sensitive persons than those from Northern Europe. Conclusions Weather (in)stability may have a greater impact on joint structures and pain perception in people from Southern Europe. The results emphasize the importance of considering weather sensitivity in daily life of older people with OA and may help to identify weather-sensitive older people with OA. PMID:24597710
Timmermans, Erik J; van der Pas, Suzan; Schaap, Laura A; Sánchez-Martínez, Mercedes; Zambon, Sabina; Peter, Richard; Pedersen, Nancy L; Dennison, Elaine M; Denkinger, Michael; Castell, Maria Victoria; Siviero, Paola; Herbolsheimer, Florian; Edwards, Mark H; Otero, Angel; Deeg, Dorly J H
2014-03-05
People with osteoarthritis (OA) frequently report that their joint pain is influenced by weather conditions. This study aimed to examine whether there are differences in perceived joint pain between older people with OA who reported to be weather-sensitive versus those who did not in six European countries with different climates and to identify characteristics of older persons with OA that are most predictive of perceived weather sensitivity. Baseline data from the European Project on OSteoArthritis (EPOSA) were used. ACR classification criteria were used to determine OA. Participants with OA were asked about their perception of weather as influencing their pain. Using a two-week follow-up pain calendar, average self-reported joint pain was assessed (range: 0 (no pain)-10 (greatest pain intensity)). Linear regression analyses, logistic regression analyses and an independent t-test were used. Analyses were adjusted for several confounders. The majority of participants with OA (67.2%) perceived the weather as affecting their pain. Weather-sensitive participants reported more pain than non-weather-sensitive participants (M = 4.1, SD = 2.4 versus M = 3.1, SD = 2.4; p < 0.001). After adjusting for several confounding factors, the association between self-perceived weather sensitivity and joint pain remained present (B = 0.37, p = 0.03). Logistic regression analyses revealed that women and more anxious people were more likely to report weather sensitivity. Older people with OA from Southern Europe were more likely to indicate themselves as weather-sensitive persons than those from Northern Europe. Weather (in)stability may have a greater impact on joint structures and pain perception in people from Southern Europe. The results emphasize the importance of considering weather sensitivity in daily life of older people with OA and may help to identify weather-sensitive older people with OA.