Sample records for analysis biofuels implications

  1. Bio-fuels energy policy and grain transportation flows : implications for inland waterways and short sea shipping.

    DOT National Transportation Integrated Search

    2010-09-15

    This project develops a foundation for analysis of the effects of U.S. biofuel energy policy on domestic : and international grain flows and patterns. The primary deliverable of this project is an updated and : expanded spatial equilibrium model of w...

  2. A Techno-Economic Analysis of Emission Controls on Hydrocarbon Biofuel Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Arpit; Zhang, Yimin; Davis, Ryan

    Biofuels have the potential to reduce our dependency on petroleum-derived transportation fuels and decrease greenhouse gas (GHG) emissions. Although the overall GHG emissions from biofuels are expected to be lower when compared to those of petroleum fuels, the process of converting biomass feedstocks into biofuels emits various air pollutants, which may be subject to federal air quality regulation or emission limits. While prior research has evaluated the technical and economic feasibility of biofuel technologies, gaps still exist in understanding the regulatory issues associated with the biorefineries and their economic implications on biofuel production costs (referred to as minimum fuel sellingmore » price (MFSP) in this study). The aim of our research is to evaluate the economic impact of implementing emission reduction technologies at biorefineries and estimate the cost effectiveness of two primary control technologies that may be required for air permitting purposes. We analyze a lignocellulosic sugars-to-hydrocarbon biofuel production pathway developed by the National Renewable Energy Laboratory (NREL) and implement air emission controls in Aspen Plus to evaluate how they affect the MFSP. Results from this analysis can help inform decisions about biorefinery siting and sizing, as well as mitigate the risks associated with air permitting.« less

  3. Arpit Bhatt | NREL

    Science.gov Websites

    Center to provide techno-economic analysis for advanced biofuel production designs. He holds a Master of pollutant modeling Research Interests Sustainability analysis Techno-economic analysis Air pollutant ., Heath, G. Economic implications of incorporating emission controls to mitigate air pollutants emitted

  4. Overview on Biofuels from a European Perspective

    ERIC Educational Resources Information Center

    Ponti, Luigi; Gutierrez, Andrew Paul

    2009-01-01

    In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

  5. WATER IMPLICATIONS OF BIOFUELS PRODUCTION

    EPA Science Inventory

    Presentation requested by the National Academy of Science (NAS) for a Colloquium on Water Quality Implications of Biofuels Production, to be held at the NAS in Washington, D.C. on July 12, 2007. This presentation will address the influence of ethanol on hydrocarbon plumes and th...

  6. Biofuels and Fisheries: Risks and Opportunities .

    EPA Science Inventory

    A rapidly developing biofuels industry in the U.S. and around the globe poses novel environmental challenges and opportunities, with implications for teh health and sustainability of fisheries. Changes in land uses and agricultural practices for production of biofuel feedstocks ...

  7. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications.

    PubMed

    Popp, József; Harangi-Rákos, Mónika; Gabnai, Zoltán; Balogh, Péter; Antal, Gabriella; Bai, Attila

    2016-02-29

    This review studies biofuel expansion in terms of competition between conventional and advanced biofuels based on bioenergy potential. Production of advanced biofuels is generally more expensive than current biofuels because products are not yet cost competitive. What is overlooked in the discussion about biofuel is the contribution the industry makes to the global animal feed supply and land use for cultivation of feedstocks. The global ethanol industry produces 44 million metric tonnes of high-quality feed, however, the co-products of biodiesel production have a moderate impact on the feed market contributing to just 8-9 million tonnes of protein meal output a year. By economically displacing traditional feed ingredients co-products from biofuel production are an important and valuable component of the biofuels sector and the global feed market. The return of co-products to the feed market has agricultural land use (and GHG emissions) implications as well. The use of co-products generated from grains and oilseeds can reduce net land use by 11% to 40%. The proportion of global cropland used for biofuels is currently some 2% (30-35 million hectares). By adding co-products substituted for grains and oilseeds the land required for cultivation of feedstocks declines to 1.5% of the global crop area.

  8. Understanding Potential Air Emissions from a Cellulosic Biorefinery Producing Renewable Diesel Blendstock.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yimin; Heath, Garvin A.; Renzaglia, Jason

    2015-06-22

    The Energy Independence and Security Act of 2007, through the Renewable Fuel Standard (RFS), mandates increased use of biofuels, including cellulosic biofuels. The RFS is expected to spur the development of advanced biofuel technologies (e.g., new and innovative biofuel conversion pathways) as well as the construction of biorefineries (refineries that produce biofuels) using these technologies. To develop sustainable cellulosic biofuels, one of the goals of the Bioenergy Technologies Office (BETO) at the Department of Energy is to minimize air pollutants from the entire biofuel supply chain, as stated in their 2014 Multi-Year Program Plan (2014). Although biofuels in general havemore » been found to have lower life cycle greenhouse gas (GHG) emissions compared to petroleum fuels on an energy basis, biomass feedstock production, harvesting, transportation, processing and conversion are expected to emit a wide range of other air pollutants (e.g., criteria air pollutants, hazardous air pollutants), which could affect the environmental benefits of biofuels when displacing petroleum fuels. While it is important for policy makers, air quality planners and regulators, biofuel developers, and investors to understand the potential implications on air quality from a growing biofuel industry, there is a general lack of information and knowledge about the type, fate and magnitude of potential air pollutant emissions from the production of cellulosic biofuels due to the nascent stage of this emerging industry. This analysis assesses potential air pollutant emissions from a hypothetical biorefinery, selected by BETO for further research and development, which uses a biological conversion process of sugars to hydrocarbons to produce infrastructural-compatible renewable diesel blendstock from cellulosic biomass.« less

  9. USING GIS TO DETERMINE PLANTABLE AREA FOR PRAIRIE SWITCHGRASS BIOFUEL PRODUCTION IN KENTUCKY RIGHTS-OF-WAY

    EPA Science Inventory

    (1) The United States’ dependence on foreign fuel and other non-renewable resources has implications across disciplines including international relationships, the environment, and economics. Biofuels have been proposed as an alternative; however, land for biofuel product...

  10. Producing biofuel crops: environmental and economic implications and strategies

    USDA-ARS?s Scientific Manuscript database

    The growing need for sustainable fuel sources must become compatible with the continued need for food by an ever increasing world population and the effects of climate change on ability to produce food and biofuel. Growing more hectares of biofuel crops such as corn increases sediment and nutrient l...

  11. Reaching the Environmental Community: Designing an Information Program for the NREL Biofuels Program; May 2002-May 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, J.; Werner, C.

    2003-08-01

    Final report on subcontract for holding two briefings for policymakers and the environmental community on environmental issues related to biofuels; one on one on the energy and environmental issues associated with biofuels production and use, and the other on implications of pending renewable fuels standard legislation.

  12. Public attitudes toward biofuels. Effects of knowledge, political partisanship, and media use.

    PubMed

    Cacciatore, Michael A; Binder, Andrew R; Scheufele, Dietram A; Shaw, Bret R

    2012-01-01

    Despite large-scale investments and government mandates to expand biofuels development and infrastructure in the United States, little is known about how the public conceives of this alternative fuel technology. This study examines public opinion of biofuels by focusing on citizen knowledge and the motivated processing of media information. Specifically, we explore the direct effects of biofuels knowledge and the moderating effect of partisanship on the relationship between media use and benefit vs. risk perceptions in the following four domains: environmental impacts, economic consequences, ethical/social implications, and political ramifications. Our results suggest that more knowledgeable respondents see fewer benefits of biofuels relative to risks, and that Democrats and Republicans are affected differently by media use when forming opinions about biofuels. Among Democrats, greater attention to political media content leads to a more favorable outlook toward the technology across several domains of interest, while among Republicans, an increase in attention to political content has the opposite effect. Possible reasons for these results, as well as implications of the findings at the intersection of politics and the life sciences, are discussed.

  13. Increasing feedstock production for biofuels : economic drivers, environmental implications, and the role of research

    DOT National Transportation Integrated Search

    2008-01-01

    The goal of this report is to inform research recommendations to address the constraints surrounding availability of biomass feedstocks. To meet this goal, an economic assessment, which links to an analysis of the consequences for greenhouse gas emis...

  14. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy

    PubMed Central

    Khanna, Madhu; Crago, Christine L.; Black, Mairi

    2011-01-01

    Biofuels have gained increasing attention as an alternative to fossil fuels for several reasons, one of which is their potential to reduce the greenhouse gas (GHG) emissions from the transportation sector. Recent studies have questioned the validity of claims about the potential of biofuels to reduce GHG emissions relative to the liquid fossil fuels they are replacing when emissions owing to direct (DLUC) and indirect land use changes (ILUC) that accompany biofuels are included in the life cycle GHG intensity of biofuels. Studies estimate that the GHG emissions released from ILUC could more than offset the direct GHG savings by producing biofuels and replacing liquid fossil fuels and create a ‘carbon debt’ with a long payback period. The estimates of this payback period, however, vary widely across biofuels from different feedstocks and even for a single biofuel across different modelling assumptions. In the case of corn ethanol, this payback period is found to range from 15 to 200 years. We discuss the challenges in estimating the ILUC effect of a biofuel and differences across biofuels, and its sensitivity to the assumptions and policy scenarios considered by different economic models. We also discuss the implications of ILUC for designing policies that promote biofuels and seek to reduce GHG emissions. In a first-best setting, a global carbon tax is needed to set both DLUC and ILUC emissions to their optimal levels. However, it is unclear whether unilateral GHG mitigation policies, even if they penalize the ILUC-related emissions, would increase social welfare and lead to optimal emission levels. In the absence of a global carbon tax, incentivizing sustainable land use practices through certification standards, government regulations and market-based pressures may be a viable option for reducing ILUC. PMID:22482030

  15. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy.

    PubMed

    Khanna, Madhu; Crago, Christine L; Black, Mairi

    2011-04-06

    Biofuels have gained increasing attention as an alternative to fossil fuels for several reasons, one of which is their potential to reduce the greenhouse gas (GHG) emissions from the transportation sector. Recent studies have questioned the validity of claims about the potential of biofuels to reduce GHG emissions relative to the liquid fossil fuels they are replacing when emissions owing to direct (DLUC) and indirect land use changes (ILUC) that accompany biofuels are included in the life cycle GHG intensity of biofuels. Studies estimate that the GHG emissions released from ILUC could more than offset the direct GHG savings by producing biofuels and replacing liquid fossil fuels and create a 'carbon debt' with a long payback period. The estimates of this payback period, however, vary widely across biofuels from different feedstocks and even for a single biofuel across different modelling assumptions. In the case of corn ethanol, this payback period is found to range from 15 to 200 years. We discuss the challenges in estimating the ILUC effect of a biofuel and differences across biofuels, and its sensitivity to the assumptions and policy scenarios considered by different economic models. We also discuss the implications of ILUC for designing policies that promote biofuels and seek to reduce GHG emissions. In a first-best setting, a global carbon tax is needed to set both DLUC and ILUC emissions to their optimal levels. However, it is unclear whether unilateral GHG mitigation policies, even if they penalize the ILUC-related emissions, would increase social welfare and lead to optimal emission levels. In the absence of a global carbon tax, incentivizing sustainable land use practices through certification standards, government regulations and market-based pressures may be a viable option for reducing ILUC.

  16. The South's outlook for sustainable forest bioenergy and biofuels production

    Treesearch

    David Wear; Robert Abt; Janaki Alavalapati; Greg Comatas; Mike Countess; Will McDow

    2010-01-01

    The future of a wood-based biofuel/bioenergy sector could hold important implications for the use, structure and function of forested landscapes in the South. This paper examines a set of questions regarding the potential effects of biofuel developments both on markets for traditional timber products and on the provision of various non-timber ecosystem services. In...

  17. Anaerobic biodegradation of biofuels and BTEX compounds in aquifer sediment, with implications for modeling transport and fate (Philadelphia)

    EPA Science Inventory

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...

  18. Ethanol distribution, dispensing, and use: analysis of a portion of the biomass-to-biofuels supply chain using system dynamics.

    PubMed

    Vimmerstedt, Laura J; Bush, Brian; Peterson, Steve

    2012-01-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

  19. Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics

    PubMed Central

    Vimmerstedt, Laura J.; Bush, Brian; Peterson, Steve

    2012-01-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain–represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner’s decision whether to offer ethanol fuel and a consumer’s choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles. PMID:22606230

  20. Analyzing Air Pollutant Emissions from the Biofuel Supply Chain | Energy

    Science.gov Websites

    biomass-to-biofuels life cycle - fast-growing trees, agricultural waste, storage silos, and a biorefinery published in Chapter 9-"Implications of Air Pollutant Emissions from Producing Agricultural and

  1. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels.

    PubMed

    Mohr, Alison; Raman, Sujatha

    2013-12-01

    The emergence of second generation (2G) biofuels is widely seen as a sustainable response to the increasing controversy surrounding the first generation (1G). Yet, sustainability credentials of 2G biofuels are also being questioned. Drawing on work in Science and Technology Studies, we argue that controversies help focus attention on key, often value-related questions that need to be posed to address broader societal concerns. This paper examines lessons drawn from the 1G controversy to assess implications for the sustainability appraisal of 2G biofuels. We present an overview of key 1G sustainability challenges, assess their relevance for 2G, and highlight the challenges for policy in managing the transition. We address limitations of existing sustainability assessments by exploring where challenges might emerge across the whole system of bioenergy and the wider context of the social system in which bioenergy research and policy are done. Key lessons arising from 1G are potentially relevant to the sustainability appraisal of 2G biofuels depending on the particular circumstances or conditions under which 2G is introduced. We conclude that sustainability challenges commonly categorised as either economic, environmental or social are, in reality, more complexly interconnected (so that an artificial separation of these categories is problematic).

  2. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    PubMed

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  3. The Role of Social Constructions and Biophysical Attributes of the Environment in Decision-Making in the Context of Biofuels and Rubber Production Partnership Regimes in Upland Philippines

    NASA Astrophysics Data System (ADS)

    Montefrio, M. F.

    2012-12-01

    Burgeoning attention in biofuels and natural rubber has spurred interest among governments and private companies in integrating marginalized communities into global commodity markets. Upland farmers from diverse cultural backgrounds and biophysical settings today are deciding whether to agree with partnership proposals from governments and private firms to grow biofuels and natural rubber. In this paper, I examine whether upland farmers' socio-environmental constructions (evaluative beliefs, place satisfaction, and ecological worldviews) and the actual biophysical attributes (land cover and soil types) of upland environments, respectively, function as significant predictors of the intent and decisions of indigenous and non-indigenous farmers to cooperate with government and private actors to establish certain biofuel crops and natural rubber production systems in Palawan, Philippines. Drawing from ethnography and statistical analysis of household surveys, I propose that social constructions and the biophysical attributes of the environment are closely related with each other and in turn both influence individual decision-making behavior in resource-based production partnership regimes. This has significant implications on the resilience of socio-ecological systems, particularly agro-ecosystems, as certain upland farmers prefer to engage in intensive, monocrop production of biofuels and natural rubber on relatively more biodiverse areas, such as secondary forests and traditional shifting cultivation lands. The study aims to advance new institutional theories of resource management, particularly Ostrom's Institutional Analysis and Development and Socio-Ecological Systems frameworks, and scholarship on environmental decision-making in the context of collective action.

  4. Laura Vimmerstedt | NREL

    Science.gov Websites

    implications for energy technologies Research Interests Environmental effects of energy technologies and . Warner, and Dana Stright. 2016. Effects of Deployment Investment on the Growth of the Biofuels Industry . W. Bush. 2013. Effects of Deployment Investment on the Growth of the Biofuels Industry. Golden, CO

  5. Biofuels and Food Security. A report by the High Level Panel of Experts on Food Security and Nutrition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    In October 2011, the UN Committee on World Food Security (CFS) recommended a ''review of biofuels policies -- where applicable and if necessary -- according to balanced science-based assessments of the opportunities and challenges that they may represent for food security so that biofuels can be produced where it is socially, economically and environmentally feasible to do so''. In line with this, the CFS requested the HLPE (High Level Panel of Experts) to ''conduct a science-based comparative literature analysis taking into consideration the work produced by the FAO and Global Bioenergy Partnership (GBEP) of the positive and negative effects ofmore » biofuels on food security''. Recommendations from the report include the following. Food security policies and biofuel policies cannot be separated because they mutually interact. Food security and the right to food should be priority concerns in the design of any biofuel policy. Governments should adopt the principle: biofuels shall not compromise food security and therefore should be managed so that food access or the resources necessary for the production of food, principally land, biodiversity, water and labour are not put at risk. The CFS should undertake action to ensure that this principle is operable in the very varied contexts in which all countries find themselves. Given the trend to the emergence of a global biofuels market, and a context moving from policy-driven to market-driven biofuels, there is an urgent need for close and pro-active coordination of food security, biofuel/bioenergy policies and energy policies, at national and international levels, as well as rapid response mechanisms in case of crisis. There is also an urgent need to create an enabling, responsible climate for food and non-food investments compatible with food security. The HLPE recommends that governments adopt a coordinated food security and energy security strategy, which would require articulation around the following five axes/dimensions: Adapt to the change to global, market-driven dynamics; Address the land, water and resource implications of biofuel policies; Foster the transition from biofuels to comprehensive food-energy policies; Promote research and development; and, Develop methods and guidelines for coordinated food, Biofuels, and bio-energy policies at national and international levels.« less

  6. Water use implications of biofuel scenarios

    NASA Astrophysics Data System (ADS)

    Teter, J.; Mishra, G. S.; Yeh, S.

    2012-12-01

    Existing studies rely upon attributional lifecycle analysis (LCA) approaches to estimate water intensity of biofuels in liters of irrigated/evapotranspiration water consumed for biofuel production. Such approaches can be misleading. From a policy perspective, a better approach is to compare differential water impacts among scenarios on a landscape scale. We address the shortcomings of existing studies by using consequential LCA, and incorporate direct and indirect land use (changes) of biofuel scenarios, marginal vs. average biofuel water use estimates, future climate, and geographic heterogeneity. We use the outputs of a partial equilibrium economic model, climate and soil data, and a process-based crop-soil-climate-water model to estimate differences in green water (GW - directly from precipitation to soil) and blue water (BW - supplied by irrigation) use among three scenarios: (1) business-as-usual (BAU), (2) Renewable Fuels Standard (RFS) mandates, and (3) a national Low Carbon Fuel Standard (LCFS) plus the RFS scenario. We use spatial statistical methods to interpolate key climatic variables using daily climate observations for the contiguous USA. Finally, we use FAO's crop model AquaCrop to estimate the domestic GW and BW impacts of biofuel policies from 2007-2035. We assess the differences among scenarios along the following metrics: (1) crop area expansion at the county level, including prime and marginal lands, (2) crop-specific and overall annual/seasonal water balances including (a) water inflows (irrigation & precipitation), (b) crop-atmosphere interactions: (evaporation & transpiration) and (d) soil-water flows (runoff & soil infiltration), in mm 3 /acre over the relevant time period. The functional unit of analysis is the BW and GW requirements of biofuels (mm3 per Btu biofuel) at the county level. Differential water use impacts among scenarios are a primarily a function of (1) land use conversion, in particular that of formerly uncropped land classes (2) irrigation practices, (3) feedstock water use efficiency, and (4) the longer growing season and a predominance of rainfed cultivation of dedicated biofuel feedstocks. National-level total water use is lowest in the BAU scenario and highest in the RFS2 + LCFS scenario. Figure: Million acres converted to growing miscanthus (top) & switchgrass (bottom) under the RFS + LCFS scenario in 2035. Land use classes are crop pasture (blue), idle cropland (red-purple) & prime cropland (brown).

  7. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selfa, Theresa L; Goe, Richard; Kulcsar, Laszlo

    2013-02-11

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments andmore » policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producers attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A multi-method or mixed method research methodology was employed for each case study.« less

  8. [Model-based biofuels system analysis: a review].

    PubMed

    Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin

    2011-03-01

    Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.

  9. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels☆

    PubMed Central

    Mohr, Alison; Raman, Sujatha

    2013-01-01

    Aims The emergence of second generation (2G) biofuels is widely seen as a sustainable response to the increasing controversy surrounding the first generation (1G). Yet, sustainability credentials of 2G biofuels are also being questioned. Drawing on work in Science and Technology Studies, we argue that controversies help focus attention on key, often value-related questions that need to be posed to address broader societal concerns. This paper examines lessons drawn from the 1G controversy to assess implications for the sustainability appraisal of 2G biofuels. Scope We present an overview of key 1G sustainability challenges, assess their relevance for 2G, and highlight the challenges for policy in managing the transition. We address limitations of existing sustainability assessments by exploring where challenges might emerge across the whole system of bioenergy and the wider context of the social system in which bioenergy research and policy are done. Conclusions Key lessons arising from 1G are potentially relevant to the sustainability appraisal of 2G biofuels depending on the particular circumstances or conditions under which 2G is introduced. We conclude that sustainability challenges commonly categorised as either economic, environmental or social are, in reality, more complexly interconnected (so that an artificial separation of these categories is problematic). PMID:24926117

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidler, Michal; Capece, John; Hanlon, Edward

    Objective of the presentation is to document land use and water use implications of biomass production to demonstrate the overall resources implications associated with bioethanol production for Florida’s transportation sector needs. Rationale for using biofuels (BF) is explained, so are advantages & challenges of BF production and use. Land use changes (LUC) in Florida are presented and consequences outlined. It is documented that Florida’s agricultural land is a very limited resource, with only 0.43 ac/person comparing to the global average of 1.71 ac/person. The direct relation of increased biofuels production causing increased water use is explained. Favorable climate, water resources,more » advanced research, traditional leading agricultural role, minor oil reserves, no refineries and increasing energy demands are the main reasons why Florida considers pursuing BF production in large scale. Eight various bioethanol crops produced in Florida were considered in this study (Miscanthus, Switchgrass, Sweet Sorghum, Corn, Elephantgrass, Sugarcane, Energycane, Eucalyptus). Biomass yield and bioethanol yield of these crops are documented. Bioethanol needs of Florida are estimated and related land requirements for the needed bioethanol production calculated. Projections for various bioethanol blends (E15 to E85) are then presented. Finally, water demand for biofuels production is quantified. It is concluded that land use requirement for production of all ethanol in E85 fuel blend in Florida is roughly the same as the total available ag land in Florida for the best yielding biofuels crops (energycane, eucalyptus). Water demand for production of all ethanol needed for E100 would increase current overall water consumption in Florida between 65% and 100% for the most common biofuels crops. Vehicular energy is only 33% of Floridians energy consumption, so even all Florida’s agricultural land was given up for biofuels, it would still produce only 33% of Florida’s total energy needs. Still, bioethanol (primarily cellulosic) produced in Florida has a potential to meet a significant portion of the State’s transportation needs. Assuming no change in food production and consumption habits in Florida, the likely result of biofuels sector expansion would be the conversion of natural lands or low-intensity agricultural lands into high-intensity biomass production and the associated increased water consumption and water quality implications.« less

  11. Refuelling the future: Progress towards testing drop-in biofuels in replacing conventional fuel for commercial flights

    NASA Astrophysics Data System (ADS)

    Noh, H. Mohd; Mahamad Taher, M. N.; Rodrigo, G. A.; Rahman, N. A. Abdul; Ismail, S.; Mat Rani, M.; Salleh, I. Mohd; Dahdi, Y.; Wan, W. N. S.; Razak, Abdul; Mat Ghani, M. S.; Yusoff, M. R.; Benito, A.

    2018-05-01

    Due to different motivations, including the interest in reducing the dependency on fossil fuel and environmental implications, drop-in biofuels are a reality in today’s commercial aviation. This paper summarizes the state-of-the-art of biomass-origin kerosene certification and provides references to the commercial flights performed so far by all airlines around the world. Results prove that the normal operation of the flights using the drop-in biofuel do not experience any repercussion in the performance in both engine and maintenance.

  12. Tris(hydroxymethyl)aminomethane photooxidation on titania based photoanodes and its implication for photoelectrochemical biofuel cells

    NASA Astrophysics Data System (ADS)

    Filipiak, Marcin S.; Zloczewska, Adrianna; Grzeskowiak, Piotr; Lynch, Robert; Jönsson-Niedziolka, Martin

    2015-09-01

    In many photoelectrochemical biofuel cells tris(hydroxymethyl)aminomethane (TRIS) is used a buffer. We show that TRIS can be readily photooxidised on titania electrodes. Combining a titania nanotube photoanode in a TRIS buffer with an air-breathing enzymatic biocathode we construct a relatively efficient photoelectrochemical biofuel cell using the TRIS buffer as fuel. This shows both the prospect of using air-breathing bio-cathodes in this kind of cells, but more importantly, shows the need for caution when using TRIS as buffer in photoelectrochemical applications.

  13. Algal Biofuels Techno-Economic Analysis | Bioenergy | NREL

    Science.gov Websites

    Biofuels Techno-Economic Analysis Algal Biofuels Techno-Economic Analysis To promote an understanding of the challenges and opportunities unique to microalgae, NREL's Algae Techno-Economic Analysis group focuses on techno-economic analysis (TEA) for the production and conversion of algal biomass into

  14. Making the Surface Fleet Green: The DOTMLPF, Policy, and Cost Implications of Using Biofuel in Surface Ships

    DTIC Science & Technology

    2012-12-01

    Navy’s Ships Renewable Fuels Evaluation, 2011) ..25 Table 4. Diesel Injector Component Testing (From U.S. Navy Biofuel Test and Qualification Update...components, including shipboard quality assurance instruments, fuel injector nozzles , fuel nozzle atomization, fuel nozzle fouling, carbon deposition...Leung, Turgeon, & Williams, 2011, p. 7). Table 4 lists the results from component testing conducted on various diesel engine fuel injectors using

  15. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region

    NASA Astrophysics Data System (ADS)

    Shonnard, David R.; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P.

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  16. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region.

    PubMed

    Shonnard, David R; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  17. Genomic Evaluation of Thermoanaerobacter spp. for the Construction of Designer Co-Cultures to Improve Lignocellulosic Biofuel Production

    PubMed Central

    Verbeke, Tobin J.; Zhang, Xiangli; Henrissat, Bernard; Spicer, Vic; Rydzak, Thomas; Krokhin, Oleg V.; Fristensky, Brian; Levin, David B.; Sparling, Richard

    2013-01-01

    The microbial production of ethanol from lignocellulosic biomass is a multi-component process that involves biomass hydrolysis, carbohydrate transport and utilization, and finally, the production of ethanol. Strains of the genus Thermoanaerobacter have been studied for decades due to their innate abilities to produce comparatively high ethanol yields from hemicellulose constituent sugars. However, their inability to hydrolyze cellulose, limits their usefulness in lignocellulosic biofuel production. As such, co-culturing Thermoanaerobacter spp. with cellulolytic organisms is a plausible approach to improving lignocellulose conversion efficiencies and yields of biofuels. To evaluate native lignocellulosic ethanol production capacities relative to competing fermentative end-products, comparative genomic analysis of 11 sequenced Thermoanaerobacter strains, including a de novo genome, Thermoanaerobacter thermohydrosulfuricus WC1, was conducted. Analysis was specifically focused on the genomic potential for each strain to address all aspects of ethanol production mentioned through a consolidated bioprocessing approach. Whole genome functional annotation analysis identified three distinct clades within the genus. The genomes of Clade 1 strains encode the fewest extracellular carbohydrate active enzymes and also show the least diversity in terms of lignocellulose relevant carbohydrate utilization pathways. However, these same strains reportedly are capable of directing a higher proportion of their total carbon flux towards ethanol, rather than non-biofuel end-products, than other Thermoanaerobacter strains. Strains in Clade 2 show the greatest diversity in terms of lignocellulose hydrolysis and utilization, but proportionately produce more non-ethanol end-products than Clade 1 strains. Strains in Clade 3, in which T. thermohydrosulfuricus WC1 is included, show mid-range potential for lignocellulose hydrolysis and utilization, but also exhibit extensive divergence from both Clade 1 and Clade 2 strains in terms of cellular energetics. The potential implications regarding strain selection and suitability for industrial ethanol production through a consolidated bioprocessing co-culturing approach are examined throughout the manuscript. PMID:23555660

  18. Soil Carbon Change and Net Energy Associated with Biofuel Production on Marginal Lands: A Regional Modeling Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandaru, Varaprasad; Izaurralde, Roberto C.; Manowitz, David H.

    2013-12-01

    The use of marginal lands (MLs) for biofuel production has been contemplated as a promising solution for meeting biofuel demands. However, there have been concerns with spatial location of MLs, their inherent biofuel potential, and possible environmental consequences with the cultivation of energy crops. Here, we developed a new quantitative approach that integrates high-resolution land cover and land productivity maps and uses conditional probability density functions for analyzing land use patterns as a function of land productivity to classify the agricultural lands. We subsequently applied this method to determine available productive croplands (P-CLs) and non-crop marginal lands (NC-MLs) in amore » nine-county Southern Michigan. Furthermore, Spatially Explicit Integrated Modeling Framework (SEIMF) using EPIC (Environmental Policy Integrated Climate) was used to understand the net energy (NE) and soil organic carbon (SOC) implications of cultivating different annual and perennial production systems.« less

  19. Protein Network Signatures Associated with Exogenous Biofuels Treatments in Cyanobacterium Synechocystis sp. PCC 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Guangsheng; Chen, Lei; Wang, Jiangxin

    2014-11-03

    Although recognized as a promising microbial cell factory for producing biofuels, current productivity in cyanobacterial systems is low. To make the processes economically feasible, one of the hurdles, which need to be overcome is the low tolerance of hosts to toxic biofuels. Meanwhile, little information is available regarding the cellular responses to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering. Using large proteomic datasets of Synechocystis under various biofuels stress and environmental perturbation, a protein co-expression network was first constructed and then combined with the experimentally determined protein–protein interaction network. Proteins with statistically higher topological overlap inmore » the integrated network were identified as common responsive proteins to both biofuels stress and environmental perturbations. In addition, a weighted gene co-expression network analysis was performed to distinguish unique responses to biofuels from those to environmental perturbations and to uncover metabolic modules and proteins uniquely associated with biofuels stress. The results showed that biofuel-specific proteins and modules were enriched in several functional categories, including photosynthesis, carbon fixation, and amino acid metabolism, which may represent potential key signatures for biofuels stress responses in Synechocystis. Network-based analysis allowed determination of the responses specifically related to biofuels stress, and the results constituted an important knowledge foundation for tolerance engineering against biofuels in Synechocystis.« less

  20. Aviation Management Perception of Biofuel as an Alternative Fuel Source

    NASA Astrophysics Data System (ADS)

    Marticek, Michael

    The purpose of this phenomenological study was to explore lived experiences and perceptions from a population of 75 aviation managers in various locations in Pennsylvania about the use of aviation biofuel and how it will impact the aviation industry. The primary research question for this study focused on the impact of biofuel on the airline industry and how management believes biofuel can contribute to the reduction of fossil fuel. Grounded in the conceptual framework of sustainability, interview data collected from 27 airline and fueling leaders were analyzed for like terms, coded, and reduced to 3 themes. Data were organized and prioritized based on frequency of mention. The findings represented themes of (a) flight planning tools, (b) production, and (c) costs that are associated with aviation fuel. The results confirmed findings addressed in the literature review, specifically that aviation biofuel will transform the airline industry through lower cost and production. These findings have broad applicability for all management personnel in the aviation industry. Implications for social change and improved business environments could be realized with a cleaner environment, reduced fuel emissions, and improved air quality.

  1. Three essays on the links between agriculture and energy policies in the U.S

    NASA Astrophysics Data System (ADS)

    Whistance, Jarrett

    The first essay develops and applies a structural, partial equilibrium model of United States biomass supply and demand. The aim is to examine the biomass price and expenditure effects of domestic biofuel policies. The results indicate that the cellulosic biofuel sub-mandate alone could increase biomass prices by an average of 50% to 100% over the baseline values. Biomass expenditures by sectors competing with biofuel producers increase by an average of 26% relative to the baseline suggesting those sectors cannot fully shift away from biomass energy sources. A sensitivity analysis focusing on supply response indicates that the results are not very sensitive to the supply elasticity. This study contributes to the literature by providing policymakers and other energy policy stakeholders with a forward looking analysis of potential policy effects on the U.S. biomass market. The second essay develops a similar type of model applied toward the domestic and international petroleum and petroleum products markets as well as the domestic biofuel market and the domestic light-duty vehicle sector. The goal is to investigate the impact of CAFE standards and alternative-fuel vehicle production incentives on the biofuel market and RFS compliance, in particular. The results suggest that holding CAFE standards at the 2010 level could significantly reduce the blendwall problem in the U.S. ethanol market. Furthermore, the alternative fuel production incentives appear to have only minimal effects. However, there is much uncertainty surrounding the appropriate level of automaker response to those incentives, and a sensitivity analysis indicates the model is fairly sensitive to the assumed level of response. The third essay highlights a few of the theories put forth regarding the expected price behavior of Renewable Identification Numbers (RINs). The theories are tested both observationally and empirically with a dataset containing daily RIN price observations going back to January 2009. The behavior does not always match expectations, although the exact causes remain uncertain. In addition, the information provided by RIN prices is used to test the implications of a binding renewable fuel standard (RFS) versus a non-binding RFS on the ethanol-gasoline price relationship. Cointegration tests provide some evidence that the relationship between conventional ethanol and gasoline prices at the wholesale level is weaker in the presence of a binding RFS.

  2. Contrasts and synergies in different biofuel reports.

    PubMed

    Michalopoulos, A; Landeweerd, L; Van der Werf-Kulichova, Z; Puylaert, P G B; Osseweijer, P

    2011-04-06

    The societal debate on biofuels is characterised by increased complexity. This can hinder the effective governance of the field. This paper attempts a quantitative bird's eye meta-analysis of this complexity by mapping different stakeholder perspectives and expected outcomes as seen in the secondary literature on biofuels, along the lines of the People-Planet-Profit framework. Our analysis illustrates the tension between stated and actual drivers of large scale biofuel development, especially for first generation biofuels. Although environmental (Planet) aspects have dominated the biofuel debate, their overall assessment is mostly negative with regard to first generation biofuels. By contrast, economic (Profit) aspects are the only ones that are assessed positively with regard to first generation biofuels. Furthermore, positive and negative assessments of biofuel development are strongly influenced by the differences in focus between different stakeholder clusters. Stakeholders who appear generally supportive to biofuel development (industry) focus relatively more on aspects that are generally assessed as positive (Profit). By contrast, non-supportive stakeholders (NGO's) tend to focus mainly on aspects that are generally assessed as negative (Planet). Moreover, our analysis of reference lists revealed few citations of primary scientific data, and also that intergovernmental organizations produce the most influential publications in the debate. The surprising lack of listed references to scientific (primary) data reveals a need to assess in which arena the transition of scientific data towards secondary publications takes place, and how one can measure its quality. This work should be understood as a first effort to take some control over a complex and contradictory number of publications, and to allow the effective governance of the field through the identification of areas of overlapping consensus and persisting controversy, without reverting to claims on technical detail.

  3. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuelsmore » processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.« less

  4. Biofuels and the role of space in sustainable innovation journeys☆

    PubMed Central

    Raman, Sujatha; Mohr, Alison

    2014-01-01

    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970–80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the South. PMID:24748726

  5. Biofuels and the role of space in sustainable innovation journeys.

    PubMed

    Raman, Sujatha; Mohr, Alison

    2014-02-15

    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970-80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the South.

  6. Exergy-based efficiency and renewability assessment of biofuel production.

    PubMed

    Dewulf, J; Van Langenhove, H; Van De Velde, B

    2005-05-15

    This study presents an efficiency and renewability analysis of the production of three biofuels: rapeseed methyl ester (RME), soybean methyl ester (SME) and corn-based ethanol (EtOH). The overall production chains have been taken into account: not only the agricultural crop production and the industrial conversion into biofuel, but also production of the supply of agricultural resources (pesticides, fertilizers, fuel, seeding material) and industrial resources (energy and chemicals) to transform the crops into biofuel. Simultaneously, byproducts of the agricultural and industrial processes have been taken into account when resources have to be allocated to the biofuels. The technical analysis via the second law of thermodynamics revealed that corn-based EtOH results in the highest production rate with an exergetic fuel content of 68.8 GJ ha(-1) yr(-1), whereas the RME and SME results were limited to 47.5 and 16.4 GJ ha(-1) yr(-1). The allocated nonrenewable resource input to deliver these biofuels is significant: 16.5, 15.4, and 5.6 MJ ha(-1) yr(-1). This means that these biofuels, generally considered as renewable resources, embed a nonrenewable fraction of one-quarter for EtOH and even one-third for RME and SME. This type of analysis provides scientifically sound quantitative information that is necessarywith respect to the sustainability analysis of so-called renewable energy.

  7. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.

    PubMed

    de Jong, Bouke; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inman, Daniel; Warner, Ethan; Stright, Dana

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of manymore » feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user-friendly interface for on-demand, spatially explicit, water use scenario analysis for many US agricultural crops. Built-in controls permit users to quickly make modifications to the model assumptions, such as those affecting yield, and to see the implications of those results in real time. BioSpatial H2O's dynamic capabilities and adjustable climate data allow for analyses of water use and management scenarios to inform current and potential future bioenergy policies. The model could also be adapted for scenario analysis of alternative climatic conditions and comparison of multiple crops. The results of such an analysis would help identify risks associated with water use competition among feedstocks in certain regions. Results could also inform research and development efforts that seek to reduce water-related risks of biofuel pathways.« less

  9. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2011-11-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  10. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2013-02-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  11. Do biofuel blending mandates reduce gasoline consumption? Implications of state-level renewable fuel standards for energy security

    NASA Astrophysics Data System (ADS)

    Lim, Shinling

    In an effort to keep America's addiction to oil under control, federal and state governments have implemented a variety of policy measures including those that determine the composition of motor gasoline sold at the pump. Biofuel blending mandates known as Renewable Fuel Standards (RFS) are designed to reduce the amount of foreign crude oil needed to be imported as well as to boost the local ethanol and corn industry. Yet beyond looking at changes in gasoline prices associated with increased ethanol production, there have been no empirical studies that examine effects of state-level RFS implementation on gasoline consumption. I estimate a Generalized Least Squares model for the gasoline demand for the 1993 to 2010 period with state and time fixed effects controlling for RFS. States with active RFS are Minnesota, Hawaii, Missouri, Florida, Washington, and Oregon. I find that, despite the onset of federal biofuel mandates across states in 2007 and the lower energy content of blended gasoline, being in a state that has implemented RFS is associated with 1.5% decrease in gasoline consumption (including blended gasoline). This is encouraging evidence for efforts to lessen dependence on gasoline and has positive implications for energy security.

  12. Impact of Various Biofuel Feedstock Production Scenarios on Water Quality in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Wu, M.; Demissie, Y.; Yan, E.

    2010-12-01

    The impact of increased biofuel feedstock production on regional water quality was examined. This study focused on the Upper Mississippi River Basin, from which a majority of U.S. biofuel is currently produced. The production of biofuel from both conventional feedstock and cellulosic feedstock will potentially increase in the near future. Historically, this water basin generates the largest nitrogen loading to the waterway in the United States and is often cited as a main contributor to the anoxic zone in the Gulf of Mexico. To obtain a quantitative and spatial estimate of nutrient burdens at the river basin, a SWAT (Soil and Water Assessment Tool) model application was developed. The model was equipped with an updated nutrient cycle feature and modified model parameters to represent current crop and perennial grass yield as a result of advancements in breeding and biotechnology. Various biofuel feedstock production scenarios were developed to assess the potential environmental implications of increased biofuel production through corn, agriculture residue, and perennial cellulosic feedstock (such as Switchgrass). Major factors were analyzed, including land use changes, feedstock types, fertilizer inputs, soil property, and yield. This tool can be used to identify specific regional factors affecting water quality and examine options to meet the requirement for environmental sustainability, thereby mitigating undesirable environmental consequences while strengthening energy security.

  13. Biofuel supply chain, market, and policy analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei

    Renewable fuel is receiving an increasing attention as a substitute for fossil based energy. The US Department of Energy (DOE) has employed increasing effort on promoting the advanced biofuel productions. Although the advanced biofuel remains at its early stage, it is expected to play an important role in climate policy in the future in the transportation sector. This dissertation studies the emerging biofuel supply chain and markets by analyzing the production cost, and the outcomes of the biofuel market, including blended fuel market price and quantity, biofuel contract price and quantity, profitability of each stakeholder (farmers, biofuel producers, biofuel blenders) in the market. I also address government policy impacts on the emerging biofuel market. The dissertation is composed with three parts, each in a paper format. The first part studies the supply chain of emerging biofuel industry. Two optimization-based models are built to determine the number of facilities to deploy, facility locations, facility capacities, and operational planning within facilities. Cost analyses have been conducted under a variety of biofuel demand scenarios. It is my intention that this model will shed light on biofuel supply chain design considering operational planning under uncertain demand situations. The second part of the dissertation work focuses on analyzing the interaction between the key stakeholders along the supply chain. A bottom-up equilibrium model is built for the emerging biofuel market to study the competition in the advanced biofuel market, explicitly formulating the interactions between farmers, biofuel producers, blenders, and consumers. The model simulates the profit maximization of multiple market entities by incorporating their competitive decisions in farmers' land allocation, biomass transportation, biofuel production, and biofuel blending. As such, the equilibrium model is capable of and appropriate for policy analysis, especially for those policies that have complex ramifications and result in sophisticate interactions among multiple stakeholders. The third part of the dissertation investigates the impacts of flexible fuel vehicles (FFVs) market penetration levels on the market outcomes, including cellulosic biofuel production and price, blended fuel market price, and profitability of each stakeholder in the biofuel supply chain for imperfectly competitive biofuel markets. In this paper, I investigate the penetration levels of FFVs by incorporating the substitution among different fuels in blended fuel demand functions through "cross price elasticity" in a bottom-up equilibrium model framework. The complementarity based problem is solved by a Taylor expansion-based iterative procedure. At each step of the iteration, the highly nonlinear complementarity problems with constant elasticity of demand functions are linearized into linear complimentarity problems and solved until it converges. This model can be applied to investigate the interaction between the stakeholders in the biofuel market, and to assist decision making for both cellulosic biofuel investors and government.

  14. 7 CFR 4288.105 - Oversight and monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... of biofuel produced and the type and amount of feedstocks used. (2) Blending verification. The Agency... advanced biofuel eligible for payment. (3) Certificate of Analysis. The Agency will review the producer...

  15. 7 CFR 4288.105 - Oversight and monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... of biofuel produced and the type and amount of feedstocks used. (2) Blending verification. The Agency... advanced biofuel eligible for payment. (3) Certificate of Analysis. The Agency will review the producer...

  16. 7 CFR 4288.105 - Oversight and monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... of biofuel produced and the type and amount of feedstocks used. (2) Blending verification. The Agency... advanced biofuel eligible for payment. (3) Certificate of Analysis. The Agency will review the producer...

  17. The fuel market effects of biofuel policies and implications for regulations based on lifecycle emissions

    NASA Astrophysics Data System (ADS)

    Rajagopal, Deepak

    2013-06-01

    The absence of a globally-consistent and binding commitment to reducing greenhouse emissions provides a rationale for partial policies, such as renewable energy mandates, product emission standards, etc to target lifecycle emissions of the regulated products or services. While appealing in principle, regulation of lifecycle emissions presents several practical challenges. Using biofuels as an illustrative example, we highlight some outstanding issues in the design and implementation of life cycle-based policies and discuss potential remedies. We review the literature on emissions due to price effects in fuel markets, which are akin to emissions due to indirect land use change, but are, unlike the latter, ignored under all current life cycle emissions-based regulations. We distinguish the current approaches to regulating indirect emissions into hard and soft approaches and discuss their implications.

  18. To BECCS or Not To BECCS: A Question of Method

    NASA Astrophysics Data System (ADS)

    DeCicco, J. M.

    2017-12-01

    Bioenergy with carbon capture and storage (BECCS) is seen as an important option in many climate stabilization scenarios. Limited demonstrations are underway, including a system that captures and sequesters the fermentation CO2 from ethanol production. However, its net CO2 emissions are uncertain for reasons related to both system characteristics and methodological issues. As for bioenergy in general, evaluations draw on both ecological and engineering methods. It is informative to apply different methods using available data for demonstration systems in comparison to related bioenergy systems. To do so, this paper examines a case study BECCS system and addresses questions regarding the utilization of terrestrial carbon, biomass sustainability and the implications for scalability. The analysis examines four systems, all utilizing the same land area, using two methods. The cases are: A) a crop system without either biofuel production or CCS; B) a biofuel production system without CCS; C) biofuel system with CCS, i.e., the BECCS case, and D) a crop system without biofuel production or CCS but with crop residue removal and conversion to a stable char. In cases A and D, the delivered fuel is fossil-based; in cases B and C the fuel is biomass-based. The first method is LCA, involving steady-flow modeling of systems over a defined lifecycle, following current practice as seen in the attributional LCA component of California's Low-Carbon Fuel Standard (LCFS). The second method involves spatially and temporally explicit analysis, reflecting the dynamics of carbon exchanges with the atmosphere. Although parameters are calibrated to the California LCFS LCA model, simplified spreadsheet modeling is used to maximize transparency while highlighting assumptions that most influence the results. The analysis reveals distinctly different pictures of net CO2 emissions for the cases examined, with the dynamic method painting a less optimistic picture of the BECCS system than the LCA method. Differences in results are traced to differing representations of terrestrial carbon exchanges and associated modeling assumptions. We conclude with suggestions for future work on project- and program-scale carbon accounting methods and the need for caution in advancing BECCS before such methods are better validated.

  19. Techno-Economic, Sustainability, and Market Analysis | Bioenergy | NREL

    Science.gov Websites

    Techno-Economic, Sustainability, and Market Analysis Techno-Economic, Sustainability, and Market Analysis NREL conducts techno-economic analyses (TEAs) for algal biofuels, thermochemical conversion, and agitating the liquid as it flows around. Algal Biofuels Techno-Economic Analysis NREL's Algae Techno

  20. Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study.

    PubMed

    Xin, Chunhua; Addy, Min M; Zhao, Jinyu; Cheng, Yanling; Cheng, Sibo; Mu, Dongyan; Liu, Yuhuan; Ding, Rijia; Chen, Paul; Ruan, Roger

    2016-07-01

    Combining algae cultivation and wastewater treatment for biofuel production is considered the feasible way for resource utilization. An updated comprehensive techno-economic analysis method that integrates resources availability into techno-economic analysis was employed to evaluate the wastewater-based algal biofuel production with the consideration of wastewater treatment improvement, greenhouse gases emissions, biofuel production costs, and coproduct utilization. An innovative approach consisting of microalgae cultivation on centrate wastewater, microalgae harvest through flocculation, solar drying of biomass, pyrolysis of biomass to bio-oil, and utilization of co-products, was analyzed and shown to yield profound positive results in comparison with others. The estimated break even selling price of biofuel ($2.23/gallon) is very close to the acceptable level. The approach would have better overall benefits and the internal rate of return would increase up to 18.7% if three critical components, namely cultivation, harvest, and downstream conversion could achieve breakthroughs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Analysis of Economic and Environmental Aspects of Microalgae Biorefinery for Biofuels Production: A Review.

    PubMed

    Chia, Shir Reen; Chew, Kit Wayne; Show, Pau Loke; Yap, Yee Jiun; Ong, Hwai Chyuan; Ling, Tau Chuan; Chang, Jo-Shu

    2018-06-01

    Microalgae are considered promising feedstock for the production of biofuels and other bioactive compounds, yet there are still challenges on commercial applications of microalgae-based products. This review focuses on the economic analysis, environmental impact, and industrial potential of biofuels production from microalgae. The cost of biofuels production remains higher compared to conventional fuel sources. However, integration of biorefinery pathways with biofuels production for the recovery of value-added products (such as antioxidants, natural dyes, cosmetics, nutritional supplements, polyunsaturated fatty acids, and so forth) could substantially reduce the production costs. It also paves the way for sustainable energy resources by significantly reducing the emissions of CO 2 , NO x , SO x , and heavy metals. Large-scale biofuels production has yet to be successfully commercialized with many roadblocks ahead and heavy competition with conventional fuel feedstock as well as technological aspects. One of the prominent challenges is to develop a cost-effective method to achieve high-density microalgal cultivation on an industrial scale. The biofuels industry should be boosted by Government's support in the form of subsidies and incentives, for addressing the pressing climate change issues, achieving sustainability, and energy security. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Biofuel transportation analysis tool : description, methodology, and demonstration scenarios

    DOT National Transportation Integrated Search

    2014-01-01

    This report describes a Biofuel Transportation Analysis Tool (BTAT), developed by the U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe) in support of the Department of Defense (DOD) Office of Naval Research ...

  3. Comparative cardiopulmonary toxicity of soy biofuel and diesel exhaust in healthy and hypertensive rats

    EPA Science Inventory

    Increased use of renewable energy sources raise concerns about health effects of emissions from such sources. We conducted a comprehensive analysis of relative cardiopulmonary health effects of exhausts from 1) 100% soy biofuel (B100), 2) 20% soy biofuel + 80% low sulfur petroleu...

  4. Endoglucanases: insights into thermostability for biofuel applications

    PubMed Central

    2013-01-01

    Obtaining bioethanol from cellulosic biomass involves numerous steps, among which the enzymatic conversion of the polymer to individual sugar units has been a main focus of the biotechnology industry. Among the cellulases that break down the polymeric cellulose are endoglucanases that act synergistically for subsequent hydrolytic reactions. The endoglucanases that have garnered relatively more attention are those that can withstand high temperatures, i.e., are thermostable. Although our understanding of thermostability in endoglucanases is incomplete, some molecular features that are responsible for increased thermostability have been recently identified. This review focuses on the investigations of endoglucanases and their implications for biofuel applications. PMID:24070146

  5. Fields of dreams: Agriculture, economy and nature in Midwest United States biofuel production

    NASA Astrophysics Data System (ADS)

    Gillon, Sean Thomas

    This work explores the social and ecological dimensions of recent biofuel production increases in the United States (US), focusing on the case of Iowa. Biofuels are proposed to mitigate the greenhouse gas emissions that cause climate change, improve US energy security, and support rural economies. Little research has examined how increased US Midwestern biofuels production will change social and ecological outcomes at farm and regional levels or interact with broader governance processes at the nexus of agriculture, energy and environment. These broad questions guide my research: (1) How does biofuel production reconfigure agricultural practice and landscapes in Iowa? (2) What are the costs, benefits and risks of increased biofuels production as seen by farmers and rural residents, and how do these factors influence farmer decisions about agriculture and conservation practice? (3) How and with what effects are biofuels initiatives constituted as a form of environmental governance through scientific knowledge and practice and political economic dynamics? To address these questions, this research integrates both qualitative and quantitative methods, drawing on a political ecological approach complemented by agroecological analysis and theoretical insights from geographical analyses of nature-society relations. Quantitative analysis focuses on changing land use patterns in agriculture and conservation practice in Iowa. Qualitative methods include extensive interviews, participant observation, and policy and document analyses. Fieldwork focused on Northeastern Iowa to understand regional changes in agricultural and conservation practice, the renegotiated position of farmers in agriculture and biofuel production, and biofuel industry development. I find that biofuel production presents significant social and ecological challenges for rural places of production. Longstanding, unequal political economic relations in industrialized agriculture limit rural economic benefits. I describe how biofuel governance focuses on scientific practices that legitimize biofuel production for their capacity to marginally reduce greenhouse gas emissions, despite biofuels' agroecological consequences outside this regulatory purview. These consequences include pressure on conservation and agrienvironmental practice, which could be better supported through existing, highly effective, place-based, democratic institutions dedicated to stewarding the resources upon which agricultural livelihoods depend.

  6. Cellulosic biofuels from crop residue and groundwater extraction in the US Plains: the case of Nebraska.

    PubMed

    Sesmero, Juan P

    2014-11-01

    This study develops a model of crop residue (i.e. stover) supply and derived demand for irrigation water accounting for non-linear effects of soil organic matter on soil's water holding capacity. The model is calibrated for typical conditions in central Nebraska, United States, and identifies potential interactions between water and biofuel policies. The price offered for feedstock by a cost-minimizing plant facing that stover supply response is calculated. Results indicate that as biofuel production volumes increase, soil carbon depletion per unit of biofuel produced decreases. Consumption of groundwater per unit of biofuel produced first decreases and then increases (after a threshold of 363 dam(3) of biofuels per year) due to plants' increased reliance on the extensive margin for additional biomass. The analysis reveals a tension between biofuel and water policies. As biofuel production raises the economic benefits of relaxing water conservation policies (measured by the "shadow price" of water) increase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Participatory approach used to develop a sustainability assessment tool for wood-based bioenergy industry in upper Michigan, USA

    NASA Astrophysics Data System (ADS)

    Vaidya, Ashma; Mayer, Audrey

    2015-04-01

    Biofuel production has grown significantly in the past few decades as a result of global concern over energy security, climate change implications and unsustainable attributes of fossil fuels. Currently, biofuels produced from food crops (such as corn, sugarcane, soy, etc.) constitute the bulk of global biofuel production. However, purported adverse impacts of direct and indirect land-use changes (such as increased food prices, competition for agricultural land and water, and carbon emissions from land-use change) resulting from large-scale expansion of the crop-based biofuel industry have motivated many nations to further shift their attention to second-generation (non crop-based) biofuel production. Current R&D on second-generation biofuel production is largely focused on exploring prospects of using abandoned/fallow land for growing feedstock (such as Jatropha, short rotation woody coppice, Willow/Poplar species, Micanthus etc.), and on producing fuel that is cost-effective and compatible with existing infrastructures. The bulk of existing research on second-generation biofuel production concentrates on enhancing its technical feasibility and compatibility with existing infrastructure; very few have attempted to qualitatively determine and understand stakeholders' concerns and perception regarding this emergent industry. Stakeholders' decisions regarding land and resource use will play a crucial role in ensuring the social sustainability of any industry. Our research is focused on understanding stakeholders' concerns and perceptions regarding biofuel production in the upper Michigan region, where wood-based bioenergy development is being planned and researched by businesses, government agencies, and the local university. Over a century ago, the region's economy was dependent upon mining and clear-cut logging industries, which left the area once the resources were depleted. Since that time, the region has lost significant population due to the lack of economic opportunities, but the forests have recovered to volumes prior to the logging boom. Interest in a wood-based bioenergy production industry is growing, yet whether this industry can be developed sustainably is a concern. The main goal of our research is to incorporate stakeholders' concerns and knowledge into an expert-assisted sustainability assessment tool for a regional wood-based biofuel industry. Key stakeholders involved in the research include landowners, farmers, land management companies, bioenergy users, venture capitalists, interest groups, government organizations and NGOs. We used interviews, focus group meetings and a workshop to collect information from these stakeholders, which were then translated into social sustainability criteria. Multiple criteria analysis methods, Bayesian Belief Network and information collected from other studies were used to develop a final set of sustainability criteria and indicators. Our results provide a platform for experts and stakeholders to understand the local context relevant to sustainability, the state of the science, and will bridge the gap between scientific and non-scientific knowledge in the region. This sustainability assessment tool is intended to facilitate inclusive and sustainability-oriented decision-making for a wood-based bioenergy industry.

  8. Energy properties of solid fossil fuels and solid biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk; Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison withmore » solid fossil fuels.« less

  9. A novel method for quantifying the greenhouse gas emissions of biofuels based on historical land use change

    NASA Astrophysics Data System (ADS)

    Liu, X.; Rhodes, J.; Clarens, A. F.

    2012-12-01

    Land use change (LUC) emissions have been at the center of an ongoing debate about how the carbon footprint of biofuels compare to petroleum-based fuels over their entire life cycle. The debate about LUC has important implications in the US, the EU, and other countries that are working to deploy biofuel policies, informed by life cycle assessment, that promote carbon emission reductions, among other things. LUC calculations often distinguish between direct land use change (DLUC), those that occur onsite, and indirect land use change (ILUC), those that result from market mechanisms leading to emissions that are either spatially or temporally removed from the agricultural activity. These designations are intended to capture the fundamental connection between agricultural production of biofuel feedstock and its physical effects on the land, but both DLUC and ILUC can be difficult to measure and apply broadly. ILUC estimates are especially challenging to quantify because they rely on global economic models to assess how much land would be brought into production in other countries as a consequence of biofuel feedstock cultivation. As a result, ILUC estimates inherently uncertain, are sensitive to complex assumptions, have limited transparency, and have precipitated sufficient controversy to delay development of coherent biofuel policies. To address these shortcomings of conventional LUC methodologies, we have developed a method for estimating land use change emissions that is based on historical emissions from a parcel of land. The method, which we call historical land use change (HLUC) can be readily quantified for any parcel of land in the world using open source datasets of historical emissions. HLUC is easy to use and is directly tied to the physical processes on land used for biofuel production. The emissions from the HLUC calculations are allocated between historical agricultural activity and proposed biofuel feedstock cultivation. This is compatible with existing life cycle assessment frameworks. HLUC does not represent a direct substitute for conventional ILUC estimates but rather an alternate approach for capturing LUC emissions overall. HLUC estimates for six biofuel producing countries: US (corn ethanol), Brazil (sugarcane ethanol), France (rapeseed biodiesel), Germany (rapeseed biodiesel), Indonesia (palm oil biodiesel), and Malaysia (palm oil biodiesel) were developed. The values are highly comparable to published ILUC values but the nature and magnitude of the uncertainty is lower and the estimates are more regionally variable. Important differences were found between government-derived LUC estimates and HLUC estimates in Brazil and South Asia, which suggest that HLUC could be a more equitable means for allocating emissions than existing approaches. Sensitivity analysis in terms of the spatial resolution of the data suggest that the open source data sets are adequate for obtaining reasonable estimates of HLUC with minimal effort. Alternative allocation scenarios could consider some of the climate dynamics, e.g., carbon degradation in the atmosphere, that would inform more sophisticated accounting. HLUC represents a more straightforward and less controversial policy tool for capturing the emissions associated for land use change and it could enable the advancement of coherent biofuel and climate policy instruments.

  10. Source profiles and contributions of biofuel combustion for PM2.5, PM10 and their compositions, in a city influenced by biofuel stoves.

    PubMed

    Tian, Ying-Ze; Chen, Jia-Bao; Zhang, Lin-Lin; Du, Xin; Wei, Jin-Jin; Fan, Hui; Xu, Jiao; Wang, Hai-Ting; Guan, Liao; Shi, Guo-Liang; Feng, Yin-Chang

    2017-12-01

    Source and ambient samples were collected in a city in China that uses considerable biofuel, to assess influence of biofuel combustion and other sources on particulate matter (PM). Profiles and size distribution of biofuel combustion were investigated. Higher levels in source profiles, a significant increase in heavy-biomass ambient and stronger correlations of K + , Cl - , OC and EC suggest that they can be tracers of biofuel combustion. And char-EC/soot-EC (8.5 for PM 2.5 and 15.8 for PM 10 of source samples) can also be used to distinguish it. In source samples, water-soluble organic carbon (WSOC) were approximately 28.0%-68.8% (PM 2.5 ) and 27.2%-43.8% (PM 10 ) of OC. For size distribution, biofuel combustion mainly produces smaller particles. OC1, OC2, EC1 and EC2 abundances showed two peaks with one below 1 μm and one above 2 μm. An advanced three-way factory analysis model was applied to quantify source contributions to ambient PM 2.5 and PM 10 . Higher contributions of coal combustion, vehicular emission, nitrate and biofuel combustion occurred during the heavy-biomass period, and higher contributions of sulfate and crustal dust were observed during the light-biomass period. Mass and percentage contributions of biofuel combustion were significantly higher in heavy-biomass period. The biofuel combustion attributed above 45% of K + and Cl - , above 30% of EC and about 20% of OC. In addition, through analysis of source profiles and contributions, they were consistently evident that biofuel combustion and crustal dust contributed more to cation than to anion, while sulfate & SOC and nitrate showed stronger influence on anion than on cation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Integrating social and value dimensions into sustainability assessment of lignocellulosic biofuels

    PubMed Central

    Raman, Sujatha; Mohr, Alison; Helliwell, Richard; Ribeiro, Barbara; Shortall, Orla; Smith, Robert; Millar, Kate

    2015-01-01

    The paper clarifies the social and value dimensions for integrated sustainability assessments of lignocellulosic biofuels. We develop a responsible innovation approach, looking at technology impacts and implementation challenges, assumptions and value conflicts influencing how impacts are identified and assessed, and different visions for future development. We identify three distinct value-based visions. From a techno-economic perspective, lignocellulosic biofuels can contribute to energy security with improved GHG implications and fewer sustainability problems than fossil fuels and first-generation biofuels, especially when biomass is domestically sourced. From socio-economic and cultural-economic perspectives, there are concerns about the capacity to support UK-sourced feedstocks in a global agri-economy, difficulties monitoring large-scale supply chains and their potential for distributing impacts unfairly, and tensions between domestic sourcing and established legacies of farming. To respond to these concerns, we identify the potential for moving away from a one-size-fits-all biofuel/biorefinery model to regionally-tailored bioenergy configurations that might lower large-scale uses of land for meat, reduce monocultures and fossil-energy needs of farming and diversify business models. These configurations could explore ways of reconciling some conflicts between food, fuel and feed (by mixing feed crops with lignocellulosic material for fuel, combining livestock grazing with energy crops, or using crops such as miscanthus to manage land that is no longer arable); different bioenergy applications (with on-farm use of feedstocks for heat and power and for commercial biofuel production); and climate change objectives and pressures on farming. Findings are based on stakeholder interviews, literature synthesis and discussions with an expert advisory group. PMID:26664147

  12. Integrating social and value dimensions into sustainability assessment of lignocellulosic biofuels.

    PubMed

    Raman, Sujatha; Mohr, Alison; Helliwell, Richard; Ribeiro, Barbara; Shortall, Orla; Smith, Robert; Millar, Kate

    2015-11-01

    The paper clarifies the social and value dimensions for integrated sustainability assessments of lignocellulosic biofuels. We develop a responsible innovation approach, looking at technology impacts and implementation challenges, assumptions and value conflicts influencing how impacts are identified and assessed, and different visions for future development. We identify three distinct value-based visions. From a techno-economic perspective, lignocellulosic biofuels can contribute to energy security with improved GHG implications and fewer sustainability problems than fossil fuels and first-generation biofuels, especially when biomass is domestically sourced. From socio-economic and cultural-economic perspectives, there are concerns about the capacity to support UK-sourced feedstocks in a global agri-economy, difficulties monitoring large-scale supply chains and their potential for distributing impacts unfairly, and tensions between domestic sourcing and established legacies of farming. To respond to these concerns, we identify the potential for moving away from a one-size-fits-all biofuel/biorefinery model to regionally-tailored bioenergy configurations that might lower large-scale uses of land for meat, reduce monocultures and fossil-energy needs of farming and diversify business models. These configurations could explore ways of reconciling some conflicts between food, fuel and feed (by mixing feed crops with lignocellulosic material for fuel, combining livestock grazing with energy crops, or using crops such as miscanthus to manage land that is no longer arable); different bioenergy applications (with on-farm use of feedstocks for heat and power and for commercial biofuel production); and climate change objectives and pressures on farming. Findings are based on stakeholder interviews, literature synthesis and discussions with an expert advisory group.

  13. Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiles, Dennis L.; Jones, Susan A.; Orth, Rick J.

    The purpose of this report is to assemble the information needed to estimate the significance of the opportunity for producing biofuels in the region as well as the associated challenges. The report reviews the current state of the industry, the biomass resources that are available within current production practices, and the biofuels production technology that is available within the marketplace. The report also identifys the areas in which alternative approaches or strategies, or technologoical advances, might offer an opportunity to expand the Nortwest biofuels industry beyond its current state.

  14. Have Biofuel, Will Travel: A Colorful Experiment and a Different Approach to Teach the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    El Seoud, Omar A.; Loffredo, Carina; Galgano, Paula D.; Sato, Bruno M.; Reichardt, Christian

    2011-01-01

    The substitution of petroleum-based fuels with those from renewable sources has gained momentum worldwide. A UV-vis experiment for the quantitative analysis of biofuels (bioethanol or biodiesel) in (petroleum-based) diesel oil has been developed. Before the experiment, students were given a quiz on biofuels, and then they were asked to suggest a…

  15. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry.

    PubMed

    Guan, Wenna; Zhao, Hui; Lu, Xuefeng; Wang, Cong; Yang, Menglong; Bai, Fali

    2011-11-11

    Simple and rapid quantitative determination of fatty-acid-based biofuels is greatly important for the study of genetic engineering progress for biofuels production by microalgae. Ideal biofuels produced from biological systems should be chemically similar to petroleum, like fatty-acid-based molecules including free fatty acids, fatty acid methyl esters, fatty acid ethyl esters, fatty alcohols and fatty alkanes. This study founded a gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of seven free fatty acids, nine fatty acid methyl esters, five fatty acid ethyl esters, five fatty alcohols and three fatty alkanes produced by wild-type Synechocystis PCC 6803 and its genetically engineered strain. Data obtained from GC-MS analyses were quantified using internal standard peak area comparisons. The linearity, limit of detection (LOD) and precision (RSD) of the method were evaluated. The results demonstrated that fatty-acid-based biofuels can be directly determined by GC-MS without derivation. Therefore, rapid and reliable quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria can be achieved using the GC-MS method founded in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Water Quality and Quantity Implications of Biofuel Intercropping at a Regional Scale (Invited)

    NASA Astrophysics Data System (ADS)

    Christopher, S. F.; Schoenholtz, S. H.; Nettles, J.

    2010-12-01

    Because of a strong national interest in greater energy independence and concern for the role of fossil fuels in global climate change, the importance of biofuels as an alternative renewable energy source has developed rapidly. The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, which compromises 15 % of U.S. liquid transportation fuels. Large-scale production of corn-based ethanol often requires irrigation and is associated with erosion, excess sediment export, and leaching of nitrogen and phosphorus. Production of cellulosic biomass offers a promising alternative to corn-based systems. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water quality impacts associated with annual crops. Catchlight Energy LLC is examining the feasibility and sustainability of intercropping switchgrass in loblolly pine plantations in the southeastern US. While ongoing research is determining efficient operational techniques, information needed to evaluate the effects of these practices on water resources, such as field-scale evapotranspiration rates, nutrient cycling, and soil erosion rates are being examined in a large watershed study. Three sets of four to five sub-watersheds are fully instrumented and currently collecting calibration data, with forest-based biofuel treatments to be installed in 2011 and 2012. These watershed studies will give us detailed information to understand processes and guide management decisions. However, environmental implications of these systems need to be examined at a regional scale. We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine various scenarios ranging from switchgrass intercropping a small percentage of managed pine forest land to conversion of all managed forested land to switchgrass. The current results are based on early indicators from operational trials, but will be refined as the watershed studies progress. Our results will be essential to public policy makers as they influence and plan for large-scale production of cellulosic biofuels while sustaining water quality and quantity.

  17. Biofuel consumption, biodiversity, and the environmental Kuznets curve: trivariate analysis in a panel of biofuel consuming countries.

    PubMed

    Zaman, Khalid

    2017-11-01

    This study examined the relationship between biofuel consumption, forest biodiversity, and a set of national scale indicators of per capita income, foreign direct investment (FDI) inflows, trade openness, and population density with a panel data of 12 biofuels consuming countries for a period of 2000 to 2013. The study used Global Environmental Facility (GEF) biodiversity benefits index and forest biodiversity index in an environmental Kuznets curve (EKC) framework. The results confirmed an inverted U-shaped relationship between GEF biodiversity index and per capita income, while there is flat/no relationship between carbon emissions and economic growth, and between forest biodiversity and economic growth models. FDI inflows and trade openness both reduce carbon emissions while population density and biofuel consumption increase carbon emissions and decrease GEF biodiversity index. Trade openness supports to increases GEF biodiversity index while it decreases forest biodiversity index and biofuel consumption in a region.

  18. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    NASA Astrophysics Data System (ADS)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be pivotal in this supply chain design and optimization problem. Also, farmers' participation has a significant effect on the decision making process.

  19. Electrical Signatures of Ethanol-Liquid Mixtures: Implications for Monitoring Biofuels Migration in the Subsurface

    EPA Science Inventory

    Ethanol (EtOH), an emerging contaminant with potential direct and indirect environmental effects, poses threats to water supplies when spilled in large volumes. A series of experiments was directed at understanding the electrical geophysical signatures arising from groundwater co...

  20. Techno-economic, location, and carbon emission analysis of thermochemical biomass to transportation fuels

    NASA Astrophysics Data System (ADS)

    Wright, Mark Mba

    There are significant technological and systemic challenges faced by today's advanced biofuel industry. These challenges stem from the current state-of-technology and from the system (consumer market, infrastructure, environment...) in which this emerging industry is being developed. The state-of-technology will improve with continued efforts in technology development, but novel approaches are required to investigate the systemic challenges that limit the adoption of advanced biofuels. The motivation of this dissertation is to address the question of how to find cost-effective, sustainable, and environmentally responsible pathways for the production of biofuels. Economic competitiveness, long-term viability, and benign environmental impact are key for biofuels to be embraced by industry, government, and consumers. Techno-economic, location, and carbon emission analysis are research methodologies that help address each of these issues. The research approach presented in this dissertation is to combine these three methodologies into a holistic study of advanced biofuel technologies. The value of techno-economic, location, and carbon emission analysis is limited when conducted in isolation because of current public perception towards energy technologies. Energy technologies are evaluated based on multiple criteria with a significant emphasis on the three areas investigated in this study. There are important aspects within each of these fields that could significantly limit the value of advances in other fields of study. Therefore, it is necessary that future research in advanced biofuels always consider the systemic challenges faced by novel developments.

  1. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    PubMed

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Scientific analysis is essential to assess biofuel policy effects: in response to the paper by Kim and Dale on "Indirect land use change for biofuels: Testing predictions and improving analytical methodologies"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Keith L; Oladosu, Gbadebo A; Dale, Virginia H

    2011-01-01

    Vigorous debate on the effects of biofuels derives largely from the changes in land use estimated using economic models designed mainly for the analysis of agricultural trade and markets. The models referenced for land-use change (LUC) analysis in the U.S. Environmental Protection Agency Final Rule on the Renewable Fuel Standard include GTAP, FAPRI-CARD, and FASOM. To address bioenergy impacts, these models were expanded and modified to facilitate simulations of hypothesized LUC. However, even when models use similar basic assumptions and data, the range of LUC results can vary by ten-fold or more. While the market dynamics simulated in these modelsmore » include processes that are important in estimating effects of biofuel policies, the models have not been validated for estimating land-use changes and employ crucial assumptions and simplifications that contradict empirical evidence.« less

  3. Selection and Characterization of Biofuel-Producing Environmental Bacteria Isolated from Vegetable Oil-Rich Wastes

    PubMed Central

    Escobar-Niño, Almudena; Luna, Carlos; Luna, Diego; Marcos, Ana T.; Cánovas, David; Mellado, Encarnación

    2014-01-01

    Fossil fuels are consumed so rapidly that it is expected that the planet resources will be soon exhausted. Therefore, it is imperative to develop alternative and inexpensive new technologies to produce sustainable fuels, for example biodiesel. In addition to hydrolytic and esterification reactions, lipases are capable of performing transesterification reactions useful for the production of biodiesel. However selection of the lipases capable of performing transesterification reactions is not easy and consequently very few biodiesel producing lipases are currently available. In this work we first isolated 1,016 lipolytic microorganisms by a qualitative plate assay. In a second step, lipolytic bacteria were analyzed using a colorimetric assay to detect the transesterification activity. Thirty of the initial lipolytic strains were selected for further characterization. Phylogenetic analysis revealed that 23 of the bacterial isolates were Gram negative and 7 were Gram positive, belonging to different clades. Biofuel production was analyzed and quantified by gas chromatography and revealed that 5 of the isolates produced biofuel with yields higher than 80% at benchtop scale. Chemical and viscosity analysis of the produced biofuel revealed that it differed from biodiesel. This bacterial-derived biofuel does not require any further downstream processing and it can be used directly in engines. The freeze-dried bacterial culture supernatants could be used at least five times for biofuel production without diminishing their activity. Therefore, these 5 isolates represent excellent candidates for testing biofuel production at industrial scale. PMID:25099150

  4. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlbach, Dana J.; Kuo, Alan; Sato, Trey K.

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes,more » mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.« less

  5. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrelmore » of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).« less

  6. Forests, food, and fuel in the tropics: the uneven social and ecological consequences of the emerging political economy of biofuels.

    PubMed

    Dauvergne, Peter; Neville, Kate J

    2010-01-01

    The global political economy of biofuels emerging since 2007 appears set to intensify inequalities among the countries and rural peoples of the global South. Looking through a global political economy lens, this paper analyses the consequences of proliferating biofuel alliances among multinational corporations, governments, and domestic producers. Since many major biofuel feedstocks - such as sugar, oil palm, and soy - are already entrenched in industrial agricultural and forestry production systems, the authors extrapolate from patterns of production for these crops to bolster their argument that state capacities, the timing of market entry, existing institutions, and historical state-society land tenure relations will particularly affect the potential consequences of further biofuel development. Although the impacts of biofuels vary by region and feedstock, and although some agrarian communities in some countries of the global South are poised to benefit, the analysis suggests that already-vulnerable people and communities will bear a disproportionate share of the costs of biofuel development, particularly for biofuels from crops already embedded in industrial production systems. A core reason, this paper argues, is that the emerging biofuel alliances are reinforcing processes and structures that increase pressures on the ecological integrity of tropical forests and further wrest control of resources from subsistence farmers, indigenous peoples, and people with insecure land rights. Even the development of so-called 'sustainable' biofuels looks set to displace livelihoods and reinforce and extend previous waves of hardship for such marginalised peoples.

  7. Techno-economic and Monte Carlo probabilistic analysis of microalgae biofuel production system.

    PubMed

    Batan, Liaw Y; Graff, Gregory D; Bradley, Thomas H

    2016-11-01

    This study focuses on the characterization of the technical and economic feasibility of an enclosed photobioreactor microalgae system with annual production of 37.85 million liters (10 million gallons) of biofuel. The analysis characterizes and breaks down the capital investment and operating costs and the production cost of unit of algal diesel. The economic modelling shows total cost of production of algal raw oil and diesel of $3.46 and $3.69 per liter, respectively. Additionally, the effects of co-products' credit and their impact in the economic performance of algal-to-biofuel system are discussed. The Monte Carlo methodology is used to address price and cost projections and to simulate scenarios with probabilities of financial performance and profits of the analyzed model. Different markets for allocation of co-products have shown significant shifts for economic viability of algal biofuel system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels.

    PubMed

    Mullins, Kimberley A; Griffin, W Michael; Matthews, H Scott

    2011-01-01

    Biofuels have received legislative support recently in California's Low-Carbon Fuel Standard and the Federal Energy Independence and Security Act. Both present new fuel types, but neither provides methodological guidelines for dealing with the inherent uncertainty in evaluating their potential life-cycle greenhouse gas emissions. Emissions reductions are based on point estimates only. This work demonstrates the use of Monte Carlo simulation to estimate life-cycle emissions distributions from ethanol and butanol from corn or switchgrass. Life-cycle emissions distributions for each feedstock and fuel pairing modeled span an order of magnitude or more. Using a streamlined life-cycle assessment, corn ethanol emissions range from 50 to 250 g CO(2)e/MJ, for example, and each feedstock-fuel pathway studied shows some probability of greater emissions than a distribution for gasoline. Potential GHG emissions reductions from displacing fossil fuels with biofuels are difficult to forecast given this high degree of uncertainty in life-cycle emissions. This uncertainty is driven by the importance and uncertainty of indirect land use change emissions. Incorporating uncertainty in the decision making process can illuminate the risks of policy failure (e.g., increased emissions), and a calculated risk of failure due to uncertainty can be used to inform more appropriate reduction targets in future biofuel policies.

  9. A causal analysis framework for land-use change and the potential role of bioenergy policy

    DOE PAGES

    Efroymson, Rebecca A.; Kline, Keith L.; Angelsen, Arild; ...

    2016-10-05

    Here we propose a causal analysis framework to increase the reliability of land-use change (LUC) models and the accuracy of net greenhouse gas (GHG) emissions calculations for biofuels. The health-sciences-inspired framework is used here to determine probable causes of LUC, with an emphasis on bioenergy and deforestation. Calculations of net GHG emissions for LUC are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under national (U.S., U.K.), state (California), and European Union regulations. Biofuel policymakers and scientists continue to discuss whether presumed indirect land-use change (ILUC) estimates, which often involve deforestation, should be includedmore » in GHG accounting for biofuel pathways. Current estimates of ILUC for bioenergy rely largely on economic simulation models that focus on causal pathways involving global commodity trade and use coarse land cover data with simple land classification systems. ILUC estimates are highly uncertain, partly because changes are not clearly defined and key causal links are not sufficiently included in the models. The proposed causal analysis framework begins with a definition of the change that has occurred and proceeds to a strength-of-evidence approach based on types of epidemiological evidence including plausibility of the relationship, completeness of the causal pathway, spatial co-occurrence, time order, analogous agents, simulation model results, and quantitative agent response relationships.Lastly, we discuss how LUC may be allocated among probable causes for policy purposes and how the application of the framework has the potential to increase the validity of LUC models and resolve ILUC and biofuel controversies.« less

  10. A causal analysis framework for land-use change and the potential role of bioenergy policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroymson, Rebecca A.; Kline, Keith L.; Angelsen, Arild

    Here we propose a causal analysis framework to increase the reliability of land-use change (LUC) models and the accuracy of net greenhouse gas (GHG) emissions calculations for biofuels. The health-sciences-inspired framework is used here to determine probable causes of LUC, with an emphasis on bioenergy and deforestation. Calculations of net GHG emissions for LUC are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under national (U.S., U.K.), state (California), and European Union regulations. Biofuel policymakers and scientists continue to discuss whether presumed indirect land-use change (ILUC) estimates, which often involve deforestation, should be includedmore » in GHG accounting for biofuel pathways. Current estimates of ILUC for bioenergy rely largely on economic simulation models that focus on causal pathways involving global commodity trade and use coarse land cover data with simple land classification systems. ILUC estimates are highly uncertain, partly because changes are not clearly defined and key causal links are not sufficiently included in the models. The proposed causal analysis framework begins with a definition of the change that has occurred and proceeds to a strength-of-evidence approach based on types of epidemiological evidence including plausibility of the relationship, completeness of the causal pathway, spatial co-occurrence, time order, analogous agents, simulation model results, and quantitative agent response relationships.Lastly, we discuss how LUC may be allocated among probable causes for policy purposes and how the application of the framework has the potential to increase the validity of LUC models and resolve ILUC and biofuel controversies.« less

  11. The politics of biofuels, land and agrarian change: editors' introduction.

    PubMed

    Borras, Saturnino M

    2010-01-01

    This introduction frames key questions on biofuels, land and agrarian change within agrarian political economy, political sociology and political ecology. It identifies and explains big questions that provide the starting point for the contributions to this collection. We lay out some of the emerging themes which define the politics of biofuels, land and agrarian change revolving around global (re)configurations; agro-ecological visions; conflicts, resistances and diverse outcomes; state, capital and society relations; mobilising opposition, creating alternatives; and change and continuity. An engaged agrarian political economy combined with global political economy, international relations and social movement theory provides an important framework for analysis and critique of the conditions, dynamics, contradictions, impacts and possibilities of the emerging global biofuels complex. Our hope is that this collection demonstrates the significance of a political economy of biofuels in capturing the complexity of the "biofuels revolution" and at the same time opening up questions about its sustainability in social and environmental terms that provide pathways towards alternatives.

  12. Transportation infrastructure implications of development of a cellulose ethanol industry for Indiana.

    DOT National Transportation Integrated Search

    2010-10-15

    The 2007 Energy Independence and Security Act calls for the US to produce 36 billion gallons of biofuels by 2022 of which no more than 15 billion would come from corn and 1 billion of biodiesel. Thus, the legislation envisions moving from no cellulos...

  13. Cellulosic Biofuel Production with Winter Cover Crops: Yield and Nitrogen Implications

    USDA-ARS?s Scientific Manuscript database

    Interest in renewable energy sources derived from plant biomass is increasing. Growing cover crops after harvest of the primary crop has been proposed as a solution to producing cellulosic biomass on existing crop-producing land without reducing food-harvest potential. Growing cover crops is a recom...

  14. Biofuels Potential for Transportation Fuels in Vietnam: A Status Quo and SWOT Analysis

    NASA Astrophysics Data System (ADS)

    Trinh, Tu Anh; Phuong Linh Le, Thi

    2018-04-01

    Petroleum consumption for road transportation is well-known as the largest source of CO2 emissions. Worldwide, biofuel is becoming more attractive as substitute for crude oil owing to the increasing demand for environmentally friendly energy and its contribution towards petro dependency reduction and climate change mitigation. This paper reviews the facts and prospects of biofuel production in Vietnam. A SWOT model is adopted to study the strengths, weaknesses, opportunities and threats of biofuels production. The conclusion is drawn that with advantages of weather conditions, soil conditions, the availability of biomass and commitment from government, the country has potential to develop biobuels for domestic consumption. However, threats to production are posed by social acceptance, land use, and technology. Thus, biofuels production still need more supports from government through robust policies, regulations, and institutional framework.

  15. The Fall of Oil Prices and the Effects on Biofuels.

    PubMed

    Reboredo, Fernando H; Lidon, Fernando; Pessoa, Fernanda; Ramalho, José C

    2016-01-01

    This analysis is focused on the effect of the abrupt decline of oil prices on biofuels, particularly second-generation ethanol. The efforts to decrease the production costs of biofuels, especially cellulosic ethanol (CE), will be greatly threatened if current oil prices remain low, especially since production is not slowing. Only huge state subsidies could alleviate this threat, but the challenge is to persuade citizens that this sacrifice is worthwhile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.

    PubMed

    Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.

  17. Alberta Carpenter | NREL

    Science.gov Websites

    cycle assessment in industrial by-product management, waste management, biofuels and manufacturing technologies Life cycle inventory database management Research Interests Life cycle assessment Life cycle inventory management Biofuels Advanced manufacturing Supply chain analysis Education Ph.D in environmental

  18. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges.

    PubMed

    Banerjee, Chiranjib; Dubey, Kashyap K; Shukla, Pratyoosh

    2016-01-01

    The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs), which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e., Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.

  19. Using land to mitigate climate change: hitting the target, recognizing the trade-offs.

    PubMed

    Reilly, John; Melillo, Jerry; Cai, Yongxia; Kicklighter, David; Gurgel, Angelo; Paltsev, Sergey; Cronin, Timothy; Sokolov, Andrei; Schlosser, Adam

    2012-06-05

    Land can be used in several ways to mitigate climate change, but especially under changing environmental conditions there may be implications for food prices. Using an integrated global system model, we explore the roles that these land-use options can play in a global mitigation strategy to stabilize Earth's average temperature within 2 °C of the preindustrial level and their impacts on agriculture. We show that an ambitious global Energy-Only climate policy that includes biofuels would likely not achieve the 2 °C target. A thought-experiment where the world ideally prices land carbon fluxes combined with biofuels (Energy+Land policy) gets the world much closer. Land could become a large net carbon sink of about 178 Pg C over the 21st century with price incentives in the Energy+Land scenario. With land carbon pricing but without biofuels (a No-Biofuel scenario) the carbon sink is nearly identical to the case with biofuels, but emissions from energy are somewhat higher, thereby results in more warming. Absent such incentives, land is either a much smaller net carbon sink (+37 Pg C - Energy-Only policy) or a net source (-21 Pg C - No-Policy). The significant trade-off with this integrated land-use approach is that prices for agricultural products rise substantially because of mitigation costs borne by the sector and higher land prices. Share of income spent on food for wealthier regions continues to fall, but for the poorest regions, higher food prices lead to a rising share of income spent on food.

  20. Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis.

    PubMed

    Xing, Mei-Ning; Zhang, Xue-Zhu; Huang, He

    2012-01-01

    Feedstock for biofuel synthesis is transitioning to lignocelluosic biomass to address criticism over competition between first generation biofuels and food production. As microbial catalysis is increasingly applied for the conversion of biomass to biofuels, increased import has been placed on the development of novel enzymes. With revolutionary advances in sequencer technology and metagenomic sequencing, mining enzymes from microbial communities for biofuel synthesis is becoming more and more practical. The present article highlights the latest research progress on the special characteristics of metagenomic sequencing, which has been a powerful tool for new enzyme discovery and gene functional analysis in the biomass energy field. Critical enzymes recently developed for the pretreatment and conversion of lignocellulosic materials are evaluated with respect to their activity and stability, with additional explorations into xylanase, laccase, amylase, chitinase, and lipolytic biocatalysts for other biomass feedstocks. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. GIS Analysis of Available Data to Identify regions in the U.S. Where Shallow Ground Water Supplies are Particularly Vulnerable to Contamination by Releases to Biofuels from Underground Storage Tanks

    EPA Science Inventory

    GIS analysis of available data to identify regions in the U.S. where shallow ground water supplies are particularly vulnerable to contamination by releases of biofuels from underground storage tanks. In this slide presentation, GIS was used to perform a simple numerical and ...

  2. Cultivation and Characterization of Cynara Cardunculus for Solid Biofuels Production in the Mediterranean Region

    PubMed Central

    Grammelis, Panagiotis; Malliopoulou, Anastasia; Basinas, Panagiotis; Danalatos, Nicholas G.

    2008-01-01

    Technical specifications of solid biofuels are continuously improved towards the development and promotion of their market. Efforts in the Greek market are limited, mainly due to the climate particularity of the region, which hinders the growth of suitable biofuels. Taking also into account the increased oil prices and the high inputs required to grow most annual crops in Greece, cardoon (Cynara cardunculus L.) is now considered the most important and promising sources for solid biofuel production in Greece in the immediate future. The reason is that cardoon is a perennial crop of Mediterranean origin, well adapted to the xerothermic conditions of southern Europe, which can be utilized particularly for solid biofuel production. This is due to its minimum production cost, as this perennial weed may perform high biomass productivity on most soils with modest or without any inputs of irrigation and agrochemicals. Within this framework, the present research work is focused on the planning and analysis of different land use scenarios involving this specific energy crop and the combustion behaviour characterization for the solid products. Such land use scenarios are based on quantitative estimates of the crop'sproduction potential under specific soil-climatic conditions as well as the inputs required for its realization in comparison to existing conventional crops. Concerning its decomposition behaviour, devolatilisation and char combustion tests were performed in a non-isothermal thermogravimetric analyser (TA Q600). A kinetic analysis was applied and accrued results were compared with data already available for other lignocellulosic materials. The thermogravimetric analysis showed that the decomposition process of cardoon follows the degradation of other lignocellulosic fuels, meeting high burnout rates. This research work concludes that Cynara cardunculus, under certain circumstances, can be used as a solid biofuel of acceptable quality. PMID:19325802

  3. Implications of Biofuel-Induced Land Use Change and Management on Irrigated Agriculture in the Texas High Plains

    NASA Astrophysics Data System (ADS)

    Ale, S.; Chen, Y.; Rajan, N.

    2016-12-01

    Texas High Plains (THP) is one of the important cotton (Gossypium hirsutum L.) growing regions in the US. Agriculture in the THP faces several challenges from declining groundwater levels and deteriorating groundwater quality in the underlying Ogallala Aquifer, and recurring droughts and severe wind erosion. Groundwater conservation districts in the THP have started setting up limits on annual allowable groundwater pumping for irrigation. Introducing cover crops in to the cotton production systems in the THP and/or changing land use from cotton to perennial bioenergy crops could not only address the above challenges, but also assist in meeting the national biofuel target. The overall goal of this study is to assess the implications of biofuel-indced land use managemt (growing winter wheat as a cover crop along with cotton) and land use change (replacing cotton with Alamo switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus giganteus)) on hydrology, water quality, wind erosion and biofuel production potential in the Double Mountain Fork Brazos watershed in the THP using the Agricultural Policy/Environmental eXtender (APEX) model. Results showed that, in comparison to the baseline (cotton monoculture) scenario, the average annual wind erosion reduced by 59% and 37% in irrigated and dryland areas, respectively, when winter wheat was grown as a cover crop along with cotton under the current 18-inch groundwater pumping restriction set up by the High Plains Water District. In addition, winter wheat produced about 2.6 and 2.0 Mg ha-1 of biomass for biofuel purposes under the irrigated and dryland conditions, respectively. Furthermore, the total nitrogen (TN) load and nitrate-nitrogen (NO3-N) leaching decreased by more than 43% and 73%, respectively, under the cover crop scenario. The land use change from cotton to switchgrass (in irrigated areas) and Miscanthus (in dryland areas) decreased the TN load, NO3-N leaching and wind erosion by more than 89% relative to the baseline. Under the restrictions on groundwater use, when compared to single harvest, multiple harvests of perennial bioenergy crops (two- and three-harvests in case of switchgrass and Miscanthus, respectively) were found to be better in terms of biomass production (> 20 Mg ha-1), and protection of groundwater and soil quality.

  4. Lipase-catalyzed transesterification to remove saturated monoacylglycerols from biodiesel

    USDA-ARS?s Scientific Manuscript database

    Saturated monoacylglycerols (SMG) are known to be present in fatty acid methyl esters (FAME) intended to be used as biodiesel. These SMG can strongly affect the properties of biofuels such as the cloud point, and they have been implicated in engine failure due to filter plugging. It is shown here th...

  5. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition

    Treesearch

    Rose A. Graves; Scott M. Pearson; Monica G. Turner

    2016-01-01

    Rural landscapes face changing climate, shifting development pressure, and loss of agricultural land. Perennial bioenergy crops grown on existing agricultural land may provide an opportunity to conserve rural landscapes while addressing increased demand for biofuels. However, increased bioenergy production and changing land use raise concerns for tradeoffs...

  6. Woody biomass from short rotation energy crops. Chapter 2

    Treesearch

    R.S., Jr. Zalesny Jr.; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; J.A. Stanturf; T.A. Volk

    2011-01-01

    Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...

  7. Woody biomass from short rotation energy crops

    Treesearch

    R.S. Zalesny; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; John Stanturf; T.A. Volk

    2011-01-01

    Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...

  8. Sustainable Biofuels Development Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reardon, Kenneth F.

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production andmore » utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.« less

  9. The influence of catalysts on biofuel life cycle analysis (LCA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benavides, Pahola Thathiana; Cronauer, Donald C.; Adom, Felix K.

    Catalysts play an important role in biofuel production but are rarely included in biofuel life cycle analysis (LCA). In this work, we estimate the cradle-to-gate energy consumption and greenhouse gas (GHG) emissions of Pt/γ-Al 2O 3, CoMo/γ-Al 2O 3, and ZSM-5, catalysts that could be used in processes to convert biomass to biofuels. We also consider the potential impacts of catalyst recovery and recycling. Integrating the energy and environmental impacts of CoMo/γ-Al 2O 3 and ZSM-5 into an LCA of renewable gasoline produced via in-situ and ex-situ fast pyrolysis of a blended woody feedstock revealed that the ZSM-5, with cradle-to-gatemore » GHG emissions of 7.7 kg CO 2e/kg, could influence net life-cycle GHG emissions of the renewable gasoline (1.7 gCO 2e/MJ for the in-situ process, 1.2 gCO 2e/MJ for the ex-situ process) by up to 14% depending on the loading rate. CoMo/γ-Al 2O 3 had a greater GHG intensity (9.6 kg CO 2e/kg) than ZSM-5, however, it contributed approximately only 1% to the life-cycle GHG emissions of the renewable gasoline because of the small amount of this catalyst needed per kg of biofuel produced. As a result, given that catalysts can contribute significantly to biofuel life-cycle GHG emissions depending on the GHG intensity of their production and their consumption rates, biofuel LCAs should consider the potential influence of catalysts on LCA results.« less

  10. The influence of catalysts on biofuel life cycle analysis (LCA)

    DOE PAGES

    Benavides, Pahola Thathiana; Cronauer, Donald C.; Adom, Felix K.; ...

    2017-01-21

    Catalysts play an important role in biofuel production but are rarely included in biofuel life cycle analysis (LCA). In this work, we estimate the cradle-to-gate energy consumption and greenhouse gas (GHG) emissions of Pt/γ-Al 2O 3, CoMo/γ-Al 2O 3, and ZSM-5, catalysts that could be used in processes to convert biomass to biofuels. We also consider the potential impacts of catalyst recovery and recycling. Integrating the energy and environmental impacts of CoMo/γ-Al 2O 3 and ZSM-5 into an LCA of renewable gasoline produced via in-situ and ex-situ fast pyrolysis of a blended woody feedstock revealed that the ZSM-5, with cradle-to-gatemore » GHG emissions of 7.7 kg CO 2e/kg, could influence net life-cycle GHG emissions of the renewable gasoline (1.7 gCO 2e/MJ for the in-situ process, 1.2 gCO 2e/MJ for the ex-situ process) by up to 14% depending on the loading rate. CoMo/γ-Al 2O 3 had a greater GHG intensity (9.6 kg CO 2e/kg) than ZSM-5, however, it contributed approximately only 1% to the life-cycle GHG emissions of the renewable gasoline because of the small amount of this catalyst needed per kg of biofuel produced. As a result, given that catalysts can contribute significantly to biofuel life-cycle GHG emissions depending on the GHG intensity of their production and their consumption rates, biofuel LCAs should consider the potential influence of catalysts on LCA results.« less

  11. Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreating Bio-Oil to Produce Hydrocarbon Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adom, Felix K.; Cai, Hao; Dunn, Jennifer B.

    2016-03-01

    The Department of Energy’s (DOE) Bioenergy Technology Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels. These assessments evaluate feedstock production, logistics of transporting the feedstock, and conversion of the feedstock to biofuel. There are two general types of TEAs. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables identification of data gaps and research andmore » development needs, and provides goals and targets against which technology progress is assessed. On the other hand, a state of technology (SOT) analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases, and includes technical, economic, and environmental criteria as available.« less

  12. Unintended consequences of biofuels production?The effects of large-scale crop conversion on water quality and quantity

    USGS Publications Warehouse

    Welch, Heather L.; Green, Christopher T.; Rebich, Richard A.; Barlow, Jeannie R.B.; Hicks, Matthew B.

    2010-01-01

    In the search for renewable fuel alternatives, biofuels have gained strong political momentum. In the last decade, extensive mandates, policies, and subsidies have been adopted to foster the development of a biofuels industry in the United States. The Biofuels Initiative in the Mississippi Delta resulted in a 47-percent decrease in cotton acreage with a concurrent 288-percent increase in corn acreage in 2007. Because corn uses 80 percent more water for irrigation than cotton, and more nitrogen fertilizer is recommended for corn cultivation than for cotton, this widespread shift in crop type has implications for water quantity and water quality in the Delta. Increased water use for corn is accelerating water-level declines in the Mississippi River Valley alluvial aquifer at a time when conservation is being encouraged because of concerns about sustainability of the groundwater resource. Results from a mathematical model calibrated to existing conditions in the Delta indicate that increased fertilizer application on corn also likely will increase the extent of nitrate-nitrogen movement into the alluvial aquifer. Preliminary estimates based on surface-water modeling results indicate that higher application rates of nitrogen increase the nitrogen exported from the Yazoo River Basin to the Mississippi River by about 7 percent. Thus, the shift from cotton to corn may further contribute to hypoxic (low dissolved oxygen) conditions in the Gulf of Mexico.

  13. Adding biofuel/bioproduct capacity to existing U.S. mills. Part 1, Options : Agenda 2020 analysis charts a course.

    Treesearch

    Tom Belin; Craig Brown; Eric Connor; Jim Frederick; Peter Ince; Ryan Katofsky; Gerard Closset

    2008-01-01

    The chief technology officers of the American Forest & Paper Association’s Agenda 2020 Technology Alliance recently conducted an analysis of the most feasible and effective routes for forest products facilities in this country to add energy, biofuels and bio-based chemicals to their existing product streams. Considering that at least 21 billion gallons of the...

  14. Environmental effect of constructed wetland as biofuel production system

    NASA Astrophysics Data System (ADS)

    Liu, Dong

    2017-04-01

    Being as a renewable energy, biofuel has attracted worldwide attention. Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Biofuel may offer a promising alternative to fossil fuels, but serious concerns arise about the adverse greenhouse gas consequences from using nitrogen fertilizers. Waste-nitrogen recycling is an attractive idea. Here we advocate a win-win approach to biofuel production which takes advantage of excessive nitrogen in domestic wastewater treated via constructed wetland (CW) in China. This study will carry on environmental effect analysis of CW as a biomass generation system through field surveys and controllable simulated experiments. This study intends to evaluate net energy balance, net greenhouse effect potential and ecosystem service of CW as biomass generation system, and make comparation with traditional wastewater treatment plant and other biofuel production systems. This study can provide a innovation mode in order to solve the dilemma between energy crops competed crops on production land and excessive nitrogen fertilizer of our traditional energy plant production. Data both from our experimental CWs in China and other researches on comparable CWs worldwide showed that the biomass energy yield of CWs can reach 182.3 GJ ha-1 yr-1, which was two to eight times higher than current biofuel-production systems. Energy output from CW was ˜137% greater than energy input for biofuel production. If CWs are designed with specific goal of biofuel production, biofuel production can be greatly enhanced through the optimization of N supply, hydraulic structures, and species selection in CWs. Assuming that 2.0 Tg (1 Tg = 1012 g) waste nitrogen contained in domestic wastewater is treated by CWs, biofuel production can account for 1.2% of national gasoline consumption in China. The proportion would increase to 6.7% if extra nitrogen (9.5 Tg) from industrial wastewater and agricultural runoff was included. This approach is also suitable for use in other countries, and can help promote sustainable development for energy and environment.

  15. Bioeconomic Sustainability of Cellulosic Biofuel Production on Marginal Lands

    ERIC Educational Resources Information Center

    Gutierrez, Andrew Paul; Ponti, Luigi

    2009-01-01

    The use of marginal land (ML) for lignocellulosic biofuel production is examined for system stability, resilience, and eco-social sustainability. A North American prairie grass system and its industrialization for maximum biomass production using biotechnology and agro-technical inputs is the focus of the analysis. Demographic models of ML biomass…

  16. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, M.; Mai, T.; Newes, E.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompetemore » biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  17. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, M.; Mai, T.; Newes, E.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompetemore » biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  18. Biofuel as an Integrated Farm Drainage Management crop: A bioeconomic analysis

    NASA Astrophysics Data System (ADS)

    Levers, L. R.; Schwabe, K. A.

    2017-04-01

    Irrigated agricultural lands in arid regions often suffer from soil salinization and lack of drainage, which affect environmental quality and productivity. Integrated Farm Drainage Management (IFDM) systems, where drainage water generated from higher-valued crops grown on high quality soils are used to irrigate salt-tolerant crops grown on marginal soils, is one possible strategy for managing salinity and drainage problems. If the IFDM crop were a biofuel crop, both environmental and private benefits may be generated; however, little is known about this possibility. As such, we develop a bioeconomic programming model of irrigated agricultural production to examine the role salt-tolerant biofuel crops might play within an IFDM system. Our results, generated by optimizing profits over land, water, and crop choice decisions subject to resource constraints, suggest that based on the private profits alone, biofuel crops can be a competitive alternative to the common practices of land retirement and nonbiofuel crop production under both low to high drainage water salinity. Yet IFDM biofuel crop production generates 30-35% fewer GHG emissions than the other strategies. The private market competitiveness coupled with the public good benefits may justify policy changes encouraging the growth of IFDM biofuel crops in arid agricultural areas globally.

  19. Microalgae as sustainable renewable energy feedstock for biofuel production.

    PubMed

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  20. Modeling sustainability in renewable energy supply chain systems

    NASA Astrophysics Data System (ADS)

    Xie, Fei

    This dissertation aims at modeling sustainability of renewable fuel supply chain systems against emerging challenges. In particular, the dissertation focuses on the biofuel supply chain system design, and manages to develop advanced modeling framework and corresponding solution methods in tackling challenges in sustaining biofuel supply chain systems. These challenges include: (1) to integrate "environmental thinking" into the long-term biofuel supply chain planning; (2) to adopt multimodal transportation to mitigate seasonality in biofuel supply chain operations; (3) to provide strategies in hedging against uncertainty from conversion technology; and (4) to develop methodologies in long-term sequential planning of the biofuel supply chain under uncertainties. All models are mixed integer programs, which also involves multi-objective programming method and two-stage/multistage stochastic programming methods. In particular for the long-term sequential planning under uncertainties, to reduce the computational challenges due to the exponential expansion of the scenario tree, I also developed efficient ND-Max method which is more efficient than CPLEX and Nested Decomposition method. Through result analysis of four independent studies, it is found that the proposed modeling frameworks can effectively improve the economic performance, enhance environmental benefits and reduce risks due to systems uncertainties for the biofuel supply chain systems.

  1. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    PubMed Central

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  2. Measuring risk/benefit perceptions of emerging technologies and their potential impact on communication of public opinion toward science.

    PubMed

    Binder, Andrew R; Cacciatore, Michael A; Scheufele, Dietram A; Shaw, Bret R; Corley, Elizabeth A

    2012-10-01

    This study presents a systematic comparison of two alternative measures of citizens' perceptions of risks and benefits of emerging technologies. By focusing on two specific issues (nanotechnology and biofuels), we derive several insights for the measurement of public views of science. Most importantly, our analyses reveal that relying on global, single-item measures may lead to invalid inferences regarding external influences on public perceptions, particularly those related to cognitive schema and media use. Beyond these methodological implications, this analysis suggests several reasons why researchers in the area of public attitudes toward science must revisit notions of measurement in order to accurately inform the general public, policymakers, scientists, and journalists about trends in public opinion toward emerging technologies.

  3. The market and environmental effects of alternative biofuel policies

    NASA Astrophysics Data System (ADS)

    Drabik, Dusan

    This dissertation analyzes market and environmental effects of alternative U.S. and Brazilian biofuel policies. Although we focus on corn- and sugarcane-ethanol, the advanced analytical framework can easily be extended to other biofuels and biofuel feedstocks, such as biodiesel and soybean. The dissertation consists of three chapters. The first chapter develops an analytical framework to assess the market effects of a set of biofuel policies (including subsidies to feedstocks). U.S. corn-ethanol policies are used as an example to study the effects of biofuel policies on corn prices. We determine the 'no policy' ethanol price, analyze the implications for the 'no policy' corn price and resulting 'water' in the ethanol price premium due to the policy, and generalize the surprising interaction effects between mandates and tax credits to include ethanol and corn production subsidies. The effect of an ethanol price premium depends on the value of the ethanol co-product, the value of production subsidies, and how the world ethanol price is determined. U.S. corn-ethanol policies are shown to be a major reason for recent rises in corn prices. The ethanol policy-induced increase in corn prices is estimated to be 33 -- 46.5 percent in the period 2008 -- 2011. The second chapter seeks to answer the question of what caused the significant increase in ethanol, sugar, and sugarcane prices in Brazil in the period 2010/11 to 2011/12. We develop a general economic model of the Brazilian fuel-ethanol-sugar complex. Unlike biofuel mandates and tax exemptions elsewhere, Brazil's fuel-ethanol-sugar markets and fuel policies are unique in that each policy, in this setting, theoretically has an ambiguous impact on the market price of ethanol and hence on sugarcane and sugar prices. Our empirical analysis shows that there are two policies that seemingly help the ethanol industry but do otherwise in reality: a low gasoline tax and a high anhydrous tax exemption result in lower ethanol prices. On the other hand, as expected, higher mandates, gasoline prices, and tax exemptions for hydrous ethanol lead to higher ethanol and sugar prices. Eliminating Brazilian ethanol tax exemptions and mandates reduces ethanol prices by 21 percent in 2010-11, which is very similar to the estimated effects of U.S. ethanol policies in the same time period. However, the marginal changes in Brazilian policies on ethanol prices between 2010-11 and 2011-12 are small both individually and collectively. The observed market changes can only be explained by outward shifts in fuel transportation and sugar export demand curves, and reduced sugarcane supply due to bad weather. In the third chapter, we investigate whether U.S. corn ethanol saves greenhouse gas emissions relative to the gasoline it is assumed to replace one-to-one (on an energy equivalent basis). This chapter shows that ethanol policies generate far greater carbon leakage in the fuel market than in the agricultural market, where leakage occurs in the form of land use change. Carbon leakage in the fuel market due to a tax credit is always greater than that of a mandate, while the combination of a mandate and subsidy generates greater leakage than a mandate alone. We show that corn-ethanol does not meet the U.S. EPA's sustainability threshold, regardless of the biofuel policy and whether one includes emissions from land use change. This result makes the controversy over how to measure land use change inconsequential.

  4. Analysis of parameter sensitivity and identifiability of root zone water quality model (RZWQM) for dryland sugerbeet modeling

    USDA-ARS?s Scientific Manuscript database

    Sugarbeet is being considered as one of the most viable feedstock alternatives to corn for biofuel production since herbicide resistant energy beets were deregulated by USDA in 2012. Growing sugarbeets for biofuel production may have significant impacts on soil health and water quality in the north-...

  5. Biofuel vs. Biodiversity? Integrated Emergy and Economic Cost-Benefit Evaluation of Rice-Ethanol Production in Japan

    EPA Science Inventory

    Energy analysis results confirmed that abandoned rice fields provide a good opportunity for Japan to fulfill its E-3 target by producing ethanol from high-yield rice feedstock. However, to be a viable alternative, a biofuel should not only provide a net energy gain and reduce the...

  6. Multivariate analysis of fatty acid and biochemical constitutes of seaweeds to characterize their potential as bioresource for biofuel and fine chemicals.

    PubMed

    Verma, Priyanka; Kumar, Manoj; Mishra, Girish; Sahoo, Dinabandhu

    2017-02-01

    In the present study bio prospecting of thirty seaweeds from Indian coasts was analyzed for their biochemical components including pigments, fatty acid and ash content. Multivariate analysis of biochemical components and fatty acids was done using Principal Component Analysis (PCA) and Agglomerative hierarchical clustering (AHC) to manifest chemotaxonomic relationship among various seaweeds. The overall analysis suggests that these seaweeds have multi-functional properties and can be utilized as promising bioresource for proteins, lipids, pigments and carbohydrates for the food/feed and biofuel industry. Copyright © 2016. Published by Elsevier Ltd.

  7. Regional Climate Implications of Large-scale Cultivation of Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Rowe, C. M.; Oglesby, R. J.; Hays, C. J.; van Etten, A. R.

    2008-12-01

    Conversion from corn-based ethanol to cellulosic ethanol has the potential to dramatically alter the production of biofuels in the United States and could result in large-scale changes in the agricultural landscape of vast areas of the country. Regions currently dominated by corn production could see widespread planting of switchgrass and other fast-growing, water-efficient sources of cellulose biomass. An often overlooked side effect of these land-cover changes could be a significant alteration of the energy fluxes between the land surface and the atmosphere with profound local, regional, and continental impacts on the climate system. Changes in the surface energy balance result primarily from differences in the seasonality of transpiration from corn versus switchgrass and could be enhanced as a result of a reduced need for irrigation of switchgrass in areas where corn can be produced only under irrigation. Preliminary modeling results using a simple "bucket" land surface model coupled to the WRF mesoscale model have demonstrated increases in summertime average daily maximum temperature of up to 4° C, smaller increases of up to 2° C in nighttime minimum temperatures and reductions in precipitation by up to 25% when corn was changed to switchgrass over the central United States. Improved parameterization of biofuel crops in more sophisticated land surface models will allow us to refine these preliminary estimates and assess the impacts of large-scale conversion to cellulosic biofuel crops, relative to greenhouse gas induced regional climate change.

  8. Biomass Scenario Model: BETO Analysis Platform Peer Review; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, B.

    2015-03-23

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art fourth-generation model of the domestic bioenergy supply chain which explicitly focuses on policy issues and their potential side effects. It integrates resource availability, behavior, policy, and physical, technological, and economic constraints. The BSM uses system-dynamics simulation to model dynamic interactions across the supply chain; it tracks the deployment of biofuels given technological development and the reaction of the investment community to those technologies in the context of land availability, the competing oil market, consumer demand for biofuels, and government policies over time. It places a strong emphasis on themore » behavior and decision-making of various economic agents. The model treats the major infrastructure-compatible fuels. Scenario analysis based on the BSM shows that the biofuels industry tends not to rapidly thrive without significant external actions in the early years of its evolution. An initial focus for jumpstarting the industry typically has strongest results in the BSM in areas where effects of intervention have been identified to be multiplicative. In general, we find that policies which are coordinated across the whole supply chain have significant impact in fostering the growth of the biofuels industry and that the production of tens of billions of gallons of biofuels may occur under sufficiently favorable conditions.« less

  9. Characterization and pyrolysis of Chlorella vulgaris and Arthrospira platensis: potential of bio-oil and chemical production by Py-GC/MS analysis.

    PubMed

    Almeida, Hanna N; Calixto, Guilherme Q; Chagas, Bruna M E; Melo, Dulce M A; Resende, Fabio M; Melo, Marcus A F; Braga, Renata Martins

    2017-06-01

    Biofuels have been seen as potential sources to meet future energy demand as a renewable and sustainable energy source. Despite the fact that the production technology of first-generation biofuels is consolidated, these biofuels are produced from foods crops such as grains, sugar cane, and vegetable oils competing with food for crop use and agricultural land. In recent years, it was found that microalgae have the potential to provide a viable alternative to fossil fuels as source of biofuels without compromising food supplies or arable land. On this scenario, this paper aims to demonstrate the energetic potential to produce bio-oil and chemicals from microalgae Chlorella vulgaris and Arthrospira platensis. The potential of these biomasses was evaluated in terms of physical-chemical characterization, thermogravimetric analysis, and analytical pyrolysis interfaced with gas chromatograph (Py-GC/MS). The results show that C. vulgaris and A. platensis are biomasses with a high heating value (24.60 and 22.43 MJ/kg) and low ash content, showing a high percentage of volatile matter (72.49 and 79.42%). These characteristics confirm their energetic potential for conversion process through pyrolysis, whereby some important aromatic compounds such as toluene, styrene, and phenol were identified as pyrolysis products, which could turn these microalgae a potential for biofuels and bioproduct production through the pyrolysis.

  10. Biofuel Feedstock Assessment For Selected Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 andmore » 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.« less

  11. Biofuel Feedstock Assessment for Selected Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 andmore » 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.« less

  12. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy

    NASA Astrophysics Data System (ADS)

    Sterman, John D.; Siegel, Lori; Rooney-Varga, Juliette N.

    2018-01-01

    Bioenergy is booming as nations seek to cut their greenhouse gas emissions. The European Union declared biofuels to be carbon-neutral, triggering a surge in wood use. But do biofuels actually reduce emissions? A molecule of CO2 emitted today has the same impact on radiative forcing whether it comes from coal or biomass. Biofuels can only reduce atmospheric CO2 over time through post-harvest increases in net primary production (NPP). The climate impact of biofuels therefore depends on CO2 emissions from combustion of biofuels versus fossil fuels, the fate of the harvested land and dynamics of NPP. Here we develop a model for dynamic bioenergy lifecycle analysis. The model tracks carbon stocks and fluxes among the atmosphere, biomass, and soils, is extensible to multiple land types and regions, and runs in ≈1s, enabling rapid, interactive policy design and sensitivity testing. We simulate substitution of wood for coal in power generation, estimating the parameters governing NPP and other fluxes using data for forests in the eastern US and using published estimates for supply chain emissions. Because combustion and processing efficiencies for wood are less than coal, the immediate impact of substituting wood for coal is an increase in atmospheric CO2 relative to coal. The payback time for this carbon debt ranges from 44-104 years after clearcut, depending on forest type—assuming the land remains forest. Surprisingly, replanting hardwood forests with fast-growing pine plantations raises the CO2 impact of wood because the equilibrium carbon density of plantations is lower than natural forests. Further, projected growth in wood harvest for bioenergy would increase atmospheric CO2 for at least a century because new carbon debt continuously exceeds NPP. Assuming biofuels are carbon neutral may worsen irreversible impacts of climate change before benefits accrue. Instead, explicit dynamic models should be used to assess the climate impacts of biofuels.

  13. Chapter 15: Using System Dynamics to Model Industry's Developmental Response to Energy Policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, Brian; Inman, Daniel; Newes, Emily

    In this chapter we explore the potential development of the biofuels industry using the Biomass Scenario Model (BSM), a system dynamics model developed at the National Renewable Energy Laboratory through the support of the U.S. Department of Energy. The BSM is designed to analyze the implications of policy on the development of the supply chain for biofuels in the United States. It explicitly represents the behavior of decision makers such as farmers, investors, fueling station owners, and consumers. We analyze several illustrative case studies that explore a range of policies and discuss how incentives interact with individual parts of themore » supply chain as well as the industry as a whole. The BSM represents specific incentives that are intended to approximate policy in the form of selected laws and regulations. Through characterizing the decision making behaviors of economic actors within the supply chain that critically influence the adoption rate of new biofuels production technologies and demonstrating synergies among policies, we find that incentives with coordinated impacts on each major element of the supply chain catalyze net effects of decision maker behavior such that the combined incentives are greater than the summed effects of individual incentives in isolation.« less

  14. Quantifying Impact of Biofeedstock Production on Hydrology/Water Quality in Midwest USA

    NASA Astrophysics Data System (ADS)

    Chaubey, Indrajeet; Engel, Bernard; Thomas, Mark; Raj, Cibin; Saraswat, Dharmendra

    2010-05-01

    The production of biofeedstocks for biofuels is likely to impact the hydrology and water quality of watersheds. Communities potentially impacted are increasingly concerned, and at present, little is known regarding the magnitude of impacts of biofeedstock production on hydrology and water quality. We have initiated a national facilitation project to answer the following questions: What are the unintended environmental consequences of increased corn production to meet biofuel demands? What are the environmental impacts of various second generation biofeedstock production systems to meet cellulosic ethanol demands? Would the management of cropping systems involving corn silage meet cellulosic ethanol demands with minimal environmental impact? What are the broad-scale water quality implications of energy crops, such as switchgrass, grown for bioenergy production on highly erodible soils? This presentation will discuss development of multi-regional agricultural land management practices that can be implemented to mitigate potential negative environmental impacts associated with biofeedstock production while meeting the biofuel production demand. Specifically, we will discuss how watershed scale modeling can be utilized to evaluate the environmental impacts of various biofeedstock production strategies. We will also discuss regional differences in alternative biofeedstock production and associated hydrologic/water quality impacts.

  15. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the workmore » the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.« less

  16. Health impact assessment of liquid biofuel production.

    PubMed

    Fink, Rok; Medved, Sašo

    2013-01-01

    Bioethanol and biodiesel as potential substitutes for fossil fuels in the transportation sector have been analyzed for environmental suitability. However, there could be impacts on human health during the production, therefore adverse health effects have to be analyzed. The aim of this study is to analyze to what health risk factors humans are exposed to in the production of biofuels and what the size of the health effects is. A health impact assessment expressed as disability adjusted life years (DALYs) was conducted in SimaPro 7.1 software. The results show a statistically significant lower carcinogenic impact of biofuels (p < 0.05) than fossil fuels. Meanwhile, the impact of organic respirable compounds is smaller for fossil fuels (p < 0.05) than for biofuels. Analysis of inorganic compounds like PM₁₀,₂.₅, SO₂ or NO(x) shows some advantages of sugar beet bioethanol and soybean biodiesel production (p < 0.05), although production of sugarcane bioethanol shows larger impacts of respirable inorganic compounds than for fossil fuels (p < 0.001). Although liquid biofuels are made of renewable energy sources, this does not necessary mean that they do not represent any health hazards.

  17. [Biodiesel-fuel: content, production, producers, contemporary biotechnology (review)].

    PubMed

    Feofilova, E P; Sergeeva, Ia E; Ivashechkin, A A

    2010-01-01

    The necessity of expanding studies on producing renewable biofuel is reviewed. Special attention is given to biodiesel, the history of its creation, and its advantages and disadvantages in comparison with diesel-fuel. The main part of the review is devoted to an analysis of diesel biofuel on the basis of bacterial lipids, filamentous fungi, yeasts, plants, photo- and heterotrophic algae. Biodiesel on the basis of filamentous fungi is studied in detail and the possibility of creation of the most perspective biotechnology using these producers is grounded. The contemporary state of biotechnology in Russia is discussed in connection with the development of energetics based on renewable biofuels.

  18. Biofuel production system with operation flexibility: Evaluation of economic and environmental performance under external disturbance

    NASA Astrophysics Data System (ADS)

    Kou, Nannan

    Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming. However, biofuel production is subject to internal disturbances (feedstock supply and commodity market) and external factors (energy market). The biofuel industry has also heavily relied on government subsidy during the early development stages. In this dissertation, I investigate how to improve the economic and environmental performance of biorefineries (and biofuel plant), as well as enhance its survivability under the external disturbances. Three types of disturbance are considered: (1) energy market fluctuation, (2) subsidy policy uncertainty, and (3) extreme weather conditions. All three factors are basically volatile, dynamic, and even unpredictable, which makes them difficult to model and have been largely ignored to date. Instead, biofuel industry and biofuel research are intensively focused on improving feedstock conversion efficiency and capital cost efficiency while assuming these advancements alone will successfully generate higher profit and thus foster the biofuel industry. The collapse of the largest corn ethanol biofuel company, Verasun Energy, in 2008 calls into question this efficiency-driven approach. A detailed analysis has revealed that although the corn ethanol plants operated by Verasun adopted the more efficient (i.e. higher ethanol yield per bushel of corn and lower capital cost) dry-mill technology, they could not maintain a fair profit margin under fluctuating market condition which made ethanol production unprofitable. This is because dry-mill plant converts a single type of biomass feedstock (corn grain) into a single primary product (ethanol). The traditional lower efficient (i.e. lower ethanol yield per bushel of corn and higher capital cost) wet-mill plant has a more diverse and adjustable product portfolio i.e. corn syrup, starch, and ethanol. The fact that only the dry-mill corn ethanol plants have bankrupted while the wet-mill corn ethanol plants have survived the late 2000s economy recession suggests that the higher conversion efficiency achieved by the dry-mill production mode has jeopardized operational flexibility, a design operational feature I agree that is indispensable for the biofuel plant's long term profit and viability. Based on the analysis of corn ethanol production, operational flexibility has been proposed as a key strategy for the next generation biofuel plants to improve its lifetime economic performance, as well as to enhance its survivability under external disturbances. This strategy requires the biofuel plant to adopt a flexible feedstock management, making it possible to utilize alternative types of biomass feedstock when the primary feedstock supply is disturbed. Biofuel plants also need to produce a wider range of final products that could meet the preference variation that either comes from the energy market or from the subsidy policy. Aspen Plus model based numerical simulations have been carried out for a thermochemical ethanol plant and a Fischer Tropsch plant (both are assumed to be located in southwest Indiana) to test this strategy under the external disturbances of extreme weather impact, different energy price projections and various subsidy policy combinations. For the thermochemical ethanol plant, effects of extreme weather conditions are mainly evaluated. It has been shown that this strategy could effectively increase the net present value of the biofuel plant and significantly decrease the GHG emission comparing with the traditional single-feedstock strategy, when the extreme weather conditions are considered. It has also been demonstrated that this strategy could significantly decrease the possibility for the biofuel plant to bankrupt. For the Fischer Tropsch diesel plant, all the three external disturbances have been examined. It has been learned that operational flexibility through full capacity power co-generation, flexible feedstock management and hydrogen production by natural gas autothermal reforming could maximize the net present value under the influence of the external disturbances. Thus it is suggested that the future biofuel plant should adopt operational flexibility to increase the lifetime economic performance and to enhance the survivability under the influence of external disturbance.

  19. Integrated systems optimization model for biofuel development: The influence of environmental constraints

    NASA Astrophysics Data System (ADS)

    Housh, M.; Ng, T.; Cai, X.

    2012-12-01

    The environmental impact is one of the major concerns of biofuel development. While many other studies have examined the impact of biofuel expansion on stream flow and water quality, this study examines the problem from the other side - will and how a biofuel production target be affected by given environmental constraints. For this purpose, an integrated model comprises of different sub-systems of biofuel refineries, transportation, agriculture, water resources and crops/ethanol market has been developed. The sub-systems are integrated into one large-scale model to guide the optimal development plan considering the interdependency between the subsystems. The optimal development plan includes biofuel refineries location and capacity, refinery operation, land allocation between biofuel and food crops, and the corresponding stream flow and nitrate load in the watershed. The watershed is modeled as a network flow, in which the nodes represent sub-watersheds and the arcs are defined as the linkage between the sub-watersheds. The runoff contribution of each sub-watershed is determined based on the land cover and the water uses in that sub-watershed. Thus, decisions of other sub-systems such as the land allocation in the land use sub-system and the water use in the refinery sub-system define the sources and the sinks of the network. Environmental policies will be addressed in the integrated model by imposing stream flow and nitrate load constraints. These constraints can be specified by location and time in the watershed to reflect the spatial and temporal variation of the regulations. Preliminary results show that imposing monthly water flow constraints and yearly nitrate load constraints will change the biofuel development plan dramatically. Sensitivity analysis is performed to examine how the environmental constraints and their spatial and the temporal distribution influence the overall biofuel development plan and the performance of each of the sub-systems. Additional scenarios are analyzed to show the synergies of crop pattern choice (first versus second generation of biofuel crops), refinery technology adaptation (particularly on water use), refinery plant distribution, and economic incentives in terms of balanced environmental protection and bioenergy development objectives.

  20. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002

    DOE PAGES

    Therien, Jesse B.; Zadvornyy, Oleg A.; Posewitz, Matthew C.; ...

    2014-10-18

    The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. We demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC7002.

  1. Global land-use and market interactions between climate and bioenergy policies

    NASA Astrophysics Data System (ADS)

    Golub, A.; Hertel, T. W.; Rose, S. K.

    2011-12-01

    Over the past few years, interest in bioenergy has boomed with higher oil prices and concerns about energy security, farm incomes, and mitigation of climate change. Large-scale commercial bioenergy production could have far reaching implications for regional and global land use and output markets associated with food, forestry, chemical, and energy sectors, as well as household welfare. Similarly, there is significant interest in international agricultural and forestry based carbon sequestration and greenhouse gas (GHG) mitigation policies, which could also provide revenue to developing countries and farmers in exchange for modifying land management practices. However, bioenergy and climate policies are being formulated largely independent of one another. Understanding the interaction between these potentially competing policy objectives is important for identifying possible constraints that one policy might place on the other, potential complementarities that could be exploited in policy design, and net land-use change and management implications over time. This study develops a new dynamic global computable general equilibrium (CGE) model GDyn-E-AEZ to assess the interaction between biofuels production and climate mitigation policies. The model is built on several existing CGE platforms, including 1) GTAP-AEZ-GHG model (Golub et al., 2009), 2) GTAP-BIO (Birur et al., 2008; Taheripour and Tyner, 2011), and 3) GDyn framework (Ianchovichina and McDougall, 2001) extended to investigate the role of population and per capita income growth, changing consumption patterns, and global economic integration in determining long-run patterns of land-use change. The new model is used to assess the effects of domestic and global bioenergy expansion on future land use, as well as sectoral, regional and global GHG emissions mitigation potential. Do bioenergy programs facilitate or constrain GHG mitigation opportunities? For instance, Golub et al. (2009) estimate substantial GHG mitigation potential in non-US forests (8.9 GtCO2yr-1 at $27/tCO2eq). Furthermore, a carbon tax could lead to input substitution in agricultural production away from land and fertilizer (e.g., in China, an approximate 20% reduction in paddy rice acreage and 10% reduction in crop production fertilizer use at the same GHG price). Both results run counter to the changes in land-use induced by biofuels. However, given the energy security benefits for bioenergy, this study also evaluate whether a land GHG policy could manage international indirect land-use leakage concerns for bioenergy. In addition to a global perspective, a US perspective is taken to evaluate the implications of joint and separate bioenergy and climate policies on domestic offset and bioenergy supplies. Preliminary results indicate that US biofuels mandate reduces the global abatement potential for agriculture and forestry and thereby imposes an additional cost on society. There are regional comparative advantages in biofuels production (as well as non-biofuels crops and timber production). There are also regional comparative advantages in land-based GHG mitigation. By modeling bioenergy and climate policies separately and simultaneously, this study assess the net comparative advantage regions have in meeting these two sets of goals.

  2. Supply Chain Sustainability Analysis of Whole Algae Hydrothermal Liquefaction and Upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegallapati, Ambica Koushik; Dunn, Jennifer B.; Frank, Edward D.

    2015-04-01

    The Department of Energy's Bioenergy Technology Office (BETO) collaborates with a wide range of institutions towards the development and deployment of biofuels and bioproducts. To facilitate this effort, BETO and its partner national laboratories develop detailed techno-economic assessments (TEA) of biofuel production technologies as part of the development of design cases and state of technology (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand,more » an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available.« less

  3. Summary of Fast Pyrolysis and Upgrading GHG Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Swan, Lesley J.; Male, Jonathan L.

    2012-12-07

    The Energy Independence and Security Act (EISA) of 2007 established new renewable fuel categories and eligibility requirements (EPA 2010). A significant aspect of the National Renewable Fuel Standard 2 (RFS2) program is the requirement that the life cycle greenhouse gas (GHG) emissions of a qualifying renewable fuel be less than the life cycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. Four levels of reduction are required for the four renewable fuel standards. Table 1 lists these life cycle performance improvement thresholds. Table 1. Life Cycle GHG Thresholds Specified in EISA Fuel Type Percentmore » Reduction from 2005 Baseline Renewable fuel 20% Advanced biofuel 50% Biomass-based diesel 50% Cellulosic biofuel 60% Notably, there is a specialized subset of advanced biofuels that are the cellulosic biofuels. The cellulosic biofuels are incentivized by the Cellulosic Biofuel Producer Tax Credit (26 USC 40) to stimulate market adoption of these fuels. EISA defines a cellulosic biofuel as follows (42 USC 7545(o)(1)(E)): The term “cellulosic biofuel” means renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions, as determined by the Administrator, that are at least 60 percent less than the baseline lifecycle greenhouse gas emissions. As indicated, the Environmental Protection Agency (EPA) has sole responsibility for conducting the life cycle analysis (LCA) and making the final determination of whether a given fuel qualifies under these biofuel definitions. However, there appears to be a need within the LCA community to discuss and eventually reach consensus on discerning a 50–59 % GHG reduction from a ≥ 60% GHG reduction for policy, market, and technology development. The level of specificity and agreement will require additional development of capabilities and time for the sustainability and analysis community, as illustrated by the rich dialogue and convergence around the energy content and GHG reduction of cellulosic ethanol (an example of these discussions can be found in Wang 2011). GHG analyses of fast pyrolysis technology routes are being developed and will require significant work to reach the levels of development and maturity of cellulosic ethanol models. This summary provides some of the first fast pyrolysis analyses and clarifies some of the reasons for differing results in an effort to begin the convergence on assumptions, discussion of quality of models, and harmonization.« less

  4. Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth A.; Schauer, James J.; Pradhan, Bidya Banmali; Dangol, Pradeep Man; Habib, Gazala; Venkataraman, Chandra; Ramanathan, V.

    2010-03-01

    This study focuses on improving source apportionment of carbonaceous aerosol in South Asia and consists of three parts: (1) development of novel molecular marker-based profiles for real-world biofuel combustion, (2) application of these profiles to a year-long data set, and (3) evaluation of profiles by an in-depth sensitivity analysis. Emissions profiles for biomass fuels were developed through source testing of a residential stove commonly used in South Asia. Wood fuels were combusted at high and low rates, which corresponded to source profiles high in organic carbon (OC) or high in elemental carbon (EC), respectively. Crop wastes common to the region, including rice straw, mustard stalk, jute stalk, soybean stalk, and animal residue burnings, were also characterized. Biofuel profiles were used in a source apportionment study of OC and EC in Godavari, Nepal. This site is located in the foothills of the Himalayas and was selected for its well-mixed and regionally impacted air masses. At Godavari, daily samples of fine particulate matter (PM2.5) were collected throughout the year of 2006, and the annual trends in particulate mass, OC, and EC followed the occurrence of a regional haze in South Asia. Maximum concentrations occurred during the dry winter season and minimum concentrations occurred during the summer monsoon season. Specific organic compounds unique to aerosol sources, molecular markers, were measured in monthly composite samples. These markers implicated motor vehicles, coal combustion, biomass burning, cow dung burning, vegetative detritus, and secondary organic aerosol as sources of carbonaceous aerosol. A molecular marker-based chemical mass balance (CMB) model provided a quantitative assessment of primary source contributions to carbonaceous aerosol. The new profiles were compared to widely used biomass burning profiles from the literature in a sensitivity analysis. This analysis indicated a high degree of stability in estimates of source contributions to OC when different biomass profiles were used. The majority of OC was unapportioned to primary sources and was estimated to be of secondary origin, while biomass combustion was the next-largest source of OC. The CMB apportionment of EC to primary sources was unstable due to the diversity of biomass burning conditions in the region. The model results suggested that biomass burning and fossil fuel were important contributors to EC, but could not reconcile their relative contributions.

  5. Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Fast Pyrolysis, and Hydrothermal Liquefaction: Update of the 2016 State-of-Technology Cases and Design Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Hao; Dunn, Jennifer; Pegallapati, Ambica

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2016). BETO and its national laboratory teams conduct in-depth technoeconomic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels, and life-cycle analysis of overall system sustainability.

  6. Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharon Falcone Miller; Bruce G. Miller

    2007-12-15

    This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the modelsmore » showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.« less

  7. Biology and Industrial Applications of Chlorella: Advances and Prospects.

    PubMed

    Liu, Jin; Chen, Feng

    2016-01-01

    Chlorella represents a group of eukaryotic green microalgae that has been receiving increasing scientific and commercial interest. It possesses high photosynthetic ability and is capable of growing robustly under mixotrophic and heterotrophic conditions as well. Chlorella has long been considered as a source of protein and is now industrially produced for human food and animal feed. Chlorella is also rich in oil, an ideal feedstock for biofuels. The exploration of biofuel production by Chlorella is underway. Chlorella has the ability to fix carbon dioxide efficiently and to remove nutrients of nitrogen and phosphorous, making it a good candidate for greenhouse gas biomitigation and wastewater bioremediation. In addition, Chlorella shows potential as an alternative expression host for recombinant protein production, though challenges remain to be addressed. Currently, omics analyses of certain Chlorella strains are being performed, which will help to unravel the biological implications of Chlorella and facilitate the future exploration of industrial applications.

  8. Radiative forcing impacts of boreal forest biofuels: a scenario study for Norway in light of albedo.

    PubMed

    Bright, Ryan M; Strømman, Anders Hammer; Peters, Glen P

    2011-09-01

    Radiative forcing impacts due to increased harvesting of boreal forests for use as transportation biofuel in Norway are quantified using simple climate models together with life cycle emission data, MODIS surface albedo data, and a dynamic land use model tracking carbon flux and clear-cut area changes within productive forests over a 100-year management period. We approximate the magnitude of radiative forcing due to albedo changes and compare it to the forcing due to changes in the carbon cycle for purposes of attributing the net result, along with changes in fossil fuel emissions, to the combined anthropogenic land use plus transport fuel system. Depending on albedo uncertainty and uncertainty about the geographic distribution of future logging activity, we report a range of results, thus only general conclusions about the magnitude of the carbon offset potential due to changes in surface albedo can be drawn. Nevertheless, our results have important implications for how forests might be managed for mitigating climate change in light of this additional biophysical criterion, and in particular, on future biofuel policies throughout the region. Future research efforts should be directed at understanding the relationships between the physical properties of managed forests and albedo, and how albedo changes in time as a result of specific management interventions.

  9. Data & Tools | Bioenergy | NREL

    Science.gov Websites

    Procedures NREL develops lab procedures to help researchers perform analyses for biofuels and bio-oils . Biomass Compositional Analysis Bio-Oil Analysis Microalgae Compositional Analysis Biomass Feedstock and

  10. Precipitation partitioning in short rotation bioenergy crops: implications for downstream water availability.

    Treesearch

    Peter Caldwell; Chelcy F. Miniat; Doug Aubrey; Rhett Jackson; Jeff McDonnell; Ken W. Krauss; James S. Latimer

    2016-01-01

    The southern United States is a potential leader in producing biofuels from intensively managed, short rotation (8–12 years) woody crops such as southern pines, and native and non-native hardwoods. However, their accelerated development under intensive management has raised concerns that fast-growing bioenergy crops could reduce recharge to stream flows and groundwater...

  11. Regional water implications of reducing oil imports with liquid transportation fuel alternatives in the United States.

    PubMed

    Jordaan, Sarah M; Diaz Anadon, Laura; Mielke, Erik; Schrag, Daniel P

    2013-01-01

    The Renewable Fuel Standard (RFS) is among the cornerstone policies created to increase U.S. energy independence by using biofuels. Although greenhouse gas emissions have played a role in shaping the RFS, water implications are less understood. We demonstrate a spatial, life cycle approach to estimate water consumption of transportation fuel scenarios, including a comparison to current water withdrawals and drought incidence by state. The water consumption and land footprint of six scenarios are compared to the RFS, including shale oil, coal-to-liquids, shale gas-to-liquids, corn ethanol, and cellulosic ethanol from switchgrass. The corn scenario is the most water and land intense option and is weighted toward drought-prone states. Fossil options and cellulosic ethanol require significantly less water and are weighted toward less drought-prone states. Coal-to-liquids is an exception, where water consumption is partially weighted toward drought-prone states. Results suggest that there may be considerable water and land impacts associated with meeting energy security goals through using only biofuels. Ultimately, water and land requirements may constrain energy security goals without careful planning, indicating that there is a need to better balance trade-offs. Our approach provides policymakers with a method to integrate federal policies with regional planning over various temporal and spatial scales.

  12. dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2016-01-01

    Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf.

  13. dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock

    PubMed Central

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2016-01-01

    Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf. PMID:26727469

  14. ASSERT FY16 Analysis of Feedstock Companion Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamers, Patrick; Hansen, Jason; Jacobson, Jacob J.

    2016-09-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale.more » To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this task by experts in feedstock supply chain analysis, market economics, and System Dynamics from the Idaho National Laboratory and MindsEye Computing.« less

  15. An economic evaluation of alternative biofuel deployment scenarios in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oladosu, Gbadebo

    Energy market conditions have shifted dramatically since the USA renewable fuel standards (RFS1 in 2005; RFS2 in 2007) were enacted. The USA has transitioned from an increasing dependence on oil imports to abundant domestic oil production. In addition, increases in the use of ethanol, the main biofuel currently produced in the USA, is now limited by the blend wall constraint. Given this, the current study evaluates alternative biofuel deployment scenarios in the USA, accounting for changes in market conditions. The analysis is performed with a general equilibrium model that reflects the structure of the USA biofuel market as the transitionmore » to advanced biofuel begins. Results suggest that ethanol consumption would increase, albeit slowly, if current biofuel deployment rates of about 10% are maintained as persistently lower oil prices lead to a gradual increase in the consumption of liquid transportation fuels. Without the blend wall constraint, this study finds that the overall economic impact of a full implementation of the USA RFS2 policy is largely neutral before 2022. However, the economic impacts become slightly negative under the blend wall constraint since more expensive bio-hydrocarbons are needed to meet the RFS2 mandates. Results for a scenario with reduced advanced biofuel deployment based on current policy plans show near neutral economic impacts up to 2027. This scenario is also consistent with another scenario where the volume of bio-hydrocarbons deployed is reduced to adjust for its higher cost and energy content relative to deploying the mandated RFS2 advanced biofuel volumes as ethanol. The important role of technological change is demonstrated under pioneer and accelerated technology scenarios, with the latter leading to neutral or positive economic effects up to 2023 under most blend wall scenarios. Here, all scenarios evaluated in this study are found to have positive long-term economic benefits for the USA economy.« less

  16. An economic evaluation of alternative biofuel deployment scenarios in the USA

    DOE PAGES

    Oladosu, Gbadebo

    2017-05-03

    Energy market conditions have shifted dramatically since the USA renewable fuel standards (RFS1 in 2005; RFS2 in 2007) were enacted. The USA has transitioned from an increasing dependence on oil imports to abundant domestic oil production. In addition, increases in the use of ethanol, the main biofuel currently produced in the USA, is now limited by the blend wall constraint. Given this, the current study evaluates alternative biofuel deployment scenarios in the USA, accounting for changes in market conditions. The analysis is performed with a general equilibrium model that reflects the structure of the USA biofuel market as the transitionmore » to advanced biofuel begins. Results suggest that ethanol consumption would increase, albeit slowly, if current biofuel deployment rates of about 10% are maintained as persistently lower oil prices lead to a gradual increase in the consumption of liquid transportation fuels. Without the blend wall constraint, this study finds that the overall economic impact of a full implementation of the USA RFS2 policy is largely neutral before 2022. However, the economic impacts become slightly negative under the blend wall constraint since more expensive bio-hydrocarbons are needed to meet the RFS2 mandates. Results for a scenario with reduced advanced biofuel deployment based on current policy plans show near neutral economic impacts up to 2027. This scenario is also consistent with another scenario where the volume of bio-hydrocarbons deployed is reduced to adjust for its higher cost and energy content relative to deploying the mandated RFS2 advanced biofuel volumes as ethanol. The important role of technological change is demonstrated under pioneer and accelerated technology scenarios, with the latter leading to neutral or positive economic effects up to 2023 under most blend wall scenarios. Here, all scenarios evaluated in this study are found to have positive long-term economic benefits for the USA economy.« less

  17. Quantifying the economic competitiveness of cellulosic biofuel pathways under uncertainty and regional sensitivity

    NASA Astrophysics Data System (ADS)

    Brown, Tristan R.

    The revised Renewable Fuel Standard requires the annual blending of 16 billion gallons of cellulosic biofuel by 2022 from zero gallons in 2009. The necessary capacity investments have been underwhelming to date, however, and little is known about the likely composition of the future cellulosic biofuel industry as a result. This dissertation develops a framework for identifying and analyzing the industry's likely future composition while also providing a possible explanation for why investment in cellulosic biofuels capacity has been low to date. The results of this dissertation indicate that few cellulosic biofuel pathways will be economically competitive with petroleum on an unsubsidized basis. Of five cellulosic biofuel pathways considered under 20-year price forecasts with volatility, only two achieve positive mean 20-year net present value (NPV) probabilities. Furthermore, recent exploitation of U.S. shale gas reserves and the subsequent fall in U.S. natural gas prices have negatively impacted the economic competitiveness of all but two of the cellulosic biofuel pathways considered; only two of the five pathways achieve substantially higher 20-year NPVs under a post-shale gas economic scenario relative to a pre-shale gas scenario. The economic competitiveness of cellulosic biofuel pathways with petroleum is reduced further when considered under price uncertainty in combination with realistic financial assumptions. This dissertation calculates pathway-specific costs of capital for five cellulosic biofuel pathway scenarios. The analysis finds that the large majority of the scenarios incur costs of capital that are substantially higher than those commonly assumed in the literature. Employment of these costs of capital in a comparative TEA greatly reduces the mean 20-year NPVs for each pathway while increasing their 10-year probabilities of default to above 80% for all five scenarios. Finally, this dissertation quantifies the economic competitiveness of six cellulosic biofuel pathways being commercialized in eight different U.S. states under price uncertainty, utilization of pathway-specific costs of capital, and region-specific economic factors. 10-year probabilities of default in excess of 60% are calculated for all eight location scenarios considered, with default probabilities in excess of 98% calculated for seven of the eight. Negative mean 20-year NPVs are calculated for seven of the eight location scenarios.

  18. Comparative efficiency and driving range of light- and heavy-duty vehicles powered with biomass energy stored in liquid fuels or batteries

    PubMed Central

    Laser, Mark; Lynd, Lee R.

    2014-01-01

    This study addresses the question, “When using cellulosic biomass for vehicular transportation, which field-to-wheels pathway is more efficient: that using biofuels or that using bioelectricity?” In considering the question, the level of assumed technological maturity significantly affects the comparison, as does the intended transportation application. Results from the analysis indicate that for light-duty vehicles, over ranges typical in the United States today (e.g., 560–820 miles), field-to-wheels performance is similar, with some scenarios showing biofuel to be more efficient, and others indicating the two pathways to be essentially the same. Over the current range of heavy-duty vehicles, the field-to-wheels efficiency is higher for biofuels than for electrically powered vehicles. Accounting for technological advances and range, there is little basis to expect mature bioelectricity-powered vehicles to have greater field-to-wheels efficiency (e.g., kilometers per gigajoule biomass or per hectare) compared with mature biofuel-powered vehicles. PMID:24550477

  19. Life Cycle Assessment for Biofuels

    EPA Science Inventory

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  20. High Relative Abundance of Biofuel Sourced Ethanol in Precipitation in the US and Brazil Determined Using Compound Specific Stable Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Shimizu, M. S.; Felix, J. D. D.; Casas, M.; Avery, G. B., Jr.; Kieber, R. J.; Mead, R. N.; Willey, J. D.; Lane, C.

    2017-12-01

    Ethanol biofuel production and consumption have increased exponentially over the last two decades to help reduce greenhouse gas emissions. Currently, 85% of global ethanol production and consumption occurs in the US and Brazil. Increasing biofuel ethanol usage in these two countries enhances emissions of uncombusted ethanol to the atmosphere contributing to poor air quality. Although measurements of ethanol in the air and the precipitation reveal elevated ethanol concentrations in densely populated cities, other sources such as natural vegetation can contribute to emission to the atmosphere. Previous modeling studies indicated up to 12% of atmospheric ethanol is from anthropogenic emissions. Only one gas phase study in southern Florida attempted to constrain the two sources through direct isotopic measurements. The current study used a stable carbon isotope method to constrain sources of ethanol in rainwater from the US and Brazil. A method was developed using solid phase microextraction (SPME) with subsequent analysis by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Stable carbon isotope signatures (δ13C) of vehicle ethanol emission sources for both the US (-9.8‰) and Brazil (-12.7‰) represented C4 plants as feedstock (corn and sugarcane) for biofuel production. An isotope mixing model using biofuel from vehicles (C4 plants) and biogenic (C3 plants) end-members was implemented to estimate ethanol source apportionment in the rain. We found that stable carbon isotope ratio of ethanol in the rain ranged between -22.6‰ and -12.7‰. Our results suggest that the contribution of biofuel to atmospheric ethanol can be higher than previously estimated. As biofuel usage increasing globally, it is essential to determine the relative abundance of anthropogenic ethanol in other areas of the world.

  1. Source Apportionment of Volatile Organic Compounds in an Urban Environment at the Yangtze River Delta, China.

    PubMed

    An, Junlin; Wang, Junxiu; Zhang, Yuxin; Zhu, Bin

    2017-04-01

    Volatile organic compounds (VOCs) were collected continuously during June-August 2013 and December 2013-February 2014 at an urban site in Nanjing in the Yangtze River Delta. The positive matrix factorization receptor model was used to analyse the sources of VOCs in different seasons. Eight and seven sources were identified in summer and winter, respectively. In summer and winter, the dominant sources of VOCs were vehicular emissions, liquefied petroleum gas/natural gas (LPG/NG) usage, solvent usage, biomass/biofuel burning, and industrial production. In summer, vehicular emissions made the most significant contribution to ambient VOCs (38%), followed by LPG/NG usage (20%), solvent usage (19%), biomass/biofuel burning (13%), and industrial production (10%). In winter, LPG/NG usage accounted for 36% of ambient VOCs, whereas vehicular emissions, biomass/biofuel burning, industrial production and solvent usage contributed 30, 18, 9, and 6%, respectively. The contribution of LPG/NG usage in winter was approximately four times that in summer, whereas the contribution from biomass/biofuel burning in winter was more than twice that in summer. The sources related to vehicular emissions and LPG/NG usages were important. Using conditional probability function analysis, the VOC sources were mainly associated with easterly, northeasterly and southeasterly directions, pointing towards the major expressway and industrial area. Using the propylene-equivalent method, paint and varnish (23%) was the highest source of VOCs in summer and biomass/biofuel burning (36%) in winter. Using the ozone formation potential method, the most important source was biomass/biofuel burning (32% in summer and 47% in winter). The result suggests that the biomass/biofuel burning and paint and varnish play important roles in controlling ozone chemical formation in Nanjing.

  2. Economics of lifecycle analysis and greenhouse gas regulations

    NASA Astrophysics Data System (ADS)

    Rajagopal, Deepak

    2009-11-01

    Interest in alternatives to fossil fuels has risen significantly during the current decade. Although a variety of different alternative technologies have experienced rapid growth, biofuels have emerged as the main alternative transportation fuel. Energy policies in several countries envision blending biofuels with fossil fuels as the main mechanism to increase energy independence and energy security. Climate change policies in several regions are also riding on the same hope for reducing emissions from transportation. The main advantage of biofuels is that they are technically mature, cheaper to produce and more convenient to use relative to other alternative fuels. However, the impact of current biofuels on the environment and on economic welfare, is controversial. In my dissertation I focus on three topics relevant to future energy and climate policies. The first is the economics of lifecycle analysis and its application to the assessment of environmental impact of biofuel policies. The potential of biofuel for reducing greenhouse gas emissions was brought to the fore by research that relied on the methodology called lifecycle analysis (LCA). Subsequent research however showed that the traditional LCA fails to account for market-mediated effects that will arise when biofuel technologies are scaled up. These effects can increase or decrease emissions at each stage of the lifecycle. I discuss how the LCA will differ depending on the scale, a single firm versus a region and why LCA of the future should be distinguished from LCA of the past. I describe some approaches for extending the LCA methodology so that it can be applied under these different situations. The second topic is the economic impact of biofuels. Biofuels reduce the demand for oil and increase the demand for agricultural goods. To high income countries which tend to be both large importers of oil and large exporters of agricultural goods, this implies two major benefits. One of the one hand it reduces the market power of OPEC (Oil Producing and Exporting Countries), a cartel of nations which is the single largest oil exporting entity in the world, and is an entity considered unreliable. On the other hand, it reduces the demand for domestic farm subsidies. At the same crops comprise a small share of the retail price of food. As a result, the expected negative impact of biofuel was at worst a small increase in the retail price of food. However, the food price inflation in the year 2008 suggests that the negative impact on food consumers was significantly higher than expected and also outweighed the impact fuel consumers. I estimate the effect on biofuels on food and oil prices and compare them to other estimates in the literature and also relate these to prices observed in the real world. The third topic is the economics of greenhouse gas regulations of transportation fuels. Climate change policies such as United Nations' Kyoto protocol, European Union Emission Trading Scheme, and the Regional Greenhouse Gas Initiative in the US north-east mandate an aggregate emission target, called a cap and allow regulated entities to trade responsibilities for abatement. Furthermore, these policies have generally and sometimes exclusively targeted the electricity and industrial sector for emission reduction. However, the Low carbon fuel standard and Renewable fuel standard are two policies about to be implemented by the State of California and the US federal government, which exclusively target the transportation sector for emission reduction. Furthermore, these regulations mandate emission intensity target for fuels rather than aggregate emission reduction. I compare the cost-effectiveness of these two types of regulations, namely, aggregate emission caps versus emission intensity standards and discuss how prices, output and emissions vary between these two types of policies.

  3. Economic implications of incorporating emission controls to mitigate air pollutants emitted from a modeled hydrocarbon-fuel biorefinery in the United States

    DOE PAGES

    Bhatt, Arpit; Zhang, Yimin; Davis, Ryan; ...

    2016-07-15

    The implementation of the US Renewable Fuel Standard is expected to increase the construction and operation of new biofuel facilities. Allowing this industry to grow without adversely affecting air quality is an important sustainability goal sought by multiple stakeholders. However, little is known about how the emission controls potentially required to comply with air quality regulations might impact biorefinery cost and deployment strategies such as siting and sizing. In this study, we use a baseline design for a lignocellulosic hydrocarbon biofuel production process to assess how the integration of emission controls impacts the minimum fuel selling price (MFSP) of themore » biofuel produced. We evaluate the change in MFSP for two cases as compared to the baseline design by incorporating (i) emission controls that ensure compliance with applicable federal air regulations and (ii) advanced control options that could be used to achieve potential best available control technology (BACT) emission limits. Our results indicate that compliance with federal air regulations can be achieved with minimal impact on biofuel cost (~$0.02 per gasoline gallon equivalent (GGE) higher than the baseline price of $5.10 GGE -1). However, if air emissions must be further reduced to meet potential BACT emission limits, the cost could increase nontrivially. For example, the MFSP could increase to $5.50 GGE -1 by adopting advanced emission controls to meet potential boiler BACT limits. Finally, given tradeoffs among emission control costs, permitting requirements, and economies of scale, these results could help inform decisions about biorefinery siting and sizing and mitigate risks associated with air permitting.« less

  4. Characterization of fine and carbonaceous particles emissions from pelletized biomass-coal blends combustion: Implications on residential crop residue utilization in China

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Wang, Yan; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Li, Jun; Zhang, Gan

    2016-09-01

    Bulk biofuel, biomass pellets and pelletized biomass-coal blends were combusted in a typical rural conventional household stove and a high-efficiency stove. Reductions in PM2.5, organic carbon (OC) and elemental carbon (EC) emissions were evaluated by comparing emission factors (EFs) among 19 combinations of biofuel/residential stove types measured using a dilution sampling system. In the low-efficiency stove, the average EFs of PM2.5, OC, and EC of biomass pellets were 2.64 ± 1.56, 0.42 ± 0.36, and 0.30 ± 0.11 g/kg, respectively, significantly lower than those burned in bulk form. EFPM2.5 and EFOC of pelletized biomass combustion in the high-efficiency stove were lower than those of the same biofuel burned in the low-efficiency stove. Furthermore, pelletized corn residue and coal blends burned in the high-efficiency stove could significantly decrease emissions. Compared with the bulk material burned in the low-efficiency stove, the reduction rates of PM2.5, OC and EC from pelletized blends in the high-efficiency stove can reach 84%, 96% and 93%, respectively. If the annually produced corn residues in 2010 had been blended with 10% anthracite coal powder and burnt as pellets, it would have reduced about 82% of PM2.5, 90-96% of OC and 81-92% of EC emission in comparison with burning raw materials in conventional household stoves. Given the low cost, high health benefit and reduction effect on atmospheric pollutants, pelletized blends could be a promising alternative to fossil fuel resources or traditional bulk biofuel.

  5. Integrating place-specific livelihood and equity outcomes into global assessments of bioenergy deployment

    NASA Astrophysics Data System (ADS)

    Creutzig, Felix; Corbera, Esteve; Bolwig, Simon; Hunsberger, Carol

    2013-09-01

    Integrated assessment models suggest that the large-scale deployment of bioenergy could contribute to ambitious climate change mitigation efforts. However, such a shift would intensify the global competition for land, with possible consequences for 1.5 billion smallholder livelihoods that these models do not consider. Maintaining and enhancing robust livelihoods upon bioenergy deployment is an equally important sustainability goal that warrants greater attention. The social implications of biofuel production are complex, varied and place-specific, difficult to model, operationalize and quantify. However, a rapidly developing body of social science literature is advancing the understanding of these interactions. In this letter we link human geography research on the interaction between biofuel crops and livelihoods in developing countries to integrated assessments on biofuels. We review case-study research focused on first-generation biofuel crops to demonstrate that food, income, land and other assets such as health are key livelihood dimensions that can be impacted by such crops and we highlight how place-specific and global dynamics influence both aggregate and distributional outcomes across these livelihood dimensions. We argue that place-specific production models and land tenure regimes mediate livelihood outcomes, which are also in turn affected by global and regional markets and their resulting equilibrium dynamics. The place-specific perspective suggests that distributional consequences are a crucial complement to aggregate outcomes; this has not been given enough weight in comprehensive assessments to date. By narrowing the gap between place-specific case studies and global models, our discussion offers a route towards integrating livelihood and equity considerations into scenarios of future bioenergy deployment, thus contributing to a key challenge in sustainability sciences.

  6. Impacts of near-future cultivation of biofuel feedstocks on atmospheric composition and local air quality

    NASA Astrophysics Data System (ADS)

    Ashworth, K.; Folberth, G.; Hewitt, C. N.; Wild, O.

    2012-01-01

    Large-scale production of feedstock crops for biofuels will lead to land use changes. We quantify the effects of realistic land use change scenarios for biofuel feedstock production on isoprene emissions and hence atmospheric composition and chemistry using the HadGEM2 model. Two feedstocks are considered: oil palm for biodiesel in the tropics and short rotation coppice (SRC) in the mid-latitudes. In total, 69 Mha of oil palm and 9 Mha of SRC are planted, each sufficient to replace just over 1% of projected global fossil fuel demand in 2020. Both planting scenarios result in increases in total global annual isoprene emissions of about 1%. In each case, changes in surface concentrations of ozone and biogenic secondary organic aerosol (bSOA) are substantial at the regional scale, with implications for air quality standards. However, the changes in tropospheric burden of ozone and the OH radical, and hence effects on global climate, are negligible. Over SE Asia, one region of oil palm planting, increases in annual mean surface ozone and bSOA concentrations reach over 3 ppbv (+11%) and 0.4 μg m-3 (+10%) respectively for parts of Borneo, with monthly mean increases of up to 6.5 ppbv (+25%) and 0.5 μg m-3 (+12%). Under the SRC scenario, Europe experiences monthly mean changes of over 0.6 ppbv (+1%) and 0.1 μg m-3 (+5%) in June and July, with peak increases of over 2 ppbv (+3%) and 0.5 μg m-3 (+8 %). That appreciable regional atmospheric impacts result from low level planting scenarios demonstrates the need to include changes in emissions of reactive trace gases such as isoprene in life cycle assessments performed on potential biofuel feedstocks.

  7. Potential of genetically modified oilseed rape for biofuels in Austria: Land use patterns and coexistence constraints could decrease domestic feedstock production

    PubMed Central

    Moser, Dietmar; Eckerstorfer, Michael; Pascher, Kathrin; Essl, Franz; Zulka, Klaus Peter

    2013-01-01

    Like other EU Member States, Austria will meet the substitution target of the EU European Renewable Energy Directive for transportation almost exclusively by first generation biofuels, primarily biodiesel from oilseed rape (OSR). Genetically modified (GM) plants have been promoted as a new option for biofuel production as they promise higher yield or higher quality feedstock. We tested implications of GM OSR application for biodiesel production in Austria by means of high resolution spatially explicit simulation of 140 different coexistence scenarios within six main OSR cropping regions in Austria (2400 km2). We identified structural land use characteristics such as field size, land use diversity, land holding patterns and the proportion of the target crop as the predominant factors which influence overall production of OSR in a coexistence scenario. Assuming isolation distances of 800 m and non-GM-OSR proportions of at least 10% resulted in a loss of area for cultivation of OSR in all study areas ranging from −4.5% to more than −25%, depending on the percentage of GM farmers and on the region. We could show that particularly the current primary OSR cropping regions are largely unsuitable for coexistence and would suffer from a net loss of OSR area even at isolation distances of 400 or 800 m. Coexistence constraints associated with application of GM OSR are likely to offset possible GM gains by substantially reducing farmland for OSR cultivation, thus contradicting the political aim to increase domestic OSR area to meet the combined demands of food, feed and biofuel production. PMID:26109750

  8. Agriculture and Energy: Implications for Food Security, Water, and Land Use

    NASA Astrophysics Data System (ADS)

    Tokgoz, S.; Zhang, W.; Msangi, S.; Bhandary, P.

    2011-12-01

    Sustainable production of agricultural commodities and growth of international trade in these goods are challenged as never before by supply-side constraints (such as climate change, water and land scarcity, and environmental degradation) and by demand-side dynamics (volatility in food and energy markets, the strengthening food-energy linkage, population growth, and income growth). On the one hand, the rapidly expanding demand can potentially create new market opportunities for agriculture. On the other hand, there are many threats to a sufficient response by the supply side to meet this growing and changing demand. Agricultural production systems in many countries are neither resource-efficient, nor producing according to their full potential. The stock of natural resources such as land, water, nutrients, energy, and genetic diversity is shrinking relative to demand, and their use must become increasingly efficient in order to reduce environmental impacts and preserve the planet's productive capacity. World energy prices have increased rapidly in recent years. At the same time, agriculture has become more energy-intensive. Higher energy costs have pushed up the cost of producing, transporting and processing agricultural commodities, driving up commodity prices. Higher energy costs have also affected water use and availability through increased costs of water extraction, conveyance and desalinization, higher demand for hydroelectric power, and increased cost of subsidizing water services. In the meantime, the development of biofuels has diverted increasing amounts of agricultural land and water resources to the production of biomass-based renewable energy. This more "intensified" linkage between agriculture and energy comes at a time when there are other pressures on the world's limited resources. The related high food prices, especially those in the developing countries, have led to setbacks in the poverty alleviation effort among the global community with more population under hunger and poverty. In light of these threats and opportunities facing the global food system, the proposed study takes a long-term perspective and addresses the main medium and long- term drivers of agricultural markets using the International Model for Policy Analysis of Agricultural Commodities and Trade developed by the Environment and Production Technology Division of IFPRI to project future production, consumption, and trade of key agricultural commodities. The main objective of the study is to analyze the link between energy and agricultural markets, focusing on the "new" role of agriculture as a supplier of energy for transportation through biofuels, and the subsequent impact on land use and demand for water from the agricultural sector. In this context, this study incorporates various scenarios of future energy demand and energy price impacts on global agricultural markets (food prices and food security), water use implications (irrigation water consumption by agricultural sector), and land use implications (changes in national and global crop area). The scenarios are designed to understand the impact of energy prices on biofuel production, cost of production for agricultural crops, conversion of rainfed area to irrigated area, and necessary levels of crop productivity growth to counter these effects.

  9. JEDI Biofuels Models | Jobs and Economic Development Impact Models | NREL

    Science.gov Websites

    Biofuels Models JEDI Biofuels Models The Jobs and Economic Development Impacts (JEDI) biofuel models allow users to estimate economic development impacts from biofuel projects and include default

  10. Estimating the variable cost for high-volume and long-haul transportation of densified biomass and biofuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob J. Jacobson; Erin Searcy; Md. S. Roni

    This article analyzes rail transportation costs of products that have similar physical properties as densified biomass and biofuel. The results of this cost analysis are useful to understand the relationship and quantify the impact of a number of factors on rail transportation costs of denisfied biomass and biofuel. These results will be beneficial and help evaluate the economic feasibility of high-volume and long-haul transportation of biomass and biofuel. High-volume and long-haul rail transportation of biomass is a viable transportation option for biofuel plants, and for coal plants which consider biomass co-firing. Using rail optimizes costs, and optimizes greenhouse gas (GHG)more » emissions due to transportation. Increasing bioenergy production would consequently result in lower GHG emissions due to displacing fossil fuels. To estimate rail transportation costs we use the carload waybill data, provided by Department of Transportation’s Surface Transportation Board for products such as grain and liquid type commodities for 2009 and 2011. We used regression analysis to quantify the relationship between variable transportation unit cost ($/ton) and car type, shipment size, rail movement type, commodity type, etc. The results indicate that: (a) transportation costs for liquid is $2.26/ton–$5.45/ton higher than grain type commodity; (b) transportation costs in 2011 were $1.68/ton–$5.59/ton higher than 2009; (c) transportation costs for single car shipments are $3.6/ton–$6.68/ton higher than transportation costs for multiple car shipments of grains; (d) transportation costs for multiple car shipments are $8.9/ton and $17.15/ton higher than transportation costs for unit train shipments of grains.« less

  11. Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development

    PubMed Central

    Holder, Jason W.; Ulrich, Jil C.; DeBono, Anthony C.; Godfrey, Paul A.; Desjardins, Christopher A.; Zucker, Jeremy; Zeng, Qiandong; Leach, Alex L. B.; Ghiviriga, Ion; Dancel, Christine; Abeel, Thomas; Gevers, Dirk; Kodira, Chinnappa D.; Desany, Brian; Affourtit, Jason P.; Birren, Bruce W.; Sinskey, Anthony J.

    2011-01-01

    The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and metabolic product characterizations were integrated into a working model of prokaryotic oleaginy. PMID:21931557

  12. Economic and life cycle assessments of biomass utilization for bioenergy products

    DOE PAGES

    Liu, Weiguo; Wang, Jingxin; Richard, Tom L.; ...

    2017-05-04

    A modeling process was developed to examine the economic and environmental benefits of utilizing energy crops for biofuels and bioproducts. Three energy crops (hybrid willow, switchgrass and miscanthus) that can potentially grow on marginal agricultural land or abandoned mine land in the northeastern United States were considered in the analytical process for the production of biofuels, biopower and pellet fuel. The supply chain components for both the economic analysis and life cycle modeling processes included feedstock establishment, harvest, transportation, storage, preprocessing, conversion, distribution and final usage. Sensitivity analysis was also conducted to assess the effects of energy crop yield, transportationmore » distance, conversion rate, facility capacity and internal rate of return (IRR) on the production of bioenergy products. The required selling price (RSP) ranged from $ 7.7/GJ to $ 47.9/GJ for different bioproducts. The production of biopower had the highest RSP and pellet fuel had the lowest. The results also indicated that bioenergy production using hybrid willow demonstrated lower RSP than the two perennial grass feedstocks. Pellet production presented the lowest greenhouse gas (GHG) emissions (less than 10 kg CO 2 eq per 1,000 MJ) and fossil energy consumption (less than 150 MJ per 1,000 MJ). The production of biofuel resulted in the highest GHG emissions. Sensitivity analysis indicated that IRR was the most sensitive factor to RSP and followed by conversion rate for biofuel and biopower production. As a result, conversion rate and transportation distance of feedstock presented a significant effect on environmental impacts during the production of the bioproducts.« less

  13. Economic and life cycle assessments of biomass utilization for bioenergy products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weiguo; Wang, Jingxin; Richard, Tom L.

    A modeling process was developed to examine the economic and environmental benefits of utilizing energy crops for biofuels and bioproducts. Three energy crops (hybrid willow, switchgrass and miscanthus) that can potentially grow on marginal agricultural land or abandoned mine land in the northeastern United States were considered in the analytical process for the production of biofuels, biopower and pellet fuel. The supply chain components for both the economic analysis and life cycle modeling processes included feedstock establishment, harvest, transportation, storage, preprocessing, conversion, distribution and final usage. Sensitivity analysis was also conducted to assess the effects of energy crop yield, transportationmore » distance, conversion rate, facility capacity and internal rate of return (IRR) on the production of bioenergy products. The required selling price (RSP) ranged from $ 7.7/GJ to $ 47.9/GJ for different bioproducts. The production of biopower had the highest RSP and pellet fuel had the lowest. The results also indicated that bioenergy production using hybrid willow demonstrated lower RSP than the two perennial grass feedstocks. Pellet production presented the lowest greenhouse gas (GHG) emissions (less than 10 kg CO 2 eq per 1,000 MJ) and fossil energy consumption (less than 150 MJ per 1,000 MJ). The production of biofuel resulted in the highest GHG emissions. Sensitivity analysis indicated that IRR was the most sensitive factor to RSP and followed by conversion rate for biofuel and biopower production. As a result, conversion rate and transportation distance of feedstock presented a significant effect on environmental impacts during the production of the bioproducts.« less

  14. Biofuels, causes of land-use change, and the role of fire in greenhouse gas emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Keith L; Dale, Virginia H

    2008-07-01

    IN THEIR REPORTS IN THE 29 FEBRUARY ISSUE ('LAND CLEARING AND THE BIOFUEL CARBON debt,' J. Fargione et al., p. 1235, and 'Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,' T. Searchinger et al., p. 1238), the authors do not provide adequate support for their claim that biofuels cause high emissions due to land-use change. The conclusions of both papers depend on the misleading premise that biofuel production causes forests and grasslands to be converted to agriculture. However, field research, including a meta-analysis of 152 case studies, consistently finds that land-use change and associatedmore » carbon emissions are driven by interactions among cultural, technological, biophysical, political, economic, and demographic forces within a spatial and temporal context rather than by a single crop market. Searchinger et al. assert that soybean prices accelerate clearing of rainforest based on a single citation for a study not designed to identify the causal factors of land clearing. The study analyzed satellite imagery from a single state in Brazil over a 4-year period and focused on land classification after deforestation. Satellite imagery can measure what changed but does little to tell us why. Similarly, Fargione et al. do not rely on primary empirical studies of causes of land-use change. Furthermore, neither fire nor soil carbon sequestration was properly considered in the Reports. Fire's escalating contribution to global climate change is largely a result of burning in tropical savannas and forests. Searchinger et al. postulate that 10.8 million hectares could be needed for future biofuel, a fraction of the 250 to 400 million hectares burned each year between 2000 and 2005. By offering enhanced employment and incomes, biofuels can help establish economic stability and thus reduce the recurring use of fire on previously cleared land as well as pressures to clear more land. Neither Searchinger et al. nor Fargione et al. consider fire as an ongoing land-management tool. In addition, deep-rooted perennial biofuel feedstocks in the tropics could enhance soil carbon storage by 0.5 to 1 metric ton per hectare per year. An improved understanding of the forces behind land-use change leads to more favorable conclusions regarding the potential for biofuels to reduce greenhouse gas emissions.« less

  15. Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants

    PubMed Central

    Marriott, Poppy E.; Sibout, Richard; Lapierre, Catherine; Fangel, Jonatan U.; Willats, William G. T.; Hofte, Herman; Gómez, Leonardo D.; McQueen-Mason, Simon J.

    2014-01-01

    Lignocellulosic plant biomass is an attractive feedstock for the production of sustainable biofuels, but the commercialization of such products is hampered by the high costs of processing this material into fermentable sugars (saccharification). One approach to lowering these costs is to produce crops with cell walls that are more susceptible to hydrolysis to reduce preprocessing and enzyme inputs. To deepen our understanding of the molecular genetic basis of lignocellulose recalcitrance, we have screened a mutagenized population of the model grass Brachypodium distachyon for improved saccharification with an industrial polysaccharide-degrading enzyme mixture. From an initial screen of 2,400 M2 plants, we selected 12 lines that showed heritable improvements in saccharification, mostly with no significant reduction in plant size or stem strength. Characterization of these putative mutants revealed a variety of alterations in cell-wall components. We have mapped the underlying genetic lesions responsible for increased saccharification using a deep sequencing approach, and here we report the mapping of one of the causal mutations to a narrow region in chromosome 2. The most likely candidate gene in this region encodes a GT61 glycosyltransferase, which has been implicated in arabinoxylan substitution. Our work shows that forward genetic screening provides a powerful route to identify factors that impact on lignocellulose digestibility, with implications for improving feedstock for cellulosic biofuel production. PMID:25246540

  16. 76 FR 7935 - Advanced Biofuel Payment Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ...The Rural Business-Cooperative Service (Agency) is establishing the Advanced Biofuel Payment Program authorized under the Food, Conservation, and Energy Act of 2008. Under this Program, the Agency will enter into contracts with advanced biofuel producers to pay such producers for the production of eligible advanced biofuels. To be eligible for payments, advanced biofuels must be produced from renewable biomass, excluding corn kernel starch, in a biofuel facility located in a State. In addition, this interim rule establishes new program requirements for applicants to submit applications for Fiscal Year 2010 payments for the Advanced Biofuel Payment Program. These new program requirements supersede the Notice of Contract Proposal (NOCP) for Payments to Eligible Advanced Biofuel Producers in its entirety.

  17. Conformations of low-molecular-weight lignin polymers in water

    DOE PAGES

    Petridis, Loukas; Smith, Jeremy C.

    2016-01-13

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a criticalmore » degree of polymerization, N c=15, the polymer adopts less spherical conformations than above N c. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. As a result, an implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.« less

  18. Conformations of Low-Molecular-Weight Lignin Polymers in Water.

    PubMed

    Petridis, Loukas; Smith, Jeremy C

    2016-02-08

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a critical degree of polymerization, Nc =15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. An implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 7 CFR 4288.111 - Biofuel eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program, a biofuel must meet...

  20. 7 CFR 4288.111 - Biofuel eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program, a biofuel must meet...

  1. The impact of first-generation biofuels on the depletion of the global phosphorus reserve.

    PubMed

    Hein, Lars; Leemans, Rik

    2012-06-01

    The large majority of biofuels to date is "first-generation" biofuel made from agricultural commodities. All first-generation biofuel production systems require phosphorus (P) fertilization. P is an essential plant nutrient, yet global reserves are finite. We argue that committing scarce P to biofuel production involves a trade-off between climate change mitigation and future food production. We examine biofuel production from seven types of feedstock, and find that biofuels at present consume around 2% of the global inorganic P fertilizer production. For all examined biofuels, with the possible exception of sugarcane, the contribution to P depletion exceeds the contribution to mitigating climate change. The relative benefits of biofuels can be increased through enhanced recycling of P, but high increases in P efficiency are required to balance climate change mitigation and P depletion impacts. We conclude that, with the current production systems, the production of first-generation biofuels compromises food production in the future.

  2. Engineering biofuel tolerance in non-native producing microorganisms.

    PubMed

    Jin, Hu; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2014-01-01

    Large-scale production of renewable biofuels through microbiological processes has drawn significant attention in recent years, mostly due to the increasing concerns on the petroleum fuel shortages and the environmental consequences of the over-utilization of petroleum-based fuels. In addition to native biofuel-producing microbes that have been employed for biofuel production for decades, recent advances in metabolic engineering and synthetic biology have made it possible to produce biofuels in several non-native biofuel-producing microorganisms. Compared to native producers, these non-native systems carry the advantages of fast growth, simple nutrient requirements, readiness for genetic modifications, and even the capability to assimilate CO2 and solar energy, making them competitive alternative systems to further decrease the biofuel production cost. However, the tolerance of these non-native microorganisms to toxic biofuels is naturally low, which has restricted the potentials of their application for high-efficiency biofuel production. To address the issues, researches have been recently conducted to explore the biofuel tolerance mechanisms and to construct robust high-tolerance strains for non-native biofuel-producing microorganisms. In this review, we critically summarize the recent progress in this area, focusing on three popular non-native biofuel-producing systems, i.e. Escherichia coli, Lactobacillus and photosynthetic cyanobacteria. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.

    PubMed

    Liu, Changqi; Huang, Yaji; Wang, Xinye; Tai, Yang; Liu, Lingqin; Liu, Hao

    2018-01-01

    Studies on the environmental analysis of biofuels by fast pyrolysis and hydroprocessing (BFPH) have so far focused only on the environmental impacts from direct emissions and have included few indirect emissions. The influence of ignoring some indirect emissions on the environmental performance of BFPH has not been well investigated and hence is not really understood. In addition, in order to avoid shifting environmental problems from one medium to another, a comprehensive assessment of environmental impacts caused by the processes must quantify the environmental emissions to all media (air, water, and land) in relation to each life cycle stage. A well-to-wheels assessment of the total environmental impacts resulting from direct emissions and indirect emissions of a BFPH system with corn stover is conducted using a hybrid life cycle assessment (LCA) model combining the economic input-output LCA and the process LCA. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) has been used to estimate the environmental impacts in terms of acidification, eutrophication, global climate change, ozone depletion, human health criteria, photochemical smog formation, ecotoxicity, human health cancer, and human health noncancer caused by 1 MJ biofuel production. Taking account of all the indirect greenhouse gas (GHG) emissions, the net GHG emissions (81.8 g CO 2 eq/MJ) of the biofuels are still less than those of petroleum-based fuels (94 g CO 2 eq/MJ). Maize production and pyrolysis and hydroprocessing make major contributions to all impact categories except the human health criteria. All impact categories resulting from indirect emissions except eutrophication and smog air make more than 24% contribution to the total environmental impacts. Therefore, the indirect emissions are important and cannot be ignored. Sensitivity analysis has shown that corn stover yield and bio-oil yield affect the total environmental impacts of the biofuels more significantly than the biomass transportation distance and biofuel transportation distance. Integr Environ Assess Manag 2018;14:139-149. © 2017 SETAC. © 2017 SETAC.

  4. 75 FR 11836 - Bioenergy Program for Advanced Biofuels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... (NOCP); additional payment for advanced biofuel produced from October 1, 2008 through September 30, 2009. SUMMARY: RBS is announcing additional payments to advanced biofuel producers determined eligible in Fiscal... biofuel produced in FY 2009, the request must include: Form RD 9005-3, ``Advanced Biofuel Program Payment...

  5. Tradeoffs and synergies between biofuel production and large-scale solar infrastructure in deserts

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Lobell, D. B.; Field, C. B.

    2012-12-01

    Solar energy installations in deserts are on the rise, fueled by technological advances and policy changes. Deserts, with a combination of high solar radiation and availability of large areas unusable for crop production are ideal locations for large scale solar installations. For efficient power generation, solar infrastructures require large amounts of water for operation (mostly for cleaning panels and dust suppression), leading to significant moisture additions to desert soil. A pertinent question is how to use the moisture inputs for sustainable agriculture/biofuel production. We investigated the water requirements for large solar infrastructures in North American deserts and explored the possibilities for integrating biofuel production with solar infrastructure. In co-located systems the possible decline in yields due to shading by solar panels may be offsetted by the benefits of periodic water addition to biofuel crops, simpler dust management and more efficient power generation in solar installations, and decreased impacts on natural habitats and scarce resources in deserts. In particular, we evaluated the potential to integrate solar infrastructure with biomass feedstocks that grow in arid and semi-arid lands (Agave Spp), which are found to produce high yields with minimal water inputs. To this end, we conducted detailed life cycle analysis for these coupled agave biofuel - solar energy systems to explore the tradeoffs and synergies, in the context of energy input-output, water use and carbon emissions.

  6. Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.

    PubMed

    Tiwary, Abhishek; Colls, Jeremy

    2010-01-01

    This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems.

  7. Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocker, Mark; Crofcheck, Czarena; Andrews, Rodney

    2013-03-29

    This project was aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an “open” laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities andmore » contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO 2; (ii) the conversion of algae to biofuels; and (iii) the development of methods for the analysis of lignin and its deconstruction products. Highlights from these activities include the development of catalysts for the upgrading of lipids to hydrocarbons by means of decarboxylation/decarbonylation (deCOx), a study of bio-oil production from the fast pyrolysis of algae (Scenedesmus), and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.« less

  8. Biofuels combustion.

    PubMed

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  9. Stimulating learning-by-doing in advanced biofuels: effectiveness of alternative policies

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoguang; Khanna, Madhu; Yeh, Sonia

    2012-12-01

    This letter examines the effectiveness of various biofuel and climate policies in reducing future processing costs of cellulosic biofuels due to learning-by-doing. These policies include a biofuel production mandate alone and supplementing the biofuel mandate with other policies, namely a national low carbon fuel standard, a cellulosic biofuel production tax credit or a carbon price policy. We find that the binding biofuel targets considered here can reduce the unit processing cost of cellulosic ethanol by about 30% to 70% between 2015 and 2035 depending on the assumptions about learning rates and initial costs of biofuel production. The cost in 2035 is more sensitive to the speed with which learning occurs and less sensitive to uncertainty in the initial production cost. With learning rates of 5-10%, cellulosic biofuels will still be at least 40% more expensive than liquid fossil fuels in 2035. The addition of supplementary low carbon/tax credit policies to the mandate that enhance incentives for cellulosic biofuels can achieve similar reductions in these costs several years earlier than the mandate alone; the extent of these incentives differs across policies and different kinds of cellulosic biofuels.

  10. Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains

    PubMed Central

    Sanchez, Susan Tarka; Woods, Jeremy; Akhurst, Mark; Brander, Matthew; O'Hare, Michael; Dawson, Terence P.; Edwards, Robert; Liska, Adam J.; Malpas, Rick

    2012-01-01

    The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid ‘combined model’ of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause–effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided. PMID:22467143

  11. Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains.

    PubMed

    Sanchez, Susan Tarka; Woods, Jeremy; Akhurst, Mark; Brander, Matthew; O'Hare, Michael; Dawson, Terence P; Edwards, Robert; Liska, Adam J; Malpas, Rick

    2012-06-07

    The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid 'combined model' of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause-effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided.

  12. Electrochemistry for biofuel generation: transformation of fatty acids and triglycerides to diesel-like olefin/ether mixtures and olefins.

    PubMed

    dos Santos, Tatiane R; Harnisch, Falk; Nilges, Peter; Schröder, Uwe

    2015-03-01

    Electroorganic synthesis can be exploited for the production of biofuels from fatty acids and triglycerides. With Coulomb efficiencies (CE) of up to 50 %, the electrochemical decarboxylation of fatty acids in methanolic and ethanolic solutions leads to the formation of diesel-like olefin/ether mixtures. Triglycerides can be directly converted in aqueous solutions by using sonoelectrochemistry, with olefins as the main products (with a CE of more than 20 %). The latter reaction, however, is terminated at around 50 % substrate conversion by the produced side-product glycerol. An energy analysis shows that the electrochemical olefin synthesis can be an energetically competitive, sustainable, and--in comparison with established processes--economically feasible alternative for the exploitation of fats and oils for biofuel production. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Modular Approach to Integrating Biofuels Education into ChE Curriculum Part I--Learning Materials

    ERIC Educational Resources Information Center

    He, Q. Peter; Wang, Jin; Zhang, Rong; Johnson, Donald; Knight, Andrew; Polala, Ravali

    2016-01-01

    In view of potential demand for skilled engineers and competent researchers in the biofuels field, we have identified a significant gap between advanced biofuels research and undergraduate biofuels education in chemical engineering. To help bridge this gap, we created educational materials that systematically integrate biofuels technologies into…

  14. Water Resources Implications of Cellulosic Biofuel Production at a Regional Scale

    NASA Astrophysics Data System (ADS)

    Christopher, S. F.; Schoenholtz, S. H.; Nettles, J. E.

    2011-12-01

    Recent increases in oil prices, a strong national interest in greater energy independence, and a concern for the role of fossil fuels in global climate change, have led to a dramatic expansion in use of alternative renewable energy sources in the U.S. The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, of which 16 billion gallons are required to be cellulosic biofuels. Production of cellulosic biomass offers a promising alternative to corn-based systems because large-scale production of corn-based ethanol often requires irrigation and is associated with increased erosion, excess sediment export, and enhanced leaching of nitrogen and phosphorus. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water quality impacts associated with annual crops. Catchlight Energy LLC is examining the feasibility and sustainability of intercropping switchgrass in loblolly pine plantations in the southeastern U.S. Ongoing research is determining efficient operational techniques and information needed to evaluate effects of these practices on water resources in small watershed-scale (~25 ha) studies. Three sets of four to five sub-watersheds are fully instrumented and currently collecting calibration data in North Carolina, Alabama, and Mississippi. These watershed studies will provide detailed information to understand processes and guide management decisions. However, environmental implications of cellulosic systems need to be examined at a regional scale. We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine water quantity effects of various land use change scenarios ranging from switchgrass intercropping a small percentage of managed pine forest land to conversion of all managed forested land to switchgrass. The regional-scale SWAT model was successfully run and calibrated on the ~ 5 million ha Tombigbee Watershed located in Mississippi and Alabama. Publically available datasets were used as input to the model and for calibration. To improve calibration statistics, five tree age classes (0-4 yr, 4-10 yr, 10-17 yr, 17-24 yr, 24-30 yr) were added to the model to more appropriately represent existing forested systems in the region, which are not included within the standard SWAT set-up. Our results will be essential to public policy makers as they influence and plan for large-scale production of cellulosic biofuels, while sustaining water quality and quantity.

  15. Three essays on agricultural price volatility and the linkages between agricultural and energy markets

    NASA Astrophysics Data System (ADS)

    Wu, Feng

    This dissertation contains three essays. In the first essay I use a volatility spillover model to find evidence of significant spillovers from crude oil prices to corn cash and futures prices, and that these spillover effects are time-varying. Results reveal that corn markets have become much more connected to crude oil markets after the introduction of the Energy Policy Act of 2005. Furthermore, crude oil prices transmit positive volatility spillovers into corn prices and movements in corn prices become more energy-driven as the ethanol gasoline consumption ratio increases. Based on this strong volatility link between crude oil and corn prices, a new cross hedging strategy for managing corn price risk using oil futures is examined and its performance studied. Results show that this cross hedging strategy provides only slightly better hedging performance compared to traditional hedging in corn futures markets alone. The implication is that hedging corn price risk in corn futures markets alone can still provide relatively satisfactory performance in the biofuel era. The second essay studies the spillover effect of biofuel policy on participation in the Conservation Reserve Program. Landowners' participation decisions are modeled using a real options framework. A novel aspect of the model is that it captures the structural change in agriculture caused by rising biofuel production. The resulting model is used to simulate the spillover effect under various conditions. In particular, I simulate how increased growth in agricultural returns, persistence of the biofuel production boom, and the volatility surrounding agricultural returns, affect conservation program participation decisions. Policy implications of these results are also discussed. The third essay proposes a methodology to construct a risk-adjusted implied volatility measure that removes the forecasting bias of the model-free implied volatility measure. The risk adjustment is based on a closed-form relationship between the expectation of future volatility and the model-free implied volatility assuming a jump-diffusion model. I use a GMM estimation framework to identify the key model parameters needed to apply the model. An empirical application to corn futures implied volatility is used to illustrate the methodology and demonstrate differences between my approach and the model-free implied volatility using observed corn option prices. I compare the risk-adjusted forecast with the unadjusted forecast as well as other alternatives; and results suggest that the risk-adjusted volatility is unbiased, informationally more efficient, and has superior predictive power over the alternatives considered.

  16. Biofuels combustion*

    DOE PAGES

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  17. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate

    PubMed Central

    Smith, Keith A.; Mosier, Arvin R.; Crutzen, Paul J.; Winiwarter, Wilfried

    2012-01-01

    In earlier work, we compared the amount of newly fixed nitrogen (N, as synthetic fertilizer and biologically fixed N) entering agricultural systems globally to the total emission of nitrous oxide (N2O). We obtained an N2O emission factor (EF) of 3–5%, and applied it to biofuel production. For ‘first-generation’ biofuels, e.g. biodiesel from rapeseed and bioethanol from corn (maize), that require N fertilizer, N2O from biofuel production could cause (depending on N uptake efficiency) as much or more global warming as that avoided by replacement of fossil fuel by the biofuel. Our subsequent calculations in a follow-up paper, using published life cycle analysis (LCA) models, led to broadly similar conclusions. The N2O EF applies to agricultural crops in general, not just to biofuel crops, and has made possible a top-down estimate of global emissions from agriculture. Independent modelling by another group using bottom-up IPCC inventory methodology has shown good agreement at the global scale with our top-down estimate. Work by Davidson showed that the rate of accumulation of N2O in the atmosphere in the late nineteenth and twentieth centuries was greater than that predicted from agricultural inputs limited to fertilizer N and biologically fixed N (Davidson, E. A. 2009 Nat. Geosci. 2, 659–662.). However, by also including soil organic N mineralized following land-use change and NOx deposited from the atmosphere in our estimates of the reactive N entering the agricultural cycle, we have now obtained a good fit between the observed atmospheric N2O concentrations from 1860 to 2000 and those calculated on the basis of a 4 per cent EF for the reactive N. PMID:22451102

  18. Limits to biofuels

    NASA Astrophysics Data System (ADS)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  19. 75 FR 21191 - Subpart B-Advanced Biofuel Payment Program; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... Service 7 CFR Part 4288 RIN 0570-AA75 Subpart B--Advanced Biofuel Payment Program; Correction AGENCY... for producers of advanced biofuels to supporting existing advanced biofuel production and to encourage...

  20. Heterologous Synthesis and Recovery of Advanced Biofuels from Bacterial Cell Factories.

    PubMed

    Malik, Sana; Afzal, Ifrah; Mehmood, Muhammad Aamer; Al Doghaither, Huda; Rahimuddin, Sawsan Abdulaziz; Gull, Munazza; Nahid, Nazia

    2018-01-01

    Microbial engineering to produce advanced biofuels is currently the most encouraging approach in renewable energy. Heterologous synthesis of biofuels and other useful industrial chemicals using bacterial cell factories has radically diverted the attentions from the native synthesis of these compounds. However, recovery of biofuels from the media and cellular toxicity are the main hindrances to successful commercialization of advanced biofuels. Therefore, membrane transporter engineering is gaining increasing attentions from all over the world. The main objective of this review is to explore the ways to increase the microbial production of biofuels by counteracting the cellular toxicity and facilitating their easier recovery from media. Microbial synthesis of industrially viable compounds such as biofuels has been increased due to genomic revolution. Moreover, advancements in protein engineering, gene regulation, pathway portability, metabolic engineering and synthetic biology led the focus towards the development of robust and cost-effective systems for biofuel production. The most convenient way to combat cellular toxicity and to secrete biofuels is the use of membrane transport system. The use of membrane transporters is currently a serious oversight as do not involve chemical changes and contribute greatly to efflux biofuels in extracellular milieu. However, overexpression of transport systems can also be detrimental to cell, so, in future, structure-based engineering of transporters can be employed to evaluate optimum expression range, to increase biofuel specificity and transport rate through structural studies of biofuel molecules. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Reassessing Escherichia coli as a cell factory for biofuel production.

    PubMed

    Wang, Chonglong; Pfleger, Brian F; Kim, Seon-Won

    2017-06-01

    Via metabolic engineering, industrial microorganisms have the potential to convert renewable substrates into a wide range of biofuels that can address energy security and environmental challenges associated with current fossil fuels. The user-friendly bacterium, Escherichia coli, remains one of the most frequently used hosts for demonstrating production of biofuel candidates including alcohol-, fatty acid- and terpenoid-based biofuels. In this review, we summarize the metabolic pathways for synthesis of these biofuels and assess enabling technologies that assist in regulating biofuel synthesis pathways and rapidly assembling novel E. coli strains. These advances maintain E. coli's position as a prominent host for developing cell factories for biofuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Biofuel-Food Market Interactions:A Review of Modeling Approaches and Findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oladosu, Gbadebo A; Msangi, Siwa

    The interaction between biofuels and food markets remains a policy issue for a number of reasons. There is a continuing need to understand the role of biofuels in the recent spikes in global food prices. Also, there is an ongoing discussion of changes to biofuel policy as a means to cope with severe weather-induced crop losses. Lastly, there are potential interactions between food markets and advanced biofuels, although most of the latter are expected to be produced from non-food feedstocks. This study reviews the existing literature on the food market impacts of biofuels. Findings suggest that initial conclusions attributing mostmore » of the spike in global food prices between 2005 and 2008 to biofuels have been revised. Instead, a multitude of factors, in addition to biofuels, converged during the period. Quantitative estimates of the impacts of biofuels on food markets vary significantly due to differences in modeling approaches, geographical scope, and assumptions about a number of crucial factors. In addition, many studies do not adequately account for the effects of macroeconomic changes, adverse weather conditions and direct market interventions during the recent food price spikes when evaluating the role of biofuels.« less

  3. BioFuelDB: a database and prediction server of enzymes involved in biofuels production.

    PubMed

    Chaudhary, Nikhil; Gupta, Ankit; Gupta, Sudheer; Sharma, Vineet K

    2017-01-01

    In light of the rapid decrease in fossils fuel reserves and an increasing demand for energy, novel methods are required to explore alternative biofuel production processes to alleviate these pressures. A wide variety of molecules which can either be used as biofuels or as biofuel precursors are produced using microbial enzymes. However, the common challenges in the industrial implementation of enzyme catalysis for biofuel production are the unavailability of a comprehensive biofuel enzyme resource, low efficiency of known enzymes, and limited availability of enzymes which can function under extreme conditions in the industrial processes. We have developed a comprehensive database of known enzymes with proven or potential applications in biofuel production through text mining of PubMed abstracts and other publicly available information. A total of 131 enzymes with a role in biofuel production were identified and classified into six enzyme classes and four broad application categories namely 'Alcohol production', 'Biodiesel production', 'Fuel Cell' and 'Alternate biofuels'. A prediction tool 'Benz' was developed to identify and classify novel homologues of the known biofuel enzyme sequences from sequenced genomes and metagenomes. 'Benz' employs a hybrid approach incorporating HMMER 3.0 and RAPSearch2 programs to provide high accuracy and high speed for prediction. Using the Benz tool, 153,754 novel homologues of biofuel enzymes were identified from 23 diverse metagenomic sources. The comprehensive data of curated biofuel enzymes, their novel homologs identified from diverse metagenomes, and the hybrid prediction tool Benz are presented as a web server which can be used for the prediction of biofuel enzymes from genomic and metagenomic datasets. The database and the Benz tool is publicly available at http://metabiosys.iiserb.ac.in/biofueldb& http://metagenomics.iiserb.ac.in/biofueldb.

  4. Limitation of Biofuel Production in Europe from the Forest Market

    NASA Astrophysics Data System (ADS)

    Leduc, Sylvain; Wetterlund, Elisabeth; Dotzauer, Erik; Kindermann, Georg

    2013-04-01

    The European Union has set a 10% target for the share of biofuel in the transportation sector to be met by 2020. To reach this target, second generation biofuel is expected to replace 3 to 5% of the transport fossil fuel consumption. But the competition on the feedstock is an issue and makes the planning for the second generation biofuel plant a challenge. Moreover, no commercial second generation biofuel production plant is under operation, but if reaching commercial status, this type of production plants are expected to become very large. In order to minimize the tranportation costs and to takle the competetion for the feedstock against the existing woody based industries, the geographical location of biofuel production plants becomes an issue. This study investigates the potential of second generation biofuel economically feasible in Europe by 2020 in regards with the competition for the feedsstock with the existing woody biomass based industries (CHP, pulp and paper mills, sawmills...). To assess the biofuel potential in Europe, a techno-economic, geographically explicit model, BeWhere, is used. It determines the optimal locations of bio-energy production plants by minimizing the costs and CO2 emissions of the entire supply chain. The existing woody based industries have to first meet their wood demand, and if the amount of wood that remains is suficiant, new bio-energy production plants if any can be set up. Preliminary results show that CHP plants are preferably chosen over biofuel production plants. Strong biofuel policy support is needed in order to consequently increase the biofuel production in Europe. The carbon tax influences the emission reduction to a higher degree than the biofuel support. And the potential of second generation biofuel would at most reach 3% of the European transport fuel if the wood demand does not increase from 2010.

  5. 7 CFR 4288.110 - Applicant eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... requirements associated with advanced biofuel producer eligibility, biofuel eligibility, eligibility... not eligible for this Program. (a) Eligible producer. The applicant must be an advanced biofuel...

  6. 7 CFR 4288.110 - Applicant eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... requirements associated with advanced biofuel producer eligibility, biofuel eligibility, eligibility... not eligible for this Program. (a) Eligible producer. The applicant must be an advanced biofuel...

  7. 7 CFR 4288.110 - Applicant eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program....119 present the requirements associated with advanced biofuel producer eligibility, biofuel... advanced biofuel producer, as defined in this subpart. (b) Eligibility determination. The Agency will...

  8. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with diesel engine and truck idling with fuel cell auxiliary power unit system. The customized nozzle used for fuel vaporization and mixing achieved homogenous atomization of input hydrocarbon fuels (e.g., diesel, biodiesel, diesel-biodiesel blend, and biodiesel-ethanol-diesel), and improved the performance of fuel catalytic reformation. Given the same operating condition (reforming temperature, total oxygen content, water input flow, and gas hourly space velocity), the hydrocarbon reforming performance follows the trend of diesel > biodiesel-ethanol-diesel > diesel-biodiesel blend > biodiesel (i.e., diesel catalytic reformation has the highest hydrogen production, lowest risk of carbon formation, and least possibility of hot spot occurrence). These results provide important new insight into the use of bio-fuels and bio-fuel blends as a primary fuel source for solid oxide fuel cell applications.

  9. Proteomic Analysis of Metabolic Responses to Biofuels and Chemicals in Photosynthetic Cyanobacteria.

    PubMed

    Sun, T; Chen, L; Zhang, W

    2017-01-01

    Recent progresses in various "omics" technologies have enabled quantitative measurements of biological molecules in a high-throughput manner. Among them, high-throughput proteomics is a rapidly advancing field that offers a new means to quantify metabolic changes at protein level, which has significantly facilitated our understanding of cellular process, such as protein synthesis, posttranslational modifications, and degradation in responding to environmental perturbations. Cyanobacteria are autotrophic prokaryotes that can perform oxygenic photosynthesis and have recently attracted significant attentions as one promising alternative to traditionally biomass-based "microbial cell factories" to produce green fuels and chemicals. However, early studies have shown that the low tolerance to toxic biofuels and chemicals represented one major hurdle for further improving productivity of the cyanobacterial production systems. To address the issue, metabolic responses and their regulation of cyanobacterial cells to toxic end-products need to be defined. In this chapter, we discuss recent progresses in interpreting cyanobacterial responses to biofuels and chemicals using high-throughput proteomics approach, aiming to provide insights and guidelines on how to enhance tolerance and productivity of biofuels or chemicals in the renewable cyanobacteria systems in the future. © 2017 Elsevier Inc. All rights reserved.

  10. Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production.

    PubMed

    Flynn, K J; Mitra, A; Greenwell, H C; Sui, J

    2013-02-06

    Biofuels production from microalgae attracts much attention but remains an unproven technology. We explore routes to enhance production through modifications to a range of generic microalgal physiological characteristics. Our analysis shows that biofuels production may be enhanced ca fivefold through genetic modification (GM) of factors affecting growth rate, respiration, photoacclimation, photosynthesis efficiency and the minimum cell quotas for nitrogen and phosphorous (N : C and P : C). However, simulations indicate that the ideal GM microalgae for commercial deployment could, on escape to the environment, become a harmful algal bloom species par excellence, with attendant risks to ecosystems and livelihoods. In large measure, this is because an organism able to produce carbohydrate and/or lipid at high rates, providing stock metabolites for biofuels production, will also be able to attain a stoichiometric composition that will be far from optimal as food for the support of zooplankton growth. This composition could suppress or even halt the grazing activity that would otherwise control the microalgal growth in nature. In consequence, we recommend that the genetic manipulation of microalgae, with inherent consequences on a scale comparable to geoengineering, should be considered under strict international regulation.

  11. Quality of Rapeseed Bio-Fuel Waste: Optical Properties

    NASA Astrophysics Data System (ADS)

    Sujak, Agnieszka; Muszyñski, Siemowit; Kachel-Jakubowska, Magdalena

    2014-04-01

    The objective of the presented work was to examine the optical properties of selected bio-fuel waste. Three independent optical methods: UV-Vis spectroscopy, infrared spectroscopy and chromametric measurements were applied to establish the possible quality control test for the obtained substances. The following by-products were tested: distilled glycerine, technical glycerine and matter organic non glycerine fraction from rapeseed oil bio-fuel production. The results show that analysis of UV-Vis spectra can give rapid information about the purity of distilled glycerine, while no direct information can be obtained concerning the concentration and kind of impurities. Transmission mode is more useful as compared to absorption, concerning the detection abilities of average UV-Vis spectrometers. Infrared spectroscopy can be used as a complementary method for determining impurities/admixtures in samples. Measurements of chroma give the quickest data to compare the colour of biofuel by-products obtained by different producers. The condition is, however, that the products are received through the same or similar chemical processes. The other important factor is application of well defined measuring background. All the discussed analyses are quick, cheap and non-destructive, and can help to compare the quality of products.

  12. Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production

    PubMed Central

    Flynn, K. J.; Mitra, A.; Greenwell, H. C.; Sui, J.

    2013-01-01

    Biofuels production from microalgae attracts much attention but remains an unproven technology. We explore routes to enhance production through modifications to a range of generic microalgal physiological characteristics. Our analysis shows that biofuels production may be enhanced ca fivefold through genetic modification (GM) of factors affecting growth rate, respiration, photoacclimation, photosynthesis efficiency and the minimum cell quotas for nitrogen and phosphorous (N : C and P : C). However, simulations indicate that the ideal GM microalgae for commercial deployment could, on escape to the environment, become a harmful algal bloom species par excellence, with attendant risks to ecosystems and livelihoods. In large measure, this is because an organism able to produce carbohydrate and/or lipid at high rates, providing stock metabolites for biofuels production, will also be able to attain a stoichiometric composition that will be far from optimal as food for the support of zooplankton growth. This composition could suppress or even halt the grazing activity that would otherwise control the microalgal growth in nature. In consequence, we recommend that the genetic manipulation of microalgae, with inherent consequences on a scale comparable to geoengineering, should be considered under strict international regulation. PMID:24427510

  13. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gbadebo Oladosu; Keith Kline; Paul Leiby

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels aremore » higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.« less

  14. Life cycle assessment of first-generation biofuels using a nitrogen crop model.

    PubMed

    Gallejones, P; Pardo, G; Aizpurua, A; del Prado, A

    2015-02-01

    This paper presents an alternative approach to assess the impacts of biofuel production using a method integrating the simulated values of a new semi-empirical model at the crop production stage within a life cycle assessment (LCA). This new approach enabled us to capture some of the effects that climatic conditions and crop management have on soil nitrous oxide (N₂O) emissions, crop yields and other nitrogen (N) losses. This analysis considered the whole system to produce 1 MJ of biofuel (bioethanol from wheat and biodiesel from rapeseed). Non-renewable energy use, global warming potential (GWP), acidification, eutrophication and land competition are considered as potential environmental impacts. Different co-products were handled by system expansion. The aim of this study was (i) to evaluate the variability due to site-specific conditions of climate and fertiliser management of the LCA of two different products: biodiesel from rapeseed and bioethanol from wheat produced in the Basque Country (Northern Spain), and (ii) to improve the estimations of the LCA impacts due to N losses (N₂O, NO₃, NH₃), normally estimated with unspecific emission factors (EFs), that contribute to the impact categories analysed in the LCA of biofuels at local scale. Using biodiesel and bioethanol derived from rapeseed and wheat instead of conventional diesel and gasoline, respectively, would reduce non-renewable energy dependence (-55%) and GWP (-40%), on average, but would increase eutrophication (42 times more potential). An uncertainty analysis for GWP impact showed that the variability associated with the prediction of the major contributor to global warming potential (soil N₂O) can significantly affect the results from the LCA. Therefore the use of a model to account for local factors will improve the precision of the assessment and reduce the uncertainty associated with the convenience of the use of biofuels. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A systems biology approach to reconcile metabolic network models with application to Synechocystis sp. PCC 6803 for biofuel production.

    PubMed

    Mohammadi, Reza; Fallah-Mehrabadi, Jalil; Bidkhori, Gholamreza; Zahiri, Javad; Javad Niroomand, Mohammad; Masoudi-Nejad, Ali

    2016-07-19

    Production of biofuels has been one of the promising efforts in biotechnology in the past few decades. The perspective of these efforts can be reduction of increasing demands for fossil fuels and consequently reducing environmental pollution. Nonetheless, most previous approaches did not succeed in obviating many big challenges in this way. In recent years systems biology with the help of microorganisms has been trying to overcome these challenges. Unicellular cyanobacteria are widespread phototrophic microorganisms that have capabilities such as consuming solar energy and atmospheric carbon dioxide for growth and thus can be a suitable chassis for the production of valuable organic materials such as biofuels. For the ultimate use of metabolic potential of cyanobacteria, it is necessary to understand the reactions that are taking place inside the metabolic network of these microorganisms. In this study, we developed a Java tool to reconstruct an integrated metabolic network of a cyanobacterium (Synechocystis sp. PCC 6803). We merged three existing reconstructed metabolic networks of this microorganism. Then, after modeling for biofuel production, the results from flux balance analysis (FBA) disclosed an increased yield in biofuel production for ethanol, isobutanol, 3-methyl-1-butanol, 2-methyl-1-butanol, and propanol. The numbers of blocked reactions were also decreased for 2-methyl-1-butanol production. In addition, coverage of the metabolic network in terms of the number of metabolites and reactions was increased in the new obtained model.

  16. Dynamics of Aviation Biofuel Investment, Incentives, and Market Growth: An Exploration Using the Biomass Scenario Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, Laura; Newes, Emily

    The Federal Aviation Administration promotes the development of an aviation biofuel market, and has pursued a goal of 1 billion gallons of production annually by 2018. Although this goal is unlikely to be met, this analysis applies the Biomass Scenario Model to explore conditions affecting market growth, and identifies policy incentive and oil price conditions under which this level of production might occur, and by what year. Numerous combinations of conditions that are more favorable than current conditions can reach the goal before 2030.

  17. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels

    DOE PAGES

    Mewalal, Ritesh; Rai, Durgesh K.; Kainer, David; ...

    2016-09-09

    Research toward renewable and sustainable energy has identified candidate terpenes capable of blending/replacing petroleum-derived jet, diesel and tactical fuels. Additionally, despite being naturally produced and stored by many plants, there are few examples of commercial recovery of terpenes from plants due to low yields. Plant terpene biosynthesis is regulated at multiple levels leading to wide variability in terpene content and chemistry. Advances in the plant molecular toolkit including annotated genomes, high-throughput omics profiling and genome-editing provides an ideal platform for high-resolution analysis and in-depth understanding of plant terpene metabolism. Concomitantly, such information is useful for bioengineering strategies of metabolic pathwaysmore » for candidate terpenes. Within this paper, we review the status of terpenes as an advanced biofuel and discuss the potential of plants as a viable agronomic solution for future advanced terpene-derived biofuels.« less

  18. A new isolate of Amoeboaphelidium protococcarum, and Amoeboaphelidium occidentale, a new species in phylum Aphelida (Opisthosporidia).

    PubMed

    Letcher, Peter M; Powell, Martha J; Lopez, Salvador; Lee, Philip A; McBride, Robert C

    2015-01-01

    Microalgae used in the production of biofuels represents an alternative to fossil fuels. One problem in the production of algae for biofuels is attacks by algal parasitoids that can cause population crashes when algae are cultivated in outdoor ponds (Greenwell et al. 2010). Integrated solutions are being sought to mitigate this problem, and an initial step is pest identification. We isolated an algal parasitoid from an open pond of Scenedesmus dimorphus used for biofuel production in New Mexico and examined its morphology, ultrastructure and molecular phylogeny. A phylogenetic analysis placed this organism in Aphelida as conspecific with Amoeboaphelidium protococcarum sensu Karpov et al. 2013. As a result we re-evaluated the taxonomy of Amoeboaphelidium protococcarum sensu Letcher et al. 2013 and here designate it as a new species, Amoeboaphelidium occidentale. © 2015 by The Mycological Society of America.

  19. Broadband Microwave Study of Reaction Intermediates and Products Through the Pyrolysis of Oxygenated Biofuels

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Hernandez-Castillo, Alicia O.; Fritz, Sean; Zwier, Timothy S.

    2017-06-01

    The rapidly growing list of potential plant-derived biofuels creates a challenge for the scientific community to provide a molecular-scale understanding of their combustion. Development of accurate combustion models rests on a foundation of experimental data on the kinetics and product branching ratios of their individual reaction steps. Therefore, new spectroscopic tools are necessary to selectively detect and characterize fuel components and reactive intermediates generated by pyrolysis and combustion. Substituted furans, including furanic ethers, are considered second-generation biofuel candidates. Following the work of the Ellison group, an 8-18 GHz microwave study was carried out on the unimolecular and bimolecular decomposition of the smallest furanic ether, 2-methoxy furan, and it`s pyrolysis intermediate, the 2-furanyloxy radical, formed in a high-temperature pyrolysis source coupled to a supersonic expansion. Details of the experimental setup and analysis of the spectrum of the radical will be discussed.

  20. Impacts of near-future cultivation of biofuel feedstocks on atmospheric composition and local air quality

    NASA Astrophysics Data System (ADS)

    Ashworth, K.; Folberth, G.; Hewitt, C. N.; Wild, O.

    2011-09-01

    Large-scale production of feedstock crops for biofuels will lead to land-use changes. We quantify the effects of realistic land use change scenarios for biofuel feedstock production on isoprene emissions and hence atmospheric composition and chemistry using the HadGEM2 model. Two feedstocks are considered: oil palm for biodiesel in the tropics and short rotation coppice (SRC) in the mid-latitudes. In total, 69 Mha of oil palm and 92 Mha of SRC are planted, each sufficient to replace just over 1 % of projected global fossil fuel demand in 2020. Both planting scenarios result in increases in total global annual isoprene emissions of about 1 %. In each case, changes in surface concentrations of ozone and biogenic secondary organic aerosol (bSOA) are significant at the regional scale and are detectable even at a global scale with implications for air quality standards. However, the changes in tropospheric burden of ozone and the OH radical, and hence effects on global climate, are negligible. The oil palm plantations and processing plants result in global average annual mean increases in ozone and bSOA of 38 pptv and 2 ng m-3 respectively. Over SE Asia, one region of planting, increases reach over 2 ppbv and 300 ng m-3 for large parts of Borneo. Planting of SRC causes global annual mean changes of 46 pptv and 3 ng m-3. Europe experiences peak monthly mean changes of almost 0.6 ppbv and 90 ng m-3 in June and July. Large areas of Central and Eastern Europe see changes of over 1.5 ppbv and 200 ng m-3 in the summer. That such significant atmospheric impacts from low level planting scenarios are discernible globally clearly demonstrates the need to include changes in emissions of reactive trace gases such as isoprene in life cycle assessments performed on potential biofuel feedstocks.

  1. Land clearing and the biofuel carbon debt.

    PubMed

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-29

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.

  2. Land Clearing and the Biofuel Carbon Debt

    NASA Astrophysics Data System (ADS)

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-01

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.

  3. 40 CFR 80.1464 - What are the attest engagement requirements under the RFS program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... any of these documents refer to the exported fuel as advanced biofuel or cellulosic biofuel; and report as a finding whether or not the exporter calculated an advanced biofuel or cellulosic biofuel RVO...

  4. 40 CFR 80.1464 - What are the attest engagement requirements under the RFS program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... any of these documents refer to the exported fuel as advanced biofuel or cellulosic biofuel; and report as a finding whether or not the exporter calculated an advanced biofuel or cellulosic biofuel RVO...

  5. 40 CFR 80.1464 - What are the attest engagement requirements under the RFS program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... any of these documents refer to the exported fuel as advanced biofuel or cellulosic biofuel; and report as a finding whether or not the exporter calculated an advanced biofuel or cellulosic biofuel RVO...

  6. 40 CFR 80.1464 - What are the attest engagement requirements under the RFS program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... any of these documents refer to the exported fuel as advanced biofuel or cellulosic biofuel; and report as a finding whether or not the exporter calculated an advanced biofuel or cellulosic biofuel RVO...

  7. 40 CFR 80.1464 - What are the attest engagement requirements under the RFS program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... any of these documents refer to the exported fuel as advanced biofuel or cellulosic biofuel; and report as a finding whether or not the exporter calculated an advanced biofuel or cellulosic biofuel RVO...

  8. Transporter-mediated biofuel secretion.

    PubMed

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-07

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  9. Transporter-mediated biofuel secretion

    PubMed Central

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-01-01

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as “plug-and-play” biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance. PMID:23613592

  10. Biofuels in the long-run global energy supply mix for transportation.

    PubMed

    Timilsina, Govinda R

    2014-01-13

    Various policy instruments along with increasing oil prices have contributed to a sixfold increase in global biofuels production over the last decade (2000-2010). This rapid growth has proved controversial, however, and has raised concerns over potential conflicts with global food security and climate change mitigation. To address these concerns, policy support is now focused on advanced or second-generation biofuels instead of crop-based first-generation biofuels. This policy shift, together with the global financial crisis, has slowed the growth of biofuels production, which has remained stagnant since 2010. Based upon a review of the literature, this paper examines the potential long-run contribution of biofuels to the global energy mix, particularly for transportation. We find that the contribution of biofuels to global transportation fuel demand is likely to be limited to around 5% over the next 10-15 years. However, a number of studies suggest that biofuels could contribute up to a quarter of global transportation fuel demand by 2050, provided technological breakthroughs reduce the costs of sustainably produced advanced biofuels to a level where they can compete with petroleum fuels.

  11. Longitudinal analysis of microbiota in microalga Nannochloropsis salina cultures

    DOE PAGES

    Geng, Haifeng; Sale, Kenneth L.; Tran-Gyamfi, Mary Bao; ...

    2016-03-08

    Here, large-scale open microalgae cultivation has tremendous potential to make a significant contribution to replacing petroleum-based fuels with biofuels. Open algal cultures are unavoidably inhabited with a diversity of microbes that live on, influence, and shape the fate of these ecosystems. However, there is little understanding of the resilience and stability of the microbial communities in engineered semicontinuous algal systems. To evaluate the dynamics and resilience of the microbial communities in microalgae biofuel cultures, we conducted a longitudinal study on open systems to compare the temporal profiles of the microbiota from two multigenerational algal cohorts, which include one seeded withmore » the microbiota from an in-house culture and the other exogenously seeded with a natural-occurring consortia of bacterial species harvested from the Pacific Ocean. From these month-long, semicontinuous open microalga Nannochloropsis salina cultures, we sequenced a time-series of 46 samples, yielding 8804 operational taxonomic units derived from 9,160,076 high-quality partial 16S rRNA sequences. We provide quantitative evidence that clearly illustrates the development of microbial community is associated with microbiota ancestry. In addition, N. salina growth phases were linked with distinct changes in microbial phylotypes. Alteromonadeles dominated the community in the N. salina exponential phase whereas Alphaproteobacteria and Flavobacteriia were more prevalent in the stationary phase. We also demonstrate that the N. salina-associated microbial community in open cultures is diverse, resilient, and dynamic in response to environmental perturbations. This knowledge has general implications for developing and testing design principles of cultivated algal systems.« less

  12. Ryan M. Ness | NREL

    Science.gov Websites

    Interests Ryan M. Ness is a research technician in the Biomass Analysis group within the National Renewable , wet chemical analysis, and instrumental analysis of lignocellulosic biomass feedstocks. Bench-scale Publications "The Effect of Biomass Densification on Structural Sugar Release and Yield in Biofuel

  13. 7 CFR 4288.121 - Contract.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.121 Contract. Advanced biofuel producers determined to be eligible to receive payments must... Agency will forward the contract to the advanced biofuel producer. The advanced biofuel producer must...

  14. 7 CFR 4288.121 - Contract.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.121 Contract. Advanced biofuel producers determined to be eligible to receive payments must... Agency will forward the contract to the advanced biofuel producer. The advanced biofuel producer must...

  15. A New Biofuels Technology Blooms in Iowa

    ScienceCinema

    Mathisen, Todd; Bruch, Don; Broin, Jeff

    2018-02-13

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  16. 76 FR 24343 - Advanced Biofuel Payment Program; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ...-AA75 Advanced Biofuel Payment Program; Correction AGENCY: Rural Business-Cooperative Service; Rural... Federal Register of February 11, 2011, establishing the Advanced Biofuel Payment Program authorized under... this Program, the Agency will enter into contracts with advanced biofuel producers to pay such...

  17. 7 CFR 4288.111 - Biofuel eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions Eligibility Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program...

  18. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    EPA Science Inventory

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  19. Lignin Bioproducts to Enable Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyman, Charles E.; Ragauskas, Arthur J

    2015-09-15

    Here we report that today's and tomorrow's biofuels production facilities could benefit tremendously from increasing the value from the large amount of lignin that results from biofuels operations. Certainly, the scientific community, and biofuels industry has begun to recognize the challenges and opportunities associated with lignin.

  20. Biofuel co-product uses for pavement geo-materials stabilization : final report, April 2010.

    DOT National Transportation Integrated Search

    2010-04-01

    The production and use of biofuels has increased in the present context of sustainable development. Biofuel production from plant : biomass produces not only biofuel or ethanol but also co-products containing lignin, modified lignin, and lignin deriv...

  1. Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review.

    PubMed

    Wang, Shizeng; Sun, Xinxiao; Yuan, Qipeng

    2018-06-01

    Using lignocellulosic biomass for the production of renewable biofuel provides a sustainable and promising solution to the crisis of energy and environment. However, the processes of biomass pretreatment and biofuel fermentation bring a variety of inhibitors to microbial strains. These inhibitors repress microbial growth, decrease biofuel yields and increase fermentation costs. The production of biofuels from renewable lignocellulosic biomass relies on the development of tolerant and robust microbial strains. In recent years, the advancement of tolerance engineering and evolutionary engineering provides powerful platform for obtaining host strains with desired tolerance for further metabolic engineering of biofuel pathways. In this review, we summarized the inhibitors derived from biomass pretreatment and biofuel fermentation, the mechanisms of inhibitor toxicity, and the strategies for enhancing microbial tolerance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Sustainable Biofuel Crops Project, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juhn, Daniel; Grantham, Hedley

    2014-05-28

    Over the last six years, the Food and Agriculture Organization of the United Nations (FAO) has developed the Bioenergy and Food Security (BEFS) Approach to help countries design and implement sustainable bioenergy policies and strategies. The BEFS Approach consists of two sets of multidisciplinary and integrated tools and guidance (the BEFS Rapid Appraisal and the BEFS Detailed Analysis) to facilitate better decision on bioenergy development which should foster both food and energy security, and contribute to agricultural and rural development. The development of the BEFS Approach was for the most part funded by the German Federal Ministry of Food andmore » Agriculture. Recognizing the need to provide support to countries that wanted an initial assessment of their sustainable bioenergy potential, and of the associated opportunities, risks and trade offs, FAO began developing the BEFS-RA (Rapid Appraisal). The BEFS RA is a spreadsheet–based assessment and analysis tool designed to outline the country's basic energy, agriculture and food security context, the natural resources potential, the bioenergy end use options, including initial financial and economic implications, and the identification of issues that might require fuller investigation with the BEFS Detailed Analysis.« less

  3. Recent Inventions and Trends in Algal Biofuels Research.

    PubMed

    Karemore, Ankush; Nayak, Manoranjan; Sen, Ramkrishna

    2016-01-01

    In recent times, when energy crisis compounded by global warming and climate change is receiving worldwide attention, the emergence of algae, as a better feedstock for third-generation biofuels than energy crops or plants, holds great promise. As compared to conventional biofuels feedstocks, algae offer several advantages and can alone produce a significant amount of biofuels sustainably in a shorter period to fulfill the rising demand for energy. Towards commercialisation, there have been numerous efforts put for- ward for the development of algae-derived biofuel. This article reviews and summarizes the recent inventions and the current trends that are reported and captured in relevant patents pertaining to the novel methods of algae biomass cultivation and processing for biofuels and value-added products. In addition, the recent advancement in techniques and technologies for microalgal biofuel production has been highlighted. Various steps involved in the production of algal biofuels have been considered in this article. Moreover, the work that advances to improve the efficiency and cost-effectiveness of the processes for the manufacture of biofuels has been presented. Our survey was conducted in the patent databases: WIPO, Spacenet and USPTO. There are still some technological bottlenecks that could be overcome by designing advanced photobioreactor and raceway ponds, developing new and low cost technologies for biomass cultivation, harvesting, drying and extraction. Recent advancement in algae biofuels methods is directed toward developing efficient and integrated systems to produce biofuels by overcoming the current challenges. However, further research effort is required to scale-up and improve the efficiency of these methods in the upstream and downstream technologies to make the cost of biofuels competitive with petroleum fuels.

  4. The Roundtable on Sustainable Biofuels: plant scientist input needed.

    PubMed

    Haye, Sébastien; Hardtke, Christian S

    2009-08-01

    The Energy Center at the Ecole Polytechnique Fédérale de Lausanne (Swiss federal institute of technology) is coordinating a multi-stakeholder effort, the Roundtable on Sustainable Biofuels (http://energycenter.epfl.ch/biofuels), to develop global standards for sustainable biofuels production and processing. Given that many of the aspects related to biofuel production request a high scientific level of understanding, it is crucial that scientists take part in the discussion.

  5. Cyanobacteria and microalgae: a positive prospect for biofuels.

    PubMed

    Parmar, Asha; Singh, Niraj Kumar; Pandey, Ashok; Gnansounou, Edgard; Madamwar, Datta

    2011-11-01

    Biofuel-bioenergy production has generated intensive interest due to increased concern regarding limited petroleum-based fuel supplies and their contribution to atmospheric CO2 levels. Biofuel research is not just a matter of finding the right type of biomass and converting it to fuel, but it must also be economically sustainable on large-scale. Several aspects of cyanobacteria and microalgae such as oxygenic photosynthesis, high per-acre productivity, non-food based feedstock, growth on non-productive and non-arable land, utilization of wide variety of water sources (fresh, brackish, seawater and wastewater) and production of valuable co-products along with biofuels have combined to capture the interest of researchers and entrepreneurs. Currently, worldwide biofuels mainly in focus include biohydrogen, bioethanol, biodiesel and biogas. This review focuses on cultivation and harvesting of cyanobacteria and microalgae, possible biofuels and co-products, challenges for cyanobacterial and microalgal biofuels and the approaches of genetic engineering and modifications to increase biofuel production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. The role of biochemical engineering in the production of biofuels from microalgae.

    PubMed

    Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2011-01-01

    Environmental changes that have occurred due to the use of fossil fuels have driven the search for alternative sources that have a lower environmental impact. First-generation biofuels were derived from crops such as sugar cane, corn and soybean, which contribute to water scarcity and deforestation. Second-generation biofuels originated from lignocellulose agriculture and forest residues, however these needed large areas of land that could be used for food production. Based on technology projections, the third generation of biofuels will be derived from microalgae. Microalgae are considered to be an alternative energy source without the drawbacks of the first- and second-generation biofuels. Depending upon the growing conditions, microalgae can produce biocompounds that are easily converted into biofuels. The biofuels from microalgae are an alternative that can keep the development of human activity in harmony with the environment. This study aimed to present the main biofuels that can be derived from microalgae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Recent developments and key barriers to advanced biofuels: A short review.

    PubMed

    Oh, You-Kwan; Hwang, Kyung-Ran; Kim, Changman; Kim, Jung Rae; Lee, Jin-Suk

    2018-06-01

    Biofuels are regarded as one of the most viable options for reduction of CO 2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO 2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Unravelling molecular mechanisms from floral initiation to lipid biosynthesis in a promising biofuel tree species, Pongamia pinnata using transcriptome analysis

    PubMed Central

    Sreeharsha, Rachapudi V.; Mudalkar, Shalini; Singha, Kambam T.; Reddy, Attipalli R.

    2016-01-01

    Pongamia pinnata (L.) (Fabaceae) is a promising biofuel tree species which is underexploited in the areas of both fundamental and applied research, due to the lack of information either on transcriptome or genomic data. To investigate the possible metabolic pathways, we performed whole transcriptome analysis of Pongamia through Illumina NextSeq platform and generated 2.8 GB of paired end sequence reads. The de novo assembly of raw reads generated 40,000 contigs and 35,000 transcripts, representing leaf, flower and seed unigenes. Spatial and temporal expression profiles of photoperiod and floral homeotic genes in Pongamia, identified GIGANTEA (GI) - CONSTANS (CO) - FLOWERING LOCUS T (FT) as active signal cascade for floral initiation. Four prominent stages of seed development were selected in a high yielding Pongamia accession (TOIL 1) to follow the temporal expression patterns of key fatty acid biosynthetic genes involved in lipid biosynthesis and accumulation. Our results provide insights into an array of molecular events from flowering to seed maturity in Pongamia which will provide substantial basis for modulation of fatty acid composition and enhancing oil yields which should serve as a potential feedstock for biofuel production. PMID:27677333

  9. Photosynthetic Energy Conversion Efficiency: Setting a Baseline for Gauging Future Improvements in Important Food and Biofuel Crops1

    PubMed Central

    2015-01-01

    The conversion efficiency (εc) of absorbed radiation into biomass (MJ of dry matter per MJ of absorbed photosynthetically active radiation) is a component of yield potential that has been estimated at less than half the theoretical maximum. Various strategies have been proposed to improve εc, but a statistical analysis to establish baseline εc levels across different crop functional types is lacking. Data from 164 published εc studies conducted in relatively unstressed growth conditions were used to determine the means, greatest contributors to variation, and genetic trends in εc across important food and biofuel crop species. εc was greatest in biofuel crops (0.049–0.066), followed by C4 food crops (0.046–0.049), C3 nonlegumes (0.036–0.041), and finally C3 legumes (0.028–0.035). Despite confining our analysis to relatively unstressed growth conditions, total incident solar radiation and average growing season temperature most often accounted for the largest portion of εc variability. Genetic improvements in εc, when present, were less than 0.7% per year, revealing the unrealized potential of improving εc as a promising contributing strategy to meet projected future agricultural demand. PMID:25829463

  10. Sustainable Biofuels A Transitions Approach to Understanding the Global Expansion of Ethanol and Biodiesel

    NASA Astrophysics Data System (ADS)

    Cottes, Jeffrey Jacob

    Between 1998 and 2008, the promise of biofuels to increase rural development, enhance energy security, and reduce greenhouse gas emissions stimulated their diffusion across international markets. This rapid expansion of ethanol and biodiesel encouraged many jurisdictions to implement biofuels expansion policies and programs. Global biofuels, characterised by mass production and international trade of ethanol and biodiesel, occurred despite their long history as marginal technologies on the fringe of the petroleum-based transportation energy regime. The first purpose of this dissertation is to examine the global expansion of ethanol and biodiesel to understand how these recurrent socio-technological failures co-evolved with petroleum transportation fuels. Drawing from the field of socio-technical transitions, this dissertation also assesses the global expansion of ethanol and biodiesel to determine whether or not these first generation biofuels are sustainable. Numerous studies have assessed the technical effects of ethanol and biodiesel, but effects-based technical assessments of transport biofuels are unable to explain the interaction of wider system elements. The configuration of multi-level factors (i.e., niche development, the technological regime, and the socio-technical landscape) informs the present and emerging social functions of biofuels, which become relevant when determining how biofuels might become a sustainable energy option. The biofuels regimes that evolved in Brazil, the United States, and the European Union provide case studies show how ethanol and biodiesel expanded from fringe fuels to global commodities. The production infrastructures within these dominant biofuels regimes contribute to a persistence of unsustainable first generation biofuels that can inhibit the technical development and sustainability of biofuels. However, new and emerging ethanol and biodiesel markets are relatively small in comparison to the dominant regimes, and can readily adapt to technical and regulatory change. This dissertation argues that dominant biofuels regimes have not produced a sustainable energy option. It explores the Canadian case to evaluate the opportunities for niche development, and suggests that small markets can develop niche innovations by regulating the insertion of sustainability criteria in order to de-align the dominant trajectory of global biofuels production regimes and encourage their re-alignment in a more sustainable configuration.

  11. System for determining biofuel concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Shean P.; Janke, Christopher James; Kass, Michael D.

    2016-09-13

    A measurement device or system configured to measure the content of biofuels within a fuel blend. By measuring a state of a responsive material within a fuel blend, a biofuel content of the fuel blend may be measured. For example, the solubility of a responsive material to biofuel content within a fuel blend, may affect a property of the responsive material, such as shape, dimensional size, or electrical impedance, which may be measured and used as a basis for determining biofuel content.

  12. Special issue: Application of biotechnology for biofuels: transforming biomass to biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Ashutosh; Decker, Stephen R.

    2013-02-19

    Rising energy prices and depleting reserves of fossil fuels continue to renew interest in the conversion of biomass to biofuels production. Biofuels derived from renewable feedstocks are environmentally friendly fuels and have the potential to meet more than a quarter of world demand for transportation fuels by 2050. Moreover, biofuels are expected to reduce reliance on imported petroleum, reduce greenhouse gas emissions, and stimulate regional economies by creating jobs and increasing demand and prices for bioproducts.

  13. Potential emissions reduction in road transport sector using biofuel in developing countries

    NASA Astrophysics Data System (ADS)

    Liaquat, A. M.; Kalam, M. A.; Masjuki, H. H.; Jayed, M. H.

    2010-10-01

    Use of biofuels as transport fuel has high prospect in developing countries as most of them are facing severe energy insecurity and have strong agricultural sector to support production of biofuels from energy crops. Rapid urbanization and economic growth of developing countries have spurred air pollution especially in road transport sector. The increasing demand of petroleum based fuels and their combustion in internal combustion (IC) engines have adverse effect on air quality, human health and global warming. Air pollution causes respiratory problems, adverse effects on pulmonary function, leading to increased sickness absenteeism and induces high health care service costs, premature birth and even mortality. Production of biofuels promises substantial improvement in air quality through reducing emission from biofuel operated automotives. Some of the developing countries have started biofuel production and utilization as transport fuel in local market. This paper critically reviews the facts and prospects of biofuel production and utilization in developing countries to reduce environmental pollution and petro dependency. Expansion of biofuel industries in developing countries can create more jobs and increase productivity by non-crop marginal lands and wastelands for energy crops plantation. Contribution of India and China in biofuel industry in production and utilization can dramatically change worldwide biofuel market and leap forward in carbon cut as their automotive market is rapidly increasing with a souring proportional rise of GHG emissions.

  14. [Biofuels, food security and transgenic crops].

    PubMed

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  15. Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction.

    PubMed

    Liu, Xiaowei; Saydah, Benjamin; Eranki, Pragnya; Colosi, Lisa M; Greg Mitchell, B; Rhodes, James; Clarens, Andres F

    2013-11-01

    Life cycle assessment (LCA) has been used widely to estimate the environmental implications of deploying algae-to-energy systems even though no full-scale facilities have yet to be built. Here, data from a pilot-scale facility using hydrothermal liquefaction (HTL) is used to estimate the life cycle profiles at full scale. Three scenarios (lab-, pilot-, and full-scale) were defined to understand how development in the industry could impact its life cycle burdens. HTL-derived algae fuels were found to have lower greenhouse gas (GHG) emissions than petroleum fuels. Algae-derived gasoline had significantly lower GHG emissions than corn ethanol. Most algae-based fuels have an energy return on investment between 1 and 3, which is lower than petroleum biofuels. Sensitivity analyses reveal several areas in which improvements by algae bioenergy companies (e.g., biocrude yields, nutrient recycle) and by supporting industries (e.g., CO2 supply chains) could reduce the burdens of the industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production

    PubMed Central

    2012-01-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5) and DHA (C22:6) and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae. PMID:22830315

  17. Water footprint of U.S. transportation fuels.

    PubMed

    Scown, Corinne D; Horvath, Arpad; McKone, Thomas E

    2011-04-01

    In the modern global economy, water and energy are fundamentally connected. Water already plays a major role in electricity generation and, with biofuels and electricity poised to gain a significant share of the transportation fuel market, water will become significantly more important for transportation energy as well. This research provides insight into the potential changes in water use resulting from increased biofuel or electricity production for transportation energy, as well as the greenhouse gas and freshwater implications. It is shown that when characterizing the water impact of transportation energy, incorporating indirect water use and defensible allocation techniques have a major impact on the final results, with anywhere between an 82% increase and a 250% decrease in the water footprint if evaporative losses from hydroelectric power are excluded. The greenhouse gas impact results indicate that placing cellulosic biorefineries in areas where water must be supplied using alternative means, such as desalination, wastewater recycling, or importation can increase the fuel's total greenhouse gas footprint by up to 47%. The results also show that the production of ethanol and petroleum fuels burden already overpumped aquifers, whereas electricity production is far less dependent on groundwater.

  18. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1)more » develop a spatially explicit national geodatabase for conducting biofuel simulation studies and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to create an advanced computing infrastructure to execute millions of simulations, conduct post-processing calculations, store input and output data, and visualize results. These computing resources included two components installed at the Research Data Center of the University of Maryland. The first resource was 'deltac': an 8-core Linux server, dedicated to county-level and state-level simulations and PostgreSQL database hosting. The second resource was the DOE-JGCRI 'Evergreen' cluster, capable of executing millions of simulations in relatively short periods. ARRA funding also supported a PhD student from UMD who worked on creating the geodatabases and executing some of the simulations in this study. Using a physically based classification of marginal lands, we simulated production of cellulosic feedstocks from perennial mixtures grown on these lands in the US Midwest. Marginal lands in the western states of the US Midwest appear to have significant potential to supply feedstocks to a cellulosic biofuel industry. Similar results were obtained with simulations of N-fertilized perennial mixtures. A detailed spatial analysis allowed for the identification of possible locations for the establishment of 34 cellulosic ethanol biorefineries with an annual production capacity of 5.6 billion gallons. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided simulation results on the potential of perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. The results of this study will be submitted to the USDOE Bioenergy Knowledge Discovery Framework as a way to contribute to the development of a sustainable bioenergy industry. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.« less

  19. Improving Sugarcane for Biofuel: Engineering for an even better feedstock

    USDA-ARS?s Scientific Manuscript database

    Sugarcane is a proven biofuel feedstock and accounts for about half the biofuel production worldwide. It has a more favorable energy input/output ratio than that of corn, the other major biofuel feedstock. The rich resource of genetic diversity and the plasticity of autopolyploid genomes offer a wea...

  20. The current potential of algae biofuels in the United Arab Emirates

    USDA-ARS?s Scientific Manuscript database

    In spite of future uncertainties about industrial algae biofuel production, the UAE is planning to become "a world leader in biofuels from the algae industry by 2020;" thus joining major countries which have already started producing renewable energy and biofuels (biodiesel and bioethanol) from rene...

  1. Assessing extension and outreach education levels for biofuel feedstock production in the Western United States

    USDA-ARS?s Scientific Manuscript database

    A growing biofuels industry requires the development of effective methods to educate farmers, government, and agribusiness about biofuel feedstock production if the market is going to significantly expand beyond first generation biofuels. Extension and outreach education provides a conduit for impor...

  2. Economic and Financial Analysis Tools | Energy Analysis | NREL

    Science.gov Websites

    Economic and Financial Analysis Tools Economic and Financial Analysis Tools Use these economic and . Job and Economic Development Impact (JEDI) Model Use these easy-to-use, spreadsheet-based tools to analyze the economic impacts of constructing and operating power generation and biofuel plants at the

  3. Development of GREET Catalyst Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhichao; Dunn, Jennifer B.; Cronauer, Donald C.

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™)more » catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.« less

  4. De Novo Transcriptomic Analysis of an Oleaginous Microalga: Pathway Description and Gene Discovery for Production of Next-Generation Biofuels

    PubMed Central

    Wan, LingLin; Han, Juan; Sang, Min; Li, AiFen; Wu, Hong; Yin, ShunJi; Zhang, ChengWu

    2012-01-01

    Background Eustigmatos cf. polyphem is a yellow-green unicellular soil microalga belonging to the eustimatophyte with high biomass and considerable production of triacylglycerols (TAGs) for biofuels, which is thus referred to as an oleaginous microalga. The paucity of microalgae genome sequences, however, limits development of gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for a non-model microalgae species, E. cf. polyphem, and identify pathways and genes of importance related to biofuel production. Results We performed the de novo assembly of E. cf. polyphem transcriptome using Illumina paired-end sequencing technology. In a single run, we produced 29,199,432 sequencing reads corresponding to 2.33 Gb total nucleotides. These reads were assembled into 75,632 unigenes with a mean size of 503 bp and an N50 of 663 bp, ranging from 100 bp to >3,000 bp. Assembled unigenes were subjected to BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. These analyses identified the majority of carbohydrate, fatty acids, TAG and carotenoids biosynthesis and catabolism pathways in E. cf. polyphem. Conclusions Our data provides the construction of metabolic pathways involved in the biosynthesis and catabolism of carbohydrate, fatty acids, TAG and carotenoids in E. cf. polyphem and provides a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock. PMID:22536352

  5. An integrated assessment of location-dependent scaling for microalgae biofuel production facilities

    DOE PAGES

    Coleman, André M.; Abodeely, Jared M.; Skaggs, Richard L.; ...

    2014-06-19

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting and design through processing and upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are partially addressed by applying the Integrated Assessment Framework (IAF) – an integrated multi-scale modeling, analysis, and data management suite – to address key issues in developing and operating an open-pond microalgae production facility.more » This is done by analyzing how variability and uncertainty over space and through time affect feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. To provide a baseline analysis, the IAF was applied in this paper to a set of sites in the southeastern U.S. with the potential to cumulatively produce 5 billion gallons per year. Finally, the results indicate costs can be reduced by scaling downstream processing capabilities to fit site-specific growing conditions, available and economically viable resources, and specific microalgal strains.« less

  6. Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling.

    PubMed

    Erdrich, Philipp; Knoop, Henning; Steuer, Ralf; Klamt, Steffen

    2014-09-19

    Cyanobacteria are increasingly recognized as promising cell factories for the production of renewable biofuels and chemical feedstocks from sunlight, CO2, and water. However, most biotechnological applications of these organisms are still characterized by low yields. Increasing the production performance of cyanobacteria remains therefore a crucial step. In this work we use a stoichiometric network model of Synechocystis sp. PCC 6803 in combination with CASOP and minimal cut set analysis to systematically identify and characterize suitable strain design strategies for biofuel synthesis, specifically for ethanol and isobutanol. As a key result, improving upon other works, we demonstrate that higher-order knockout strategies exist in the model that lead to coupling of growth with high-yield biofuel synthesis under phototrophic conditions. Enumerating all potential knockout strategies (cut sets) reveals a unifying principle behind the identified strain designs, namely to reduce the ratio of ATP to NADPH produced by the photosynthetic electron transport chain. Accordingly, suitable knockout strategies seek to block cyclic and other alternate electron flows, such that ATP and NADPH are exclusively synthesized via the linear electron flow whose ATP/NADPH ratio is below that required for biomass synthesis. The products of interest are then utilized by the cell as sinks for reduction equivalents in excess. Importantly, the calculated intervention strategies do not rely on the assumption of optimal growth and they ensure that maintenance metabolism in the absence of light remains feasible. Our analyses furthermore suggest that a moderately increased ATP turnover, realized, for example, by ATP futile cycles or other ATP wasting mechanisms, represents a promising target to achieve increased biofuel yields. Our study reveals key principles of rational metabolic engineering strategies in cyanobacteria towards biofuel production. The results clearly show that achieving obligatory coupling of growth and product synthesis in photosynthetic bacteria requires fundamentally different intervention strategies compared to heterotrophic organisms.

  7. Comparison of anticancer activity of biocompatible ZnO nanoparticles prepared by solution combustion synthesis using aqueous leaf extracts of Abutilon indicum, Melia azedarach and Indigofera tinctoria as biofuels.

    PubMed

    Prashanth, G K; Prashanth, P A; Nagabhushana, B M; Ananda, S; Krishnaiah, G M; Nagendra, H G; Sathyananda, H M; Rajendra Singh, C; Yogisha, S; Anand, S; Tejabhiram, Y

    2018-08-01

    Recently, there has been an upsurge in the use of naturally available fuels for solution combustion synthesis (SCS) of nanoparticles. Although many reports suggest that these biofuels pose less harm to the environment, their strategic advantages and reliability for making NPs has not been discussed. In the present work, we try to address this issue using plant extracts as biofuels for the SCS of zinc oxide nanoparticles as a model system. In the present work, combustion synthesis of ZnO NPs using lactose and aqueous leaf extracts of Abutilon indicum, Melia azedarach, Indigofera tinctoria as biofuels has been carried out. A comparative analysis of the obtained powders has been conducted to understand the strategic advantages of using plant extracts over a chemical as combustion fuel for the synthesis of zinc oxide nanoparticles. The X-ray diffractograms of the samples revealed the presence of Wurtzite hexagonal structure with varying crystallite sizes. Morphological studies indicated that samples prepared using biofuels had smaller diameter than those prepared using lactose as fuel. Surface characteristics of the samples were measured by X-ray photoelectron spectroscopy. Qualitative phytochemical screening of aqueous leaf extracts revealed the presence of many phytochemicals in them, which might be responsible for combustion. Gas chromatography mass spectrum was carried out to detect the phytochemicals present in the aqueous extracts of the leaves. Further, anticancer evaluation carried out against DU-145 and Calu-6 cancer cells indicated higher anticancer activity of zinc oxide nanoparticles prepared using biofuels. The results of blood haemolysis revealed the biocompatibility of zinc oxide nanoparticles at lower concentrations. In conclusion, we propose that multiple other studies would be required in order to vindicate the potential advantages of using naturally available fuels in SCS.

  8. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    NASA Astrophysics Data System (ADS)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  9. Engineering microbes for tolerance to next-generation biofuels

    PubMed Central

    2011-01-01

    A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production. PMID:21936941

  10. State of the art review of biofuels production from lignocellulose by thermophilic bacteria.

    PubMed

    Jiang, Yujia; Xin, Fengxue; Lu, Jiasheng; Dong, Weiliang; Zhang, Wenming; Zhang, Min; Wu, Hao; Ma, Jiangfeng; Jiang, Min

    2017-12-01

    Biofuels, including ethanol and butanol, are mainly produced by mesophilic solventogenic yeasts and Clostridium species. However, these microorganisms cannot directly utilize lignocellulosic materials, which are abundant, renewable and non-compete with human demand. More recently, thermophilic bacteria show great potential for biofuels production, which could efficiently degrade lignocellulose through the cost effective consolidated bioprocessing. Especially, it could avoid contamination in the whole process owing to its relatively high fermentation temperature. However, wild types thermophiles generally produce low levels of biofuels, hindering their large scale production. This review comprehensively summarizes the state of the art development of biofuels production by reported thermophilic microorganisms, and also concludes strategies to improve biofuels production including the metabolic pathways construction, co-culturing systems and biofuels tolerance. In addition, strategies to further improve butanol production are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. 40 CFR 80.1451 - What are the reporting requirements under the RFS program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... biofuel, biomass-based diesel, advanced biofuel, renewable fuel, and cellulosic diesel), retired for....1401, retired for compliance. (x) The total cellulosic biofuel waiver credits used to meet the party's cellulosic biofuel RVO. (xi) A list of all RINs generated prior to July 1, 2010 that were retired for...

  12. Privileged Biofuels, Marginalized Indigenous Peoples: The Coevolution of Biofuels Development in the Tropics

    ERIC Educational Resources Information Center

    Montefrio, Marvin Joseph F.

    2012-01-01

    Biofuels development has assumed an important role in integrating Indigenous peoples and other marginalized populations in the production of biofuels for global consumption. By combining the theories of commoditization and the environmental sociology of networks and flows, the author analyzed emerging trends and possible changes in institutions…

  13. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the eligible...

  14. 40 CFR 80.1451 - What are the reporting requirements under the RFS program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... biofuel, biomass-based diesel, advanced biofuel, renewable fuel, and cellulosic diesel), retired for....1401, retired for compliance. (x) The total cellulosic biofuel waiver credits used to meet the party's cellulosic biofuel RVO. (xi) A list of all RINs generated prior to July 1, 2010 that were retired for...

  15. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions Payment Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who...

  16. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the eligible...

  17. Alternative Fuels Data Center

    Science.gov Websites

    participating in any of the following activities: Installing a biofuel pump or tank, except property leased from the franchisor; Converting an existing tank or pump for biofuels use; Advertising the sale of biofuels sources if the franchisor does not offer biofuel; Installing or operating an ethanol blender pump, if the

  18. Characterization of Microalgal Lipids for Optimization of Biofuels

    DTIC Science & Technology

    2014-05-09

    SUBJECT TERMS algae, biofuel, biodiesel , fatty acid methyl ester, extremophile, Galdieria 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...percentages in algal culture. KEYWORDS algae, biofuel, biodiesel , fatty acid methyl ester, extremophile, Galdieria 2...Most biofuels can be categorized as biodiesel products (to include biodistillates) or bioethanol. Corn and sugar cane undergo fermentation in order

  19. Engineering microbial biofuel tolerance and export using efflux pumps

    PubMed Central

    Dunlop, Mary J; Dossani, Zain Y; Szmidt, Heather L; Chu, Hou Cheng; Lee, Taek Soon; Keasling, Jay D; Hadi, Masood Z; Mukhopadhyay, Aindrila

    2011-01-01

    Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade-off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced bacterial genomes and prioritized a subset of targets for cloning. The resulting library of 43 pumps was heterologously expressed in Escherichia coli, where we tested it against seven representative biofuels. By using a competitive growth assay, we efficiently distinguished pumps that improved survival. For two of the fuels (n-butanol and isopentanol), none of the pumps improved tolerance. For all other fuels, we identified pumps that restored growth in the presence of biofuel. We then tested a beneficial pump directly in a production strain and demonstrated that it improved biofuel yields. Our findings introduce new tools for engineering production strains and utilize the increasingly large database of sequenced genomes. PMID:21556065

  20. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae

    PubMed Central

    Park, Hanwool

    2016-01-01

    Abstract Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break‐even point and may not be sustainable at a large‐scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non‐conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources. PMID:27782372

  1. Interrogating Social Sustainability in the Biofuels Sector in Latin America: Tensions Between Global Standards and Local Experiences in Mexico, Brazil, and Colombia.

    PubMed

    Selfa, Theresa; Bain, Carmen; Moreno, Renata; Eastmond, Amarella; Sweitz, Sam; Bailey, Conner; Pereira, Gustavo Simas; Souza, Tatiana; Medeiros, Rodrigo

    2015-12-01

    Across the Americas, biofuels production systems are diverse due to geographic conditions, historical patterns of land tenure, different land use patterns, government policy frameworks, and relations between the national state and civil society, all of which shape the role that biofuels play in individual nations. Although many national governments throughout the Americas continue to incentivize growth of the biofuels industry, one key challenge for biofuels sustainability has been concern about its social impacts. In this article, we discuss some of the key social issues and tensions related to the recent expansion of biofuels production in Mexico, Colombia, and Brazil. We argue that a process of "simplification" of ecological and cultural diversity has aided the expansion of the biofuels frontier in these countries, but is also undermining their viability. We consider the ability of governments and non-state actors in multi-stakeholder initiatives (MSI) to address social and environmental concerns that affect rural livelihoods as a result of biofuels expansion. We analyze the tensions between global sustainability standards, national level policies for biofuels development, and local level impacts and visions of sustainability. We find that both government and MSI efforts to address sustainability concerns have limited impact, and recommend greater incorporation of local needs and expertise to improve governance.

  2. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.

    PubMed

    Park, Hanwool; Lee, Choul-Gyun

    2016-11-01

    Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break-even point and may not be sustainable at a large-scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non-conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Interrogating Social Sustainability in the Biofuels Sector in Latin America: Tensions Between Global Standards and Local Experiences in Mexico, Brazil, and Colombia

    NASA Astrophysics Data System (ADS)

    Selfa, Theresa; Bain, Carmen; Moreno, Renata; Eastmond, Amarella; Sweitz, Sam; Bailey, Conner; Pereira, Gustavo Simas; Souza, Tatiana; Medeiros, Rodrigo

    2015-12-01

    Across the Americas, biofuels production systems are diverse due to geographic conditions, historical patterns of land tenure, different land use patterns, government policy frameworks, and relations between the national state and civil society, all of which shape the role that biofuels play in individual nations. Although many national governments throughout the Americas continue to incentivize growth of the biofuels industry, one key challenge for biofuels sustainability has been concern about its social impacts. In this article, we discuss some of the key social issues and tensions related to the recent expansion of biofuels production in Mexico, Colombia, and Brazil. We argue that a process of "simplification" of ecological and cultural diversity has aided the expansion of the biofuels frontier in these countries, but is also undermining their viability. We consider the ability of governments and non-state actors in multi-stakeholder initiatives (MSI) to address social and environmental concerns that affect rural livelihoods as a result of biofuels expansion. We analyze the tensions between global sustainability standards, national level policies for biofuels development, and local level impacts and visions of sustainability. We find that both government and MSI efforts to address sustainability concerns have limited impact, and recommend greater incorporation of local needs and expertise to improve governance.

  4. Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels

    PubMed Central

    Hoang, Nam V.; Furtado, Agnelo; Botha, Frederik C.; Simmons, Blake A.; Henry, Robert J.

    2015-01-01

    Sugarcane (Saccharum spp. hybrids) has great potential as a major feedstock for biofuel production worldwide. It is considered among the best options for producing biofuels today due to an exceptional biomass production capacity, high carbohydrate (sugar + fiber) content, and a favorable energy input/output ratio. To maximize the conversion of sugarcane biomass into biofuels, it is imperative to generate improved sugarcane varieties with better biomass degradability. However, unlike many diploid plants, where genetic tools are well developed, biotechnological improvement is hindered in sugarcane by our current limited understanding of the large and complex genome. Therefore, understanding the genetics of the key biofuel traits in sugarcane and optimization of sugarcane biomass composition will advance efficient conversion of sugarcane biomass into fermentable sugars for biofuel production. The large existing phenotypic variation in Saccharum germplasm and the availability of the current genomics technologies will allow biofuel traits to be characterized, the genetic basis of critical differences in biomass composition to be determined, and targets for improvement of sugarcane for biofuels to be established. Emerging options for genetic improvement of sugarcane for the use as a bioenergy crop are reviewed. This will better define the targets for potential genetic manipulation of sugarcane biomass composition for biofuels. PMID:26636072

  5. Water quality under increased biofuel production and future climate change and uncertainty

    NASA Astrophysics Data System (ADS)

    Demissie, Y. K.; Yan, E.

    2015-12-01

    Over the past decade, biofuel has emerged as an important renewable energy source to supplement gasoline and reduce the associated greenhouse gas emission. Many countries, for instant, have adopted biofuel production goals to blend 10% or more of gasoline with biofuels within 10 to 20 years. However, meeting these goals requires sustainable production of biofuel feedstock which can be challenging under future change in climate and extreme weather conditions, as well as the likely impacts of biofuel feedstock production on water quality and availability. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have performed watershed hydrology and water quality analyses for the Ohio River Basin. The basin is one of the major biofuel feedstock producing region in the United States, which also currently contributes about half of the flow and one third of phosphorus and nitrogen loadings to the Mississippi River that eventually flows to the Gulf of Mexico. The analyses integrate future scenarios and climate change and biofuel development through various mixes of landuse and agricultural management changes and examine their potential impacts on regional and local hydrology, water quality, soil erosion, and agriculture productivity. The results of the study are expected to provide much needed insight about the sustainability of large-scale biofuel feedstock production under the future climate change and uncertainty, and helps to further optimize the feedstock production taking into consideration the water-use efficiency.

  6. New methodology for estimating biofuel consumption for cooking: Atmospheric emissions of black carbon and sulfur dioxide from India

    NASA Astrophysics Data System (ADS)

    Habib, Gazala; Venkataraman, Chandra; Shrivastava, Manish; Banerjee, Rangan; Stehr, J. W.; Dickerson, Russell R.

    2004-09-01

    The dominance of biofuel combustion emissions in the Indian region, and the inherently large uncertainty in biofuel use estimates based on cooking energy surveys, prompted the current work, which develops a new methodology for estimating biofuel consumption for cooking. This is based on food consumption statistics, and the specific energy for food cooking. Estimated biofuel consumption in India was 379 (247-584) Tg yr-1. New information on the user population of different biofuels was compiled at a state level, to derive the biofuel mix, which varied regionally and was 74:16:10%, respectively, of fuelwood, dung cake and crop waste, at a national level. Importantly, the uncertainty in biofuel use from quantitative error assessment using the new methodology is around 50%, giving a narrower bound than in previous works. From this new activity data and currently used black carbon emission factors, the black carbon (BC) emissions from biofuel combustion were estimated as 220 (65-760) Gg yr-1. The largest BC emissions were from fuelwood (75%), with lower contributions from dung cake (16%) and crop waste (9%). The uncertainty of 245% in the BC emissions estimate is now governed by the large spread in BC emission factors from biofuel combustion (122%), implying the need for reducing this uncertainty through measurements. Emission factors of SO2 from combustion of biofuels widely used in India were measured, and ranged 0.03-0.08 g kg-1 from combustion of two wood species, 0.05-0.20 g kg-1 from 10 crop waste types, and 0.88 g kg-1 from dung cake, significantly lower than currently used emission factors for wood and crop waste. Estimated SO2 emissions from biofuels of 75 (36-160) Gg yr-1 were about a factor of 3 lower than that in recent studies, with a large contribution from dung cake (73%), followed by fuelwood (21%) and crop waste (6%).

  7. Laboratory Analytical Procedures | Bioenergy | NREL

    Science.gov Websites

    analytical procedures (LAPs) to provide validated methods for biofuels and pyrolysis bio-oils research . Biomass Compositional Analysis These lab procedures provide tested and accepted methods for performing

  8. Gaining ground in the modeling of land-use change greenhouse gas emissions associated with biofuel production

    NASA Astrophysics Data System (ADS)

    Dunn, J.; Mueller, S.; Kwon, H.; Wang, M.; Wander, M.

    2012-12-01

    Land-use change (LUC) resulting from biofuel feedstock production and the associated greenhouse gas (GHG) emissions are a hotly-debated aspect of biofuels. Certainly, LUC GHG emissions are one of the most uncertain elements in life cycle analyses (LCA) of biofuels. To estimate LUC GHG emissions, two sets of data are necessary. First, information on the amount and type of land that is converted to biofuel feedstock production is required. These data are typically generated through application of computable general equilibrium (CGE) models such as Purdue University's Global Trade Analysis Project (GTAP) model. Second, soil carbon content data for the affected land types is essential. Recently, Argonne National Laboratory's Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) has been updated with CGE modeling results that estimate the amount and type of LUC world-wide from production of ethanol from corn, corn stover, miscanthus, and switchgrass (Mueller et al. 2012). Moreover, we have developed state-specific carbon content data, determined through modeling with CENTURY, for the two most dominant soil types in the conterminous 48 U.S. states (Kwon et al. 2012) to enable finer-resolution results for domestic LUC GHG emissions for these ethanol production scenarios. Of the feedstocks examined, CCLUB estimates that LUC GHG emissions are highest for corn ethanol (9.1 g CO2e/MJ ethanol) and lowest for miscanthus (-12 g CO2e/MJ ethanol). We will present key observations from CCLUB results incorporated into Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model, which is a LCA tool for transportation fuels and advanced vehicle technologies. We will discuss selected issues in this modeling, including the sensitivity of domestic soil carbon emission factors to modeling parameters and assumptions about the fate of harvested wood products. Further, we will discuss efforts to update CCLUB with county-level soil carbon emission factors and updated international soil carbon emission factors. Finally, we will examine data needs for improved LUC GHG calculations in both the modeling of land conversion and soil carbon content. Kwon, H. Y., Wander, M. M., Mueller, S., Dunn, J. B. "Modeling state-level soil carbon emission factors under various scenarios for direct land use change associated with United States biofuel feedstock production." Biomass and Bioenergy. Under Review. Mueller, S., Dunn, J. B., Wang, M. "Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) Users' Manual and Technical Documentation." May 2012. ANL/ESD/12-5. Available at http://greet.es.anl.gov/publication-cclub-manual.

  9. 40 CFR 80.1456 - What are the provisions for cellulosic biofuel waiver credits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... biofuel waiver credits? 80.1456 Section 80.1456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... What are the provisions for cellulosic biofuel waiver credits? (a) If EPA reduces the applicable volume of cellulosic biofuel pursuant to section 211(o)(7)(D)(i) of the Clean Air Act (42 U.S.C. 7545(o)(7...

  10. 40 CFR 80.1456 - What are the provisions for cellulosic biofuel waiver credits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... biofuel waiver credits? 80.1456 Section 80.1456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... What are the provisions for cellulosic biofuel waiver credits? (a) If EPA reduces the applicable volume of cellulosic biofuel pursuant to section 211(o)(7)(D)(i) of the Clean Air Act (42 U.S.C. 7545(o)(7...

  11. 40 CFR 80.1456 - What are the provisions for cellulosic biofuel waiver credits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... biofuel waiver credits? 80.1456 Section 80.1456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... What are the provisions for cellulosic biofuel waiver credits? (a) If EPA reduces the applicable volume of cellulosic biofuel pursuant to section 211(o)(7)(D)(i) of the Clean Air Act (42 U.S.C. 7545(o)(7...

  12. 40 CFR 80.1456 - What are the provisions for cellulosic biofuel waiver credits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... biofuel waiver credits? 80.1456 Section 80.1456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... What are the provisions for cellulosic biofuel waiver credits? (a) If EPA reduces the applicable volume of cellulosic biofuel pursuant to section 211(o)(7)(D)(i) of the Clean Air Act (42 U.S.C. 7545(o)(7...

  13. 40 CFR 80.1456 - What are the provisions for cellulosic biofuel waiver credits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... biofuel waiver credits? 80.1456 Section 80.1456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... What are the provisions for cellulosic biofuel waiver credits? (a) If EPA reduces the applicable volume of cellulosic biofuel pursuant to section 211(o)(7)(D)(i) of the Clean Air Act (42 U.S.C. 7545(o)(7...

  14. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol)

    EPA Science Inventory

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made fr...

  15. Optimization of Biofuel Production From Transgenic Microalgae

    DTIC Science & Technology

    2013-02-27

    AFRL-OSR-VA-TR-2013-0145 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Richard Sayre Donald Danforth...Technical 20080815 to 20120630 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE FA9550-08-1-0451 Richard Sayre Donald Danforth Plant...BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Grant/Contract Number: FA9550-08-1-0451 Reporting Period: Final Report Abstract: We have compared the

  16. [Progress in synthesis technologies and application of aviation biofuels].

    PubMed

    Sun, Xiaoying; Liu, Xiang; Zhao, Xuebing; Yang, Ming; Liu, Dehua

    2013-03-01

    Development of aviation biofuels has attracted great attention worldwide because that the shortage of fossil resources has become more and more serious. In the present paper, the development background, synthesis technologies, current application status and existing problems of aviation biofuels were reviewed. Several preparation routes of aviation biofuels were described, including Fischer-Tropsch process, catalytic hydrogenation and catalytic cracking of bio-oil. The status of flight tests and commercial operation were also introduced. Finally the problems for development and application of aviation biofuels were stated, and some accommodation were proposed.

  17. Biofuels in the U.S. Transportation Sector (released in AEO2007)

    EIA Publications

    2007-01-01

    Sustained high world oil prices and the passage of the Energy Policy Act 2005 (EPACT) have encouraged the use of agriculture-based ethanol and biodiesel in the transportation sector; however, both the continued growth of the biofuels industry and the long-term market potential for biofuels depend on the resolution of critical issues that influence the supply of and demand for biofuels. For each of the major biofuelscorn-based ethanol, cellulosic ethanol, and biodieselresolution of technical, economic, and regulatory issues remains critical to further development of biofuels in the United States.

  18. Scope of Algae as Third Generation Biofuels

    PubMed Central

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2015-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security. PMID:25717470

  19. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  20. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Directmore » Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.« less

  1. Carbon and energy balances for cellulosic biofuel crops in U.S. Midwest

    NASA Astrophysics Data System (ADS)

    Gerlfand, I.; Hamilton, S. K.; Robertson, G. P.

    2012-04-01

    Cellulosic biofuels produced on lands not used for food production have the potential to avoid competition for food and associated indirect land use costs. Understanding the carbon and energy balance implications for different cellulosic production systems is important for the development of decision making tools and policies. Here we present carbon and energy balances of alternative agricultural management. We use 20 years of data from KBS LTER experiments to produce farm level CO2 and energy balances for different management practices. Our analyses include four grain and four perrenial systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically-based (organic) practices; (5) continuous alfalfa (Medicago sativa); (6) Poplar; and (7,8) Successionnal fields, both fertilized and unfertilized. Measurements include fluxes of N2O and CH4, soil organic carbon change, agricultural yields, and agricultural inputs (e.g. fertilization and farm fuel use). Our results indicate that management decisions such as tillage and plant types have a great influence on the net carbon and energy balances and benefits of cellulosic biofuels production. Specifically, we show that cellulosic biofuels produced from an early successional, minimally managed system have a net C sequestration (i.e., negative C balance) of -841±46 gCO2e m-2 yr-1 vs. -594±93 gCO2e m-2 yr-1 for more productive and management intensive alfalfa, and vs. 232±157 gCO2e m-2 for poplar. The reference agricultural system (a conventionally tilled corn-soybean-wheat rotation) has net sequestration of -149±33 g CO2e m-2 yr-1. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha-1 for the organic system to 7.1 GJ ha-1 for the conventional; the no-till system was also low at 4.9 GJ ha-1 and the low-chemical input system intermediate (5.2 GJ ha-1). For each system, the average energy output for food was always greater than that for fuel. Overall energy efficiencies ranged from output: input ratios of 10 to 16 for conventional and no-till food production, respectively, and from 7 to 11 for conventional and no-till fuel production. Alfalfa for fuel production had an efficiency similar to that of no-till grain production for fuel. Our analysis points to a more energetically efficient use of cropland for food than for fuel production, and large differences in efficiencies attributable to management.

  2. Biomass Resource Allocation among Competing End Uses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newes, E.; Bush, B.; Inman, D.

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports,more » bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.« less

  3. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance.

    PubMed

    Yang, Jia; Xu, Ming; Zhang, Xuezhi; Hu, Qiang; Sommerfeld, Milton; Chen, Yongsheng

    2011-01-01

    This research examines the life-cycle water and nutrients usage of microalgae-based biodiesel production. The influence of water types, operation with and without recycling, algal species, geographic distributions are analyzed. The results confirm the competitiveness of microalgae-based biofuels and highlight the necessity of recycling harvested water and using sea/wastewater as water source. To generate 1 kg biodiesel, 3726 kg water, 0.33 kg nitrogen, and 0.71 kg phosphate are required if freshwater used without recycling. Recycling harvest water reduces the water and nutrients usage by 84% and 55%. Using sea/wastewater decreases 90% water requirement and eliminates the need of all the nutrients except phosphate. The variation in microalgae species and geographic distribution are analyzed to reflect microalgae biofuel development in the US. The impacts of current federal and state renewable energy programs are also discussed to suggest suitable microalgae biofuel implementation pathways and identify potential bottlenecks. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Anthe; Geier, Manfred; Dedrick, Daniel E.

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspendedmore » in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.« less

  5. Erosion analysis related to corn-based ethanol production in the US

    EPA Science Inventory

    Since the Renewable Fuel Standard has encouraged the development of biofuels, the US has seen an increase in corn production for conversion to ethanol. In many of these agricultural regions, increased corn production is accompanied with increased erosion. An erosion analysis w...

  6. 10 CFR 452.4 - Eligibility requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... party's eligible cellulosic biofuels production facility; (iii) Demonstrate that the cellulosic biofuel... to significantly contribute to the goal of 1 billion gallons of refined cellulosic biofuel by August...

  7. 10 CFR 452.4 - Eligibility requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... party's eligible cellulosic biofuels production facility; (iii) Demonstrate that the cellulosic biofuel... to significantly contribute to the goal of 1 billion gallons of refined cellulosic biofuel by August...

  8. 10 CFR 452.4 - Eligibility requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... party's eligible cellulosic biofuels production facility; (iii) Demonstrate that the cellulosic biofuel... to significantly contribute to the goal of 1 billion gallons of refined cellulosic biofuel by August...

  9. 10 CFR 452.4 - Eligibility requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... party's eligible cellulosic biofuels production facility; (iii) Demonstrate that the cellulosic biofuel... to significantly contribute to the goal of 1 billion gallons of refined cellulosic biofuel by August...

  10. 10 CFR 452.4 - Eligibility requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... party's eligible cellulosic biofuels production facility; (iii) Demonstrate that the cellulosic biofuel... to significantly contribute to the goal of 1 billion gallons of refined cellulosic biofuel by August...

  11. Modifying plants for biofuel and biomaterial production.

    PubMed

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Biofuels Issues and Trends

    EIA Publications

    2012-01-01

    This report presents data on biofuels consumption, production, imports and exports, including data collected by others than the U.S. Energy Information Administration. It also discusses important developments in biofuels markets.

  13. Biofuels in China.

    PubMed

    Tan, Tianwei; Yu, Jianliang; Lu, Jike; Zhang, Tao

    2010-01-01

    The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

  14. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    EPA Science Inventory

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made fr...

  15. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    EPA Science Inventory

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation's fuel supply. Ethanol is the primary biofuel in the US martket, distributed as a blend with petroleum gasoline in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...

  16. Microbial engineering for the production of fatty acids and fatty acid derivatives

    DOEpatents

    Stephanopoulos, Gregory; Abidi, Syed Hussain Imam

    2014-07-01

    Some aspects of this invention relate to methods useful for the conversion of a carbon source to a biofuel or biofuel precursor using engineered microbes. Some aspects of this invention relate to the discovery of a key regulator of lipid metabolism in microbes. Some aspects of this invention relate to engineered microbes for biofuel or biofuel precursor production.

  17. Washington State Biofuels Industry Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, Richard

    2017-04-09

    The funding from this research grant enabled us to design, renovate, and equip laboratories to support University of Washington biofuels research program. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  18. Assessing the environmental sustainability of biofuels.

    PubMed

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Indirect land use change and biofuel policy

    NASA Astrophysics Data System (ADS)

    Kocoloski, Matthew; Griffin, W. Michael; Matthews, H. Scott

    2009-09-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO2 emissions (including from land use) than gasoline, would still be cost-effective at a CO2 price of 80 per ton or less, well above estimated CO2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  20. Perspectives on engineering strategies for improving biofuel production from microalgae--a critical review.

    PubMed

    Ho, Shih-Hsin; Ye, Xiaoting; Hasunuma, Tomohisa; Chang, Jo-Shu; Kondo, Akihiko

    2014-12-01

    Although the potential for biofuel production from microalgae via photosynthesis has been intensively investigated, information on the selection of a suitable operation strategy for microalgae-based biofuel production is lacking. Many published reports describe competitive strains and optimal culture conditions for use in biofuel production; however, the major impediment to further improvements is the absence of effective engineering strategies for microalgae cultivation and biofuel production. This comprehensive review discusses recent advances in understanding the effects of major environmental stresses and the characteristics of various engineering operation strategies on the production of biofuels (mainly biodiesel and bioethanol) using microalgae. The performances of microalgae-based biofuel-producing systems under various environmental stresses (i.e., irradiance, temperature, pH, nitrogen depletion, and salinity) and cultivation strategies (i.e., fed-batch, semi-continuous, continuous, two-stage, and salinity-gradient) are compared. The reasons for variations in performance and the underlying theories of the various production strategies are also critically discussed. The aim of this review is to provide useful information to facilitate development of innovative and feasible operation technologies for effectively increasing the commercial viability of microalgae-based biofuel production. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    PubMed Central

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be produced in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected. PMID:25937989

  2. Does the U.S. biofuels mandate increase the price at the pump?

    NASA Astrophysics Data System (ADS)

    Bolotin, Stephen R.

    The Renewable Fuel Standard (RFS) as amended by the Energy Independence and Security Act of 2007 created a federal mandate for blending conventional biofuels like corn-based ethanol and advanced biofuels like biodiesel and renewable gasoline into the United States transportation fuel supply. The RFS established yearly blending standards for the obligated parties--refiners and importers of petroleum products--that increase progressively until reaching a high of 36 billion gallons by 2022. Each ethanol-equivalent gallon of biofuel blended is assigned a unique Renewable Identification Number (RIN) through the Environmental Protection Agency's (EPA) Moderated Transaction System (EMTS). At year's close, obligated parties must submit their allotted RIN obligations to the EPA to demonstrate compliance. In the case of under-compliance or over-compliance, RINs can be traded between obligated parties freely through the EMTS or carried over for use in the next year. It follows, then, that a RIN carries a market value reflective of the cost of complying with RFS regulations. Indeed, most biofuels cost more than their fossil-based equivalents. When the price of a corn ethanol RIN went from 2-3 cents each in 2012 to nearly $1.50 in July of 2013 due to a perceived shortage in corn ethanol RINs, obligated parties faced the prospect of multimillion-dollar compliance cost increases. Arguing that RFS makes fuel significantly more expensive for consumers, petroleum companies have begun to advocate for the full repeal of the RFS, winning over some allies in Congress. The future of this program is uncertain. In an attempt to quantify the concerns of RFS critics, this thesis estimated the effect that RIN prices have on the wholesale cost of diesel fuel. Using daily price data from January 2011 through August of 2013 on RINs and crude oil, I specified twelve OLS regression models that predict the passthrough of the diesel RIN price to wholesale diesel price. My statistical analysis suggests that the diesel RIN price is a useful predictor of wholesale diesel price; however, my analysis also casts some doubt on the claims of obligated parties that they pass the cost of compliance onto the consumer, thereby increasing fuel prices significantly.

  3. A geographical assessment of vegetation carbon stocks and greenhouse gas emissions on potential microalgae-based biofuel facilities in the United States.

    PubMed

    Quiroz Arita, Carlos; Yilmaz, Özge; Barlak, Semin; Catton, Kimberly B; Quinn, Jason C; Bradley, Thomas H

    2016-12-01

    The microalgae biofuels life cycle assessments (LCA) present in the literature have excluded the effects of direct land use change (DLUC) from facility construction under the assumption that DLUC effects are negligible. This study seeks to model the greenhouse gas (GHG) emissions of microalgae biofuels including DLUC by quantifying the CO 2 equivalence of carbon released to the atmosphere through the construction of microalgae facilities. The locations and types of biomass and Soil Organic Carbon that are disturbed through microalgae cultivation facility construction are quantified using geographical models of microalgae productivity potential including consideration of land availability. The results of this study demonstrate that previous LCA of microalgae to biofuel processes have overestimated GHG benefits of microalgae-based biofuels production by failing to include the effect of DLUC. Previous estimations of microalgae biofuel production potential have correspondingly overestimated the volume of biofuels that can be produced in compliance with U.S. environmental goals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The water-land-food nexus of first-generation biofuels

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina; Bellomi, Davide; Cazzoli, Andrea; de Carolis, Giulia; D'Odorico, Paolo

    2016-03-01

    Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland. To evaluate the important impacts of biofuels on food security, the food-energy nexus needs to be investigated in the context of its linkages with the overall human appropriation of land and water resources. Here we provide a global assessment of biofuel crop production, reconstruct global patterns of biofuel crop/oil trade and determine the associated displacement of water and land use. We find that bioethanol is mostly produced with domestic crops while 36% of biodiesel consumption relies on international trade, mainly from Southeast Asia. Altogether, biofuels rely on about 2-3% of the global water and land used for agriculture, which could feed about 30% of the malnourished population. We evaluate the food-energy tradeoff and the impact an increased reliance on biofuel would have on the number of people the planet can feed.

  5. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production.

    PubMed

    da Silva, Teresa Lopes; Gouveia, Luísa; Reis, Alberto

    2014-02-01

    The production of microbial biofuels is currently under investigation, as they are alternative sources to fossil fuels, which are diminishing and their use has a negative impact on the environment. However, so far, biofuels derived from microbes are not economically competitive. One way to overcome this bottleneck is the use of microorganisms to transform substrates into biofuels and high value-added products, and simultaneously taking advantage of the various microbial biomass components to produce other products of interest, as an integrated process. In this way, it is possible to maximize the economic value of the whole process, with the desired reduction of the waste streams produced. It is expected that this integrated system makes the biofuel production economically sustainable and competitive in the near future. This review describes the investigation on integrated microbial processes (based on bacteria, yeast, and microalgal cultivations) that have been experimentally developed, highlighting the importance of this approach as a way to optimize microbial biofuel production process.

  6. The water-land-food nexus of first-generation biofuels

    PubMed Central

    Rulli, Maria Cristina; Bellomi, Davide; Cazzoli, Andrea; De Carolis, Giulia; D’Odorico, Paolo

    2016-01-01

    Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland. To evaluate the important impacts of biofuels on food security, the food-energy nexus needs to be investigated in the context of its linkages with the overall human appropriation of land and water resources. Here we provide a global assessment of biofuel crop production, reconstruct global patterns of biofuel crop/oil trade and determine the associated displacement of water and land use. We find that bioethanol is mostly produced with domestic crops while 36% of biodiesel consumption relies on international trade, mainly from Southeast Asia. Altogether, biofuels rely on about 2-3% of the global water and land used for agriculture, which could feed about 30% of the malnourished population. We evaluate the food-energy tradeoff and the impact an increased reliance on biofuel would have on the number of people the planet can feed. PMID:26936679

  7. Protein engineering in designing tailored enzymes and microorganisms for biofuels production

    PubMed Central

    Wen, Fei; Nair, Nikhil U; Zhao, Huimin

    2009-01-01

    Summary Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performances of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field. PMID:19660930

  8. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space andmore » time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.« less

  9. Photosynthetic energy conversion efficiency: setting a baseline for gauging future improvements in important food and biofuel crops.

    PubMed

    Slattery, Rebecca A; Ort, Donald R

    2015-06-01

    The conversion efficiency (ε(c)) of absorbed radiation into biomass (MJ of dry matter per MJ of absorbed photosynthetically active radiation) is a component of yield potential that has been estimated at less than half the theoretical maximum. Various strategies have been proposed to improve ε(c), but a statistical analysis to establish baseline ε(c) levels across different crop functional types is lacking. Data from 164 published ε(c) studies conducted in relatively unstressed growth conditions were used to determine the means, greatest contributors to variation, and genetic trends in ε(c )across important food and biofuel crop species. ε(c) was greatest in biofuel crops (0.049-0.066), followed by C4 food crops (0.046-0.049), C3 nonlegumes (0.036-0.041), and finally C3 legumes (0.028-0.035). Despite confining our analysis to relatively unstressed growth conditions, total incident solar radiation and average growing season temperature most often accounted for the largest portion of ε(c) variability. Genetic improvements in ε(c), when present, were less than 0.7% per year, revealing the unrealized potential of improving ε(c) as a promising contributing strategy to meet projected future agricultural demand. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Novel DDR Processing of Corn Stover Achieves High Monomeric Sugar Concentrations from Enzymatic Hydrolysis (230 g/L) and High Ethanol Concentration (10% v/v) During Fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaowen; Jennings, Ed; Shekiro, Joe

    Distilling and purifying ethanol, butanol, and other products from second and later generation lignocellulosic biorefineries adds significant capital and operating cost for biofuels production. The energy costs associated with distillation affects plant gate and life cycle analysis costs. Lower titers in fermentation due to lower sugar concentrations from pretreatment increase both energy and production costs. In addition, higher titers decrease the volumes required for enzymatic hydrolysis and fermentation vessels. Therefore, increasing biofuels titers has been a research focus in renewable biofuels production for several decades. In this work, we achieved over 200 g/L of monomeric sugars after high solids enzymaticmore » hydrolysis using the novel deacetylation and disc refining (DDR) process on corn stover. The high sugar concentrations and low chemical inhibitor concentrations from the DDR process allowed ethanol titers as high as 82 g/L in 22 hours, which translates into approximately 10 vol% ethanol. To our knowledge, this is the first time that 10 vol% ethanol in fermentation derived from corn stover without any sugar concentration or purification steps has been reported. Techno-economic analysis shows the higher titer ethanol achieved from the DDR process could significantly reduce the minimum ethanol selling price from cellulosic biomass.« less

  11. Biofuel Database

    National Institute of Standards and Technology Data Gateway

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  12. Regional Environmental Impacts of Biofuel Feedstock Production--Scaling Biogeochemical Cycles in Space and Time

    NASA Astrophysics Data System (ADS)

    Vanloocke, A.; Bernacchi, C.

    2008-12-01

    Recently there has been increasing socio-economic and scientific interest in the use of alternative sources of energy to offset the negative effects of current fossil fuel dependence and consequent greenhouse gas emissions. Currently, one of the most popular alternatives is to use ethanol produced from domestically grown crops for use as fuel in the transportation sector. In 2007, over 7.5 billion gallons of ethanol were produced in the U.S. from corn, a traditional food crop. Recent research indicates that it may be logistically impractical, ecologically counterproductive (i.e. a net carbon source), and economically devastating to produce ethanol from crops previously grown to produce food. The EBI (Energy Biosciences Institute, at University of California Berkley and University of Illinois Urbana-Champaign) is now conducting research to assess the ability of traditional crops as well as dedicated biofuel feedstocks (e.g. Panicum virgatum (switchgrass), Miscanthus x Giganteus (Miscanthus), and Saccharum spp (sugar cane)) to provide a productive and sustainable alternative to fossil fuel. This is an important step to take before implementing the large-scale growth necessary to meet U.S. energy needs .A process-based terrestrial ecosystem model, Agro-IBIS (Agricultural Integrated Biosphere Simulator) was adapted to simulate the growth of Miscanthus. The model was calibrated using data collected from sites at the University of Illinois south farms. Simulations indicated significant implications on the regional carbon and water budgets. Next this locally validated method will be extrapolated to simulate the regional scale growth of Miscanthus in the Midwestern U.S. and sugarcane in Brazil and a similar analysis will be conducted for switchgrass. The results should provide insight on optimal land-use decisions and legislation that regard meeting energy demands and mitigating climate change in the near future.

  13. Estimation of economic impacts of cellulosic biofuel production: a comparative analysis of three biofuel pathways: Economic impacts of biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yimin; Goldberg, Marshall; Tan, Eric

    The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: 1) cellulosic ethanol via biochemical conversion in Iowa, 2) renewable diesel blendstock via biological conversion in Georgia, and 3) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect, and induced effects, capital investment associated with the construction of a biorefinerymore » processing 2,000 dry metric tons of biomass per day (DMT/day) could yield between 5,960 and 8,470 full-time equivalent (FTE) jobs during the construction period. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized for one million dollars of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter more jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2,000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. The agriculture/forest, services, and trade industries are the primary sectors that will benefit from the ongoing operation of biorefineries.« less

  14. Ling Tao, Ph.D. | NREL

    Science.gov Websites

    | 303-384-7809 Orcid ID http://orcid.org/0000-0003-1063-1984 Research Interests Techno-economic analysis ) with Corn Stover using Response Surface Methodology (RSM) and Techno Economic Analysis (TEA)," ; Biotechnology for Biofuels (2014) "Performance and techno-economic assessment of several solid-liquid

  15. Experimental Results of an Electrostatic Injector

    DTIC Science & Technology

    2014-10-01

    is important especially in the realm of biofuels . In the long term, the United States Department of Defense (DOD) is interested in converting many...of their vehicles to biofuels . Both the U.S. Army and Navy have invested substantially into research pertaining to converting existing fleets to... biofuel compatibility. The recent work of Owkes and Desjardins has investigated the effects of electrostatic spray with biofuels [11]. They

  16. Prospects for Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    EPA Science Inventory

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...

  17. Center for Advanced Biofuel Systems (CABS) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutchan, Toni M.

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and willmore » have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the production of hydrocarbons required to meet commercial fuel standards.« less

  18. Water resources under future scenarios of climate change and biofuel development: A case study for Yakima River basin

    NASA Astrophysics Data System (ADS)

    Demissie, Y. K.

    2013-12-01

    In recent years, biofuel has become an important renewable energy source with a potential to help mitigate climate change. However, agriculture productivity and its potential use for sustainable production of biofuel are strongly dependent on climate and water conditions that may change in response to future changes in climate and/or socio-economic conditions. For instant in 2012, the US has experienced the most severe drought that results in a 12% decrease in corn production - the main feedstock used for biofuel in US - indicating the vulnerability of biofuel development and policies to change in climate and associated extreme weather conditions. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have applied a SWAT watershed model which integrates future scenarios of climate change and biofuel development and simulates the associated impacts on watershed hydrology, water quality, soil erosion, and agriculture productivity. The study is applied to the Yakima River basin (YRB), which has higher biomass resources in Washington State and represents a region where forestry and agriculture intersect with considerable water shortage as well as spatial variations in annual precipitation. Unlike earlier studies, which commonly define biofuel and climate change scenarios independently, in this study the decision on alternative biofuel feedstock mixes and associated change in land use and management take into account the anticipated climate change. The resulted spatial and temporal distributions of water budget, nutrient loads, and sediment erosion is analyzed to evaluate the effectiveness of biofuel policies under constraints of climate change and water resources in the region.

  19. New Designs of Biofuel Cells and Their Work Testing

    NASA Astrophysics Data System (ADS)

    Stom, D. I.; Zhdanova, G. O.; Kashevskii, A. V.

    2017-11-01

    The developed designs and modifications of biofuel elements (BFC) are presented. The approbation of their work using strains and consortia of microorganisms is given. The proposed designs made it possible to solve a number of problems that arise when working with BFC: 1) gain access to the contents of the anode BFC space without disturbing its sterility and anaerobic environment; 2) take samples from the anode space for chemical and microbiological analysis without interrupting the BFC operation; 3) conduct continuous monitoring of electrochemical processes directly in the anode space (Ox-Red media, electrode charge, concentration of hydrogen and other ions by means of potentiometry).

  20. Production of biofuels via bio-oil upgrading & refining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.

    2016-03-18

    This chapter provides cursory reviews of biomass liquefaction, relevant petroleum processing technology, and relevant model compound studies. More detail is provided for upgrading of biomass liquefaction products, including an overview of potential fractionation and catalytic processing methods, hydroprocessing as the primary means of interest, scale of operation, operating conditions and catalysts, and product properties. Batch results are included where needed to provide a more complete narrative, but continuous-flow operations are emphasized as being more informative. Liquid fuel products from biomass through direct liquefaction and hydroprocessing are discussed, such as fuel properties based on chemical analysis and comparison of petroleum fuelsmore » and biofuels.« less

  1. National Algal Biofuels Technology Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, John; Sarisky-Reed, Valerie

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status ofmore » algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.« less

  2. Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production.

    PubMed

    Zhang, Shuping; Su, Yinhai; Xu, Dan; Zhu, Shuguang; Zhang, Houlei; Liu, Xinzhi

    2018-06-01

    Two kinds of biofuels were produced and compared from hydrothermal carbonization (HTC) and coupling washing with torrefaction (CWT) processes of bamboo sawdust in this study. The mass and energy yields, mass energy density, fuel properties, structural characterizations, combustion behavior and ash behavior during combustion process were investigated. Significant increases in the carbon contents resulted in the improvement of mass energy density and fuel properties of biofuels obtained. Both HTC and CWT improved the safety of the biofuels during the process of handling, storing and transportation. The ash-related issues of the biofuels were significantly mitigated and combustion behavior was remarkably improved after HTC and CWT processes of bamboo sawdust. In general, both HTC and CWT processes are suitable to produce biofuels with high fuel quality from bamboo sawdust. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buell, Carol Robin; Childs, Kevin L

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essentialmore » to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or clearing house for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).« less

  4. Effects of 10% biofuel substitution on ground level ozone formation in Bangkok, Thailand

    NASA Astrophysics Data System (ADS)

    Milt, Austin; Milano, Aaron; Garivait, Savitri; Kamens, Richard

    2009-12-01

    The Thai Government's search for alternatives to imported petroleum led to the consideration of mandating 10% biofuel blends (biodiesel and gasohol) by 2012. Concerns over the effects of biofuel combustion on ground level ozone formation in relation to their conventional counterparts need addressing. Ozone formation in Bangkok is explored using a trajectory box model. The model is compared against O 3, NO, and NO 2 time concentration data from air monitoring stations operated by the Thai Pollution Control Department. Four high ozone days in 2006 were selected for modeling. Both the traditional trajectory approach and a citywide average approach were used. The model performs well with both approaches but slightly better with the citywide average. Highly uncertain and missing data are derived within realistic bounds using a genetic algorithm optimization. It was found that 10% biofuel substitution will lead to as much as a 16 ppb peak O 3 increase on these four days compared to a 48 ppb increase due to the predicted vehicle fleet size increase between 2006 and 2012. The approach also suggests that when detailed meteorological data is not available to run three dimensional airshed models, and if the air is stagnant or predominately remains over an urban area during the day, that a simple low cost trajectory analysis of O 3 formation may be applicable.

  5. Design and Experimental Verification of a 0.19 V 53 μW 65 nm CMOS Integrated Supply-Sensing Sensor With a Supply-Insensitive Temperature Sensor and an Inductive-Coupling Transmitter for a Self-Powered Bio-sensing System Using a Biofuel Cell.

    PubMed

    Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi

    2017-12-01

    In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.

  6. Life-Cycle Analysis of Energy Use, Greenhouse Gas Emissions, and Water Consumption in the 2016 MYPP Algal Biofuel Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Edward; Pegallapati, Ambica; Davis, Ryan

    2016-06-16

    The Department of Energy (DOE) Bioenergy Technologies Office (BETO) Multi-year Program Plan (MYPP) describes the bioenergy objectives pursued by BETO, the strategies for achieving those objectives, the current state of technology (SOT), and a number of design cases that explore cost and operational performance required to advance the SOT towards middle and long term goals (MYPP, 2016). Two options for converting algae to biofuel intermediates were considered in the MYPP, namely algal biofuel production via lipid extraction and algal biofuel production by thermal processing. The first option, lipid extraction, is represented by the Combined Algae Processing (CAP) pathway in whichmore » algae are hydrolyzed in a weak acid pretreatment step. The treated slurry is fermented for ethanol production from sugars. The fermentation stillage contains most of the lipids from the original biomass, which are recovered through wet solvent extraction. The process residuals after lipid extraction, which contain much of the original mass of amino acids and proteins, are directed to anaerobic digestion (AD) for biogas production and recycle of N and P nutrients. The second option, thermal processing, comprises direct hydrothermal liquefaction (HTL) of the wet biomass, separation of aqueous, gas, and oil phases, and treatment of the aqueous phase with catalytic hydrothermal gasification (CHG) to produce biogas and to recover N and P nutrients.« less

  7. Biofuel: A Comparative Case Study

    DTIC Science & Technology

    2013-06-01

    operated on a 50/50 biofuel mix for the first time. b. The Great Green Fleet Meeting the SECNAV’s requirement to demonstrate the viability of ...is interested in the commercial viability of biofuels. 16 THIS PAGE INTENTIONALLY LEFT BLANK 17 III. LITERATURE REVIEW A . BIOFUELS...1970s served as the catalyst for the first serious investigation into the viability of algae as a source of energy (Department of Energy [DoE], 2010

  8. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    DOE PAGES

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be producedmore » in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected.« less

  9. Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels.

    PubMed

    Cheon, Seungwoo; Kim, Hye Mi; Gustavsson, Martin; Lee, Sang Yup

    2016-12-01

    As climate change has become one of the major global risks, our heavy dependence on petroleum-derived fuels has received much public attention. To solve such problems, production of sustainable fuels has been intensively studied over the past years. Thanks to recent advances in synthetic biology and metabolic engineering technologies, bio-based platforms for advanced biofuels production have been developed using various microorganisms. The strategies for production of advanced biofuels have converged upon four major metabolic routes: the 2-ketoacid pathway, the fatty acid synthesis (FAS) pathway, the isoprenoid pathway, and the reverse β-oxidation pathway. Additionally, the polyketide synthesis pathway has recently been attracting interest as a promising alternative biofuel production route. In this article, recent trends in advanced biofuels production are reviewed by categorizing them into three types of advanced biofuels: alcohols, biodiesel and jet fuel, and gasoline. Focus is given on the strategies of employing synthetic biology and metabolic engineering for the development of microbial strains producing advanced fuels. Finally, the prospects for future advances needed to achieve much more efficient bio-based production of advanced biofuels are discussed, focusing on designing advanced biofuel production pathways coupled with screening, modifying, and creating novel enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Tools and methodologies to support more sustainable biofuel feedstock production.

    PubMed

    Dragisic, Christine; Ashkenazi, Erica; Bede, Lucio; Honzák, Miroslav; Killeen, Tim; Paglia, Adriano; Semroc, Bambi; Savy, Conrad

    2011-02-01

    Increasingly, government regulations, voluntary standards, and company guidelines require that biofuel production complies with sustainability criteria. For some stakeholders, however, compliance with these criteria may seem complex, costly, or unfeasible. What existing tools, then, might facilitate compliance with a variety of biofuel-related sustainability criteria? This paper presents four existing tools and methodologies that can help stakeholders assess (and mitigate) potential risks associated with feedstock production, and can thus facilitate compliance with requirements under different requirement systems. These include the Integrated Biodiversity Assessment Tool (IBAT), the ARtificial Intelligence for Ecosystem Services (ARIES) tool, the Responsible Cultivation Areas (RCA) methodology, and the related Biofuels + Forest Carbon (Biofuel + FC) methodology.

  11. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  12. Synthetic biology for microbial production of lipid-based biofuels.

    PubMed

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. Published by Elsevier Ltd.

  13. Argonne model analyzes water footprint of biofuels | Argonne National

    Science.gov Websites

    more information, please visit science.energy.gov. Different types of biofuels have different researchers analyze those differences. Different types of biofuels have different environmental and water

  14. 2013 Cellulosic Biofuel Standard: Direct Final Rule

    EPA Pesticide Factsheets

    The direct final action is to revise the 2013 cellulosic biofuel standard. This action follows from EPA having granted API's and AFPM's petitions for reconsideration of the 2013 cellulosic biofuel standard published on August 15, 2013.

  15. Biofuels for transport :policies and possibilities

    DOT National Transportation Integrated Search

    2007-11-01

    This Policy Brief, jointly produced by the OECD and the IEA, looks at the current situation with biofuels in road transport, and how governments can balance all these elements when crafting policies for energy and biofuels.

  16. Genomic Analysis of Natural Variation for Seed and Plant Size in Maize (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Kaeppler, Shawn

    2018-02-01

    Shawn Kaeppler from the University of Wisconsin-Madison on "Genomic Analysis of Biofuel Traits in Maize and Switchgrass" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, CA.

  17. The Biofuel Feedstock Genomics Resource: a web-based portal and database to enable functional genomics of plant biofuel feedstock species.

    PubMed

    Childs, Kevin L; Konganti, Kranti; Buell, C Robin

    2012-01-01

    Major feedstock sources for future biofuel production are likely to be high biomass producing plant species such as poplar, pine, switchgrass, sorghum and maize. One active area of research in these species is genome-enabled improvement of lignocellulosic biofuel feedstock quality and yield. To facilitate genomic-based investigations in these species, we developed the Biofuel Feedstock Genomic Resource (BFGR), a database and web-portal that provides high-quality, uniform and integrated functional annotation of gene and transcript assembly sequences from species of interest to lignocellulosic biofuel feedstock researchers. The BFGR includes sequence data from 54 species and permits researchers to view, analyze and obtain annotation at the gene, transcript, protein and genome level. Annotation of biochemical pathways permits the identification of key genes and transcripts central to the improvement of lignocellulosic properties in these species. The integrated nature of the BFGR in terms of annotation methods, orthologous/paralogous relationships and linkage to seven species with complete genome sequences allows comparative analyses for biofuel feedstock species with limited sequence resources. Database URL: http://bfgr.plantbiology.msu.edu.

  18. Techno-economic analysis of bioethanol production from rice straw by liquid-state fermentation

    NASA Astrophysics Data System (ADS)

    Hidayata, M. H. M.; Salleh, S. F.; Riayatsyahb, T. M. I.; Aditiyac, H. B.; Mahliaa, T. M. I.; Shamsuddina, A. H.

    2016-03-01

    Renewable energy is the latest approach of the Malaysian government in an effort to find sustainable alternative energy sources and to fulfill the ever increasing energy demand. Being a country that thrives in the service and agricultural sector, bioethanol production from lignocellulosic biomass presents itself as a promising option. However, the lack of technical practicality and complexity in the operation system hinder it from being economically viable. Hence, this research acquired multiple case studies in order to provide an insight on the process involved and its implication on production as well as to obtain a cost analysis of bioethanol production. The energy input and cost of three main components of the bioethanol production which are the collection, logistics, and pretreatment of rice straw were evaluated extensively. The theoretical bioethanol yield and conversion efficiency obtained were 250 L/t and 60% respectively. The findings concluded that bioethanol production from rice straw is currently not economically feasible in Malaysia’s market due to lack of efficiency in the pretreatment phase and overbearing logistics and pretreatment costs. This work could serve as a reference to future studies of biofuel commercialization in Malaysia.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warnecke, Falk; Warnecke, Falk; Luginbuhl, Peter

    From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis. Here we use a metagenomic analysis of the bacterial communitymore » resident in the hindgut paunch of a wood-feeding Nasutitermes species to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H{sub 2} metabolism, CO{sub 2}-reductive acetogenesis and N{sub 2} fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-{micro}l environment can be.« less

  20. Microbial processes influencing the transport, fate and groundwater impacts of fuel ethanol releases.

    PubMed

    Ma, Jie; Rixey, William G; Alvarez, Pedro J J

    2013-06-01

    Fuel releases that impact groundwater are a common occurrence, and the growing use of ethanol as a transportation biofuel is increasing the likelihood of encountering ethanol in such releases. Microorganisms play a critical role in the fate of ethanol-blended fuel releases, often determining their region of influence and potential impacts. This review summarizes current understanding on the biogeochemical footprint of such releases and the factors that influence their natural attenuation. Implications for site investigation, risk assessment and remediation strategies are also addressed along with research priorities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Biofuels Research at EPA

    EPA Science Inventory

    The development of sustainable and clean biofuels is a national priority. To do so requires a life-cycle approach that includes consideration of feedstock production and logistics, and biofuel production, distribution, and end use. The US Environmental Protection Agency is suppor...

  2. Energy Insecurity: The False Promise of Liquid Biofuels

    DTIC Science & Technology

    2013-01-01

    526 certifications issued to date for biofuels and blends . Any that do not consider the full biofuel lifecycle comprising land- use change for fuel...in physics from the US Naval Academy and a master’s in strategy from the US Army Command and General Staff College. He currently teaches strategy...biofuel yields are far too small, diffuse, and infrequent to displace any meaningful fraction of US primary energy needs, and boosting yields

  3. Take a Closer Look:Biofuels Can Support Environmental, Economic and Social Goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Bruce E.; Anderson, James; Brown, Dr. Robert C.

    The US Congress passed the Renewable Fuels Standard (RFS) seven years ago. Since then, biofuels have gone from darling to scapegoat for many environmentalists, policy makers, and the general public. The reasons for this shift are complex and include concerns about environmental degradation, uncertainties about impact on food security, new access to fossil fuels, and overly optimistic timetables. As a result, many people have written off biofuels. However, numerous studies indicate that biofuels, if managed sustainably, can help solve pressing environmental, social and economic problems (Figure 1). The scientific and policy communities should take a closer look by reviewing themore » key assumptions underlying opposition to biofuels and carefully consider the probable alternatives. Liquid fuels based on fossil raw materials are likely to come at increasing environmental cost. Sustainable futures require energy conservation, increased efficiency, and alternatives to fossil fuels, including biofuels.« less

  4. Assumptions in the European Union biofuels policy: frictions with experiences in Germany, Brazil and Mozambique.

    PubMed

    Franco, Jennifer; Levidow, Les; Fig, David; Goldfarb, Lucia; Hönicke, Mireille; Mendonça, Maria Luisa

    2010-01-01

    The biofuel project is an agro-industrial development and politically contested policy process where governments increasingly become global actors. European Union (EU) biofuels policy rests upon arguments about societal benefits of three main kinds - namely, environmental protection (especially greenhouse gas savings), energy security and rural development, especially in the global South. Each argument involves optimistic assumptions about what the putative benefits mean and how they can be fulfilled. After examining those assumptions, we compare them with experiences in three countries - Germany, Brazil and Mozambique - which have various links to each other and to the EU through biofuels. In those case studies, there are fundamental contradictions between EU policy assumptions and practices in the real world, involving frictional encounters among biofuel promoters as well as with people adversely affected. Such contradictions may intensify with the future rise of biofuels and so warrant systematic attention.

  5. Thermochemical conversion of microalgal biomass into biofuels: a review.

    PubMed

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Microbial bio-fuels: a solution to carbon emissions and energy crisis.

    PubMed

    Kumar, Arun; Kaushal, Sumit; Saraf, Shubhini A; Singh, Jay Shankar

    2018-06-01

    Increasing energy demand, limited fossil fuel resources and climate change have prompted development of alternative sustainable and economical fuel resources such as crop-based bio-ethanol and bio-diesel. However, there is concern over use of arable land that is used for food agriculture for creation of biofuel. Thus, there is a renewed interest in the use of microbes particularly microalgae for bio-fuel production. Microbes such as micro-algae and cyanobacteria that are used for biofuel production also produce other bioactive compounds under stressed conditions. Microbial agents used for biofuel production also produce bioactive compounds with antimicrobial, antiviral, anticoagulant, antioxidant, antifungal, anti-inflammatory and anticancer activity. Because of importance of such high-value compounds in aquaculture and bioremediation, and the potential to reduce carbon emissions and energy security, the biofuels produced by microbial biotechnology might substitute the crop-based bio-ethanol and bio-diesel production.

  7. Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO2 scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilisation ponds.

    PubMed

    Shilton, A N; Mara, D D; Craggs, R; Powell, N

    2008-01-01

    Waste stabilisation pond (WSP) technology offers some important advantages and interesting possibilities when viewed in the light of sustainable energy and carbon management. Pond systems stand out as having significant advantages due to simple construction; low (or zero) operating energy requirements; and the potential for bio-energy generation. Conventional WSP requires little or no electrical energy for aerobic treatment as a result of algal photosynthesis. Sunlight enables WSP to disinfect wastewaters very effectively without the need for any chemicals or electricity consumption and their associated CO(2) emissions. The energy and carbon emission savings gained over electromechanical treatment systems are immense. Furthermore, because algal photosynthesis consumes CO(2), WSP can be utilised as CO(2) scrubbers. The environmental and financial benefits of pond technology broaden further when considering the low-cost, energy production opportunities of anaerobic ponds and the potential of algae as a biofuel. As we assess future best practice in wastewater treatment technology, perhaps one of the greatest needs is an improved consideration of the carbon footprint and the implications of future increases in the cost of electricity and the value of biogas. (c) IWA Publishing 2008.

  8. Environmental implications of jatropha biofuel from a silvi-pastoral production system in central-west Brazil.

    PubMed

    Bailis, Rob; Kavlak, Goksin

    2013-07-16

    We present a life cycle assessment of synthetic paraffinic kerosene produced from Jatropha curcas. The feedstock is grown in an intercropping arrangement with pasture grasses so that Jatropha is coproduced with cattle. Additional innovations are introduced including hybrid seeds, detoxification of jatropha seedcake, and cogeneration. Two fuel pathways are examined including a newly developed catalytic decarboxylation process. Sensitivities are examined including higher planting density at the expense of cattle production as well as 50% lower yields. Intercropping with pasture and detoxifying seedcake yield coproducts that are expected to relieve pressure on Brazil's forests and indirectly reduce environmental impacts of biofuel production. Other innovations also reduce impacts. Results of the baseline assessment indicate that innovations would reduce impacts relative to the fossil fuel reference scenario in most categories including 62-75% reduction in greenhouse gas emissions, 64-82% reduction in release of ozone depleting chemicals, 33-52% reduction in smog-forming pollutants, 6-25% reduction in acidification, and 60-72% reduction in use of nonrenewable energy. System expansion, which explicitly accounts for avoided deforestation, results in larger improvements. Results are robust across allocation methodologies, improve with higher planting density, and persist if yield is reduced by half.

  9. Role of fuel carbon intensity in achieving 2050 greenhouse gas reduction goals within the light-duty vehicle sector.

    PubMed

    Melaina, M; Webster, K

    2011-05-01

    Recent U.S. climate change policy developments include aggressive proposals to reduce greenhouse gas emissions, including cap-and-trade legislation with a goal of an 83% reduction below 2005 levels by 2050. This study examines behavioral and technological changes required to achieve this reduction within the light-duty vehicle (LDV) sector. Under this "fair share" sectoral assumption, aggressive near-term actions are necessary in three areas: vehicle miles traveled (VMT), vehicle fuel economy (FE), and fuel carbon intensity (FCI). Two generic scenarios demonstrate the important role of FCI in meeting the 2050 goal. The first scenario allows deep reductions in FCI to compensate for relatively modest FE improvements and VMT reductions. The second scenario assumes optimistic improvements in FE, relatively large reductions in VMT and less aggressive FCI reductions. Each generic scenario is expanded into three illustrative scenarios to explore the theoretical implications of meeting the 2050 goal by relying exclusively on biofuels and hybrid vehicles, biofuels and plug-in hybrid vehicles, or hydrogen fuel cell electric vehicles. These scenarios inform a discussion of resource limitations, technology development and deployment challenges, and policy goals required to meet the 2050 GHG goal for LDVs.

  10. Final Report for Regulation of Embryonic Development in Higher Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, John J.

    2013-10-22

    The overall goal of the project was to define the cellular processes that underlie embryo development in plants at a mechanistic level. Our studies focused on a critical transcriptional regulator, Arabidopsis LEAFY COTYLEDON (LEC1), that is necessary and sufficient to induce processes required for embryo development. Because LEC1 regulates lipid accumulation during the maturation phase of embryo development, information about LEC1 may be useful in designing approaches to enhance biofuel production in plants. During the tenure of this project, we determined the molecular mechanisms by which LEC1 acts as a transcription factor in embryos. We also identified genes directly regulatedmore » by LEC1 and showed that many of these genes are involved in maturation processes. This information has been useful in dissecting the gene regulatory networks controlling embryo development. Finally, LEC1 is a novel isoform of a transcription factor that is conserved among eukaryotes, and LEC1 is active primarily in seeds. Therefore, we determined that the LEC1-type transcription factors first appeared in lycophytes during land plant evolution. Together, this study provides basic information that has implications for biofuel production.« less

  11. Developing Research Capabilities in Energy Biosciences: Design principles of photosynthetic biofuel production.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald D. Brown; David Savage

    2012-06-30

    The current fossil fuel-based energy infrastructure is not sustainable. Solar radiation is a plausible alternative, but realizing it as such will require significant technological advances in the ability to harvest light energy and convert it into suitable fuels. The biological system of photosynthesis can carry out these reactions, and in principle could be engineered using the tools of synthetic biology. One desirable implementation would be to rewire the reactions of a photosynthetic bacterium to direct the energy harvested from solar radiation into the synthesis of the biofuel H2. Proposed here is a series of experiments to lay the basic sciencemore » groundwork for such an attempt. The goal is to elucidate the transcriptional network of photosynthesis using a novel driver-reporter screen, evolve more robust hydrogenases for improved catalysis, and to test the ability of the photosynthetic machinery to directly produce H2 in vivo. The results of these experiments will have broad implications for the understanding of photosynthesis, enzyme function, and the engineering of biological systems for sustainable energy production. The ultimate impact could be a fundamental transformation of the world's energy economy.« less

  12. Fuel-mix, fuel efficiency, and transport demand affect prospects for biofuels in northern Europe.

    PubMed

    Bright, Ryan M; Strømman, Anders Hammer

    2010-04-01

    Rising greenhouse gas (GHG) emissions in the road transport sector represents a difficult mitigation challenge due to a multitude of intricate factors, namely the dependency on liquid energy carriers and infrastructure lock-in. For this reason, low-carbon renewable energy carriers, particularly second generation biofuels, are often seen as a prominent candidate for realizing reduced emissions and lowered oil dependency over the medium- and long-term horizons. However, the overarching question is whether advanced biofuels can be an environmentally effective mitigation strategy in the face of increasing consumption and resource constraints. Here we develop both biofuel production and road transport consumption scenarios for northern Europe-a region with a vast surplus of forest bioenergy resources-to assess the potential role that forest-based biofuels may play over the medium- and long-term time horizons using an environmentally extended, multiregion input-output model. Through scenarios, we explore how evolving vehicle technologies and consumption patterns will affect the mitigation opportunities afforded by any future supply of forest biofuels. We find that in a scenario involving ambitious biofuel targets, the size of the GHG mitigation wedge attributed to the market supply of biofuels is severely reduced under business-as-usual growth in consumption in the road transport sector. Our results indicate that climate policies targeting the road transport sector which give high emphases to reducing demand (volume), accelerating the deployment of more fuel-efficient vehicles, and promoting altered consumption patterns (structure) can be significantly more effective than those with single emphasis on expanded biofuel supply.

  13. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    NASA Astrophysics Data System (ADS)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  14. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.

    Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (asmore » flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations. Keywords: algae, biofuels, resource assessment, geographic information systems, techno-economics« less

  15. Development of the compaction machine for the production of new shapes of pressed biofuels

    NASA Astrophysics Data System (ADS)

    Šooš, Ľubomír; Matúš, Miloš; Beniak, Juraj; Križan, Peter

    2018-01-01

    Briquettes and especially pellets became the fuel of the 21st century. These are pressed biofuels made from the biomass which have the required heat, shape, size, density and mechanical properties. Today, these pressed biofuels are made in the form of a block, cylinder, n-angle octagonal, either without or with the holes. Several analyses confirm that neither a block, nor the cylinder is the optimal shape for the production of pressed biofuels, both in terms of the production, storage, automated transport in the combustion process and the optimum combustion process. For this reason, we began to analyse different shape, size, density and mechanical properties of briquettes and pellets. In the first part of this article, the biofuel is described from these points of view. The result of this analysis is the new optimized spheroid shape of the pressed biofuels. The goal of the second part of the article is the construction design of a new compacting machine for manufacturing of the optimized shape of the compacted piece. The task is demanding due to the fact that in comparison to the production of cylindrical or square-shaped compacted pieces, the manufacturing of ‘quasi-spherical’ compacted pieces is discontinuous. Furthermore, unlike the standard types of compaction presses which compact the material between the two cylinders, it is necessary to hold the compacted piece for certain time under high pressure and at the high temperature. In this way, the lignin contained in compacted raw material becomes plastic and no further binding material needs to be added. The kinematics of a new compactor was therefore divided into two stages- ‘the stage of compacting’ and ‘the stage of load bearing capacity. This article describes an innovative and patent protected principle of compactor construction. The prototype of a designed machine has already been produced in our department. The first test results of this machine production as described in the conclusion of the paper confirm that kinematics and compactor construction were both correct.

  16. Stress Introduction Rate Alters the Benefit of AcrAB-TolC Efflux Pumps.

    PubMed

    Langevin, Ariel M; Dunlop, Mary J

    2018-01-01

    Stress tolerance studies are typically conducted in an all-or-none fashion. However, in realistic settings-such as in clinical or metabolic engineering applications-cells may encounter stresses at different rates. Therefore, how cells tolerate stress may depend on its rate of appearance. To address this, we studied how the rate of stress introduction affects bacterial stress tolerance by focusing on a key stress response mechanism. Efflux pumps, such as AcrAB-TolC of Escherichia coli , are membrane transporters well known for the ability to export a wide variety of substrates, including antibiotics, signaling molecules, and biofuels. Although efflux pumps improve stress tolerance, pump overexpression can result in a substantial fitness cost to the cells. We hypothesized that the ideal pump expression level would involve a rate-dependent trade-off between the benefit of pumps and the cost of their expression. To test this, we evaluated the benefit of the AcrAB-TolC pump under different rates of stress introduction, including a step, a fast ramp, and a gradual ramp. Using two chemically diverse stresses, the antibiotic chloramphenicol and the jet biofuel precursor pinene, we assessed the benefit provided by the pumps. A mathematical model describing these effects predicted the benefit as a function of the rate of stress introduction. Our findings demonstrate that as the rate of introduction is lowered, stress response mechanisms provide a disproportionate benefit to pump-containing strains, allowing cells to survive beyond the original inhibitory concentrations. IMPORTANCE Efflux pumps are ubiquitous in nature and provide stress tolerance in the cells of species ranging from bacteria to mammals. Understanding how pumps provide tolerance has far-reaching implications for diverse fields, from medicine to biotechnology. Here, we investigated how the rate of stressor appearance impacts tolerance. We focused on two distinct substrates of AcrAB-TolC efflux pumps, the antibiotic chloramphenicol and the biofuel precursor pinene. Interestingly, tolerance is highly dependent on the rate of stress introduction. Therefore, it is important to consider not only the total quantity of a stressor but also the rate at which it is applied. The implications of this work are significant because environments are rarely static; antibiotic concentrations change during dosing, and metabolic engineering processes change with time. Copyright © 2017 American Society for Microbiology.

  17. Expansion Of Sugarcane Production In São Paulo, Brazil: Implications For Fire Occurrence And Respiratory Health

    NASA Astrophysics Data System (ADS)

    Uriarte, M.

    2008-12-01

    Recent increases in the price of oil have generated much interest in biofuel development. Despite the increasing demand, the social and environmental impacts of large scale adoption of biofuels at both regional and national scales remain understudied, especially in developing economies. Here we use municipality-level data for the state of São Paulo in Brasil to explore the effects of fires associated with sugarcane cultivation on respiratory health of elderly and children. We examined the effects of fires occurring in the same year in which respiratory cases were reported as well as chronic effects associated with long-term cultivation of sugarcane. Across the state, respiratory morbidity attributable to fires accounted for 113 elderly and 317 child cases, approximately 1.8% of total cases in each group. Although no chronic effects of fire were detected for the elderly group, an additional 650 child cases can be attributed to the long term cultivation of sugar cane increasing to 5.4% the percent of children cases that can be attributed to fire. For municipalities with greater than 50% of the land in sugarcane the percentage increased to 15% and 12 % respectively for elderly and children. An additional 209 child cases could also be attributed to past exposure to fires associated with sugarcane, suggesting that in total 38% of children respiratory cases could be attributed to current or chronic exposure to fires in these municipalities. The harmful effects of cane- associated fires on health are not only a burden for the public health system but also for household economies. This type of information should be incorporated into land use decisions and discussions of biofuel sustainability.

  18. %22Trojan Horse%22 strategy for deconstruction of biomass for biofuels production.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Blake Alexander; Sinclair, Michael B.; Yu, Eizadora

    2011-02-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multiagency national priority (DOE/USDA/EERE). Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyzemore » the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology-engineered plants that self-produce a suite of cellulase enzymes. Deconstruction can then be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The unique aspects of our approach are the rationally engineered enzymes which become Trojan horses during pretreatment conditions. During this study we rationally engineered Cazy enzymes and then integrated them into plant cells by multiple transformation techniques. The regenerated plants were assayed for first expression of these messages and then for the resulting proteins. The plants were then subjected to consolidated bioprocessing and characterized in detail. Our results and possible implications of this work on developing dedicated energy crops and their advantage in a consolidated bioprocessing system.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellwinckel, Chad; Clark, Christopher; Langholtz, Matthew

    We used a socioeconomic model to estimate the land-use implications on the U.S. Conservation Reserve Program from potential increases in second-generation biofuel production. A baseline scenario with no second-generation biofuel production is compared to a scenario where the Renewable Fuels Standard (RFS2) volumes are met by 2022. We allow for the possibility of converting expiring CRP lands to alternative uses such as conventional crops, dedicated second-generation biofuel crops, or harvesting existing CRP grasses for biomass. Our results indicate that RFS2 volumes (RFS2-v) can be met primarily with crop residues (78% of feedstock demand) and woody residues (19% of feedstock demand)more » compared with dedicated biomass (3% of feedstock demand), with only minimal conversion of cropland (0.27 million hectares, <1% of total cropland), pastureland (0.28 million hectares of pastureland, <1% of total pastureland), and CRP lands (0.29 million hectares of CRP lands, 3% of existing CRP lands) to biomass production. Meeting RFS2 volumes would reduce CRP re-enrollment by 0.19 million hectares, or 4%, below the baseline scenario where RFS2 is not met. Yet under RFS2-v scenario, expiring CRP lands are more likely to be converted to or maintain perennial cover, with 1.78 million hectares of CRP lands converting to hay production, and 0.29 million hectares being harvested for existing grasses. A small amount of CRP is harvested for existing biomass, but no conversion of CRP to dedicated biomass crops, such as switchgrass, are projected to occur. Although less land is enrolled in CRP under RFS2-v scenario, total land in perennial cover increases by 0.15 million hectares, or 2%, under RFS2-v. Sensitivity to yield, payment and residue retention assumptions are evaluated.« less

  20. 7 CFR 4288.131 - Payment provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions Payment Provisions § 4288.131 Payment provisions. Payments to advanced biofuel producers for eligible advanced biofuel production will be determined in accordance with the provisions of...

  1. 7 CFR 4288.121 - Contract.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions Enrollment Provisions § 4288.121 Contract. Advanced biofuel producers determined to be eligible to.... (a) Contract. The Agency will forward the contract to the advanced biofuel producer. The advanced...

  2. Montana Advanced Biofuels Great Falls Approval

    EPA Pesticide Factsheets

    This November 20, 2015 letter from EPA approves the petition from Montana Advanced Biofuels, LLC, Great Falls facility, regarding ethanol produced through a dry mill process, qualifying under the Clean Air Act for advanced biofuel (D-code 5) and renewable

  3. Synthetic biology for microbial production of lipid-based biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    d’Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel

    The risks of maintaining current CO 2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO 2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here in this paper we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. Lastly, we further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential ofmore » synthetic biology for sustainable manufacturing.« less

  4. Algae biofuels: versatility for the future of bioenergy.

    PubMed

    Jones, Carla S; Mayfield, Stephen P

    2012-06-01

    The world continues to increase its energy use, brought about by an expanding population and a desire for a greater standard of living. This energy use coupled with the realization of the impact of carbon dioxide on the climate, has led us to reanalyze the potential of plant-based biofuels. Of the potential sources of biofuels the most efficient producers of biomass are the photosynthetic microalgae and cyanobacteria. These versatile organisms can be used for the production of bioethanol, biodiesel, biohydrogen, and biogas. In fact, one of the most economic methods for algal biofuels production may be the combined biorefinery approach where multiple biofuels are produced from one biomass source. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. 2016 National Algal Biofuels Technology Review Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  6. Biofuels and sustainability.

    PubMed

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.

  7. Evaluating Oilseed Biofuel Production Feasibility in California’s San Joaquin Valley Using Geophysical and Remote Sensing Techniques

    PubMed Central

    Corwin, Dennis L.; Yemoto, Kevin; Clary, Wes; Banuelos, Gary; Skaggs, Todd H.; Lesch, Scott M.

    2017-01-01

    Though more costly than petroleum-based fuels and a minor component of overall military fuel sources, biofuels are nonetheless strategically valuable to the military because of intentional reliance on multiple, reliable, secure fuel sources. Significant reduction in oilseed biofuel cost occurs when grown on marginally productive saline-sodic soils plentiful in California’s San Joaquin Valley (SJV). The objective is to evaluate the feasibility of oilseed production on marginal soils in the SJV to support a 115 ML yr−1 biofuel conversion facility. The feasibility evaluation involves: (1) development of an Ida Gold mustard oilseed yield model for marginal soils; (2) identification of marginally productive soils; (3) development of a spatial database of edaphic factors influencing oilseed yield and (4) performance of Monte Carlo simulations showing potential biofuel production on marginally productive SJV soils. The model indicates oilseed yield is related to boron, salinity, leaching fraction, and water content at field capacity. Monte Carlo simulations for the entire SJV fit a shifted gamma probability density function: Q = 68.986 + gamma (6.134,5.285), where Q is biofuel production in ML yr−1. The shifted gamma cumulative density function indicates a 0.15–0.17 probability of meeting the target biofuel-production level of 115 ML yr−1, making adequate biofuel production unlikely. PMID:29036925

  8. Life cycle environmental impacts of wastewater-based algal biofuels.

    PubMed

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  9. 7 CFR 4288.134 - Refunds and interest payments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.134 Refunds and interest payments. An eligible advanced biofuel producer...) An eligible advanced biofuel producer receiving payments under this subpart shall become ineligible...

  10. 7 CFR 4288.130 - Payment applications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... process and procedures the Agency will use to make payments to eligible advanced biofuel producers. In order to receive payments under this Program, eligible advanced biofuel producers with valid contracts...

  11. 7 CFR 4288.130 - Payment applications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... process and procedures the Agency will use to make payments to eligible advanced biofuel producers. In order to receive payments under this Program, eligible advanced biofuel producers with valid contracts...

  12. 7 CFR 4288.134 - Refunds and interest payments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.134 Refunds and interest payments. An eligible advanced biofuel producer...) An eligible advanced biofuel producer receiving payments under this subpart shall become ineligible...

  13. 7 CFR 4288.120 - Enrollment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General... the Program is presented in this section. Advanced biofuel producers who expect to produce eligible.... (a) Enrollment. To enroll in the Program, an advanced biofuel producer must submit to the Agency a...

  14. 7 CFR 4288.131 - Payment provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.131 Payment provisions. Payments to advanced biofuel producers for eligible advanced biofuel production will be determined in accordance with the provisions of this section. (a) Types...

  15. 7 CFR 4288.120 - Enrollment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General... the Program is presented in this section. Advanced biofuel producers who expect to produce eligible.... (a) Enrollment. To enroll in the Program, an advanced biofuel producer must submit to the Agency a...

  16. 7 CFR 4288.130 - Payment applications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... identify the process and procedures the Agency will use to make payments to eligible advanced biofuel producers. In order to receive payments under this Program, eligible advanced biofuel producers with valid...

  17. 7 CFR 4288.131 - Payment provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.131 Payment provisions. Payments to advanced biofuel producers for eligible advanced biofuel production will be determined in accordance with the provisions of this section. (a) Types...

  18. 10 CFR 452.5 - Bidding procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.5 Bidding... producer auction process open only to pre-auction eligible cellulosic biofuels producers. The following... cellulosic biofuels producers during the open window established in the solicitation. The open window shall...

  19. NREL Algal Biofuels Projects and Partnerships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  20. 10 CFR 452.5 - Bidding procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.5 Bidding... producer auction process open only to pre-auction eligible cellulosic biofuels producers. The following... cellulosic biofuels producers during the open window established in the solicitation. The open window shall...

  1. 10 CFR 452.5 - Bidding procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.5 Bidding... producer auction process open only to pre-auction eligible cellulosic biofuels producers. The following... cellulosic biofuels producers during the open window established in the solicitation. The open window shall...

  2. 10 CFR 452.5 - Bidding procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.5 Bidding... producer auction process open only to pre-auction eligible cellulosic biofuels producers. The following... cellulosic biofuels producers during the open window established in the solicitation. The open window shall...

  3. Agriculture, Land Use, Energy and Carbon Emission Impacts of Global Biofuel Mandates to Mid-Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Marshall A.; Dooley, James J.; Luckow, Patrick

    2014-02-01

    Three potential future scenarios of expanded global biofuel production are presented here utilizing the GCAM integrated assessment model. These scenarios span a range that encompasses on the low end a continuation of existing biofuel production policies to two scenarios that would require an expansion of current targets as well as an extension of biofuels targets to other regions of the world. Conventional oil use is reduced by 4-8% in the expanded biofuel scenarios, which results in a decrease of in CO2 emissions on the order of 1-2 GtCO2/year by mid-century from the global transportation sector. The regional distribution of cropmore » production is relatively unaffected, but the biofuels targets do result in a marked increase in the production of conventional crops used for energy. Producer prices of sugar and corn reach levels about 12% and 7% above year 2005 levels, while the increased competition for land causes the price of food crops such as wheat, although not used for bioenergy in this study, to increase by 1 to 2%. The amount of land devoted to growing all food crops and dedicated bioenergy crops is increased by about 10% by 2050 in the High biofuel case, with concurrent decreases in other uses of land such as forest and pasture. In both of the expanded biofuels cases studied, there is an increase in net cumulative carbon emissions for the first couple of decades due to these induced land use changes. However, the difference in net cumulative emissions from the biofuels expansion decline by about 2035 as the reductions in energy system emissions exceed further increases in emissions from land use change. Even in the absence of a policy that would limit emissions from land use change, the differences in net cumulative emissions from the biofuels scenarios reach zero by 2050, and are decreasing further over time in both cases.« less

  4. The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Curtis D.; Zhang, Xuesong; Reddy, Ashwan D.

    Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near-term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site-level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expectedmore » from continuous maize residue-derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover-derived biofuels. Using the most representative methodology for assessing long-term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near-term US cellulosic biofuel demand, could be met under common no-till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no-till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential cellulosic biofuel production.« less

  5. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations

    NASA Astrophysics Data System (ADS)

    Cosnier, Serge; J. Gross, Andrew; Le Goff, Alan; Holzinger, Michael

    2016-09-01

    The possibility of producing electrical power from chemical energy with biological catalysts has induced the development of biofuel cells as viable energy sources for powering portable and implanted electronic devices. These power sources employ biocatalysts, called enzymes, which are highly specific and catalytic towards the oxidation of a biofuel and the reduction of oxygen or hydrogen peroxide. Enzymes, on one hand, are promising candidates to replace expensive noble metal-based catalysts in fuel cell research. On the other hand, they offer the exciting prospect of a new generation of fuel cells which harvest energy from body fluids. Biofuel cells which use glucose as a fuel are particularly interesting for generating electricity to power electronic devices inside a living body. Hydrogen consuming biofuel cells represent an emerging alternative to platinum catalysts due to comparable efficiencies and the capability to operate at lower temperatures. Currently, these technologies are not competitive with existing commercialised fuel cell devices due to limitations including insufficient power outputs and lifetimes. The advantages and challenges facing glucose biofuel cells for implantation and hydrogen biofuel cells will be summarised along with recent promising advances and the future prospects of these exotic energy-harvesting devices.

  6. Biofuel cell based on direct bioelectrocatalysis.

    PubMed

    Ramanavicius, Arunas; Kausaite, Asta; Ramanaviciene, Almira

    2005-04-15

    A biofuel cell, consisting of two 3mm diameter carbon rod electrodes and operating at ambient temperature in aqueous solution, pH 6, is described. Biofuel cell based on enzymes able to exchange directly electrons with carbon electrodes was constructed and characterized. Anode of the biofuel cell was based on immobilized Quino-hemoprotein alcohol dehydrogenase from Gluconobacter sp. 33 (QH-ADH), cathode on co-immobilized glucose oxidase from Aspergilus niger (GO(x)) and microperoxidase 8 from the horse heart (MP-8) acting in the consecutive mode. Two enzymes GO(x) and MP-8 applied in the design of biofuel cell cathode were acting in consecutive mode and by hydrogen peroxide oxidized MP-8 was directly accepting electrons from carbon rod electrode. If ethanol was applied as an energy source the maximal open circuit potential of the biofuel cell was -125 mV. If glucose was applied as energy source the open circuit potential of the cell was +145 mV. The maximal open circuit potential (270 mV) was achieved in the presence of extent concentration (over 2 mM) of both substrates (ethanol and glucose). Operational half-life period (tau(1/2)) of the biofuel cell was found to be 2.5 days.

  7. Bioproducts and environmental quality: Biofuels, greenhouse gases, and water quality

    NASA Astrophysics Data System (ADS)

    Ren, Xiaolin

    Promoting bio-based products is one oft-proposed solution to reduce GHG emissions because the feedstocks capture carbon, offsetting at least partially the carbon discharges resulting from use of the products. However, several life cycle analyses point out that while biofuels may emit less life cycle net carbon emissions than fossil fuels, they may exacerbate other parts of biogeochemical cycles, notably nutrient loads in the aquatic environment. In three essays, this dissertation explores the tradeoff between GHG emissions and nitrogen leaching associated with biofuel production using general equilibrium models. The first essay develops a theoretical general equilibrium model to calculate the second-best GHG tax with the existence of a nitrogen leaching distortion. The results indicate that the second-best GHG tax could be higher or lower than the first-best tax rates depending largely on the elasticity of substitution between fossil fuel and biofuel. The second and third essays employ computable general equilibrium models to further explore the tradeoff between GHG emissions and nitrogen leaching. The computable general equilibrium models also incorporate multiple biofuel pathways, i.e., biofuels made from different feedstocks using different processes, to identify the cost-effective combinations of biofuel pathways under different policies, and the corresponding economic and environmental impacts.

  8. Reevaluation of the global warming impacts of algae-derived biofuels to account for possible contributions of nitrous oxide.

    PubMed

    Bauer, Sarah K; Grotz, Lara S; Connelly, Elizabeth B; Colosi, Lisa M

    2016-10-01

    The environmental impacts of algae biofuels have been evaluated by life-cycle assessment (LCA); however, these analyses have overlooked nitrous oxide (N2O), a potent greenhouse gas. A literature analysis was performed to estimate algal N2O emissions and assess the impacts of growth conditions on flux magnitudes. Nitrogen source and dissolved oxygen concentration were identified as possible key contributors; therefore, their individual and combined impacts were evaluated using bench-scale experiments. It was observed that maximum N2O emissions (77.5μg/galgae/day) occur under anoxic conditions with nitrite. Conversely, minimum emissions (6.25μg/galgae/day) occur under oxic conditions with nitrate. Aggregated N2O flux estimates were then incorporated into a LCA framework for algae biodiesel. Accounting for "low" N2O emissions mediated no significant increase (<1%) compared to existing GWP estimates; however, "high" N2O emissions mediate an increase of roughly 25%, potentially jeopardizing the anticipated economic and environmental performances of algae biofuels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroymson, Rebecca Ann; Dale, Virginia H; Kline, Keith L

    Indicators of the environmental sustainability of biofuel production, distribution, and use should be selected, measured, and interpreted with respect to the context in which they are used. These indicators include measures of soil quality, water quality and quantity, greenhouse-gas emissions, biodiversity, air quality, and vegetation productivity. Contextual considerations include the purpose for the sustainability analysis, the particular biofuel production and distribution system (including supply chain, management aspects, and system viability), policy conditions, stakeholder values, location, temporal influences, spatial scale, baselines, and reference scenarios. Recommendations presented in this paper include formulating the problem for particular analyses, selecting appropriate context-specific indicators ofmore » environmental sustainability, and developing indicators that can reflect multiple environmental properties at low cost within a defined context. In addition, contextual considerations such as technical objectives, varying values and perspectives of stakeholder groups, and availability and reliability of data need to be understood and considered. Sustainability indicators for biofuels are most useful if adequate historical data are available, information can be collected at appropriate spatial and temporal scales, organizations are committed to use indicator information in the decision-making process, and indicators can effectively guide behavior toward more sustainable practices.« less

  10. Biomass production of multipopulation microalgae in open air pond for biofuel potential.

    PubMed

    Selvakumar, P; Umadevi, K

    2016-04-01

    Biodiesel gains attention as it is made from renewable resources and has considerable environmental benefits. The present investigation has focused on large scale cultivation of multipopulation microalgae in open air pond using natural sea water without any additional nutritive supplements for low cost biomass production as a possible source of biofuel in large scale. Open air algal pond attained average chlorophyll concentration of 11.01 µg/L with the maximum of 43.65 µg/L as well as a higher lipid concentration of 18% (w/w) with lipid content 9.3 mg/L on the 10th day of the culture; and maximum biomass of 0.36 g/L on the 7th day of the culture. Composition analysis of fatty acid methyl ester (FAME) was performed by gas chromatography and mass spectrometry (GCMS). Multipopulation of algal biomass had 18% of total lipid content with 55% of total saturated fatty acids (SFA), 35.3% of monounsaturated fatty acids (MUFA) and 9.7% of polyunsaturated fatty acids (PUFA), revealing a potential source of biofuel production at low cost.

  11. David K. Johnson | NREL

    Science.gov Websites

    analysis Lignin chemistry High-temperature and pressure lignin hydrotreating Catalytic hydrodeoxygenation ;Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility," Biotechnology for Biofuels (2011) "Glucose

  12. Thermophysical characterization of the seeds of invasive Chinese tallow tree: importance for biofuel production.

    PubMed

    Picou, Laura; Boldor, Doran

    2012-10-16

    The limited supply of traditional fossil based fuels, and increased concern about their environmental impact has driven the interest in the utilization of biomass based energy sources, including those that are underutilized or otherwise nuisance species such as Chinese tallow trees (Triadica sebifera [L.]). This species is a prolific seeds producer, and this paper shows that they contain more than 50% lipids by mass that are suitable for conversion into biodiesel. We present here, for the first time, the seeds' thermophysical properties important for biofuel production. The seeds were characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and ultimate analysis; their thermal conductivity, thermal diffusivity, and specific heat were determined. The characterization results were correlated to fatty acid composition and lipid content for whole seeds and individual layers, as well as to the protein, hemicellulose, cellulose, and lignin content. The TGA analysis indicated the presence, in addition to lipids, of hemicellulose, cellulose, lignin, and proteins, depending on the layer analyzed. Thermal conductivity and specific heat were, respectively 0.14 ± 0.007 W/mK and 3843.5 ± 171.16 J/kgK for wax, 0.20 ± 0.002 W/mK and 2018.7 ± 5.18 J/kgK for shells, 0.13 ± 0.0 W/mK and 1237 ± 3.15 J/kgK for internal kernel, and 0.13 ± 0.000 W/mK and 2833.9 ± 104.11 J/kgK for whole seeds. These properties and characterization method can be further used in engineering analysis used to determine the most optimum processing method for production of biofuels from this feedstock.

  13. Combined Sustainability Assessment and Techno-Economic Analysis for the Production of Biomass-Derived High-Octane Gasoline Blendstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit

    Conversion technologies for biomass to liquid hydrocarbon fuels are being actively developed. Converting biomass into advanced hydrocarbon fuels requires detailed assessments to help prioritize research; techno-economic analysis (TEA) is a long established tool used to assess feasibility and progress. TEA provides information needed to make informed judgments about the viability of any given conceptual conversion process; it is particularly useful to identify technical barriers and measure progress toward overcoming those barriers. Expansion of the cellulosic biofuels industry at the scale needed to meet the Renewable Fuel Standard goals is also expected to have environmental impacts. Hence, the success of themore » biofuels industry depends not only on economic viability, but also on environmental sustainability. A biorefinery process that is economically feasible but suffers from key sustainability drawbacks is not likely to represent a long-term solution to replace fossil-derived fuels. Overarching concerns like environmental sustainability need to be addressed for biofuels production. Combined TEA and environmental sustainability assessment of emerging pathways helps facilitate biorefinery designs that are both economically feasible and minimally impactful to the environment. This study focuses on environmental sustainability assessment and techno-economic analysis for the production of high-octane gasoline blendstock via gasification and methanol/dimethyl ether intermediates. Results from the conceptual process design with economic analysis, along with the quantification and assessment of the environmental sustainability, are presented and discussed. Sustainability metrics associated with the production of high-octane gasoline include carbon conversion efficiency, consumptive water use, life-cycle greenhouse gas emissions, fossil energy consumption, energy return on investment and net energy value.« less

  14. Assessment of technologies to meet a low carbon fuel standard.

    PubMed

    Yeh, Sonia; Lutsey, Nicholas P; Parker, Nathan C

    2009-09-15

    California's low carbon fuel standard (LCFS) was designed to incentivize a diverse array of available strategies for reducing transportation greenhouse gas (GHG) emissions. It provides strong incentives for fuels with lower GHG emissions, while explicitly requiring a 10% reduction in California's transportation fuel GHG intensity by 2020. This paper investigates the potential for cost-effective GHG reductions from electrification and expanded use of biofuels. The analysis indicates that fuel providers could meetthe standard using a portfolio approach that employs both biofuels and electricity, which would reduce the risks and uncertainties associated with the progress of cellulosic and battery technologies, feedstock prices, land availability, and the sustainability of the various compliance approaches. Our analysis is based on the details of California's development of an LCFS; however, this research approach could be generalizable to a national U.S. standard and to similar programs in Europe and Canada.

  15. A Comparative Characteristic Study of Jatropha and Cardanol Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Pugazhenthi, R.; Chandrasekaran, M.; Muthuraman, R. K.; Vivek, P.; Parthiban, A.

    2017-03-01

    The demand in fuel needs and the depleting fossil fuels raised the need towards bio-fuels. The emerging trend in research field is highly focused on biodiesel production and their characteristic analysis. Since pollution is a major threat to the environment, emission parameter analyses are much important to be concentrated. As the entire world contains plenty of biofuels, it is necessary to explore them for its efficiency and analyze their parameters. In this experimental work jatropha and cashew nut shell biodiesel (Cardanol) was extracted and they were blended with diesel. The characteristics of jatropha and cardanol biodiesel were studied in the DI diesel engine by varying the load at the same speed. In brief, this experimental analysis is carried out to compare the emission characteristics between Jatropha biodiesel at 20% (B20) and 40% (B40) and Cardanol biodiesel blends at 20% (C20) and 40% (C40).

  16. Catalytic conversion of Chlorella pyrenoidosa to biofuels in supercritical alcohols over zeolites.

    PubMed

    Yang, Le; Ma, Rui; Ma, Zewei; Li, Yongdan

    2016-06-01

    Microalgae have been considered as the feedstock for the third generation biofuels production, given its high lipid content and fast productivity. Herein, a catalytic approach for microalgae liquefaction to biocrude is examined in a temperature range of 250-300°C in methanol and ethanol over zeolites. Higher biocrude yield was achieved in ethanol and at lower temperatures, while better quality biocrude with higher light biocrude ratio and lower average molecular weight (Mw) was favored in methanol and at higher temperatures. Application of zeolites improves the biocrude quality significantly. Among the catalysts, HY shows the strongest acidity and performs the best to produce high quality biocrude. Solid residues have been extensively explored with thermal gravity analysis and elemental analysis. It is reported for the first time that up to 99wt.% of sulfur is deposited in the solid residue at 250°C for both solvents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. 7 CFR 4288.120 - Enrollment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General... enrolling in the Program is presented in this section. Advanced biofuel producers who expect to produce... section. (a) Enrollment. To enroll in the Program, an advanced biofuel producer must submit to the Agency...

  18. 7 CFR 4288.134 - Refunds and interest payments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment... advanced biofuel producer who receives payments under this subpart may be required to refund such payments... General for appropriate action. (a) An eligible advanced biofuel producer receiving payments under this...

  19. 7 CFR 4288.135 - Unauthorized payments and offsets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel... unauthorized assistance has been made to an advanced biofuel producer under this Program, the Agency reserves... the producer. Upon determination that unauthorized assistance has been made to an advanced biofuel...

  20. 7 CFR 4288.113 - Payment record requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment... advanced biofuel producer must maintain records for all relevant fiscal years and fiscal year quarters for each advanced biofuel facility indicating: (a) The type of eligible renewable biomass used in the...

  1. 7 CFR 4288.113 - Payment record requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment... for Program payments, an advanced biofuel producer must maintain records for all relevant fiscal years and fiscal year quarters for each advanced biofuel facility indicating: (a) The type of eligible...

  2. 7 CFR 4288.113 - Payment record requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment... advanced biofuel producer must maintain records for all relevant fiscal years and fiscal year quarters for each advanced biofuel facility indicating: (a) The type of eligible renewable biomass used in the...

  3. Locomotive biofuel study : preliminary study on the use and the effects of biodiesel in locomotives.

    DOT National Transportation Integrated Search

    2014-05-01

    Section 404 of the Passenger Rail Investment and Improvement Act (PRIIA), 2008, mandated that the Federal Railroad : Administration (FRA) undertake a Locomotive Biofuel Study to investigate the feasibility of using biofuel blends as locomotive : engi...

  4. Carbon exchange by establishing biofuel crops in Central Illinois

    USDA-ARS?s Scientific Manuscript database

    Perennial grass biofuels may contribute to long-term carbon sequestration in soils, thereby providing a broad range of environmental benefits at multiple scales. To quantify those benefits, the carbon balance was investigated over three perennial grass biofuel crops miscanthus (Miscanthus giganteus)...

  5. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    EPA Science Inventory

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  6. 7 CFR 4288.102 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... biomass, other than corn kernel starch, to include: (1) Biofuel derived from cellulose, hemicellulose, or lignin; (2) Biofuel derived from sugar and starch (other than ethanol derived from corn kernel starch... kernel starch. Eligible renewable energy content. That portion of an advanced biofuel's energy content...

  7. 7 CFR 4288.102 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... biomass, other than corn kernel starch, to include: (1) Biofuel derived from cellulose, hemicellulose, or lignin; (2) Biofuel derived from sugar and starch (other than ethanol derived from corn kernel starch... kernel starch. Eligible renewable energy content. That portion of an advanced biofuel's energy content...

  8. 7 CFR 4288.102 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... biomass, other than corn kernel starch, to include: (1) Biofuel derived from cellulose, hemicellulose, or lignin; (2) Biofuel derived from sugar and starch (other than ethanol derived from corn kernel starch... kernel starch. Eligible renewable energy content. That portion of an advanced biofuel's energy content...

  9. Biofuels development and the policy regime.

    PubMed

    Philp, Jim C; Guy, Ken; Ritchie, Rachael J

    2013-01-01

    Any major change to the energy order is certain to provoke both positive and negative societal responses. The current wave of biofuels development ignited controversies that have re-shaped the thinking about their future development. Mistakes were made in the early support for road transport biofuels in Organisation for Economic Co-operation and Development (OECD) countries. This article examines some of the policies that shaped the early development of biofuels and looks to the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. International Trade of Biofuels (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  11. Energy Security Requires Diversity: An Argument for The Defense Production Act Title III Biofuel Initiative

    DTIC Science & Technology

    2013-06-19

    restriction. At that time, Congress also amended the “Declaration of Policy” to include renewable energy sources “ biomass ” and “more efficient energy...minimum mandates for advanced biofuels are one billion gallons for biomass -based diesel, 16 billion gallons for cellulosic fuels, and four billion...biofuels-and- the-u-s-military-has-it-wrong/ 162 BARTIS, supra note 159. 163 United to Purchase Biofuels from AltAir Fuels, BIOMASS MAGAZINE (July 1

  12. Energy analysis and break-even distance for transportation for biofuels in comparison to fossil fuels

    USDA-ARS?s Scientific Manuscript database

    In the present analysis various forms fuel from biomass and fossil sources, their mass and energy densities, and their break-even transportation distances to transport them effectively were analyzed. This study gives an insight on how many times more energy spent on transporting the fuels to differe...

  13. A droplet microfluidics platform for rapid microalgal growth and oil production analysis.

    PubMed

    Kim, Hyun Soo; Guzman, Adrian R; Thapa, Hem R; Devarenne, Timothy P; Han, Arum

    2016-08-01

    Microalgae have emerged as a promising source for producing future renewable biofuels. Developing better microalgal strains with faster growth and higher oil production rates is one of the major routes towards economically viable microalgal biofuel production. In this work, we present a droplet microfluidics-based microalgae analysis platform capable of measuring growth and oil content of various microalgal strains with single-cell resolution in a high-throughput manner. The platform allows for encapsulating a single microalgal cell into a water-in-oil emulsion droplet and tracking the growth and division of the encapsulated cell over time, followed by on-chip oil quantification. The key feature of the developed platform is its capability to fluorescently stain microalgae within microdroplets for oil content quantification. The performance of the developed platform was characterized using the unicellular microalga Chlamydomonas reinhardtii and the colonial microalga Botryococcus braunii. The application of the platform in quantifying growth and oil accumulation was successfully confirmed using C. reinhardtii under different culture conditions, namely nitrogen-replete and nitrogen-limited conditions. These results demonstrate the capability of this platform as a rapid screening tool that can be applied to a wide range of microalgal strains for analyzing growth and oil accumulation characteristics relevant to biofuel strain selection and development. Biotechnol. Bioeng. 2016;113: 1691-1701. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Life cycle greenhouse gas emissions of sugar cane renewable jet fuel.

    PubMed

    Moreira, Marcelo; Gurgel, Angelo C; Seabra, Joaquim E A

    2014-12-16

    This study evaluated the life cycle GHG emissions of a renewable jet fuel produced from sugar cane in Brazil under a consequential approach. The analysis included the direct and indirect emissions associated with sugar cane production and fuel processing, distribution, and use for a projected 2020 scenario. The CA-GREET model was used as the basic analytical tool, while Land Use Change (LUC) emissions were estimated employing the GTAP-BIO-ADV and AEZ-EF models. Feedstock production and LUC impacts were evaluated as the main sources of emissions, respectively estimated as 14.6 and 12 g CO2eq/MJ of biofuel in the base case. However, the renewable jet fuel would strongly benefit from bagasse and trash-based cogeneration, which would enable a net life cycle emission of 8.5 g CO2eq/MJ of biofuel in the base case, whereas Monte Carlo results indicate 21 ± 11 g CO2eq/MJ. Besides the major influence of the electricity surplus, the sensitivity analysis showed that the cropland-pasture yield elasticity and the choice of the land use factor employed to sugar cane are relevant parameters for the biofuel life cycle performance. Uncertainties about these estimations exist, especially because the study relies on projected performances, and further studies about LUC are also needed to improve the knowledge about their contribution to the renewable jet fuel life cycle.

  15. Streamflow Impacts of Biofuel Policy-Driven Landscape Change

    PubMed Central

    Khanal, Sami; Anex, Robert P.; Anderson, Christopher J.; Herzmann, Daryl E.

    2014-01-01

    Likely changes in precipitation (P) and potential evapotranspiration (PET) resulting from policy-driven expansion of bioenergy crops in the United States are shown to create significant changes in streamflow volumes and increase water stress in the High Plains. Regional climate simulations for current and biofuel cropping system scenarios are evaluated using the same atmospheric forcing data over the period 1979–2004 using the Weather Research Forecast (WRF) model coupled to the NOAH land surface model. PET is projected to increase under the biofuel crop production scenario. The magnitude of the mean annual increase in PET is larger than the inter-annual variability of change in PET, indicating that PET increase is a forced response to the biofuel cropping system land use. Across the conterminous U.S., the change in mean streamflow volume under the biofuel scenario is estimated to range from negative 56% to positive 20% relative to a business-as-usual baseline scenario. In Kansas and Oklahoma, annual streamflow volume is reduced by an average of 20%, and this reduction in streamflow volume is due primarily to increased PET. Predicted increase in mean annual P under the biofuel crop production scenario is lower than its inter-annual variability, indicating that additional simulations would be necessary to determine conclusively whether predicted change in P is a response to biofuel crop production. Although estimated changes in streamflow volume include the influence of P change, sensitivity results show that PET change is the significantly dominant factor causing streamflow change. Higher PET and lower streamflow due to biofuel feedstock production are likely to increase water stress in the High Plains. When pursuing sustainable biofuels policy, decision-makers should consider the impacts of feedstock production on water scarcity. PMID:25289698

  16. Indirect land-use changes can overcome carbon savings from biofuels in Brazil.

    PubMed

    Lapola, David M; Schaldach, Ruediger; Alcamo, Joseph; Bondeau, Alberte; Koch, Jennifer; Koelking, Christina; Priess, Joerg A

    2010-02-23

    The planned expansion of biofuel plantations in Brazil could potentially cause both direct and indirect land-use changes (e.g., biofuel plantations replace rangelands, which replace forests). In this study, we use a spatially explicit model to project land-use changes caused by that expansion in 2020, assuming that ethanol (biodiesel) production increases by 35 (4) x 10(9) liter in the 2003-2020 period. Our simulations show that direct land-use changes will have a small impact on carbon emissions because most biofuel plantations would replace rangeland areas. However, indirect land-use changes, especially those pushing the rangeland frontier into the Amazonian forests, could offset the carbon savings from biofuels. Sugarcane ethanol and soybean biodiesel each contribute to nearly half of the projected indirect deforestation of 121,970 km(2) by 2020, creating a carbon debt that would take about 250 years to be repaid using these biofuels instead of fossil fuels. We also tested different crops that could serve as feedstock to fulfill Brazil's biodiesel demand and found that oil palm would cause the least land-use changes and associated carbon debt. The modeled livestock density increases by 0.09 head per hectare. But a higher increase of 0.13 head per hectare in the average livestock density throughout the country could avoid the indirect land-use changes caused by biofuels (even with soybean as the biodiesel feedstock), while still fulfilling all food and bioenergy demands. We suggest that a closer collaboration or strengthened institutional link between the biofuel and cattle-ranching sectors in the coming years is crucial for effective carbon savings from biofuels in Brazil.

  17. Studies on Mn Ion Diffusion and Spin Injection Simulation of Spin LED Devices and STM/STS Study of Codoped TiO2

    NASA Astrophysics Data System (ADS)

    Zhang, Yizhen

    Biofuels are often forecast to provide significant reductions in the greenhouse gas (GHG) emissions from the transportation sector globally. Many countries have regarded bioenergy development as a solution to both climate change mitigation and foreign energy dependence. It is projected that biofuel production may contribute up to a quarter of transportation fuel supply by 2050. But uncertainties and concerns still remain with respect to the environmental performance of biofuels, including their contribution to GHGs. Life cycle assessment (LCA) is a powerful tool for evaluating the environmental impacts of emerging technologies. However, existing LCAs are inconsistent in their selection of system boundaries, modeling assumptions, and treatment of co-products, which lead to wide variations in results, and make the comparisons of biofuel pathways challenging. Co-products usually play an essential role in biofuel production system, both economically and environmentally. Thus the treatment strategies of co-product are considered critical to LCA results. Studies presented in this dissertation assess several types of biofuels, including first generation, second generation and advanced biofuels, which are produced from terrestrial feedstocks (e.g., corn grain and corn stover) and algae. A variety of researchers have identified the importance of treating co-products in LCAs. This study focuses on the improvement of LCA methodology for assessing biofuel co-products. This dissertation contributes to current knowledge and methodology in following ways: 1) it develops a comprehensive life cycle energy, carbon and water model for microalgae biofuel production 2) it improves co-product allocation strategies in LCA; and 3) it explores the indirect impacts on ocean resources induced by algal oil production at large scale, which has not been examined previously.

  18. Indirect land-use changes can overcome carbon savings from biofuels in Brazil

    PubMed Central

    Lapola, David M.; Schaldach, Ruediger; Alcamo, Joseph; Bondeau, Alberte; Koch, Jennifer; Koelking, Christina; Priess, Joerg A.

    2010-01-01

    The planned expansion of biofuel plantations in Brazil could potentially cause both direct and indirect land-use changes (e.g., biofuel plantations replace rangelands, which replace forests). In this study, we use a spatially explicit model to project land-use changes caused by that expansion in 2020, assuming that ethanol (biodiesel) production increases by 35 (4) x 109 liter in the 2003-2020 period. Our simulations show that direct land-use changes will have a small impact on carbon emissions because most biofuel plantations would replace rangeland areas. However, indirect land-use changes, especially those pushing the rangeland frontier into the Amazonian forests, could offset the carbon savings from biofuels. Sugarcane ethanol and soybean biodiesel each contribute to nearly half of the projected indirect deforestation of 121,970 km2 by 2020, creating a carbon debt that would take about 250 years to be repaid using these biofuels instead of fossil fuels. We also tested different crops that could serve as feedstock to fulfill Brazil’s biodiesel demand and found that oil palm would cause the least land-use changes and associated carbon debt. The modeled livestock density increases by 0.09 head per hectare. But a higher increase of 0.13 head per hectare in the average livestock density throughout the country could avoid the indirect land-use changes caused by biofuels (even with soybean as the biodiesel feedstock), while still fulfilling all food and bioenergy demands. We suggest that a closer collaboration or strengthened institutional link between the biofuel and cattle-ranching sectors in the coming years is crucial for effective carbon savings from biofuels in Brazil. PMID:20142492

  19. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.

    PubMed

    Fatma, Shabih; Hameed, Amir; Noman, Muhammad; Ahmed, Temoor; Shahid, Muhammad; Tariq, Mohsin; Sohail, Imran; Tabassum, Romana

    2018-01-01

    Increasing population and industrialization are continuously oppressing the existing energy resources and depleting the global fuel reservoirs. The elevated pollutions from the continuous consumption of non-renewable fossil fuels also seriously contaminating the surrounding environment. The use of alternate energy sources can be an environment-friendly solution to cope these challenges. Among the renewable energy sources biofuels (biomass-derived fuels) can serve as a better alternative to reduce the reliance on non-renewable fossil fuels. Bioethanol is one of the most widely consumed biofuels of today's world. The main objective of this review is to highlight the significance of lignocellulosic biomass as a potential source for the production of biofuels like bioethanol, biodiesel or biogas. We discuss the application of various methods for the bioconversion of lignocellulosic biomass to end products i.e. biofuels. The lignocellulosic biomass must be pretreated to disintegrate lignocellulosic complexes and to expose its chemical components for downstream processes. After pretreatment, the lignocellulosic biomass is then subjected to saccharification either via acidic or enzymatic hydrolysis. Thereafter, the monomeric sugars resulted from hydrolysis step are further processed into biofuel i.e. bioethanol, biodiesel or butanol etc. through the fermentation process. The fermented impure product is then purified through the distillation process to obtain pure biofuel. Renewable energy sources represent the potential fuel alternatives to overcome the global energy crises in a sustainable and eco-friendly manner. In future, biofuels may replenish the conventional non-renewable energy resources due to their renewability and several other advantages. Lignocellulosic biomass offers the most economical biomass to generate biofuels. However, extensive research is required for the commercial production of an efficient integrated biotransformation process for the production of lignocellulose mediated biofuels. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Carbon-negative biofuels from low-input high-diversity grassland biomass.

    PubMed

    Tilman, David; Hill, Jason; Lehman, Clarence

    2006-12-08

    Biofuels derived from low-input high-diversity (LIHD) mixtures of native grassland perennials can provide more usable energy, greater greenhouse gas reductions, and less agrichemical pollution per hectare than can corn grain ethanol or soybean biodiesel. High-diversity grasslands had increasingly higher bioenergy yields that were 238% greater than monoculture yields after a decade. LIHD biofuels are carbon negative because net ecosystem carbon dioxide sequestration (4.4 megagram hectare(-1) year(-1) of carbon dioxide in soil and roots) exceeds fossil carbon dioxide release during biofuel production (0.32 megagram hectare(-1) year(-1)). Moreover, LIHD biofuels can be produced on agriculturally degraded lands and thus need to neither displace food production nor cause loss of biodiversity via habitat destruction.

  1. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  2. Sustainability aspects of biofuel production

    NASA Astrophysics Data System (ADS)

    Pawłowski, L.; Cel, W.; Wójcik Oliveira, K.

    2018-05-01

    Nowadays, world development depends on the energy supply. The use of fossil fuels leads to two threats: depletion of resources within a single century and climate changes caused by the emission of CO2 from fossil fuels combustion. Widespread application of renewable energy sources, in which biofuels play a major role, is proposed as a counter-measure. The paper made an attempt to evaluate to what extent biofuels meet the criteria of sustainable development. It was shown that excessive development of biofuels may threaten the sustainable development paradigms both in the aspect of: intergenerational equity, leading to an increase of food prices, as well as intergenerational equity, resulting in degradation of the environment. The paper presents the possibility of sustainable biofuels production increase.

  3. Biofuels as an Alternative Energy Source for Aviation-A Survey

    NASA Technical Reports Server (NTRS)

    McDowellBomani, Bilal M.; Bulzan, Dan L.; Centeno-Gomez, Diana I.; Hendricks, Robert C.

    2009-01-01

    The use of biofuels has been gaining in popularity over the past few years because of their ability to reduce the dependence on fossil fuels. As a renewable energy source, biofuels can be a viable option for sustaining long-term energy needs if they are managed efficiently. We investigate past, present, and possible future biofuel alternatives currently being researched and applied around the world. More specifically, we investigate the use of ethanol, cellulosic ethanol, biodiesel (palm oil, algae, and halophytes), and synthetic fuel blends that can potentially be used as fuels for aviation and nonaerospace applications. We also investigate the processing of biomass via gasification, hydrolysis, and anaerobic digestion as a way to extract fuel oil from alternative biofuels sources.

  4. Biofuels from microalgae.

    PubMed

    Li, Yanqun; Horsman, Mark; Wu, Nan; Lan, Christopher Q; Dubois-Calero, Nathalie

    2008-01-01

    Microalgae are a diverse group of prokaryotic and eukaryotic photosynthetic microorganisms that grow rapidly due to their simple structure. They can potentially be employed for the production of biofuels in an economically effective and environmentally sustainable manner. Microalgae have been investigated for the production of a number of different biofuels including biodiesel, bio-oil, bio-syngas, and bio-hydrogen. The production of these biofuels can be coupled with flue gas CO2 mitigation, wastewater treatment, and the production of high-value chemicals. Microalgal farming can also be carried out with seawater using marine microalgal species as the producers. Developments in microalgal cultivation and downstream processing (e.g., harvesting, drying, and thermochemical processing) are expected to further enhance the cost-effectiveness of the biofuel from microalgae strategy.

  5. Life cycle cost optimization of biofuel supply chains under uncertainties based on interval linear programming.

    PubMed

    Ren, Jingzheng; Dong, Liang; Sun, Lu; Goodsite, Michael Evan; Tan, Shiyu; Dong, Lichun

    2015-01-01

    The aim of this work was to develop a model for optimizing the life cycle cost of biofuel supply chain under uncertainties. Multiple agriculture zones, multiple transportation modes for the transport of grain and biofuel, multiple biofuel plants, and multiple market centers were considered in this model, and the price of the resources, the yield of grain and the market demands were regarded as interval numbers instead of constants. An interval linear programming was developed, and a method for solving interval linear programming was presented. An illustrative case was studied by the proposed model, and the results showed that the proposed model is feasible for designing biofuel supply chain under uncertainties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Cultivation Of Microalgae (Chlorella vulgaris) For Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Blinová, Lenka; Bartošová, Alica; Gerulová, Kristína

    2015-06-01

    Production of biofuel from renewable sources is considered to be one of the most sustainable alternatives to petroleum sourced fuels. Biofuels are also viable means of environmental and economic sustainability. Biofuels are divided into four generations, depending on the type of biomass used for biofuels production. At present, microalgae are presented as an ideal third generation biofuel feedstock because of their rapid growth rate. They also do not compete with food or feed crops, and can be produced on non-arable land. Cultivation conditions (temperature, pH, light, nutrient quantity and quality, salinity, aerating) are the major factors that influence photosynthesis activity and behaviour of the microalgae growth rate. In this paper, we present an overview about the effect of cultivation conditions on microalgae growth.

  7. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-07-01

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs thatmore » can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.« less

  8. 7 CFR 4288.112 - Eligibility notifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... applicant a contract number. (b) Ineligibility notifications. If an applicant or a biofuel is determined by... after receipt of the application, as to the reason(s) the applicant or biofuel was determined to be...

  9. 7 CFR 4288.112 - Eligibility notifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... number. (b) Ineligibility notifications. If an applicant or a biofuel is determined by the Agency to be... application, as to the reason(s) the applicant or biofuel was determined to be ineligible. Such applicant will...

  10. 7 CFR 4288.112 - Eligibility notifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... number. (b) Ineligibility notifications. If an applicant or a biofuel is determined by the Agency to be... application, as to the reason(s) the applicant or biofuel was determined to be ineligible. Such applicant will...

  11. Alternative Fuels Data Center

    Science.gov Websites

    Payments Through the Bioenergy Program for Advanced Biofuels (Section 9005), eligible producers of advanced biofuels, or fuels derived from renewable biomass other than corn kernel starch, may receive payments to support expanded production of advanced biofuels. Payment amounts will depend on the quantity

  12. 10 CFR 452.6 - Incentive award terms and limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.6... funds and the limitations in paragraph (c) of this section, an eligible cellulosic biofuels producer... years of operation of its eligible cellulosic biofuels production facility. (b) Failure to commence...

  13. 10 CFR 452.6 - Incentive award terms and limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.6... funds and the limitations in paragraph (c) of this section, an eligible cellulosic biofuels producer... years of operation of its eligible cellulosic biofuels production facility. (b) Failure to commence...

  14. 7 CFR 3430.701 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... production of biofuels at prices competitive with fossil fuels; (b) High-value biobased products— (1) To enhance the economic viability of biofuels and power, (2) To serve as substitutes for petroleum-based... biomass for conversion to biofuels, bioenergy, and biobased products. [75 FR 33498, June 14, 2010, as...

  15. 7 CFR 3430.701 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... production of biofuels at prices competitive with fossil fuels; (b) High-value biobased products— (1) To enhance the economic viability of biofuels and power, (2) To serve as substitutes for petroleum-based... biomass for conversion to biofuels, bioenergy, and biobased products. [75 FR 33498, June 14, 2010, as...

  16. 7 CFR 3430.701 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... production of biofuels at prices competitive with fossil fuels; (b) High-value biobased products— (1) To enhance the economic viability of biofuels and power, (2) To serve as substitutes for petroleum-based... biomass for conversion to biofuels, bioenergy, and biobased products. [75 FR 33498, June 14, 2010, as...

  17. 10 CFR 452.6 - Incentive award terms and limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.6... funds and the limitations in paragraph (c) of this section, an eligible cellulosic biofuels producer... years of operation of its eligible cellulosic biofuels production facility. (b) Failure to commence...

  18. 10 CFR 452.6 - Incentive award terms and limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.6... funds and the limitations in paragraph (c) of this section, an eligible cellulosic biofuels producer... years of operation of its eligible cellulosic biofuels production facility. (b) Failure to commence...

  19. Sustainable multipurpose biorefineries for third-generation biofuels and value-added co-products

    USDA-ARS?s Scientific Manuscript database

    Modern biorefinery facilities conduct many types of processes, including those producing advanced biofuels, commodity chemicals, biodiesel, and value-added co-products such as sweeteners and bioinsecticides, with many more co-products, chemicals and biofuels on the horizon. Most of these processes ...

  20. Global approaches to addressing biofuel-related invasive species risks and incorporation into U.S. laws and policies

    DOT National Transportation Integrated Search

    2014-05-01

    Biofuels are being pursued for their potential greenhouse gas emissions benefits, among other reasons. In order to maximize productivity, avoid food-fuel conflicts, and minimize GHG emissions, many advanced biofuel feedstock crops, such as thos...

  1. 77 FR 21756 - Agency Information Collection Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Norris at U.S. Energy Information Administration, Office of Petroleum and Biofuels Statistics, U.S... 1995. Weekly petroleum and biofuels supply surveys (Forms EIA-800, 802, 803, 804, 805, and 809) are used to gather data on petroleum refinery operations, blending, biofuels production, inventory levels...

  2. 10 CFR 452.6 - Incentive award terms and limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.6... funds and the limitations in paragraph (c) of this section, an eligible cellulosic biofuels producer... years of operation of its eligible cellulosic biofuels production facility. (b) Failure to commence...

  3. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2015-09-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  4. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2016-11-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  5. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  6. 78 FR 9281 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ...Under section 211(o) of the Clean Air Act, the Environmental Protection Agency is required to set the renewable fuel standards each November for the following year. In general the standards are designed to ensure that the applicable volumes of renewable fuel specified in the statute are used. However, the statute specifies that EPA is to project the volume of cellulosic biofuel production for the upcoming year and must base the cellulosic biofuel standard on that projected volume if it is less than the applicable volume set forth in the Act. EPA is today proposing a projected cellulosic biofuel volume for 2013 that is below the applicable volume specified in the Act. EPA is proposing that the applicable volumes of advanced biofuel and total renewable fuel would remain at the statutory levels for 2013. Finally, today's action also proposes annual percentage standards for cellulosic biofuel, biomass-based diesel, advanced biofuel, and renewable fuels that would apply to all gasoline and diesel produced or imported in year 2013.

  7. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    PubMed

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

    PubMed

    Lubieniechi, Simona; Peranantham, Thinesh; Levin, David B

    2013-04-01

    Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but pre-treatment of the biomass to release sugars for microbial conversion is a significant barrier to commercial success of lignocellulosic biofuel production. Strategies to reduce the energy and cost inputs required for biomass pre-treatment include genetic modification of plant materials to reduce lignin content. Significant efforts are also underway to create recombinant microorganisms capable of converting sugars derived from lignocellulosic biomass to a variety of biofuels. An alternative strategy to reduce the costs of cellulosic biofuel production is the use of cellulolytic microorganisms capable of direct microbial conversion of ligno-cellulosic biomass to fuels. This paper reviews recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

  9. A laboratory investigation of mixing dynamics between biofuels and surface waters

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxiang; Cotel, Aline

    2017-11-01

    Recently, production and usage of ethanol-blend fuels or biofuels have increased dramatically along with increasing risk of spilling into surface waters. Lack of understanding of the environmental impacts and absence of standard clean-up procedures make it crucial to study the mixing behavior between biofuels and water. Biofuels are represented by a solution of ethanol and glycol. A Plexiglas tank in conjunction with a wave generator is used to simulate the mixing of surface waters and biofuels under different natural conditions. In our previous experiments, two distinct mixing regimes were observed. One regime was driven by turbulence and the other by interfacial instabilities. However, under more realistic situations, without wind driven waves, only the first mixing regime was found. After one minute of rapid turbulent mixing, biofuels and water were fully mixed and no interface was formed. During the mixing process, chemical reactions happened simultaneously and influenced mixing dynamics. Current experiments are investigating the effect of waves on the mixing dynamics. Support from NSF CBET 1335878.

  10. A wireless transmission system powered by an enzyme biofuel cell implanted in an orange.

    PubMed

    MacVittie, Kevin; Conlon, Tyler; Katz, Evgeny

    2015-12-01

    A biofuel cell composed of catalytic electrodes made of "buckypaper" modified with PQQ-dependent glucose dehydrogenase and FAD-dependent fructose dehydrogenase on the anode and with laccase on the cathode was used to activate a wireless information transmission system. The cathode/anode pair was implanted in orange pulp extracting power from its content (glucose and fructose in the juice). The open circuit voltage, Voc, short circuit current density, jsc, and maximum power produced by the biofuel cell, Pmax, were found as ca. 0.6 V, ca. 0.33 mA·cm(-2) and 670 μW, respectively. The voltage produced by the biofuel cell was amplified with an energy harvesting circuit and applied to a wireless transmitter. The present study continues the research line where different implantable biofuel cells are used for the activation of electronic devices. The study emphasizes the biosensor and environmental monitoring applications of implantable biofuel cells harvesting power from natural sources, rather than their biomedical use. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Sustainable biofuel contributions to carbon mitigation and energy independence

    DOE PAGES

    Lippke, Bruce; Gustafson, Richard; Venditti, Richard; ...

    2011-10-19

    The growing interest in US biofuels has been motivated by two primary national policy goals, (1) to reduce carbon emissions and (2) to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle datamore » for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Furthermore, substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.« less

  12. Genome-Based Metabolic Mapping and 13C Flux Analysis Reveal Systematic Properties of an Oleaginous Microalga Chlorella protothecoides

    DOE PAGES

    Wu, Chao; Xiong, Wei; Dai, Junbiao; ...

    2014-12-15

    We report that integrated and genome-based flux balance analysis, metabolomics, and 13C-label profiling of phototrophic and heterotrophic metabolism in Chlorella protothecoides, an oleaginous green alga for biofuel. The green alga Chlorella protothecoides, capable of autotrophic and heterotrophic growth with rapid lipid synthesis, is a promising candidate for biofuel production. Based on the newly available genome knowledge of the alga, we reconstructed the compartmentalized metabolic network consisting of 272 metabolic reactions, 270 enzymes, and 461 encoding genes and simulated the growth in different cultivation conditions with flux balance analysis. Phenotype-phase plane analysis shows conditions achieving theoretical maximum of the biomass andmore » corresponding fatty acid-producing rate for phototrophic cells (the ratio of photon uptake rate to CO 2 uptake rate equals 8.4) and heterotrophic ones (the glucose uptake rate to O 2 consumption rate reaches 2.4), respectively. Isotope-assisted liquid chromatography-mass spectrometry/mass spectrometry reveals higher metabolite concentrations in the glycolytic pathway and the tricarboxylic acid cycle in heterotrophic cells compared with autotrophic cells. We also observed enhanced levels of ATP, nicotinamide adenine dinucleotide (phosphate), reduced, acetyl-Coenzyme A, and malonyl-Coenzyme A in heterotrophic cells consistently, consistent with a strong activity of lipid synthesis. To profile the flux map in experimental conditions, we applied nonstationary 13C metabolic flux analysis as a complementing strategy to flux balance analysis. We found that the result reveals negligible photorespiratory fluxes and a metabolically low active tricarboxylic acid cycle in phototrophic C. protothecoides. In comparison, high throughput of amphibolic reactions and the tricarboxylic acid cycle with no glyoxylate shunt activities were measured for heterotrophic cells. Lastly, taken together, the metabolic network modeling assisted by experimental metabolomics and 13C labeling better our understanding on global metabolism of oleaginous alga, paving the way to the systematic engineering of the microalga for biofuel production.« less

  13. Biofuels, land, and water: a systems approach to sustainability.

    PubMed

    Gopalakrishnan, Gayathri; Negri, M Cristina; Wang, Michael; Wu, May; Snyder, Seth W; Lafreniere, Lorraine

    2009-08-01

    There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

  14. Surface tension and wetting properties of rapeseed oil to biofuel conversion by-products

    NASA Astrophysics Data System (ADS)

    Muszyński, Siemowit; Sujak, Agnieszka; Stępniewski, Andrzej; Kornarzyński, Krzysztof; Ejtel, Marta; Kowal, Natalia; Tomczyk-Warunek, Agnieszka; Szcześniak, Emil; Tomczyńska-Mleko, Marta; Mleko, Stanisław

    2018-04-01

    This work presents a study on the surface tension, density and wetting behaviour of distilled glycerol, technical grade glycerol and the matter organic non-glycerin fraction. The research was conducted to expand the knowledge about the physical properties of wastes from the rapeseed oil biofuel production. The results show that the densities of technical grade glycerol (1.300 g cm-3) and distilled glycerol (1.267 g cm-3) did not differ and were significantly lower than the density of the matter organic non-glycerin fraction (1.579 g cm-3). Furthermore, the surface tension of distilled glycerol (49.6 mN m-1) was significantly higher than the matter organic non-glycerin fraction (32.7 mN m-1) and technical grade glycerol (29.5 mN m-1). As a result, both technical grade glycerol and the matter organic non-glycerin fraction had lower contact angles than distilled glycerol. The examined physical properties of distilled glycerol were found to be very close to that of the commercially available pure glycerol. The results suggest that technical grade glycerol may have potential application in the production of glycerol/fuel blends or biosurfactants. The presented results indicate that surface tension measurements are more useful when examining the quality of biofuel wastes than is density determination, as they allow for a more accurate analysis of the effects of impurities on the physical properties of the biofuel by-products.

  15. Development of a Two-Stage Microalgae Dewatering Process – A Life Cycle Assessment Approach

    PubMed Central

    Soomro, Rizwan R.; Zeng, Xianhai; Lu, Yinghua; Lin, Lu; Danquah, Michael K.

    2016-01-01

    Even though microalgal biomass is leading the third generation biofuel research, significant effort is required to establish an economically viable commercial-scale microalgal biofuel production system. Whilst a significant amount of work has been reported on large-scale cultivation of microalgae using photo-bioreactors and pond systems, research focus on establishing high performance downstream dewatering operations for large-scale processing under optimal economy is limited. The enormous amount of energy and associated cost required for dewatering large-volume microalgal cultures has been the primary hindrance to the development of the needed biomass quantity for industrial-scale microalgal biofuels production. The extremely dilute nature of large-volume microalgal suspension and the small size of microalgae cells in suspension create a significant processing cost during dewatering and this has raised major concerns towards the economic success of commercial-scale microalgal biofuel production as an alternative to conventional petroleum fuels. This article reports an effective framework to assess the performance of different dewatering technologies as the basis to establish an effective two-stage dewatering system. Bioflocculation coupled with tangential flow filtration (TFF) emerged a promising technique with total energy input of 0.041 kWh, 0.05 kg CO2 emissions and a cost of $ 0.0043 for producing 1 kg of microalgae biomass. A streamlined process for operational analysis of two-stage microalgae dewatering technique, encompassing energy input, carbon dioxide emission, and process cost, is presented. PMID:26904075

  16. Exploring Bioeconomy Growth through the Public Release of the Biomass Scenario Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newes, Emily K; Biddy, Mary J; Bush, Brian W

    The Biomass Scenario Model (BSM) is an important tool for exploring vibrant future bioeconomy scenarios that leverage domestic resources. Developed by NREL and BETO, this model of the domestic biofuels supply chain has been used to explore success strategies for BETO's activities towards bioeconomy growth. The BSM offers a robust test bed for detailed exploration of effects of BETO activities within the complex context of resource availability; physical, technological, and economic constraints; behavior; and policy. The public release of the model in 2017 will allow broad engagement with the theme of the conference as model users can analyze bioeconomy growth,more » domestic biomass resource use, and associated effects. The BSM is a carefully validated, state-of-the-art, dynamic model of the biomass to biofuels supply chain. Using a system dynamics simulation modeling approach, the model tracks long-term deployment of biofuels given technology development and investment, considering land availability, the competing oil market, consumer demand, and government policies over time. Sample outputs include biofuels production, feedstock use, capital investment, incentives, and costs of feedstocks and fuels. BSM scenarios reveal technological, economic, and policy challenges, as well as opportunities for dynamic growth of the bioeconomy with strategic public and private investment at key points in the system. The model logic and results have been reviewed extensively, through collaborative analysis, expert reviews and external publications (https://www.zotero.org/groups/bsm_publications/).« less

  17. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langholtz, Matthew H.; Coleman, Andre M.; Eaton, Laurence M.

    Biofuels produced from both terrestrial and algal biomass feedstocks can contribute to energy security while providing economic, environmental, and social benefits. To assess the potential for land competition between these two feedstock types in the United States, we evaluate a scenario in which 41.5 x 109 L yr-1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed. This total includes 12.0 x 109 L yr-1 of biofuels from open-pond microalgae production and 29.5 x 109 L yr-1 of biofuels from terrestrial dedicated feedstock supply systems. Under these scenarios, open-pond microalgaemore » production is projected to use 1.2 million ha of private pastureland, while terrestrial dedicated feedstock supply systems would use 14.0 million ha of private pastureland. A spatial meta-analysis indicates that potential competition for land under these scenarios would be concentrated in 110 counties, containing 1.0 and 1.7 million hectares of algal and terrestrial dedicated feedstock production, respectively. A land competition index applied to these 110 counties suggests that 38 to 59 counties could experience competition for upwards of 40% of a county’s pastureland. However, this combined 2.7 million ha represents only 2%-5% of total pastureland in the U.S., with the remaining 12.5 million ha of algal or terrestrial dedicated feedstock production on pastureland in non-competing areas.« less

  18. Evaluation of the feed value for ruminants of blends of corn and wheat distillers dried grains.

    PubMed

    Damiran, Daalkhaijav; Jonker, Arjan; Zhang, Xuewei; Yari, Mojtaba; McKinnon, John J; McAllister, Tim; Abeysekara, Saman; Yu, Peiqiang

    2013-05-08

    Recently, biofuel processing has produced a large amount of biofuel coproducts. However, to date, there is little information on the metabolic characteristics of proteins and energy in biofuel coproduct-based rations. The objective of this study was to study the metabolic characteristics of proteins and energy in biofuel coproduct-based rations in terms of (1) chemical and nutrient profiles, (2) protein and carbohydrate subfraction associated with various degradation rate, (3) rumen and intestinal degradation and digestion kinetics, and (4) metabolic characteristics of proteins. Two sources of grain corn were mixed with two sources of biofuel coproducts (wheat-based dried distillers grains with solubles, wDDGS) in ratios of 100:0, 75:25, 50:50, and 25:75%. The study revealed that increasing the biofuel coproduct inclusion level increased most of the nutritional components linearly (P < 0.05) except starch, which linearly decreased. With increasing biofuel coproduct inclusion level, the rumen degradation rate and the effective degradability of organic matter were not affected (P > 0.05), but the effective degradability of starch was decreased (P < 0.05). Effective degradation of crude protein and neutral detergent fiber as well as predicted truly absorbed protein supply in the small intestine and degraded protein balance were increased (P < 0.05). In conclusion, the inclusion of the biofuel coproduct up to 25-50% in rations improved potential nitrogen and energy synchronization for microbial growth and improved truly absorbable protein supply to the small intestine, without altering energy value.

  19. Policies for the Sustainable Development of Biofuels in the Pan American Region: A Review and Synthesis of Five Countries.

    PubMed

    Solomon, Barry D; Banerjee, Aparajita; Acevedo, Alberto; Halvorsen, Kathleen E; Eastmond, Amarella

    2015-12-01

    Rapid growth of biofuel production in the United States and Brazil over the past decade has increased interest in replicating this success in other nations of the Pan American region. However, the continued use of food-based feedstock such as maize is widely seen as unsustainable and is in some cases linked to deforestation and increased greenhouse gas emissions, raising further doubts about long-term sustainability. As a result, many nations are exploring the production and use of cellulosic feedstock, though progress has been extremely slow. In this paper, we will review the North-South axis of biofuel production in the Pan American region and its linkage with the agricultural sectors in five countries. Focus will be given to biofuel policy goals, their results to date, and consideration of sustainability criteria and certification of producers. Policy goals, results, and sustainability will be highlighted for the main biofuel policies that have been enacted at the national level. Geographic focus will be given to the two largest producers-the United States and Brazil; two smaller emerging producers-Argentina and Canada; and one stalled program-Mexico. However, several additional countries in the region are either producing or planning to produce biofuels. We will also review alternative international governance schemes for biofuel sustainability that have been recently developed, and whether the biofuel programs are being managed to achieve improved environmental quality and sustainable development.

  20. Ultrarapid sonochemical synthesis of enzyme-incorporated copper nanoflowers and their application to mediatorless glucose biofuel cell

    NASA Astrophysics Data System (ADS)

    Chung, Minsoo; Nguyen, Tuan Loi; Tran, Thao Quynh Ngan; Yoon, Hyon Hee; Kim, Il Tae; Kim, Moon Il

    2018-01-01

    We have developed a mediatorless glucose biofuel cell based on hybrid nanoflowers incorporating enzymes including glucose oxidase (GOx), laccase, or catalase with copper phosphate, which were further mixed and compressed with conductive multi-walled carbon nanotube (CNT). The nanoflowers were simply synthesized within 5 min at room temperature using sonication method but yielded greatly improved stability as well as highly retained activity by the proper incorporation of enzyme molecules inside the flower-like structure. With glucose as biofuel, GOx and laccase nanoflowers were applied to form enzyme anode and cathode, respectively, and catalase nanoflowers were additionally employed to catalyze the decomposition of hydrogen peroxide, which may be deleterious for GOx, into oxygen and water. Using the enzyme nanoflowers-based biofuel cell system without any involved mediator, a high power density up to 200 μW cm-2 were obtained, which was approximately 80% to that from the biofuel cell system prepared with the corresponding free enzymes. Importantly, the enzyme nanoflowers-based biofuel cell maintained their initial power density over 90% during storage for two months at 4 °C, while most of the glucose biofuel cells in the literature present meaningful stability only in the range of one or two weeks. Based on this result, we expect that this simple but efficient strategy to prepare highly stable glucose biofuel cell using the rapidly-synthesized enzyme-inorganic hybrid nanoflowers can be readily extended to diverse applications in medical and environmental chemistry.

  1. Assessment of Peruvian biofuel resources and alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, J.P.; Smith, W.; Mariani, E.

    1979-08-01

    Comprehensive assessment of the biofuel potential of Peru is based on: determination of current biofuel utilization practices, evauation of Peruvian biomass productivity, identification of Peruvian agricultural and forestry resources, assessment of resource development and management concerns, identification of market considerations, description of biofuel technological options, and identification of regional biofuel technology applications. Discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches currently being practiced in Peru. Biomass productivity evaluations consider the terrain and soil, and climatic conditions found in Peru. The potential energy from Peruvian agricultural and forestry resources is described quantitatively. Potental regionalmore » production of agricultural residues and forest resources that could supply energy are identified. Assessment of resource development and management concerns focuses on harvesting, reforestation, training, and environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Nine biofuel technology options for Peru are identified: (1) small-to-medium-scale gasification, (2) a wood waste inventory, (3) stationary and mobile charcoal production systems, (4) wood distillation, (5) forest resource development and management, (6) electrical cogeneration, (7) anaerobic digestion technology, (8) development of ethanol production capabilities, and (9) agricultural strategies for fuel production. Applications of these biofuel options are identified for each of the three major regions - nine applications for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.« less

  2. Switchgrass Biofuel Research: Carbon Sequestration and Life Cycle Analysis (a.k.a. Second Generation Biofuels: Carbon Sequestration and Life Cycle Analysis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liska, Adam J.; Suyker, Andrew E.; Arkebauer, Timothy J.

    2013-12-20

    Soil emissions have been inadequately characterized in life cycle assessment of biofuels (see section 3.2.3). This project measures the net differences in field-level greenhouse gas emissions (CO 2, N 2O, and CH 4) due to corn residue removal for cellulosic ethanol production. Gas measurements are then incorporated into life cycle assessment of the final biofuel product to determine whether it is in compliance with federal greenhouse gas emissions standards for biofuels (Renewable Fuel Standard 2, RFS2). The field measurements have been conducted over three years on two, quarter-section, production-scale, irrigated corn fields (both roughly 50 hectares, as this size ofmore » field is necessary for reproducible eddy covariance flux measurements of CO 2; chamber measurements are used to determine N 2O and CH 4 emissions). Due to a large hail storm in 2010, estimates of the emission from residue could not be separated from the total CO 2 flux in 2011. This led us to develop soil organic carbon (SOC) modeling techniques to estimate changes in CO 2 emissions from residue removal. Modeling has predicted emissions of CO 2 from oxidation of SOC that are consistent (<12%) with 9 years of CO 2 flux measurements at the two production field sites, and modeling is also consistent with other field measurements (Liska et al., submitted). The model was then used to estimate the average change in SOC and CO 2 emissions from nine years of simulated residue removal (6 Mg biomass per hectare per year) at the sites; a loss of 0.43 Mg C ha -1 yr -1 resulted. The model was then used to estimate SOC changes over 10 years across Nebraska using supercomputing, based on 61 million, 30 x 30 meter, grid cells to account for regional variability in initial SOC, crop yield, and temperature; an average loss of 0.47 Mg C ha -1 yr -1 resulted. When these CO 2 emissions are included in simple life cycle assessment calculations, emissions from cellulosic ethanol from crop residue are above mandated levels of 60% reduction compared to gasoline (Liska, in press). These approaches are both technically effective and economically feasible. This work has been extensively peer reviewed.« less

  3. 7 CFR 4288.135 - Unauthorized payments and offsets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel... assistance has been made to an advanced biofuel producer under this Program, the Agency reserves the right to... determination that unauthorized assistance has been made to an advanced biofuel producer under this Program, the...

  4. 7 CFR 4288.101 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... biofuel producers. (b) Scope. This subpart sets forth, subject to the availability of funds as provided herein, or as may be limited by law, the terms and conditions an advanced biofuel producer must meet to...

  5. 7 CFR 4279.228 - Project eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... majority of the biorefinery production must be an advanced biofuel. Unless otherwise approved by the Agency, and determined to be in the best financial interest of the government, the advanced biofuel must be sold as a biofuel. The following will be considered in determining what constitutes the majority of...

  6. 77 FR 64849 - Proposed Collection; Comment Request for Form 6478

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... 6478, Alcohol and Cellulosic Biofuel Fuels Credit. DATES: Written comments should be received on or... . SUPPLEMENTARY INFORMATION: Title: Alcohol and Cellulosic Biofuel Fuels Credit. OMB Number: 1545-0231. Form Number: Form 6478. Abstract: Use Form 6478 to figure your alcohol and cellulosic biofuel fuels credit...

  7. 7 CFR 4288.101 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... biofuel producers. (b) Scope. This subpart sets forth, subject to the availability of funds as provided herein, or as may be limited by law, the terms and conditions an advanced biofuel producer must meet to...

  8. 7 CFR 4279.228 - Project eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... majority of the biorefinery production must be an advanced biofuel. Unless otherwise approved by the Agency, and determined to be in the best financial interest of the government, the advanced biofuel must be sold as a biofuel. The following will be considered in determining what constitutes the majority of...

  9. 7 CFR 4288.101 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... biofuel producers. (b) Scope. This subpart sets forth, subject to the availability of funds as provided herein, or as may be limited by law, the terms and conditions an advanced biofuel producer must meet to...

  10. 7 CFR 4279.228 - Project eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... majority of the biorefinery production must be an advanced biofuel. Unless otherwise approved by the Agency, and determined to be in the best financial interest of the government, the advanced biofuel must be sold as a biofuel. The following will be considered in determining what constitutes the majority of...

  11. 7 CFR 4288.135 - Unauthorized payments and offsets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel... assistance has been made to an advanced biofuel producer under this Program, the Agency reserves the right to... determination that unauthorized assistance has been made to an advanced biofuel producer under this Program, the...

  12. 3 CFR - Biofuels and Rural Economic Development

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Biofuels and Rural Economic Development Presidential Documents Other Presidential Documents Memorandum of May 5, 2009 Biofuels and Rural Economic Development... powerful engine of economic growth, they must be developed and used in a way that limits environmental...

  13. Corn stover for advanced biofuels perspectives of a soil “Lorax”

    USDA-ARS?s Scientific Manuscript database

    Crop residues like corn (Zea Mays L) stover are potential feedstock for production of advanced biofuels (e.g., cellulosic ethanol). Utilization of residue like stover for biofuel feedstock may provide economic and greenhouse gas mitigation benefits; however, harvesting these materials must be done i...

  14. Life cycle assessment of cellulosic and advanced biofuel crops

    USDA-ARS?s Scientific Manuscript database

    Estimating the carbon intensity of biofuel production is important in order to meet greenhouse gas (GHG) targets set by government policy. Nitrous oxide emissions are the largest source and soil carbon the largest sink of GHGs for determining the carbon intensity of biofuels during their production ...

  15. Transcriptomic Analysis of Xylan Utilization Systems in Paenibacillus sp

    Treesearch

    Neha Sawhney; Casey Crooks; Franz St. John; James F. Preston; R. M. Kelly

    2014-01-01

    Xylans, including methylglucuronoxylans (MeGXn) and methylglucuronoarabinoxylans (MeGAXn), are the predominant polysaccharides in hemicellulose fractions of dicots and monocots available for conversion to biofuels and chemicals. Paenibacillus sp. strain JDR-2 (Pjdr2) efficiently depolymerizes MeGX

  16. Alternative Energy Science and Policy: Biofuels as a Case Study

    NASA Astrophysics Data System (ADS)

    Ammous, Saifedean H.

    This dissertation studies the science and policy-making of alternative energy using biofuels as a case study, primarily examining the instruments that can be used to alleviate the impacts of climate change and their relative efficacy. Three case studies of policy-making on biofuels in the European Union, United States of America and Brazil are presented and discussed. It is found that these policies have had large unintended negative consequences and that they relied on Lifecycle Analysis studies that had concluded that increased biofuels production can help meet economic, energy and environmental goals. A close examination of these Lifecycle Analysis studies reveals that their results are not conclusive. Instead of continuing to attempt to find answers from Lifecycle Analyses, this study suggests an alternative approach: formulating policy based on recognition of the ignorance of real fuel costs and pollution. Policies to combat climate change are classified into two distinct approaches: policies that place controls on the fuels responsible for emissions and policies that target the pollutants themselves. A mathematical model is constructed to compare these two approaches and address the central question of this study: In light of an ignorance of the cost and pollution impacts of different fuels, are policies targeting the pollutants themselves preferable to policies targeting the fuels? It is concluded that in situations where the cost and pollution functions of a fuel are unknown, subsidies, mandates and caps on the fuel might result in increased or decreased greenhouse gas emissions; on the other hand, a tax or cap on carbon dioxide results in the largest decrease possible of greenhouse gas emissions. Further, controls on greenhouse gases are shown to provide incentives for the development and advancement of cleaner alternative energy options, whereas controls on the fuels are shown to provide equal incentives to the development of cleaner and dirtier alternative fuels. This asymmetry in outcomes---regardless of actual cost functions---is the reason why controls on greenhouse gases are deemed favorable to direct fuel subsidies and mandates.

  17. High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using multivariate analysis: a comparison between mid-infrared, near-infrared, and Raman spectroscopies for model development

    PubMed Central

    2014-01-01

    Background In order to rapidly and efficiently screen potential biofuel feedstock candidates for quintessential traits, robust high-throughput analytical techniques must be developed and honed. The traditional methods of measuring lignin syringyl/guaiacyl (S/G) ratio can be laborious, involve hazardous reagents, and/or be destructive. Vibrational spectroscopy can furnish high-throughput instrumentation without the limitations of the traditional techniques. Spectral data from mid-infrared, near-infrared, and Raman spectroscopies was combined with S/G ratios, obtained using pyrolysis molecular beam mass spectrometry, from 245 different eucalypt and Acacia trees across 17 species. Iterations of spectral processing allowed the assembly of robust predictive models using partial least squares (PLS). Results The PLS models were rigorously evaluated using three different randomly generated calibration and validation sets for each spectral processing approach. Root mean standard errors of prediction for validation sets were lowest for models comprised of Raman (0.13 to 0.16) and mid-infrared (0.13 to 0.15) spectral data, while near-infrared spectroscopy led to more erroneous predictions (0.18 to 0.21). Correlation coefficients (r) for the validation sets followed a similar pattern: Raman (0.89 to 0.91), mid-infrared (0.87 to 0.91), and near-infrared (0.79 to 0.82). These statistics signify that Raman and mid-infrared spectroscopy led to the most accurate predictions of S/G ratio in a diverse consortium of feedstocks. Conclusion Eucalypts present an attractive option for biofuel and biochemical production. Given the assortment of over 900 different species of Eucalyptus and Corymbia, in addition to various species of Acacia, it is necessary to isolate those possessing ideal biofuel traits. This research has demonstrated the validity of vibrational spectroscopy to efficiently partition different potential biofuel feedstocks according to lignin S/G ratio, significantly reducing experiment and analysis time and expense while providing non-destructive, accurate, global, predictive models encompassing a diverse array of feedstocks. PMID:24955114

  18. 75 FR 63173 - Agency Information Collection Activities; Proposed Collection; Comment Request for Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... respondents provide will allow EPA to more accurately project cellulosic biofuel volumes for the following... to fall below actual projection volumes. Under such circumstances, supply for cellulosic biofuel will exceed demand, and the value of cellulosic biofuel Renewable Identification Numbers (RINs) will fall...

  19. Between Development and Environment: Uncertainties of Agrofuels

    ERIC Educational Resources Information Center

    Leon Sicard, Tomas Enrique

    2009-01-01

    This article examines the dominant agricultural model in Colombia of which the emergence of biofuels is an inevitable and major consequence. Some uncertainties and complexities of the introduction of biofuels and the use of genetically modified crops are analyzed, including a general reflection on the possibilities of producing biofuels on the…

  20. Butanol biorefineries: simultaneous product removal & process integration for conversion of biomass & food waste to biofuel

    USDA-ARS?s Scientific Manuscript database

    Butanol, a superior biofuel, packs 30% more energy than ethanol on a per gallon basis. It can be produced from various carbohydrates and lignocellulosic (biomass) feedstocks. For cost effective production of this renewable and high energy biofuel, inexpensive feedstocks and economical process techno...

Top