Science.gov

Sample records for analysing utility tunnels

  1. Magnetic tunnel junctions utilizing diamond-like carbon tunnel barriers

    NASA Astrophysics Data System (ADS)

    Cadieu, F. J.; Chen, Li; Li, Biao

    2002-05-01

    We have devised a method whereby thin particulate-free diamond-like carbon films can be made with good adhesion onto even room-temperature substrates. The method employs a filtered ionized carbon beam created by the vacuum impact of a high-energy, approximately 1 J per pulse, 248 nm excimer laser onto a carbon target. The resultant deposition beam can be steered and deflected by magnetic and electric fields to paint a specific substrate area. An important aspect of this deposition method is that the resultant films are particulate free and formed only as the result of atomic species impact. The vast majority of magnetic tunnel junctions utilizing thin metallic magnetic films have employed a thin oxidized layer of aluminum to form the tunnel barrier. This has presented reproducibility problems because the indicated optimal barrier thickness is only approximately 13 Å thick. Magnetic tunnel junctions utilizing Co and permalloy films made by evaporation and sputtering have been fabricated with an intervening diamond-like carbon tunnel barrier. The diamond-like carbon thickness profile has been tapered so that seven junctions with different barrier thickness can be formed at once. Magnetoresistive (MR) measurements made between successive permalloy strip ends include contributions from two junctions and from the permalloy and Co strips that act as current leads to the junctions. Magnetic tunnel junctions with thicker carbon barriers exhibit MR effects that are dominated by that of the permalloy strips. Since these tunnel barriers are formed without the need for oxygen, complete tunnel junctions can be formed with all high-vacuum processing.

  2. Linear and Nonlinear Analyses of a Wind-Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Karkehabadi, R.; Rhew, R. D.

    2004-01-01

    The NASA Langley Research Center (LaRC) has been designing strain-gauge balances for utilization in wind tunnels since its inception. The utilization of balances span a wide variety of aerodynamic tests. A force balance is an inherently critically stressed component due to the requirements of measurement sensitivity. Force balance stress analysis and acceptance criteria are under review due to LaRC wind tunnel operational safety requirements. This paper presents some of the analyses done at NASA LaRC. Research and analyses were performed in order to investigate the structural integrity of the balances and better understand their performance. The analyses presented in this paper are helpful in understanding the overall behavior of an existing balance and can also be used in design of new balances to enhance their performance. As a first step, maximum load combination is used for linear structural analysis. When nonlinear effects are encountered, the analysis is extended to include the nonlinearities. Balance 1621 is typical for LaRC designed balances and was chosen for this study due to its traditional high load capacity, Figure 1. Maximum loading occurs when all 6 components are applied simultaneously with their maximum value allowed (limit load). This circumstance normally will not occur in the wind tunnel. However, if it occurs, is the balance capable of handling the loads with an acceptable factor of safety? Preliminary analysis using Pro/Mechanica indicated that this balance might experience nonlinearity. It was decided to analyze this balance by using NASTRAN so that a nonlinear analysis could be conducted. Balance 1621 was modeled and meshed in PATRAN for analysis in NASTRAN. The model from PATRAN/NASTRAN is compared to the one from Pro/Mechanica. For a complete analysis, it is necessary to consider all the load cases as well as use a dense mesh near all the edges. Because of computer limitations, it is not feasible to analyze model with the dense mesh near

  3. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode

    SciTech Connect

    Hashimoto, T.; Kamikawa, S.; Haruyama, J.; Soriano, D.; Pedersen, J. G.; Roche, S.

    2014-11-03

    Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance (TMR) behaviors on the junction of cobalt/SiO{sub 2}/FGNPA electrode, serving as a prototype structure for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by modulating interpore distance. Annealing the SiO{sub 2}/FGNPA junction also drastically enhances TMR ratios up to ∼100%.

  4. Optimizing header strength utilizing finite element analyses

    NASA Astrophysics Data System (ADS)

    Burchett, S. N.

    Finite element techniques have been successfully applied as a design tool in the optimization of high strength headers for pyrotechnic-driven actuators. These techniques have been applied to three aspects of the design process of a high strength header. The design process was a joint effort of experts from several disciplines including design engineers, material scientists, test engineers, manufacturing engineers, and structural analysts. Following material selection, finite element techniques were applied to evaluate the residual stresses due to manufacturing which were developed in the high strength glass ceramic-to-metal seal headers. Results from these finite element analyses were used to identify header designs which were manufacturable and had a minimum residual stress state. Finite element techniques were than applied to obtain the response of the header due to pyrotechnic burn. The results provided realistic upper bounds on the pressure containment ability of various preliminary header designs and provided a quick and inexpensive method of strengthening and refining the designs. Since testing of the headers was difficult and sometimes destructive, results of the analyses were also used to interpret test results and identify failure modes. In this paper, details of the finite element element techniques including the models used, material properties, material failure models, and loading will be presented. Results from the analyses showing the header failure process will also be presented. This paper will show that significant gains in capability and understanding can result when finite element techniques are included as an integral part of the design process of complicated high strength headers.

  5. Performance of two transonic airfoil wind tunnels utilizing limited ventilation

    NASA Technical Reports Server (NTRS)

    Lee, J. D.; Gregorek, G. M.

    1984-01-01

    A limited-zone ventilated wall panel was developed for a closed-wall icing tunnel which permitted correct simulation of transonic flow over model rotor airfoil sections with and without ice accretions. Candidate porous panels were tested in the Ohio State University 6- x 12-inch transonic airfoil tunnel and result in essentially interference-free flow, as evidenced by pressure distributions over a NACA 0012 airfoil for Mach numbers up to 0.75. Application to the NRC 12- x 12-inch icing tunnel showed a similar result, which allowed proper transonic flow simulation in that tunnel over its full speed range.

  6. Development and utilization of a laser velocimeter system for a large transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Freedman, R. J.; Greissing, J. P.

    1982-01-01

    The need for measurements of the velocity flow field about spinner propeller nacelle configurations at Mach numbers to 0.8 was met by a specially developed laser velocimeter system. This system, which uses an argon ion laser and 4 beam 2 color optics, was required to operate in the hostile environment associated with the operation of a large transonic wind tunnel. To overcome the conditions present in locating the sensitive optics in close proximity to the wind tunnel, an isolation system was developed. The system protects the velocimeter from the high vibrations, elevated temperatures, destructive acoustic pressures and low atmospheric pressures attendant with the operation of the wind tunnel. The system was utilized to map the flow field in front of, behind and in between the rotating blades of an advanced swept blade propeller model at a Mach number of 0.8. The data collected by the system will be used to correlate and verify computer analyses of propeller nacelle flow fields and propeller performance.

  7. Ferroelectric tunneling element and memory applications which utilize the tunneling element

    DOEpatents

    Kalinin, Sergei V [Knoxville, TN; Christen, Hans M [Knoxville, TN; Baddorf, Arthur P [Knoxville, TN; Meunier, Vincent [Knoxville, TN; Lee, Ho Nyung [Oak Ridge, TN

    2010-07-20

    A tunneling element includes a thin film layer of ferroelectric material and a pair of dissimilar electrically-conductive layers disposed on opposite sides of the ferroelectric layer. Because of the dissimilarity in composition or construction between the electrically-conductive layers, the electron transport behavior of the electrically-conductive layers is polarization dependent when the tunneling element is below the Curie temperature of the layer of ferroelectric material. The element can be used as a basis of compact 1R type non-volatile random access memory (RAM). The advantages include extremely simple architecture, ultimate scalability and fast access times generic for all ferroelectric memories.

  8. Analyses of coupled hydrological-mechanical effects during drilling of the FEBEX tunnel at Grimsel

    SciTech Connect

    Rutqvist, J.; Rejeb, A.; Tijani, M.; Tsang, C.-F.

    2003-09-02

    This paper presents analyses of coupled hydrological-mechanical (HM) processes during drilling of the FEBEX tunnel, located in fractured granite at Grimsel, Switzerland. Two and three-dimensional transient finite-element simulations were performed to investigate HM-induced fluid-pressure pulses, observed in the vicinity of the FEBEX tunnel during its excavation in 1995. The results show that fluid-pressure responses observed in the rock mass during TBM drilling of the FEBEX tunnel could not be captured using current estimates of regional stress. It was also shown that the measured pressure responses can be captured in both two and three-dimensional simulations if the stress field is rotated such that contraction (compressive strain rate) and corresponding increases in mean stress occur on the side of the drift, where increased fluid pressure spikes were observed.

  9. Lightning tests and analyses of tunnel bond straps and shielded cables on the Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Druen, William M.

    1993-01-01

    The purposes of the tests and analyses described in this report are as follows: (1) determine the lightning current survivability of five alternative changed designs of the bond straps which electrically bond the solid rocket booster (SRB) systems tunnel to the solid rocket motor (SRM) case; (2) determine the amount of reduction in induced voltages on operational flight (OF) tunnel cables obtained by a modified design of tunnel bond straps (both tunnel cover-to-cover and cover-to-motor case); (3) determine the contribution of coupling to the OF tunnel cables by ground electrical and instrumentation (GEI) cables which enter the systems tunnel from unshielded areas on the surfaces of the motor case; and (4) develop a model (based on test data) and calculate the voltage levels at electronic 'black boxes' connected to the OF cables that run in the systems tunnel.

  10. Shielding design of the linear accelerator at RAON: Accelerator tunnel and utility gallery

    NASA Astrophysics Data System (ADS)

    Kim, Suna; Kang, Bo Sun; Lee, Sangjin; Nam, Shinwoo; Chung, Yeonsei

    2015-10-01

    RAON is the first Korean heavy-ion accelerator for various rare-isotope experiments and will be constructed by the year of 2021. The building for the about 550-m-long superconducting linear accelerator at RAON has three divisions in the vertical layout: accelerator tunnel, intermediate tunnel, and utility gallery. One of the requirements for the building design is that the effective dose rate in the utility gallery should be well below the dose limit for workers. Other parts of the building underground are classified as high-radiation zones where access is strictly controlled. The radiation dose distribution in the building has been calculated by using the Monte Carlo transport code MCNPX including the radiation streaming effects through the intermediate tunnel and penetrating holes. We have applied a point beam loss model in which the continuous beam loss along the beam line is treated as an equivalent point loss with a simple target. We describe the details of the calculation and discuss the results.

  11. Large-Scale Wind-Tunnel Tests of Inverting Flaps on a STOL Utility Aircraft Model.

    DTIC Science & Technology

    1980-06-01

    the same basic wing contour for cruise and have been tested in the Ames 40- by 80-Foot Wind Tunnel using this sarme STOL utility aircraft model with...inverting flap are seen to be quite evenly matched at a descent angle of approximately 130 to 140 , corresponding to a theoretical "no-flare" landing distance...to a T of 2.4, with a maneuvering reserve capability of about 0.6 rad /sec 2 . A slightly larger horizontal tail would be required to provide adequate

  12. Systematic analyses of vibration noise of a vibration isolation system for high-resolution scanning tunneling microscopes.

    PubMed

    Iwaya, Katsuya; Shimizu, Ryota; Hashizume, Tomihiro; Hitosugi, Taro

    2011-08-01

    We designed and constructed an effective vibration isolation system for stable scanning tunneling microscopy measurements using a separate foundation and two vibration isolation stages (i.e., a combination of passive and active vibration isolation dampers). Systematic analyses of vibration data along the horizontal and vertical directions are present, including the vibration transfer functions of each stage and the overall vibration isolation system. To demonstrate the performance of the system, tunneling current noise measurements are conducted with and without the vibration isolation. Combining passive and active vibration isolation dampers successfully removes most of the vibration noise in the tunneling current up to 100 Hz. These comprehensive vibration noise data, along with details of the entire system, can be used to establish a clear guideline for building an effective vibration isolation system for various scanning probe microscopes and electron microscopes.

  13. Heat Transfer Testing in the NSWC Hypervelocity Wind Tunnel Utilizing Co-Axial Surface Thermocouples

    DTIC Science & Technology

    1980-03-19

    8217 DT L FILE COPY I NSWC MP 80-151 AD- A225 273 HEAT TRANSFER TESTING IN THE NSWC HYPERVELOCITY WIND TUNNEL UTILIZING I CO-AXIAL SURFACE...ui - z Ur) 2 MIT- UA U*) C> In> (NJ 01 0017 20 U NSWC MP 80-151 Iz It c 06I- U) zII 00a Lii Vl 0 1 2 - cr > zI 0 z U-- 01 OT ’O _ _ _~i 01 01 NSWC MP...CS.LN’X -- - - - -jJ -f- - - - Z r- - - ~ ~ - -- 4 I ------ ----- ----- ----------------------------------- V n A j) r A r% Cr r, -r n rO A r. A A C

  14. Kinetic and structural characterization of tunnel-perturbing mutants in Bradyrhizobium japonicum proline utilization A.

    PubMed

    Arentson, Benjamin W; Luo, Min; Pemberton, Travis A; Tanner, John J; Becker, Donald F

    2014-08-12

    Proline utilization A from Bradyrhizobium japonicum (BjPutA) is a bifunctional flavoenzyme that catalyzes the oxidation of proline to glutamate using fused proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Recent crystal structures and kinetic data suggest an intramolecular channel connects the two active sites, promoting substrate channeling of the intermediate Δ(1)-pyrroline-5-carboxylate/glutamate-γ-semialdehyde (P5C/GSA). In this work, the structure of the channel was explored by inserting large side chain residues at four positions along the channel in BjPutA. Kinetic analysis of the different mutants revealed replacement of D779 with Tyr (D779Y) or Trp (D779W) significantly decreased the overall rate of the PRODH-P5CDH channeling reaction. X-ray crystal structures of D779Y and D779W revealed that the large side chains caused a constriction in the central section of the tunnel, thus likely impeding the travel of P5C/GSA in the channel. The D779Y and D779W mutants have PRODH activity similar to that of wild-type BjPutA but exhibit significantly lower P5CDH activity, suggesting that exogenous P5C/GSA enters the channel upstream of Asp779. Replacement of nearby Asp778 with Tyr (D778Y) did not impact BjPutA channeling activity. Consistent with the kinetic results, the X-ray crystal structure of D778Y shows that the main channel pathway is not impacted; however, an off-cavity pathway is closed off from the channel. These findings provide evidence that the off-cavity pathway is not essential for substrate channeling in BjPutA.

  15. Aeroelastic Analyses of the SemiSpan SuperSonic Transport (S4T) Wind Tunnel Model at Mach 0.95

    NASA Technical Reports Server (NTRS)

    Hur, Jiyoung

    2014-01-01

    Detailed aeroelastic analyses of the SemiSpan SuperSonic Transport (S4T) wind tunnel model at Mach 0.95 with a 1.75deg fixed angle of attack are presented. First, a numerical procedure using the Computational Fluids Laboratory 3-Dimensional (CFL3D) Version 6.4 flow solver is investigated. The mesh update method for structured multi-block grids was successfully applied to the Navier-Stokes simulations. Second, the steady aerodynamic analyses with a rigid structure of the S4T wind tunnel model are reviewed in transonic flow. Third, the static analyses were performed for both the Euler and Navier-Stokes equations. Both the Euler and Navier-Stokes equations predicted a significant increase of lift forces, compared to the results from the rigid structure of the S4T wind-tunnel model, over various dynamic pressures. Finally, dynamic aeroelastic analyses were performed to investigate the flutter condition of the S4T wind tunnel model at the transonic Mach number. The condition of flutter was observed at a dynamic pressure of approximately 75.0-psf for the Navier-Stokes simulations. However, it was observed that the flutter condition occurred a dynamic pressure of approximately 47.27-psf for the Euler simulations. Also, the computational efficiency of the aeroelastic analyses for the S4T wind tunnel model has been assessed.

  16. Meta-Analyses of Ethnic Match as a Predictor of Dropout, Utilization, and Level of Functioning.

    ERIC Educational Resources Information Center

    Maramba, Gloria Gia; Hall, Gordon C. Nagayama

    2002-01-01

    Meta-analyses were performed on seven studies of ethnic match and psychotherapy. Results reveal a small dropout and utilization effect sizes, indicating that ethnic match is not a significant clinical predictor of decreasing dropout after the first session or increasing number of sessions attended. (Contains references and tables.) (GCP)

  17. Low-temperature-compatible tunneling-current-assisted scanning microwave microscope utilizing a rigid coaxial resonator

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka

    2016-06-01

    We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.

  18. Carpal tunnel syndrome: Analyzing efficacy and utility of clinical tests and various diagnostic modalities

    PubMed Central

    Kasundra, Gaurav M.; Sood, Isha; Bhargava, Amita N.; Bhushan, Bharat; Rana, Kirti; Jangid, Hemant; Shubhkaran, Khichar; Pujar, Guruprasad S.

    2015-01-01

    Background: Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy, but not adequately studied in India. Objectives: To study clinical tests, nerve conduction studies (NCS), ultrasonography (USG), and magnetic resonance imaging (MRI) in diagnosing CTS. Materials and Methods: We diagnosed CTS in 54 patients (93 hands) out of 60 screened patients with symptoms compatible with CTS, including 19 control patients (23 hands). We conducted provocative tests and calculated Boston Carpal tunnel Questionnaire (BCTQ) symptom (S) and function (F) scores. NCS positive patients were classified into mild, mild-to-moderate, moderate, severe, and all-CTS groups. Median nerve anteroposterior, transverse, circumference (CIR), and cross-sectional area (CSA) at inlet (I), middle (M), and outlet (O) each was measured by USG in all patients. MRI was done in 26 patients (39 hands). Results: Phalen, hand elevation and pressure provocation tests had higher sensitivity, Tinel's test had higher specificity and tethered median nerve and tourniquet tests had low sensitivity and moderate specificity. USG had low sensitivity but high specificity, and MRI had moderate sensitivity. USG in patients compared to controls was significantly abnormal in CSA-I, CIR-I, and CSA-O. Significant correlation was found between BCTQ-S and NCS and BCTQ-S and CIR-O. CIR-M, CIR-O, CSA-M, and CSA-I had correlation with NCS. MRI was significant in moderate and in moderate + severe groups combined and associated pathologies were detected in 59% patients. Conclusion: NCS remain gold standard but USG and MRI help increase sensitivity and detect mass lesions amenable to surgery. PMID:26752893

  19. Wind-tunnel evaluation of an advanced main-rotor blade design for a utility-class helicopter

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Mantay, Wayne R.; Wilbur, Matthew L.; Cramer, Robert G., Jr.; Singleton, Jeffrey D.

    1987-01-01

    An investigation was conducted in the Langley Transonic Dynamics Tunnel to evaluate differences between an existing utility-class main-rotor blade and an advanced-design main-rotor blade. The two rotor blade designs were compared with regard to rotor performance oscillatory pitch-link loads, and 4-per-rev vertical fixed-system loads. Tests were conducted in hover and over a range of simulated full-scale gross weights and density altitude conditions at advance ratios from 0.15 to 0.40. Results indicate that the advanced blade design offers performance improvements over the baseline blade in both hover and forward flight. Pitch-link oscillatory loads for the baseline rotor were more sensitive to the test conditions than those of the advanced rotor. The 4-per-rev vertical fixed-system load produced by the advanced blade was larger than that produced by the baseline blade at all test conditions.

  20. Analyses of turbulent flow fields and aerosol dynamics of diesel engine exhaust inside two dilution sampling tunnels using the CTAG model.

    PubMed

    Wang, Yan Jason; Yang, Bo; Lipsky, Eric M; Robinson, Allen L; Zhang, K Max

    2013-01-15

    Experimental results from laboratory emission testing have indicated that particulate emission measurements are sensitive to the dilution process of exhaust using fabricated dilution systems. In this paper, we first categorize the dilution parameters into two groups: (1) aerodynamics (e.g., mixing types, mixing enhancers, dilution ratios, residence time); and (2) mixture properties (e.g., temperature, relative humidity, particle size distributions of both raw exhaust and dilution gas). Then we employ the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to investigate the effects of those parameters on a set of particulate emission measurements comparing two dilution tunnels, i.e., a T-mixing lab dilution tunnel and a portable field dilution tunnel with a type of coaxial mixing. The turbulent flow fields and aerosol dynamics of particles are simulated inside two dilution tunnels. Particle size distributions under various dilution conditions predicted by CTAG are evaluated against the experimental data. It is found that in the area adjacent to the injection of exhaust, turbulence plays a crucial role in mixing the exhaust with the dilution air, and the strength of nucleation dominates the level of particle number concentrations. Further downstream, nucleation terminates and the growth of particles by condensation and coagulation continues. Sensitivity studies reveal that a potential unifying parameter for aerodynamics, i.e., the dilution rate of exhaust, plays an important role in new particle formation. The T-mixing lab tunnel tends to favor the nucleation due to a larger dilution rate of the exhaust than the coaxial mixing field tunnel. Our study indicates that numerical simulation tools can be potentially utilized to develop strategies to reduce the uncertainties associated with dilution samplings of emission sources.

  1. Cost-Utility Analyses of Cataract Surgery in Advanced Age-Related Macular Degeneration

    PubMed Central

    Ma, Yingyan; Huang, Jiannan; Zhu, Bijun; Sun, Qian; Miao, Yuyu; Zou, Haidong

    2016-01-01

    ABSTRACT Purpose To explore the cost-utility of cataract surgery in patients with advanced age-related macular degeneration (AMD). Methods Patients who were diagnosed as having and treated for age-related cataract and with a history of advanced AMD at the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, were included in the study. All of the participants underwent successful phacoemulsification with foldable posterior chamber intraocular lens implantation under retrobulbar anesthesia. Best-corrected visual acuity (BCVA) and utility value elicited by time trade-off method from patients at 3-month postoperative time were compared with those before surgery. Quality-adjusted life years (QALYs) gained in a lifetime were calculated at a 3% annual discounted rate. Costs per QALY gained were calculated using the bootstrap method, and probabilities of being cost-effective were presented using a cost-effectiveness acceptability curve. Sensitivity analyses were performed to test the robustness of the results. Results Mean logarithm of the minimum angle of resolution BCVA in the operated eye increased from 1.37 ± 0.5 (Snellen, 20/469) to 0.98 ± 0.25 (Snellen, 20/191) (p < 0.001); BCVA in the weighted average from both eyes (=75% better eye + 25% worse eye) was changed from 1.13 ± 0.22 (Snellen, 20/270) to 0.96 ± 0.17 (Snellen, 20/182) (p < 0.001). Utility values from both patients and doctors increased significantly after surgery (p < 0.001 and p = 0.007). Patients gained 1.17 QALYs by cataract surgery in their lifetime. The cost per QALY was 8835 Chinese yuan (CNY) (1400 U.S. dollars [USD]). It is cost-effective at the threshold of 115,062 CNY (18,235 USD) per QALY in China recommended by the World Health Organization. The cost per QALY varied from 7045 CNY (1116 USD) to 94,178 CNY (14,925 USD) in sensitivity analyses. Conclusions Visual acuity and quality of life assessed by utility value improved significantly after surgery

  2. Cost-utility analyses of drug therapies in breast cancer: a systematic review.

    PubMed

    Nerich, Virginie; Saing, Sopany; Gamper, Eva Maria; Kemmler, Georg; Daval, Franck; Pivot, Xavier; Holzner, Bernhard

    2016-10-01

    The economic evaluation (EE) of health care products has become a necessity. Their quality must be high in order to trust the results and make informed decisions. While cost-utility analyses (CUAs) should be preferred to cost-effectiveness analyses in the oncology area, the quality of breast cancer (BC)-related CUA has been given little attention so far. Thus, firstly, a systematic review of published CUA related to drug therapies for BC, gene expression profiling, and HER2 status testing was performed. Secondly, the quality of selected CUA was assessed and the factors associated with a high-quality CUA identified. The systematic literature search was conducted in PubMed, MEDLINE/EMBASE, and Cochrane to identify published CUA between 2000 and 2014. After screening and data extraction, the quality of each selected CUA was assessed by two independent reviewers, using the checklist proposed by Drummond et al. The analysis of factors associated with a high-quality CUA (defined as a Drummond score ≥7) was performed using a two-step approach. Our systematic review was based on 140 CUAs and showed a wide variety of methodological approaches, including differences in the perspective adopted, the time horizon, measurement of cost and effectiveness, and more specially health-state utility values (HSUVs). The median Drummond score was 7 [range 3-10]. Only one in two of the CUA (n = 74) had a Drummond score ≥7, synonymous of "high quality." The statistically significant predictors of a high-quality CUA were article with "gene expression profiling" topic (p = 0.001), consulting or pharmaceutical company as main location of first author (p = 0.004), and articles with both incremental cost-utility ratio and incremental cost-effectiveness ratio as outcomes of EE (p = 0.02). Our systematic review identified only 140 CUAs published over the past 15 years with one in two of high quality. It showed a wide variety of methodological approaches, especially focused on HSUVs. A

  3. Utility of Percutaneous Intervention in the Management of Tunneled Hemodialysis Catheters

    SciTech Connect

    Angle, John F.; Shilling, Alfred T.; Schenk, Worthington G.; Bissonette, Eric A.; Stadtlander, Kevin S.; Hagspiel, Klaus D.; Spinosa, David J.; Leung, Daniel A.; Matsumoto, Alan H.

    2003-02-15

    A variety of interventional techniques have been developed to restore function to dysfunctional tunneled hemodialysis catheters (THC). The relative efficacies of these techniques were evaluated retrospectively to determine which therapy might be most beneficial. The records of malfunctioning THCs referred to interventional radiology between November 1995 and December 1999 were retrospectively reviewed. Dysfunctional THCs were studied using DSA images obtained while injecting contrast through the lumens of the THCs. The interventions performed were categorized into 1 of 5 groups:no treatment or conservative measures such as vigorous flushing;advancing a guidewire through the THC to reposition the catheter tip or to dislodge a small thrombus; catheter exchange over a guidewire; fibrin stripping of the THC using a loop snare; or prolonged (4 or more hr) direct thrombolytic infusion. A Cox Proportional Hazards model was developed to compare the rate of failure among the procedures. There were 340 THC studies. The catheters were managed as follows: 93 patients received conservative management only, 15 had a guidewire advanced through the catheter, 147 underwent catheter exchange, 62 were treated with a fibrin stripping procedure, and 23 received athrombolytic infusion. Estimated 30-day patency rates for THCs were 38.2% for conservative management, 30.9% for guidewire manipulation of catheter tip, 53.6% for catheter exchange, 76.1% for fibrin stripping, and 69.8% for thrombolytic infusion. Differences among the treatments were observed (p < 0.01) and pairwise comparisons were made among the treatment groups. Failure rates were significantly higher in the catheter exchange(p <0.01) and guidewire manipulation at catheter tip (p <0.01) groups when compared with the fibrin stripping group. The catheter exchange and guidewire manipulation groups also experienced higher rates of failure when compared with the thrombolytic infusion group, although the differences were not

  4. Edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor); Leduc, Henry G. (Inventor)

    1992-01-01

    An edge defined geometry is used to produce very small area tunnel junctions in a structure with niobium nitride superconducting electrodes and a magnesium oxide tunnel barrier. The incorporation of an MgO tunnel barrier with two NbN electrodes results in improved current-voltage characteristics, and may lead to better junction noise characteristics. The NbN electrodes are preferably sputter-deposited, with the first NbN electrode deposited on an insulating substrate maintained at about 250 C to 500 C for improved quality of the electrode.

  5. Edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor); Leduc, Henry G. (Inventor)

    1989-01-01

    An edge defined geometry is used to produce very small area tunnel junctions in a structure with niobium nitride superconducting electrodes and a magnesium oxide tunnel barrier. The incorporation of an MgO tunnel barrier with two NbN electrodes results in improved current-voltage characteristics, and may lead to better junction noise characteristics. The NbN electrodes are preferably sputter-deposited, with the first NbN electrode deposited on an insulating substrate maintained at about 250 to 500 C for improved quality of the electrode.

  6. 30 years of pharmaceutical cost-utility analyses: growth, diversity and methodological improvement.

    PubMed

    Neumann, Peter J; Fang, Chi-Hui; Cohen, Joshua T

    2009-01-01

    To review and critically evaluate published cost-utility analyses (CUAs) pertaining to pharmaceuticals for the past 3 decades. We examined data from the Tufts Medical Center Cost-Effectiveness Analysis Registry (www.cearegistry.org), which contains detailed information on English-language CUAs and their ratios (in $US, year 2008 values) published in peer-reviewed journals. We summarized study features using descriptive statistics for articles published from 1976 to 2006. Changes in study methodology over time were analysed by trend test. Analysis of ratios was restricted to those published from 2000 to 2006 from studies that correctly discounted future costs and benefits. Factors associated with having a favourable value (defined to be more than the median for all included ratios) were identified by logistic regression. Of 1393 CUAs published through 2006, 640 (45.9%) pertained to pharmaceuticals. The proportion of CUAs that focussed on pharmaceuticals increased from 34% for the period 1990-5 to 47% for the period 2001-5. Investigations with a US perspective accounted for 51% of all CUAs, although this proportion has decreased over time. The UK perspective investigations accounted for nearly 16% of all studies, and this portion has increased over time. About 24% of all CUAs were sponsored by industry, 48% were sponsored by non-industry sources, and 28% did not disclose their funding. Adherence to good methodological practices is roughly similar for studies with industry and non-industry sponsorship. Adherence to these practices has increased over time. Among the 1969 ratios meeting our inclusion criteria, the median value was $US22 000 per QALY. Logistic regression revealed that, while controlling for the intervention category (e.g. pharmaceutical, medical device, screening), ratios were more likely to be favourable if they were from studies sponsored by a pharmaceutical or device manufacturer (OR 1.53; 95% CI 1.07, 2.19). Ratios for pharmaceutical CUAs were less

  7. Analysing the primacy of distance in the utilization of health services in the Ahafo-Ano South district, Ghana.

    PubMed

    Buor, Daniel

    2003-01-01

    Although the distance factor has been identified as key in the utilization of health services in rural areas of developing countries, it has been analysed without recourse to related factors of travel time and transport cost. Also, the influence of distance on vulnerable groups in utilization has not been an object of survey by researchers. This paper addresses the impact of distance on utilization, and how distance compares with travel time and transport cost that are related to it in the utilization of health services in the Ahafo-Ano South (rural) district in Ghana. The study, a cross-sectional survey, also identifies the position of distance among other important factors of utilization. A sample of 400, drawn through systematic random technique, was used for the survey. Data were analysed using the regression model and some graphic techniques. The main instruments used in data collection were formal (face-by-face) interview and a questionnaire. The survey finds that distance is the most important factor that influences the utilization of health services in the Ahafo-Ano South district. Other key factors are income, service cost and education. The effect of travel time on utilization reflects that of distance and utilization. Recommendations to reduce distance coverage, improve formal education and reduce poverty have been made.

  8. Method for producing edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor); Leduc, Henry G. (Inventor)

    1992-01-01

    A method for fabricating an edge geometry superconducting tunnel junction device is discussed. The device is comprised of two niobium nitride superconducting electrodes and a magnesium oxide tunnel barrier sandwiched between the two electrodes. The NbN electrodes are preferably sputter-deposited, with the first NbN electrode deposited on an insulating substrate maintained at about 250 C to 500 C for improved quality of the electrode.

  9. Utilization of CAM, CAF, MAX, and FAX for space radiation analyses using HZETRN

    NASA Astrophysics Data System (ADS)

    Slaba, T. C.; Qualls, G. D.; Clowdsley, M. S.; Blattnig, S. R.; Walker, S. A.; Simonsen, L. C.

    2010-04-01

    To estimate astronaut health risk due to space radiation, one must have the ability to calculate various exposure-related quantities that are averaged over specific organs and tissue types. Such calculations require computational models of the ambient space radiation environment, particle transport, nuclear and atomic physics, and the human body. While significant efforts have been made to verify, validate, and quantify the uncertainties associated with many of these models and tools, relatively little work has focused on the uncertainties associated with the representation and utilization of the human phantoms. In this study, we first examine the anatomical properties of the Computerized Anatomical Man (CAM), Computerized Anatomical Female (CAF), Male Adult voXel (MAX), and Female Adult voXel (FAX) models by comparing the masses of various model tissues used to calculate effective dose to the reference values specified by the International Commission on Radiological Protection (ICRP). The MAX and FAX tissue masses are found to be in good agreement with the reference data, while major discrepancies are found between the CAM and CAF tissue masses and the reference data for almost all of the effective dose tissues. We next examine the distribution of target points used with the deterministic transport code HZETRN (High charge (Z) and Energy TRaNsport) to compute mass averaged exposure quantities. A numerical algorithm is presented and used to generate multiple point distributions of varying fidelity for many of the effective dose tissues identified in CAM, CAF, MAX, and FAX. The point distributions are used to compute mass averaged dose equivalent values under both a galactic cosmic ray (GCR) and solar particle event (SPE) environment impinging isotropically on three spherical aluminum shells with areal densities of 0.4 g/cm2, 2.0 g/cm2, and 10.0 g/cm2. The dose equivalent values are examined to identify a recommended set of target points for each of the tissues and

  10. Anatomic and Biomechanical Comparison of Traditional Bankart Repair With Bone Tunnels and Bankart Repair Utilizing Suture Anchors

    PubMed Central

    Judson, Christopher H.; Charette, Ryan; Cavanaugh, Zachary; Shea, Kevin P.

    2016-01-01

    Background: Traditional Bankart repair using bone tunnels has a reported failure rate between 0% and 5% in long-term studies. Arthroscopic Bankart repair using suture anchors has become more popular; however, reported failure rates have been cited between 4% and 18%. There have been no satisfactory explanations for the differences in these outcomes. Hypothesis: Bone tunnels will provide increased coverage of the native labral footprint and demonstrate greater load to failure and stiffness and decreased cyclic displacement in biomechanical testing. Study Design: Controlled laboratory study. Methods: Twenty-two fresh-frozen cadaveric shoulders were used. For footprint analysis, the labral footprint area was marked and measured using a Microscribe technique in 6 specimens. A 3-suture anchor repair was performed, and the area of the uncovered footprint was measured. This was repeated with traditional bone tunnel repair. For the biomechanical analysis, 8 paired specimens were randomly assigned to bone tunnel or suture anchor repair with the contralateral specimen assigned to the other technique. Each specimen underwent cyclic loading (5-25 N, 1 Hz, 100 cycles) and load to failure (15 mm/min). Displacement was measured using a digitized video recording system. Results: Bankart repair with bone tunnels provided significantly more coverage of the native labral footprint than repair with suture anchors (100% vs 27%, P < .001). Repair with bone tunnels (21.9 ± 8.7 N/mm) showed significantly greater stiffness than suture anchor repair (17.1 ± 3.5 N/mm, P = .032). Mean load to failure and gap formation after cyclic loading were not statistically different between bone tunnel (259 ± 76.8 N, 0.209 ± 0.064 mm) and suture anchor repairs (221.5 ± 59.0 N [P = .071], 0.161 ± 0.51 mm [P = .100]). Conclusion: Bankart repair with bone tunnels completely covered the footprint anatomy while suture anchor repair covered less than 30% of the native footprint. Repair using bone tunnels

  11. Effect of hot implantation on ON-current enhancement utilizing isoelectronic trap in Si-based tunnel field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mori, Takahiro; Mizubayashi, Wataru; Morita, Yukinori; Migita, Shinji; Fukuda, Koichi; Miyata, Noriyuki; Yasuda, Tetsuji; Masahara, Meishoku; Ota, Hiroyuki

    2015-03-01

    A tunneling-current enhancement technology for Si-based tunnel field-effect transistors (TFETs) utilizing an Al-N isoelectronic trap (IET) has been proposed recently. In this study, we investigate hot implantation as a doping technique for Al-N isoelectronic impurity. Hot implantation reduces the damage induced by Al and N implantation processes, resulting in performance improvement of IET-assisted TFETs, e.g., a 12-fold enhancement in the driving current at an operation voltage of 0.5 V and an approximately one-third reduction in the subthreshold slope. By hot implantation, we can achieve a higher driving current in Si-based TFETs using the IET technology.

  12. A Study of Thermal Analyses and Fundamental Combustion Characteristics for Thermal Utility with Biomass Volatile Matter

    NASA Astrophysics Data System (ADS)

    Ida, Tamio; Namba, Kunihiko; Sano, Hiroshi

    Based on un-use biomass utilities, Carbonized technology is noticed as material utilities and solid fuel. Therefore, this technology is tackling by national project as large-scale utilities. But, this technology is dehydrated volatiles matter during carbonized from biomass. Especially, Woody tar into one of volatile matter has vicious handling to get into trouble in carbonized equipment. In this study, we propose to get fundamental knowledge for effective thermal utility through thermal decompositions and fundamental combustion properties on experimental results. Woody tar has high caloric value (approximately 30MJ/kg) and high carbon ration. On the other hand, a woody vinegar liquid has thermal decomposition property close to water property with heat absorption as evaporation latent heat of water. In fundamental combustion experimental result, a woody tar has fl ammable combustion and surface combustion. Especially, a total combustion and ignition time properties has hyperbola relation to environment temperatures in furnace.

  13. VALUE-BASED MEDICINE AND OPHTHALMOLOGY: AN APPRAISAL OF COST-UTILITY ANALYSES

    PubMed Central

    Brown, Gary C; Brown, Melissa M; Sharma, Sanjay; Brown, Heidi; Smithen, Lindsay; Leeser, David B; Beauchamp, George

    2004-01-01

    ABSTRACT Purpose To ascertain the extent to which ophthalmologic interventions have been evaluated in value-based medicine format. Methods Retrospective literature review. Papers in the healthcare literature utilizing cost-utility analysis were reviewed by researchers at the Center for Value-Based Medicine, Flourtown, Pennsylvania. A literature review of papers addressing the cost-utility analysis of ophthalmologic procedures in the United States over a 12-year period from 1992 to 2003 was undertaken using the National Library of Medicine and EMBASE databases. The cost-utility of ophthalmologic interventions in inflation-adjusted (real) year 2003 US dollars expended per quality-adjusted life-year ($/QALY) was ascertained in all instances. Results A total of 19 papers were found, including a total of 25 interventions. The median cost-utility of ophthalmologic interventions was $5,219/QALY, with a range from $746/QALY to $6.5 million/QALY. Conclusions The majority of ophthalmologic interventions are especially cost-effective by conventional standards. This is because of the substantial value that ophthalmologic interventions confer to patients with eye diseases for the resources expended. PMID:15747756

  14. The performance and publication of cost-utility analyses in plastic surgery: Making our specialty relevant.

    PubMed

    Thoma, Achilleas; Ignacy, Teegan A; Ziolkowski, Natalia; Voineskos, Sophocles

    2012-01-01

    Increased spending and reduced funding for health care is forcing decision makers to prioritize procedures and redistribute funds. Decision making is based on reliable data regarding the costs and benefits of medical and surgical procedures; such a study design is known as an economic evaluation. The onus is on the plastic surgery community to produce high-quality economic evaluations that support the cost effectiveness of the procedures that are performed. The present review focuses on the cost-utility analysis and its role in deciding whether a novel technique/procedure/technology should be accepted over one that is prevalent. Additionally, the five steps in undertaking a cost-utility (effectiveness) analysis are outlined.

  15. Manned systems utilization analysis (study 2.1). Volume 3: LOVES computer simulations, results, and analyses

    NASA Technical Reports Server (NTRS)

    Stricker, L. T.

    1975-01-01

    The LOVES computer program was employed to analyze the geosynchronous portion of the NASA's 1973 automated satellite mission model from 1980 to 1990. The objectives of the analyses were: (1) to demonstrate the capability of the LOVES code to provide the depth and accuracy of data required to support the analyses; and (2) to tradeoff the concept of space servicing automated satellites composed of replaceable modules against the concept of replacing expendable satellites upon failure. The computer code proved to be an invaluable tool in analyzing the logistic requirements of the various test cases required in the tradeoff. It is indicated that the concept of space servicing offers the potential for substantial savings in the cost of operating automated satellite systems.

  16. General trends in trace element utilization revealed by comparative genomic analyses of Co, Cu, Mo, Ni, and Se.

    PubMed

    Zhang, Yan; Gladyshev, Vadim N

    2010-01-29

    Trace elements are used by all organisms and provide proteins with unique coordination and catalytic and electron transfer properties. Although many trace element-containing proteins are well characterized, little is known about the general trends in trace element utilization. We carried out comparative genomic analyses of copper, molybdenum, nickel, cobalt (in the form of vitamin B(12)), and selenium (in the form of selenocysteine) in 747 sequenced organisms at the following levels: (i) transporters and transport-related proteins, (ii) cofactor biosynthesis traits, and (iii) trace element-dependent proteins. Few organisms were found to utilize all five trace elements, whereas many symbionts, parasites, and yeasts used only one or none of these elements. Investigation of metalloproteomes and selenoproteomes revealed examples of increased utilization of proteins that use copper in land plants, cobalt in Dehalococcoides and Dictyostelium, and selenium in fish and algae, whereas nematodes were found to have great diversity of copper transporters. These analyses also characterized trace element metabolism in common model organisms and suggested new model organisms for experimental studies of individual trace elements. Mismatches in the occurrence of user proteins and corresponding transport systems revealed deficiencies in our understanding of trace element biology. Biological interactions among some trace elements were observed; however, such links were limited, and trace elements generally had unique utilization patterns. Finally, environmental factors, such as oxygen requirement and habitat, correlated with the utilization of certain trace elements. These data provide insights into the general features of utilization and evolution of trace elements in the three domains of life.

  17. Global Patterns of QALY and DALY Use in Surgical Cost-Utility Analyses: A Systematic Review

    PubMed Central

    Ramos, Margarita S.; Moscoso, Andrea V.; Vaughn, Patrick; Zogg, Cheryl K.; Caterson, Edward J.

    2016-01-01

    Background Surgical interventions are being increasingly recognized as cost-effective global priorities, the utility of which are frequently measured using either quality-adjusted (QALY) or disability-adjusted (DALY) life years. The objectives of this study were to: (1) identify surgical cost-effectiveness studies that utilized a formulation of the QALY or DALY as a summary measure, (2) report on global patterns of QALY and DALY use in surgery and the income characteristics of the countries and/or regions involved, and (3) assess for possible associations between national/regional-income levels and the relative prominence of either measure. Study Design PRISMA-guided systematic review of surgical cost-effectiveness studies indexed in PubMed or EMBASE prior to December 15, 2014, that used the DALY and/or QALY as a summary measure. National locations were used to classify publications based on the 2014 World Bank income stratification scheme into: low-, lower-middle-, upper-middle-, or high-income countries. Differences in QALY/DALY use were considered by income level as well as for differences in geographic location and year using descriptive statistics (two-sided Chi-squared tests, Fischer’s exact tests in cell counts <5). Results A total of 540 publications from 128 countries met inclusion criteria, representing 825 “national studies” (regional publications included data from multiple countries). Data for 69.0% (569/825) were reported using QALYs (2.1% low-, 1.2% lower-middle-, 4.4% upper-middle-, and 92.3% high-income countries), compared to 31.0% (256/825) reported using DALYs (46.9% low-, 31.6% lower-middle-, 16.8% upper-middle-, and 4.7% high-income countries) (p<0.001). Studies from the US and the UK dominated the total number of QALY studies (49.9%) and were themselves almost exclusively QALY-based. DALY use, in contrast, was the most common in Africa and Asia. While prominent published use of QALYs (1990s) in surgical cost-effectiveness studies began

  18. Efficacy of extended kinship analyses utilizing commercial STR kit in establishing personal identification.

    PubMed

    Yoshida, Koichi; Yayama, Kazuhiro; Hatanaka, Atsushi; Tamaki, Keiji

    2011-01-01

    Unprecedented fidelity and specificity have afforded DNA testing its long reigning status as the gold standard for establishing personal identification. While the method itself is flawless, forensic experts have undoubtedly stumbled across challenging cases in which no reference samples for an unknown person (UP) are available for comparison. In such cases, experts often must resort to an assortment of kinship analyses-primarily those involving alleged parents or children of a UP-to establish personal identification. The present study derives likelihood ratio (LR) distributions from an extensive series of kinship simulations and places actual data, obtained from 120 cases in which personal identification of a UP was established via kinship analyses, to a comprehensive comparison in order to evaluate the efficacy of kinship assessments in establishing personal identification. A commercially available AmpFlSTR Identifiler kit was used to obtain DNA profiles. UP DNAs were extracted and isolated from fingernail (n=87), cardiac blood (24), carpal bone (7) and tooth (2). Buccal cells were procured from alleged kin (AK) for subsequent kinship analyses. In 72 cases 1-3 alleged children were available for comparison; in 46 cases, one or both alleged parents were available; and in the final 2 cases (involving a pair of bodies discovered together in a dwelling), their alleged children were typed for comparison. For each case a LR was calculated based on the DNA typing results. Interestingly, we found that the median LR observed in the actual cases virtually mirrored those of the simulations. With exception to 2 cases in which a silent allele was observed at D19S433, biological relatives showed a LR greater than 100 and in these cases, kinship between the UP and AK were further supported by additional forms of evidence. We show here that in the vast majority of identification cases where direct reference samples are unavailable for a UP, kinship analyses referring to alleged

  19. [Temporary vascular access for extra-renal detoxification: utilization of tunneled silicone double-lumen catheters by the percutaneous route].

    PubMed

    Jean, G; Chazot, C; Vanel, T

    1994-01-01

    Femoral or subclavian central venous catheters are commonly used for temporary vascular access in haemodialysis. We used 36 tunnelized siliconed double lumen catheter (Quinton Permcath or Hickman Bard), most of them in right internal jugular percutaneously. Indication for this catheter were acute or chronic renal failure, plasma exchange, rescue of arterio venous fistula or peritoneal dialysis. Insertion incidents were minors (local haematoma), mean functional time was 51 days. Catheters were changed in 5 cases of infection, 3 cases of obstruction and in 2 accidental remove. Insertion facility, low morbidity, potentially long time use, high blood flow rate with low recirculation argue for this expensive material.

  20. Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus

    PubMed Central

    Barrangou, Rodolphe; Altermann, Eric; Hutkins, Robert; Cano, Raul; Klaenhammer, Todd R.

    2003-01-01

    Lactobacillus acidophilus is a probiotic organism that displays the ability to use prebiotic compounds such as fructooligosaccharides (FOS), which stimulate the growth of beneficial commensals in the gastrointestinal tract. However, little is known about the mechanisms and genes involved in FOS utilization by Lactobacillus species. Analysis of the L. acidophilus NCFM genome revealed an msm locus composed of a transcriptional regulator of the LacI family, a four-component ATP-binding cassette (ABC) transport system, a fructosidase, and a sucrose phosphorylase. Transcriptional analysis of this operon demonstrated that gene expression was induced by sucrose and FOS but not by glucose or fructose, suggesting some specificity for nonreadily fermentable sugars. Additionally, expression was repressed by glucose but not by fructose, suggesting catabolite repression via two cre-like sequences identified in the promoter–operator region. Insertional inactivation of the genes encoding the ABC transporter substrate-binding protein and the fructosidase reduced the ability of the mutants to grow on FOS. Comparative analysis of gene architecture within this cluster revealed a high degree of synteny with operons in Streptococcus mutans and Streptococcus pneumoniae. However, the association between a fructosidase and an ABC transporter is unusual and may be specific to L. acidophilus. This is a description of a previously undescribed gene locus involved in transport and catabolism of FOS compounds, which can promote competition of beneficial microorganisms in the human gastrointestinal tract. PMID:12847288

  1. Optimizing Mass Spectrometry Analyses: A Tailored Review on the Utility of Design of Experiments.

    PubMed

    Hecht, Elizabeth S; Oberg, Ann L; Muddiman, David C

    2016-05-01

    Mass spectrometry (MS) has emerged as a tool that can analyze nearly all classes of molecules, with its scope rapidly expanding in the areas of post-translational modifications, MS instrumentation, and many others. Yet integration of novel analyte preparatory and purification methods with existing or novel mass spectrometers can introduce new challenges for MS sensitivity. The mechanisms that govern detection by MS are particularly complex and interdependent, including ionization efficiency, ion suppression, and transmission. Performance of both off-line and MS methods can be optimized separately or, when appropriate, simultaneously through statistical designs, broadly referred to as "design of experiments" (DOE). The following review provides a tutorial-like guide into the selection of DOE for MS experiments, the practices for modeling and optimization of response variables, and the available software tools that support DOE implementation in any laboratory. This review comes 3 years after the latest DOE review (Hibbert DB, 2012), which provided a comprehensive overview on the types of designs available and their statistical construction. Since that time, new classes of DOE, such as the definitive screening design, have emerged and new calls have been made for mass spectrometrists to adopt the practice. Rather than exhaustively cover all possible designs, we have highlighted the three most practical DOE classes available to mass spectrometrists. This review further differentiates itself by providing expert recommendations for experimental setup and defining DOE entirely in the context of three case-studies that highlight the utility of different designs to achieve different goals. A step-by-step tutorial is also provided.

  2. Optimizing Mass Spectrometry Analyses: A Tailored Review on the Utility of Design of Experiments

    NASA Astrophysics Data System (ADS)

    Hecht, Elizabeth S.; Oberg, Ann L.; Muddiman, David C.

    2016-05-01

    Mass spectrometry (MS) has emerged as a tool that can analyze nearly all classes of molecules, with its scope rapidly expanding in the areas of post-translational modifications, MS instrumentation, and many others. Yet integration of novel analyte preparatory and purification methods with existing or novel mass spectrometers can introduce new challenges for MS sensitivity. The mechanisms that govern detection by MS are particularly complex and interdependent, including ionization efficiency, ion suppression, and transmission. Performance of both off-line and MS methods can be optimized separately or, when appropriate, simultaneously through statistical designs, broadly referred to as "design of experiments" (DOE). The following review provides a tutorial-like guide into the selection of DOE for MS experiments, the practices for modeling and optimization of response variables, and the available software tools that support DOE implementation in any laboratory. This review comes 3 years after the latest DOE review (Hibbert DB, 2012), which provided a comprehensive overview on the types of designs available and their statistical construction. Since that time, new classes of DOE, such as the definitive screening design, have emerged and new calls have been made for mass spectrometrists to adopt the practice. Rather than exhaustively cover all possible designs, we have highlighted the three most practical DOE classes available to mass spectrometrists. This review further differentiates itself by providing expert recommendations for experimental setup and defining DOE entirely in the context of three case-studies that highlight the utility of different designs to achieve different goals. A step-by-step tutorial is also provided.

  3. The Utility of Genome Skimming for Phylogenomic Analyses as Demonstrated for Glycerid Relationships (Annelida, Glyceridae)

    PubMed Central

    Richter, Sandy; Schwarz, Francine; Hering, Lars; Böggemann, Markus; Bleidorn, Christoph

    2015-01-01

    Glyceridae (Annelida) are a group of venomous annelids distributed worldwide from intertidal to abyssal depths. To trace the evolutionary history and complexity of glycerid venom cocktails, a solid backbone phylogeny of this group is essential. We therefore aimed to reconstruct the phylogenetic relationships of these annelids using Illumina sequencing technology. We constructed whole-genome shotgun libraries for 19 glycerid specimens and 1 outgroup species (Glycinde armigera). The chosen target genes comprise 13 mitochondrial proteins, 2 ribosomal mitochondrial genes, and 4 nuclear loci (18SrRNA, 28SrRNA, ITS1, and ITS2). Based on partitioned maximum likelihood as well as Bayesian analyses of the resulting supermatrix, we were finally able to resolve a robust glycerid phylogeny and identified three clades comprising the majority of taxa. Furthermore, we detected group II introns inside the cox1 gene of two analyzed glycerid specimens, with two different insertions in one of these species. Moreover, we generated reduced data sets comprising 10 million, 4 million, and 1 million reads from the original data sets to test the influence of the sequencing depth on assembling complete mitochondrial genomes from low coverage genome data. We estimated the coverage of mitochondrial genome sequences in each data set size by mapping the filtered Illumina reads against the respective mitochondrial contigs. By comparing the contig coverage calculated in all data set sizes, we got a hint for the scalability of our genome skimming approach. This allows estimating more precisely the number of reads that are at least necessary to reconstruct complete mitochondrial genomes in Glyceridae and probably non-model organisms in general. PMID:26590213

  4. The Utility of Genome Skimming for Phylogenomic Analyses as Demonstrated for Glycerid Relationships (Annelida, Glyceridae).

    PubMed

    Richter, Sandy; Schwarz, Francine; Hering, Lars; Böggemann, Markus; Bleidorn, Christoph

    2015-11-19

    Glyceridae (Annelida) are a group of venomous annelids distributed worldwide from intertidal to abyssal depths. To trace the evolutionary history and complexity of glycerid venom cocktails, a solid backbone phylogeny of this group is essential. We therefore aimed to reconstruct the phylogenetic relationships of these annelids using Illumina sequencing technology. We constructed whole-genome shotgun libraries for 19 glycerid specimens and 1 outgroup species (Glycinde armigera). The chosen target genes comprise 13 mitochondrial proteins, 2 ribosomal mitochondrial genes, and 4 nuclear loci (18SrRNA, 28SrRNA, ITS1, and ITS2). Based on partitioned maximum likelihood as well as Bayesian analyses of the resulting supermatrix, we were finally able to resolve a robust glycerid phylogeny and identified three clades comprising the majority of taxa. Furthermore, we detected group II introns inside the cox1 gene of two analyzed glycerid specimens, with two different insertions in one of these species. Moreover, we generated reduced data sets comprising 10 million, 4 million, and 1 million reads from the original data sets to test the influence of the sequencing depth on assembling complete mitochondrial genomes from low coverage genome data. We estimated the coverage of mitochondrial genome sequences in each data set size by mapping the filtered Illumina reads against the respective mitochondrial contigs. By comparing the contig coverage calculated in all data set sizes, we got a hint for the scalability of our genome skimming approach. This allows estimating more precisely the number of reads that are at least necessary to reconstruct complete mitochondrial genomes in Glyceridae and probably non-model organisms in general.

  5. Development of Superconducting Tunnel Junction X-ray Detector with High Absorption Yields Utilizing Silicon Pixel Absorbers

    NASA Astrophysics Data System (ADS)

    Shiki, Shigetomo; Fujii, Go; Ukibe, Masahiro; Kitajima, Yoshinori; Ohkubo, Masataka

    2016-07-01

    A superconducting tunnel junction (STJ) array detector along with silicon pixel absorbers (STJ-SPA) is fabricated to achieve high detection efficiency at X-ray energies below 10 keV. The STJ pixels have dimensions of 100 \\upmu m × 100 \\upmu m and are composed of Nb-Al/AlOX/Al-Nb thin layers. The SPAs are also 100 \\upmu m × 100 \\upmu m and have a depth of 400 \\upmu m, and are isolated from each other by a deep trench with a depth of 350 \\upmu m. The detection efficiency of the STJ-SPA exceeds 95 % at X-ray energies below 10 keV, and its energy resolution is 82 eV FWHM, as measured at the Si K\\upalpha line at 1740 eV. By means of the STJ-SPA detector, the X-ray absorption spectrum of the light element sulfur with a concentration of less than 0.1 wt% in a soda-lime glass sample was successfully acquired.

  6. Silver free III-nitride flip chip light-emitting-diode with wall plug efficiency over 70% utilizing a GaN tunnel junction

    NASA Astrophysics Data System (ADS)

    Yonkee, B. P.; Young, E. C.; DenBaars, S. P.; Nakamura, S.; Speck, J. S.

    2016-11-01

    A molecular beam epitaxy regrowth technique was demonstrated on standard industrial patterned sapphire substrate light-emitting diode (LED) epitaxial wafers emitting at 455 nm to form a GaN tunnel junction. By using an HF pretreatment on the wafers before regrowth, a voltage of 3.08 V at 20 A/cm2 was achieved on small area devices. A high extraction package was developed for comparison with flip chip devices which utilize an LED floating in silicone over a BaSO4 coated header and produced a peak external quantum efficiency (EQE) of 78%. A high reflectivity mirror was designed using a seven-layer dielectric coating backed by aluminum which has a calculated angular averaged reflectivity over 98% between 400 and 500 nm. This was utilized to fabricate a flip chip LED which had a peak EQE and wall plug efficiency of 76% and 73%, respectively. This flip chip could increase light extraction over a traditional flip chip LED due to the increased reflectivity of the dielectric based mirror.

  7. Analysis of labour accidents in tunnel construction and introduction of prevention measures

    PubMed Central

    KIKKAWA, Naotaka; ITOH, Kazuya; HORI, Tomohito; TOYOSAWA, Yasuo; ORENSE, Rolando P.

    2015-01-01

    At present, almost all mountain tunnels in Japan are excavated and constructed utilizing the New Austrian Tunneling Method (NATM), which was advocated by Prof. Rabcewicz of Austria in 1964. In Japan, this method has been applied to tunnel construction since around 1978, after which there has been a subsequent decrease in the number of casualties during tunnel construction. However, there is still a relatively high incidence of labour accidents during tunnel construction when compared to incidence rates in the construction industry in general. During tunnel construction, rock fall events at the cutting face are a particularly characteristic of the type of accident that occurs. In this study, we analysed labour accidents that possess the characteristics of a rock fall event at a work site. We also introduced accident prevention measures against rock fall events. PMID:26027707

  8. Substantial Variability Exists in Utilities' Nuclear Decommissioning Funding Adequacy: Baseline Trends (1997-2001); and Scenario and Sensitivity Analyses (Year 2001)

    SciTech Connect

    Williams, D. G.

    2003-02-26

    This paper explores the trends over 1997-2001 in my baseline simulation analysis of the sufficiency of electric utilities' funds to eventually decommission the nation's nuclear power plants. Further, for 2001, I describe the utilities' funding adequacy results obtained using scenario and sensitivity analyses, respectively. In this paper, I focus more on the wide variability observed in these adequacy measures among utilities than on the results for the ''average'' utility in the nuclear industry. Only individual utilities, not average utilities -- often used by the nuclear industry to represent its funding adequacy -- will decommission their nuclear plants. Industry-wide results tend to mask the varied results for individual utilities. This paper shows that over 1997-2001, the variability of my baseline decommissioning funding adequacy measures (in percentages) for both utility fund balances and current contributions has remained very large, reflected in the sizable ranges and frequency distributions of these percentages. The relevance of this variability for nuclear decommissioning funding adequacy is, of course, focused more on those utilities that show below ideal balances and contribution levels. Looking backward, 42 of 67 utility fund (available) balances, in 2001, were above (and 25 below) their ideal baseline levels; in 1997, 42 of 76 were above (and 34 below) ideal levels. Of these, many utility balances were far above, and many far below, such ideal levels. The problem of certain utilities continuing to show balances much below ideal persists even with increases in the adequacy of ''average'' utility balances.

  9. Performance Data from a Wind-Tunnel Test of Two Main-rotor Blade Designs for a Utility-Class Helicopter

    NASA Technical Reports Server (NTRS)

    Singleton, Jeffrey D.; Yeager, William T., Jr.; Wilbur, Matthew L.

    1990-01-01

    An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to evaluate an advanced main rotor designed for use on a utility class helicopter, specifically the U.S. Army UH-60A Blackhawk. This rotor design incorporated advanced twist, airfoil cross sections, and geometric planform. For evaluation purposes, the current UH-60A main rotor was also tested and is referred to as the baseline blade set. A total of four blade sets were tested. One set of both the baseline and the advanced rotors were dynamically scaled to represent a full scale helicopter rotor blade design. The remaining advanced and baseline blade sets were not dynamically scaled so as to isolate the effects of structural elasticity. The investigation was conducted in hover and at rotor advance ratios ranging from 0.15 to 0.4 at a range of nominal test medium densities from 0.00238 to 0.009 slugs/cu ft. This range of densities, coupled with varying rotor lift and propulsive force, allowed for the simulation of several vehicle gross weight and density altitude combinations. Performance data are presented for all blade sets without analysis; however, cross referencing of data with flight condition may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating advanced design parameters.

  10. Autonomous Robotic Inspection in Tunnels

    NASA Astrophysics Data System (ADS)

    Protopapadakis, E.; Stentoumis, C.; Doulamis, N.; Doulamis, A.; Loupos, K.; Makantasis, K.; Kopsiaftis, G.; Amditis, A.

    2016-06-01

    In this paper, an automatic robotic inspector for tunnel assessment is presented. The proposed platform is able to autonomously navigate within the civil infrastructures, grab stereo images and process/analyse them, in order to identify defect types. At first, there is the crack detection via deep learning approaches. Then, a detailed 3D model of the cracked area is created, utilizing photogrammetric methods. Finally, a laser profiling of the tunnel's lining, for a narrow region close to detected crack is performed; allowing for the deduction of potential deformations. The robotic platform consists of an autonomous mobile vehicle; a crane arm, guided by the computer vision-based crack detector, carrying ultrasound sensors, the stereo cameras and the laser scanner. Visual inspection is based on convolutional neural networks, which support the creation of high-level discriminative features for complex non-linear pattern classification. Then, real-time 3D information is accurately calculated and the crack position and orientation is passed to the robotic platform. The entire system has been evaluated in railway and road tunnels, i.e. in Egnatia Highway and London underground infrastructure.

  11. Longitudinal Analyses of Geographic Differences in Utilization Rates of Children with Developmental Delays Who Participation in Early Intervention Services

    ERIC Educational Resources Information Center

    Lin, Jin-Ding; Chen, Yong-Chen; Chou, Yu-Ching

    2012-01-01

    The purposes of the present study were to describe the longitudinal utilization rates of participation in early intervention services of children with developmental delays, and to examine the geographical difference of services in this vulnerable population. We analyzed service utilization of the developmentally delayed children based on data of…

  12. Electronic Commerce: Case Analyses and Tools Utilized in the Accomplishment of Buying Activities Within the Department of Defense

    DTIC Science & Technology

    2004-09-01

    infrastructure (what supports the concept), electronic business or e- business processes (how the business is conducted), and electronic commerce ( Ecommerce ... Business transactions with the Federal Government have evolved with the utilization of a variety of Ecommerce tools such as Government Purchase...In an effort to improve the way of doing business , Department of Defense has developed several Ecommerce tools to help facilitate the

  13. Canagliflozin use in patients with renal impairment-Utility of quantitative clinical pharmacology analyses in dose optimization.

    PubMed

    Khurana, Manoj; Vaidyanathan, Jayabharathi; Marathe, Anshu; Mehrotra, Nitin; Sahajwalla, Chandrahas G; Zineh, Issam; Jain, Lokesh

    2015-06-01

    Canagliflozin (INVOKANA™) is approved as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus (T2DM). Canagliflozin inhibits renal sodium-glucose co-transporter 2 (SGLT2), thereby, reducing reabsorption of filtered glucose and increasing urinary glucose excretion. Given the mechanism of action of SGLT2 inhibitors, we assessed the interplay between renal function, efficacy (HbA1c reduction), and safety (renal adverse reactions). The focus of this article is to highlight the FDA's quantitative clinical pharmacology analyses that were conducted to support the regulatory decision on dosing in patients with renal impairment (RI). The metrics for assessment of efficacy for T2DM drugs is standard; however, there is no standard method for evaluation of renal effects for diabetes drugs. Therefore, several analyses were conducted to assess the impact of canagliflozin on renal function (as measured by eGFR) based on available data. These analyses provided support for approval of canagliflozin in T2DM patients with baseline eGFR ≥ 45 mL/min/1.73 m(2) , highlighting a data-driven approach to dose optimization. The availability of a relatively rich safety dataset (ie, frequent and early measurements of laboratory markers) in the canagliflozin clinical development program enabled adequate assessment of benefit-risk balance in various patient subgroups based on renal function.

  14. Artic and subarctic environmental analyses utilizing ERTS-1 imagery. Cold regions environmental analysis based on ERTS-1 imagery (preprint)

    NASA Technical Reports Server (NTRS)

    Anderson, D. M. (Principal Investigator); Haugen, R. K.; Gatto, L. W.; Slaughter, C. W.; Marlar, T. L.; Mckim, H. L.

    1972-01-01

    There are no author-identified significant results in this report. An overriding problem in arctic and subarctic environmental research has been the absence of long-term observational data and the sparseness of geographical coverage of existing data. A first look report is presented on the use of ERTS-1 imagery as a major tool in two large area environmental studies: (1) investigation of sedimentation and other nearshore marine processes in Cook Inlet, Alaska; and (2) a regional study of permafrost regimes in the discontinuous permafrost zone of Alaska. These studies incorporate ground truth acquisition techniques that are probably similar to most ERTS investigations. Studies of oceanographic processes in Cook Inlet will be focused on seasonal changes in nearshore bathymetry, tidal and major current circulation patterns, and coastal sedimentation processes, applicable to navigation, construction, and maintenance of harbors. Analyses will be made of the regional permafrost distribution and regimes in the Upper Koyukuk-Kobuk River area located in NW Alaska.

  15. Artic and subarctic environmental analyses utilizing ERTS-1 imagery. Discipline 8: Interpretation techniques development. Subdiscipline C: Classfication and pattern recognition

    NASA Technical Reports Server (NTRS)

    Anderson, D. M. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Uncontrolled photo mosaics of ERTS-1 imagery using MSS band 5 and 7 at a scale of 1:1,000,000 were used to make a preliminary surficial geology map in northcentral Alaska. Seven distinct geologic units were recognized, defined, and mapped directly on a photo mosaic. Results are closely correlated with published surficial geology maps. Eight MSS images were examined to test utility of ERTS data in studies of coastal processes and stream hydrology, and in the identification and interpretation of geomorphic features throughout Alaska. The feasibility of using ERTS-1 data to map structural lineaments is well illustrated on a mosaic of 8, band 5 MSS images. Along the northern edge of the Brooks Range one lineament can be followed the entire width of the mosaic, a distance of 225 miles. Two nearly parallel lineaments can be seen running along the northern and southern edges of the Schwatka Mountains. About 135 miles south of these two lineaments another series located in the Chitanana River region can be followed for 45 miles. These lineaments appear to be faults, and it is interesting to note that the Yukon River parallels these and appears to be structurally controlled.

  16. Genomic, proteomic, and biochemical analyses of oleaginous Mucor circinelloides: evaluating its capability in utilizing cellulolytic substrates for lipid production.

    PubMed

    Wei, Hui; Wang, Wei; Yarbrough, John M; Baker, John O; Laurens, Lieve; Van Wychen, Stefanie; Chen, Xiaowen; Taylor, Larry E; Xu, Qi; Himmel, Michael E; Zhang, Min

    2013-01-01

    Lipid production by oleaginous microorganisms is a promising route to produce raw material for the production of biodiesel. However, most of these organisms must be grown on sugars and agro-industrial wastes because they cannot directly utilize lignocellulosic substrates. We report the first comprehensive investigation of Mucor circinelloides, one of a few oleaginous fungi for which genome sequences are available, for its potential to assimilate cellulose and produce lipids. Our genomic analysis revealed the existence of genes encoding 13 endoglucanases (7 of them secretory), 3 β-D-glucosidases (2 of them secretory) and 243 other glycoside hydrolase (GH) proteins, but not genes for exoglucanases such as cellobiohydrolases (CBH) that are required for breakdown of cellulose to cellobiose. Analysis of the major PAGE gel bands of secretome proteins confirmed expression of two secretory endoglucanases and one β-D-glucosidase, along with a set of accessory cell wall-degrading enzymes and 11 proteins of unknown function. We found that M. circinelloides can grow on CMC (carboxymethyl cellulose) and cellobiose, confirming the enzymatic activities of endoglucanases and β-D-glucosidases, respectively. The data suggested that M. circinelloides could be made usable as a consolidated bioprocessing (CBP) strain by introducing a CBH (e.g. CBHI) into the microorganism. This proposal was validated by our demonstration that M. circinelloides growing on Avicel supplemented with CBHI produced about 33% of the lipid that was generated in glucose medium. Furthermore, fatty acid methyl ester (FAME) analysis showed that when growing on pre-saccharified Avicel substrates, it produced a higher proportion of C14 fatty acids, which has an interesting implication in that shorter fatty acid chains have characteristics that are ideal for use in jet fuel. This substrate-specific shift in FAME profile warrants further investigation.

  17. Genomic, Proteomic, and Biochemical Analyses of Oleaginous Mucor circinelloides: Evaluating Its Capability in Utilizing Cellulolytic Substrates for Lipid Production

    PubMed Central

    Yarbrough, John M.; Baker, John O.; Laurens, Lieve; Van Wychen, Stefanie; Chen, Xiaowen; Taylor, Larry E.; Xu, Qi; Himmel, Michael E.; Zhang, Min

    2013-01-01

    Lipid production by oleaginous microorganisms is a promising route to produce raw material for the production of biodiesel. However, most of these organisms must be grown on sugars and agro-industrial wastes because they cannot directly utilize lignocellulosic substrates. We report the first comprehensive investigation of Mucor circinelloides, one of a few oleaginous fungi for which genome sequences are available, for its potential to assimilate cellulose and produce lipids. Our genomic analysis revealed the existence of genes encoding 13 endoglucanases (7 of them secretory), 3 β-D-glucosidases (2 of them secretory) and 243 other glycoside hydrolase (GH) proteins, but not genes for exoglucanases such as cellobiohydrolases (CBH) that are required for breakdown of cellulose to cellobiose. Analysis of the major PAGE gel bands of secretome proteins confirmed expression of two secretory endoglucanases and one β-D-glucosidase, along with a set of accessory cell wall-degrading enzymes and 11 proteins of unknown function. We found that M. circinelloides can grow on CMC (carboxymethyl cellulose) and cellobiose, confirming the enzymatic activities of endoglucanases and β-D-glucosidases, respectively. The data suggested that M. circinelloides could be made usable as a consolidated bioprocessing (CBP) strain by introducing a CBH (e.g. CBHI) into the microorganism. This proposal was validated by our demonstration that M. circinelloides growing on Avicel supplemented with CBHI produced about 33% of the lipid that was generated in glucose medium. Furthermore, fatty acid methyl ester (FAME) analysis showed that when growing on pre-saccharified Avicel substrates, it produced a higher proportion of C14 fatty acids, which has an interesting implication in that shorter fatty acid chains have characteristics that are ideal for use in jet fuel. This substrate-specific shift in FAME profile warrants further investigation. PMID:24023719

  18. Recognition Tunneling

    PubMed Central

    Lindsay, Stuart; He, Jin; Sankey, Otto; Hapala, Prokop; Jelinek, Pavel; Zhang, Peiming; Chang, Shuai; Huang, Shuo

    2010-01-01

    Single molecules in a tunnel junction can now be interrogated reliably using chemically-functionalized electrodes. Monitoring stochastic bonding fluctuations between a ligand bound to one electrode and its target bound to a second electrode (“tethered molecule-pair” configuration) gives insight into the nature of the intermolecular bonding at a single molecule-pair level, and defines the requirements for reproducible tunneling data. Simulations show that there is an instability in the tunnel gap at large currents, and this results in a multiplicity of contacts with a corresponding spread in the measured currents. At small currents (i.e. large gaps) the gap is stable, and functionalizing a pair of electrodes with recognition reagents (the “free analyte” configuration) can generate a distinct tunneling signal when an analyte molecule is trapped in the gap. This opens up a new interface between chemistry and electronics with immediate implications for rapid sequencing of single DNA molecules. PMID:20522930

  19. 20. VIEW WEST OF TUNNEL FROM BASEMENT OF GRANITEVILLE MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW WEST OF TUNNEL FROM BASEMENT OF GRANITEVILLE MILL TO OUTBUILDINGS. TUNNEL IS USED TO CONDUCT WATER AND OTHER UTILITY PIPES. - Graniteville Mill, Marshall Street, Graniteville, Aiken County, SC

  20. El Tovar steam tunnel breaker box in foreground. Note El ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    El Tovar steam tunnel breaker box in foreground. Note El Tovar stone vault in alignment with tunnel. - Grand Canyon Village Utilities, Grand Canyon National Park, Grand Canyon Village, Coconino County, AZ

  1. Assessment of analytical and experimental techniques utilized in conducting plume technology tests 575 and 593. [exhaust flow simulation (wind tunnel tests) of scale model Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Baker, L. R.; Sulyma, P. R.; Tevepaugh, J. A.; Penny, M. M.

    1976-01-01

    Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented.

  2. Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast Trichosporon oleaginosus: Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems

    PubMed Central

    Bracharz, Felix; Lorenzen, Jan; Kracht, Octavia N.; Chovatia, Mansi; Daum, Chris; Deshpande, Shweta; Lipzen, Anna; Nolan, Matt; Ohm, Robin A.; Grigoriev, Igor V.; Sun, Sheng; Heitman, Joseph

    2015-01-01

    ABSTRACT Microbial fermentation of agro-industrial waste holds great potential for reducing the environmental impact associated with the production of lipids for industrial purposes from plant biomass. However, the chemical complexity of many residues currently prevents efficient conversion into lipids, creating a high demand for strains with the ability to utilize all energy-rich components of agricultural residues. Here, we present results of genome and transcriptome analyses of Trichosporon oleaginosus. This oil-accumulating yeast is able to grow on a wide variety of substrates, including pentoses and N-acetylglucosamine, making it an interesting candidate for biotechnological applications. Transcriptomics shows specific changes in gene expression patterns under lipid-accumulating conditions. Furthermore, gene content and expression analyses indicate that T. oleaginosus is well-adapted for the utilization of chitin-rich biomass. We also focused on the T. oleaginosus mating type, because this species is a member of the Tremellomycetes, a group that has been intensively analyzed as a model for the evolution of sexual development, the best-studied member being Cryptococcus neoformans. The structure of the T. oleaginosus mating-type regions differs significantly from that of other Tremellomycetes and reveals a new evolutionary trajectory paradigm. Comparative analysis shows that recruitment of developmental genes to the ancestral tetrapolar mating-type loci occurred independently in the Trichosporon and Cryptococcus lineages, supporting the hypothesis of a trend toward larger mating-type regions in fungi. PMID:26199329

  3. Spin-polarized Inelastic Electron Tunneling Spectroscopy of Molecular Magnetic Tunnel Junctions

    SciTech Connect

    Wang Wenyong; Richter, Curt A.

    2007-09-26

    In this study, we fabricate molecular magnetic tunnel junctions and demonstrate that inelastic electron tunneling spectroscopy technique can be utilized to inspect such junctions to investigate the existence of desired molecular species in the device area. Tunneling magnetoresistance measurements have been carried out and spin-dependent tunneling transport has been observed. Bias-dependence of the tunneling resistance has also been detected. IETS measurements at different magnetic field suggested that the TMR bias-dependence was likely caused by the inelastic scattering due to the molecular vibrations.

  4. - Tunneling Matrix Formalism for - and Two-Methyl Molecules Based on the Extended Permutation-Inversion Group Idea and its Application to the Analyses of the Methyl-Torsional Rotational Spectra

    NASA Astrophysics Data System (ADS)

    Ohashi, Nobukimi; Kobayashi, Kaori; Fujitake, Masaharu

    2016-06-01

    Recently we reanalyzed the microwave absorption spectra of the trans-ethyl methyl ether molecule, state by state, in the ground vibrational, O-methyl torsional, C-methyl torsional and skeletal torsional states with the use of an IAM-like tunneling matrix formalism based on an extended permutation-inversion (PI) group idea, whose results appeared in Journal of Molecular Spectroscopy recently. Since a single rho-axis does not exist in trans-ethyl methyl ether that has two methyl-tops and the IAM formalism is not available as in the case of the one methyl-top molecule, we adopted instead an IAM-like (in other word, partial IAM) formalism. We will show the outline of the present formalism and the results of the spectral analyses briefly. We also would like to review the IAM formalism for the one top molecules based on the extended PI group, and show the result of the application to the spectral analysis. If possible, we would like to compare the IAM and IAM-like formalisms based on the extended PI group with the ERHAM formalism developed by Groner, especially, in the form of Hamiltonian matrix elements, and discuss about similarity and difference.

  5. Pressure-morphology relationship of a released carpal tunnel.

    PubMed

    Kim, Dong Hee; Marquardt, Tamara L; Gabra, Joseph N; Shen, Zhilei Liu; Evans, Peter J; Seitz, William H; Li, Zong-Ming

    2013-04-01

    We investigated morphological changes of a released carpal tunnel in response to variations of carpal tunnel pressure. Pressure within the carpal tunnel is known to be elevated in patients with carpal tunnel syndrome and dependent on wrist posture. Previously, increased carpal tunnel pressure was shown to affect the morphology of the carpal tunnel with an intact transverse carpal ligament (TCL). However, the pressure-morphology relationship of the carpal tunnel after release of the TCL has not been investigated. Carpal tunnel release (CTR) was performed endoscopically on cadaveric hands and the carpal tunnel pressure was dynamically increased from 10 to 120 mmHg. Simultaneously, carpal tunnel cross-sectional images were captured by an ultrasound system, and pressure measurements were recorded by a pressure transducer. Carpal tunnel pressure significantly affected carpal arch area (p < 0.001), with an increase of >62 mm(2) at 120 mmHg. Carpal arch height, length, and width also significantly changed with carpal tunnel pressure (p < 0.05). As carpal tunnel pressure increased, carpal arch height and length increased, but the carpal arch width decreased. Analyses of the pressure-morphology relationship for a released carpal tunnel revealed a nine times greater compliance than that previously reported for a carpal tunnel with an intact TCL. This change of structural properties as a result of transecting the TCL helps explain the reduction of carpal tunnel pressure and relief of symptoms for patients after CTR surgery.

  6. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Tunnel radio systems. 15.211 Section 15.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.211 Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate...

  7. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Tunnel radio systems. 15.211 Section 15.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.211 Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate...

  8. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Tunnel radio systems. 15.211 Section 15.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.211 Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate...

  9. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Tunnel radio systems. 15.211 Section 15.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.211 Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate...

  10. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Tunnel radio systems. 15.211 Section 15.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.211 Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate...

  11. Tunnels Used in Community School Plan

    ERIC Educational Resources Information Center

    School Management, 1972

    1972-01-01

    In a Springfield, Massachusetts, school design, tunnels housing community facilities will make it possible to utilize otherwise unusable land and will create neighborhood ties in an area undergoing urban renewal. (Author)

  12. N-231 High Reynolds Number Channel Facility (An example of a Versatile Wind Tunnel) Tunnel 1 I is a

    NASA Technical Reports Server (NTRS)

    1980-01-01

    N-231 High Reynolds Number Channel Facility (An example of a Versatile Wind Tunnel) Tunnel 1 I is a blowdown Facility that utilizes interchangeable test sections and nozzles. The facility provides experimental support for the fluid mechanics research, including experimental verification of aerodynamic computer codes and boundary-layer and airfoil studies that require high Reynolds number simulation. (Tunnel 1)

  13. Tunnel-to-tunnel correlation

    NASA Technical Reports Server (NTRS)

    Steinle, F. W., Jr.

    1982-01-01

    Flow quality is discussed. Incremental comparisons of: (1) the angle of attack, (2) the axial force coefficient, and (3) the base cavity axial force coefficient against the normal force coefficient are presented. Relative blockage determination, relative buoyancy corrections, and boundary layer transition length are discussed. Blockage buoyancy caused by tunnel model wall dynamic interaction is discussed in terms of adaptive walls. The effect of 'transonic turbulence factor' is considered.

  14. Carpal Tunnel Syndrome

    MedlinePlus

    ... Just a passing cramp? It could be carpal tunnel syndrome. The carpal tunnel is a narrow passageway of ligament and bones ... from irritated tendons or other swelling narrows the tunnel and causes the nerve to be compressed. Symptoms ...

  15. Looking into Tunnel Books.

    ERIC Educational Resources Information Center

    Hinshaw, Craig

    1999-01-01

    Describes how to make tunnel books, which are viewed by looking into a "tunnel" created by accordion-folded expanding sides. Suggests possible themes. Describes how to create a walk-through tunnel book for first grade students. (CMK)

  16. Spin-dependent tunneling in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Davis, Albert Hamilton, Jr.

    In this work I present results of a theoretical study of the intrinsic response of ferromagnetic tunnel junctions (MTJ's). The goal of the work has been to understand the underlying physics in order to describe the intrinsic portion of the observed behavior. Specifically, I present a free electron tunneling model which predicts that the magneto-conductance ratio (ΔG/G) or tunneling magneto-resistance (TMR) in high quality MTJs is dominated by the intrinsic response. The model assumes an effective tunneling electronic structure which has been constructed from parameters extracted from first principles calculations and a simple barrier whose effective height and thickness are deduced from the experiments. This model does not utilize the polarization (P) of the density of states (DOS) as an input parameter, but rather calculates the conductance for each spin channel and configuration in order to calculate TMR directly. The process of matching spin-dependent tunneling states with spin-independent barrier states produces a spin-dependent T-matrix which is the main difference between this model and other prevalent models which have been built upon Julliere's model (M. Julliere, Phys. Lett. 54 225, 1975). The effect of bias is handled by increasing the chemical potential on one side of the barrier, and the effect of temperature is included via Fermi smearing and the temperature dependent magnetic band structure. The model predicts that MTJ's are quite sensitive to changes in the magnetic band structure. This explains both the large temperature dependence of TMR and the high sensitivity of MTJ's to magnetic fields. The model strongly supports the assertion that only a portion of the total DOS is relevant to spin-dependent tunneling (SDT) and that the bands which supply the tunneling electrons are essentially Stoner split. I conclude with a consideration of asymmetric TMR and a short first principles study of fcc magnetic alloys which gives some insight into the relative

  17. The Interaction Between Shield, Ground and Tunnel Support in TBM Tunnelling Through Squeezing Ground

    NASA Astrophysics Data System (ADS)

    Ramoni, M.; Anagnostou, G.

    2011-01-01

    When planning a TBM drive in squeezing ground, the tunnelling engineer faces a complex problem involving a number of conflicting factors. In this respect, numerical analyses represent a helpful decision aid as they provide a quantitative assessment of the effects of key parameters. The present paper investigates the interaction between the shield, ground and tunnel support by means of computational analysis. Emphasis is placed on the boundary condition, which is applied to model the interface between the ground and the shield or tunnel support. The paper also discusses two cases, which illustrate different methodical approaches applied to the assessment of a TBM drive in squeezing ground. The first case history—the Uluabat Tunnel (Turkey)—mainly involves the investigation of TBM design measures aimed at reducing the risk of shield jamming. The second case history—the Faido Section of the Gotthard Base Tunnel (Switzerland)—deals with different types of tunnel support installed behind a gripper TBM.

  18. A Top Pilot Tunnel Preconditioning Method for the Prevention of Extremely Intense Rockbursts in Deep Tunnels Excavated by TBMs

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanqing; Feng, Xiating; Zhou, Hui; Qiu, Shili; Wu, Wenping

    2012-05-01

    The headrace tunnels at the Jinping II Hydropower Station cross the Jinping Mountain with a maximum overburden depth of 2,525 m, where 80% of the strata along the tunnels consist of marble. A number of extremely intense rockbursts occurred during the excavation of the auxiliary tunnels and the drainage tunnel. In particular, a tunnel boring machine (TBM) was destroyed by an extremely intense rockburst in a 7.2-m-diameter drainage tunnel. Two of the four subsequent 12.4-m-diameter headrace tunnels will be excavated with larger size TBMs, where a high risk of extremely intense rockbursts exists. Herein, a top pilot tunnel preconditioning method is proposed to minimize this risk, in which a drilling and blasting method is first recommended for the top pilot tunnel excavation and support, and then the TBM excavation of the main tunnel is conducted. In order to evaluate the mechanical effectiveness of this method, numerical simulation analyses using the failure approaching index, energy release rate, and excess shear stress indices are carried out. Its construction feasibility is discussed as well. Moreover, a microseismic monitoring technique is used in the experimental tunnel section for the real-time monitoring of the microseismic activities of the rock mass in TBM excavation and for assessing the effect of the top pilot tunnel excavation in reducing the risk of rockbursts. This method is applied to two tunnel sections prone to extremely intense rockbursts and leads to a reduction in the risk of rockbursts in TBM excavation.

  19. Cryogenic wind tunnels. II

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    The application of the cryogenic concept to various types of tunnels including Ludwieg tube tunnel, Evans clean tunnel, blowdown, induced-flow, and continuous-flow fan-driven tunnels is discussed. Benefits related to construction and operating costs are covered, along with benefits related to new testing capabilities. It is noted that cooling the test gas to very low temperatures increases Reynolds number by more than a factor of seven. From the energy standpoint, ambient-temperature fan-driven closed-return tunnels are considered to be the most efficient type of tunnel, while a large reduction in the required tunnel stagnation pressure can be achieved through cryogenic operation. Operating envelopes for three modes of operation for a cryogenic transonic pressure tunnel with a 2.5 by 2.5 test section are outlined. A computer program for calculating flow parameters and power requirements for wind tunnels with operating temperatures from saturation to above ambient is highlighted.

  20. Structural Integrity of a Wind Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Karkehabadi, R.; Rhew, R. D.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has been designing strain-gage balances for utilization in wind tunnels since its inception. The utilization of balances span over a wide variety of aerodynamic tests. A force balance is an inherently critically stressed component due to the requirements of measurement sensitivity. Research and analyses are done in order to investigate the structural integrity of the balances as well as developing an understanding of their performance in order to enhance their capability. Maximum loading occurs when all 6 components of the loads are applied simultaneously with their maximum value allowed (limit load). This circumstance normally does not occur in the wind tunnel. However, if it occurs, is the balance capable of handling the loads with an acceptable factor of safety? LaRC Balance 1621 was modeled and meshed in PATRAN for analysis in NASTRAN. For a complete analysis, it is necessary to consider all the load cases as well as use dense mesh near all the edges. Because of computer limitations, it is not possible to have one model with the dense mesh near all edges. In the present study, a dense mesh is limited to the surface corners where the cage and axial sections meet. Four different load combinations are used for the current analysis. Linear analysis is performed for each load case. In the case where the stress value is above linear elastic region, it is necessary to perform nonlinear analysis. It is also important to investigate the variables limiting the structural integrity of the balances. In order to investigate the possibility of modifying the existing balances to enhance the structural integrity, some modifications are done on this balance. The structural integrity of the balance after modification is investigated.

  1. 4. 'Ring Stones & Tunnel Sections, Tunnel #33,' Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. 'Ring Stones & Tunnel Sections, Tunnel #33,' Southern Pacific Standard Double-Track Tunnel, ca. 1913. Compare to photos in documentation sets for Tunnel 18 (HAER No. CA-197), Tunnel 34 (HAER No. CA-206), and Tunnel 1 (HAER No. CA-207). - Central Pacific Transcontinental Railroad, Sacramento to Nevada state line, Sacramento, Sacramento County, CA

  2. Satisfied Fools: Using J. S. Mill's Notion of Utility to Analyse the Impact of Vocationalism in Education within a Democratic Society

    ERIC Educational Resources Information Center

    Tarrant, Iona; Tarrant, James

    2004-01-01

    This paper proposes a new interpretation of John Stuart Mill's notion of utility, which is used to provide a utilitarian justification for an eclectic, rather than a vocational, education. Vocational education is strongly promoted in recent policy documents, which makes it important to raise the question of justification. Many existing…

  3. Carpal tunnel repair - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100078.htm Carpal tunnel repair - series—Normal anatomy To use the sharing ... in the wrist and the wrist bones (carpal tunnel). Review Date 5/9/2015 Updated by: C. ...

  4. A Seamless Ubiquitous Telehealthcare Tunnel

    PubMed Central

    Cheng, Po-Hsun; Lin, Bor-Shing; Yu, Chu; Hu, Shun-Hsiang; Chen, Sao-Jie

    2013-01-01

    Mobile handheld devices are rapidly using to implement healthcare services around the World. Fundamentally, these services utilize telemedicine technologies. A disconnection of a mobile telemedicine system usually results in an interruption, which is embarrassing, and reconnection is necessary during the communication session. In this study, the Stream Control Transmission Protocol (SCTP) is adopted to build a stable session tunnel to guarantee seamless switching among heterogeneous wireless communication standards, such as Wi-Fi and 3G. This arrangement means that the telemedicine devices will not be limited by a fixed wireless connection and can switch to a better wireless channel if necessary. The tunnel can transmit plain text, binary data, and video streams. According to the evaluation of the proposed software-based SCTP-Tunnel middleware shown, the performance is lower than anticipated and is slightly slower than a fixed connection. However, the transmission throughput is still acceptable for healthcare professionals in a healthcare enterprise or home care site. It is necessary to build more heterogeneous wireless protocols into the proposed tunnel-switching scheme to support all possible communication protocols. In addition, SCTP is another good choice for promoting communication in telemedicine and healthcare fields. PMID:23917812

  5. A seamless ubiquitous telehealthcare tunnel.

    PubMed

    Cheng, Po-Hsun; Lin, Bor-Shing; Yu, Chu; Hu, Shun-Hsiang; Chen, Sao-Jie

    2013-08-02

    Mobile handheld devices are rapidly using to implement healthcare services around the World. Fundamentally, these services utilize telemedicine technologies. A disconnection of a mobile telemedicine system usually results in an interruption, which is embarrassing, and reconnection is necessary during the communication session. In this study, the Stream Control Transmission Protocol (SCTP) is adopted to build a stable session tunnel to guarantee seamless switching among heterogeneous wireless communication standards, such as Wi-Fi and 3G. This arrangement means that the telemedicine devices will not be limited by a fixed wireless connection and can switch to a better wireless channel if necessary. The tunnel can transmit plain text, binary data, and video streams. According to the evaluation of the proposed software-based SCTP-Tunnel middleware shown, the performance is lower than anticipated and is slightly slower than a fixed connection. However, the transmission throughput is still acceptable for healthcare professionals in a healthcare enterprise or home care site. It is necessary to build more heterogeneous wireless protocols into the proposed tunnel-switching scheme to support all possible communication protocols. In addition, SCTP is another good choice for promoting communication in telemedicine and healthcare fields.

  6. Variable Density Tunnel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Variable Density Tunnel in operation. Man at far right is probably Harold J. 'Cannonball' Tuner, longtime safety officer, who started with Curtiss in the teens. This view of the Variable Density Tunnel clearly shows the layout of the Tunnel's surroundings, as well as the plumbing and power needs of the this innovative research tool.

  7. Utility of Stable Isotope and Cytochrome Oxidase I Gene Sequencing Analyses in Inferring Origin and Authentication of Hairtail Fish and Shrimp.

    PubMed

    Kim, Heejoong; Kumar, K Suresh; Hwang, Seung Yong; Kang, Byeong-Chul; Moon, Hyo-Bang; Shin, Kyung-Hoon

    2015-06-10

    Mislabeling of fishery products continues to be a serious threat to the global market. Consequently, there is an urgent necessity to develop tools for authenticating and establishing their true origin. This investigation evaluates the suitability of stable isotopes and cytochrome oxidase I (COI) sequencing in identifying and tracing the origin of hairtail fish and shrimp. By use of COI sequencing, the hairtail fish samples were identified as Trichiurus japonicus and Trichiurus lepturus, while the shrimp samples were identified as Pandalus borealis, Marsupenaeus japonicus, Fenneropenaeus chinensis, Litopenaeus vannamei, Penaeus monodon, and Solenocera crassicornis. Linear discriminant analysis (LDA) of stable isotopes further categorized the individuals of the same species based on the country of origin. Natural and farmed shrimp (from the same country) were distinctly differentiated on the basis of stable isotope values. Therefore, these two methods could be cooperatively utilized to identify and authenticate fishery products, the utilization of which would enhance transparency and fair trade.

  8. Long-tunneled versus short-tunneled external ventricular drainage: Prospective experience from a developing country

    PubMed Central

    Tahir, Muhammad Zubair; Sobani, Zain A.; Murtaza, Muhammed; Enam, Syed Ather

    2016-01-01

    Background: External ventricular drains (EVD) are commonly utilized for temporary diversion of cerebrospinal fluid (CSF). Many neurosurgeons prefer long-tunneled EVDs in their routine practice. However, it is still unclear whether this extended tunneling helps in reducing CSF infection. Keeping this in mind, we decided to compare infection rates in long-tunneled versus short-tunneled EVDs in the setting of a developing country. Materials and Methods: A prospective study of 60 patients was conducted. Consenting patients who underwent short-tunneled (Group A) or long-tunneled (Group B) EVDs between January 2008 and June 2009 were followed during the course of their inpatient care. All operational protocol was standardized during the trial. Serial samples of CSF were analyzed to detect infection. Results: Mean age of patients was 33.6 years with 32 males (53.3%). Mean duration of long-tunneled EVD was 13.4 ± 7.2 days, whereas that of short-tunneled EVD was 5.3 ± 2.7 days (P < 0.001). Three patients with long-tunneled EVD (10.0%), whereas one patient with short-tunneled EVD (3.3%) developed drain-related infections; however, this was non-significant (P = 0.301). However, patients with short-tunneled EVD got infected earlier on day 3when compared with the long-tunneled EVDs, which got infected after a mean duration of 7.3 days. The overall risk of infection for long-tunneled EVDs was 7.46 per 1,000 ventricular drainage days which was comparable to the risk of 6.33 per 1,000 ventricular drainage days seen for short-tunneled EVDs. Conclusion: Long-tunneled EVDs appear to only delay potential infections without having any effect on the actual risk of infection. Long-tunneled EVD in a resource-limited setting is technically challenging and may not yield additional benefits to the patient. However, larger and prospective studies are needed to establish the rate of infections and other complications. PMID:27057216

  9. Single-contact tunneling thermometry

    DOEpatents

    Maksymovych, Petro

    2016-02-23

    A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements. The system may be automated with a feedback loop.

  10. Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (mustards).

    PubMed

    Edger, Patrick P; Tang, Michelle; Bird, Kevin A; Mayfield, Dustin R; Conant, Gavin; Mummenhoff, Klaus; Koch, Marcus A; Pires, J Chris

    2014-01-01

    The internal transcribed spacers of the nuclear ribosomal RNA gene cluster, termed ITS1 and ITS2, are the most frequently used nuclear markers for phylogenetic analyses across many eukaryotic groups including most plant families. The reasons for the popularity of these markers include: 1.) Ease of amplification due to high copy number of the gene clusters, 2.) Available cost-effective methods and highly conserved primers, 3.) Rapidly evolving markers (i.e. variable between closely related species), and 4.) The assumption (and/or treatment) that these sequences are non-functional, neutrally evolving phylogenetic markers. Here, our analyses of ITS1 and ITS2 for 50 species suggest that both sequences are instead under selective constraints to preserve proper secondary structure, likely to maintain complete self-splicing functions, and thus are not neutrally-evolving phylogenetic markers. Our results indicate the majority of sequence sites are co-evolving with other positions to form proper secondary structure, which has implications for phylogenetic inference. We also found that the lowest energy state and total number of possible alternate secondary structures are highly significantly different between ITS regions and random sequences with an identical overall length and Guanine-Cytosine (GC) content. Lastly, we review recent evidence highlighting some additional problematic issues with using these regions as the sole markers for phylogenetic studies, and thus strongly recommend additional markers and cost-effective approaches for future studies to estimate phylogenetic relationships.

  11. Tunneling magnetoresistive heads for magnetic data storage.

    PubMed

    Mao, Sining

    2007-01-01

    Spintronics is emerging to be a new form of nanotechnologies, which utilizes not only the charge but also spin degree of freedom of electrons. Spin-dependent tunneling transport is one of the many kinds of physical phenomena involving spintronics, which has already found industrial applications. In this paper, we first provide a brief review on the basic physics and materials for magnetic tunnel junctions, followed more importantly by a detailed coverage on the application of magnetic tunneling devices in magnetic data storage. The use of tunneling magnetoresistive reading heads has helped to maintain a fast growth of areal density, which is one of the key advantages of hard disk drives as compared to solid-state memories. This review is focused on the first commercial tunneling magnetoresistive heads in the industry at an areal density of 80 approximately 100 Gbit/in2 for both laptop and desktop Seagate hard disk drive products using longitudinal media. The first generation tunneling magnetoresistive products utilized a bottom stack of tunnel junctions and an abutted hard bias design. The output signal amplitude of these heads was 3 times larger than that of comparable giant magnetoresistive devices, resulting in a 0.6 decade bit error rate gain over the latter. This has enabled high component and drive yields. Due to the improved thermal dissipation of vertical geometry, the tunneling magnetoresistive head runs cooler with a better lifetime performance, and has demonstrated similar electrical-static-discharge robustness as the giant magnetoresistive devices. It has also demonstrated equivalent or better process and wafer yields compared to the latter. The tunneling magnetoresistive heads are proven to be a mature and capable reader technology. Using the same head design in conjunction with perpendicular recording media, an areal density of 274 Gbit/in2 has been demonstrated, and advanced tunneling magnetoresistive heads can reach 311 Gbit/in2. Today, the

  12. Within-Tunnel Variations in Pressure Data for Three Transonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2014-01-01

    This paper compares the results of pressure measurements made on the same test article with the same test matrix in three transonic wind tunnels. A comparison is presented of the unexplained variance associated with polar replicates acquired in each tunnel. The impact of a significance component of systematic (not random) unexplained variance is reviewed, and the results of analyses of variance are presented to assess the degree of significant systematic error in these representative wind tunnel tests. Total uncertainty estimates are reported for 140 samples of pressure data, quantifying the effects of within-polar random errors and between-polar systematic bias errors.

  13. The cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Based on theoretical studies and experience with a low speed cryogenic tunnel and with a 1/3-meter transonic cryogenic tunnel, the cryogenic wind tunnel concept was shown to offer many advantages with respect to the attainment of full scale Reynolds number at reasonable levels of dynamic pressure in a ground based facility. The unique modes of operation available in a pressurized cryogenic tunnel make possible for the first time the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive-power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, for equal amounts of testing, reduced total energy consumption in comparison with other tunnel concepts.

  14. Simulator of Road Tunnel

    NASA Astrophysics Data System (ADS)

    Danišovič, Peter; Schlosser, František; Šrámek, Juraj; Rázga, Martin

    2015-05-01

    A Tunnel Traffic & Operation Simulator is a device of the Centre of Transport Research at the University of Žilina. The Simulator allows managing technological equipment of virtual two-tube highway tunnel, which is interconnected with simulation of vehicle traffic in tunnel. Changes of the traffic-operation states and other equipment are reflecting at the simulated traffic, as well as simulations of various emergency events in traffic initiate changes in tunnel detecting and measuring devices. It is thus possible to simulate emergency states, which can be affected by various faults of technology as well as by climatic conditions. The solutions can be found in irreplaceable experiences of Slovak road tunnel operators, changes of trafficoperation states, visualizations of operator technological display screens, technological devices labelling in order to increase operational safety of road tunnels.

  15. A Student-Built Scanning Tunneling Microscope

    ERIC Educational Resources Information Center

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  16. First look analyses of five cycles of ERTS-1 imagery over County of Los Angeles: Assessment of data utility for urban development and regional planning

    NASA Technical Reports Server (NTRS)

    Raje, S.; Economy, R.; Mcknight, J. S.

    1973-01-01

    Significant results have been obtained from the analyses of ERTS-1 imagery from five cycles over Test Site SR 124 by classical photointerpretation and by an interactive hybrid multispectral information extraction system (GEMS). The synopticity, periodicity and multispectrality of ERTS coverage, available for the first time to LA County planners, have opened up both a new dimensionality in data and offer new capability in preparation of planning inputs. Photointerpretation of ERTS images has produced over 25 overlays at 1:1,000,000 scale depicting regional relations and urban structure in terms of several hundred linear and areal features. To mention only one such result, a possible new fault lineament has been discovered on the northern slope of the Santa Monica mountains in the scene 1144-18015, composited of MSS bands 4, 5, 6,. GEMS analysis of the ERTS products has provided new or improved information in the following planning data categories: urban vegetation; land cover segregation; man-made and natural impact monitoring; urban design; and suitability. ERTS data analysis has allowed planners to establish trends that directly impact planning policies. This new source of information will not only assist current methods to be more efficient, but permits entirely new planning methodologies to be employed.

  17. Outpatient rehabilitation utilization and medical expenses in children aged 0-7 years with ADHD: analyses of population-based national health insurance data.

    PubMed

    Lin, Jin-Ding; Chen, Yi-Hsin; Lin, Lan-Ping

    2013-07-01

    Medical costs of attention-deficit/hyperactivity disorder (ADHD) are substantial and have a large impact on the public health system. The present study presents information regarding outpatient rehabilitation care usage and medical expenditure for children with ADHD. A cross-sectional study was conducted by analyzing data from the Taiwan National Health Insurance claims database for the year 2009. A total of 6643 children aged 0-7 years with ADHD (ICD-9-CM codes 314.0x: attention deficit disorder, 314.00: attention deficit disorder without hyperactivity, or 314.01: attention-deficit disorder with hyperactivity) who had used outpatient rehabilitation care were included in the analyses. Results showed that the mean annual rehabilitation care was 22.24 visits. Among the care users, 76% of patients were male, and 24% were female. More than half of the children with ADHD had comorbid mental illnesses as well. A logistic regression analysis of outpatient rehabilitation expenditure (low vs. high) showed that of those children with ADHD, those aged 0-2 years tended to incur more medical costs than those aged 6-7 years. Other factors such as frequency of rehabilitation visits, hospital medical setting and ownership, location of medical care setting, and types of rehabilitation were also significantly correlated with medical expenditure. The results from this study suggest that health care systems should ensure accurate diagnosis and measurement of impairment to maintain appropriate and successful management of rehabilitation needs for children with ADHD.

  18. Impact of pharmaceutical policy interventions on utilization of antipsychotic medicines in Finland and Portugal in times of economic recession: interrupted time series analyses

    PubMed Central

    2014-01-01

    Objectives To analyze the impacts of pharmaceutical sector policies implemented to contain country spending during the economic recession – a reference price system in Finland and a mix of policies including changes in reimbursement rates, a generic promotion campaign and discounts granted to the public payer in Portugal – on utilization of, as a proxy for access to, antipsychotic medicines. Methodology We obtained monthly IMS Health sales data in standard units of antipsychotic medicines in Portugal and Finland for the period January 2007 to December 2011. We used an interrupted time series design to estimate changes in overall use and generic market shares by comparing pre-policy and post-policy levels and trends. Results Both countries’ policy approaches were associated with slight, likely unintended, decreases in overall use of antipsychotic medicines and with increases in generic market shares of major antipsychotic products. In Finland, quetiapine and risperidone generic market shares increased substantially (estimates one year post-policy compared to before, quetiapine: 6.80% [3.92%, 9.68%]; risperidone: 11.13% [6.79%, 15.48%]. The policy interventions in Portugal resulted in a substantially increased generic market share for amisulpride (estimate one year post-policy compared to before: 22.95% [21.01%, 24.90%]; generic risperidone already dominated the market prior to the policy interventions. Conclusions Different policy approaches to contain pharmaceutical expenditures in times of the economic recession in Finland and Portugal had intended – increased use of generics – and likely unintended – slightly decreased overall sales, possibly consistent with decreased access to needed medicines – impacts. These findings highlight the importance of monitoring and evaluating the effects of pharmaceutical policy interventions on use of medicines and health outcomes. PMID:25062657

  19. Pipetron Tunnel Construction Issues

    SciTech Connect

    Friant, James E.; Bauer, Robert A.; Gross, David L.; May, Michael; Lach, Joseph

    1997-01-01

    This report examines issues involved in the civil construction aspects of the tunneling that could be done in the region of Fermilab to support the Pipetron along, moderately deep, tunnel loop. Cost, technical and political aspects of tunneling are addressed in this preliminary guide for further study. At Snowmass 96, in a series of informal, but comprehensive discussions, several guidelines were developed to frame this report.

  20. Charge Islands Through Tunneling

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2002-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  1. Tunnel closure calculations

    SciTech Connect

    Moran, B.; Attia, A.

    1995-07-01

    When a deeply penetrating munition explodes above the roof of a tunnel, the amount of rubble that falls inside the tunnel is primarily a function of three parameters: first the cube-root scaled distance from the center of the explosive to the roof of the tunnel. Second the material properties of the rock around the tunnel, and in particular the shear strength of that rock, its RQD (Rock Quality Designator), and the extent and orientation of joints. And third the ratio of the tunnel diameter to the standoff distance (distance between the center of explosive and the tunnel roof). The authors have used CALE, a well-established 2-D hydrodynamic computer code, to calculate the amount of rubble that falls inside a tunnel as a function of standoff distance for two different tunnel diameters. In particular they calculated three of the tunnel collapse experiments conducted in an iron ore mine near Kirkeness, Norway in the summer of 1994. The failure model that they used in their calculations combines an equivalent plastic strain criterion with a maximum tensile strength criterion and can be calibrated for different rocks using cratering data as well as laboratory experiments. These calculations are intended to test and improve the understanding of both the Norway Experiments and the ACE (Array of conventional Explosive) phenomenology.

  2. Paired Comparison Survey Analyses Utilizing Rasch Methodology of the Relative Difficulty and Estimated Work Relative Value Units of CPT® Code 27279

    PubMed Central

    Lorio, Morgan; Ferrara, Lisa

    2016-01-01

    Background Minimally invasive sacroiliac joint arthrodesis (“MI SIJ fusion”) received a Category I CPT® code (27279) effective January 1, 2015 and was assigned a work relative value unit (“RVU”) of 9.03. The International Society for the Advancement of Spine Surgery (“ISASS”) conducted a study consisting of a Rasch analysis of two separate surveys of surgeons to assess the accuracy of the assigned work RVU. Methods A survey was developed and sent to ninety-three ISASS surgeon committee members. Respondents were asked to compare CPT® 27279 to ten other comparator CPT® codes reflective of common spine surgeries. The survey presented each comparator CPT® code with its code descriptor as well as the description of CPT® 27279 and asked respondents to indicate whether CPT® 27279 was greater, equal, or less in terms of work effort than the comparator code. A second survey was sent to 557 U.S.-based spine surgeon members of ISASS and 241 spine surgeon members of the Society for Minimally Invasive Spine Surgery (“SMISS”). The design of the second survey mirrored that of the first survey except for the use of a broader set of comparator CPT® codes (27 vs. 10). Using the work RVUs of the comparator codes, a Rasch analysis was performed to estimate the relative difficulty of CPT® 27279, after which the work RVU of CPT® 27279 was estimated by regression analysis. Results Twenty surgeons responded to the first survey and thirty-four surgeons responded to the second survey. The results of the regression analysis of the first survey indicate a work RVU for CPT® 27279 of 14.36 and the results of the regression analysis of the second survey indicate a work RVU for CPT® 27279 of 14.1. Conclusion The Rasch analysis indicates that the current work RVU assigned to CPT® 27279 is undervalued at 9.03. Averaging the results of the regression analyses of the two surveys indicates a work RVU for CPT® 27279 of 14.23.

  3. Distribution of tunnelling times for quantum electron transport

    NASA Astrophysics Data System (ADS)

    Rudge, Samuel L.; Kosov, Daniel S.

    2016-03-01

    In electron transport, the tunnelling time is the time taken for an electron to tunnel out of a system after it has tunnelled in. We define the tunnelling time distribution for quantum processes in a dissipative environment and develop a practical approach for calculating it, where the environment is described by the general Markovian master equation. We illustrate the theory by using the rate equation to compute the tunnelling time distribution for electron transport through a molecular junction. The tunnelling time distribution is exponential, which indicates that Markovian quantum tunnelling is a Poissonian statistical process. The tunnelling time distribution is used not only to study the quantum statistics of tunnelling along the average electric current but also to analyse extreme quantum events where an electron jumps against the applied voltage bias. The average tunnelling time shows distinctly different temperature dependence for p- and n-type molecular junctions and therefore provides a sensitive tool to probe the alignment of molecular orbitals relative to the electrode Fermi energy.

  4. The carpal tunnel.

    PubMed

    Ellis, Harold

    2009-12-01

    The carpal bones are deeply convex anteriorly. This bony gutter is converted by the flexor retinaculum into a tube - the carpal tunnel, which conveys the median nerve, together with the long flexor tendons of the fingers and thumb, into the hand. It is of special interest to the surgeon because it is the site of a common nerve entrapment, the carpal tunnel syndrome.

  5. Shotcrete in tunnel design

    SciTech Connect

    Golser, J.; Galler, R.; Schubert, P.; Rabensteiner, K.

    1995-12-31

    Shotcrete is an important structural element for tunnel support. Green shotcrete is exposed to compression strain rates and tunnel design requires a realistic material law for shotcrete. A modified rate of flow method simulates shotcrete behavior very well and can be incorporated in Finite Element calculations.

  6. The Stability Tunnel

    NASA Technical Reports Server (NTRS)

    1943-01-01

    Engineers operate the controls of the Stability Tunnel: Plans for a new tunnel to study stability problems began in the late thirties. The Stability Tunnel was authorized in 1939 and began operations in June 1941. The installation was completed in December that year with the completion of a new 10,000 Horsepower Diesel-electric generating plant. It was a single return, closed jet tunnel with a 6-foot square test section. The tunnel was disassembled and shipped to Virginia Polytechnic Institute and State University in 1958. The tunnel had two separate test sections: one for curved flow, the other for rolling flow. 'The facility...simulates the motion of the aircraft in curved or rolling flight. This is done by actually curving or rolling the airstream as it passes over the model and at the same time providing the proper velocity distribution.' (From AIAA-80-0309) >From Alan Pope, Wind-Tunnel Testing: 'The only tunnel directly designed for dynamic stability work is located at the Langley Field branch of the NACA. Its most vital feature is its ability to subject the models to curving air streams that simulate those actually encountered when an airplane rolls, pitches, or yaws. the rotating airstream for simulating roll is produced by a motor-driven paddle just ahead of the test section. Curved air of properly varying velocity for simulating pitch and yaw is produced by a combination of a curved test section and velocity screens. The proper use of this apparatus makes possible the determination of the stability derivatives.' Published in F.H. Lutze, 'Experimental Determination of Pure Rotary Stability Derivatives using a Curved and Rolling Flow Wind Tunnel,' AIAA-80-0309, AIAA 18th Aerospace Sciences Meeting, Pasadena, CA, January 14-16, 1980; Alan Pope, Wind-Tunnel Testing (New York: John Wiley & Sons, 1947).

  7. RITD – Wind tunnel testing

    NASA Astrophysics Data System (ADS)

    Haukka, Harri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Schmidt, Walter; Heilimo, Jyri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Arruego, Ignazio

    2015-04-01

    An atmospheric re-entry and descent and landing system (EDLS) concept based on inflatable hypersonic decelerator techniques is highly promising for the Earth re-entry missions. We developed such EDLS for the Earth re-entry utilizing a concept that was originally developed for Mars. This EU-funded project is called RITD - Re-entry: Inflatable Technology Development - and it was to assess the bene¬fits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develope a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. The RITD entry and descent system utilizes an inflatable hypersonic decelerator. Development of such system requires a combination of wind tunnel tests and numerical simulations. This included wind tunnel tests both in transsonic and subsonic regimes. The principal aim of the wind tunnel tests was the determination of the RITD damping factors in the Earth atmosphere and recalculation of the results for the case of the vehicle descent in the Mars atmosphere. The RITD mock-up model used in the tests was in scale of 1:15 of the real-size vehicle as the dimensions were (midsection) diameter of 74.2 mm and length of 42 mm. For wind tunnel testing purposes the frontal part of the mock-up model body was manufactured by using a PolyJet 3D printing technology based on the light curing of liquid resin. The tail part of the mock-up model body was manufactured of M1 grade copper. The structure of the mock-up model placed th center of gravity in the same position as that of the real-size RITD. The wind tunnel test program included the defining of the damping factor at seven values of Mach numbers 0.85; 0.95; 1.10; 1.20; 1.25; 1.30 and 1.55 with the angle of attack ranging from 0 degree to 40 degrees with the step of 5 degrees. The damping characteristics of

  8. National Transonic Facility Model and Tunnel Vibrations

    NASA Technical Reports Server (NTRS)

    Edwards, John W.

    1997-01-01

    Since coming online in 1984, the National Transonic Facility (NTF) cryogenic wind tunnel at the NASA Langley Research Center has provided unique high Reynolds number testing capability. While turbulence levels in the tunnel, expressed in terms of percent dynamic pressure, are typical of other transonic wind tunnels, the significantly increased load levels utilized to achieve flight Reynolds numbers, in conjunction with the unique structural design requirements for cryogenic operation, have brought forward the issue of model and model support structure vibrations. This paper reports new experimental measurements documenting aerodynamic and structural dynamics processes involved in such vibrations experienced in the NTF. In particular, evidence of local un-steady airloads developed about the model support strut is shown and related to well documented acoustic features known as "Parker" modes. Two-dimensional unsteady viscous computations illustrate this model support structure loading mechanism.

  9. Ultrafast scanning tunneling microscopy

    SciTech Connect

    Botkin, D.A. |

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  10. [Anterior tarsal tunnel syndrome].

    PubMed

    Miliam, Palle B; Basse, Peter N

    2009-03-30

    Anterior tarsal tunnel syndrome is a rare entrapment neuropathy of the deep peroneal nerve beneath the extensor retinaculum of the ankle. It may be rare because it is underrecognized clinically.We present a case regarding a 29-year-old man, drummer, who for one and a half year experienced clinical symptoms of anterior tarsal tunnel syndrome. A surgical decompression of the anterior tarsal tunnel was performed, and at the check three months later the symptoms where gone. One year after, there were still no symptoms.

  11. Principles of tunneled cuffed catheter placement.

    PubMed

    Heberlein, Wolf

    2011-12-01

    Tunneled cuffed catheters provide reliable and instant long-term intravenous access for a large variety of therapeutic purposes, including chemotherapy, parenteral nutrition, and apheresis. The most frequent application is for patients with renal failure as an access device for hemodialysis. In this capacity, the rate of catheter use has remained stable in the United States, despite the promotion of arteriovenous fistulas and arteriovenous grafts. The latter 2 procedures achieve superior longevity and much higher cost-efficiency. Tunneled catheters, however, serve as bridging devices during maturation of newly placed arteriovenous fistulas or as the final option in patients in whom fistulas and grafts have failed. High-quality vascular access is a hallmark of interventional radiology, and its significance for patient care and for our specialty cannot be overestimated. Familiarity with basic concepts of the device and procedural techniques are crucial to achieve successful long-term venous access. The following article demonstrates key concepts of tunneled venous catheter placement by means of dialysis, inasmuch as dialysis catheters represent the most commonly placed tunneled central venous catheters. The principles of placement and techniques utilized, however, are applicable to devices that are used for chemotherapy or parenteral nutrition, such as the Hickman, Broviac, Groshong, or tunneled peripherally inserted central catheters.

  12. Carpal tunnel release

    MedlinePlus

    ... you are taking. This includes medicines, supplements, or herbs you bought without a prescription. You may be ... gov/pubmed/23026458 . Zhao M, Burke DT. Median neuropathy (carpal tunnel syndrome). In: Frontera WR, Silver JK, ...

  13. Endoscopic cubital tunnel release.

    PubMed

    Cobb, Tyson K

    2010-10-01

    A minimally invasive endoscopic approach has been successfully applied to surgical treatment of cubital tunnel syndrome. This procedure allows for smaller incisions with faster recovery time. This article details relevant surgical anatomy, indications, contraindications, surgical technique, complications, and postoperative management.

  14. Inelastic electron tunneling spectroscopy

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Lambe, J.

    1983-01-01

    Inelastic electron tunneling spectroscopy is a useful technique for the study of vibrational modes of molecules adsorbed on the surface of oxide layers in a metal-insulator-metal tunnel junction. The technique involves studying the effects of adsorbed molecules on the tunneling spectrum of such junctions. The data give useful information about the structure, bonding, and orientation of adsorbed molecules. One of the major advantages of inelastic electron tunneling spectroscopy is its sensitivity. It is capable of detecting on the order of 10 to the 10th molecules (a fraction of a monolayer) on a 1 sq mm junction. It has been successfully used in studies of catalysis, biology, trace impurity detection, and electronic excitations. Because of its high sensitivity, this technique shows great promise in the area of solid-state electronic chemical sensing.

  15. World's Largest Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1987-01-01

    NASA's National Full Scale Aerodynamics Complex, which houses two of the world's largest wind tunnels and has been used for testing experimental aircraft since 1944, is presented. This video highlights the structure and instrumentation of the 40 x 80 foot and 80 x 120 foot wind tunnels and documents their use in testing full scale aircraft, NASA's Space Shuttle and the XV-15 Tiltrotor aircraft.

  16. Electron tunnel sensor technology

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Waltman, S. B.; Reynolds, J. K.; Kaiser, W. J.

    1991-01-01

    Researchers designed and constructed a novel electron tunnel sensor which takes advantage of the mechanical properties of micro-machined silicon. For the first time, electrostatic forces are used to control the tunnel electrode separation, thereby avoiding the thermal drift and noise problems associated with piezoelectric actuators. The entire structure is composed of micro-machined silicon single crystals, including a folded cantilever spring and a tip. The application of this sensor to the development of a sensitive accelerometer is described.

  17. Full Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Construction of motor fairing for the fan motors of the Full-Scale Tunnel (FST). The motors and their supporting structures were enclosed in aerodynamically smooth fairings to minimize resistance to the air flow. Close examination of this photograph reveals the complicated nature of constructing a wind tunnel. This motor fairing, like almost every other structure in the FST, represents a one-of-a-kind installation.

  18. Novel tunnelling barriers for spin tunnelling junctions

    NASA Astrophysics Data System (ADS)

    Sharma, Manish

    A tunnel junction consists of two metal electrodes separated by an insulating barrier thin enough for electrons to tunnel across. With ferromagnetic electrodes, a spin-dependent tunnelling (SDT) effect, electrons of one spin tunnelling preferentially over those of the other, is observed. When the electrodes are switched from a parallel to an anti-parallel alignment, the tunnelling current changes and gives rise to tunnelling magnetoresistance (TMR). Since 1995, interest in SDT junctions has increased as TMR in excess of 15% has been achieved, making viable their use in non-volatile memory and magnetic sensors applications. In this work, two key issues of SDT junctions are addressed: spin polarization of the electrode and the tunnel barrier. Spin polarization, a measure of electron states of up and down spins, is widely believed to be an intrinsic property of the electrode. In junctions with barriers formed by plasma oxidation of composite Ta/Al films, the surprising effect of the resistance being lower with the electrodes aligned antiparallel was observed. Junctions with Ta/Al barriers and those with Al/Ta barriers behave opposite to each other and exhibit an inversion only when the Ta side of the barrier is biased positive. This demonstrates the spin polarization is also influenced by the barrier material. Half-metallic materials such as magnetite (Fe3O4) have a gap in one of the spins' states at the fermi level, thus having a theoretical spin polarization of 100%. In this work, an ultrathin Fe3O 4 layer was added between the Al2O3 barrier and the NiFe electrode. The TMR increased sharply from 4% to 16% for thicknesses less than 0.5nm. As the tunnel barrier must be thinner than 2nm, choice of the barrier material becomes critical. Presently, Al2O3 is the best known barrier. In looking for alternative materials, AlN and AlON were formed by plasma nitridation and oxy-nitridation of deposited Al films. TMR results of up to 18% and resistance-area products down to 3

  19. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  20. Sensor integration study for a shallow tunnel detection system.

    SciTech Connect

    Yee, Mark L.; Abbott, Robert E.; Bonal, Nedra; Elbring, Gregory Jay; Senglaub, Michael E.

    2010-02-01

    During the past several years, there has been a growing recognition of the threats posed by the use of shallow tunnels against both international border security and the integrity of critical facilities. This has led to the development and testing of a variety of geophysical and surveillance techniques for the detection of these clandestine tunnels. The challenges of detection of these tunnels arising from the complexity of the near surface environment, the subtlety of the tunnel signatures themselves, and the frequent siting of these tunnels in urban environments with a high level of cultural noise, have time and again shown that any single technique is not robust enough to solve the tunnel detection problem in all cases. The question then arises as to how to best combine the multiple techniques currently available to create an integrated system that results in the best chance of detecting these tunnels in a variety of clutter environments and geologies. This study utilizes Taguchi analysis with simulated sensor detection performance to address this question. The analysis results show that ambient noise has the most effect on detection performance over the effects of tunnel characteristics and geological factors.

  1. Effects of static fingertip loading on carpal tunnel pressure

    NASA Technical Reports Server (NTRS)

    Rempel, D.; Keir, P. J.; Smutz, W. P.; Hargens, A.

    1997-01-01

    The purpose of this study was to explore the relationship between carpal tunnel pressure and fingertip force during a simple pressing task. Carpal tunnel pressure was measured in 15 healthy volunteers by means of a saline-filled catheter inserted percutaneously into the carpal tunnel of the nondominant hand. The subjects pressed on a load cell with the tip of the index finger and with 0, 6, 9, and 12 N of force. The task was repeated in 10 wrist postures: neutral; 10 and 20 degrees of ulnar deviation; 10 degrees of radial deviation; and 15, 30, and 45 degrees of both flexion and extension. Fingertip loading significantly increased carpal tunnel pressure for all wrist angles (p = 0.0001). Post hoc analyses identified significant increase (p < 0.05) in carpal tunnel pressure between unloaded (0 N) and all loaded conditions, as well as between the 6 and 12 N load conditions. This study demonstrates that the process whereby fingertip loading elevates carpal tunnel pressure is independent of wrist posture and that relatively small fingertip loads have a large effect on carpal tunnel pressure. It also reveals the response characteristics of carpal tunnel pressure to fingertip loading, which is one step in understanding the relationship between sustained grip and pinch activities and the aggravation or development of median neuropathy at the wrist.

  2. Single Electron Tunneling

    SciTech Connect

    Ruggiero, Steven T.

    2005-07-25

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  3. Suppression of tunneling rate fluctuations in tunnel field-effect transistors by enhancing tunneling probability

    NASA Astrophysics Data System (ADS)

    Mori, Takahiro; Migita, Shinji; Fukuda, Koichi; Asai, Hidehiro; Morita, Yukinori; Mizubayashi, Wataru; Liu, Yongxun; O’uchi, Shin-ichi; Fuketa, Hiroshi; Otsuka, Shintaro; Yasuda, Tetsuji; Masahara, Meishoku; Ota, Hiroyuki; Matsukawa, Takashi

    2017-04-01

    This paper discusses the impact of the tunneling probability on the variability of tunnel field-effect transistors (TFETs). Isoelectronic trap (IET) technology, which enhances the tunneling current in TFETs, is used to suppress the variability of the ON current and threshold voltage. The simulation results show that suppressing the tunneling rate fluctuations results in suppression of the variability. In addition, a formula describing the relationship between the tunneling rate fluctuations and the electric field strength is derived based on Kane’s band-to-band tunneling model. This formula indicates that the magnitude of the tunneling rate fluctuations is proportional to the magnitude of the fluctuations in the electric field strength and a higher tunneling probability results in a lower variability. The derived relationship is universally valid for any technologies that exploit enhancement of the tunneling probability, including IET technology, channel material engineering, heterojunctions, strain engineering, etc.

  4. Carpal Tunnel Syndrome

    PubMed Central

    Zimmerman, Gregory R.

    1994-01-01

    Carpal tunnel syndrome is a neuropathy resulting from compression of the median nerve as it passes through a narrow tunnel in the wrist on its way to the hand. The lack of precise objective and clinical tests, along with symptoms that are synonymous with other syndromes in the upper extremity, cause carpal tunnel syndrome to appear to be a rare entity in athletics. However, it should not be ruled out as a possible etiology of upper extremity paralysis in the athlete. More typically, carpal tunnel syndrome is the most common peripheral entrapment neuropathy encountered in industry. Treatment may include rest and/or splinting of the involved wrist, ice application, galvanic stimulation, or iontophoresis to reduce inflammation, and then transition to heat modalities and therapeutic exercises for developing flexibility, strength, and endurance. In addition, an ergonomic assessment should be conducted, resulting in modifications to accommodate the carpal tunnel syndrome patient. ImagesFig 3.Fig 4.Fig 5.Fig 6.Fig 7. PMID:16558255

  5. Condensate Mixtures and Tunneling

    SciTech Connect

    Timmermans, E.

    1998-09-14

    The experimental study of condensate mixtures is a particularly exciting application of the recently developed atomic-trap Bose-Einstein condensate (BEC) technology: such multiple condensates represent the first laboratory systems of distinguishable boson superfluid mixtures. In addition, as the authors point out in this paper, the possibility of inter-condensate tunneling greatly enhances the richness of the condensate mixture physics. Not only does tunneling give rise to the oscillating particle currents between condensates of different chemical potentials, such as those studied extensively in the condensed matter Josephson junction experiments, it also affects the near-equilibrium dynamics and stability of the condensate mixtures. In particular, the stabilizing influence of tunneling with respect to spatial separation (phase separation) could be of considerable practical importance to the atomic trap systems. Furthermore, the creation of mixtures of atomic and molecular condensates could introduce a novel type of tunneling process, involving the conversion of a pair of atomic condensate bosons into a single molecular condensate boson. The static description of condensate mixtures with such type of pair tunneling suggests the possibility of observing dilute condensates with the liquid-like property of a self-determined density.

  6. Femtosecond scanning tunneling microscope

    SciTech Connect

    Taylor, A.J.; Donati, G.P.; Rodriguez, G.; Gosnell, T.R.; Trugman, S.A.; Some, D.I.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). By combining scanning tunneling microscopy with ultrafast optical techniques we have developed a novel tool to probe phenomena on atomic time and length scales. We have built and characterized an ultrafast scanning tunneling microscope in terms of temporal resolution, sensitivity and dynamic range. Using a novel photoconductive low-temperature-grown GaAs tip, we have achieved a temporal resolution of 1.5 picoseconds and a spatial resolution of 10 nanometers. This scanning tunneling microscope has both cryogenic and ultra-high vacuum capabilities, enabling the study of a wide range of important scientific problems.

  7. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  8. View down tank tunnel (tunnel no. 2) showing pipes and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View down tank tunnel (tunnel no. 2) showing pipes and walkway of metal grating, side tunnel to tank 3 is on the left - U.S. Naval Base, Pearl Harbor, Diesel Purification Plant, North Road near Pierce Street, Pearl City, Honolulu County, HI

  9. Aorto-ventricular tunnel

    PubMed Central

    McKay, Roxane

    2007-01-01

    Aorto-ventricular tunnel is a congenital, extracardiac channel which connects the ascending aorta above the sinutubular junction to the cavity of the left, or (less commonly) right ventricle. The exact incidence is unknown, estimates ranging from 0.5% of fetal cardiac malformations to less than 0.1% of congenitally malformed hearts in clinico-pathological series. Approximately 130 cases have been reported in the literature, about twice as many cases in males as in females. Associated defects, usually involving the proximal coronary arteries, or the aortic or pulmonary valves, are present in nearly half the cases. Occasional patients present with an asymptomatic heart murmur and cardiac enlargement, but most suffer heart failure in the first year of life. The etiology of aorto-ventricular tunnel is uncertain. It appears to result from a combination of maldevelopment of the cushions which give rise to the pulmonary and aortic roots, and abnormal separation of these structures. Echocardiography is the diagnostic investigation of choice. Antenatal diagnosis by fetal echocardiography is reliable after 18 weeks gestation. Aorto-ventricular tunnel must be distinguished from other lesions which cause rapid run-off of blood from the aorta and produce cardiac failure. Optimal management of symptomatic aorto-ventricular tunnel consists of diagnosis by echocardiography, complimented with cardiac catheterization as needed to elucidate coronary arterial origins or associated defects, and prompt surgical repair. Observation of the exceedingly rare, asymptomatic patient with a small tunnel may be justified by occasional spontaneous closure. All patients require life-long follow-up for recurrence of the tunnel, aortic valve incompetence, left ventricular function, and aneurysmal enlargement of the ascending aorta. PMID:17922908

  10. Aorto-ventricular tunnel.

    PubMed

    McKay, Roxane

    2007-10-08

    Aorto-ventricular tunnel is a congenital, extracardiac channel which connects the ascending aorta above the sinutubular junction to the cavity of the left, or (less commonly) right ventricle. The exact incidence is unknown, estimates ranging from 0.5% of fetal cardiac malformations to less than 0.1% of congenitally malformed hearts in clinico-pathological series. Approximately 130 cases have been reported in the literature, about twice as many cases in males as in females. Associated defects, usually involving the proximal coronary arteries, or the aortic or pulmonary valves, are present in nearly half the cases. Occasional patients present with an asymptomatic heart murmur and cardiac enlargement, but most suffer heart failure in the first year of life. The etiology of aorto-ventricular tunnel is uncertain. It appears to result from a combination of maldevelopment of the cushions which give rise to the pulmonary and aortic roots, and abnormal separation of these structures. Echocardiography is the diagnostic investigation of choice. Antenatal diagnosis by fetal echocardiography is reliable after 18 weeks gestation. Aorto-ventricular tunnel must be distinguished from other lesions which cause rapid run-off of blood from the aorta and produce cardiac failure. Optimal management of symptomatic aorto-ventricular tunnel consists of diagnosis by echocardiography, complimented with cardiac catheterization as needed to elucidate coronary arterial origins or associated defects, and prompt surgical repair. Observation of the exceedingly rare, asymptomatic patient with a small tunnel may be justified by occasional spontaneous closure. All patients require life-long follow-up for recurrence of the tunnel, aortic valve incompetence, left ventricular function, and aneurysmal enlargement of the ascending aorta.

  11. Future tunnelling projects in Iceland

    SciTech Connect

    Jonsson, B. )

    1992-04-01

    More than 300 km of hydro tunnels and 80-90 km of road tunnels could be excavated in Iceland before the year 2050. In order to complete this task, an average of 6-7 km of tunnel per year would have to be driven. This volume of tunnelling is estimated to cost more than $US1 billion, which could be divided as follows: (a) about 100 km of 3.5-m-wide diversion hydro tunnels (unsupported), for a total of $90 million; (b) approx. 100 km of 5-m-wide hydro tunnels (supported), for a total of $210 million; (c) about 100 km of 7.6-m-wide hydro tunnels (supported), for a total of $380 million; and (d) approx. 85 km of road tunnels with 25 m[sup 2] cross-section, for a total of $435 million. 5 refs., 5 figs., 4 tabs.

  12. Carpal Tunnel Syndrome (For Kids)

    MedlinePlus

    ... Dictionary of Medical Words En Español What Other Kids Are Reading Taking Care of Your Ears Taking ... an X-ray Carpal Tunnel Syndrome KidsHealth > For Kids > Carpal Tunnel Syndrome Print A A A What's ...

  13. High-speed Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1936-01-01

    Wind tunnel construction and design is discussed especially in relation to subsonic and supersonic speeds. Reynolds Numbers and the theory of compressible flows are also taken into consideration in designing new tunnels.

  14. Instrumentation in wind tunnels

    NASA Technical Reports Server (NTRS)

    Takashima, K.

    1986-01-01

    Requirements in designing instrumentation systems and measurements of various physical quantities in wind tunnels are surveyed. Emphasis is given to sensors used for measuring pressure, temperature, and angle, and the measurements of air turbulence and boundary layers. Instrumentation in wind tunnels require accuracy, fast response, diversity and operational simplicity. Measurements of force, pressure, attitude angle, free flow, pressure distribution, and temperature are illustrated by a table, and a block diagram. The LDV (laser Doppler velocimeter) method for measuring air turbulence and flow velocity and measurement of skin friction and flow fields using laser holograms are discussed. The future potential of these techniques is studied.

  15. Tunneling in axion monodromy

    NASA Astrophysics Data System (ADS)

    Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo

    2016-10-01

    The Coleman formula for vacuum decay and bubble nucleation has been used to estimate the tunneling rate in models of axion monodromy in recent literature. However, several of Coleman's original assumptions do not hold for such models. Here we derive a new estimate with this in mind using a similar Euclidean procedure. We find that there are significant regions of parameter space for which the tunneling rate in axion monodromy is not well approximated by the Coleman formula. However, there is also a regime relevant to large field inflation in which both estimates parametrically agree. We also briefly comment on the applications of our results to the relaxion scenario.

  16. Subband current in resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Sheng, H.; Sinkkonen, J.

    An accumulation layer is formed on the emitter side of a biased resonant tunneling diode (RTD) leading to a similar subband structure as in the ordinary MOS-system. Electrons occupying the subbands can tunnel through the RTD-structure and give rise to a significant contribution to the diode current. We calculate the subband current from our semiclassical transport model developed earlier for the ordinary tunneling current. The model includes quantum interference and bulk scattering by utilizing an optical approximation for the coherent part of the wave function. The subband current turns out to be of the same order of magnitude as the ordinary tunneling current component. It is shifted to higher voltages and therefore it increases the valley current. In order to reduce the subband current and improve the peak-to-valley current ratio (PVCR), we propose a novel RTD-structure with a grading in front of the emitter barrier. The purpose of the grading is to suppress the formation of the accumulation layer and thereby decrease the valley current. Calculations show that PVCR increases by a factor of two using a proper design of the grading.

  17. Scanning tunneling microscope nanoetching method

    DOEpatents

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  18. Tunneling current through fractional quantum Hall interferometers

    NASA Astrophysics Data System (ADS)

    Smits, O.; Slingerland, J. K.; Simon, S. H.

    2014-01-01

    We calculate the tunneling current through a Fabry-Pérot interferometer in the fractional quantum Hall regime. Within linear response theory (weak tunneling but arbitrary source-drain voltage), we find a general expression for the current due to tunneling of quasiparticles in terms of Carlson's R function. Our result is valid for fractional quantum Hall states with an edge theory consisting of a charged channel and any number of neutral channels, with possibly different edge velocities and different chiralities. We analyze the case with a single neutral channel in detail, which applies for instance to the edge of the Moore-Read state. In addition, we consider an asymmetric interferometer with different edge lengths between the point contacts on opposite edges, and we study the behavior of the current as a function of varying edge length. Recent experiments attempted to measure the Aharanov-Bohm effect by changing the area inside the interferometer using a plunger gate. Theoretical analyses of these experiments have so far not taken into account the accompanying change in the edge lengths. We show that the tunneling current exhibits multiple oscillations as a function of this edge length, with frequencies proportional to the injected edge current and inversely proportional to the edge velocities. In particular, the edge velocities can be measured by looking at the Fourier spectrum of the edge current. We provide a numerical scheme to calculate and plot the R function, and include sample plots for a variety of edge states with parameter values, which are experimentally relevant.

  19. Carpal tunnel syndrome

    PubMed Central

    2014-01-01

    Introduction Carpal tunnel syndrome is a collection of clinical symptoms and signs caused by compression of the median nerve within the carpal tunnel. However, the severity of symptoms and signs does not often correlate well with the extent of nerve compression. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of drug treatments, non-drug treatments, and surgical treatments for carpal tunnel syndrome? We searched: Medline, Embase, The Cochrane Library, and other important databases up to October 2013 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 33 studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: carpal tunnel release surgery (open and endoscopic), diuretics, local corticosteroids injection, non-steroidal anti-inflammatory drugs (NSAIDs), therapeutic ultrasound, and wrist splints.

  20. Carpal tunnel syndrome

    PubMed Central

    2010-01-01

    Introduction Carpal tunnel syndrome is a neuropathy caused by compression of the median nerve within the carpal tunnel. However, the severity of symptoms and signs does not often correlate well with the extent of nerve damage. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of drug treatments, non-drug treatments, surgical treatments, and postoperative treatments for carpal tunnel syndrome? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2009 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 53 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: acupuncture, carpal tunnel release surgery (open and endoscopic), diuretics, internal neurolysis, local and systemic corticosteroids, massage therapy, nerve and tendon gliding exercises, non-steroidal anti-inflammatory drugs (NSAIDs), pyridoxine, therapeutic ultrasound, and wrist splints. PMID:21718565

  1. Wind Tunnel Balances

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Norton, F H

    1920-01-01

    Report embodies a description of the balance designed and constructed for the use of the National Advisory Committee for Aeronautics at Langley Field, and also deals with the theory of sensitivity of balances and with the errors to which wind tunnel balances of various types are subject.

  2. Tunneling path toward spintronics

    NASA Astrophysics Data System (ADS)

    Miao, Guo-Xing; Münzenberg, Markus; Moodera, Jagadeesh S.

    2011-03-01

    The phenomenon of quantum tunneling, which was discovered almost a century ago, has led to many subsequent discoveries. One such discovery, spin polarized tunneling, was made 40 years ago by Robert Meservey and Paul Tedrow (Tedrow and Meservey 1971 Phys. Rev. Lett. 26 192), and it has resulted in many fundamental observations and opened up an entirely new field of study. Until the mid-1990s, this field developed at a steady, low rate, after which a huge increase in activity suddenly occurred as a result of the unraveling of successful spin tunneling between two ferromagnets. In the past 15 years, several thousands of papers related to spin polarized tunneling and transport have been published, making this topic one of the hottest areas in condensed matter physics from both fundamental science and applications viewpoints. Many review papers and book chapters have been written in the past decade on this subject. This paper is not exhaustive by any means; rather, the emphases are on recent progress, technological developments and informing the reader about the current direction in which this topic is moving.

  3. Tunnelling with wormhole creation

    SciTech Connect

    Ansoldi, S.; Tanaka, T.

    2015-03-15

    The description of quantum tunnelling in the presence of gravity shows subtleties in some cases. We discuss wormhole production in the context of the spherically symmetric thin-shell approximation. By presenting a fully consistent treatment based on canonical quantization, we solve a controversy present in the literature.

  4. Full Scale Tunnel model

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Interior view of Full-Scale Tunnel (FST) model. (Small human figures have been added for scale.) On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel . 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow.

  5. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  6. The Mystery Tunnel

    ERIC Educational Resources Information Center

    McCormack, Alan J.

    1974-01-01

    Describes a mystery tunnel, constructed by teachers, which provides a variety of non-visual, sensory experiences for children as they crawl through it. It is designed to help primary children develop basic abilities to use their own senses to better observe, discriminate among observations, and describe their own perceptions accurately. (JR)

  7. The Channel Tunnel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Channel Tunnel is a 50.5 km-long rail tunnel beneath the English Channel at the Straits of Dover. It connects Dover, Kent in England with Calais, northern France. The undersea section of the tunnel is unsurpassed in length in the world. A proposal for a Channel tunnel was first put forward by a French engineer in 1802. In 1881, a first attempt was made at boring a tunnel from the English side; the work was halted after 800 m. Again in 1922, English workers started boring a tunnel, and advanced 120 m before it too was halted for political reasons. The most recent attempt was begun in 1987, and the tunnel was officially opened in 1994. At completion it was estimated that the project cost around $18 billion. It has been operating at a significant loss since its opening, despite trips by over 7 million passengers per year on the Eurostar train, and over 3 million vehicles per year.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring

  8. Water-level, velocity, and dye measurements in the Chicago tunnels

    USGS Publications Warehouse

    Oberg, K.A.; Schmidt, A.R.; ,

    1993-01-01

    On April 13, 1992, a section of a 100-year-old underground freight tunnel in downtown Chicago, Illinois was breached where the tunnel crosses under the Chicago River, about 15 meters below land surface. The breach allowed water from the Chicago River to flow into the freight tunnels and into buildings connected to the tunnels. As a result, utility services to more than 100 buildings in downtown Chicago were lost, several hundred thousand workers were sent home, and the entire subway system and a major expressway in the Loop were shut down. The breach in the tunnel was sealed and the tunnel dewatered by the U.S. Army Corps of Engineers (Corps) and its contractors. The U.S. Geological Survey (USGS) assisted the Corps in their efforts to plug and dewater the freight tunnels and connected buildings. This assistance included the installation and operation of telemetered gages for monitoring water levels in the tunnel system and velocity measurements made in the vicinity of the tunnel breach. A fluorescent dye tracer was used to check for leaks in the plugs, which isolated the damaged portion of the Chicago freight tunnel from the remainder of the tunnel system.

  9. The effect of road tunnel environment on car following behaviour.

    PubMed

    Yeung, Jian Sheng; Wong, Yiik Diew

    2014-09-01

    In order to overcome urban space constraints, underground road systems are becoming popular options for cities. Existing literature suggests that accident rates in road tunnels are lower than those in open roads. However, there is a lack of understanding in how the road tunnel environment affects inter-vehicle interactions. In this study, car following data are obtained from traffic video footages of open and tunnel expressways in Singapore. A total of 15,325 car following headways (with car as the follower) are analysed and significant factors affecting headways are found to be speed, and lane. Significant effect of leading vehicle type is only found for tunnel expressway. Headways are generally longer in the tunnel environment. Assessment of collision time measures and safety margins also reveal safer car following behaviour and lower rear-end collision risks in the tunnel expressway. The results are discussed from a behavioural perspective. Overall, the findings show that road tunnels are superior in terms of safety but at reduced traffic capacity .

  10. Data Reduction Functions for the Langley 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Boney, Andy D.

    2014-01-01

    The Langley 14- by 22-Foot Subsonic Tunnel's data reduction software utilizes six major functions to compute the acquired data. These functions calculate engineering units, tunnel parameters, flowmeters, jet exhaust measurements, balance loads/model attitudes, and model /wall pressures. The input (required) variables, the output (computed) variables, and the equations and/or subfunction(s) associated with each major function are discussed.

  11. A Student-Built Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Ekkens, Tom

    2015-12-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself. I wanted to give my students a deeper appreciation for the physics by having them build a simple scanning tunneling microscope. Initially, 15 hours of an upper-division laboratory class were devoted to building and operating the STM. As the build process was refined, the time commitment for this project has shrunk to nine hours. Using the method described in this paper, the project is now simple enough that it can be built and operated by students in the introductory class.

  12. WT - WIND TUNNEL PERFORMANCE ANALYSIS

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    WT was developed to calculate fan rotor power requirements and output thrust for a closed loop wind tunnel. The program uses blade element theory to calculate aerodynamic forces along the blade using airfoil lift and drag characteristics at an appropriate blade aspect ratio. A tip loss model is also used which reduces the lift coefficient to zero for the outer three percent of the blade radius. The application of momentum theory is not used to determine the axial velocity at the rotor plane. Unlike a propeller, the wind tunnel rotor is prevented from producing an increase in velocity in the slipstream. Instead, velocities at the rotor plane are used as input. Other input for WT includes rotational speed, rotor geometry, and airfoil characteristics. Inputs for rotor blade geometry include blade radius, hub radius, number of blades, and pitch angle. Airfoil aerodynamic inputs include angle at zero lift coefficient, positive stall angle, drag coefficient at zero lift coefficient, and drag coefficient at stall. WT is written in APL2 using IBM's APL2 interpreter for IBM PC series and compatible computers running MS-DOS. WT requires a CGA or better color monitor for display. It also requires 640K of RAM and MS-DOS v3.1 or later for execution. Both an MS-DOS executable and the source code are provided on the distribution medium. The standard distribution medium for WT is a 5.25 inch 360K MS-DOS format diskette in PKZIP format. The utility to unarchive the files, PKUNZIP, is also included. WT was developed in 1991. APL2 and IBM PC are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation. PKUNZIP is a registered trademark of PKWare, Inc.

  13. Water tunnel flow visualization and wind tunnel data analysis of the F/A-18. [leading edge extension vortex effects

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.

    1982-01-01

    Six degree of freedom studies were utilized to extract a band of yawing and rolling moment coefficients from the F/A-18 aircraft flight records. These were compared with 0.06 scale model data obtained in a 16T wind tunnel facility. The results, indicate the flight test yawing moment data exhibit an improvement over the wind tunnel data to near neutral stability and a significant reduction in lateral stability (again to anear neutral level). These data are consistent with the flight test results since the motion was characterized by a relatively slo departure. Flight tests repeated the slow yaw departure at M 0.3. Only 0.16 scale model wind tunnel data showed levels of lateral stability similar to the flight test results. Accordingly, geometric modifications were investigated on the 0.16 scale model in the 30x60 foot wind tunnel to improve high angle of attack lateral stability.

  14. Electrical resistivity borehole measurements: application to an urban tunnel site

    NASA Astrophysics Data System (ADS)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  15. Sociopolitical Analyses.

    ERIC Educational Resources Information Center

    Van Galen, Jane, Ed.; And Others

    1992-01-01

    This theme issue of the serial "Educational Foundations" contains four articles devoted to the topic of "Sociopolitical Analyses." In "An Interview with Peter L. McLaren," Mary Leach presented the views of Peter L. McLaren on topics of local and national discourses, values, and the politics of difference. Landon E.…

  16. Tunnel boring machine

    SciTech Connect

    Snyder, L. L.

    1985-07-09

    A tunnel boring machine for controlled boring of a curvilinear tunnel including a rotating cutter wheel mounted on the forward end of a thrust cylinder assembly having a central longitudinal axis aligned with the cutter wheel axis of rotation; the thrust cylinder assembly comprising a cylinder barrel and an extendable and retractable thrust arm received therein. An anchoring assembly is pivotally attached to the rear end of the cylinder barrel for anchoring the machine during a cutting stroke and providing a rear end pivot axis during curved cutting strokes. A pair of laterally extending, extendable and retractable arms are fixedly mounted at a forward portion of the cylinder barrel for providing lateral displacement in a laterally curved cutting mode and for anchoring the machine between cutting strokes and during straight line boring. Forward and rear transverse displacement and support assemblies are provided to facilitate cutting in a transversely curved cutting mode and to facilitate machine movement between cutting strokes.

  17. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Rockstad, Howard K. (Inventor); Reynolds, Joseph K. (Inventor)

    1994-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane which would otherwise change deflection depending upon incident infrared radiation. The resulting infrared sensor will meet or exceed the performance of all other broadband, uncooled, infrared sensors and can be miniaturized to pixel dimensions smaller than 100 .mu.m. The technology is readily implemented as a small-format linear array suitable for commercial and spacecraft applications.

  18. Possibility of hyperbolic tunneling

    SciTech Connect

    Lobo, Francisco S. N.; Mimoso, Jose P.

    2010-08-15

    Traversable wormholes are primarily useful as 'gedanken experiments' and as a theoretician's probe of the foundations of general relativity. In this work, we analyze the possibility of having tunnels in a hyperbolic spacetime. We obtain exact solutions of static and pseudo-spherically symmetric spacetime tunnels by adding exotic matter to a vacuum solution referred to as a degenerate solution of class A. The physical properties and characteristics of these intriguing solutions are explored, and through the mathematics of embedding it is shown that particular constraints are placed on the shape function, that differ significantly from the Morris-Thorne wormhole. In particular, it is shown that the energy density is always negative, and the radial pressure is positive, at the throat, contrary to the Morris-Thorne counterpart. Specific solutions are also presented by considering several equations of state, and by imposing restricted choices for the shape function or the redshift function.

  19. Tunnel magnetoresistance of diamondoids

    NASA Astrophysics Data System (ADS)

    Matsuura, Yukihito

    2016-10-01

    Tunnel magnetoresistance (TMR) of diamondoids has been predicted by first principles density functional theory. Diamantane was used as a basic molecular proxy for diamondoids because hydrogen atoms in the apical position are easily substituted for a thiol group. The pristine diamantane exhibited a low TMR ratio of 7%, and boron-substitution considerably decreased the TMR ratio. Conversely, nitrogen-substitution enhanced the TMR ratio by up to 20%. Heteroatom-substitution changes the tunneling probabilities by varying the molecular bond lengths. Furthermore, when the spins of the electrodes are parallel, the heteroatoms resulted in transmittance probabilities at an energy range near the Fermi level. Consequently, heteroatom-substitution can control the TMR ratios of diamondoids very well.

  20. Carpal tunnel syndrome in occupational medicine practice.

    PubMed

    Bugajska, Joanna; Jedryka-Góral, Anna; Sudoł-Szopińska, Iwona; Tomczykiewicz, Kazimierz

    2007-01-01

    Work-related overload syndromes are chiefly associated with the upper limbs, where carpal tunnel syndrome (CTS) plays a leading role. This article analyses methods of diagnosing CTS, with special emphasis on those that can be used by physicians in early diagnosis of CTS in workers doing monotonous work. It also discusses occupational (e.g., assembly work, typing, playing instruments, packaging and work associated with the use of a hammer or pruning scissors) and extra-occupational factors (e.g., post-traumatic deformation of bone elements of the carpal tunnel, degenerative and inflammatory changes in tendon sheaths, connective tissue hypertrophy or formation of crystal deposits) leading to CTS; diagnostic methods (subjective symptoms, physical examination and manual provocative tests, vibration perception threshold, electrophysiological examination and imaging methods); and therapeutic and preventive management tools accessible in occupational medicine practice.

  1. Tarsal tunnel syndrome.

    PubMed

    Gould, John S

    2011-06-01

    Tarsal tunnel syndrome, unlike its similar sounding counterpart in the hand, is a significantly misunderstood clinical entity. Confusion concerning the anatomy involved, the presenting symptomatology, the appropriateness and significance of various diagnostic tests, conservative and surgical management, and, finally, the variability of reported results of surgical intervention attests to the lack of consensus surrounding this condition. The terminology involved in various diagnoses for chronic heel pain is also a hodgepodge of poorly understood entities.

  2. Full Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Installation of Full Scale Tunnel (FST) power plant. Virginia Public Service Company could not supply adequate electricity to run the wind tunnels being built at Langley. (The Propeller Research Tunnel was powered by two submarine diesel engines.) This led to the consideration of a number of different ideas for generating electric power to drive the fan motors in the FST. The main proposition involved two 3000 hp and two 1000 hp diesel engines with directly connected generators. Another, proposition suggested 30 Liberty motors driving 600 hp DC generators in pairs. For a month, engineers at Langley were hopeful they could secure additional diesel engines from decommissioned Navy T-boats but the Navy could not offer a firm commitment regarding the future status of the submarines. By mid-December 1929, Virginia Public Service Company had agreed to supply service to the field at the north end of the King Street Bridge connecting Hampton and Langley Field. Thus, new plans for FST powerplant and motors were made. Smith DeFrance described the motors in NACA TR No. 459: 'The most commonly used power plant for operating a wind tunnel is a direct-current motor and motor-generator set with Ward Leonard control system. For the FST it was found that alternating current slip-ring induction motors, together with satisfactory control equipment, could be purchased for approximately 30 percent less than the direct-current equipment. Two 4000-horsepower slip-ring induction motors with 24 steps of speed between 75 and 300 r.p.m. were therefore installed.'

  3. Diffraction as tunneling

    NASA Technical Reports Server (NTRS)

    Nussenzveig, H. M.; Wiscombe, W. J.

    1987-01-01

    A new approximation to the short-wavelength scattering amplitude from an impenetrable sphere is presented. It is uniform in the scattering angle and it is more accurate than previously known approximations (including Fock's theory of diffraction) by up to several orders of magnitude. It remains valid in the transition to long-wavelength scattering. It leads to a new physical picture of diffraction, as tunneling through an inertial barrier.

  4. Loads on Sprayed Waterproof Tunnel Linings in Jointed Hard Rock: A Study Based on Norwegian Cases

    NASA Astrophysics Data System (ADS)

    Holter, Karl Gunnar

    2014-05-01

    A composite tunnel lining system based on a sprayed waterproofing membrane combined with sprayed concrete is currently being considered for future Norwegian rail and road tunnels. Possible loading of the tunnel linings caused by water pressure is being investigated. This tunnel lining system consists of a waterproof membrane which, during application on the sprayed concrete lining, bonds mechanically to the sprayed concrete on either side. Hence, a continuous, sealing, and non-draining structure from the rock mass to the interior tunnel surface is formed in the walls and crown. Experiences from some successful recent projects with this lining system in Europe are reviewed. However, these experiences are not directly comparable to the Scandinavian hard rock tunnel lining approach, which utilizes a relatively thin sprayed and irregular concrete layer for permanent lining. When considering the sprayed membrane and sprayed concrete composite lining concept, introducing a partially sealing and undrained element in the lining, the experiences with the traditionally used lining systems in Norway need to be reconsidered and fully understood. A review of several hard rock tunnels with adverse conditions, in which the tunnel lining has been subject to load monitoring, shows that only very small loads in the tunnel linings occur. Recent investigations with in situ water pressure testing, including two sites with the composite sprayed membrane in a partially drained waterproof tunnel lining, are discussed. In a case with a cavern located in a hydraulically saturated rock mass subjected to approximately 8 bar hydrostatic pressure, a negative pressure gradient towards the tunnel lining has been measured. The investigation results from the Norwegian test sites indicate that no significant loading of the tunnel lining takes place in a hydraulically saturated rock when applying this composite waterproof tunnel lining in parts of the tunnel perimeter.

  5. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  6. Evaluating tunnel kiln performance

    SciTech Connect

    O`Connor, K.R.; Carty, W.M.; Ninos, N.J.

    1997-08-01

    Process improvements in the production of whitewares provide the potential for substantial savings for manufacturers. A typical whiteware manufacturer incurs an annual defective product loss of {approximately}$20 million when accounting for raw materials, energy, labor and waste disposal. Reduction in defective product loss of 1% could result in a savings in excess of $1 million annually. This study was designed to establish benchmarks for two conventional tunnel kilns used to bisque-fire dinnerware at Buffalo China Inc. (Buffalo, NY). The benchmark was established by assessing the current conditions and variability of the two tunnel kilns as a function of the fracture strength of sample bars that were made from production body. Sample bars were fired in multiple locations in both kilns to assess the conditions and variability of firing within each kiln. Comparison of strength results between the two kilns also was assessed. These comparisons were accomplished through applied statistical analysis, wherein significant statistical variations were identified and isolated for both tunnel kilns. The statistical methods and tools used in this analysis are readily accessible to manufacturers, thus allowing implementation of similar analysis, or benchmarking, in-house.

  7. Smart tunnel: Docking mechanism

    NASA Technical Reports Server (NTRS)

    Schliesing, John A. (Inventor); Edenborough, Kevin L. (Inventor)

    1989-01-01

    A docking mechanism is presented for the docking of a space vehicle to a space station comprising a flexible tunnel frame structure which is deployable from the space station. The tunnel structure comprises a plurality of series connected frame sections, one end section of which is attached to the space station and the other end attached to a docking module of a configuration adapted for docking in the payload bay of the space vehicle. The docking module is provided with trunnions, adapted for latching engagement with latches installed in the vehicle payload bay and with hatch means connectable to a hatch of the crew cabin of the space vehicle. Each frame section comprises a pair of spaced ring members, interconnected by actuator-attenuator devices which are individually controllable by an automatic control means to impart relative movement of one ring member to the other in six degrees of freedom of motion. The control means includes computer logic responsive to sensor signals of range and attitude information, capture latch condition, structural loads, and actuator stroke for generating commands to the onboard flight control system and the individual actuator-attenuators to deploy the tunnel to effect a coupling with the space vehicle and space station after coupling. A tubular fluid-impervious liner, preferably fabric, is disposed through the frame sections of a size sufficient to accommodate the passage of personnel and cargo.

  8. CFD comparisons with wind tunnel and flight data for the X-15

    NASA Technical Reports Server (NTRS)

    Hawkins, Richard W.; Dilley, Arthur D.

    1992-01-01

    The wind tunnel and flight data from the X-15 program have been evaluated for utilization in CFD calibration research. From the analysis, experimental data suitable for CFD code calibration are identified.

  9. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    NASA Technical Reports Server (NTRS)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  10. Computational Results for the KTH-NASA Wind-Tunnel Model Used for Acquisition of Transonic Nonlinear Aeroelastic Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Chwalowski, Pawel; Wieseman, Carol D.; Eller, David; Ringertz, Ulf

    2017-01-01

    A status report is provided on the collaboration between the Royal Institute of Technology (KTH) in Sweden and the NASA Langley Research Center regarding the aeroelastic analyses of a full-span fighter configuration wind-tunnel model. This wind-tunnel model was tested in the Transonic Dynamics Tunnel (TDT) in the summer of 2016. Large amounts of data were acquired including steady/unsteady pressures, accelerations, strains, and measured dynamic deformations. The aeroelastic analyses presented include linear aeroelastic analyses, CFD steady analyses, and analyses using CFD-based reduced-order models (ROMs).

  11. Microbubble tunneling in gel phantoms

    PubMed Central

    Caskey, Charles F.; Qin, Shengping; Dayton, Paul A.; Ferrara, Katherine W.

    2009-01-01

    Insonified microbubbles were observed in vessels within a gel with a Young’s modulus similar to that of tissue, demonstrating shape instabilities, liquid jets, and the formation of small tunnels. In this study, tunnel formulation occurred in the direction of the propagating ultrasound wave, where radiation pressure directed the contact of the bubble and gel, facilitating the activity of the liquid jets. Combinations of ultrasonic parameters and microbubble concentrations that are relevant for diagnostic imaging and drug delivery and that lead to tunnel formation were applied and the resulting tunnel formation was quantified. PMID:19425620

  12. Magnetic tunnel junction pattern technique

    NASA Astrophysics Data System (ADS)

    Chen, Eugene; Schwarz, Benjamin; Choi, Chang Ju; Kula, Witold; Wolfman, Jerome; Ounadjela, Kamel; Geha, Sam

    2003-05-01

    We have developed a magnetic tunnel junction (MTJ) pattern technique that involves transforming the magnetic layer above the tunnel barrier in unwanted areas into an insulator, thus providing insulation between different MTJ devices without suffering common tunnel barrier shorting problems. With this technique, 90%-100% yielding MTJ devices have been observed. MTJ results using this process are superior to an etching based process. Switching distribution of patterned magnetic bits is also narrower using this novel technique. Process control and the ability to stop on the tunnel barrier have been demonstrated.

  13. Tunneling above the crossover temperature.

    PubMed

    Alvarez-Barcia, Sonia; Flores, Jesús R; Kästner, Johannes

    2014-01-09

    Quantum mechanical tunneling of atoms plays a significant role in many chemical reactions. The crossover temperature between classical and quantum movement is a convenient preliminary indication of the importance of tunneling for a particular reaction. Here we show, using instanton theory, that quantum tunneling is possible significantly above this crossover temperature for specific forms of the potential energy surface. We demonstrate the effect on an analytic potential as well as a chemical system. While protons move asynchronously along a Grotthuss chain in the classical high-temperature range, the onset of tunneling results in a synchronization of their movement.

  14. Ferroelectric tunneling under bias voltages

    NASA Astrophysics Data System (ADS)

    Ma, Z. J.; Chen, G.; Zhou, P.; Mei, Z. H.; Zhang, T. J.

    2017-01-01

    Theoretical investigations of ferroelectric tunneling in a SrRuO3/BaTiO3/Pt junction were conducted, and critical expressions for the surface charge density in the electrodes and the potential distribution across the tunnel junction were derived. It was found that the screening charges associated with the ferroelectric polarization and the charging effect of the capacitor jointly contribute to the charges in the electrodes. A current-voltage study simulating the ‘read’ operation indicated that the tunneling electroresistance effect increases with the ferroelectric thickness, and the tunneling electroresistance values agree well with experimental results.

  15. Optical isolation via unidirectional resonant photon tunneling

    SciTech Connect

    Moccia, Massimo; Castaldi, Giuseppe; Galdi, Vincenzo; Alù, Andrea; Engheta, Nader

    2014-01-28

    We show that tri-layer structures combining epsilon-negative and magneto-optical material layers can exhibit unidirectional resonant photon tunneling phenomena that can discriminate between circularly polarized (CP) waves of given handedness impinging from opposite directions, or between CP waves with different handedness impinging from the same direction. This physical principle, which can also be interpreted in terms of a Fabry-Perot-type resonance, may be utilized to design compact optical isolators for CP waves. Within this framework, we derive simple analytical conditions and design formulae, and quantitatively assess the isolation performance, also taking into account the unavoidable imperfections and nonidealities.

  16. Quantum Tunneling Parameter in Global Optimization

    NASA Astrophysics Data System (ADS)

    Itami, Teturo

    Quantum tunneling that helps particles escape from local minima has been applied in “quantum annealing” method to global optimization of nonlinear functions. To control size of kinetic energy of quantum particles, we form a “quantum tunneling parameter” QT≡m/HR2, where HR corresponds to a physical constant h, Planck's constant divided by 2π, that determines the lowest eigenvalue of quantum particles with mass m. Assumptions on profiles of the function V(x) around its minimum point x0, harmonic oscillator type and square well type, make us possible to write down analytical formulae of the kinetic energy K in terms of QT. The formulae tell that we can make quantum expectation value of particle coordinates x approximate to the minimum point x0 in QT→∞. For systems where we have almost degenerate eigenvalues, examination working with our QT, that x→x0 in QT→∞, is analytically shown also efficient. Similar results that x→x0 under QT→∞ are also obtained when we utilize random-walk quantum Monte Carlo method to represent tunneling phenomena according to conventional quantum annealing.

  17. A Completely 3D Model for the Simulation of Mechanized Tunnel Excavation

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Janutolo, Michele; Barla, Giovanni

    2012-07-01

    For long deep tunnels as currently under construction through the Alps, mechanized excavation using tunnel boring machines (TBMs) contributes significantly to savings in construction time and costs. Questions are, however, posed due to the severe ground conditions which are in cases anticipated or encountered along the main tunnel alignment. A major geological hazard is the squeezing of weak rocks, but also brittle failure can represent a significant problem. For the design of mechanized tunnelling in such conditions, the complex interaction between the rock mass, the tunnel machine, its system components, and the tunnel support need to be analysed in detail and this can be carried out by three-dimensional (3D) models including all these components. However, the state-of-the-art shows that very few fully 3D models for mechanical deep tunnel excavation in rock have been developed so far. A completely three-dimensional simulator of mechanised tunnel excavation is presented in this paper. The TBM of reference is a technologically advanced double shield TBM designed to cope with both conditions. Design analyses with reference to spalling hazard along the Brenner and squeezing along the Lyon-Turin Base Tunnel are discussed.

  18. Carpal tunnel syndrome

    PubMed Central

    Aroori, Somaiah; Spence, Roy AJ

    2008-01-01

    Carpal tunnel syndrome is one of the most common peripheral neuropathies. It affects mainly middle aged women. In the majority of patients the exact cause and pathogenesis of CTS is unclear. Although several occupations have been linked to increased incidence and prevalence of CTS the evidence is not clear. Occupational CTS is uncommon and it is essential to exclude all other causes particularly the intrinsic factors such as obesity before attributing it to occupation. The risk of CTS is high in occupations involving exposure to high pressure, high force, repetitive work, and vibrating tools. The classic symptoms of CTS include nocturnal pain associated with tingling and numbness in the distribution of median nerve in the hand. There are several physical examination tests that will help in the diagnosis of CTS but none of these tests are diagnostic on their own. The gold standard test is nerve conduction studies. However, they are also associated with false positive and false negative results. The diagnosis of CTS should be based on history, physical examination and results of electrophysiological studies. The patient with mild symptoms of CTS can be managed with conservative treatment, particularly local injection of steroids. However, in moderate to severe cases, surgery is the only treatment that provides cure. The basic principle of surgery is to increase the volume of the carpal tunnel by dividing transverse carpal ligament to release the pressure on the median nerve. Apart from early recovery and return to work there is no significant difference in terms of early and late complications and long-term pain relief between endoscopic and open carpal tunnel surgery. PMID:18269111

  19. Full Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of Full Scale Tunnel (FST). In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; an fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293)

  20. Full Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of Full-Scale Tunnel (FST). In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; and fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293).

  1. Residual interference and wind tunnel wall adaption

    NASA Technical Reports Server (NTRS)

    Mokry, Miroslav

    1989-01-01

    Measured flow variables near the test section boundaries, used to guide adjustments of the walls in adaptive wind tunnels, can also be used to quantify the residual interference. Because of a finite number of wall control devices (jacks, plenum compartments), the finite test section length, and the approximation character of adaptation algorithms, the unconfined flow conditions are not expected to be precisely attained even in the fully adapted stage. The procedures for the evaluation of residual wall interference are essentially the same as those used for assessing the correction in conventional, non-adaptive wind tunnels. Depending upon the number of flow variables utilized, one can speak of one- or two-variable methods; in two dimensions also of Schwarz- or Cauchy-type methods. The one-variable methods use the measured static pressure and normal velocity at the test section boundary, but do not require any model representation. This is clearly of an advantage for adaptive wall test section, which are often relatively small with respect to the test model, and for the variety of complex flows commonly encountered in wind tunnel testing. For test sections with flexible walls the normal component of velocity is given by the shape of the wall, adjusted for the displacement effect of its boundary layer. For ventilated test section walls it has to be measured by the Calspan pipes, laser Doppler velocimetry, or other appropriate techniques. The interface discontinuity method, also described, is a genuine residual interference assessment technique. It is specific to adaptive wall wind tunnels, where the computation results for the fictitious flow in the exterior of the test section are provided.

  2. Recurrent tarsal tunnel syndrome.

    PubMed

    Gould, John S

    2014-09-01

    Recurrence of tarsal tunnel syndrome after surgery may be due to inadequate release, lack of understanding or appreciation of the actual anatomy involved, variations in the anatomy of the nerve(s), failure to execute the release properly, bleeding with subsequent scarring, damage to the nerve and branches, persistent hypersensitivity of the nerves, and preexisting intrinsic damage to the nerve. Approaches include more thorough release, use of barrier materials to decrease adherence of the nerve to surrounding tissues to avoid traction neuritis, excisions of neuromas using conduits, and consideration of nerve stimulators and systemic medications to deal with persistent neural pain.

  3. Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Chennault, Jonathan

    2004-01-01

    The Icing Research Tunnel in Building 11 at the NASA Glenn Research Center is committed to researching the effects of in flight icing on aircraft and testing ways to stop the formation of hazardous icing conditions on planes. During this summer, I worked here with Richard DelRosa, the lead engineer for this area. address one of the major concerns of aviation: icing conditions. During the war, many planes crashed (especially supply planes going over the.Himalayas) because ice built up in their wings and clogged the engines. To this day, it remains the largest ice tunnel in the world, with a test section that measures 6 feet high, 9 feet long, and 20 feet wide. It can simulate airspeeds from 50 to 300 miles per hour at temperatures as low as -50 Fahrenheit. Using these capabilities, IRT can simulate actual conditions at high altitudes. The first thing I did was creating a cross reference in Microsoft Excel. It lists commands for the DPU units that control the pressure and temperature variations in the tunnel, as well as the type of command (keyboard, multiplier, divide, etc). The cross reference also contains the algorithm for every command, and which page it is listed in on the control sheet (visual Auto-CAD graphs, which I helped to make). I actually spent most of the time on the computer using Auto-CAD. I drew a diagram of the entire icing tunnel and then drew diagrams of its various parts. Between my mentor and me, we have drawings of every part of it, from the spray bars to the thermocouples, power cabinets, input-output connectors for power systems, and layouts of various other machines. I was also responsible for drawing schematics for the Escort system (which controls the spray bars), the power system, DPUs, and other electrical systems. In my spare time, I am attempting to build and program the "toddler". Toddler is a walking robot that I have to program in PBASIC language. When complete, it should be able to walk on level terrain while avoiding obstacles in

  4. The use of NASTRAN in the design of wind tunnel research aircraft

    NASA Technical Reports Server (NTRS)

    Cooper, Michael

    1987-01-01

    The relationship between NASTRAN and the wind tunnel model design process is discussed. Specific cases illustrating the use of NASTRAN for static, heat transfer, dynamic, and aeroelastic analyses are presented. Advantages and disadvantages of using NASTRAN are summarized.

  5. LCLS XTOD Tunnel Vacuum System (XVTS)

    SciTech Connect

    Beale, R; Duffy, P; Kishiyama, K; Mckernan, M; McMahon, D; Lewis, S; Trent, J; Tung, L; Shen, S

    2005-11-04

    The vacuum system of the XVTS (X-Ray Vacuum Transport System) for the LCLS (Linac Coherent Light Source) XTOD (X-ray Transport, Optics and Diagnostics) system has been analyzed and configured by the Lawrence Livermore National Laboratory's NTED (New Technologies Engineering Division) as requested by the SLAC/LCLS program. The system layout, detailed analyses and selection of the vacuum components for the XTOD tunnel section are presented in this preliminary design report. The vacuum system was analyzed and optimized using a coupled gas load balance model of sub-volumes of the components to be evacuated. Also included are the plans for procurement, mechanical integration, and the cost estimates.

  6. A wind tunnel application of large-field focusing schlieren

    NASA Technical Reports Server (NTRS)

    Ponton, Michael K.; Seiner, John M.; Mitchell, L. K.; Manning, James C.; Jansen, Bernard J.; Lagen, Nicholas T.

    1992-01-01

    A large-field focusing schlieren apparatus was installed in the NASA Lewis Research Center 9 by 15 foot wind tunnel in an attempt to determine the density gradient flow field of a free jet issuing from a supersonic nozzle configuration. The nozzle exit geometry was designed to reduce acoustic emissions from the jet by enhancing plume mixing. Thus, the flow exhibited a complex three-dimensional structure which warranted utilizing the sharp focusing capability of this type of schlieren method. Design considerations concerning tunnel limitations, high-speed photography, and video tape recording are presented in the paper.

  7. Development of an intelligent hypertext system for wind tunnel testing

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Shi, George Z.; Steinle, Frank W.; Wu, Y. C. L. Susan; Hoyt, W. Andes

    1991-01-01

    This paper summarizes the results of a system utilizing artificial intelligence technology to improve the productivity of project engineers who conduct wind tunnel tests. The objective was to create an intelligent hypertext system which integrates a hypertext manual and expert system that stores experts' knowledge and experience. The preliminary (Phase I) effort implemented a prototype IHS module encompassing a portion of the manuals and knowledge used for wind tunnel testing. The effort successfully demonstrated the feasibility of the intelligent hypertext system concept. A module for the internal strain gage balance, implemented on both IBM-PC and Macintosh computers, is presented. A description of the Phase II effort is included.

  8. Wind Tunnel Wall Interference Assessment and Correction, 1983

    NASA Technical Reports Server (NTRS)

    Newman, P. A. (Editor); Barnwell, R. W. (Editor)

    1984-01-01

    Technical information focused upon emerging wall interference assessment/correction (WIAC) techniques applicable to transonic wind tunnels with conventional and passively or partially adapted walls is given. The possibility of improving the assessment and correction of data taken in conventional transonic wind tunnels by utilizing simultaneously obtained flow field data (generally taken near the walls) appears to offer a larger, nearer-term payoff than the fully adaptive wall concept. Development of WIAC procedures continues, and aspects related to validating the concept need to be addressed. Thus, the scope of wall interference topics discussed was somewhat limited.

  9. The Langley Wind Tunnel Enterprise

    NASA Technical Reports Server (NTRS)

    Paulson, John W., Jr.; Kumar, Ajay; Kegelman, Jerome T.

    1998-01-01

    After 4 years of existence, the Langley WTE is alive and growing. Significant improvements in the operation of wind tunnels have been demonstrated and substantial further improvements are expected when we are able to truly address and integrate all the processes affecting the wind tunnel testing cycle.

  10. Supersonic Wind Tunnel Test Section

    NASA Technical Reports Server (NTRS)

    1957-01-01

    8ft x 6ft Supersonic Wind Tunnel Test-Section showing changes made in Stainless Steel walls with 17 inch inlet model installation. The model is the ACN Nozzle model used for aircraft engines. The Supersonic Wind Tunnel is located in the Lewis Flight Propulsion Laboratory, now John H. Glenn Research Center

  11. Early Childhood: Funnels and Tunnels.

    ERIC Educational Resources Information Center

    Fowlkes, Mary Anne

    1985-01-01

    Suggests using funnels and tunnels in combination with water, blocks, transportation toys, and other materials to help teach preschoolers to make predictions. Many examples are included for using funnels to understand properties of liquids and for using tunnels to predict order. (DH)

  12. Two tunnels to inflation

    SciTech Connect

    Aguirre, Anthony; Johnson, Matthew C.

    2006-06-15

    We investigate the formation via tunneling of inflating (false-vacuum) bubbles in a true-vacuum background, and the reverse process. Using effective potentials from the junction condition formalism, all true- and false-vacuum bubble solutions with positive interior and exterior cosmological constant, and arbitrary mass are catalogued. We find that tunneling through the same effective potential appears to describe two distinct processes: one in which the initial and final states are separated by a wormhole (the Farhi-Guth-Guven mechanism), and one in which they are either in the same hubble volume or separated by a cosmological horizon. In the zero-mass limit, the first process corresponds to the creation of an inhomogenous universe from nothing, while the second mechanism is equivalent to the nucleation of true- or false-vacuum Coleman-De Luccia bubbles. We compute the probabilities of both mechanisms in the WKB approximation using semiclassical Hamiltonian methods, and find that--assuming both process are allowed--neither mechanism dominates in all regimes.

  13. Carpal tunnel syndrome.

    PubMed

    Chammas, M

    2014-04-01

    Carpal tunnel syndrome is the commonest entrapment neuropathy and is due to combined compression and traction on the median nerve at the wrist. It is often idiopathic. Although spontaneous resolution is possible, the usual natural evolution is slow progression. Diagnosis is mainly clinical depending on symptoms and provocative tests. An electromyogram is recommended preoperatively and in cases of work-related disease. Medical treatment is indicated early on or in cases with no deficit and consists of steroid injection in the canal or a night splint in neutral wrist position. Surgical treatment is by section of the flexor retinaculum and is indicated in resistance to medical treatment, in deficit or acute cases. Mini-invasive techniques such as endoscopic and mini-open approaches to carpal tunnel release with higher learning curves are justified by the shorter functional recovery time compared to classical surgery, but with identical long-term results. The choice depends on the surgeon's preference, patient information, stage of severity, etiology and availability of material. Results are satisfactory in 90% of cases. Nerve recovery depends on the stage of severity as well as general patient factors. Recovery of force takes about 2-3 months after the disappearance of 'pillar pain'. This operation has a benign reputation with a 0.2-0.5% reported neurovascular complication rate.

  14. Tunneling magnetic force microscopy

    NASA Technical Reports Server (NTRS)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.

    1993-01-01

    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  15. Tunneling in Superconductors

    NASA Astrophysics Data System (ADS)

    Giaever, Ivar

    2002-03-01

    It has been said that Thomas Edison's greatest invention was that of the "Research Laboratory" as a social institution. My greatest discovery was when I learned at 29 years of age that it was possible to work in such an institution and get paid for doing research. I had become interested in physics, gotten a job at General Electric Research Laboratory and found a great mentor in John C. Fischer, who besides instructing me in physics told me that sooner or later we all would become historians of science. I guess for me that time is now, because I have been asked to tell you about my second greatest discovery: Tunneling in superconductors. My great fortune was to be at the right place at the right time, where I had access to outstanding and helpful (not necessary an oxymoron) physicists. Hopefully I will be able to convey to you some of the fun and excitement of that area in this recollection. If you become real interested you may find a written version in my Nobel Prize talk: "Electron Tunneling and Superconductivity" Les Prix Nobel en 1973 or Science 183, 1253-1258 1974 or Reviews of Modern Physics 46 (2), 245-250 1974

  16. 15-Foot Spin Tunnel

    NASA Technical Reports Server (NTRS)

    1935-01-01

    A researcher is launching a model into the tunnel airstream of the 15-Foot Spin Tunnel. Charles Zimmerman wrote in NASA TR No. 557: 'After the observations have been made, the model is lowered into a net held in the air stream by one of the operators or into a large bowl-shaped net at the bottom of the test section. When lowered into the large net, the model is retrieved with a long- handled clamp.' (p. 267) 'The models used are generally 1/10 to 1/16 scale. The size of the models is limited by the wing span and the wing loading. The maximum allowable span is about 36 inches; the maximum wing loading is about 1.3 pounds per square foot.' (p. 266) 'Balsa wood is the usual structural material because of its low density. It is necessary to hollow out the after portion of the fuselage and to cut out a large portion of the wood in the wings to permit proper mass distribution. The wing cut-outs are covered with silk tissue paper. The leading and trailing edges and tips of the wings are fitted with strips of spruce, pattern pine, or bamboo inset into the edge of the balsa to prevent disfigurement from accidental blows or from striking the safety netting. Lead is used for ballast.' (p. 266)

  17. Tunneling in thin MOS structures

    NASA Technical Reports Server (NTRS)

    Maserjian, J.

    1974-01-01

    Recent results on tunneling in thin MOS structures are described. Thermally grown SiO2 films in the thickness range of 22-40 A have been shown to be effectively uniform on an atomic scale and exhibit an extremely abrupt oxide-silicon interface. Resonant reflections are observed at this interface for Fowler-Nordheim tunneling and are shown to agree with the exact theory for a trapezoidal barrier. Tunneling at lower fields is consistent with elastic tunneling into the silicon direct conduction band and, at still lower fields, inelastic tunneling into the indirect conduction band. Approximate dispersion relations are obtained over portions of the silicon-dioxide energy gap and conduction band.

  18. Local drainage analyses of the Paducah and Portsmouth Gaseous Diffusion Plants during an extreme storm

    SciTech Connect

    Johnson, R.O.; Wang, J.C.; Lee, D.W.

    1993-11-01

    Local drainage analyses have been performed for the Paducah and Portsmouth Gaseous Diffusion Plants during an extreme storm having an approximate 10,000-yr recurrence interval. This review discusses the methods utilized to accomplish the analyses in accordance with US Department of Energy (DOE) design and evaluation guidelines, and summarizes trends, results, generalizations, and uncertainties applicable to other DOE facilities. Results indicate that some culverts may be undersized, and that the storm sewer system cannot drain the influx of precipitation from the base of buildings. Roofs have not been designed to sustain ponding when the primary drainage system is clogged. Some underground tunnels, building entrances, and ground level air intakes may require waterproofing.

  19. Control of Wind Tunnel Operations Using Neural Net Interpretation of Flow Visualization Records

    NASA Technical Reports Server (NTRS)

    Buggele, Alvin E.; Decker, Arthur J.

    1994-01-01

    Neural net control of operations in a small subsonic/transonic/supersonic wind tunnel at Lewis Research Center is discussed. The tunnel and the layout for neural net control or control by other parallel processing techniques are described. The tunnel is an affordable, multiuser platform for testing instrumentation and components, as well as parallel processing and control strategies. Neural nets have already been tested on archival schlieren and holographic visualizations from this tunnel as well as recent supersonic and transonic shadowgraph. This paper discusses the performance of neural nets for interpreting shadowgraph images in connection with a recent exercise for tuning the tunnel in a subsonic/transonic cascade mode of operation. That mode was operated for performing wake surveys in connection with NASA's Advanced Subsonic Technology (AST) noise reduction program. The shadowgraph was presented to the neural nets as 60 by 60 pixel arrays. The outputs were tunnel parameters such as valve settings or tunnel state identifiers for selected tunnel operating points, conditions, or states. The neural nets were very sensitive, perhaps too sensitive, to shadowgraph pattern detail. However, the nets exhibited good immunity to variations in brightness, to noise, and to changes in contrast. The nets are fast enough so that ten or more can be combined per control operation to interpret flow visualization data, point sensor data, and model calculations. The pattern sensitivity of the nets will be utilized and tested to control wind tunnel operations at Mach 2.0 based on shock wave patterns.

  20. SUBSONIC WIND TUNNEL PERFORMANCE ANALYSIS SOFTWARE

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.

    1994-01-01

    area corners, diffusing corners, diffusers, exits, flow straighteners, fans, and fixed, known losses. Input to this program consists of data describing each section; the section type, the section end shapes, the section diameters, and parameters which vary from section to section. Output from the program consists of a tabulation of the performance-related parameters for each section of the wind tunnel circuit and the overall performance values that include the total circuit length, the total pressure losses and energy ratios for the circuit, and the total operating power required. If requested, the output also includes an echo of the input data, a summary of the circuit characteristics and plotted results on the cumulative pressure losses and the wall pressure differentials. The Subsonic Wind Tunnel Performance Analysis Software is written in FORTRAN 77 (71%) and BASIC (29%) for IBM PC series computers and compatibles running MS-DOS 2.1 or higher. The machine requirements include either an 80286 or 80386 processor, a math co-processor and 640K of main memory. The PERFORM analysis software is written for the RM/FORTRAN v2.4 compiler. This portion of the code is portable to other platforms which support a standard FORTRAN 77 compiler. Source code and executables for the PC are included with the distribution. They are compressed using the PKWARE archiving tool; the utility to unarchive the files, PKUNZIP.EXE, is included. With the PERFINTER program interface the user is allowed to enter the wind tunnel characteristics via the menu driven program, but this is only available for the PC. The standard distribution medium for this package is a 5.25 inch 360K MS-DOS format diskette. This software package was developed in 1990. DEC, VAX and VMS are trademarks of Digital Equipment Corporation. RM/FORTRAN is trademark of Ryan McFarland Corporation. PERFORM is a trademark of Prime Computer Inc. MS-DOS is a registered trademark of Microsoft Corporation.

  1. Labview utilities

    SciTech Connect

    Persaud, Arun

    2011-09-30

    The software package provides several utilities written in LabView. These utilities don't form independent programs, but rather can be used as a library or controls in other labview programs. The utilities include several new controls (xcontrols), VIs for input and output routines, as well as other 'helper'-functions not provided in the standard LabView environment.

  2. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Parui, Subir; Ribeiro, Mário; Atxabal, Ainhoa; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2016-08-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al2O3/NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  3. Flow measurements in a water tunnel using a holocinematographic velocimeter

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.; Beeler, George B.

    1987-01-01

    Dual-view holographic movies were used to examine complex flows with full three-space and time resolution. This approach, which tracks the movement of small tracer particles in water, is termed holocinematographic velocimetry (HCV). A small prototype of a new water tunnel was used to demonstrate proof-of-concept for the HCV. After utilizing a conventional flow visualization apparatus with a laser light sheet to illuminate tracer particles to evaluate flow quality of the prototype tunnel, a simplified version of the HCV was employed to demonstrate the capabilities of the approach. Results indicate that a full-scale version of the water tunnel and a high performance version of the HCV should be able to check theoretical and numerical modeling of complex flows and examine the mechanisms operative in turbulent and vortex flow control concepts, providing an entirely unique instrument capable, for the first time, of simultaneous three-space and time measurements in turbulent flow.

  4. Non-methane organic composition in the Lincoln tunnel

    SciTech Connect

    Lonneman, W.A.; Sella, R.L.; Meeks, S.A.

    1986-08-01

    Measurements of the non-methane organic carbon (NMOC) are reported for the Lincoln Tunnel from a 1982 study. The NMOC levels in the tunnel were a factor of approximately 4 lower than those found in a similar study performed in 1970. This decrease probably reflects reduced vehicular tailpipe emissions due to the utilization of catalyst-equipped vehicles. Acetylene concentrations in the tunnel decreased to a greater extent than many of the other major individual hydrocarbon compounds during the 1970-1982 period. This decrease was attributed to the preferential oxidation of acetylene by the catalytic converter installed on vehicles beginning with the 1975 model year. New NMOC compounds and sum of NMOC compounds to acetylene ratios are reported. These ratios are useful in the estimation of vehicular tailpipe emission contribution to NMOC levels observed in urban and industrial areas. 24 references, 6 tables.

  5. Flow measurements in a water tunnel using a holocinematographic velocimeter

    NASA Astrophysics Data System (ADS)

    Weinstein, Leonard M.; Beeler, George B.

    1987-06-01

    Dual-view holographic movies were used to examine complex flows with full three-space and time resolution. This approach, which tracks the movement of small tracer particles in water, is termed holocinematographic velocimetry (HCV). A small prototype of a new water tunnel was used to demonstrate proof-of-concept for the HCV. After utilizing a conventional flow visualization apparatus with a laser light sheet to illuminate tracer particles to evaluate flow quality of the prototype tunnel, a simplified version of the HCV was employed to demonstrate the capabilities of the approach. Results indicate that a full-scale version of the water tunnel and a high performance version of the HCV should be able to check theoretical and numerical modeling of complex flows and examine the mechanisms operative in turbulent and vortex flow control concepts, providing an entirely unique instrument capable, for the first time, of simultaneous three-space and time measurements in turbulent flow.

  6. The virtual wind tunnel

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levit, Creon

    1992-01-01

    Consideration is given to the design and implementaion of a virtual environment linked to a graphics workstation for the visualization of complex fluid flows. The user wears a stereo head-tracked display which displays 3D information and an instrumented glove to intuitively position flow-visualization tools. The idea is to create for the user an illusion that he or she is actually in the flow manipulating visualization tools. The user's presence does not disturb the flow so that sensitive flow areas can be easily investigated. The flow is precomputed and can be investigated at any length scale and with control over time. Particular attention is given to the visualization structures and their interfaces in the virtual environment, hardware and software, and the performance of the virtual wind tunnel using flow past a tapered cylinder as an example.

  7. Cryogenic Wind Tunnels.

    DTIC Science & Technology

    1980-07-01

    4 Ua 0 - mI - L - In 04 4 0 .e NA rA 0O r, 41 --t4..4 Z~, 4A e4 LANO wIU a~I. . 4 *0r I .- . . . .44 󈧰 6j.4. oo I~~~ 0 A I 1 I 4 L tr- A I N 𔃺 LA...sometimes appropriate for industrial aerodynamics. 1.00 LINE pr ATM Tr K LINE Pt. ATM Tt’ K .9 -1 3D .9_ _ _ P. 09 390 HELIUM IDEAL .94 HELIUM IDEA L 𔃿 .92...L8CRYOGENIC WIND TUNNELS. (U) UNCLASSIFIED AGARDLS111" 1111 18* 111122 1111 111 - 1I1111.25 IIQ14 111.6 MI (NO(OPY RP tHI1IN Illki AGAVEI.11 C i

  8. Anterior tarsal tunnel syndrome.

    PubMed

    DiDomenico, Lawrence A; Masternick, Eric B

    2006-07-01

    Compression of the deep peroneal nerve is commonly referred to as anterior tarsal tunnel syndrome. Although rare, this syndrome remains poorly diagnosed. The syndrome is characterized by pain, weakness, and sensory changes of the foot and ankle. Non-operative measures should be attempted to reduce or remove the external compression along the anterior aspect of the foot and ankle. Other options include shoe modifications, cortisone injections,and physical therapy. If conservative management fails to relieve the symptoms, surgical decompression of the entrapped nerve can be performed. The deep peroneal nerve is released from compressive forces in the entrapment site. This can be performed at the more proximal level at the extensor retinaculum or more distally at the level of the tarsal metatarsal site.

  9. Tunnelling microscopy of DNA

    NASA Astrophysics Data System (ADS)

    Selci, Stefano; Cricenti, Antonio

    1991-01-01

    Uncoated DNA molecules marked with an activated tris (1-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with a high resolution Scanning Tunnelling Microscope (STM). The STM operated simultaneously in the constant-current and gap-modulated mode. Highly reproducible STM images have been obtained and interpreted in terms of expected DNA structure. The main periodicity, regularly presented in molecules several hundred Ångstrom long, ranges from 25 Å to 35 Å with an average diameter of 22 Å. Higher resolution images of the minor groove have revealed the phosphate groups along the DNA backbones. Constant-current images of TAPO deposited on gold show a crystalline structure of rows of molecules with a side-by-side spacing of 3 Å.

  10. Mars Surface Tunnel Element Concept

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Jefferies, Sharon; Howe, A. Scott; Howard, Robert; Mary, Natalie; Watson, Judith; Lewis, Ruthan

    2016-01-01

    When the first human visitors on Mars prepare to return to Earth, they will have to comply with stringent planetary protection requirements. Apollo Program experience warns that opening an EVA hatch directly to the surface will bring dust into the ascent vehicle. To prevent inadvertent return of potential Martian contaminants to Earth, careful consideration must be given to the way in which crew ingress their Mars Ascent Vehicle (MAV). For architectures involving more than one surface element-such as an ascent vehicle and a pressurized rover or surface habitat-a retractable tunnel that eliminates extravehicular activity (EVA) ingress is an attractive solution. Beyond addressing the immediate MAV access issue, a reusable tunnel may be useful for other surface applications, such as rover to habitat transfer, once its primary mission is complete. A National Aeronautics and Space Administration (NASA) team is studying the optimal balance between surface tunnel functionality, mass, and stowed volume as part of the Evolvable Mars Campaign (EMC). The study team began by identifying the minimum set of functional requirements needed for the tunnel to perform its primary mission, as this would presumably be the simplest design, with the lowest mass and volume. This Minimum Functional Tunnel then becomes a baseline against which various tunnel design concepts and potential alternatives can be traded, and aids in assessing the mass penalty of increased functionality. Preliminary analysis indicates that the mass of a single-mission tunnel is about 237 kg, not including mass growth allowance.

  11. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Steam pile driver for foundation of Full-Scale Tunnel (FST). In 1924, George Lewis, Max Munk and Fred Weick began to discuss an idea for a wind tunnel large enough to test a full-scale propeller. Munk sketched out a design for a tunnel with a 20-foot test section. The rough sketches were presented to engineers at Langley for comment. Elliott Reid was especially enthusiastic and he wrote a memorandum in support of the proposed 'Giant Wind Tunnel.' At the end of the memorandum, he appended the recommendation that the tunnel test section should be increased to 30-feet diameter so as to allow full-scale testing of entire airplanes (not just propellers). Reid's idea for a full-scale tunnel excited many at Langley but the funds and support were not available in 1924. Nonetheless, Elliot Reid's idea would eventually become reality. In 1928, NACA engineers began making plans for a full-scale wind tunnel. In February 1929, Congress approved of the idea and appropriated $900,000 for construction. Located just a few feet from the Back River, pilings to support the massive building's foundation had to be driven deep into the earth. This work began in the spring of 1929 and cost $11,293.22

  12. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Pile driving for foundation of Full-Scale Tunnel (FST). In 1924, George Lewis, Max Munk and Fred Weick began to discuss an idea for a wind tunnel large enough to test a full-scale propeller. Munk sketched out a design for a tunnel with a 20-foot test section. The rough sketches were presented to engineers at Langley for comment. Elliott Reid was especially enthusiastic and he wrote a memorandum in support of the proposed 'Giant Wind Tunnel.' At the end of the memorandum, he appended the recommendation that the tunnel test section should be increased to 30-feet diameter so as to allow full-scale testing of entire airplanes (not just propellers). Reid's idea for a full-scale tunnel excited many at Langley but the funds and support were not available in 1924. Nonetheless, Elliot Reid's idea would eventually become reality. In 1928, NACA engineers began making plans for a full-scale wind tunnel. In February 1929, Congress approved of the idea and appropriated $900,000 for construction. Located just a few feet from the Back River, pilings to support the massive building's foundation had to be driven deep into the earth. This work began in the spring of 1929 and cost $11,293.22.

  13. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    General view of concrete column base for Full-Scale Tunnel (FST). In 1924, George Lewis, Max Munk and Fred Weick began to discuss an idea for a wind tunnel large enough to test a full-scale propeller. Munk sketched out a design for a tunnel with a 20-foot test section. The rough sketches were presented to engineers at Langley for comment. Elliott Reid was especially enthusiastic and he wrote a memorandum in support of the proposed 'Giant Wind Tunnel.' At the end of the memorandum, he appended the recommendation that the tunnel test section should be increased to 30-feet diameter so as to allow full-scale testing of entire airplanes (not just propellers). Reid's idea for a full-scale tunnel excited many at Langley but the funds and support were not available in 1924. Nonetheless, Elliot Reid's idea would eventually become reality. In 1928, NACA engineers began making plans for a full-scale wind tunnel. In February 1929, Congress approved of the idea and appropriated $900,000 for construction. Work on the foundation began in the spring of 1929 and cost $11,293.22.

  14. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, J. W.; Saunders, J. D.

    2015-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  15. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, John; Saunders, John

    2014-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  16. Quantum Tunneling and Complex Trajectories

    NASA Astrophysics Data System (ADS)

    Meynig, Max; Haggard, Hal

    2017-01-01

    In general, the semiclassical approximation of quantum mechanical tunneling fails to treat tunneling through barriers if real initial conditions and trajectories are used. By analytically continuing classical dynamics to the complex plane the problems encountered in the approximation can be resolved. While, the complex methods discussed here have been previously explored, no one has exhibited an analytically solvable case. The essential features of the complex method will be discussed in the context of a novel, analytically solvable problem. These methods could be useful in quantum gravity, with applications to the tunneling of spacetime geometries.

  17. Seismic Analysis of Tunnel Boring Machine Signals at Kerckhoff Tunnel

    DTIC Science & Technology

    1983-08-01

    of the MSHA system to detect a large tunnel boring machine (TBM) operating in granite at depths in excess of 1300 ft, the degree of accuracy of the...determined that the TBM could be detected at a horizontal range of about 80000 ft and the tunnel boring machine could be accurately located within approximately 100 ft at a slant range of approximately 5000 ft.

  18. Probabilistic Assessment of National Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Shiao, M.; Chamis, C. C.

    1996-01-01

    A preliminary probabilistic structural assessment of the critical section of National Wind Tunnel (NWT) is performed using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) computer code. Thereby, the capabilities of NESSUS code have been demonstrated to address reliability issues of the NWT. Uncertainties in the geometry, material properties, loads and stiffener location on the NWT are considered to perform the reliability assessment. Probabilistic stress, frequency, buckling, fatigue and proof load analyses are performed. These analyses cover the major global and some local design requirements. Based on the assumed uncertainties, the results reveal the assurance of minimum 0.999 reliability for the NWT. Preliminary life prediction analysis results show that the life of the NWT is governed by the fatigue of welds. Also, reliability based proof test assessment is performed.

  19. Insights into the Dynamic Response of Tunnels in Jointed Rocks

    SciTech Connect

    Heuze, F E

    2004-11-01

    Tunnels in jointed rocks can be subjected to severe dynamic loads because of rock bursts, coal bumps, and large earthquakes. A series of 3-dimensional simulations was performed, based on discrete element analysis to gain insights into the parameters that influence the response of such tunnels. The simulations looked at the effect of joint set orientation, the effect of joint spacing, the effect of pulse shape for a given displacement, and the influence of using rigid versus deformable blocks in the analyses. The results of this modeling were also compared to field evidence of dynamic tunnel failures. This comparison reinforced the notion that 3-dimensional discrete element analysis can capture very well the kinematics of structures in jointed rock under dynamic loading.

  20. Study of large flexible tunnel for shuttle/payload interface

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A theoretical and preliminary design study of a large flexible tunnel for use at the shuttle/payload interface is discussed. The theoretical study consisted of evaluating various design concepts and determining their adaptability to the tunnel requirements. The theoretical study culminated in the selection of one concept. The selected concept was documented with preliminary drawings of a full-scale ground test model. Supporting preliminary structural, thermal, micrometeoroid, material, and weight analyses were conducted. The specified tunnel requirements could be broadly grouped into two categories; environmental and performance. The environmental requirements were those ambient conditions and loads associated with ground, launch, space and reentry of the shuttle vehicle. Materials are presently available which will meet all these environmental requirements and can be designed into the structure to withstand the specified loads.

  1. Icing research tunnel test of a model helicopter rotor

    NASA Technical Reports Server (NTRS)

    Miller, Thomas L.; Bond, Thomas H.

    1989-01-01

    An experimental program has been conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in which an OH-58 tail rotor assembly was operated in a horizontal plane to simulate the action of a typical main rotor. Ice was accreted on the blades in a variety of rotor and tunnel operating conditions and documentation of the resulting shapes was performed. Rotor torque and vibration are presented as functions of time for several representative test runs, and the effects of various parametric variations on the blade ice shapes are shown. This OH-58 test was the first of its kind in the United States and will encourage additional model rotor icing tunnel testing. Although not a scaled representative of any actual full-scale main rotor system, this rig has produced torque and vibration data which will be useful in assessing the quality of existing rotor icing analyses.

  2. Designing Tunnel Support in Jointed Rock Masses Via the DEM

    NASA Astrophysics Data System (ADS)

    Boon, C. W.; Houlsby, G. T.; Utili, S.

    2015-03-01

    A systematic approach of using the distinct element method (DEM) to provide useful insights for tunnel support in moderately jointed rock masses is illustrated. This is preceded by a systematic study of common failure patterns for unsupported openings in a rock mass intersected by three independent sets of joints. The results of our simulations show that a qualitative description of the failure patterns using specific descriptors is unattainable. Then, it is shown that DEM analyses can be employed in the preliminary design phase of tunnel supports to determine the main parameters of a support consisting of rock bolts or one lining or a combination of both. A comprehensive parametric analysis investigating the effect of bolt bonded length, bolt spacing, bolt length, bolt pretension, bolt stiffness and lining thickness on the tunnel convergence is illustrated. The highlight of the proposed approach of preliminary support design is the use of a rock bolt and lining interaction diagram to evaluate the relative effectiveness of rock bolts and lining thickness in the design of the tunnel support. The concept of interaction diagram can be used to assist the engineer in making preliminary design decisions given a target maximum allowable convergence. In addition, DEM simulations were validated against available elastic solutions. To the authors' knowledge, this is the first verification of DEM calculations for supported openings against elastic solutions. The methodologies presented in this article are illustrated through 2-D plane strain analyses for the preliminary design stage. More rigorous analyses incorporating 3-D effects have not been attempted in this article because the longitudinal displacement profile is highly sensitive to the joint orientations with respect to the tunnel axis, and cannot be established accurately in 2-D. The methodologies and concepts discussed in this article, however, have the potential to be extended to 3-D analyses.

  3. Dual-Side Wafer Processing and Resonant Tunneling Transistor Applications

    SciTech Connect

    Moon, J.S.; Simmons, J.A.; Wendt, J.R.; Hietala, V.M.; Reno, J.L.; Baca, W.E.; Blount, M.A.

    1999-07-20

    We describe dual-side wafer processing and its application to resonant tunneling transistors in a planar configuration. The fabrication technique utilizes a novel flip-chip, wafer thinning process called epoxy-bond and stop-etch (EBASE) process, where the substrate material is removed by selective wet etching and stopped at an etch-stop layer. This EBASE method results in a semiconductor epitaxial layer that is typically less than a micron thick and has a mirror-finish, allowing backside gates to be placed in close proximity to frontside gates. Utilizing this technique, a resonant tunneling transistor--the double electron layer tunneling transistor (DELTT)--can be fabricated in a fully planar configuration, where the tunneling between two selectively-contacted 2DEGs in GaAs or InGaAs quantum wells is modulated by surface Schottky gate. Low temperature electrical characterization yields source-drain I-V curves with a gate-tunable negative differential resistance.

  4. Flatback airfoil wind tunnel experiment.

    SciTech Connect

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-04-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  5. Carpal Tunnel Syndrome (For Kids)

    MedlinePlus

    ... tunnel syndrome may have trouble typing on the computer or playing a video game. In fact, repetitive ... times as many women as men have CTS. Computer operators, assembly-line workers, and hair stylists are ...

  6. Multisensor system for tunnel inspection

    NASA Astrophysics Data System (ADS)

    Idoux, Maurice

    2005-01-01

    The system is aimed at assisting inspection and monitoring of the degradation of tunnels in order to minimize maintenance and repair time. ATLAS 70 is a complete sensors/software package which enables thorough diagnosis of tunnel wall conditions. The data collected locally are stored on a computer hard disk for subsequent analysis in a remote location via elaborate dedicated software. The sensors and local computer are loaded onto a rail and/or road vehicle of specific design, i.e. with even travelling speed of 2 to 5 km/h. Originally, the system has been developed for the Paris Underground Company and has since been applied to rail and road tunnels, large town sewage systems, clean water underground aqueducts and electric cable tunnels.

  7. Tunnel construction for a desertron

    SciTech Connect

    Hinterberger, H.; Huson, F.R.

    1983-03-27

    The tunnel in this model of construction is 3-1/2 feet wide by 5 feet high. It is assumed that the tunnel contains a rail system and guidance system for: (1) An enclosed car used for transport of 2 people and some tools. (2) A magnet mover. This robot could pick up a magnet and transport it at about 10 miles per hour. (3) An alignment robot. The alignment robot would intercept E.M. waves (microwaves, lasers) to determine its position in the tunnel. Then workers could come along inside the tunnel hoop and nail it together and to the floor. The trench would then be back-filled with a 1 foot berm on top. A rail system would be installed and a support stand for the magnet.

  8. Electron tunneling in proteins program.

    PubMed

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-05

    We developed a unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation, and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins. ETP program is developed as a cross-platform client-server program in which all the different calculations are conducted at the server side while only the client terminal displays the resulting calculation outputs in the different supported representations. ETP program is integrated with a set of well-known computational software packages including Gaussian, BALLVIEW, Dowser, pKip, and APBS. In addition, ETP program supports various visualization methods for the tunneling calculation results that assist in a more comprehensive understanding of the tunneling process. © 2016 Wiley Periodicals, Inc.

  9. Tunneling Plasmonics in Bilayer Graphene.

    PubMed

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  10. Tunneling Plasmonics in Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Fei, Z.; Iwinski, E. G.; Ni, G. X.; Zhang, L. M.; Bao, W.; Rodin, A. S.; Lee, Y.; Wagner, M.; Liu, M. K.; Dai, S.; Goldflam, M. D.; Thiemens, M.; Keilmann, F.; Lau, C. N.; Castro-Neto, A. H.; Fogler, M. M.; Basov, D. N.

    2015-08-01

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At sub-nanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nano-imaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene: yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  11. The cubital tunnel: a radiologic and histotopographic study

    PubMed Central

    Macchi, Veronica; Tiengo, Cesare; Porzionato, Andrea; Stecco, Carla; Sarasin, Gloria; Tubbs, Shane; Maffulli, Nicola; De Caro, Raffaele

    2014-01-01

    Entrapment of the ulnar nerve at the elbow is the second most common compression neuropathy in the upper limb. The present study evaluates the anatomy of the cubital tunnel. Eighteen upper limbs were analysed in unembalmed cadavers using ultrasound examination in all cases, dissection in nine cases, and microscopic study in nine cases. In all cases, thickening of the fascia at the level of the tunnel was found at dissection. From the microscopic point of view, the ulnar nerve is a multifascicular trunk (mean area of 6.0 ± 1.5 mm2). The roof of the cubital tunnel showed the presence of superimposed layers, corresponding to fascial, tendineous and muscular layers, giving rise to a tri-laminar structure (mean thickness 523 ± 235 μm). This multilayered tissue was hyperechoic (mean thickness 0.9 ± 0.3 mm) on ultrasound imaging. The roof of the cubital tunnel is elastic, formed by a myofascial trilaminar retinaculum. The pathological fusion of these three layers reduces gliding of the ulnar nerve during movements of the elbow joint. This may play a role in producing the symptoms typical of cubital tunnel syndrome. Independent from the surgical technique, decompression should span the ulnar nerve from the triceps brachii muscle to the flexor carpi ulnaris fascia. PMID:24917209

  12. Tunneling on the Yucca Mountain Project: Progress and lessons learned

    SciTech Connect

    Hansmire, W.H.; Rogers, D.J.; Wightman, W.D.

    1996-06-01

    The Yucca Mountain Site Characterization Project is the US`s effort to confirm the technical acceptability of Yucca Mountain as a repository for high-level nuclear waste. A key part of the site characterization project is the construction of a 7.8-km-long, 7.6-m-diameter tunnel for in-depth geologic and other scientific investigations. The work is governed in varying degrees by the special requirements for nuclear quality assurance, which imposes uncommon and often stringent limitations on the materials which can be used in construction, the tunneling methods and procedures used, and record-keeping for many activities. This paper presents the current status of what has been learned, how construction has adapted to meet the requirements, and how the requirements were interpreted in a mitigating way to meet the legal obligations, yet build the tunnel as rapidly as possible. With regard to design methodologies and the realities of tunnel construction, ground support with a shielded Tunnel Boring Machine is discussed. Notable lessons learned include the need for broad design analyses for a wide variety of conditions and how construction procedures affect ground support.

  13. Guidelines for tunneling in enzymes

    PubMed Central

    Moser, Christopher C.; Ross Anderson, J. L.; Dutton, P. Leslie

    2010-01-01

    Summary Here we extend the engineering descriptions of simple, single-electron-tunneling chains common in oxidoreductases to quantify sequential oxidation-reduction rates of two-or-more electron cofactors and substrates. We identify when nicotinamides may be vulnerable to radical mediated oxidation-reduction and merge electron-tunneling expressions with the chemical rate expressions of Eyring. The work provides guidelines for the construction of new artificial oxidoreductases inspired by Nature but adopting independent design and redox engineering. PMID:20460101

  14. Zener tunneling in semiconductor superlattices.

    PubMed

    Romanova, J Yu; Demidov, E V; Mourokh, L G; Romanov, Yu A

    2011-08-03

    Characteristics of miniband tunneling and Wannier-Stark levels in semiconductor superlattices are studied as regards their dependence on the symmetry of the unit cells and the type of miniband structure. We modify the k ⋅ p method into a k ⋅ v form and on this basis generalize the Zener formula for the inter-band tunneling in homogeneous semiconductors to the case of inter-miniband tunneling in superlattices, account being taken of the inhomogeneity of the electron effective mass. The corresponding sum rule for the effective masses in such structures is obtained. We develop a unified matrix approach for the calculation of the inter-miniband tunneling and Wannier-Stark levels in the case of an arbitrary number of minibands. We study the electric field dependence of the probability of inter-miniband tunneling for an electron transferred through the Brillouin minizone only once. The peculiarities of the inter-miniband transitions for the case where this transfer is repeated are also examined for various unit cells and miniband structures of the superlattice. In addition, we discuss mechanisms and specific features of the resonant Zener tunneling and its manifestations in electron transport.

  15. 5-foot Vertical Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1932-01-01

    The researcher is sitting above the exit cone of the 5-foot Vertical Wind Tunnel and is examining the new 6-component spinning balance. This balance was developed between 1930 and 1933. It was an important advance in the technology of rotating or rolling balances. As M.J. Bamber and C.H. Zimmerman wrote in NACA TR 456: 'Data upon the aerodynamic characteristics of a spinning airplane may be obtained in several ways; namely, flight tests with full-scale airplanes, flight tests with balanced models, strip-method analysis of wind-tunnel force and moment tests, and wind-tunnel tests of rotating models.' Further, they note: 'Rolling-balance data have been of limited value because it has not been possible to measure all six force and moment components or to reproduce a true spinning condition. The spinning balance used in this investigation is a 6-component rotating balance from which it is possible to obtain wind-tunnel data for any of a wide range of possible spinning conditions.' Bamber and Zimmerman described the balance as follows: 'The spinning balance consists of a balance head that supports the model and contains the force-measuring units, a horizontal turntable supported by streamline struts in the center of the jet and, outside the tunnel, a direct-current driving motor, a liquid tachometer, an air compressor, a mercury manometer, a pair of indicating lamps, and the necessary controls. The balance head is mounted on the turntable and it may be set to give any radius of spin between 0 and 8 inches.' In an earlier report, NACA TR 387, Carl Wenzinger and Thomas Harris supply this description of the tunnel: 'The vertical open-throat wind tunnel of the National Advisory Committee for Aeronautics ... was built mainly for studying the spinning characteristics of airplane models, but may be used as well for the usual types of wind-tunnel tests. A special spinning balance is being developed to measure the desired forces and moments with the model simulating the actual

  16. Microspheres for laser velocimetry in high temperature wind tunnel

    NASA Technical Reports Server (NTRS)

    Ghorieshi, Anthony

    1993-01-01

    The introduction of non-intrusive measurement techniques in wind tunnel experimentation has been a turning point in error free data acquisition. Laser velocimetry has been progressively implemented and utilized in various wind tunnels; e.g. subsonic, transonic, and supersonic. The success of the laser velocimeter technique is based on an accurate measurement of scattered light by seeding particles introduced into the flow stream in the wind tunnel. Therefore, application of appropriate seeding particles will affect, to a large extent the acquired data. The seeding material used depends on the type of experiment being run. Among the seeding material for subsonic tunnel are kerosene, Kaolin, and polystyrene. Polystyrene is known to be the best because of being solid particles, having high index of refraction, capable of being made both spherical and monodisperse. However for high temperature wind tunnel testing seeding material must have an additional characteristic that is high melting point. Typically metal oxide powders such as Al2O3 with melting point 3660 F are used. The metal oxides are, however polydispersed, have a high density, and a tendency to form large agglomerate that does not closely follow the flow velocity. The addition of flame phase silica to metal oxide helps to break up the agglomerates, yet still results in a narrow band of polydispersed seeding. The less desirable utility of metal oxide in high temperature wind tunnels necessitates the search for a better alternative particle seeding which this paper addresses. The Laser Velocimetry (LV) characteristic of polystyrene makes it a prime candidate as a base material in achieving the high temperature particle seeding inexpensively. While polystyrene monodisperse seeding particle reported has been successful in a subsonic wind tunnel, it lacks the high melting point and thus is not practically usable in a high temperature wind tunnel. It is well known that rise in melting point of polystyrene can be

  17. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  18. Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D

    SciTech Connect

    Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.

    2016-01-04

    This paper presents results from an explanatory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered, focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected in the resulting steady-state analyses using NASA's FUN3D CFD software.

  19. Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.

    2016-01-01

    This paper presents results from an exploratory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered, focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected and the resulting steady-state analyses using NASA's FUN3D CFD software.

  20. 15-Foot Spin Tunnel

    NASA Technical Reports Server (NTRS)

    1935-01-01

    Interior view of model in 15-Foot Spin Tunnel. Charles Zimmerman wrote in NASA TR No. 557: 'After the observations have been made, the model is lowered into a net held in the air stream by one of the operators or into a large bowl-shaped net at the bottom of the test section. When lowered into the large net, the model is retrieved with a long-handled clamp.' (p. 267) 'The models mused are generally 1/10 to 1/16 scale. The size of the models is limited by the wing span and the wing loading. The maximum allowable span is about 36 inches; the maximum wing loading is about 1.3 pounds per square foot.' (p. 266) 'Balsa wood is the usual structural material because of its low density. It is necessary to hollow out the after portion of the fuselage and to cut out a large portion of the wood in the wings to permit proper mass distribution. The wing cut-outs are covered with silk tissue paper. The leading and trailing edges and tips of the wings are fitted with strips of spruce, pattern pine, or bamboo inset into the edge of the balsa to prevent disfigurement from accidental blows or from striking the safety netting. Lead is used for ballast.' (p. 266)

  1. Full Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Installation of propeller and motor fairing for east exit cone. Smith DeFrance described the propellers and motors in NACA TR No. 459. ' The propellers are located side by side and 48 feet aft of the throat of the exit-cone bell. The propellers are 35 feet 5 inches in diameter and each consists of four cast aluminum alloy blades screwed into a cast steel hub.' 'The most commonly used power plant for operating a wind tunnel is a direct-current motor and motor-generator set with Ward Leonard control system. For the FST it was found that alternating current slip-ring induction motors, together with satisfactory control equipment, could be purchased for approximately 30 percent less than the direct-current equipment. Two 4,000-horsepower slip-ring induction motors with 24 steps of speed between 75 and 300 r.p.m. were therefore installed. In order to obtain the range of speed one pole change was provided and the other variations are obtained by the introduction of resistance in the rotor circuit. This control permits a variation in air speed from 25 to 118 miles per hour. The two motors are connected through an automatic switchboard to one drum-type controller located in the test chamber. All the control equipment is interlocked and connected through time-limit relays, so that regardless of how fast the controller handle is moved the motors will increase in speed at regular intervals.' (p. 294-295)

  2. Tunnelling without barriers

    SciTech Connect

    Lee, K.

    1987-01-01

    The evolution in flat and curved space-time of quantum fields in theories with relative flat potential and its consequences are considered. It is shown that bubble nucleation, a quantum mechanical tunnelling process, may occur in flat space-time, having a bounce solution, even if V(phi) has no barrier. It is shown that bubble nucleation can also occur in curved space-time even though there is no bounce solution in the standard formalism for the bubble nucleation rate in curved space-time. Additionally, bubbles can nucleate during the slow rolling period on the potential in flat and curved space-time, in this case also there is no bounce solution. It is known in the new inflationary scenario that energy density perturbations caused by quantum fluctuations of the scalar field can satisfy the presently observed bounds on density perturbations. Bubble nucleation during the slow rolling period also gives rise to density perturbations. For a model potential density perturbations by bubbles are calculated at the horizon reentering. By applying the bound from the almost isotropic microwave black body radiation on these density perturbations, a constraint on the model potential is obtained. Finally, some further implications on the galaxy formation and applications in more realistic potential are discussed.

  3. A Lightweight Radio Propagation Model for Vehicular Communication in Road Tunnels.

    PubMed

    Qureshi, Muhammad Ahsan; Noor, Rafidah Md; Shamim, Azra; Shamshirband, Shahaboddin; Raymond Choo, Kim-Kwang

    2016-01-01

    Radio propagation models (RPMs) are generally employed in Vehicular Ad Hoc Networks (VANETs) to predict path loss in multiple operating environments (e.g. modern road infrastructure such as flyovers, underpasses and road tunnels). For example, different RPMs have been developed to predict propagation behaviour in road tunnels. However, most existing RPMs for road tunnels are computationally complex and are based on field measurements in frequency band not suitable for VANET deployment. Furthermore, in tunnel applications, consequences of moving radio obstacles, such as large buses and delivery trucks, are generally not considered in existing RPMs. This paper proposes a computationally inexpensive RPM with minimal set of parameters to predict path loss in an acceptable range for road tunnels. The proposed RPM utilizes geometric properties of the tunnel, such as height and width along with the distance between sender and receiver, to predict the path loss. The proposed RPM also considers the additional attenuation caused by the moving radio obstacles in road tunnels, while requiring a negligible overhead in terms of computational complexity. To demonstrate the utility of our proposed RPM, we conduct a comparative summary and evaluate its performance. Specifically, an extensive data gathering campaign is carried out in order to evaluate the proposed RPM. The field measurements use the 5 GHz frequency band, which is suitable for vehicular communication. The results demonstrate that a close match exists between the predicted values and measured values of path loss. In particular, an average accuracy of 94% is found with R2 = 0.86.

  4. A Lightweight Radio Propagation Model for Vehicular Communication in Road Tunnels

    PubMed Central

    Shamim, Azra; Shamshirband, Shahaboddin; Raymond Choo, Kim-Kwang

    2016-01-01

    Radio propagation models (RPMs) are generally employed in Vehicular Ad Hoc Networks (VANETs) to predict path loss in multiple operating environments (e.g. modern road infrastructure such as flyovers, underpasses and road tunnels). For example, different RPMs have been developed to predict propagation behaviour in road tunnels. However, most existing RPMs for road tunnels are computationally complex and are based on field measurements in frequency band not suitable for VANET deployment. Furthermore, in tunnel applications, consequences of moving radio obstacles, such as large buses and delivery trucks, are generally not considered in existing RPMs. This paper proposes a computationally inexpensive RPM with minimal set of parameters to predict path loss in an acceptable range for road tunnels. The proposed RPM utilizes geometric properties of the tunnel, such as height and width along with the distance between sender and receiver, to predict the path loss. The proposed RPM also considers the additional attenuation caused by the moving radio obstacles in road tunnels, while requiring a negligible overhead in terms of computational complexity. To demonstrate the utility of our proposed RPM, we conduct a comparative summary and evaluate its performance. Specifically, an extensive data gathering campaign is carried out in order to evaluate the proposed RPM. The field measurements use the 5 GHz frequency band, which is suitable for vehicular communication. The results demonstrate that a close match exists between the predicted values and measured values of path loss. In particular, an average accuracy of 94% is found with R2 = 0.86. PMID:27031989

  5. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  6. Static and dynamic force/moment measurements in the Eidetics water tunnel

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Malcolm, Gerald N.

    1994-01-01

    Water tunnels have been utilized in one form or another to explore fluid mechanics and aerodynamics phenomena since the days of Leonardo da Vinci. Water tunnel testing is attractive because of the relatively low cost and quick turn-around time to perform flow visualization experiments and evaluate the results. The principal limitation of a water tunnel is that the low flow speed, which provides for detailed visualization, also results in very small hydrodynamic (aerodynamic) forces on the model, which, in the past, have proven to be difficult to measure accurately. However, the advent of semi-conductor strain gage technology and devices associated with data acquisition such as low-noise amplifiers, electronic filters, and digital recording have made accurate measurements of very low strain levels feasible. The principal objective of this research effort was to develop a multi-component strain gage balance to measure forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models.

  7. Scanning Tunneling Optical Resonance Microscopy

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically < 10 Hz) that the

  8. A Photogrammetric System for Model Attitude Measurement in Hypersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Lunsford, Charles B.

    2007-01-01

    A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and photogrammetric principles for point tracking to compute model position including pitch, roll and yaw. A discussion of the constraints encountered during the design, and a review of the measurement results obtained from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.

  9. Emptying and filling a tunnel bronze

    SciTech Connect

    Marley, Peter M.; Abtew, Tesfaye A.; Farley, Katie E.; Horrocks, Gregory A.; Dennis, Robert V.; Zhang, Peihong; Banerjee, Sarbajit

    2015-01-13

    The classical orthorhombic layered phase of V2O5 has long been regarded as the thermodynamic sink for binary vanadium oxides and has found great practical utility as a result of its open framework and easily accessible redox states. Herein, we exploit a cation-exchange mechanism to synthesize a new stable tunnel-structured polymorph of V2O5 (ζ-V2O5) and demonstrate the subsequent ability of this framework to accommodate Li and Mg ions. The facile extraction and insertion of cations and stabilization of the novel tunnel framework is facilitated by the nanometer-sized dimensions of the materials, which leads to accommodation of strain without amorphization. The topotactic approach demonstrated here indicates not just novel intercalation chemistry accessible at nanoscale dimensions but also suggests a facile synthetic route to ternary vanadium oxide bronzes (MxV2O5) exhibiting intriguing physical properties that range from electronic phase transitions to charge ordering and superconductivity.

  10. Emptying and filling a tunnel bronze

    DOE PAGES

    Marley, Peter M.; Abtew, Tesfaye A.; Farley, Katie E.; ...

    2015-01-13

    The classical orthorhombic layered phase of V2O5 has long been regarded as the thermodynamic sink for binary vanadium oxides and has found great practical utility as a result of its open framework and easily accessible redox states. Herein, we exploit a cation-exchange mechanism to synthesize a new stable tunnel-structured polymorph of V2O5 (ζ-V2O5) and demonstrate the subsequent ability of this framework to accommodate Li and Mg ions. The facile extraction and insertion of cations and stabilization of the novel tunnel framework is facilitated by the nanometer-sized dimensions of the materials, which leads to accommodation of strain without amorphization. The topotacticmore » approach demonstrated here indicates not just novel intercalation chemistry accessible at nanoscale dimensions but also suggests a facile synthetic route to ternary vanadium oxide bronzes (MxV2O5) exhibiting intriguing physical properties that range from electronic phase transitions to charge ordering and superconductivity.« less

  11. The self streamlining wind tunnel. [wind tunnel walls

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1975-01-01

    A two dimensional test section in a low speed wind tunnel capable of producing flow conditions free from wall interference is presented. Flexible top and bottom walls, and rigid sidewalls from which models were mounted spanning the tunnel are shown. All walls were unperforated, and the flexible walls were positioned by screw jacks. To eliminate wall interference, the wind tunnel itself supplied the information required in the streamlining process, when run with the model present. Measurements taken at the flexible walls were used by the tunnels computer check wall contours. Suitable adjustments based on streamlining criteria were then suggested by the computer. The streamlining criterion adopted when generating infinite flowfield conditions was a matching of static pressures in the test section at a wall with pressures computed for an imaginary inviscid flowfield passing over the outside of the same wall. Aerodynamic data taken on a cylindrical model operating under high blockage conditions are presented to illustrate the operation of the tunnel in its various modes.

  12. Report Tunneling Cost Reduction Study prepared for Fermilab

    SciTech Connect

    Not Available

    1999-07-16

    , typical of the Chicago area. The rock is generally competent with widely spaced jointing, and slowdown of the operation for the installation of rock support is expected to be minimal. The tunneling system will have to be equipped with the necessary equipment for an efficient response to poor rock conditions however. Because the ground conditions are expected to be very favorable, a state-of-the-art TBM should have no difficulty in excavating at a high penetration rate of 10 meters per hour or more in rock of the average of the range of strengths stated to exist. Disc cutter changes will be few as the rock has very low abrasivity. However, experience has shown that overall tunneling rates are a relatively low percentage of the machine's penetration rate capability. Therefore the main focus of improvement is guaranteeing that the support systems, including mucking and advance of the utilities do not impede the operation. Improved mechanization of the support systems, along with automation where practicable to reduce manpower, is seen as the best means of raising the overall speed of the operation, and reducing its cost. The first phase of the study is mainly involved with establishing the baseline for current performance, and in identifying areas of improvement. It contains information on existing machine design concepts and provides data on many aspects of the mechanical tunneling process, including costs and labor requirements. While it contains suggestions for technical improvements of the various system, the time limitations of this phase have not permitted any detailed concept development. This should be a major part of the next phase.

  13. Analysis of potential cave-in from fault zones in hard rock subsea tunnels

    NASA Astrophysics Data System (ADS)

    Nilsen, B.

    1994-04-01

    As a part of a research program on the rock engineering aspects of hard rock subsea tunnelling, analyses of potential cave-in from fault zones have been carried out at the Norwegian Institute of Technology. This is a topic of great importance for the planning of future subsea tunnels, and particularly for the selection of the minimum rock cover of such projects. The paper is divided into three main parts: a) review of cases of instability in Norwegian subsea tunnels, b) evaluation of theoretical maximum sliding, and c) discussion of cases of cave-in in tunnels under land. In theory, a cave-in during subsea tunnelling may propagate far higher than the normal minimum rock cover. Taking into consideration the comprehensive geo-investigations that are always carried out for subsea tunnel projects today, it would, however, be unrealistic to base the dimensioning of rock cover for future projects on worst-case scenarios. Consequently, the main result of this study is to emphasize the importance of comprehensive geo-investigations, detailed tunnel mapping, a high degree of readiness during tunnelling and a thorough quality control.

  14. Tunnel junction based memristors as artificial synapses

    PubMed Central

    Thomas, Andy; Niehörster, Stefan; Fabretti, Savio; Shepheard, Norman; Kuschel, Olga; Küpper, Karsten; Wollschläger, Joachim; Krzysteczko, Patryk; Chicca, Elisabetta

    2015-01-01

    We prepared magnesia, tantalum oxide, and barium titanate based tunnel junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance change from 10% up to 100%. Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses. We observed analogs of long-term potentiation, long-term depression and spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest a possible pathway of these devices toward their integration in neuromorphic systems for storing analog synaptic weights and supporting the implementation of biologically plausible learning mechanisms. PMID:26217173

  15. Wind tunnel studies of Martian aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Iversen, J. D.; Pollack, J. B.; Udovich, N.; White, B.

    1973-01-01

    Preliminary results are reported of an investigation which involves wind tunnel simulations, geologic field studies, theoretical model studies, and analyses of Mariner 9 imagery. Threshold speed experiments were conducted for particles ranging in specific gravity from 1.3 to 11.35 and diameter from 10.2 micron to 1290 micron to verify and better define Bagnold's (1941) expressions for grain movement, particularly for low particle Reynolds numbers and to study the effects of aerodynamic lift and surface roughness. Wind tunnel simulations were conducted to determine the flow field over raised rim craters and associated zones of deposition and erosion. A horseshoe vortex forms around the crater, resulting in two axial velocity maxima in the lee of the crater which cause a zone of preferential erosion in the wake of the crater. Reverse flow direction occurs on the floor of the crater. The result is a distinct pattern of erosion and deposition which is similar to some martian craters and which indicates that some dark zones around Martian craters are erosional and some light zones are depositional.

  16. National Wind Tunnel Complex (NWTC)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Wind Tunnel Complex (NWTC) Final Report summarizes the work carried out by a unique Government/Industry partnership during the period of June 1994 through May 1996. The objective of this partnership was to plan, design, build and activate 'world class' wind tunnel facilities for the development of future-generation commercial and military aircraft. The basis of this effort was a set of performance goals defined by the National Facilities Study (NFS) Task Group on Aeronautical Research and Development Facilities which established two critical measures of improved wind tunnel performance; namely, higher Reynolds number capability and greater productivity. Initial activities focused upon two high-performance tunnels (low-speed and transonic). This effort was later descoped to a single multipurpose tunnel. Beginning in June 1994, the NWTC Project Office defined specific performance requirements, planned site evaluation activities, performed a series of technical/cost trade studies, and completed preliminary engineering to support a proposed conceptual design. Due to budget uncertainties within the Federal government, the NWTC project office was directed to conduct an orderly closure following the Systems Design Review in March 1996. This report provides a top-level status of the project at that time. Additional details of all work performed have been archived and are available for future reference.

  17. Feed analyses and their interpretation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Compositional analysis is central to determining the nutritional value of feedstuffs. The utility of the values and how they should be used depends on how representative the feed subsample is, the nutritional relevance of the assays, analytical variability of the analyses, and whether a feed is suit...

  18. Other Cryogenic Wind Tunnel Projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1997-01-01

    The first cryogenic tunnel was built at the NASA Langley Research Center in 1972. Since then, many cryogenic wind-tunnels have been built at aeronautical research centers around the world. In this lecture some of the more interesting and significant of these projects that have not been covered by other lecturers at this Special Course are described. In this lecture authors describe cryogenic wind-tunnel projects at research centers in four countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Defence Research Agency - Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); and United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign, and NASA Langley).

  19. Other cryogenic wind tunnel projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1989-01-01

    The first cryogenic tunnel was built in 1972. Since then, many cryogenic wind-tunnel projects were started at aeronautical research centers around the world. Some of the more significant of these projects are described which are not covered by other lecturers at this Special Course. Described are cryogenic wind-tunnel projects in five countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Royal Aerospace Establishment-Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign and NASA Langley); and U.S.S.R. (Central Aero-Hydronamics Institute (TsAGI), Institute of Theoretical and Applied Mechanics (ITAM), and Physical-Mechanical Institute at Kharkov (PMI-K).

  20. The Langley Annular Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Habel, Louis W; Henderson, James H; Miller, Mason F

    1952-01-01

    Report describes the development of the Langley annular transonic tunnel, a facility in which test Mach numbers from 0.6 to slightly over 1.0 are achieved by rotating the test model in an annular passage between two concentric cylinders. Data obtained for two-dimensional airfoil models in the Langley annular transonic tunnel at subsonic and sonic speeds are shown to be in reasonable agreement with experimental data from other sources and with theory when comparisons are made for nonlifting conditions or for equal normal-force coefficients rather than for equal angles of attack. The trends of pressure distributions obtained from measurements in the Langley annular transonic tunnel are consistent with distributions calculated for Prandtl-Meyer flow.

  1. Carpal Tunnel Exercises: Can They Relieve Symptoms?

    MedlinePlus

    ... other carpal tunnel treatments, such as surgery, behavior modification or wrist splints. Carpal tunnel syndrome is caused ... when combined with other treatments, such as activity modification, wrist splinting or corticosteroid injections. After surgery to ...

  2. Computational multiqubit tunnelling in programmable quantum annealers

    PubMed Central

    Boixo, Sergio; Smelyanskiy, Vadim N.; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Denchev, Vasil S.; Amin, Mohammad H.; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut

    2016-01-01

    Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. PMID:26739797

  3. Shock Tunnel Studies of Scramjet Phenomena 1993

    NASA Technical Reports Server (NTRS)

    Stalker, R. J.; Bakos, R. J.; Morgan, R. G.; Porter, L.; Mee, D.; Paull, A.; Tuttle, S.; Simmons, J. M.; Wendt, M.; Skinner, K.

    1995-01-01

    Reports by the staff of the University of Queensland on various research studies related to the advancement of scramjet technology and hypervelocity pulse test facilities are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation. This research activity is Supplement 10 under NASA Grant NAGw-674.

  4. Tunnel Cost-Estimating Methods.

    DTIC Science & Technology

    1981-10-01

    consists of crushed rock or soft ground and the remainder is more competent rock. Forepoling or spiLing is used to support the roof between the nearest steel ...set and the face. Sharpened wood spiles or steel rods are driven into the roof at a shallow angle from behind the nearest support and ex- tended some...loading and hauling. Tunnels driven with a shield 17. Shield-driven tunnels get their name from a steel plate shaped to fit the outside dimensions of the

  5. Enhanced tunneling through nonstationary barriers

    SciTech Connect

    Palomares-Baez, J. P.; Rodriguez-Lopez, J. L.; Ivlev, B.

    2007-11-15

    Quantum tunneling through a nonstationary barrier is studied analytically and by a direct numerical solution of Schroedinger equation. Both methods are in agreement and say that the main features of the phenomenon can be described in terms of classical trajectories which are solutions of Newton's equation in complex time. The probability of tunneling is governed by analytical properties of a time-dependent perturbation and the classical trajectory in the plane of complex time. Some preliminary numerical calculations of Euclidean resonance (an easy penetration through a classical nonstationary barrier due to an underbarrier interference) are presented.

  6. Control of large thermal distortions in a cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Gustafson, J. C.

    1983-01-01

    The National Transonic Facility (NTF) is a research wind tunnel capable of operation at temperatures down to 89K (160 R) and pressures up to 900,000 Pa (9 atmospheres) to achieve Reynolds numbers approaching 120,000,000. Wide temperature excursions combined with the precise alignment requirements of the tunnel aerodynamic surfaces imposed constraints on the mechanisms supporting the internal structures of the tunnel. The material selections suitable for this application were also limited. A general design philosophy of utilizing a single fixed point for each linear degree of freedom and guiding the expansion as required was adopted. These support systems allow thermal expansion to take place in a manner that minimizes the development of thermally induced stresses while maintaining structural alignment and resisting high aerodynamic loads. Typical of the support mechanisms are the preload brackets used in the fan shroud system and the Watts linkage used to support the upstream nacelle. The design of these mechanisms along with the basic design requirements and the constraints imposed by the tunnel system are discussed.

  7. Arrays of Nano Tunnel Junctions as Infrared Image Sensors

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong S.; Prokopuk, Nicholas

    2006-01-01

    Infrared image sensors based on high density rectangular planar arrays of nano tunnel junctions have been proposed. These sensors would differ fundamentally from prior infrared sensors based, variously, on bolometry or conventional semiconductor photodetection. Infrared image sensors based on conventional semiconductor photodetection must typically be cooled to cryogenic temperatures to reduce noise to acceptably low levels. Some bolometer-type infrared sensors can be operated at room temperature, but they exhibit low detectivities and long response times, which limit their utility. The proposed infrared image sensors could be operated at room temperature without incurring excessive noise, and would exhibit high detectivities and short response times. Other advantages would include low power demand, high resolution, and tailorability of spectral response. Neither bolometers nor conventional semiconductor photodetectors, the basic detector units as proposed would partly resemble rectennas. Nanometer-scale tunnel junctions would be created by crossing of nanowires with quantum-mechanical-barrier layers in the form of thin layers of electrically insulating material between them (see figure). A microscopic dipole antenna sized and shaped to respond maximally in the infrared wavelength range that one seeks to detect would be formed integrally with the nanowires at each junction. An incident signal in that wavelength range would become coupled into the antenna and, through the antenna, to the junction. At the junction, the flow of electrons between the crossing wires would be dominated by quantum-mechanical tunneling rather than thermionic emission. Relative to thermionic emission, quantum mechanical tunneling is a fast process.

  8. Resonance tunneling spectroscopy of heteropoly compounds

    SciTech Connect

    Dalidchik, F. I. Budanov, B. A.; Kolchenko, N. N.; Balashov, E. M.; Kovalevskii, S. A.

    2012-12-15

    The electron tunneling spectra of phosphomolybdic and phosphomolybdovanadic acids have been measured using a scanning tunneling microscope. A new mechanism of negative differential resistance (NDR) formation in tunneling nanocontacts is established, which is general for all systems featuring the Wannier-Stark localization effect. A two-center inelastic resonance tunneling model is constructed, which allows the values of both electron and vibrational energy parameters to be determined from the measured spectra.

  9. Xylose utilization in recombinant Zymomonas

    DOEpatents

    Kahsay, Robel Y; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun

    2013-01-07

    Zymomonas expressing xylose isomerase from A. missouriensis was found to have improved xylose utilization, growth, and ethanol production when grown in media containing xylose. Xylose isomerases related to that of A. missouriensis were identified structurally through molecular phylogenetic and Profile Hidden Markov Model analyses, providing xylose isomerases that may be used to improve xylose utilization.

  10. A Wind Tunnel Captive Aircraft Testing Technique

    DTIC Science & Technology

    1976-04-01

    Flight/Wind Tunnel Correlation of Aircraft Longitudinal Motion ....................................... 14 10. Fright/Wind Tunnel Correlation of...I 2 3 4 5 6 T IME, s e c Figure 9. Flight/wind tunnel correla- tion of aircraft longitudinal motion. ’ D A n ~ v i i i | ~ 0 0 - 4 0

  11. 78 FR 46117 - National Tunnel Inspection Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... a significant loss of productivity and have severe financial impacts on a large region of the.... Numerous domestic and international incidents demonstrate that tunnel fires often result in a large number... consistency in the tunnel inspection techniques used by the various tunnel owners, implementing NTIS...

  12. 43 CFR 3832.40 - Tunnel sites.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Tunnel sites. 3832.40 Section 3832.40 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Tunnel Sites § 3832.40 Tunnel...

  13. 43 CFR 3832.40 - Tunnel sites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Tunnel sites. 3832.40 Section 3832.40 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Tunnel Sites § 3832.40 Tunnel...

  14. 43 CFR 3832.40 - Tunnel sites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Tunnel sites. 3832.40 Section 3832.40 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Tunnel Sites § 3832.40 Tunnel...

  15. 43 CFR 3832.40 - Tunnel sites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Tunnel sites. 3832.40 Section 3832.40 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Tunnel Sites § 3832.40 Tunnel...

  16. Moisture Observations in Sealed Tunnels at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Coleman, N. M.; Winterle, J.; Arlt, H.; Dinwiddie, C.; Fedors, R.

    2002-12-01

    The Topopah Spring Tuff is the host rock for a proposed repository for high-level nuclear waste. Underground tunnels and alcoves in this tuff that have been sealed from ventilation provide potentially useful data on natural moisture conditions and can help address the question of whether significant amounts of percolating groundwater drip into tunnels under present-day conditions. Given the low infiltration rates in the region, natural seepage and dripping in the sealed tunnels would provide evidence of focused flow within fracture networks that could be used to help calibrate seepage models for present-day conditions. These observations can then be used to estimate seepage fluxes during future, wetter climates. In 1999 the Department of Energy (DOE) sealed a nearly 1-km long tunnel bored near the proposed repository area. Four bulkheads isolate four sections of this tunnel, commonly called the Cross Drift, to allow a return to natural, ambient moisture conditions. Alcove 7, which crosses the Ghost Dance Fault, is a niche that has also been sealed with a bulkhead. Observations made in the sealed tunnels under unventilated conditions help to ensure that moisture observations will be little affected by the rapid drying effects of ventilation. Evidence of humid conditions has been seen during such unventilated entries, including small puddles apparently produced by condensation dripping. DOE is attempting to systematically collect drips in sample bottles and in plastic sheets so that chemical analyses can be used to identify sources of the water (i.e., natural seepage, condensation, or a mixture). To date two locations of possible natural seepage have been observed: one in Alcove 7 and the other in a sealed section of the Cross Drift. Both of these drip zones occur outside the proposed repository footprint. DOE is continuing work in the sealed drifts to address agreements with NRC. Hydrologic data from the sealed tunnels provide a reference point for DOE's performance

  17. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    SciTech Connect

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q {approx} 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement.

  18. Design and evaluation of natural light guiding system in ecological illumination of traffic tunnel

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Nan; Chen, Yi-Yung; Whang, Allen Jong-Woei; Chen, Li-Hsien

    2009-08-01

    Ecological traffic tunnel means that the manner can deal with tunnel project environmental problem of surrounding area and it is most close to the green environment. In general, we always use artificial light sources, such as traditional light sources and LED, to be the light source of illumination in the traffic tunnel. However, the best light source for the health of the human body is the natural light. If we can guide the sunlight into the tunnel to be lighting source, it would have a great benefit to the health of the human body. In this paper, we use Natural Light Guiding System to provide ecological illumination in traffic tunnel. The system has collecting, transmitting, and lighting parts. In the collecting part, we utilize a static concentrator to collect sunlight which is made up of a prismatic and cascadable unit. In the transmitting part, the collected sunlight is guided by optical fiber or lightpipe efficiently. In the lighting part, we design a lighting module of road lamp for lighting the inside the tunnel. The lighting module redistributes light to conform the traffic regulation. Finally, we build a model of traffic tunnel in optical software with Natural Light Guiding System to simulate the performance.

  19. Tunnel detection using radio imaging method at the Otay Mesa site

    SciTech Connect

    Mahrer, K.D.; Mondt, W.A.

    1994-12-31

    The authors demonstrated that Radio Imaging Method (RIM) surface-to-surface, borehole-to-surface, and borehole-to-borehole sensing technologies at the Otay Mesa test site east of San Diego, California could detect and delineate a horizontal 4 {times} 6-foot (cross-section) tunnel buried at a depth of approximately 45 feet. Utilizing monochromatic, continuous wave electromagnetic signals from a magnetic dipole source operating in the range between 22 kHz and 15 MHz, the authors confirmed the effectiveness of two general approaches: (1) mapping the electrical conductivity contrast between the country rock (sandstone) and the tunnel (i.e. the void and surrounding desiccation fractures) and (2) locating a cable (i.e. conductor) within and running the length of the tunnel from its induced, secondary radiation. Surface-to-surface RIM, utilizing a gradiometer receiver, mapped the two-dimensional, plan view location of the tunnel. Borehole-to-surface delineated both the depth and plan view location of the tunnel. Borehole-to-borehole RIM delineated the depth of the tunnel.

  20. Videometric applications in wind tunnels

    NASA Astrophysics Data System (ADS)

    Burner, Alpheus W.; Radeztsky, Ron H.; Liu, Tianshu

    1997-07-01

    Videometric measurements in wind tunnels can be very challenging due to the limited optical access, model dynamics, optical path variability during testing, large range of temperature and pressure, hostile environment, and the requirements for high productivity and large amounts of data on a daily basis. Other complications for wind tunnel testing include the model support mechanism and stringent surface finish requirements for the models in order to maintain aerodynamic fidelity. For these reasons nontraditional photogrammetric techniques and procedures sometimes must be employed. In this paper several such applications are discussed for wind tunnels which include test conditions with Mach numbers from low speed to hypersonic, pressures from less than an atmosphere to nearly seven atmospheres, and temperatures from cryogenic to above room temperature. Several of the wind tunnel facilities are continuous flow while one is a short duration blow-down facility. Videometric techniques and calibration procedures developed to measure angle of attack, the change in wing twist and bending induced by aerodynamic load, and the effects of varying model injection rates are described. Some advantages and disadvantages of these techniques are given and comparisons are made with non-optical and more traditional video photogrammetric techniques.

  1. Aorta-Right Atrial Tunnel

    PubMed Central

    Krishna, Cheemalapati Sai; Baruah, Dibya Kumar; Reddy, Gangireddy Venkateswara; Panigrahi, Nanda Kishore; Suman, Kalagara; Kumar, Palli Venkata Naresh

    2010-01-01

    Aorta–right atrial tunnel is a vascular channel that originates from one of the sinuses of Valsalva and terminates in either the superior vena cava or the right atrium. The tunnel is classified as anterior or posterior, depending upon its course in relation to the ascending aorta. An origin above the sinotubular ridge differentiates the tunnel from an aneurysm of the sinus of Valsalva, and the absence of myocardial branches differentiates it from a coronary–cameral fistula. Clinical presentation ranges from an asymptomatic precordial murmur to congestive heart failure. The embryologic background and pathogenesis of this lesion are attributable either to an aneurysmal dilation of the sinus nodal artery or to a congenital weakness of the aortic media. In either circumstance, progressive enlargement of the tunnel and ultimate rupture into the low-pressure right atrium could occur under the influence of the systemic pressure. The lesion is diagnosed by use of 2-dimensional echocardiography and cardiac catheterization. Computed tomographic angiography is an additional noninvasive diagnostic tool. The possibility of complications necessitates early therapy, even in asymptomatic patients or those with a hemodynamically insignificant shunt. Available treatments are catheter-based intervention, external ligation under controlled hypotension, or surgical closure with the patient under cardiopulmonary bypass. Herein, we discuss the cases of 2 patients who had this unusual anomaly. We highlight the outcome on follow-up imaging (patient 1) and the identification and safe reimplantation of the coronary artery (patient 2). PMID:20844628

  2. Mars Surface Tunnel Element Concept

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Mary, Natalie; Howe, A. Scott; Jeffries, Sharon

    2016-01-01

    How Mars surface crews get into their ascent vehicle has profound implications for Mars surface architecture. To meet planetary protection protocols, the architecture has get Intravehicular Activity (IVA)-suited crew into a Mars Ascent Vehicle (MAV) without having to step outside into the Mars environment. Pushing EVA suit don/doff and EVA operations to an element that remains on the surface also helps to minimize MAV cabin volume, which in turn can reduce MAV cabin mass. Because the MAV will require at least seven kilograms of propellant to ascend each kilogram of cabin mass, minimal MAV mass is desired. For architectures involving more than one surface element-such as an ascent vehicle and a pressurized rover or surface habitat-a retractable tunnel is an attractive solution. Beyond addressing the immediate MAV access issue, a reusable tunnel may be useful for other surface applications once its primary mission is complete. A National Aeronautics and Space Administration (NASA) team is studying the optimal balance between surface tunnel functionality, mass, and stowed volume as part of the Evolvable Mars Campaign (EMC). The "Minimum Functional Tunnel" is a conceptual design that performs a single function. Having established this baseline configuration, the next step is to trade design options, evaluate other applications, and explore alternative solutions.

  3. Spinoff from Wind Tunnel Technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Douglas Juanarena, a former NASA Langley instrument design engineer, found a solution to the problem of long, repetitive tunnel runs needed to measure airflow pressures. Electronically scanned pressure (ESP) replaced mechanical systems with electronic sensors. Juanarena licensed the NASA-patented technology and now manufactures ESP modules for research centers, aerospace companies, etc.

  4. Micromachined electron tunneling infrared sensors

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Kaiser, W. J.; Podosek, J. A.; Rockstad, H. K.; Reynolds, J. K.

    1993-01-01

    The development of an improved Golay cell is reported. This new sensor is constructed entirely from micromachined silicon components. A silicon oxynitride (SiO(x)N(y)) membrane is deflected by the thermal expansion of a small volume of trapped gas. To detect the motion of the membrane, an electron tunneling transducer is used. This sensor detects electrons which tunnel through the classically forbidden barrier between a tip and a surface; the electron current is exponentially dependent on the separation between the tip and the surface. The sensitivity of tunneling transducers constructed was typically better than 10(exp -3) A/square root of Hz. Through use of the electron tunneling transducer, the scaling laws which have prevented the miniaturization of the Golay cell are avoided. This detector potentially offers low cost fabrication, compatibility with silicon readout electronics, and operation without cooling. Most importantly, this detector may offer better sensitivity than any other uncooled infrared sensor, with the exception of the original Golay cell.

  5. Aorta-right atrial tunnel.

    PubMed

    Sai Krishna, Cheemalapati; Baruah, Dibya Kumar; Reddy, Gangireddy Venkateswara; Panigrahi, Nanda Kishore; Suman, Kalagara; Kumar, Palli Venkata Naresh

    2010-01-01

    Aorta-right atrial tunnel is a vascular channel that originates from one of the sinuses of Valsalva and terminates in either the superior vena cava or the right atrium. The tunnel is classified as anterior or posterior, depending upon its course in relation to the ascending aorta. An origin above the sinotubular ridge differentiates the tunnel from an aneurysm of the sinus of Valsalva, and the absence of myocardial branches differentiates it from a coronary-cameral fistula. Clinical presentation ranges from an asymptomatic precordial murmur to congestive heart failure. The embryologic background and pathogenesis of this lesion are attributable either to an aneurysmal dilation of the sinus nodal artery or to a congenital weakness of the aortic media. In either circumstance, progressive enlargement of the tunnel and ultimate rupture into the low-pressure right atrium could occur under the influence of the systemic pressure.The lesion is diagnosed by use of 2-dimensional echocardiography and cardiac catheterization. Computed tomographic angiography is an additional noninvasive diagnostic tool. The possibility of complications necessitates early therapy, even in asymptomatic patients or those with a hemodynamically insignificant shunt. Available treatments are catheter-based intervention, external ligation under controlled hypotension, or surgical closure with the patient under cardiopulmonary bypass.Herein, we discuss the cases of 2 patients who had this unusual anomaly. We highlight the outcome on follow-up imaging (patient 1) and the identification and safe reimplantation of the coronary artery (patient 2).

  6. Videometric Applications in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Radeztsky, R. H.; Liu, Tian-Shu

    1997-01-01

    Videometric measurements in wind tunnels can be very challenging due to the limited optical access, model dynamics, optical path variability during testing, large range of temperature and pressure, hostile environment, and the requirements for high productivity and large amounts of data on a daily basis. Other complications for wind tunnel testing include the model support mechanism and stringent surface finish requirements for the models in order to maintain aerodynamic fidelity. For these reasons nontraditional photogrammetric techniques and procedures sometimes must be employed. In this paper several such applications are discussed for wind tunnels which include test conditions with Mach number from low speed to hypersonic, pressures from less than an atmosphere to nearly seven atmospheres, and temperatures from cryogenic to above room temperature. Several of the wind tunnel facilities are continuous flow while one is a short duration blowdown facility. Videometric techniques and calibration procedures developed to measure angle of attack, the change in wing twist and bending induced by aerodynamic load, and the effects of varying model injection rates are described. Some advantages and disadvantages of these techniques are given and comparisons are made with non-optical and more traditional video photogrammetric techniques.

  7. Tunnel Vision in Environmental Management.

    ERIC Educational Resources Information Center

    Miller, Alan

    1982-01-01

    Discusses problem-solving styles in environmental management and the specific deficiencies in these styles that might be grouped under the label "tunnel vision," a form of selective attention contributing to inadequate problem-formulation, partial solutions to complex problems, and generation of additional problems. Includes educational…

  8. Scale Model Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.

    1997-01-01

    NASA Lewis Research Center's Icing Research Tunnel (IRT) is the world's largest refrigerated wind tunnel and one of only three icing wind tunnel facilities in the United States. The IRT was constructed in the 1940's and has been operated continually since it was built. In this facility, natural icing conditions are duplicated to test the effects of inflight icing on actual aircraft components as well as on models of airplanes and helicopters. IRT tests have been used successfully to reduce flight test hours for the certification of ice-detection instrumentation and ice protection systems. To ensure that the IRT will remain the world's premier icing facility well into the next century, Lewis is making some renovations and is planning others. These improvements include modernizing the control room, replacing the fan blades with new ones to increase the test section maximum velocity to 430 mph, installing new spray bars to increase the size and uniformity of the artificial icing cloud, and replacing the facility heat exchanger. Most of the improvements will have a first-order effect on the IRT's airflow quality. To help us understand these effects and evaluate potential improvements to the flow characteristics of the IRT, we built a modular 1/10th-scale aerodynamic model of the facility. This closed-loop scale-model pilot tunnel was fabricated onsite in the various shops of Lewis' Fabrication Support Division. The tunnel's rectangular sections are composed of acrylic walls supported by an aluminum angle framework. Its turning vanes are made of tubing machined to the contour of the IRT turning vanes. The fan leg of the tunnel, which transitions from rectangular to circular and back to rectangular cross sections, is fabricated of fiberglass sections. The contraction section of the tunnel is constructed from sheet aluminum. A 12-bladed aluminum fan is coupled to a turbine powered by high-pressure air capable of driving the maximum test section velocity to 550 ft

  9. EDITORIAL: Three decades of scanning tunnelling microscopy that changed the course of surface science Three decades of scanning tunnelling microscopy that changed the course of surface science

    NASA Astrophysics Data System (ADS)

    Ramachandra Rao, M. S.; Margaritondo, Giorgio

    2011-11-01

    Three decades ago, with a tiny tip of platinum, the scientific world saw the real space imaging of single atoms with unprecedented spatial resolution. This signalled the birth of one of the most versatile surface probes, based on the physics of quantum mechanical tunnelling: the scanning tunnelling microscope (STM). Invented in 1981 by Gerd Binnig and Heinrich Rohrer of IBM, Zurich, it led to their award of the 1986 Nobel Prize. Atoms, once speculated to be abstract entities used by theoreticians for mere calculations, can be seen to exist for real with the nano-eye of an STM tip that also gives real-space images of molecules and adsorbed complexes on surfaces. From a very fundamental perspective, the STM changed the course of surface science and engineering. STM also emerged as a powerful tool to study various fundamental phenomena relevant to the properties of surfaces in technological applications such as tribology, medical implants, catalysis, sensors and biology—besides elucidating the importance of local bonding geometries and defects, non-periodic structures and the co-existence of nano-scale phases. Atom-level probing, once considered a dream, has seen the light with the evolution of STM. An important off-shoot of STM was the atomic force microscope (AFM) for surface mapping of insulating samples. Then followed the development of a flurry of techniques under the general name of scanning probe microscopy (SPM). These techniques (STM, AFM, MFM, PFM etc) designed for atomic-scale-resolution imaging and spectroscopy, have led to brand new developments in surface analysis. All of these novel methods enabled researchers in recent years to image and analyse complex surfaces on microscopic and nanoscopic scales. All of them utilize a small probe for sensing the surface. The invention of AFM by Gerd Binnig, Calvin Quate and Christopher Gerber opened up new opportunities for characterization of a variety of materials, and various industrial applications could be

  10. Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs

    USGS Publications Warehouse

    Walton-Day, K.; Poeter, E.

    2009-01-01

    Turquoise Lake is a water-supply reservoir located north of the historic Sugarloaf Mining district near Leadville, Colorado, USA. Elevated water levels in the reservoir may increase flow of low-quality water from abandoned mine tunnels in the Sugarloaf District and degrade water quality downstream. The objective of this study was to understand the sources of water to Dinero mine drainage tunnel and evaluate whether or not there was a direct hydrologic connection between Dinero mine tunnel and Turquoise Lake from late 2002 to early 2008. This study utilized hydrograph data from nearby draining mine tunnels and the lake, and stable isotope (??18O and ??2H) data from the lake, nearby draining mine tunnels, imported water, and springs to characterize water sources in the study area. Hydrograph results indicate that flow from the Dinero mine tunnel decreased 26% (2006) and 10% (2007) when lake elevation (above mean sea level) decreased below approximately 3004 m (approximately 9855 feet). Results of isotope analysis delineated two meteoric water lines in the study area. One line characterizes surface water and water imported to the study area from the western side of the Continental Divide. The other line characterizes groundwater including draining mine tunnels, springs, and seeps. Isotope mixing calculations indicate that water from Turquoise Lake or seasonal groundwater recharge from snowmelt represents approximately 10% or less of the water in Dinero mine tunnel. However, most of the water in Dinero mine tunnel is from deep groundwater having minimal isotopic variation. The asymmetric shape of the Dinero mine tunnel hydrograph may indicate that a limited mine pool exists behind a collapse in the tunnel and attenutates seasonal recharge. Alternatively, a conceptual model is presented (and supported with MODFLOW simulations) that is consistent with current and previous data collected in the study area, and illustrates how fluctuating lake levels change the local water

  11. Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs

    USGS Publications Warehouse

    Walton-Day, Katherine; Poeter, Eileen

    2009-01-01

    Turquoise Lake is a water-supply reservoir located north of the historic Sugarloaf Mining district near Leadville, Colorado, USA. Elevated water levels in the reservoir may increase flow of low-quality water from abandoned mine tunnels in the Sugarloaf District and degrade water quality downstream. The objective of this study was to understand the sources of water to Dinero mine drainage tunnel and evaluate whether or not there was a direct hydrologic connection between Dinero mine tunnel and Turquoise Lake from late 2002 to early 2008. This study utilized hydrograph data from nearby draining mine tunnels and the lake, and stable isotope (δ18O and δ2H) data from the lake, nearby draining mine tunnels, imported water, and springs to characterize water sources in the study area. Hydrograph results indicate that flow from the Dinero mine tunnel decreased 26% (2006) and 10% (2007) when lake elevation (above mean sea level) decreased below approximately 3004 m (approximately 9855 feet). Results of isotope analysis delineated two meteoric water lines in the study area. One line characterizes surface water and water imported to the study area from the western side of the Continental Divide. The other line characterizes groundwater including draining mine tunnels, springs, and seeps. Isotope mixing calculations indicate that water from Turquoise Lake or seasonal groundwater recharge from snowmelt represents approximately 10% or less of the water in Dinero mine tunnel. However, most of the water in Dinero mine tunnel is from deep groundwater having minimal isotopic variation. The asymmetric shape of the Dinero mine tunnel hydrograph may indicate that a limited mine pool exists behind a collapse in the tunnel and attenutates seasonal recharge. Alternatively, a conceptual model is presented (and supported with MODFLOW simulations) that is consistent with current and previous data collected in the study area, and illustrates how fluctuating lake levels change the local water

  12. Dirac particle tunneling from black rings

    SciTech Connect

    Jiang Qingquan

    2008-08-15

    Recent research shows that Hawking radiation can be treated as a quantum tunneling process, and Hawking temperatures of Dirac particles across the horizon of a black hole can be correctly recovered via the fermion tunneling method. In this paper, motivated by the fermion tunneling method, we attempt to apply the analysis to derive Hawking radiation of Dirac particles via tunneling from black ring solutions of 5-dimensional Einstein-Maxwell-dilaton gravity theory. Finally, it is interesting to find that, as in the black hole case, fermion tunneling can also result in correct Hawking temperatures for the rotating neutral, dipole, and charged black rings.

  13. Role of Computational Fluid Dynamics and Wind Tunnels in Aeronautics R and D

    NASA Technical Reports Server (NTRS)

    Malik, Murjeeb R.; Bushnell, Dennis M.

    2012-01-01

    The purpose of this report is to investigate the status and future projections for the question of supplantation of wind tunnels by computation in design and to intuit the potential impact of computation approaches on wind-tunnel utilization all with an eye toward reducing the infrastructure cost at aeronautics R&D centers. Wind tunnels have been closing for myriad reasons, and such closings have reduced infrastructure costs. Further cost reductions are desired, and the work herein attempts to project which wind-tunnel capabilities can be replaced in the future and, if possible, the timing of such. If the possibility exists to project when a facility could be closed, then maintenance and other associated costs could be rescheduled accordingly (i.e., before the fact) to obtain an even greater infrastructure cost reduction.

  14. Resonant tunneling device with two-dimensional quantum well emitter and base layers

    DOEpatents

    Simmons, J.A.; Sherwin, M.E.; Drummond, T.J.; Weckwerth, M.V.

    1998-10-20

    A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation. 43 figs.

  15. Resonant tunneling device with two-dimensional quantum well emitter and base layers

    DOEpatents

    Simmons, Jerry A.; Sherwin, Marc E.; Drummond, Timothy J.; Weckwerth, Mark V.

    1998-01-01

    A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation.

  16. Band structure of topological insulators from noise measurements in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Cascales, Juan Pedro; Martínez, Isidoro; Katmis, Ferhat; Chang, Cui-Zu; Guerrero, Rubén; Moodera, Jagadeesh S.; Aliev, Farkhad G.

    2015-12-01

    The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental physics and their implementation in low power spintronic devices. Here we present such a study in TIs, through tunneling and noise spectroscopy utilizing TI/Al2O3/Co tunnel junctions with bottom TI electrodes of either Bi2Te3 or Bi2Se3. We demonstrate that features related to the band structure of the TI materials show up in the tunneling conductance and even more clearly through low frequency noise measurements. The bias dependence of 1/f noise reveals peaks at specific energies corresponding to band structure features of the TI. TI tunnel junctions could thus simplify the study of the properties of such quantum coherent systems that can further lead to the manipulation of their spin-polarized properties for technological purposes.

  17. Band structure of topological insulators from noise measurements in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Cascales Sandoval, Juan Pedro; Martinez, Isidoro; Guerrero, Ruben; Chang, Cui-Zu; Katmis, Ferhat; Moodera, Jagadeesh; Aliev, Farkhad

    The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental physics and their implementation in low power spintronic devices. Here we present such a study in TIs, through tunnelling and noise spectroscopy utilizing TI/Al2O3/Co tunnel junctions with bottom TI electrodes of either Bi2Te3 or Bi2Se3. We demonstrate that features related to the band structure of the TI materials show up in the tunnelling conductance and even more clearly through low frequency noise measurements. The bias dependence of 1/f noise reveals peaks at specific energies corresponding to band structure features of the TI. TI tunnel junctions could thus simplify the study of the properties of such quantum coherent systems that can further lead to the manipulation of their spin-polarized properties for technological purposes.

  18. Visual display and alarm system for wind tunnel static and dynamic loads

    NASA Technical Reports Server (NTRS)

    Hanly, Richard D.; Fogarty, James T.

    1987-01-01

    A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanism, or tunnel shutdown.

  19. Visual display and alarm system for wind tunnel static and dynamic loads

    NASA Technical Reports Server (NTRS)

    Hanly, Richard D.; Fogarty, James T.

    1987-01-01

    A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanisms, or tunnel shutdown.

  20. Simultaneously measured signals in scanning probe microscopy with a needle sensor: Frequency shift and tunneling current

    NASA Astrophysics Data System (ADS)

    Morawski, Ireneusz; Voigtländer, Bert

    2010-03-01

    We present combined noncontact scanning force microscopy and tunneling current images of a platinum(111) surface obtained by means of a 1 MHz quartz needle sensor. The low-frequency circuit of the tunneling current was combined with a high-frequency signal of the quartz resonator enabling full electrical operation of the sensor. The frequency shift and the tunneling current were detected simultaneously, while the feedback control loop of the topography signal was fed using one of them. In both cases, the free signal that was not connected to the feedback loop reveals proportional-integral controller errorlike behavior, which is governed by the time derivative of the topography signal. A procedure is proposed for determining the mechanical oscillation amplitude by utilizing the tunneling current also including the average tip-sample work function.

  1. 2. 'Tunnel No 6 West End, Front Elevation, Sectional Elevation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. 'Tunnel No 6 West End, Front Elevation, Sectional Elevation on Centerline of Portal,' Southern Pacific Standard Single-Track Tunnel, 1910. Tunnel 6, which today would be Tunnel 20, was daylighted and no longer exists. Compare to photos in documentation sets for Tunnel 23 (HAER No. CA-198), Tunnel 24 (HAER No. CA-200), Tunnel 25 (HAER No. CA-201), Tunnel 27 (HAER No. CA-203), Tunnel 28 (HAER No. CA-204), and Tunnel 29 (HAER No. CA-205). - Central Pacific Transcontinental Railroad, Sacramento to Nevada state line, Sacramento, Sacramento County, CA

  2. Pitot pressure analyses in CO2 condensing rarefied hypersonic flows

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Suzuki, T.; Fujita, K.

    2016-11-01

    In order to improve the accuracy of rarefied aerodynamic prediction, a hypersonic rarefied wind tunnel (HRWT) was developed at Japan Aerospace Exploration Agency. While this wind tunnel has been limited to inert gases, such as nitrogen or argon, we recently extended the capability of HRWT to CO2 hypersonic flows for several Mars missions. Compared to our previous N2 cases, the condensation effect may not be negligible for CO2 rarefied aerodynamic measurements. Thus, in this work, we have utilized both experimental and numerical approaches to investigate the condensation and rarefaction effects in CO2 hypersonic nozzle flows.

  3. Remark on massive particle's de Sitter tunneling

    SciTech Connect

    Jiang, Qing-Quan; Chen, De-You; Wen, Dan E-mail: deyouchen@126.com

    2013-11-01

    In the work [J. Y. Zhang and Z. Zhao, Massive particles's black hole tunneling and de Sitter tunneling, Nucl. Phys. B 725 (2005) 173.], the Hawking radiation of the massive particle via tunneling from the de Sitter cosmological horizon has been first described in the tunneling framework. However, the geodesic equation of the massive particle was unnaturally and awkwardly defined there by investigating the relation between the group and phase velocity. In this paper, we start from the Lagrangian analysis on the action to naturally produce the geodesic equation of the tunneling massive particle. Then, based on the new definition for the geodesic equation, we revisit the Hawking radiation of the massive particle via tunneling from the de Sitter cosmological horizon. It is noteworthy that, the highlight of our work is a new and important development of the Parikh-Wilczek's tunneling method, which can make it more physical.

  4. Morphological properties of tunnel valleys beneath the southern sector of the former Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Livingstone, Stephen; Clark, Chris

    2016-04-01

    Tunnel valleys have been widely reported on the bed of former ice sheets and are considered an important expression of subglacial meltwater drainage. Although known to have been cut by erosive meltwater flow, the water source and development of channels has been widely debated. Possible mechanisms include: (i) gradual formation by water flow in a subglacially deforming bed into channels under steady-state conditions; (ii) time-transgressive formation close to the ice margin by drainage of supraglacial meltwater to the bed or of meltwater temporarily impounded behind a permafrost wedge; and or (iii) by catastrophic subglacial meltwater floods. We have mapped and analysed the spatial pattern and morphometry of tunnel valleys and associated glacial bedforms along the southern sector of the former Laurentide Ice Sheet from high-resolution digital elevation models. Around 2000 tunnel valleys have been mapped, revealing a well-organised pattern of sub-parallel, semi-regularly spaced valleys that cluster together in distinctive networks. The tunnel valleys are typically <20 km long, and 0.5-3 km wide and preferentially terminate at moraines. They tend to be associated with outwash fans, eskers, glacial curvilineations, giant current ripples, and hill-hole-pairs. A relative age of the tunnel valleys, based on cross-cutting relationships, is used to resolve when individual tunnel valleys and networks were eroded. Our results suggest a time-transgressive origin for most tunnel valleys (i.e. they grow upstream) with some contributions from large meltwater drainage events.

  5. Internal switches modulating electron tunneling currents in respiratory complex III.

    PubMed

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-01

    In different X-ray crystal structures of bc1 complex, some of the key residues of electron tunneling pathways are observed in different conformations; here we examine their relative importance in modulating electron transfer and propose their possible gating function in the Q-cycle. The study includes inter-monomeric electron transfer; here we provide atomistic details of the reaction, and discuss the possible roles of inter-monomeric electronic communication in bc(1) complex. Binding of natural ligands or inhibitors leads to local conformational changes which propagate through protein and control the conformation of key residues involved in the electron tunneling pathways. Aromatic-aromatic interactions are highly utilized in the communication network since the key residues are aromatic in nature. The calculations show that there is a substantial change of the electron transfer rates between different redox pairs depending on the different conformations acquired by the key residues of the complex.

  6. Nonlinear resonance-assisted tunneling induced by microcavity deformation

    PubMed Central

    Kwak, Hojeong; Shin, Younghoon; Moon, Songky; Lee, Sang-Bum; Yang, Juhee; An, Kyungwon

    2015-01-01

    Noncircular two-dimensional microcavities support directional output and strong confinement of light, making them suitable for various photonics applications. It is now of primary interest to control the interactions among the cavity modes since novel functionality and enhanced light-matter coupling can be realized through intermode interactions. However, the interaction Hamiltonian induced by cavity deformation is basically unknown, limiting practical utilization of intermode interactions. Here we present the first experimental observation of resonance-assisted tunneling in a deformed two-dimensional microcavity. It is this tunneling mechanism that induces strong inter-mode interactions in mixed phase space as their strength can be directly obtained from a separatrix area in the phase space of intracavity ray dynamics. A selection rule for strong interactions is also found in terms of angular quantum numbers. Our findings, applicable to other physical systems in mixed phase space, make the interaction control more accessible. PMID:25759322

  7. Macroscopic quantum tunnelling of protons in the KHCO 3 crystal

    NASA Astrophysics Data System (ADS)

    Fillaux, François; Cousson, Alain; Gutmann, Matthias J.

    2006-06-01

    Macroscopic quantum entanglement reveals an unforeseen mechanism for proton transfer across hydrogen bonds in the solid state. We utilize neutron scattering techniques to study proton dynamics in the crystal of potassiumhydrogencarbonate (KHCO 3) composed of small planar centrosymmetric dimer entities ( linked by moderately strong hydrogen bonds. All protons are indistinguishable, they behave as fermions, and they are degenerate. The sublattice of protons is a superposition of macroscopic single-particle states. At elevated temperature, protons are progressively transferred to secondary sites at ≈0.6 Å from the main position, via tunnelling along hydrogen bonds. The macroscopic quantum entanglement, still observed at 300 K, reveals that proton transfer is a coherent process throughout the crystal arising from a superposition of macroscopic tunnelling states.

  8. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  9. Finite Element Analysis of a NASA National Transonic Facility Wide Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C. (Editor)

    1999-01-01

    This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.

  10. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1977-01-01

    Work has continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes on airfoil data and wall contours. Mechanical design analyses for the transonic self streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility is outlined.

  11. Reliability analysis of idealized tunnel support system using probability-based methods with case studies

    NASA Astrophysics Data System (ADS)

    Gharouni-Nik, Morteza; Naeimi, Meysam; Ahadi, Sodayf; Alimoradi, Zahra

    2014-06-01

    In order to determine the overall safety of a tunnel support lining, a reliability-based approach is presented in this paper. Support elements in jointed rock tunnels are provided to control the ground movement caused by stress redistribution during the tunnel drive. Main support elements contribute to stability of the tunnel structure are recognized owing to identify various aspects of reliability and sustainability in the system. The selection of efficient support methods for rock tunneling is a key factor in order to reduce the number of problems during construction and maintain the project cost and time within the limited budget and planned schedule. This paper introduces a smart approach by which decision-makers will be able to find the overall reliability of tunnel support system before selecting the final scheme of the lining system. Due to this research focus, engineering reliability which is a branch of statistics and probability is being appropriately applied to the field and much effort has been made to use it in tunneling while investigating the reliability of the lining support system for the tunnel structure. Therefore, reliability analysis for evaluating the tunnel support performance is the main idea used in this research. Decomposition approaches are used for producing system block diagram and determining the failure probability of the whole system. Effectiveness of the proposed reliability model of tunnel lining together with the recommended approaches is examined using several case studies and the final value of reliability obtained for different designing scenarios. Considering the idea of linear correlation between safety factors and reliability parameters, the values of isolated reliabilities determined for different structural components of tunnel support system. In order to determine individual safety factors, finite element modeling is employed for different structural subsystems and the results of numerical analyses are obtained in

  12. Tunneling magnetoresistance in Si nanowires

    NASA Astrophysics Data System (ADS)

    Montes, E.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.

    2016-11-01

    We investigate the tunneling magnetoresistance of small diameter semiconducting Si nanowires attached to ferromagnetic Fe electrodes, using first principles density functional theory combined with the non-equilibrium Green’s functions method for quantum transport. Silicon nanowires represent an interesting platform for spin devices. They are compatible with mature silicon technology and their intrinsic electronic properties can be controlled by modifying the diameter and length. Here we systematically study the spin transport properties for neutral nanowires and both n and p doping conditions. We find a substantial low bias magnetoresistance for the neutral case, which halves for an applied voltage of about 0.35 V and persists up to 1 V. Doping in general decreases the magnetoresistance, as soon as the conductance is no longer dominated by tunneling.

  13. Tunneling decay of false kinks

    NASA Astrophysics Data System (ADS)

    Dupuis, Éric; Gobeil, Yan; MacKenzie, Richard; Marleau, Luc; Paranjape, M. B.; Ung, Yvan

    2015-07-01

    We consider the decay of "false kinks," that is, kinks formed in a scalar field theory with a pair of degenerate symmetry-breaking false vacua in 1 +1 dimensions. The true vacuum is symmetric. A second scalar field and a peculiar potential are added in order for the kink to be classically stable. We find an expression for the decay rate of a false kink. As with any tunneling event, the rate is proportional to exp (-SE) where SE is the Euclidean action of the bounce describing the tunneling event. This factor varies wildly depending on the parameters of the model. Of interest is the fact that for certain parameters SE can get arbitrarily small, implying that the kink is only barely stable. Thus, while the false vacuum itself may be very long-lived, the presence of kinks can give rise to rapid vacuum decay.

  14. Tunneling of heat between metals

    NASA Astrophysics Data System (ADS)

    Mahan, G. D.

    2017-03-01

    We provide a theory of how heat tunnels between two parallel metal surfaces separated by an air gap. Two contributions are calculated: (1) electron-electron interactions and (2) photon fields from surface plasmons. Both contributions can transfer energy through low energy electron pairs. Our concern is with heat flow for small air gaps, on the order of nanometers. In that case the contribution from electron-electron interactions is most important. The contribution from photons is more important at larger separations.

  15. Observing remnants by fermions' tunneling

    SciTech Connect

    Chen, D.Y.; Wu, H.W.; Yang, H. E-mail: iverwu@uestc.edu.cn

    2014-03-01

    The standard Hawking formula predicts the complete evaporation of black holes. In this paper, we introduce effects of quantum gravity into fermions' tunneling from Reissner-Nordstrom and Kerr black holes. The quantum gravity effects slow down the increase of Hawking temperatures. This property naturally leads to a residue mass in black hole evaporation. The corrected temperatures are affected by the quantum numbers of emitted fermions. Meanwhile, the temperature of the Kerr black hole is a function of θ due to the rotation.

  16. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Full-Scale Tunnel (FST). Construction of balance housing. Smith DeFrance noted the need for this housing in his NACA TR No. 459: 'The entire floating frame and scale assembly is enclosed in a room for protection from air currents and the supporting struts are shielded by streamlined fairings which are secured to the roof of the balance room and free from the balance.'

  17. Seismic prediction ahead of tunnel constructions

    NASA Astrophysics Data System (ADS)

    Jetschny, S.; Bohlen, T.; Nil, D. D.; Giese, R.

    2007-12-01

    To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. Within the \\it OnSite project founded by the BMBF (German Ministry of Education and Research) within \\it GeoTechnologien a new forward looking seismic imaging technique is developed to e.g. determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of \\it tunnel surface waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the front face they generate body waves (mainly S-waves) propagating further ahead. Reflected S-waves are back- converted into tunnel surface waves. For a theoretical description of the conversion process and for finding optimal acquisition geometries it is of importance to study the propagation characteristics of tunnel surface waves. 3D seismic finite difference modeling and analytic solutions of the wave equation in cylindric coordinates revealed that at higher frequencies, i.e. if the tunnel diameter is significantly larger than the wavelength of S-waves, these surface waves can be regarded as Rayleigh-waves circulating the tunnel. For smaller frequencies, i.e. when the S-wavelength approaches the tunnel diameter, the propagation characteristics of these surface waves are then similar to S- waves. Field measurements performed by the GeoForschungsZentrum Potsdam, Germany at the Gotthard Base Tunnel (Switzerland) show both effects, i.e. the propagation of Rayleigh- and body-wave like waves along the tunnel. To enhance our understanding of the excitation and propagation characteristics of tunnel surface waves the transition of Rayleigh to tube-waves waves is investigated both analytically and by numerical simulations.

  18. Neurolysis for failed tarsal tunnel surgery.

    PubMed

    Yalcinkaya, Merter; Ozer, Utku Erdem; Yalcin, M Burak; Bagatur, A Erdem

    2014-01-01

    The purpose of the present study was to investigate the causes of failure after tarsal tunnel release and the operative findings in the secondary interventions and the outcomes. The data from 8 patients who had undergone revision surgery for failed tarsal tunnel release at least 12 months earlier were evaluated retrospectively. Only the patients with idiopathic tarsal tunnel syndrome were included, and all had unilateral symptoms. Neurophysiologic tests confirmed the clinical diagnosis of failed tarsal tunnel release in all patients. Magnetic resonance imaging revealed varicose veins within the tarsal tunnel in 1 patient (12.5%) and tenosynovitis in another (12.5%). Open tarsal tunnel release was performed in all patients, and the tibialis posterior nerve, medial and lateral plantar nerves (including the first branch of the lateral plantar nerve), and medial calcaneal nerve were released in their respective tunnels, and the septum between the tunnels was resected. The outcomes were assessed according to subjective patient satisfaction as excellent, good, fair, or poor. During revision surgery, insufficient release of the tarsal tunnel, especially distally, was observed in all the patients, and fibrosis of the tibialis posterior nerve was present in 1 (12.5%). The outcomes according to subjective patient satisfaction were excellent in 5 (62.5%), good in 2 (25%), and fair in 1 (12.5%). The fair outcome was obtained in the patient with fibrosis of the nerve. Insufficient release of the tarsal tunnel was the main cause of failed tarsal tunnel release. Releasing the 4 distinct tunnels and permitting immediate mobilization provided satisfactory results in patients with failed tarsal tunnel release.

  19. Tunneling decay of false vortices

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, M. B.; Yajnik, U. A.; Yeom, Dong-han

    2013-10-01

    We consider the decay of vortices trapped in the false vacuum of a theory of scalar electrodynamics in 2+1 dimensions. The potential is inspired by models with intermediate symmetry breaking to a metastable vacuum that completely breaks a U(1) symmetry, while in the true vacuum, the symmetry is unbroken. The false vacuum is unstable through the formation of true vacuum bubbles; however, the rate of decay can be extremely long. On the other hand, the false vacuum can contain metastable vortex solutions. These vortices contain the true vacuum inside in addition to a unit of magnetic flux and the appropriate topologically nontrivial false vacuum outside. We numerically establish the existence of vortex solutions which are classically stable; however, they can decay via tunneling. In general terms, they tunnel to a configuration which is a large, thin-walled vortex configuration that is now classically unstable to the expansion of its radius. We compute an estimate for the tunneling amplitude in the semiclassical approximation. We believe our analysis would be relevant to superconducting thin films or superfluids.

  20. Diagnosis of Carpal Tunnel Syndrome

    PubMed Central

    Keith, Michael Warren; Masear, Victoria; Chung, Kevin; Maupin, Kent; Andary, Michael; Amadio, Peter C.; Barth, Richard W.; Watters, William C.; Goldberg, Michael J.; Haralson, Robert H.; Turkelson, Charles M.; Wies, Janet L.

    2016-01-01

    This clinical practice guideline was created to improve patient care by outlining the appropriate information-gathering and decision-making processes involved in managing the diagnosis of carpal tunnel syndrome. The methods used to develop this clinical practice guideline were designed to combat bias, enhance transparency, and promote reproducibility. The guideline’s recommendations are as follows: The physician should obtain an accurate patient history. The physician should perform a physical examination of the patient that may include personal characteristics as well as performing a sensory examination, manual muscle testing of the upper extremity, and provocative and/or discriminatory tests for alternative diagnoses. The physician may obtain electrodiagnostic tests to differentiate among diagnoses. This may be done in the presence of thenar atrophy and/or persistent numbness. The physician should obtain electrodiagnostic tests when clinical and/or provocative tests are positive and surgical management is being considered. If the physician orders electrodiagnostic tests, the testing protocol should follow the American Academy of Neurology/American Association of Neuromuscular and Electrodiagnostic Medicine/American Academy of Physical Medicine and Rehabilitation guidelines for diagnosis of carpal tunnel syndrome. In addition, the physician should not routinely evaluate patients suspected of having carpal tunnel syndrome with new technology, such as magnetic resonance imaging, computed tomography, and pressure-specified sensorimotor devices in the wrist and hand. This decision was based on an additional nonsystematic literature review following the face-to-face meeting of the work group. PMID:19474448

  1. Quiet Supersonic Wind Tunnel Development

    NASA Technical Reports Server (NTRS)

    King, Lyndell S.; Kutler, Paul (Technical Monitor)

    1994-01-01

    The ability to control the extent of laminar flow on swept wings at supersonic speeds may be a critical element in developing the enabling technology for a High Speed Civil Transport (HSCT). Laminar boundary layers are less resistive to forward flight than their turbulent counterparts, thus the farther downstream that transition from laminar to turbulent flow in the wing boundary layer is extended can be of significant economic impact. Due to the complex processes involved experimental studies of boundary layer stability and transition are needed, and these are performed in "quiet" wind tunnels capable of simulating the low-disturbance environment of free flight. At Ames, a wind tunnel has been built to operate at flow conditions which match those of the HSCT laminar flow flight demonstration 'aircraft, the F-16XL, i.e. at a Mach number of 1.6 and a Reynolds number range of 1 to 3 million per foot. This will allow detailed studies of the attachment line and crossflow on the leading edge area of the highly swept wing. Also, use of suction as a means of control of transition due to crossflow and attachment line instabilities can be studied. Topics covered include: test operating conditions required; design requirements to efficiently make use of the existing infrastructure; development of an injector drive system using a small pilot facility; plenum chamber design; use of computational tools for tunnel and model design; and early operational results.

  2. Models for cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1989-01-01

    Model requirements, types of model construction methods, and research in new ways to build models are discussed. The 0.3-m Transonic Cryogenic Tunnel was in operation for 16 years and many 2-D airfoil pressure models were tested. In addition there were airfoil models dedicated to transition detection techniques and other specialized research. There were also a number of small 3-D models tested. A chronological development in model building technique is described which led to the construction of many successful models. The difficulties of construction are illustrated by discussing several unsuccessful model fabrication attempts. The National Transonic Facility, a newer and much larger tunnel, was used to test a variety of models including a submarine, transport and fighter configurations, and the Shuttle Orbiter. A new method of building pressure models was developed and is described. The method is centered on the concept of bonding together plates with pressure channels etched into the bond planes, which provides high density pressure instrumentation with minimum demand on parent model material. With care in the choice of materials and technique, vacuum brazing can be used to produce strong bonds without blocking pressure channels and with no bonding voids between channels. Using multiple plates, a 5 percent wing with 96 orifices was constructed and tested in a transonic cryogenic wind tunnel. Samples of test data are presented and future applications of the technology are suggested.

  3. Quantum Tunneling Affects Engine Performance.

    PubMed

    Som, Sibendu; Liu, Wei; Zhou, Dingyu D Y; Magnotti, Gina M; Sivaramakrishnan, Raghu; Longman, Douglas E; Skodje, Rex T; Davis, Michael J

    2013-06-20

    We study the role of individual reaction rates on engine performance, with an emphasis on the contribution of quantum tunneling. It is demonstrated that the effect of quantum tunneling corrections for the reaction HO2 + HO2 = H2O2 + O2 can have a noticeable impact on the performance of a high-fidelity model of a compression-ignition (e.g., diesel) engine, and that an accurate prediction of ignition delay time for the engine model requires an accurate estimation of the tunneling correction for this reaction. The three-dimensional model includes detailed descriptions of the chemistry of a surrogate for a biodiesel fuel, as well as all the features of the engine, such as the liquid fuel spray and turbulence. This study is part of a larger investigation of how the features of the dynamics and potential energy surfaces of key reactions, as well as their reaction rate uncertainties, affect engine performance, and results in these directions are also presented here.

  4. The optimum hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Cary, A., Jr.; Voisinet, R. L. P.

    1986-01-01

    The capabilities of existing hypersonic wind tunnels in the U.S. are assessed to form a basis for recommendations for a new, costly facility which would provide data for modeling the hypervelocity aerodynamics envisioned for the new generation of aerospace vehicles now undergoing early studies. Attention is given to the regimes, both entry and aerodynamic, which the new vehicles will encounter, and the shortcomings of data generated for the Orbiter before flight are discussed. The features of foreign-gas, impulse, aeroballistic range, arc-heated and combustion-heated facilities are examined, noting that in any hypersonic wind tunnel the flow must be preheated to prevent liquefaction upon expansion in the test channel. The limitations of the existing facilities and the identification of the regimes which must be studied lead to a description of the characteristics of an optimum hypersonic wind tunnel, including the operations and productivity, the instrumentation, the nozzle design and the flow quality. Three different design approaches are described, each costing at least $100 million to achieve workability.

  5. Arctic and subarctic environmental analyses utilizing ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Anderson, D. M. (Principal Investigator); Mckim, H. L.; Gatto, L. W.; Haugen, R. K.; Crowder, W. K.; Slaughter, C. W.; Marlar, T. L.

    1974-01-01

    The author has identified the following significant results. ERTS-1 imagery provides a means of distinguishing and monitoring estuarine surface water circulation patterns and changes in the relative sediment load of discharging rivers on a regional basis. Physical boundaries mapped from ERTS-1 imagery in combination with ground truth obtained from existing small scale maps and other sources resulted in improved and more detailed maps of permafrost terrain and vegetation for the same area. Snowpack cover within a research watershed has been analyzed and compared to ground data. Large river icings along the proposed Alaska pipeline route from Prudhoe Bay to the Brooks Range have been monitored. Sea ice deformation and drift northeast of Point Barrow, Alaska have been measured during a four day period in March and shore-fast ice accumulation and ablation along the west coast of Alaska have been mapped for the spring and early summer seasons.

  6. Nongray gas analyses for reflecting walls utilizing a flux technique

    NASA Technical Reports Server (NTRS)

    Menart, J. A.; Lee, Haeok S.

    1993-01-01

    A flux formulation for a planar slab of molecular gas radiation bounded by diffuse reflecting walls is developed. While this formulation is limited to the planar geometry, it is useful for studying approximations necessary in modeling nongray radiative heat transfer. The governing equations are derived by considering the history of multiple reflections between the walls. Accurate solutions are obtained by explicitly accounting for a finite number of reflections and approximating the spectral effects of the remaining reflections. Four approximate methods are presented and compared using a single absorption band of H2O. All four methods reduce to an identical zeroth-order formulation, which accounts for all reflections approximately but does handle nonreflected radiation correctly. A single absorption band of CO2 is also considered using the best-behaved approximation for higher orders. A zeroth-order formulation is sufficient to predict the radiative transfer accurately for many cases considered. For highly reflecting walls, higher order solutions are necessary for better accuracy. Including all the important bands of H2O, the radiative source distributions are also obtained for two different temperature and concentration profiles.

  7. Marginal Utility of Conditional Sensitivity Analyses for Dynamic Models

    EPA Science Inventory

    Background/Question/MethodsDynamic ecological processes may be influenced by many factors. Simulation models thatmimic these processes often have complex implementations with many parameters. Sensitivityanalyses are subsequently used to identify critical parameters whose uncertai...

  8. Tunneling and Tunneling Switching Dynamics in Phenol and Ortho-D FTIR Spectroscopy with Synchrotron Radiation and Theory

    NASA Astrophysics Data System (ADS)

    Albert, S.; Prentner, R.; Quack, M.; Lerch, Ph.

    2013-06-01

    The understanding of tunneling in chemical reactions is of fundamental interest. A particularly intriguing recent development is the theoretical prediction of tunneling switching in ortho-D-phenol (C_6H_4DOH) as opposed to phenol (C_6H_5OH) where only tunneling dominates the dynamics. For ortho-D-phenol at low energy, tunneling is completely suppressed due to isotopic substitution, which introduces an asymmetry in the effective potential including zero point energy. This localizes the molecular wavefunction in either the syn or the anti structure of ortho-D-phenol. At higher torsional states of ortho-D-phenol, tunneling becomes dominant, thus switching the dynamics to a delocalized quantum wavefunction. Therefore, we have investigated the rotationally resolved THz and IR spectra of phenol and ortho-D-phenol measured with our FTIR setup at the Swiss Light Source (SLS) using synchrotron radiation. We have been able to analyse the torsional fundamentals, the first and second overtones of both isotopomers. A comparison of the spectra of phenol and ortho-D-phenol indicates the theoretically predicted behavior of tunneling switching upon excitation of the torsional mode. In detail, we shall discuss the splitting of the torsional fundamental, of its first and second overtones of phenol as well as the fundamentals of syn- and anti- ortho-D-phenol and the possible tunneling switching in the torsional overtone region of ortho-D-phenol. The results shall be also discussed in relation to the quasiadiabatic channel Reaction Path Hamiltonian approach. We shall also discuss the comparison with results for meta-D-phenol. M. Quack, Fundamental symmetries and symmetry violations in Handbook of High Resolution Spectroscopy, Vol. 1(Eds. M. Quack and F. Merkt), Wiley, Chicester (2011), 659-722. S. Albert, Ph. Lerch, R. Prentner, M. Quack, Angew. Chem. Int. Ed. 2013, 52, 346-349. S. Albert and M. Quack, ChemPhysChem, 2007, 8, 1271-1281, S. Albert, K. Keppler Albert and M. Quack, High

  9. 1. West portal of Tunnel 26, contextual view to northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West portal of Tunnel 26, contextual view to northeast from atop Tunnel 25 (HAER CA-201), with Tunnel 27 (HAER CA-203) visible in distance, 210mm lens. View is along new line, with original Central Pacific Transcontinental line crossing over the top above Tunnel 26. - Central Pacific Transcontinental Railroad, Tunnel No. 26, Milepost 133.29, Applegate, Placer County, CA

  10. Micromachined Tunneling Displacement Transducers for Physical Sensors

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Kaiser, W. J.; Podosek, J. A.; Rockstad, H. K.; Reynolds, J. K.; Vote, E. C.

    1993-01-01

    We have designed and constructed a series of tunneling sensors which take advantage of the extreme position sensitivity of electron tunneling. In these sensors, a tunneling displacement transducer, based on scanning tunneling microscopy principles, is used to detect the signal-induced motion of a sensor element. Through the use of high-resonant frequency mechanical elements for the transducer, sensors may be constructed which offer wide bandwidth, and are robust and easily operated. Silicon micromachining may be used to fabricate the transducer elements, allowing integration of sensor and control electronics. Examples of tunneling accelerometers and infrared detectors will be discussed. In each case, the use of the tunneling transducer allows miniaturization of the sensor as well as enhancement of the sensor performance.

  11. Inspection and rehabilitation of tunnels across faults

    SciTech Connect

    Abramson, L.W.; Schmidt, B.

    1995-12-31

    The inspection and rehabilitation of tunnels that cross faults is unique because they usually are in use and have a large variety of alternative lining types including bare rock, concrete, or steel often coated with accumulations of dirt, grime, algae and other minerals. Inspection methods are important including what to look for, how to clean the inner tunnel lining surfaces, non-destructive testing, coring, soundings, air quality detection and protection, ventilation, lightning, etc. Rehabilitation of tunnels crossing faults requires a practiced knowledge of underground design and construction practices. The most common methods of rehabilitation include grouting and concreting. The Variety of water, wastewater, transit, and highway tunnels in California provide ample examples of tunnels, new and old, that cross active faults. This paper will address specific methods of tunnel inspection and maintenance at fault crossings and give examples of relevant highway, transit, water, and wastewater projects and studies in California to demonstrate the discussions presented.

  12. Endoscopic Resection of the Tarsal Tunnel Ganglion.

    PubMed

    Lui, Tun Hing

    2016-10-01

    The tarsal tunnel ganglion is a cause of posterior tarsal tunnel syndrome. Open resection of the ganglion calls for release of the flexor retinaculum and dissection around the tibial neurovascular bundle. This can induce fibrosis around the tibial nerve. We report the technique of endoscopic resection of the tarsal tunnel ganglion. It is indicated for tarsal tunnel ganglia arising from the adjacent joints or tendon sheaths and compressing the tibial nerve from its deep side. It is contraindicated if there is other pathology of the tarsal tunnel that demands open surgery; if the ganglion compresses the tibial nerve from its superficial side, which calls for a different endoscopic approach using the ganglion portal; or if an intraneural ganglion of the tibial nerve is present. The purpose of this technical note is to describe a minimally invasive approach for endoscopic resection of the tarsal tunnel ganglion.

  13. Fractional tunnelling resonance in plasmonic media

    PubMed Central

    Kang, Ji-Hun; -Han Park, Q.

    2013-01-01

    Metals can transmit light by tunnelling when they possess skin-depth thickness. Tunnelling can be resonantly enhanced if resonators are added to each side of a metal film, such as additional dielectric layers or periodic structures on a metal surface. Here we show that, even with no additional resonators, tunnelling resonance can arise if the metal film is confined and fractionally thin. In a slit waveguide filled with a negative permittivity metallic slab of thickness L, resonance is shown to arise at fractional thicknesses (L = Const./m; m = 1,2,3,…) by the excitation of ‘vortex plasmons'. We experimentally demonstrate fractional tunnelling resonance and vortex plasmons using microwave and negative permittivity metamaterials. The measured spectral peaks of the fractional tunnelling resonance and modes of the vortex plasmons agree with theoretical predictions. Fractional tunnelling resonance and vortex plasmons open new perspectives in resonance physics and promise potential applications in nanotechnology. PMID:23939460

  14. Chaos regularization of quantum tunneling rates.

    PubMed

    Pecora, Louis M; Lee, Hoshik; Wu, Dong-Ho; Antonsen, Thomas; Lee, Ming-Jer; Ott, Edward

    2011-06-01

    Quantum tunneling rates through a barrier separating two-dimensional, symmetric, double-well potentials are shown to depend on the classical dynamics of the billiard trajectories in each well and, hence, on the shape of the wells. For shapes that lead to regular (integrable) classical dynamics the tunneling rates fluctuate greatly with eigenenergies of the states sometimes by over two orders of magnitude. Contrarily, shapes that lead to completely chaotic trajectories lead to tunneling rates whose fluctuations are greatly reduced, a phenomenon we call regularization of tunneling rates. We show that a random-plane-wave theory of tunneling accounts for the mean tunneling rates and the small fluctuation variances for the chaotic systems.

  15. Terminal area energy management regime investigations utilizing an 0.030-scale model (47-0) of the space shuttle vehicle orbiter configuration 140A/B/C/R in the Ames Research Center 11 x 11 foot transonic wind tunnel (OA148), volume 5

    NASA Technical Reports Server (NTRS)

    Hawthorne, P. J.

    1976-01-01

    Data obtained in wind tunnel test OA148 are presented. The objectives of the test series were to: (1) obtain pressure distributions, forces and moments over the vehicle 5 orbiter in the thermal area energy management (TAEM) and approach phases of flight; (2) obtain elevon and rudder hinge moments in the TAEM and approach phases of flight; (3) obtain body flap and elevon loads for verification of loads balancing with integrated pressure distributions; and (4) obtain pressure distributions near the short OMS pods in the high subsonic, transonic and low supersonic Mach number regimes.

  16. Wind-Tunnel Testing In The 12-Foot Low - Speed Tunnel

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Low-speed wind tunnel test were conducted in the 12 - foot Tunnel at NASA Langley Research center to investigate application of various wing devices on the effect of stall departure resistance at high angles of attack.

  17. Preparation of Chemically Etched Tips for Ambient Instructional Scanning Tunneling Microscopy

    ERIC Educational Resources Information Center

    Zaccardi, Margot J.; Winkelmann, Kurt; Olson, Joel A.

    2010-01-01

    A first-year laboratory experiment that utilizes concepts of electrochemical tip etching for scanning tunneling microscopy (STM) is described. This experiment can be used in conjunction with any STM experiment. Students electrochemically etch gold STM tips using a time-efficient method, which can then be used in an instructional grade STM that…

  18. Wind-Tunnel/Flight Correlation, 1981

    NASA Technical Reports Server (NTRS)

    Mckinney, L. W. (Editor); Baals, D. D. (Editor)

    1982-01-01

    Wind-tunnel/flight correlation activities are reviewed to assure maximum effectiveness of the early experimental programs of the National Transonic Facility (NTF). Topics included a status report of the NTF, the role of tunnel-to-tunnel correlation, a review of past flight correlation research and the resulting data base, the correlation potential of future flight vehicles, and an assessment of the role of computational fluid dynamics.

  19. Aeronautical Wind Tunnels, Europe and Asia

    DTIC Science & Technology

    2006-02-01

    AERONAUTICAL WIND TUNNELS EUROPE AND ASIA Researchers: Katarina David Jenele Gorham Sarah Kim Patrick Miller... Wind Tunnels Europe and Asia 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...18 Library of Congress – Federal Research Division Aeronautical Wind Tunnels Europe and Asia PREFACE 1 This catalog is a compilation of data on

  20. Effect of Chaos on Relativistic Quantum Tunneling

    DTIC Science & Technology

    2012-06-01

    Effect of chaos on relativistic quantum tunneling This article has been downloaded from IOPscience. Please scroll down to see the full text article...of chaos on relativistic quantum tunneling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...tunneling dynamics even in the relativistic quantum regime. Similar phenomena have been observed in graphene. A physical theory is developed to

  1. Tunneling time in attosecond experiments and the time-energy uncertainty relation

    NASA Astrophysics Data System (ADS)

    Kullie, Ossama

    2015-11-01

    In this work we present a theoretical model of the tunneling time and the tunneling process (in attosecond experiment for the He atom). Our model is supported with physical reasoning leading to a relation which performs an excellent estimation for the tunneling time in attosecond and strong-field experiments, where we address the important case of the He atom. Our tunneling time estimation is found by utilizing the time-energy uncertainty relation and represents a quantum clock. The tunneling time is also featured as the time of passage through the barrier similar to Einstein's photon-box Gedanken experiment. Our work tackles an important case study for the theory of time in quantum mechanics and is very promising for the search for a (general) time operator in quantum mechanics. The work can be seen as a fundamental step in dealing with the tunneling time in strong-field and ultrafast science and is appealing for more elaborate treatments using quantum wave-packet dynamics and especially for complex atoms and molecules.

  2. Tunneling induced absorption with competing Nonlinearities

    PubMed Central

    Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi

    2016-01-01

    We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility. PMID:27958303

  3. Quantum electron tunneling in respiratory complex I.

    PubMed

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A

    2011-05-12

    We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. While the one-electron tunneling approximation is found to hold in electron tunneling between the antiferromagnetic binuclear and tetranuclear Fe/S clusters without major orbital or spin rearrangement of the core electrons, induced polarization of the core electrons contributes significantly to decrease the electron transfer rates to 19-56 %. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of the electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A signature of the wave properties of electrons is observed as distinct quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included is in good agreement with a reported phenomenological relation.

  4. Observation of density-induced tunneling.

    PubMed

    Jürgensen, Ole; Meinert, Florian; Mark, Manfred J; Nägerl, Hanns-Christoph; Lühmann, Dirk-Sören

    2014-11-07

    We study the dynamics of bosonic atoms in a tilted one-dimensional optical lattice and report on the first direct observation of density-induced tunneling. We show that the interaction affects the time evolution of the doublon oscillation via density-induced tunneling and pinpoint its density and interaction dependence. The experimental data for different lattice depths are in good agreement with our theoretical model. Furthermore, resonances caused by second-order tunneling processes are studied, where the density-induced tunneling breaks the symmetric behavior for attractive and repulsive interactions predicted by the Hubbard model.

  5. Italian and French Experiments on Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Knight, WM

    1920-01-01

    Given here are the results of experiments conducted by Colonel Costanzi of the Italian Army to determine the influence of the surrounding building in which a wind tunnel was installed on the efficiency of the installation, and how the efficiency of the installation was affected by the design of the tunnel. Also given are the results of a series of experiments by Eiffel on 34 models of tunnels of different dimensions. This series of experiments was started in order to find out if, by changing the shape of the nozzle or of the diffuser of the large tunnel at Auteuil, the efficiency of the installation could be improved.

  6. Scanning Tunneling Microscopy Studies of Quasicrystals

    NASA Astrophysics Data System (ADS)

    Becker, Russell S.; Kortan, A. Refik

    The following sections are included: * INTRODUCTION * EXPERIMENTAL * X-RAY DIFFRACTION * SCANNING TUNNELING MICROSCOPY * STRUCTURE MODELLING BASED ON STM * COMPARISON WITH MODELS BASED ON BULK STUDIES * CONCLUSION * REFERENCES

  7. Predictive modelling of ferroelectric tunnel junctions

    NASA Astrophysics Data System (ADS)

    Velev, Julian P.; Burton, John D.; Zhuravlev, Mikhail Ye; Tsymbal, Evgeny Y.

    2016-05-01

    Ferroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction—a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructive readout. This remarkable progress is to a large extent driven by a productive cycle of predictive modelling and innovative experimental effort. In this review article, we outline the development of the ferroelectric tunnel junction concept and the role of theoretical modelling in guiding experimental work. We discuss a wide range of physical phenomena that control the functional properties of ferroelectric tunnel junctions and summarise the state-of-the-art achievements in the field.

  8. PUREX Storage Tunnels dangerous waste permit application

    SciTech Connect

    Not Available

    1991-12-01

    The PUREX Storage Tunnels are a mixed waste storage unit consisting of two underground railroad tunnels: Tunnel Number 1 designated 218-E-14 and Tunnel Number 2 designated 218-E-15. The two tunnels are connected by rail to the PUREX Plant and combine to provide storage space for 48 railroad cars (railcars). The PUREX Storage Tunnels provide a long-term storage location for equipment removed from the PUREX Plant. Transfers into the PUREX Storage Tunnels are made on an as-needed basis. Radioactively contaminated equipment is loaded on railcars and remotely transferred by rail into the PUREX Storage Tunnels. Railcars act as both a transport means and a storage platform for equipment placed into the tunnels. This report consists of part A and part B. Part A reports on amounts and locations of the mixed water. Part B permit application consists of the following: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report.

  9. Is carpal tunnel decompression warranted for HNPP?

    PubMed

    Earle, Nicholas; Zochodne, Douglas W

    2013-12-01

    The role of carpal tunnel decompression surgery for patients that have hereditary neuropathy with liability to pressure palsy (HNPP) is currently unknown. Since recovery from carpal tunnel compression is often associated with remyelination or nodal reconstruction rather than axonal regeneration, it is uncertain whether the PMP22 deletion associated with HNPP interrupts myelin or nodal reconstitution. We describe two patients with genetically confirmed HNPP and symptomatic carpal tunnel syndrome that had clinical and electrophysiological improvement after surgical decompression. The findings indicate a capacity for conduction repair in HNPP. They also suggest a need for further investigation and discussion around whether to offer carpal tunnel decompression to symptomatic HNPP patients.

  10. Ferroelectric control of anisotropic damping in multiferroic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, Ning; Berakdar, Jamal; Jia, Chenglong

    2015-10-01

    The magnetoelectric effect on nonlocal magnetization dynamics is theoretically investigated in normal-metal/ferroelectric-insulator/ferromagnetic tunnel junctions. In addition to the Rashba spin-orbit interaction (SOI) originating from loss of parity symmetry at the interfaces, the topology of interfacial spiral spins triggered by ferroelectric polarization acts with an effective SOI that is electrically controllable. These spin-dependent interactions result in an anisotropic Gilbert damping with C2 v symmetry. The findings are of a direct relevance for the utilization of composite multiferroics for devices that rely on electrically controlled magnetic switching.

  11. Incompressible viscous flow simulations of the NFAC wind tunnel

    NASA Technical Reports Server (NTRS)

    Champney, Joelle Milene

    1986-01-01

    The capabilities of an existing 3-D incompressible Navier-Stokes flow solver, INS3D, are extended and improved to solve turbulent flows through the incorporation of zero- and two-equation turbulence models. The two-equation model equations are solved in their high Reynolds number form and utilize wall functions in the treatment of solid wall boundary conditions. The implicit approximate factorization scheme is modified to improve the stability of the two-equation solver. Applications to the 3-D viscous flow inside the 80 by 120 feet open return wind tunnel of the National Full Scale Aerodynamics Complex (NFAC) are discussed and described.

  12. Decoherence spectroscopy with individual two-level tunneling defects

    PubMed Central

    Lisenfeld, Jürgen; Bilmes, Alexander; Matityahu, Shlomi; Zanker, Sebastian; Marthaler, Michael; Schechter, Moshe; Schön, Gerd; Shnirman, Alexander; Weiss, Georg; Ustinov, Alexey V.

    2016-01-01

    Recent progress with microfabricated quantum devices has revealed that an ubiquitous source of noise originates in tunneling material defects that give rise to a sparse bath of parasitic two-level systems (TLSs). For superconducting qubits, TLSs residing on electrode surfaces and in tunnel junctions account for a major part of decoherence and thus pose a serious roadblock to the realization of solid-state quantum processors. Here, we utilize a superconducting qubit to explore the quantum state evolution of coherently operated TLSs in order to shed new light on their individual properties and environmental interactions. We identify a frequency-dependence of TLS energy relaxation rates that can be explained by a coupling to phononic modes rather than by anticipated mutual TLS interactions. Most investigated TLSs are found to be free of pure dephasing at their energy degeneracy points, around which their Ramsey and spin-echo dephasing rates scale linearly and quadratically with asymmetry energy, respectively. We provide an explanation based on the standard tunneling model, and identify interaction with incoherent low-frequency (thermal) TLSs as the major mechanism of the pure dephasing in coherent high-frequency TLS. PMID:27030167

  13. Quantum Annealing and Tunable Magnetic Domain Wall Tunneling

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Thomas F.

    2001-03-01

    Traditional simulated annealing utilizes thermal fluctuations for convergence in optimization problems. Quantum tunneling provides a different mechanism for moving between states, with the potential for reduced time scales. We compare thermal and quantum annealing in a model Ising ferromagnet composed of holmium dipoles in a lithium tetrafluoride matrix. The effects of quantum mechanics can be tuned in the laboratory by varying a magnetic field applied transverse to the Ising axis. This new knob permits us to: (1) tune the crossover between a classical Arrhenius response at high temperatures and an athermal response below 100 mK; (2) quantify the tunneling of magnetic domain walls through potential energy barriers in terms of an effective mass [1]; and (3) hasten convergence to the optimal state [2]. [1] "Tunable Quantum Tunneling of Magnetic Domain Walls," J. Brooke, T.F. Rosenbaum and G. Aeppli, preprint (2000). [2] "Quantum Annealing of a Disordered Magnet," J. Brooke, D. Bitko, T.F. Rosenbaum and G. Aeppli, Science 284, 779 (1999).

  14. Tunneling in graphene-topological insulator hybrid devices

    NASA Astrophysics Data System (ADS)

    Steinberg, H.; Orona, L. A.; Fatemi, V.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.

    2015-12-01

    Hybrid graphene-topological insulator (TI) devices were fabricated using a mechanical transfer method and studied via electronic transport. Devices consisting of bilayer graphene (BLG) under the TI Bi2Se3 exhibit differential conductance characteristics which appear to be dominated by tunneling, roughly reproducing the Bi2Se3 density of states. Similar results were obtained for BLG on top of Bi2Se3 , with tenfold greater conductance consistent with a larger contact area due to better surface conformity. The devices further show evidence of inelastic phonon-assisted tunneling processes involving both Bi2Se3 and graphene phonons. These processes favor phonons which compensate for momentum mismatch between the TI Γ and graphene K ,K' points. Finally, the utility of these tunnel junctions is demonstrated on a density-tunable BLG device, where the charge neutrality point is traced along the energy-density trajectory. This trajectory is used as a measure of the ground-state density of states.

  15. Effect of joint spacing and joint dip on the stress distribution around tunnels using different numerical methods

    NASA Astrophysics Data System (ADS)

    Nikadat, Nooraddin; Fatehi Marji, Mohammad; Rahmannejad, Reza; Yarahmadi Bafghi, Alireza

    2016-11-01

    Different conditions may affect the stability of tunnels by the geometry (spacing and orientation) of joints in the surrounded rock mass. In this study, by comparing the results obtained by the three novel numerical methods i.e. finite element method (Phase2), discrete element method (UDEC) and indirect boundary element method (TFSDDM), the effects of joint spacing and joint dips on the stress distribution around rock tunnels are numerically studied. These comparisons indicate the validity of the stress analyses around circular rock tunnels. These analyses also reveal that for a semi-continuous environment, boundary element method gives more accurate results compared to the results of finite element and distinct element methods. In the indirect boundary element method, the displacements due to joints of different spacing and dips are estimated by using displacement discontinuity (DD) formulations and the total stress distribution around the tunnel are obtained by using fictitious stress (FS) formulations.

  16. Neuroreceptor Activation by Vibration-Assisted Tunneling

    PubMed Central

    Hoehn, Ross D.; Nichols, David; Neven, Hartmut; Kais, Sabre

    2015-01-01

    G protein-coupled receptors (GPCRs) constitute a large family of receptor proteins that sense molecular signals on the exterior of a cell and activate signal transduction pathways within the cell. Modeling how an agonist activates such a receptor is fundamental for an understanding of a wide variety of physiological processes and it is of tremendous value for pharmacology and drug design. Inelastic electron tunneling spectroscopy (IETS) has been proposed as a model for the mechanism by which olfactory GPCRs are activated by a bound agonist. We apply this hyothesis to GPCRs within the mammalian nervous system using quantum chemical modeling. We found that non-endogenous agonists of the serotonin receptor share a particular IET spectral aspect both amongst each other and with the serotonin molecule: a peak whose intensity scales with the known agonist potencies. We propose an experiential validation of this model by utilizing lysergic acid dimethylamide (DAM-57), an ergot derivative, and its deuterated isotopologues; we also provide theoretical predictions for comparison to experiment. If validated our theory may provide new avenues for guided drug design and elevate methods of in silico potency/activity prediction. PMID:25909758

  17. Low-Speed Wind Tunnel Flow Quality Determination

    DTIC Science & Technology

    2011-09-01

    39 a. Pressure Rake installation ......................................................39 b. Instrument Setup and Tunnel Warmup ...43 b. Instrument Setup and Tunnel Warmup .................................44 2. Conduct of Testing...55 b. Instrument Setup and Tunnel Warmup .................................57 3. CTA Calibration Coefficient Determination

  18. 1. GENERAL VIEW OF ENTRANCE TO BLUE RIDGE TUNNEL (LEFT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF ENTRANCE TO BLUE RIDGE TUNNEL (LEFT) FROM SOUTHEAST. ORIGINAL BLUE RIDGE R.R. (CROZET) TUNNEL IS VISIBLE AT RIGHT. - Chesapeake & Ohio Railroad, Blue Ridge Tunnel, Highway 250 at Rockfish Gap, Afton, Nelson County, VA

  19. NORTHERN END OF VIADUCT WHERE IT ENTERS BATTERY STREET TUNNEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERN END OF VIADUCT WHERE IT ENTERS BATTERY STREET TUNNEL. LAKE UNION VISIBLE IN BACKGROUND. TUNNEL PROCEEDS IN CUT AND COVER FASHION DIRECTLY BENEATH BATTERY STREET. - Alaskan Way Viaduct and Battery Street Tunnel, Seattle, King County, WA

  20. View of Flume Tunnel #3 through Purple Mountain, showing flume ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Flume Tunnel #3 through Purple Mountain, showing flume entering into the tunnel. Looking south - Childs-Irving Hydroelectric Project, Childs System, Flume Tunnel No. 3, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  1. 4. East portal of Tunnel 25, view to southwest from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. East portal of Tunnel 25, view to southwest from west end of Tunnel 26 (HAER CA-202), 135mm lens. - Central Pacific Transcontinental Railroad, Tunnel No. 25, Milepost 133.09, Applegate, Placer County, CA

  2. Help Students Tunnel Their Way to Math and Writing Skills.

    ERIC Educational Resources Information Center

    MacMath, Russ

    1987-01-01

    A teacher describes how a cardboard box tunnel was used to capitalize on children's fascination with boxes. The finished tunnel offers opportunities for honing math and writing skills. Layouts for tunnels and related activities are suggested. (MT)

  3. 1. West portal of Tunnel 25, contextual view to northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West portal of Tunnel 25, contextual view to northeast from Tunnel 24 (HAER CA-200), 135mm lens. - Central Pacific Transcontinental Railroad, Tunnel No. 25, Milepost 133.09, Applegate, Placer County, CA

  4. View of Irving Flume Tunnel #1 showing the steel flume ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Irving Flume Tunnel #1 showing the steel flume with trestles leading into concrete tunnel. Looking south - Childs-Irving Hydroelectric Project, Irving System, Flume Tunnel No. 1, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  5. 4. VIEW FROM MIDDLE ADIT OF WAWONA TUNNEL AT HWY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW FROM MIDDLE ADIT OF WAWONA TUNNEL AT HWY. 120. TUNNEL #1 IS IN LOWER CENTER OF IMAGE. - Big Oak Flat Road Tunnel No. 1, Through mountain spur on New Big Oak Flat Road, Yosemite Village, Mariposa County, CA

  6. 1. West portal of Tunnel 17, contextual view to northeast, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West portal of Tunnel 17, contextual view to northeast, 135mm lens. The tunnel penetrates the toe of Dorris Hill, which rises to the left. - Southern Pacific Railroad Natron Cutoff, Tunnel No. 17, Milepost 408, Dorris, Siskiyou County, CA

  7. 340. Caltrans, Photographer October 14, 1935 "TUNNEL WEST PORTAL"; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    340. Caltrans, Photographer October 14, 1935 "TUNNEL - WEST PORTAL"; VIEW OF TUNNEL - WEST PORTAL' UNDER CONSTRUCTION SHOWING EXCAVATION OF TUNNEL AFTER POUR. 5-1669 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  8. 1. West portal of Tunnel 22, contextual view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West portal of Tunnel 22, contextual view to the northwest, 135mm lens. Tunnel 22 pierces a ridge separating Oakridge from Westfir. - Southern Pacific Railroad Natron Cutoff, Tunnel 22, Milepost 581.85, Oakridge, Lane County, OR

  9. Mars Surface Tunnel Element Concept

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    How crews get into or out of their ascent vehicle has profound implications for Mars surface architecture. Extravehicular Activity (EVA) hatches and Airlocks have the benefit of relatively low mass and high Technology Readiness Level (TRL), but waste consumables with a volume depressurization for every ingress/egress. Perhaps the biggest drawback to EVA hatches or Airlocks is that they make it difficult to keep Martian dust from being tracked back into the ascent vehicle, in violation of planetary protection protocols. Suit ports offer the promise of dust mitigation by keeping dusty suits outside the cabin, but require significant cabin real estate, are relatively high mass, and current operational concepts still require an EVA hatch to get the suits outside for the first EVA, and back inside after the final EVA. This is primarily because current designs don't provide enough structural support to protect the suits from ascent/descent loads or potential thruster plume impingement. For architectures involving more than one surface element-such as an ascent vehicle and a rover or surface habitat-a retractable tunnel is an attractive option. By pushing spacesuit don/doff and EVA operations to an element that remains on the surface, ascended vehicle mass and dust can be minimized. What's more, retractable tunnels provide operational flexibility by allowing surface assets to be re-configured or built up over time. Retractable tunnel functional requirements and design concepts being developed as part of the National Aeronautics and Space Administration's (NASA) Evolvable Mars Campaign (EMC) work will add a new ingress/egress option to the surface architecture trade space.

  10. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of Full-Scale Tunnel (FST): 120-Foot Truss hoisting, one and two point suspension. In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; and fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293)

  11. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of Full-Scale Tunnel (FST). In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; an fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293).

  12. Oxidation of tunnel barrier metals in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yang, J. Joshua; Ladwig, Peter F.; Yang, Ying; Ji, Chengxiang; Chang, Y. Austin; Liu, Feng X.; Pant, Bharat B.; Schultz, Allan E.

    2005-05-01

    The oxidation of an ultrathin metal layer (<1nm) to form an oxide tunnel barrier is of critical importance for the fabrication of magnetic tunnel junctions (MTJs) with low product of resistance and area (R×A). Nonuniform and excessive or insufficient oxidation will occur by using conventional plasma, air, or O2 and noble gas mixtures as oxidation methods. An oxidation method was investigated to oxidize only an ultrathin layer of metal (such as Y) without oxidizing adjacent ferromagnetic thin film layers. We have now demonstrated that a gas mixture of H2O/H2 with a fixed chemical potential of oxygen determined by the relative amounts of the two gases can oxidize Y and Ta thin layers while simultaneously keeping a Co ferromagnetic layer completely unoxidized. This universal method can be used to preferentially oxidize a host of other metals with high tendency to form oxides, such as Zr, Hf, Nb, rare earth metals, etc. and may allow us to access the feasible lower limit of barrier thickness in MTJs.

  13. Tunnels and dikes of the Koolau Range, Oahu, Hawaii, and their effect on storage depletion and movement of ground water

    USGS Publications Warehouse

    Hirashima, George Tokusuke

    1971-01-01

    Ground water impounded by dikes in the Koolau Range is a major source of water for the island of Oahu, Hawaii, and many tunnels have been bored into the range to develop it. All water-development tunnels, except Waihee tunnel, have depleted storage in the rocks they penetrate and are now discharging at rates that are but fractions of the rates possible at full storage. Rocks above the floor of the water-development part of Waihee tunnel have never been completely dewatered, and storage can be manipulated by regulating outflow. Thus, storage for this tunnel can be increased during periods of low demand and discharged at high rates during periods of high demand. A measure of the rate of drainage or depletion of storage is the recession constant b in the recession-curve equation Qt=Q0e-b t. The higher the value of b, the faster water can be drawn from storage or returned to storage through artificial recharge. Mathematical analysis of the flow-recession curve of Waihee tunnel shows that (1) its recession constant is 0.00401, (2) net storage (exclusive of recharge) is 2,200 million gallons (6,800 acre-feet), and (8) initial discharge from full storage would be about 19 million gallons per day. Analysis of flow-recession curves for Waiahole ditch tunnel (main bore) and Haiku tunnel shows that these tunnels have drainage characteristics that are similar to those of Waihee tunnel. The composite recession constant computed for the four tunnels north of Waiahole is about one-third as large as that computed for the Waiahole ditch tunnel (main bore) and the tunnels to the south. The difference is due to an abrupt change in spacing of dikes north of Waiahole. At and south of Waiahole Stream, dikes are spaced tens or hundreds of feet apart; north of Waiahole, they are spaced inches or a few feet apart. Storage could be restored by bulkheading at the controlling dike or dikes after an analysis is made of the flow-recession curve for each tunnel. Such analyses will show which

  14. Stress analysis of parallel oil and gas steel pipelines in inclined tunnels.

    PubMed

    Wu, Xiaonan; Lu, Hongfang; Wu, Shijuan

    2015-01-01

    Geological conditions along long distance pipelines are complex. In consideration of differences in elevation and terrain obstacles, long distance pipelines are commonly laid through tunnels. Oil and gas pipelines are often laid side by side to reduce construction costs and minimize geological impact. The layout and construction of parallel oil and gas pipelines are more complex than those of single pipelines. In order to reduce safety hazards, it is necessary to carry out stress analysis of the oil and gas pipelines that run through tunnels. In this study, a stress analysis model of pipelines running through a tunnel was developed. On the basis of the finite element method, CAESAR II software was used to analyze the stress and displacement of a section of parallel oil and gas pipelines that run through tunnels and stress and displacement distribution laws were drawn from the analyses. A study of the factors influencing stress recommended that: (1) The buttress interval of the parallel oil and gas pipelines in a tunnel should be 12 m; (2) The angle of inclined pipelines should be no greater than 25°; (3) The stress of oil pipelines enhances more obviously than that of gas pipelines under earthquake action; (4) The average stress can be reduced by adopting "ladder" laying; and (5) Guide bend can be set at the tunnel entrance and exit in order to reduce the stress.

  15. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet with Shock Interactions

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Denison, Marie; Sozer, Emre; Moini-Yekta, Shayan

    2016-01-01

    NASA and Industry are performing vehicle studies of configurations with low sonic boom pressure signatures. The computational analyses of modern configuration designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty in the aft signatures with often greater boundary layer effects and nozzle jet pressures. Wind tunnel testing at significantly lower Reynolds numbers than in flight and without inlet and nozzle jet pressures make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel from Mach 1.6 to 2.0 will be used to assess the effects of shocks from components passing through nozzle jet plumes on the sonic boom pressure signature and provide datasets for comparison with CFD codes. A large number of high-fidelity numerical simulations of wind tunnel test models with a variety of shock generators that simulate horizontal tails and aft decks have been studied to provide suitable models for sonic boom pressure measurements using a minimally intrusive pressure rail in the wind tunnel. The computational results are presented and the evolution of candidate wind tunnel models is summarized and discussed in this paper.

  16. Microseismic Monitoring of Strainburst Activities in Deep Tunnels at the Jinping II Hydropower Station, China

    NASA Astrophysics Data System (ADS)

    Xu, N. W.; Li, T. B.; Dai, F.; Zhang, R.; Tang, C. A.; Tang, L. X.

    2016-03-01

    Rockbursts were frequently encountered during the construction of deep tunnels at the Jinping II hydropower station, Southwest China. Investigations of the possibility of rockbursts during tunnel boring machine (TBM) and drilling and blasting (D&B) advancement are necessary to guide the construction of tunnels and to protect personnel and TBM equipment from strainburst-related accidents. A real-time, movable microseismic monitoring system was installed to forecast strainburst locations ahead of the tunnel faces. The spatiotemporal distribution evolution of microseismic events prior to and during strainbursts was recorded and analysed. The concentration of microseismic events prior to the occurrence of strainbursts was found to be a significant precursor to strainbursts in deep rock tunnelling. During a 2-year microseismic investigation of strainbursts in the deep tunnels at the Jinping II hydropower station, a total of 2240 strainburst location forecasts were issued, with 63 % correctly forecasting the locations of strainbursts. The successful forecasting of strainburst locations proved that microseismic monitoring is essential for the assessment and mitigation of strainburst hazards, and can be used to minimise damage to equipment and personnel. The results of the current study may be valuable for the construction management and safety assessment of similar underground rock structures under high in situ stress.

  17. Fermion tunneling beyond semiclassical approximation

    SciTech Connect

    Majhi, Bibhas Ranjan

    2009-02-15

    Applying the Hamilton-Jacobi method beyond the semiclassical approximation prescribed in R. Banerjee and B. R. Majhi, J. High Energy Phys. 06 (2008) 095 for the scalar particle, Hawking radiation as tunneling of the Dirac particle through an event horizon is analyzed. We show that, as before, all quantum corrections in the single particle action are proportional to the usual semiclassical contribution. We also compute the modifications to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. Finally, the coefficient of the logarithmic correction to entropy is shown to be related with the trace anomaly.

  18. Metal-Vacuum-Metal Tunneling

    DTIC Science & Technology

    1990-11-01

    the unexposed areas was removed with wet etchants. The Al lines formed in this way were 1000 A in width. The field emission mode was also used by...positioned close to the substrate within tunneling range. Whey they ramped the tip voltage to 10-20 volts they formed patterns on the substrate that were...associated with the light induced decomposition of III-V compounds. It is based on well-known work on photo- oxidation and the anisotropic etching of III-V

  19. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Modified propeller and spinner in Full-Scale Tunnel (FST) model. On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel. 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow. This model can be constructed in a comparatively short time, using 2 by 4 framing with matched sheathing inside, and where circular sections are desired they can be obtained by nailing sheet metal to wooden ribs, which can be cut on the band saw. It is estimated that three months will be required for the construction and testing of such a model and that the cost will be approximately three thousand dollars, one thousand dollars of which will be for the motors. No suitable location appears to exist in any of our present buildings, and it may be necessary to build it outside and cover it with a roof.' George Lewis responded immediately (June 27) granting the authority to proceed. He urged Langley to expedite construction and to employ extra carpenters if necessary. Funds for the model came from the FST project

  20. Davies Critical Point and Tunneling

    NASA Astrophysics Data System (ADS)

    La, Hoseong

    2012-04-01

    From the point of view of tunneling, the physical meaning of the Davies critical point of a second-order phase transition in the black hole thermodynamics is clarified. At the critical point, the nonthermal contribution vanishes so that the black hole radiation is entirely thermal. It separates two phases: one with radiation enhanced by the nonthermal contribution, the other suppressed by the nonthermal contribution. We show this in both charged and rotating black holes. The phase transition is also analyzed in the cases in which emissions of charges and angular momenta are incorporated.

  1. Wall Interference in Wind Tunnels

    DTIC Science & Technology

    1982-09-01

    d’un d £ faut d’ßtendue des signatures. Sp^cialeinent dans le cas de la correction d’incidence, la pondäration des ecarts de Kp entre les deux parois, de...für Stromungsmechanik der Tech. Univers. Bienroder Weg 3 D -3300 Braunschweig — Germany MrL.H.Ohman Head, High Speed Aerodynamics Lab. National...CORRECTIONS IM ’. • SOLID-WALL TUNNELS FROM MEASUREMENTS OF STATIC PRESSURE AT THE WALLS j t by t P. R. Ashill and D . J. Weeks Aerodynamics

  2. Quantum Tunneling Time: Relativistic Extensions

    NASA Astrophysics Data System (ADS)

    Xu, Dai-Yu; Wang, Towe; Xue, Xun

    2013-11-01

    Several years ago, in quantum mechanics, Davies proposed a method to calculate particle's traveling time with the phase difference of wave function. The method is convenient for calculating the sojourn time inside a potential step and the tunneling time through a potential hill. We extend Davies' non-relativistic calculation to relativistic quantum mechanics, with and without particle-antiparticle creation, using Klein-Gordon equation and Dirac Equation, for different forms of energy-momentum relation. The extension is successful only when the particle and antiparticle creation/annihilation effect is negligible.

  3. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Modification of entrance cone Full-Scale Tunnel (FST). Smith DeFrance describes the entrance cone in NACA TR 459 as follows: 'The entrance cone is 75 feet in length and in this distance the cross section changes from a rectangle 72 by 110 feet to a 30 by 60 foot elliptic section. The area reduction in the entrance cone is slightly less than 5:1. The shape of the entrance cone was chosen to give as fas as possible a constant acceleration to the air stream and to retain a 9-foot length of nozzle for directing the flow.' (p. 293)

  4. Stress changes ahead of an advancing tunnel

    USGS Publications Warehouse

    Abel, J.F.; Lee, F.T.

    1973-01-01

    Instrumentation placed ahead of three model tunnels in the laboratory and ahead of a crosscut driven in a metamorphic rock mass detected stress changes several tunnel diameters ahead of the tunnel face. Stress changes were detected 4 diameters ahead of a model tunnel drilled into nearly elastic acrylic, 2??50 diameters ahead of a model tunnel drilled into concrete, and 2 diameters ahead of a model tunnel drilled into Silver Plume Granite. Stress changes were detected 7??50 diameters ahead of a crosscut driven in jointed, closely foliated gneisses and gneissic granites in an experimental mine at Idaho Springs, Colorado. These results contrast markedly with a theoretical elastic estimate of the onset of detectable stress changes at 1 tunnel diameter ahead of the tunnel face. A small compressive stress concentration was detected 2 diameters ahead of the model tunnel in acrylic, 1.25 diameters ahead of the model tunnel in concrete, and 1 diameter ahead of the model tunnel in granite. A similar stress peak was detected about 6 diameters ahead of the crosscut. No such stress peak is predicted from elastic theory. The 3-dimensional in situ stress determined in the field demonstrate that geologic structure controls stress orientations in the metamorphic rock mass. Two of the computed principal stresses are parallel to the foliation and the other principal stress is normal to it. The principal stress orientations vary approximately as the foliation attitude varies. The average horizontal stress components and the average vertical stress component are three times and twice as large, respectively, as those predicted from the overburden load. An understanding of the measured stress field appears to require the application of either tectonic or residual stress components, or both. Laboratory studies indicate the presence of proportionately large residual stresses. Mining may have triggered the release of strain energy, which is controlled by geologic structure. ?? 1973.

  5. A study of large scale gust generation in a small scale atmospheric wind tunnel with applications to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Roadman, Jason Markos

    Modern technology operating in the atmospheric boundary layer can always benefit from more accurate wind tunnel testing. While scaled atmospheric boundary layer tunnels have been well developed, tunnels replicating portions of the atmospheric boundary layer turbulence at full scale are a comparatively new concept. Testing at full-scale Reynolds numbers with full-scale turbulence in an "atmospheric wind tunnel" is sought. Many programs could utilize such a tool including Micro Aerial Vehicle(MAV) development, the wind energy industry, fuel efficient vehicle design, and the study of bird and insect flight, to name just a few. The small scale of MAVs provide the somewhat unique capability of full scale Reynolds number testing in a wind tunnel. However, that same small scale creates interactions under real world flight conditions, atmospheric gusts for example, that lead to a need for testing under more complex flows than the standard uniform flow found in most wind tunnels. It is for these reasons that MAVs are used as the initial testing application for the atmospheric gust tunnel. An analytical model for both discrete gusts and a continuous spectrum of gusts is examined. Then, methods for generating gusts in agreement with that model are investigated. Previously used methods are reviewed and a gust generation apparatus is designed. Expected turbulence and gust characteristics of this apparatus are compared with atmospheric data. The construction of an active "gust generator" for a new atmospheric tunnel is reviewed and the turbulence it generates is measured utilizing single and cross hot wires. Results from this grid are compared to atmospheric turbulence and it is shown that various gust strengths can be produced corresponding to weather ranging from calm to quite gusty. An initial test is performed in the atmospheric wind tunnel whereby the effects of various turbulence conditions on transition and separation on the upper surface of a MAV wing is investigated

  6. INSIGHTS INTO THE DYNAMIC RESPONSE OF TUNNELS IN JOINTED ROCKS

    SciTech Connect

    Heuze, F E; Morris, J P

    2005-02-17

    Tunnels in jointed rocks can be subjected to severe dynamic loads because of rock bursts, coal bumps, and large earthquakes. A series of 3-dimensional simulations was performed, based on discrete element analysis to gain insights into the parameters that influence the response of such tunnels. The simulations looked at the effect of joint set orientation, the effect of joint spacing, the effect of peak displacement for a given peak velocity, the effect of pulse peak velocity for a given displacement, the influence of using rigid versus deformable blocks in the analyses, and the effect of repeated loading. The results of this modeling were also compared to field evidence of dynamic tunnel failures. This comparison reinforced the notion that 3-dimensional discrete element analysis can capture very well the kinematics of structures in jointed rocks under dynamic loading. The paper concludes with a glimpse into the future. Results are shown for a 3-dimensional discrete element massively parallel simulation with 100 million contact elements, performed with the LLNL LDEC code.

  7. Design and installation of a high Reynolds number recirculating water tunnel

    NASA Astrophysics Data System (ADS)

    Daniel, Libin

    tunnel flow loop, the test section, the contraction and diffuser sections are also provided. The installation procedure that will be utilized to install the water tunnel in the High Reynolds Number Fluid Mechanics Laboratory is also discussed.

  8. An Overview of Preliminary Computational and Experimental Results for the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Perry, Boyd, III; Florance, James R.; Sanetrik, Mark D.; Wieseman, Carol D.; Stevens, William L.; Funk, Christie J.; Hur, Jiyoung; Christhilf, David M.; Coulson, David A.

    2011-01-01

    A summary of computational and experimental aeroelastic and aeroservoelastic (ASE) results for the Semi-Span Super-Sonic Transport (S4T) wind-tunnel model is presented. A broad range of analyses and multiple ASE wind-tunnel tests of the S4T have been performed in support of the ASE element in the Supersonics Program, part of NASA's Fundamental Aeronautics Program. The computational results to be presented include linear aeroelastic and ASE analyses, nonlinear aeroelastic analyses using an aeroelastic CFD code, and rapid aeroelastic analyses using CFD-based reduced-order models (ROMs). Experimental results from two closed-loop wind-tunnel tests performed at NASA Langley's Transonic Dynamics Tunnel (TDT) will be presented as well.

  9. Orbiter/shuttle carrier aircraft separation: Wind tunnel, simulation, and flight test overview and results

    NASA Technical Reports Server (NTRS)

    Homan, D. J.; Denison, D. E.; Elchert, K. C.

    1980-01-01

    A summary of the approach and landing test phase of the space shuttle program is given from the orbiter/shuttle carrier aircraft separation point of view. The data and analyses used during the wind tunnel testing, simulation, and flight test phases in preparation for the orbiter approach and landing tests are reported.

  10. Shock tunnel studies of scramjet phenomena, supplement 6

    NASA Technical Reports Server (NTRS)

    Wendt, M.; Nettleton, M.; Morgan, R. G.; Skinner, K.; Casey, R.; Stalker, R.; Brescianini, C.; Paull, A.; Allen, G.; Smart, M.

    1993-01-01

    Reports by the staff of the University of Queensland on various research studies related to the advancement of scramjet technology are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation.

  11. Shock tunnel studies of scramjet phenomena, supplement 7

    NASA Technical Reports Server (NTRS)

    Bakos, R. J.; Morgan, R. G.; Tuttle, S. L.; Kelly, G. M.; Paull, A.; Simmons, J. M.; Stalker, R. J.; Pulsonetti, M. V.; Buttsworth, D.; Allen, G. A., Jr.

    1993-01-01

    Reports by the staff of the University of Queensland on various research studies related to the advancement of scramjet technology are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation. This research activity is Supplement 7 under NASA Grant NAGW-674.

  12. Quantum-size resonance tunneling in the field emission phenomenon

    NASA Astrophysics Data System (ADS)

    Litovchenko, V.; Evtukh, A.; Kryuchenko, Yu.; Goncharuk, N.; Yilmazoglu, O.; Mutamba, K.; Hartnagel, H. L.; Pavlidis, D.

    2004-07-01

    Theoretical analyses have been performed of the quantum-size (QS) resonance tunneling in the field-emission (FE) phenomenon for different models of the emitting structures. Such experimentally observed peculiarities have been considered as the enhancement of the FE current, the deviation from the Fowler-Nordheim law, the appearance of sharp current peaks, and a negative resistance. Different types of FE cathodes with QS structures (quantized layers, wires, or dots) have been studied experimentally. Resonance current peaks have been observed, from which the values of the energy-level splitting can be estimated.

  13. Shock tunnel studies of scramjet phenomena, supplement 8

    NASA Technical Reports Server (NTRS)

    Stalker, R. J.; Hollis, P.; Allen, G. A.; Roberts, G. T.; Tuttle, S.; Bakos, R. J.; Morgan, R. G.; Pulsonetti, M. V.; Brescianini, C.; Buttsworth, D. R.

    1993-01-01

    Reports by the staff of the University of Oueensland on various research studies related to the advancement of scramjet technology are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation. This research activity is Supplement 8 under NASA Grant NAGW-674.

  14. Experimental Results from the Active Aeroelastic Wing Wind Tunnel Test Program

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Spain, Charles V.; Florance, James R.; Wieseman, Carol D.; Ivanco, Thomas G.; DeMoss, Joshua; Silva, Walter A.; Panetta, Andrew; Lively, Peter; Tumwa, Vic

    2005-01-01

    The Active Aeroelastic Wing (AAW) program is a cooperative effort among NASA, the Air Force Research Laboratory and the Boeing Company, encompassing flight testing, wind tunnel testing and analyses. The objective of the AAW program is to investigate the improvements that can be realized by exploiting aeroelastic characteristics, rather than viewing them as a detriment to vehicle performance and stability. To meet this objective, a wind tunnel model was crafted to duplicate the static aeroelastic behavior of the AAW flight vehicle. The model was tested in the NASA Langley Transonic Dynamics Tunnel in July and August 2004. The wind tunnel investigation served the program goal in three ways. First, the wind tunnel provided a benchmark for comparison with the flight vehicle and various levels of theoretical analyses. Second, it provided detailed insight highlighting the effects of individual parameters upon the aeroelastic response of the AAW vehicle. This parameter identification can then be used for future aeroelastic vehicle design guidance. Third, it provided data to validate scaling laws and their applicability with respect to statically scaled aeroelastic models.

  15. A case of acute tarsal tunnel syndrome following lateralizing calcaneal osteotomy.

    PubMed

    Walls, Raymond J; Chan, Jeremy Y; Ellis, Scott J

    2015-03-01

    Surgical correction of hindfoot varus is frequently performed with a lateral displacement calcaneal osteotomy. It has rarely been associated with iatrogenic tarsal tunnel syndrome in patients with pre-existing neurological disease. We report the first case of acute postoperative tarsal tunnel syndrome in a neurologically intact patient with post-traumatic hindfoot varus. Early diagnosis and emergent operative release afforded an excellent clinical outcome. Imaging studies can help outrule a compressive hematoma and assess for possible nerve transection; however it is paramount that a high index of suspicion is utilized with judicious operative intervention to minimize long-term sequelae.

  16. Instrumentation systems for the Langley Research Center 8-foot high temperature tunnel

    NASA Technical Reports Server (NTRS)

    Walsh, James J., Jr.; O'Connor, Laura A.

    1989-01-01

    A description is presented of the 8-foot high-temperature tunnel, a Mach 7 blowdown-type facility in which methane is burned in air under pressure, with the resulting combustion products utilized as the test medium. The instrumentation environment and requirements are identified, and instrumentation design, including wiring, sensors, and data acquisition system are described. The design and installation of a fast oxygen monitoring system to maintain the partial pressure of oxygen at 21 percent in the tunnel test section is included. Also, the new data acquisition system hardware details and data-reduction capabilities are defined.

  17. Scheme for accelerating quantum tunneling dynamics

    NASA Astrophysics Data System (ADS)

    Khujakulov, Anvar; Nakamura, Katsuhiro

    2016-02-01

    We propose a scheme of the exact fast forwarding of standard quantum dynamics for a charged particle. The present idea allows the acceleration of both the amplitude and the phase of the wave function throughout the fast-forward time range and is distinct from that of Masuda and Nakamura [Proc. R. Soc. A 466, 1135 (2010), 10.1098/rspa.2009.0446], which enabled acceleration of only the amplitude of the wave function on the way. We apply the proposed method to the quantum tunneling phenomena and obtain the electromagnetic field to ensure the rapid penetration of wave functions through a tunneling barrier. Typical examples described here are (1) an exponential wave packet passing through the δ -function barrier and (2) the opened Moshinsky shutter with a δ -function barrier just behind the shutter. We elucidate the tunneling current in the vicinity of the barrier and find a remarkable enhancement of the tunneling rate (tunneling power) due to the fast forwarding. In the case of a very high barrier, in particular, we present the asymptotic analysis and exhibit a suitable driving force to recover a recognizable tunneling current. The analysis is also carried out on the exact acceleration of macroscopic quantum tunneling with use of the nonlinear Schrödinger equation, which accommodates a tunneling barrier.

  18. Virtual Processes and Quantum Tunnelling as Fictions

    ERIC Educational Resources Information Center

    Arthur, Richard T. W.

    2012-01-01

    In this paper it is argued that virtual processes are dispensable fictions. The argument proceeds by a comparison with the phenomenon of quantum tunnelling. Building on an analysis of Levy-Leblond and Balibar, it is argued that, although the phenomenon known as quantum tunnelling certainly occurs and is at the basis of many paradigmatic quantum…

  19. Tunnelling from non-localised initial states

    NASA Technical Reports Server (NTRS)

    Bowcock, Peter; Gregory, Ruth

    1991-01-01

    An approach for calculating tunneling amplitudes from a nonlocalized initial state is presented. Generalizing the matching conditions and equations of motion to allow for complex momentum permits a description of tunneling in the presence of so-called classical motion. Possible applications of the method are presented.

  20. F-16XL Wind Tunnel Models

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a multiple exposure image of the F-16XL Supersonic Laminar Flow Control (SLFC) model in the Unitary Plan Wind Tunnel. This wind tunnel test was conducted to verify design pressure distributions for the SLFC flight experiment (see modified port wing) and to obtain simulator coefficients for stability and control investigations.

  1. Prediction of swelling rocks strain in tunneling

    NASA Astrophysics Data System (ADS)

    Parsapour, D.; Fahimifar, A.

    2016-05-01

    Swelling deformations leading to convergence of tunnels may result in significant difficulties during the construction, in particular for long term use of tunnels. By extracting an experimental based explicit analytical solution for formulating swelling strains as a function of time and stress, swelling strains are predicted from the beginning of excavation and during the service life of tunnel. Results obtained from the analytical model show a proper agreement with experimental results. This closed-form solution has been implemented within a numerical program using the finite element method for predicting time-dependent swelling strain around tunnels. Evaluating effects of swelling parameters on time-dependent strains and tunnel shape on swelling behavior around the tunnel according to this analytical solution is considered. The ground-support interaction and consequent swelling effect on the induced forces in tunnel lining is considered too. Effect of delay in lining installation on swelling pressure which acting on the lining and its structural integrity, is also evaluated. A MATLAB code of " SRAP" is prepared and applied to calculate all swelling analysis around tunnels based on analytical solution.

  2. Graphene tunnel junctions with aluminum oxide barrier

    NASA Astrophysics Data System (ADS)

    Feng, Ying; Trainer, Daniel J.; Chen, Ke

    2016-10-01

    We report a development of graphene tunnel junctions made by chemical vapor deposition grown graphene and sputtered aluminum insulating by an in-situ grown aluminum oxide. The thin oxide layer formed in between the metal layer and the two-dimensional material is a crucial part of a tunnel junction. We characterized surface morphology of oxide layers and studied tunneling spectra of lead and silver tunnel junctions to estimate the quality of the aluminum oxide. The Brinkman-Rowell-Dynes model was applied to fit the conductance-voltage plots to calculate the thickness of oxide layers. Junctions with graphene both on bottom and on top were fabricated and their tunneling properties were characterized after exposure to air for weeks to test time stability. Furthermore, the resistances of graphene tunnel junctions with aluminum oxide formed naturally and in an oxygen atmosphere were studied. Our results demonstrate that in-situ aluminum oxide is an effective barrier for graphene tunnel junctions. The methods of barrier formation enable the realization of more tunnel devices and circuits based on graphene.

  3. PRESSURE DEPENDENCE OF PHONON ASSISTED INTERBAND TUNNELING,

    DTIC Science & Technology

    Since very much is known about the band structure of germanium and of its dependence on stress, one can expect to obtain detailed information about... dependence of the relative change of tunneling current with hydrostatic pressure, in Sb-doped germanium tunnel junctions at 4.2 K. This effect is re

  4. Scanning scene tunnel for city traversing.

    PubMed

    Zheng, Jiang Yu; Zhou, Yu; Milli, Panayiotis

    2006-01-01

    This paper proposes a visual representation named scene tunnel for capturing urban scenes along routes and visualizing them on the Internet. We scan scenes with multiple cameras or a fish-eye camera on a moving vehicle, which generates a real scene archive along streets that is more complete than previously proposed route panoramas. Using a translating spherical eye, properly set planes of scanning, and unique parallel-central projection, we explore the image acquisition of the scene tunnel from camera selection and alignment, slit calculation, scene scanning, to image integration. The scene tunnels cover high buildings, ground, and various viewing directions and have uniformed resolutions along the street. The sequentially organized scene tunnel benefits texture mapping onto the urban models. We analyze the shape characteristics in the scene tunnels for designing visualization algorithms. After combining this with a global panorama and forward image caps, the capped scene tunnels can provide continuous views directly for virtual or real navigation in a city. We render scene tunnel dynamically by view warping, fast transmission, and flexible interaction. The compact and continuous scene tunnel facilitates model construction, data streaming, and seamless route traversing on the Internet and mobile devices.

  5. Object-Based Attention and Cognitive Tunneling

    ERIC Educational Resources Information Center

    Jarmasz, Jerzy; Herdman, Chris M.; Johannsdottir, Kamilla Run

    2005-01-01

    Simulator-based research has shown that pilots cognitively tunnel their attention on head-up displays (HUDs). Cognitive tunneling has been linked to object-based visual attention on the assumption that HUD symbology is perceptually grouped into an object that is perceived and attended separately from the external scene. The present research…

  6. 49 CFR 177.810 - Vehicular tunnels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Vehicular tunnels. 177.810 Section 177.810 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY PUBLIC HIGHWAY § 177.810 Vehicular tunnels. Except as regards...

  7. Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling

    SciTech Connect

    Alimardani, Nasir; Conley, John F.

    2014-08-25

    Metal-insulator-insulator-metal tunnel diodes with dissimilar work function electrodes and nanolaminate Al{sub 2}O{sub 3}-Ta{sub 2}O{sub 5} bilayer tunnel barriers deposited by atomic layer deposition are investigated. This combination of high and low electron affinity insulators, each with different dominant conduction mechanisms (tunneling and Frenkel-Poole emission), results in improved low voltage asymmetry and non-linearity of current versus voltage behavior. These improvements are due to defect enhanced direct tunneling in which electrons transport across the Ta{sub 2}O{sub 5} via defect based conduction before tunneling directly through the Al{sub 2}O{sub 3}, effectively narrowing the tunnel barrier. Conduction through the device is dominated by tunneling, and operation is relatively insensitive to temperature.

  8. High-Lift Flight Tunnel - Phase II Report. Phase 2 Report

    NASA Technical Reports Server (NTRS)

    Lofftus, David; Lund, Thomas; Rote, Donald; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    The High-Lift Flight Tunnel (HiLiFT) concept is a revolutionary approach to aerodynamic ground testing. This concept utilizes magnetic levitation and linear motors to propel an aerodynamic model through a tube containing a quiescent test medium. This medium (nitrogen) is cryogenic and pressurized to achieve full flight Reynolds numbers higher than any existing ground test facility world-wide for the range of 0.05 to 0.50 Mach. The results of the Phase II study provide excellent assurance that the HiLiFT concept will provide a valuable low-speed, high Reynolds number ground test facility. The design studies concluded that the HiLiFT facility is feasible to build and operate and the analytical studies revealed no insurmountable difficulties to realizing a practical high Reynolds number ground test facility. It was determined that a national HiLiFT facility, including development, would cost approximately $400M and could be operational by 2013 if fully funded. Study participants included National Aeronautics and Space Administration Langley Research Center as the Program Manager and MSE Technology Applications, Inc., (MSE) of Butte, Montana as the prime contractor and study integrator. MSE#s subcontractors included the University of Texas at Arlington for aerodynamic analyses and the Argonne National Laboratory for magnetic levitation and linear motor technology support.

  9. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Wing and nacelle set-up in Full-Scale Tunnel (FST). The NACA conducted drag tests in 1931 on a P3M-1 nacelle which were presented in a special report to the Navy. Smith DeFrance described this work in the report's introduction: 'Tests were conducted in the full-scale wind tunnel on a five to four geared Pratt and Whitney Wasp engine mounted in a P3M-1 nacelle. In order to simulate the flight conditions the nacelle was assembled on a 15-foot span of wing from the same airplane. The purpose of the tests was to improve the cooling of the engine and to reduce the drag of the nacelle combination. Thermocouples were installed at various points on the cylinders and temperature readings were obtained from these by the power plants division. These results will be reported in a memorandum by that division. The drag results, which are covered by this memorandum, were obtained with the original nacelle condition as received from the Navy with the tail of the nacelle modified, with the nose section of the nacelle modified, with a Curtiss anti-drag ring attached to the engine, with a Type G ring developed by the N.A.C.A., and with a Type D cowling which was also developed by the N.A.C.A.' (p. 1)

  10. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Modification of entrance cone of the Full-Scale Tunnel (FST). To the left are the FST guide vanes which Smith DeFrance described in NACA TR No. 459: 'The air is turned at the four corners of each return passage by guide vanes. The vanes are of the curved-airfoil type formed by two intersecting arcs with a rounded nose. The arcs were so chosen as to give a practically constant area through the vanes.' (p. 295) These vanes 'have chords of 3 feet 6 inches and are spaced at 0.41 of a chord length. By a proper adjustment of the angular setting of the vanes, a satisfactory velocity distribution has been obtained and no honeycomb has been found necessary.' (p. 295). Close inspection of the photograph will reveal a number of workers on the scaffolding. The heights were great and the work was quite dangerous. In October 1930, one construction worker working on the roof of the tunnel would die when he stepped off the planking to fetch a tool and fell through an unsupported piece of Careystone to the floor some 70 feet below.

  11. CARPAL TUNNEL SYNDROME IN CYCLISTS

    PubMed Central

    Sousa, Daniel; Sassul, Nicolás

    2017-01-01

    Objectives: About a group of cyclists, professionals / amateurs, Mountain bike, road and triathlon; achieve a good diagnosis of the disease, with a good clinical examination and sectorized according EGM injury evoked potentials. Methods: Clinical examination and accurate test with different signs of pathology. EGM with evocative potential and conduction velocity. Results: After 25 track cyclists, 18 professionals, 22 male and 3 female; for 24 months. Through good clinical examination and EMG. We got that 70% had direct compression injuries Carpal tunnel for poor support on the handlebars. The rest were cervical praxis, by poor body position on the bike, taking cervico very steep angles / dorsal, during competitions or training for more than 2 hrs. Conclusion: A good prevention work with our teacher / cyclist in the position of deposrtista in ciclo simulador. Work in the gym, on tone and elongation of the upper limb. A good EGM, made with a specialist physiatrist. It leads to the correct diagnosis, leads to a good final treatment; which agreed that:* Cervical praxis, had good results with treatment Conservative / FST / vit.B12.* The Carpal tunnel own injuries, treatment was quirúrg. (Open surgery) with subsequent FST / vit..B12 with satisfactory return in time to sporting activity.

  12. An Overview of the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model Program

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Perry, Boyd, III; Florance, James R.; Sanetrik, Mark D.; Wieseman, Carol D.; Stevens, William L.; Funk, Christie J.; Christhilf, David M.; Coulson, David A.

    2012-01-01

    A summary of computational and experimental aeroelastic (AE) and aeroservoelastic (ASE) results for the Semi-Span Super-Sonic Transport (S4T) wind-tunnel model is presented. A broad range of analyses and multiple AE and ASE wind-tunnel tests of the S4T wind-tunnel model have been performed in support of the ASE element in the Supersonics Program, part of the NASA Fundamental Aeronautics Program. This paper is intended to be an overview of multiple papers that comprise a special S4T technical session. Along those lines, a brief description of the design and hardware of the S4T wind-tunnel model will be presented. Computational results presented include linear and nonlinear aeroelastic analyses, and rapid aeroelastic analyses using CFD-based reduced-order models (ROMs). A brief survey of some of the experimental results from two open-loop and two closed-loop wind-tunnel tests performed at the NASA Langley Transonic Dynamics Tunnel (TDT) will be presented as well.

  13. Terminal area energy management regime investigations utilizing an 0.030-scale model (47-0) of the space shuttle vehicle orbiter configuration 140A/B/C/R in the Ames Research Center 11 x 11 foot transonic wind tunnel (0A148), volume 1

    NASA Technical Reports Server (NTRS)

    Hawthorne, P. J.

    1976-01-01

    Data obtained in wind tunnel tests are presented. The objectives of the tests were to: (1) obtain pressure distributions, forces and moments over the vehicle 5 Orbiter in the terminal area energy management (TAEM) and approach phases of flight; (2) obtain elevon and rudder hinge moments in the TAEM and approach phases of flight; (3) obtain body flap and elevon loads for verification of loads balancing with integrated pressure distributions; and (4) obtain pressure distributions near the short OMS pods in the high subsonic, transonic and low supersonic Mach number regimes. Testing was conducted over a Mach number range from 0.6 to 1.4 with Reynolds number variations from 4.57 million to 2.74 million per foot. Model angle-of-attack was varied from -4 to 16 degrees and angles of side slip ranged from -8 to 8 degrees.

  14. Terminal area energy management regime investigations utilizing an 0.030-scale model (47-0) of the space shuttle vehicle orbiter configuration 140A/B/C/R in the Ames Research Center 11 x 11 foot transonic wind tunnel (OH/48)

    NASA Technical Reports Server (NTRS)

    Hawthorne, P. J.

    1976-01-01

    Data obtained in a wind tunnel test were examined to: (1) obtain pressure distributions, forces and moments over the vehicle 5 Orbiter in the terminal area energy management (TAEM) and approach phases of flight; (2) obtain elevon and rudder hinge moments in the TAEM and approach phases of flight; (3) obtain body flap and elevon loads for verification of loads balancing with integrated pressure distributions; and (4) obtain pressure distributions near the short OMS pods in the high subsonic, transonic and low supersonic Mach number regimes. Testing was conducted over a Mach number range from 0.6 to 1.4 with Reynolds number variations from 7.57 x 1 million to 2.74 x 1 million per foot. Model angle of attack was varied from -4 to 16 degrees and angles of sideslip ranged from -8 to 8 degrees.

  15. Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 1

    NASA Technical Reports Server (NTRS)

    Gillins, R. L.

    1976-01-01

    Results of tests conducted on a 0.0125-scale model of the Space Shuttle Orbiter and a 0.0125-scale model of the 747 CAM configuration in a 4 x 4-foot High Speed Wind Tunnel were presented. Force and moment data were obtained for each vehicle separately at a Mach number of 0.6 and for each vehicle in proximity to the other at Mach numbers of 0.3, 0.5, 0.6 and 0.7. The proximity effects of each vehicle on the other at separation distances (from the mated configuration) ranging from 1.5 feet to 75 feet were presented; 747 Carrier angles of attack from 0 deg to 6 deg and angles of sideslip of 0 deg and -5 deg were tested. Model variables included orbiter elevon, aileron and body flap deflections, orbiter tailcone on and off, and 747 stabilizer and rudder deflections.

  16. STM tunneling spectroscopy on high Tc superconductors

    SciTech Connect

    Hasegawa, T.; Nantoh, M.; Ogino, M.

    1995-08-01

    STM tunneling spectroscopy has been performed on the bulk single crystals of BiSrCaCuO (BSCCO) and the epitaxial thin films of YBaCuO (YBCO) at cryogenic temperatures. The STM images and tunneling spectra observed on the (001) surfaces can be classified into three cases; (1) Atomic image is visible. However, the tunneling spectrum shows semiconducting or smeared superconducting gap structures, depending on the tip-sample distance. (2) Clear atomic image can be obtained. But, the tunneling spectrum shows flat bottom region with quite low zero bias conductance. (3) Tunneling spectra demonstrate gapless behavior, independent of the tip-sample separation. These observations support the quasi-2D electronic picture in which s-wave like 2D superconducting layers are coupled with each other through the Josephson effect.

  17. Nonlinear femtosecond laser induced scanning tunneling microscopy.

    PubMed

    Dey, Shirshendu; Mirell, Daniel; Perez, Alejandro Rodriguez; Lee, Joonhee; Apkarian, V Ara

    2013-04-21

    We demonstrate ultrafast laser driven nonlinear scanning tunneling microscopy (STM), under ambient conditions. The design is an adaptation of the recently introduced cross-polarized double beat method, whereby z-polarized phase modulated fields are tightly focused at a tunneling junction consisting of a sharp tungsten tip and an optically transparent gold film as substrate. We demonstrate the prerequisites for ultrafast time-resolved STM through an operative mechanism of nonlinear laser field-driven tunneling. The spatial resolution of the nonlinear laser driven STM is determined by the local field intensity. Resolution of 0.3 nm-10 nm is demonstrated for the intensity dependent, exponential tunneling range. The demonstration is carried out on a junction consisting of tungsten tip and gold substrate. Nano-structured gold is used for imaging purposes, to highlight junction plasmon controlled tunneling in the conductivity limit.

  18. PUREX Storage Tunnels dangerous waste permit application

    SciTech Connect

    Not Available

    1990-09-01

    The Hanford Site is operated by the US Department of Energy-Richland Operations Office. The PUREX Storage Tunnels are a storage unit located on the Hanford Site. The unit consists of two earth-covered railroad tunnels that are used for storage of process equipment (some containing dangerous waste) removed from the PUREX Plant. Radioactively contaminated equipment is loaded on railroad cars and remotely transferred into the tunnels for long-term storage. Westinghouse Hanford Company is a major contractor to the US Department of Energy-Richland Operations Office and serves as a co-operator of the PUREX Storage Tunnels, the waste management unit addressed by this permit application. This appendix contains Tunnel 1 Construction Specifications, HWS-5638, consisting of 49 pages.

  19. Air quality inside a tunnel tube and in the vicinity of the tunnel portals

    SciTech Connect

    Pucher, K.; Zwiener, K.

    1997-12-31

    Due to the continually growing number of motor vehicles more and more roads are reaching the limits of their capability. This has led to slowly moving traffic and longer persisting traffic blockages. In cities and conurbation centers especially this leads to complete traffic chaos. The pollutant emissions of vehicles that only move very little mostly lead to high pollutant burdens also and in some circumstances to poor air quality. Therefore in more and more cities one is attempting to get traffic moving again through efficient road tunnels and underground lines and thereby also reduce the pollutant emission. Typical examples of such developments are the Central Artery Tunnel Project in Boston, the planned Ringroad tunnel in Stockholm and the Ringtunnel projects in Paris. Tunnel constructions and underground lines in densely built-up areas are also planned in many small cities. For all these tunnel projects the following points concerning the air quality are to be observed. On the one hand, a tunnel construction can accommodate traffic and thereby reduce the traffic blockages in the vicinity of the tunnel, so long as no additional traffic is attracted. This would therefore lead to a reduction of the pollutant burden and also to an improvement in the air quality in large areas of further surroundings of the tunnel construction. On the other hand, at the portals of the tunnel, alongside mobile pollutant sources from vehicles travelling on the already existing road, a stationary pollutant source of the tunnel ventilation flowing out from the tunnel portal also results. It is then to be investigated how high the emerging pollutant concentrations will be at the portal of the planned tunnel and how these pollutants will disseminate. In this report therefore, the air quality in the tunnel as well as in the vicinity of the tunnel portals will be more closely dealt with.

  20. Lunar construction utility vehicle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The lunar construction utility vehicle (LCUV) is an all-purpose construction vehicle which will aid in the robotic assembly of a lunar outpost. The LCUV will have the following capabilities: (1) must be self supporting including repairs; (2) must offload itself from a lunar lander; (3) must be telerobotic and semi-autonomous; (4) must be able to transport one space station common module; (5) must allow for man-rated operation; and (6) must be able to move lunar regolith for site preparation. This study recommends the use of an elastic tracked vehicle. Detailed material analyses of most of the LCUV components were accomplished. The body frame, made of pinned truss elements, was stress analyzed using NASTRAN. A track connection system was developed; however, kinematic and stress analyses are still required. This design recommends the use of hydrogen-oxygen fuel cells for power. Thermal control has proven to be a problem which may be the most challenging technically. A tentative solution has been proposed which utilizes an onboard and towable radiator. Detailed study of the heat dissipation requirements is needed to finalize radiator sizing. Preliminary work on a man-rated cabin has begun; however, this is not required during the first mission phase of the LCUV. Finally, still in the conceptual phases, are the communication, navigation and mechanical arm systems.

  1. Orbiter electrical equipment utilization baseline

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The baseline for utilization of Orbiter electrical equipment in both electrical and Environmental Control and Life Support System (ECLSS) thermal analyses is established. It is a composite catalog of Space Shuttle equipment, as defined in the Shuttle Operational Data Book. The major functions and expected usage of each component type are described. Functional descriptions are designed to provide a fundamental understanding of the Orbiter electrical equipment, to insure correlation of equipment usage within nominal analyses, and to aid analysts in the formulation of off-nominal, contingency analyses.

  2. Resonant tunneling dynamics and the related tunneling time

    NASA Astrophysics Data System (ADS)

    Xiao, Zhi; Huang, Hai; Lu, Xiang-Xiang

    2015-01-01

    In close analogy with optical Fabry-Pérot (FP) interferometer, we rederive the transmission and reflection coefficients of tunneling through a rectangular double barrier (RDB). Based on the same analogy, we also get an analytic finesse formula for its filtering capability of matter waves, and with this formula, we reproduce the RDB transmission rate in exactly the same form as that of FP interferometer. Compared with the numerical results obtained from the original finesse definition, we find the formula works well. Next, we turn to the elusive time issue in tunneling, and show that the "generalized Hartman effect" can be regarded as an artifact of the opaque limit βl → ∞. In the thin barrier approximation, phase (or dwell) time does depend on the free inter-barrier distance d asymptotically. Further, the analysis of transmission rate in the neighborhood of resonance shows that, phase (or dwell) time could be a good estimate of the resonance lifetime. The numerical results from the uncertainty principle support this statement. This fact can be viewed as a support to the idea that, phase (or dwell) time is a measure of lifetime of energy stored beneath the barrier. To confirm this result, we shrink RDB to a double Dirac δ-barrier. The landscape of the phase (or dwell) time in k and d axes fits excellently well with the lifetime estimates near the resonance. As a supplementary check, we also apply phase (or dwell) time formula to the rectangular well, where no obstacle exists to the propagation of particle. However, due to the self-interference induced by the common cavity-like structure, phase (or dwell) time calculation leads to a counterintuitive "slowing down" effect, which can be explained appropriately by the lifetime assumptions.

  3. Air Pollution in Road Tunnels

    PubMed Central

    Waller, R. E.; Commins, B. T.; Lawther, P. J.

    1961-01-01

    As a part of a study of pollution of the air by motor vehicles, measurements have been made in two London road tunnels during periods of high traffic density. The concentrations of smoke and polycyclic hydrocarbons found there are much higher than the average values in Central London, but they are of the same order of magnitude as those occurring during temperature inversions on winter evenings when smoke from coal fires accumulates at a low level. An attempt has been made to relate the concentration of each pollutant to the type and amount of traffic. Both diesel and petrol vehicles make some contribution to the amounts of smoke and polycyclic hydrocarbons found in the tunnels, but in the case of smoke, fluoranthene, 1: 2-benzpyrene, pyrene, and 3: 4-benzpyrene, the concentrations appear to be more closely related to the density of diesel traffic than to that of petrol traffic. The concentrations of lead and carbon monoxide have also been determined, and these are very closely related to the density of petrol traffic. During the morning and evening rush hours the mean concentration of carbon monoxide was just over 100 p.p.m. and peak values up to 500 p.p.m. were recorded at times. Oxides of nitrogen were determined in some of the experiments and there was always much more nitric oxide than nitrogen dioxide. Eye irritation was experienced but its cause was not investigated. The concentration of pollution in the tunnels does not appear to be high enough to create any special hazards for short-term exposures. The amosphere at peak periods may become very dirty and unpleasant and the concentration of carbon monoxide would be sufficient to produce some effect over a period of several hours' continuous exposure. The total emission of pollution from road vehicles must still be small in comparison with that from coal fires, but the effect of traffic on the concentration of smoke, polycyclic hydrocarbons, carbon monoxide, and lead in the air of city streets deserves

  4. Medial Patellofemoral Ligament Reconstruction Femoral Tunnel Accuracy

    PubMed Central

    Hiemstra, Laurie A.; Kerslake, Sarah; Lafave, Mark

    2017-01-01

    Background: Medial patellofemoral ligament (MPFL) reconstruction is a procedure aimed to reestablish the checkrein to lateral patellar translation in patients with symptomatic patellofemoral instability. Correct femoral tunnel position is thought to be crucial to successful MPFL reconstruction, but the accuracy of this statement in terms of patient outcomes has not been tested. Purpose: To assess the accuracy of femoral tunnel placement in an MPFL reconstruction cohort and to determine the correlation between tunnel accuracy and a validated disease-specific, patient-reported quality-of-life outcome measure. Study Design: Case series; Level of evidence, 4. Methods: Between June 2008 and February 2014, a total of 206 subjects underwent an MPFL reconstruction. Lateral radiographs were measured to determine the accuracy of the femoral tunnel by measuring the distance from the center of the femoral tunnel to the Schöttle point. Banff Patella Instability Instrument (BPII) scores were collected a mean 24 months postoperatively. Results: A total of 155 (79.5%) subjects had adequate postoperative lateral radiographs and complete BPII scores. The mean duration of follow-up (±SD) was 24.4 ± 8.2 months (range, 12-74 months). Measurement from the center of the femoral tunnel to the Schöttle point resulted in 143 (92.3%) tunnels being categorized as “good” or “ideal.” There were 8 failures in the cohort, none of which occurred in malpositioned tunnels. The mean distance from the center of the MPFL tunnel to the center of the Schöttle point was 5.9 ± 4.2 mm (range, 0.5-25.9 mm). The mean postoperative BPII score was 65.2 ± 22.5 (range, 9.2-100). Pearson r correlation demonstrated no statistically significant relationship between accuracy of femoral tunnel position and BPII score (r = –0.08; 95% CI, –0.24 to 0.08). Conclusion: There was no evidence of a correlation between the accuracy of MPFL reconstruction femoral tunnel in relation to the Schöttle point and

  5. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Zhi, Jiang; Yi-Qi, Zhuang; Cong, Li; Ping, Wang; Yu-Qi, Liu

    2016-02-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (Dit) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574109 and 61204092).

  6. Proceedings of the 4th Tunnel Detection Symposium on Subsurface Exploration Technology

    NASA Astrophysics Data System (ADS)

    Miller, R. M.; Dennis, R. F.

    1993-04-01

    These Proceedings document the 47 technical papers delivered during the Fourth Tunnel Detection Symposium on Subsurface Exploration Technology held 26-29 April 1993 in Golden, Colorado. The objective of the Symposium was the exchange of technical information on the most recent advances in subsurface exploration technology. Previous series of symposia on this subject (1981, 1984 and 1988) were focused on the application of detecting and locating deep tunnels (to 300 meters) in hard rock geological environments. The scope of this symposium was expanded to include a wider variety of subsurface applications, viz., shallow tunnels (to 30 meters), natural cavities, historical, archaeological and other underground structures, buried utilities, environmental clean-up, etc. Subjects discussed included field methods and experimentation, instrumentation, methods for analysis of field data and interpretation, field problems, application of theories of subsurface exploration, mathematical and scale modeling, and related subjects.

  7. Static Aeroelastic Analysis of Transonic Wind Tunnel Models Using Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Hooker, John R.; Burner, Alpheus W.; Valla, Robert

    1997-01-01

    A computational method for accurately predicting the static aeroelastic deformations of typical transonic transport wind tunnel models is described. The method utilizes a finite element method (FEM) for predicting the deformations. Extensive calibration/validation of this method was carried out using a novel wind-off wind tunnel model static loading experiment and wind-on optical wing twist measurements obtained during a recent wind tunnel test in the National Transonic Facility (NTF) at NASA LaRC. Further validations were carried out using a Navier-Stokes computational fluid dynamics (CFD) flow solver to calculate wing pressure distributions about several aeroelastically deformed wings and comparing these predictions with NTF experimental data. Results from this aeroelastic deformation method are in good overall agreement with experimentally measured values. Including the predicted deformations significantly improves the correlation between CFD predicted and experimentally measured wing & pressures.

  8. Large-scale fabrication of BN tunnel barriers for graphene spintronics

    SciTech Connect

    Fu, Wangyang; Makk, Péter; Maurand, Romain; Bräuninger, Matthias; Schönenberger, Christian

    2014-08-21

    We have fabricated graphene spin-valve devices utilizing scalable materials made from chemical vapor deposition (CVD). Both the spin-transporting graphene and the tunnel barrier material are CVD-grown. The tunnel barrier is realized by Hexagonal boron nitride, used either as a monolayer or bilayer and placed over the graphene. Spin transport experiments were performed using ferromagnetic contacts deposited onto the barrier. We find that spin injection is still greatly suppressed in devices with a monolayer tunneling barrier due to resistance mismatch. This is, however, not the case for devices with bilayer barriers. For those devices, a spin relaxation time of ∼260 ps intrinsic to the CVD graphene material is deduced. This time scale is comparable to those reported for exfoliated graphene, suggesting that this CVD approach is promising for spintronic applications which require scalable materials.

  9. Area and shape changes of the carpal tunnel in response to tunnel pressure.

    PubMed

    Li, Zong-Ming; Masters, Tamara L; Mondello, Tracy A

    2011-12-01

    Carpal tunnel mechanics is relevant to our understanding of median nerve compression in the tunnel. The compliant characteristics of the tunnel strongly influence its mechanical environment. We investigated the distensibility of the carpal tunnel in response to tunnel pressure. A custom balloon device was designed to apply controlled pressure. Tunnel cross sections were obtained using magnetic resonance imaging to derive the relationship between carpal tunnel pressure and morphological parameters at the hook of hamate. The results showed that the cross-sectional area (CSA) at the level of the hook of hamate increased, on average, by 9.2% and 14.8% at 100 and 200 mmHg, respectively. The increased CSA was attained by a shape change of the cross section, displaying increased circularity. The increase in CSA was mainly attributable to the increase of area in the carpal arch region formed by the transverse carpal ligament. The narrowing of the carpal arch width was associated with an increase in the carpal arch. We concluded that the carpal tunnel is compliant to accommodate physiological variations of the carpal tunnel pressure, and that the increase in tunnel CSA is achieved by increasing the circularity of the cross section.

  10. Solid rocket booster sting interference wind tunnel test analysis, appendix D

    NASA Technical Reports Server (NTRS)

    Conine, B.; Boyle, W.

    1982-01-01

    Additional analyses of wind tunnel test results from SRB sting interference test TWT 660 and HRWT 042 were conducted to evaluate the sting interference that may be present in the Space Shuttle SRB reentry aerodynamic math model. Additional wind tunnel data was obtained at higher angles of attack from test program TWT 660 and test program HRWT 042. The additional data were analyzed to evaluate the procedures used to fair the data in the development of the SRB reentry aerodynamic data Tape no. 5.

  11. Quantitative tunneling spectroscopy of nanocrystals

    SciTech Connect

    First, Phillip N; Whetten, Robert L; Schaaff, T Gregory

    2007-05-25

    The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene" refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]). Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronics

  12. Limited incision carpal tunnel release

    PubMed Central

    Gaba, Sunil; Bhogesha, Sandeep; Singh, Onkar

    2017-01-01

    Background: Carpal tunnel syndrome (CTS) is the most common peripheral entrapment neuropathy. Limited incision techniques for carpal tunnel release are gaining popularity. The main advantages of these techniques are less scar load, less pillar pain, shorter recovery, and return-to-work time. However, the completeness of release, and risk of neurovascular injury are always a concern. We devised a method of limited incision release with two mini-incisions and use of nasal speculum and a probe. We aimed to evaluate the clinical and neurological outcome of this technique. Materials and Methods: Twenty seven cases (9 male and 18 female, age 28–56 years) of isolated CTS cases were enrolled in the study. A total of 33 hands (six bilateral) underwent limited incision carpal tunnel release. In this study, two mini-incisions were used and release was done with the help of nasal speculum. Evaluation preoperatively and in 6 months and at 1-year postoperatively was done, namely, (a) clinical status examination, (b) motor testing using grip and pinch dynamometer, and (c) neurological outcome measure using nerve conduction study. Results: All the patients had good clinical and neurological outcome with no recurrence during followup. The first symptom to get relieved was night pains, with a mean of 4.5 days (range 2–14 days). Compared to pain, improvement of sensory symptoms was delayed; the mean duration was 42.8 days (range 30–90 days). Scar tenderness was present only for a mean duration of 9 days (range 7–21 days). The mean duration for patients to resume their daily activities was12 days (range 7–28 days) and to work was 32 days (range 21–90 days). The hand grip showed mean values of 45.12 ± 16.16 g/mm2 preoperatively, 62.45 ± 18.86 g/mm2 at 6 months postoperatively, and 74.87 ± 20.35 g/mm2 at 1-year postoperatively. The key pinch showed mean values of 11.27 ± 3.51 g/mm2 preoperatively, 20.181 ± 3.94 g/mm2 at 6 months postoperatively, and 27.96 ± 94.42 g/mm2

  13. Direct Approach to Quantum Tunneling

    NASA Astrophysics Data System (ADS)

    Andreassen, Anders; Farhi, David; Frost, William; Schwartz, Matthew D.

    2016-12-01

    The decay rates of quasistable states in quantum field theories are usually calculated using instanton methods. Standard derivations of these methods rely in a crucial way upon deformations and analytic continuations of the physical potential and on the saddle-point approximation. While the resulting procedure can be checked against other semiclassical approaches in some one-dimensional cases, it is challenging to trace the role of the relevant physical scales, and any intuitive handle on the precision of the approximations involved is at best obscure. In this Letter, we use a physical definition of the tunneling probability to derive a formula for the decay rate in both quantum mechanics and quantum field theory directly from the Minkowski path integral, without reference to unphysical deformations of the potential. There are numerous benefits to this approach, from nonperturbative applications to precision calculations and aesthetic simplicity.

  14. Tunnel effect wave energy detection

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  15. Langley Field wind tunnel apparatus

    NASA Technical Reports Server (NTRS)

    Bacon, D L

    1921-01-01

    The difficulties experienced in properly holding thin tipped or tapered airfoils while testing on an N.P.L. type aerodynamic balance even at low air speeds, and the impossibility of holding even solid metal models at the high speeds attainable at the National Advisory Committee's wind tunnel, necessitated the design of a balance which would hold model airfoils of any thickness and at speeds up to 150 m.p.h. In addition to mechanical strength and rigidity, it was highly desirable that the balance readings should require a minimum amount of correction and mathematical manipulation in order to obtain the lift and drag coefficients and the center of pressure. The balance described herein is similar to one in use at the University of Gottingen, the main difference lying in the addition of a device for reading the center of pressure directly, without the necessity of any correction whatsoever. Details of the design and operation of the device are given.

  16. Giant tunneling magnetoresistance in silicene

    SciTech Connect

    Wang, Yu; Lou, Yiyi

    2013-11-14

    We have theoretically studied ballistic electron transport in silicene under the manipulation of a pair of ferromagnetic gate. Transport properties like transmission and conductance have been calculated by the standard transfer matrix method for parallel and antiparallel magnetization configurations. It is demonstrated here that, due to the stray field-induced wave-vector filtering effect, remarkable difference in configuration-dependent transport gives rise to a giant tunneling magnetoresistance. In combination with the peculiar buckled structure of silicene and its electric tunable energy gap, the receiving magnetoresistance can be efficiently modulated by the externally-tunable stray field, electrostatic potential, and staggered sublattice potential, providing some flexible strategies to construct silicene-based nanoelectronic device.

  17. Rudolf Hermann, wind tunnels and aerodynamics

    NASA Astrophysics Data System (ADS)

    Lundquist, Charles A.; Coleman, Anne M.

    2008-04-01

    Rudolf Hermann was born on December 15, 1904 in Leipzig, Germany. He studied at the University of Leipzig and at the Aachen Institute of Technology. His involvement with wind tunnels began in 1934 when Professor Carl Wieselsberger engaged him to work at Aachen on the development of a supersonic wind tunnel. On January 6, 1936, Dr. Wernher von Braun visited Dr. Hermann to arrange for use of the Aachen supersonic wind tunnel for Army problems. On April 1, 1937, Dr. Hermann became Director of the Supersonic Wind Tunnel at the Army installation at Peenemunde. Results from the Aachen and Peenemunde wind tunnels were crucial in achieving aerodynamic stability for the A-4 rocket, later designated as the V-2. Plans to build a Mach 10 'hypersonic' wind tunnel facility at Kochel were accelerated after the Allied air raid on Peenemunde on August 17, 1943. Dr. Hermann was director of the new facility. Ignoring destruction orders from Hitler as WWII approached an end in Europe, Dr. Hermann and his associates hid documents and preserved wind tunnel components that were acquired by the advancing American forces. Dr. Hermann became a consultant to the Air Force at its Wright Field in November 1945. In 1951, he was named professor of Aeronautical Engineering at the University of Minnesota. In 1962, Dr. Hermann became the first Director of the Research Institute at the University of Alabama in Huntsville (UAH), a position he held until he retired in 1970.

  18. Tunneling time in attosecond experiments, intrinsic-type of time. Keldysh, and Mandelstam-Tamm time

    NASA Astrophysics Data System (ADS)

    Kullie, Ossama

    2016-05-01

    Tunneling time in attosecond and strong-field experiments is one of the most controversial issues in current research, because of its importance to the theory of time, the time operator and the time-energy uncertainty relation in quantum mechanics. In Kullie (2015 Phys. Rev. A 92 052118) we derived an estimation of the (real) tunneling time, which shows an excellent agreement with the time measured in attosecond experiments, our derivation is found by utilizing the time-energy uncertainty relation, and it represents a quantum clock. In this work, we show different aspects of the tunneling time in attosecond experiments, we discuss and compare the different views and approaches, which are used to calculate the tunneling time, i.e. Keldysh time (as a real or imaginary quantity), Mandelstam-Tamm time, the classical view of the time measurement and our tunneling time relation(s). We draw some conclusions concerning the validity and the relation between the different types of the tunneling time with the hope that they will help to answer the question put forward by Orlando et al (2014 J. Phys. B 47 204002, 2014 Phys. Rev. A 89 014102): tunneling time, what does it mean? However, as we will see, the important question is a more general one: how to understand the time and the measurement of the time of a quantum system? In respect to our result, the time in quantum mechanics can be, in more general fashion, classified in two types, intrinsic dynamically connected, and external dynamically not connected to the system, and consequently (perhaps only) classical Newtonian time remains as a parametric type of time.

  19. Rectangular tunnel boring machine and method

    SciTech Connect

    Snyder, L.L.

    1984-12-04

    A machine for boring a tunnel having an end face wall, a roof wall, a bottom wall, and opposite side walls. The machine comprises a rotatable cutting wheel means having an annular peripheral wall supporting a plurality of cutting devices and a generally convex-shaped upper wall supporting a plurality of cutting devices. The cutting wheel means is rotatable about an axis of rotation which is inclined in a forward direction relative to a plane perpendicular to the longitudinal axis of the tunnel for simultaneously cutting the tunnel face along two intersecting surfaces defined by the cutting devices on the annular peripheral wall and the cutting devices on the convex-shape upper wall. Support shoe means are mounted beneath the cutting wheel means for movably supporting the cutting wheel means on the tunnel floor. Drive motor means are mounted on the support shoe means and are operatively associated with the cutting wheel means for causing rotation of the cutting wheel means relative to the tunnel face and the support shoe means. Thrust means are connected to the support shoe means for advancing the cutting wheel means and the support shoe means toward the tunnel face. Gripping means are associated with the thrust means for gripping engagement with the opposite tunnel side walls to prevent axial rearward movement as the cutting wheel means and the support shoe means are advanced toward the tunnel face. Vertical and horizontal steering means for changing the direction of advance of the machine are described. Paddle means and conveyor means for removing rock cuttings from the end face of the tunnel are disclosed. Shield means for shielding workers from dust and debris and for containing the cuttings are also described.

  20. Dissipation and tunneling in quantum Hall bilayers.

    PubMed

    Jack, Robert L; Lee, Derek K K; Cooper, Nigel R

    2004-09-17

    We discuss the interplay between transport and intrinsic dissipation in quantum Hall bilayers, within the framework of a simple thought experiment. We compute, for the first time, quantum corrections to the semiclassical dynamics of this system. This allows us to reinterpret tunneling measurements on these systems. We find a strong peak in the zero-temperature tunneling current that arises from the decay of Josephson-like oscillations into incoherent charge fluctuations. In the presence of an in-plane field, resonances in the tunneling current develop an asymmetric line shape.

  1. Carpal tunnel syndrome - anatomical and clinical correlations.

    PubMed

    Iskra, Tomasz; Mizia, Ewa; Musial, Agata; Matuszyk, Aleksandra; Tomaszewski, Krzysztof A

    2013-01-01

    Carpal tunnel syndrome (CTS) is the most common and widely known of the entrapment neuropathies in which the body's peripheral nerves are compressed. Common symptoms of CTS involve the hand and result from compression of the median nerve within the carpal tunnel. In general, CTS develops when the tissues around the median nerve irritate or compress on the nerve along its course through the carpal tunnel, however often it is very difficult to determine cause of CTS. Proper treatment (conservative or surgical) usually can relieve the symptoms and restore normal use of the wrist and hand.

  2. Wind tunnel pressurization and recovery system

    NASA Technical Reports Server (NTRS)

    Pejack, Edwin R.; Meick, Joseph; Ahmad, Adnan; Lateh, Nordin; Sadeq, Omar

    1988-01-01

    The high density, low toxicity characteristics of refrigerant-12 (dichlorofluoromethane) make it an ideal gas for wind tunnel testing. Present limitations on R-12 emissions, set to slow the rate of ozone deterioration, pose a difficult problem in recovery and handling of large quantities of R-12. This preliminary design is a possible solution to the problem of R-12 handling in wind tunnel testing. The design incorporates cold temperature condensation with secondary purification of the R-12/air mixture by adsorption. Also discussed is the use of Freon-22 as a suitable refrigerant for the 12 foot wind tunnel.

  3. Tunnel allows landfall approach for Troll pipeline

    SciTech Connect

    Hove, F.; Kuhlmann, H.

    1995-12-04

    A 4-km landfall tunnel was constructed to provide an approach to the rugged Norwegian coast for 36 and 40-in. offshore pipelines in Troll Phase 1 development. The tunnel terminates in 165 m of water with three vertical shaft connections to the seabed. Construction consisted of two main elements: 180 metric ton tie-in spools installed between the offshore pipelines and the piercing shafts, and prefabricated 450 metric ton riser bundles installed in the vertical tunnel piercing shafts. The paper describes the seabed route, the tie-in design approach, and construction on the seabed and underground. First gas is scheduled to flow in April, 1996.

  4. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant

  5. Tunnelling time in strong field ionisation

    NASA Astrophysics Data System (ADS)

    Landsman, Alexandra S.; Keller, Ursula

    2014-10-01

    We revisit the common approaches to tunnelling time in the context of attoclock experiments. These experiments measure tunnelling time using close-to-circularly polarised light of the infrared ultrashort laser pulse. We test the sensitivity of the attoclock measurements of tunnelling time to non-adiabatic effects, as described by a well-known theoretical model first developed by Perelomov, Popov, and Terent'ev. We find that in the case of ionisation of helium, both adiabatic and non-adiabatic theories give very similar predictions for ionisations times over a wide intensity range typical of ultrafast experiments.

  6. 4. East portal of Tunnel 22, view to the eastsoutheast, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. East portal of Tunnel 22, view to the east-southeast, 135mm lens with electronic flash fill. Note the depth of water within the tunnel, a sympton of the spring-laden slope above the tunnel that led to its eventual abandonment. - Southern Pacific Railroad Natron Cutoff, Tunnel 23, Milepost 584.5, Westfir, Lane County, OR

  7. 1. West portal of Tunnel 23, contextual view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West portal of Tunnel 23, contextual view to the west-northwest, 380mm lens. Tunnel 22 pierces the toe of Lookout Point. Note that the tracks have been realigned toward the Willamette River to bypass Tunnel 23. - Southern Pacific Railroad Natron Cutoff, Tunnel 23, Milepost 584.5, Westfir, Lane County, OR

  8. 43 CFR 3832.41 - What is a tunnel site?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What is a tunnel site? 3832.41 Section 3832.41 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Tunnel Sites § 3832.41 What is a tunnel site? A tunnel...

  9. 1. West portal of Tunnel 27 in distance, contextual view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West portal of Tunnel 27 in distance, contextual view to northeast looking past Tunnel 26 (HAER CA-202) from atop east portal of Tunnel 25 (HAER CA-201), 380mm lens. - Central Pacific Transcontinental Railroad, Tunnel No. 27, Milepost 133.9, Applegate, Placer County, CA

  10. Westfacing portals within Open Cut No. 2 (South Bergen Tunnel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West-facing portals within Open Cut No. 2 (South Bergen Tunnel on right, North Bergen Tunnel see HAER No. NJ-136) on left), from within the opposite portal of the South Bergen Tunnel, looking east - Delaware, Lackawanna & Western Railroad, South Bergen Tunnel, Jersey City, Hudson County, NJ

  11. 43 CFR 3832.41 - What is a tunnel site?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What is a tunnel site? 3832.41 Section 3832.41 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Tunnel Sites § 3832.41 What is a tunnel site? A tunnel...

  12. 43 CFR 3832.41 - What is a tunnel site?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What is a tunnel site? 3832.41 Section 3832.41 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Tunnel Sites § 3832.41 What is a tunnel site? A tunnel...

  13. 43 CFR 3832.41 - What is a tunnel site?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What is a tunnel site? 3832.41 Section 3832.41 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Tunnel Sites § 3832.41 What is a tunnel site? A tunnel...

  14. Eastfacing portals within Open Cut No. 2 (South Bergen Tunnel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East-facing portals within Open Cut No. 2 (South Bergen Tunnel on left, North Bergen Tunnel see HAER No. NJ-136 on right), from the South Bergen Tunnel tracks, looking west - Delaware, Lackawanna & Western Railroad, South Bergen Tunnel, Jersey City, Hudson County, NJ

  15. Westfacing portals within Open Cut No. 1 (South Bergen Tunnel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West-facing portals within Open Cut No. 1 (South Bergen Tunnel see HAER No. NJ-137 on left, North Bergen Tunnel on right), from the North Bergen Tunnel tracks, looking west - Delaware, Lackawanna & Western Railroad, North Bergen Tunnel, Through Bergen Hill from Prospect Street at Ogden Avenue to John F. Kennedy Boulevard at Beacon Avenue, Jersey City, Hudson County, NJ

  16. Eastfacing portals within Open Cut No. 1 (South Bergen Tunnel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East-facing portals within Open Cut No. 1 (South Bergen Tunnel see HAER No. NJ-137 on left, North Bergen Tunnel on right), from the North Bergen Tunnel tracks, looking east - Delaware, Lackawanna & Western Railroad, North Bergen Tunnel, Through Bergen Hill from Prospect Street at Ogden Avenue to John F. Kennedy Boulevard at Beacon Avenue, Jersey City, Hudson County, NJ

  17. 1. West portal of Tunnel 34, contextual view to northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West portal of Tunnel 34, contextual view to northeast from inside east end of Tunnel 33 (Cape Horn Tunnel), 135mm lens with electronic flash fill. - Central Pacific Transcontinental Railroad, Tunnel No. 34, Milepost 145.4, Colfax, Placer County, CA

  18. Development of a multicomponent force and moment balance for water tunnel applications, volume 2

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Malcolm, Gerald N.; Kramer, Brian R.; Smith, Brooke C.; Ayers, Bert F.

    1994-01-01

    The principal objective of this research effort was to develop a multicomponent strain gauge balance to measure forces and moments on models tested in flow visualization water tunnels. Static experiments (which are discussed in Volume 1 of this report) were conducted, and the results showed good agreement with wind tunnel data on similar configurations. Dynamic experiments, which are the main topic of this Volume, were also performed using the balance. Delta wing models and two F/A-18 models were utilized in a variety of dynamic tests. This investigation showed that, as expected, the values of the inertial tares are very small due to the low rotating rates required in a low-speed water tunnel and can, therefore, be ignored. Oscillations in pitch, yaw and roll showed hysteresis loops that compared favorably to data from dynamic wind tunnel experiments. Pitch-up and hold maneuvers revealed the long persistence, or time-lags, of some of the force components in response to the motion. Rotary-balance experiments were also successfully performed. The good results obtained in these dynamic experiments bring a whole new dimension to water tunnel testing and emphasize the importance of having the capability to perform simultaneous flow visualization and force/moment measurements during dynamic situations.

  19. A Method for Dynamic Risk Assessment and Management of Rockbursts in Drill and Blast Tunnels

    NASA Astrophysics Data System (ADS)

    Liu, Guo-Feng; Feng, Xia-Ting; Feng, Guang-Liang; Chen, Bing-Rui; Chen, Dong-Fang; Duan, Shu-Qian

    2016-08-01

    Focusing on the problems caused by rockburst hazards in deep tunnels, such as casualties, damage to construction equipment and facilities, construction schedule delays, and project cost increase, this research attempts to present a methodology for dynamic risk assessment and management of rockbursts in D&B tunnels. The basic idea of dynamic risk assessment and management of rockbursts is determined, and methods associated with each step in the rockburst risk assessment and management process are given, respectively. Among them, the main parts include a microseismic method for early warning the occurrence probability of rockburst risk, an estimation method that aims to assess potential consequences of rockburst risk, an evaluation method that utilizes a new quantitative index considering both occurrence probability and consequences for determining the level of rockburst risk, and the dynamic updating. Specifically, this research briefly describes the referenced microseismic method of warning rockburst, but focuses on the analysis of consequences and associated risk assessment and management of rockburst. Using the proposed method of risk assessment and management of rockburst, the occurrence probability, potential consequences, and the level of rockburst risk can be obtained in real-time during tunnel excavation, which contributes to the dynamic optimisation of risk mitigation measures and their application. The applicability of the proposed method has been verified by those cases from the Jinping II deep headrace and water drainage tunnels at depths of 1900-2525 m (with a length of 11.6 km in total for D&B tunnels).

  20. Light-induced negative differential resistance in graphene/Si-quantum-dot tunneling diodes

    NASA Astrophysics Data System (ADS)

    Lee, Kyeong Won; Jang, Chan Wook; Shin, Dong Hee; Kim, Jong Min; Kang, Soo Seok; Lee, Dae Hun; Kim, Sung; Choi, Suk-Ho; Hwang, Euyheon

    2016-07-01

    One of the interesing tunneling phenomena is negative differential resistance (NDR), the basic principle of resonant-tunneling diodes. NDR has been utilized in various semiconductor devices such as frequency multipliers, oscillators, relfection amplifiers, logic switches, and memories. The NDR in graphene has been also reported theoretically as well as experimentally, but should be further studied to fully understand its mechanism, useful for practical device applications. Especially, there has been no observation about light-induced NDR (LNDR) in graphene-related structures despite very few reports on the LNDR in GaAs-based heterostructures. Here, we report first observation of LNDR in graphene/Si quantum dots-embedded SiO2 (SQDs:SiO2) multilayers (MLs) tunneling diodes. The LNDR strongly depends on temperature (T) as well as on SQD size, and the T dependence is consistent with photocurrent (PC)-decay behaviors. With increasing light power, the PC-voltage curves are more structured with peak-to-valley ratios over 2 at room temperature. The physical mechanism of the LNDR, governed by resonant tunneling of charge carriers through the minibands formed across the graphene/SQDs:SiO2 MLs and by their nonresonant phonon-assisted tunneling, is discussed based on theoretical considerations.

  1. Development of a multicomponent force and moment balance for water tunnel applications, volume 2

    NASA Astrophysics Data System (ADS)

    Suarez, Carlos J.; Malcolm, Gerald N.; Kramer, Brian R.; Smith, Brooke C.; Ayers, Bert F.

    1994-12-01

    The principal objective of this research effort was to develop a multicomponent strain gauge balance to measure forces and moments on models tested in flow visualization water tunnels. Static experiments (which are discussed in Volume 1 of this report) were conducted, and the results showed good agreement with wind tunnel data on similar configurations. Dynamic experiments, which are the main topic of this Volume, were also performed using the balance. Delta wing models and two F/A-18 models were utilized in a variety of dynamic tests. This investigation showed that, as expected, the values of the inertial tares are very small due to the low rotating rates required in a low-speed water tunnel and can, therefore, be ignored. Oscillations in pitch, yaw and roll showed hysteresis loops that compared favorably to data from dynamic wind tunnel experiments. Pitch-up and hold maneuvers revealed the long persistence, or time-lags, of some of the force components in response to the motion. Rotary-balance experiments were also successfully performed. The good results obtained in these dynamic experiments bring a whole new dimension to water tunnel testing and emphasize the importance of having the capability to perform simultaneous flow visualization and force/moment measurements during dynamic situations.

  2. Pros and cons of multistory RC tunnel-form (box-type) buildings

    USGS Publications Warehouse

    Kalkan, E.; Yuksel, S.B.

    2008-01-01

    Tunnel-form structural systems (i.e., box systems), having a load-carrying mechanism composed of reinforced concrete (RC) shear walls and slabs only, have been prevailingly utilized in the construction of multistory residential units. The superiority of tunnel-form buildings over their conventional counterparts stems from the enhanced earthquake resistance they provide, and the considerable speed and economy of their construction. During recent earthquakes in Turkey, they exhibited better seismic performance in contrast to the damaged condition of a number of RC frames and dual systems (i.e., RC frames with shear wall configurations). Thus the tunnel-form system has become a primary construction technique in many seismically active regions. In this paper, the strengths and weaknesses of tunnel-form buildings are addressed in terms of design considerations and construction applications. The impacts of shear wall reinforcement ratio and its detailing on system ductility, loadcarrying capacity and failure mechanism under seismic forces are evaluated at section and global system levels. Influences of tension/compression coupling and wall openings on the response are also discussed. Three-dimensional nonlinear finite element models, verified through comparisons with experimental results, were used for numerical assessments. Findings from this projection provide useful information on adequate vertical reinforcement ratio and boundary reinforcement to achieve enhanced performance of tunnel-form buildings under seismic actions. Copyright ?? 2007 John Wiley & Sons, Ltd.

  3. Validation of the Lockheed Martin Morphing Concept with Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.; Scott, Robert C.; Love, Michael H.; Zink Scott; Weisshaar, Terrence A.

    2007-01-01

    The Morphing Aircraft Structures (MAS) program is a Defense Advanced Research Projects Agency (DARPA) led effort to develop morphing flight vehicles capable of radical shape change in flight. Two performance parameters of interest are loiter time and dash speed as these define the persistence and responsiveness of an aircraft. The geometrical characteristics that optimize loiter time and dash speed require different geometrical planforms. Therefore, radical shape change, usually involving wing area and sweep, allows vehicle optimization across many flight regimes. The second phase of the MAS program consisted of wind tunnel tests conducted at the NASA Langley Transonic Dynamics Tunnel to demonstrate two morphing concepts and their enabling technologies with large-scale semi-span models. This paper will focus upon one of those wind tunnel tests that utilized a model developed by Lockheed Martin Aeronautics Company (LM). Wind tunnel success criteria were developed by NASA to support the DARPA program objectives. The primary focus of this paper will be the demonstration of the DARPA objectives by systematic evaluation of the wind tunnel model performance relative to the defined success criteria. This paper will also provide a description of the LM model and instrumentation, and document pertinent lessons learned. Finally, as part of the success criteria, aeroelastic characteristics of the LM derived MAS vehicle are also addressed. Evaluation of aeroelastic characteristics is the most detailed criterion investigated in this paper. While no aeroelastic instabilities were encountered as a direct result of the morphing design or components, several interesting and unexpected aeroelastic phenomenon arose during testing.

  4. Light-induced negative differential resistance in graphene/Si-quantum-dot tunneling diodes

    PubMed Central

    Lee, Kyeong Won; Jang, Chan Wook; Shin, Dong Hee; Kim, Jong Min; Kang, Soo Seok; Lee, Dae Hun; Kim, Sung; Choi, Suk-Ho; Hwang, Euyheon

    2016-01-01

    One of the interesing tunneling phenomena is negative differential resistance (NDR), the basic principle of resonant-tunneling diodes. NDR has been utilized in various semiconductor devices such as frequency multipliers, oscillators, relfection amplifiers, logic switches, and memories. The NDR in graphene has been also reported theoretically as well as experimentally, but should be further studied to fully understand its mechanism, useful for practical device applications. Especially, there has been no observation about light-induced NDR (LNDR) in graphene-related structures despite very few reports on the LNDR in GaAs-based heterostructures. Here, we report first observation of LNDR in graphene/Si quantum dots-embedded SiO2 (SQDs:SiO2) multilayers (MLs) tunneling diodes. The LNDR strongly depends on temperature (T) as well as on SQD size, and the T dependence is consistent with photocurrent (PC)-decay behaviors. With increasing light power, the PC-voltage curves are more structured with peak-to-valley ratios over 2 at room temperature. The physical mechanism of the LNDR, governed by resonant tunneling of charge carriers through the minibands formed across the graphene/SQDs:SiO2 MLs and by their nonresonant phonon-assisted tunneling, is discussed based on theoretical considerations. PMID:27465107

  5. n +-Microcrystalline-Silicon Tunnel Layer in Tandem Si-Based Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Lee, Hsin-Ying; Chen, Kuan-Hao

    2016-10-01

    In this study, the p-SiC/ i-Si/ n-Si cell and the p-SiC/ i-SiGe/ n-Si cell deposited using plasma-enhanced chemical vapor deposition were cascaded for forming the tandem Si-based thin film solar cells to absorb the wide solar spectrum. To further improve the performances of the tandem Si-based thin film solar cells, a 5-nm-thick n +-microcrystalline-Si ( n +-μc-Si) tunnel layer deposited using the laser-assisted plasma-enhanced chemical vapor deposition was inserted between the p-SiC/ i-Si/ n-Si cell and the p-SiC/ i-SiGe/ n-Si cell. Since both the plasma and the CO2 laser were simultaneously utilized to efficiently decompose the reactant and doping gases, the carrier concentration and the carrier mobility of the n +-μc-Si tunnel layer were significantly improved. The ohmic contact formed between the p-SiC layer and the n +-μc-Si tunnel layer with low resistance was beneficial to the generated current transportation and the carrier recombination rate. Therefore, the conversion efficiency of the tandem solar cells was promoted from 8.57% and 8.82% to 9.91% compared to that without tunnel layer and with 5-nm-thick n +-amorphous-Si tunnel layer.

  6. Engineering and fabrication cost considerations for cryogenic wind tunnel models

    NASA Technical Reports Server (NTRS)

    Boykin, R. M., Jr.; Davenport, J. B., Jr.

    1983-01-01

    Design and fabrication cost drivers for cryogenic transonic wind tunnel models are defined. The major cost factors for wind tunnel models are model complexity, tolerances, surface finishes, materials, material validation, and model inspection. The cryogenic temperatures require the use of materials with relatively high fracture toughness but at the same time high strength. Some of these materials are very difficult to machine, requiring extensive machine hours which can add significantly to the manufacturing costs. Some additional engineering costs are incurred to certify the materials through mechanical tests and nondestructive evaluation techniques, which are not normally required with conventional models. When instrumentation such as accelerometers and electronically scanned pressure modules is required, temperature control of these devices needs to be incorporated into the design, which requires added effort. Additional thermal analyses and subsystem tests may be necessary, which also adds to the design costs. The largest driver to the design costs is potentially the additional static and dynamic analyses required to insure structural integrity of the model and support system.

  7. Effects of a major earthquake on the PEP housing, structures, and utilities

    SciTech Connect

    Weidner, H.

    1990-08-01

    The PEP tunnel, above-ground structures, and utility structures have been designed to withstand a major earthquake. This means they will experience minor or moderate damage in an earthquake which will cause widespread devastation in the surrounding region. The earthquake on October 17, 1989, which was not very severe locally, caused no damage to the PEP tunnel, buildings, or utilities. There was apparently some permanent displacement of the PEP tunnel. The PEP ring magnets moved enough to require re-alignment. A major earthquake will probably cause sufficient displacement of the PEP tunnel and magnet systems to necessitate extensive re-alignment. This may be the dominant factor determining the length of the shutdown after the quake.

  8. Methods for the fabrication of thermally stable magnetic tunnel junctions

    SciTech Connect

    Chang, Y. Austin; Yang, Jianhua J.; Ladwig, Peter F.

    2009-08-25

    Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.

  9. Underground Excavation Behaviour of the Queenston Formation: Tunnel Back Analysis for Application to Shaft Damage Dimension Prediction

    NASA Astrophysics Data System (ADS)

    Perras, Matthew A.; Wannenmacher, Helmut; Diederichs, Mark S.

    2015-07-01

    The Niagara Tunnel Project (NTP) is a 10.1 km long water-diversion tunnel in Niagara Falls, Ontario, which was excavated by a 7.2 m radius tunnel boring machine. Approximately half the tunnel length was excavated through the Queenston Formation, which locally is a shale to mudstone. Typical overbreak depths ranged between 2 and 4 m with a maximum of 6 m observed. Three modelling approaches were used to back analyse the brittle failure process at the NTP: damage initiation and spalling limit, laminated anisotropy modelling, and ubiquitous joint approaches. Analyses were conducted for three tunnel chainages: 3 + 000, 3 + 250, and 3 + 500 m because the overbreak depth increased from 2 to 4 m. All approaches produced similar geometries to those measured. The laminated anisotropy modelling approach was able to produced chord closures closest to those measured, using a joint normal to shear stiffness ratio between 1 and 2. This understanding was applied to a shaft excavation model in the Queenston Formation at the proposed Deep Geological Repository (DGR) site for low and intermediate level nuclear waste storage in Canada. The maximum damage depth was 1.9 m; with an average of 1.0 m. Important differences are discussed between the tunnel and shaft orientation with respect to bedding. The models show that the observed normalized depth of failure at the NTP would over-predict the depth of damage expected in the Queenston Formation at the DGR.

  10. Tensile strained Ge tunnel field-effect transistors: k · p material modeling and numerical device simulation

    SciTech Connect

    Kao, Kuo-Hsing; De Meyer, Kristin; Verhulst, Anne S.; Van de Put, Maarten; Soree, Bart; Magnus, Wim; Vandenberghe, William G.

    2014-01-28

    Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k · p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Γ and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-hole-like valence band is strongly coupling to the conduction band at the Γ point even in the presence of strain based on the 30-band k · p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) μA/μm can be achieved along with on/off ratio > 10{sup 6} for V{sub DD} = 0.5 V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge.

  11. High speed wind tunnel tests of the PTA aircraft. [Propfan Test Assessment Program

    NASA Technical Reports Server (NTRS)

    Aljabri, A. S.; Little, B. H., Jr.

    1986-01-01

    Propfans, advanced highly-loaded propellers, are proposed to power transport aircraft that cruise at high subsonic speeds, giving significant fuel savings over the equivalent turbofan-powered aircraft. NASA is currently sponsoring the Propfan Test Assessment Program (PTA) to provide basic data on the structural integrity and acoustic performance of the propfan. The program involves installation design, wind-tunnel tests, and flight tests of the Hamilton Standard SR-7 propfan in a wing-mount tractor installation on the Gulfstream II aircraft. This paper reports on the high-speed wind-tunnel tests and presents the computational aerodynamic methods that were employed in the analyses, design, and evaluation of the configuration. In spite of the complexity of the configuration, these methods provide aerodynamic predictions which are in excellent agreement with wind-tunnel data.

  12. Analytical comparison of hypersonic flight and wind tunnel viscous/inviscid flow fields

    NASA Technical Reports Server (NTRS)

    Fivel, H. J.; Masek, R. V.; Mockapetris, L. J.

    1975-01-01

    Flow fields were computed about blunted, 0.524 and 0.698 radians, cone configurations to assess the effects of nonequilibrium chemistry on the flow field geometry, boundary layer edge conditions, boundary layer profiles, and heat transfer and skin friction. Analyses were conducted at typical space shuttle entry conditions for both laminar and turbulent boundary layer flow. In these calculations, a wall temperature of 1365 K (2000 F) was assumed. The viscous computer program used in this investigation was a modification of the Blottner non-similar viscous code which incorporated a turbulent eddy viscosity model after Cebeci. The results were compared with equivalent calculations for similar (scaled) configurations at typical wind tunnel conditions. Wind tunnel test gases included air, nitrogen, CF4 and helium. The viscous computer program used for wind tunnel conditions was the Cebeci turbulent non-similar computer code.

  13. Wind tunnel tests of space shuttle solid rocket booster insulation material in the aerothermal tunnel c

    NASA Technical Reports Server (NTRS)

    Hartman, A. S.; Nutt, K. W.

    1982-01-01

    Wind tunnel tests of the space shuttle Solid Rocket Booster Insulation were conducted in the von Karman Gas Dynamics Facility Tunnel C. For these tests, Tunnel C was run at Mach 4 with a total temperature of 1100-1440 and a total pressure of 100 psia. Cold wall heating rates were changed by varying the test article support wedge angle. Selected results are presented to illustrate the test techniques and typical data obtained.

  14. Improvement of a wind-tunnel sampling system for odour and VOCs.

    PubMed

    Wang, X; Jiang, J; Kaye, R

    2001-01-01

    Wind-tunnel systems are widely used for collecting odour emission samples from surface area sources. Consequently, a portable wind-tunnel system was developed at the University of New South Wales that was easy to handle and suitable for sampling from liquid surfaces. Development work was undertaken to ensure even air-flows above the emitting surface and to optimise air velocities to simulate real situations. However, recovery efficiencies for emissions have not previously been studied for wind-tunnel systems. A series of experiments was carried out for determining and improving the recovery rate of the wind-tunnel sampling system by using carbon monoxide as a tracer gas. It was observed by mass balance that carbon monoxide recovery rates were initially only 37% to 48% from a simulated surface area emission source. It was therefore apparent that further development work was required to improve recovery efficiencies. By analysing the aerodynamic character of air movement and CO transportation inside the wind-tunnel, it was determined that the apparent poor recoveries resulted from uneven mixing at the sample collection point. A number of modifications were made for the mixing chamber of the wind-tunnel system. A special sampling chamber extension and a sampling manifold with optimally distributed sampling orifices were developed for the wind-tunnel sampling system. The simulation experiments were repeated with the new sampling system. Over a series of experiments, the recovery efficiency of sampling was improved to 83-100% with an average of 90%, where the CO tracer gas was introduced at a single point and 92-102% with an average of 97%, where the CO tracer gas was introduced along a line transverse to the sweep air. The stability and accuracy of the new system were determined statistically and are reported.

  15. Observation of a vacuum tunnel gap in a transmission electron microscope using a micromechanical tunneling microscope

    NASA Astrophysics Data System (ADS)

    Lutwyche, M. I.; Wada, Y.

    1995-05-01

    This letter reports the observation of the vacuum tunnel gap between two conductors using a high resolution transmission electron microscope. A 2.5 mm square micromachined tunneling microscope chip has been fabricated with a minimum feature size of 0.4 μm. The chip fits into a modified side-entry type transmission electron microscope holder. The tunnel gap is controlled by a purpose-built feedback controller. The micromachines work reliably during observation of the tip apex in a transmission electron microscope, allowing the voltage and current to be changed while the tunnel gap is observed.

  16. Tunneling into quantum wires: Regularization of the tunneling Hamiltonian and consistency between free and bosonized fermions

    NASA Astrophysics Data System (ADS)

    Filippone, Michele; Brouwer, Piet W.

    2016-12-01

    Tunneling between a point contact and a one-dimensional wire is usually described with the help of a tunneling Hamiltonian that contains a δ function in position space. Whereas the leading-order contribution to the tunneling current is independent of the way this δ function is regularized, higher-order corrections with respect to the tunneling amplitude are known to depend on the regularization. Instead of regularizing the δ function in the tunneling Hamiltonian, one may also obtain a finite tunneling current by invoking the ultraviolet cutoffs in a field-theoretic description of the electrons in the one-dimensional conductor, a procedure that is often used in the literature. For the latter case, we show that standard ultraviolet cutoffs lead to different results for the tunneling current in fermionic and bosonized formulations of the theory, when going beyond leading order in the tunneling amplitude. We show how to recover the standard fermionic result using the formalism of functional bosonization and revisit the tunneling current to leading order in the interacting case.

  17. 1. East portal of Tunnel 4, view to west with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. East portal of Tunnel 4, view to west with east portal of Tunnel 38 (HAER CA-211) visible in distance, 135mm lens with electronic flash fill. This tunnel was photographed to provide context, because even though somewhat enlarged, it illustrates the nature of the unlined hard rock tunnels typical of the original Central Pacific construction in 1868. - Central Pacific Transcontinental Railroad, Tunnel No. 4, Milepost 180.95, Cisco, Placer County, CA

  18. Construction of Foundation for 15-Foot Spin Tunnel

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Completed foundation for the outer housing for the 15-Foot Spin Tunnel. Charles Zimmerman was given the assignment to design and build a larger spin tunnel that would supplant the 5-foot Vertical Wind Tunnel. Authorization to build the tunnel using funds from the Federal Public Works Administration (PWA) came in June 1933. Construction started in late winter 1934 and the tunnel was operational in April 1935. The initial construction costs were $64,000.

  19. LaRC design analysis report for National Transonic Facility for 304 stainless steel tunnel shell. Volume 1S: Finite difference analysis of cone/cylinder junction

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W., Jr.; Taylor, J. T.; Wilson, J. F.; Gray, C. E., Jr.; Leatherman, A. D.; Rooker, J. R.; Allred, J. W.

    1976-01-01

    The results of extensive computer (finite element, finite difference and numerical integration), thermal, fatigue, and special analyses of critical portions of a large pressurized, cryogenic wind tunnel (National Transonic Facility) are presented. The computer models, loading and boundary conditions are described. Graphic capability was used to display model geometry, section properties, and stress results. A stress criteria is presented for evaluation of the results of the analyses. Thermal analyses were performed for major critical and typical areas. Fatigue analyses of the entire tunnel circuit are presented.

  20. Review of Aeronautical Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The nation's aeronautical wind tunnel facilities constitute a valuable technological resource and make a significant contribution to the global supremacy of U.S. aircraft, both civil and military. At the request of NASA, the National Research Council's Aeronautics and Space Engineering Board organized a commitee to review the state of repair, adequacy, and future needs of major aeronautical wind tunnel facilities in meeting national goals. The comittee identified three main areas where actions are needed to sustain the capability of NASA's aeronautical wind tunnel facilities to support the national aeronautical research and development activities: tunnel maintenance and upgrading, productivity enhancement, and accommodation of new requirements (particularly in hypersonics). Each of these areas are addressed and the committee recommendations for appropriate actions presented.

  1. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    PubMed Central

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  2. V/STOL wind-tunnel testing

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.

    1984-01-01

    Factors influencing effective program planning for V/STOL wind-tunnel testing are discussed. The planning sequence itself, which includes a short checklist of considerations that could enhance the value of the tests, is also described. Each of the considerations, choice of wind tunnel, type of model installation, model development and test operations, is discussed, and examples of appropriate past and current V/STOL test programs are provided. A short survey of the moderate to large subsonic wind tunnels is followed by a review of several model installations, from two-dimensional to large-scale models of complete aircraft configurations. Model sizing, power simulation, and planning are treated, including three areas is test operations: data-acquisition systems, acoustic measurements in wind tunnels, and flow surveying.

  3. Influence of classical resonances on chaotic tunneling

    SciTech Connect

    Mouchet, Amaury; Eltschka, Christopher; Schlagheck, Peter

    2006-08-15

    Dynamical tunneling between symmetry-related stable modes is studied in the periodically driven pendulum. We present strong evidence that the tunneling process is governed by nonlinear resonances that manifest within the regular phase-space islands on which the stable modes are localized. By means of a quantitative numerical study of the corresponding Floquet problem, we identify the trace of such resonances not only in the level splittings between near-degenerate quantum states, where they lead to prominent plateau structures, but also in overlap matrix elements of the Floquet eigenstates, which reveal characteristic sequences of avoided crossings in the Floquet spectrum. The semiclassical theory of resonance-assisted tunneling yields good overall agreement with the quantum-tunneling rates, and indicates that partial barriers within the chaos might play a prominent role.

  4. 49 CFR 177.810 - Vehicular tunnels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... kind, character, or quantity of any hazardous material permitted by such regulations to be transported through any urban vehicular tunnel used for mass transportation. [Amdt. 177-52, 46 FR 5316, Jan. 19,...

  5. AMELIA Tests in NASA Wind Tunnel

    NASA Video Gallery

    This report from "This Week @ NASA" describes recent aerodynamic tests of a subscale model of the Advanced Model for Extreme Lift and Improved Aeroacoustics, or "AMELIA," in a NASA wind tunnel. The...

  6. NASA Now: Engineering Design: Wind Tunnel Testing

    NASA Video Gallery

    Dr. Norman W. Schaeffler, a NASA aerospace research engineer, describes how wind tunnels work and how aircraft designers use them to understand aerodynamic forces at low speeds. Learn the advantage...

  7. Tertiary interactions within the ribosomal exit tunnel.

    PubMed

    Kosolapov, Andrey; Deutsch, Carol

    2009-04-01

    Although tertiary folding of whole protein domains is prohibited by the cramped dimensions of the ribosomal tunnel, dynamic tertiary interactions may permit folding of small elementary units within the tunnel. To probe this possibility, we used a beta-hairpin and an alpha-helical hairpin from the cytosolic N terminus of a voltage-gated potassium channel and determined a probability of folding for each at defined locations inside and outside the tunnel. Minimalist tertiary structures can form near the exit port of the tunnel, a region that provides an entropic window for initial exploration of local peptide conformations. Tertiary subdomains of the nascent peptide fold sequentially, but not independently, during translation. These studies offer an approach for diagnosing the molecular basis for folding defects that lead to protein malfunction and provide insight into the role of the ribosome during early potassium channel biogenesis.

  8. Carpal Tunnel Syndrome: Physical Therapy or Surgery?

    PubMed

    2017-03-01

    Carpal tunnel syndrome causes pain, numbness, and weakness in the wrist and hand. Nearly 50% of all work-related injuries are linked to carpal tunnel syndrome, and people with this injury are more likely to miss work because of it. Patients with carpal tunnel syndrome can be treated with physical therapy or surgery. Although surgery may be considered when the symptoms are severe, more than a third of patients do not return to work within 8 weeks after an operation. Based on the potential side effects and risks of surgery, patients often ask if they might try physical therapy first. An article in the March 2017 issue of JOSPT assesses the effectiveness of therapy and surgery to treat carpal tunnel syndrome. J Orthop Sports Phys Ther 2017;47(3):162. doi:10.2519/jospt.2017.0503.

  9. Tunnelling current-voltage characteristics of Angstrom gaps measured with terahertz time-domain spectroscopy

    PubMed Central

    Kim, Joon-Yeon; Kang, Bong Joo; Bahk, Young-Mi; Kim, Yong Seung; Park, Joohyun; Kim, Won Tae; Rhie, Jiyeah; Han, Sanghoon; Jeon, Hyeongtag; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2016-01-01

    Quantum tunnelling becomes inevitable as gap dimensions in metal structures approach the atomic length scale, and light passing through these gaps can be used to examine the quantum processes at optical frequencies. Here, we report on the measurement of the tunnelling current through a 3-Å-wide metal-graphene-metal gap using terahertz time-domain spectroscopy. By analysing the waveforms of the incident and transmitted terahertz pulses, we obtain the tunnelling resistivity and the time evolution of the induced current and electric fields in the gap and show that the ratio of the applied voltage to the tunnelling current is constant, i.e., the gap shows ohmic behaviour for the strength of the incident electric field up to 30 kV/cm. We further show that our method can be extended and applied to different types of nanogap tunnel junctions using suitable equivalent RLC circuits for the corresponding structures by taking an array of ring-shaped nanoslots as an example. PMID:27357346

  10. Road tunnel, roadside, and urban background measurements of aliphatic compounds in size-segregated particulate matter

    NASA Astrophysics Data System (ADS)

    Alves, Célia A.; Oliveira, César; Martins, Natércia; Mirante, Fátima; Caseiro, Alexandre; Pio, Casimiro; Matos, Manuel; Silva, Hugo F.; Oliveira, Cristina; Camões, Filomena

    2016-02-01

    Particulate matter samples were collected in a road tunnel in Lisbon (PM0.5, PM0.5-1, PM1-2.5, and PM2.5-10) and at two urban locations representing roadside and background stations (PM2.5 and PM2.5-10). Samples were analysed for organic and elemental carbon (OC and EC), n-alkanes, n-alkenes, hopanes, some isoprenoid compounds, and steranes. Particulate matter concentrations in the tunnel were 17-31 times higher than at roadside in the vicinity, evidencing an aerosol origin almost exclusively in fresh vehicle emissions. PM0.5 in the tunnel comprised more than 60% and 80% of the total OC and EC mass in PM10, respectively. Concentrations of the different aliphatic groups of compounds in the tunnel were up to 89 times higher than at roadside and 143 times higher than at urban background. Based on the application of hopane-to-OC or hopanes-to-EC ratios obtained in the tunnel, it was found that vehicle emissions are the dominant contributor to carbonaceous particles in the city but do not represent the only source of these triterpenic compounds. Contrary to what has been observed in other studies, the Σhopane-to-EC ratios were higher in summer than in winter, suggesting that other factors (e.g. biomass burning, dust resuspension, and different fuels/engine technologies) prevail in relation to the photochemical decay of triterpenoid hydrocarbons from vehicle exhaust.

  11. Study of the Adsorption of Acridine and Phenazine on Aluminum Oxide Using Tunneling Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tompson, Rosalie J. Graves

    The tunneling spectra of acridine, acridine-d(,9) and phenazine have been investigated in this study. Detailed analyses of the spectra using infrared and Raman results for acridine, phenazine, phenazine-d(,8), anthracene, anthracene -d(,10) and tunneling data for anthracene are presented. The spectra indicate that these molecules do not break up on the oxide surfaces of the tunnel junctions. The spectra of phenazine indicate that phenazine orients with the plane of the molecule parallel to the oxide surface and that an Al-N bond forms between one (or both) of phenazine's nitrogen atoms and an aluminum atom (or atoms) on the surface. In the phenazine study, for the first time, vibrational modes which are inactive in the Raman and infrared but possibly active in a tunneling spectrum (as theoretically predicted, but not found previously in a tunneling spectrum) have been seen. Acridine is probably oriented almost parallel to the oxide surface; however, some degree of "tilt" away from parallel may be indicated by the spectra. This possibility is considered in relation to acridine's corrosion inhibiting properties. Molecules for future work are considered including: 2-, 3- and 4-amino-pyridine; pyridine; aniline; piperidine; ethylene.

  12. Wind tunnel simulations of aerolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1984-01-01

    The characteristics of aerolian (wind) activity as a surface modifying process on Earth, Mars, Venus, and appropriate satellites was determined. A combination of spacecraft data analysis, wind tunnel simulations, and terrestrial field analog studies were used to determine these characteristics. Wind tunnel experiments simulating Venusian surface conditions demonstrate that rolling of particles may be an important mode of transport by winds on Venus and that aerolian processes in the dense atmosphere may share attributes of both aerolian and aqueous environments on Earth.

  13. Low Power Band to Band Tunnel Transistors

    DTIC Science & Technology

    2010-12-15

    the E-field and tunneling at the source- pocket junction you form a parasitic NPN + transistor and the injection mechanism of carriers into the...hypothesis that the 1000 ° C, 5s anneal split lead to a very wide pocket and the accidental formation of a NPN + transistor , while the 1000 ° C, 1s anneal...Low Power Band to Band Tunnel Transistors Anupama Bowonder Electrical Engineering and Computer Sciences University of California at Berkeley

  14. Tarsal tunnel syndrome: ultrasonographic and MRI features.

    PubMed

    Machiels, F; Shahabpour, M; De Maeseneer, M; Schmedding, E; Wylock, P; Osteaux, M

    1999-04-01

    Tarsal tunnel syndrome is a well-known but rare entrapment neuropathy involving the posterior tibial nerve in the tarsal tunnel, a fibro-osseous channel extending from the medial aspect of the ankle to the midfoot. Posttraumatic fibrosis, ganglion cyst, tenosynovitis, tumor of the nerves or other structures, dilated or tortuous veins can cause significant nerve compression in this anatomic region. Herein, we present the typical ultrasonographic and magnetic resonance features of this disorder in patient with a ganglion cyst.

  15. Automatic control of cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.

    1989-01-01

    Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with

  16. Detection of underground structures and tunnels

    SciTech Connect

    Mack, J.M.; Moses, R.W.; Kelly, R.E.; Flynn, E.R.; Kraus, R.H.; Cogbill, A.H.; Stolarczyk, L.G.

    1996-09-01

    This is the final report of a one year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. There is a continuing need in the United States defense and drug interdiction for effective over, convert, and standoff means of detecting underground tunnels, structures, and objects. This project sought to begin an assessment of electromagnetic and gravitational gradient detection approaches to the detection of underground structures and tunnels.

  17. Semiconductor tunnel junction with enhancement layer

    DOEpatents

    Klem, John F.; Zolper, John C.

    1997-01-01

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling.

  18. Semiconductor tunnel junction with enhancement layer

    DOEpatents

    Klem, J.F.; Zolper, J.C.

    1997-10-21

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling. 5 figs.

  19. Tunnel junctions, cantilevers, and potentials

    NASA Astrophysics Data System (ADS)

    Tanner, Shawn

    We have developed a process for making sub-micrometer dimensional cantilevers, clamped beams, and more complicate electro-mechanical structures that carry integrated electrical leads. Such objects are perhaps useful as test structures for connecting to and measuring the electrical properties of molecular sized objects, as high frequency electromechanical components for radio and microwave frequency applications, and as sensor components for studying the fluctuation physics of small machines. Our process uses two realigned electron-beam lithography steps, a thin film angled deposition system, and differential removal of sacrificial aluminum layers to produce freely suspended sub-micron electromechanical components. We have produced cantilevers and beams on a variety of substrates (silica, silicon, and poly-imide) and have produced insulating, conductive, and multi-layer mechanical structures. We have measured mechanical resonances in the 10 MHz range by electrostatically actuating the cantilevers while in a magnetic field (3500 gauss) and measuring the voltage that results across the front edge of the cantilever. Two structures are fabricated sharing a common ground so that a balanced detection technique can be used to eliminate background signals. Due to the square dependence of the electrostatic force on the voltage, they can be resonated by a drive voltage of 1/2 the natural frequency or at the natural frequency. Two separate attempts have been made to apply these resonators. First, a process was developed to integrate a tunnel junction with the cantilever. These devices can possibly be used for probing small-scale systems such as molecules. We have verified the exponential variation of the tunneling resistance with both substrate flex and electrostatic gating. Second, a novel gate structure was developed to create a double potential well for resonator motion. This is accomplished by placing a multilayer structure in front of the hairpin cantilever consisting two

  20. Morphological properties of tunnel valleys of the southern sector of the Laurentide Ice Sheet and implications for their formation

    NASA Astrophysics Data System (ADS)

    Livingstone, Stephen J.; Clark, Chris D.

    2016-07-01

    Tunnel valleys have been widely reported on the bed of former ice sheets and are considered an important expression of subglacial meltwater drainage. Although known to have been cut by erosive meltwater flow, the water source and development of channels has been widely debated; ranging between outburst flood events through to gradually occurring channel propagation. We have mapped and analysed the spatial pattern and morphometry of tunnel valleys and associated glacial landforms along the southern sector of the former Laurentide Ice Sheet from high-resolution digital elevation models. Around 2000 tunnel valleys have been mapped, revealing an organised pattern of sub-parallel, semi-regularly spaced valleys that form in distinctive clusters. The tunnel valleys are typically < 20 km long, and 0.5-3 km wide, although their width varies considerably down-valley. They preferentially terminate at moraines, which suggests that formation is time dependent; while we also observe some tunnel valleys that have grown headwards out of hill-hole pairs. Analysis of cross-cutting relationships between tunnel valleys, moraines and outwash fans permits reconstruction of channel development in relation to the retreating ice margin. This palaeo-drainage reconstruction demonstrates incremental growth of most valleys, with some used repeatedly or for long periods, during deglaciation, while others were abandoned shortly after their formation. Our data and interpretation support gradual (rather than a single-event) formation of most tunnel valleys with secondary contributions from flood drainage of subglacial and or supraglacially stored water down individual tunnel valleys. The distribution and morphology of tunnel valleys is shown to be sensitive to regional factors such as basal thermal regime, ice and bed topography, timing and climate.