Item Purification in Differential Item Functioning Using Generalized Linear Mixed Models
ERIC Educational Resources Information Center
Liu, Qian
2011-01-01
For this dissertation, four item purification procedures were implemented onto the generalized linear mixed model for differential item functioning (DIF) analysis, and the performance of these item purification procedures was investigated through a series of simulations. Among the four procedures, forward and generalized linear mixed model (GLMM)…
NASA Technical Reports Server (NTRS)
Rankin, C. C.
1988-01-01
A consistent linearization is provided for the element-dependent corotational formulation, providing the proper first and second variation of the strain energy. As a result, the warping problem that has plagued flat elements has been overcome, with beneficial effects carried over to linear solutions. True Newton quadratic convergence has been restored to the Structural Analysis of General Shells (STAGS) code for conservative loading using the full corotational implementation. Some implications for general finite element analysis are discussed, including what effect the automatic frame invariance provided by this work might have on the development of new, improved elements.
Molenaar, Dylan; Tuerlinckx, Francis; van der Maas, Han L J
2015-01-01
A generalized linear modeling framework to the analysis of responses and response times is outlined. In this framework, referred to as bivariate generalized linear item response theory (B-GLIRT), separate generalized linear measurement models are specified for the responses and the response times that are subsequently linked by cross-relations. The cross-relations can take various forms. Here, we focus on cross-relations with a linear or interaction term for ability tests, and cross-relations with a curvilinear term for personality tests. In addition, we discuss how popular existing models from the psychometric literature are special cases in the B-GLIRT framework depending on restrictions in the cross-relation. This allows us to compare existing models conceptually and empirically. We discuss various extensions of the traditional models motivated by practical problems. We also illustrate the applicability of our approach using various real data examples, including data on personality and cognitive ability.
ERIC Educational Resources Information Center
Bashaw, W. L., Ed.; Findley, Warren G., Ed.
This volume contains the five major addresses and subsequent discussion from the Symposium on the General Linear Models Approach to the Analysis of Experimental Data in Educational Research, which was held in 1967 in Athens, Georgia. The symposium was designed to produce systematic information, including new methodology, for dissemination to the…
ERIC Educational Resources Information Center
Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang
2006-01-01
This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…
The microcomputer scientific software series 2: general linear model--regression.
Harold M. Rauscher
1983-01-01
The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...
NASA Technical Reports Server (NTRS)
Middleton, W. D.; Lundry, J. L.
1975-01-01
An integrated system of computer programs has been developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. This part presents a general description of the system and describes the theoretical methods used.
Gain optimization with non-linear controls
NASA Technical Reports Server (NTRS)
Slater, G. L.; Kandadai, R. D.
1984-01-01
An algorithm has been developed for the analysis and design of controls for non-linear systems. The technical approach is to use statistical linearization to model the non-linear dynamics of a system by a quasi-Gaussian model. A covariance analysis is performed to determine the behavior of the dynamical system and a quadratic cost function. Expressions for the cost function and its derivatives are determined so that numerical optimization techniques can be applied to determine optimal feedback laws. The primary application for this paper is centered about the design of controls for nominally linear systems but where the controls are saturated or limited by fixed constraints. The analysis is general, however, and numerical computation requires only that the specific non-linearity be considered in the analysis.
Feature extraction with deep neural networks by a generalized discriminant analysis.
Stuhlsatz, André; Lippel, Jens; Zielke, Thomas
2012-04-01
We present an approach to feature extraction that is a generalization of the classical linear discriminant analysis (LDA) on the basis of deep neural networks (DNNs). As for LDA, discriminative features generated from independent Gaussian class conditionals are assumed. This modeling has the advantages that the intrinsic dimensionality of the feature space is bounded by the number of classes and that the optimal discriminant function is linear. Unfortunately, linear transformations are insufficient to extract optimal discriminative features from arbitrarily distributed raw measurements. The generalized discriminant analysis (GerDA) proposed in this paper uses nonlinear transformations that are learnt by DNNs in a semisupervised fashion. We show that the feature extraction based on our approach displays excellent performance on real-world recognition and detection tasks, such as handwritten digit recognition and face detection. In a series of experiments, we evaluate GerDA features with respect to dimensionality reduction, visualization, classification, and detection. Moreover, we show that GerDA DNNs can preprocess truly high-dimensional input data to low-dimensional representations that facilitate accurate predictions even if simple linear predictors or measures of similarity are used.
Credibility analysis of risk classes by generalized linear model
NASA Astrophysics Data System (ADS)
Erdemir, Ovgucan Karadag; Sucu, Meral
2016-06-01
In this paper generalized linear model (GLM) and credibility theory which are frequently used in nonlife insurance pricing are combined for reliability analysis. Using full credibility standard, GLM is associated with limited fluctuation credibility approach. Comparison criteria such as asymptotic variance and credibility probability are used to analyze the credibility of risk classes. An application is performed by using one-year claim frequency data of a Turkish insurance company and results of credible risk classes are interpreted.
Modeling containment of large wildfires using generalized linear mixed-model analysis
Mark Finney; Isaac C. Grenfell; Charles W. McHugh
2009-01-01
Billions of dollars are spent annually in the United States to contain large wildland fires, but the factors contributing to suppression success remain poorly understood. We used a regression model (generalized linear mixed-model) to model containment probability of individual fires, assuming that containment was a repeated-measures problem (fixed effect) and...
On Generalizations of Cochran’s Theorem and Projection Matrices.
1980-08-01
Definiteness of the Estimated Dispersion Matrix in a Multivariate Linear Model ," F. Pukelsheim and George P.H. Styan, May 1978. TECHNICAL REPORTS...with applications to the analysis of covariance," Proc. Cambridge Philos. Soc., 30, pp. 178-191. Graybill , F. A. and Marsaglia, G. (1957...34Idempotent matrices and quad- ratic forms in the general linear hypothesis," Ann. Math. Statist., 28, pp. 678-686. Greub, W. (1975). Linear Algebra (4th ed
Generalized Structured Component Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun; Takane, Yoshio
2004-01-01
We propose an alternative method to partial least squares for path analysis with components, called generalized structured component analysis. The proposed method replaces factors by exact linear combinations of observed variables. It employs a well-defined least squares criterion to estimate model parameters. As a result, the proposed method…
Jain, Amit; Kuhls-Gilcrist, Andrew T; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen
2010-03-01
The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks.
Design sensitivity analysis of nonlinear structural response
NASA Technical Reports Server (NTRS)
Cardoso, J. B.; Arora, J. S.
1987-01-01
A unified theory is described of design sensitivity analysis of linear and nonlinear structures for shape, nonshape and material selection problems. The concepts of reference volume and adjoint structure are used to develop the unified viewpoint. A general formula for design sensitivity analysis is derived. Simple analytical linear and nonlinear examples are used to interpret various terms of the formula and demonstrate its use.
Nikoloulopoulos, Aristidis K
2017-10-01
A bivariate copula mixed model has been recently proposed to synthesize diagnostic test accuracy studies and it has been shown that it is superior to the standard generalized linear mixed model in this context. Here, we call trivariate vine copulas to extend the bivariate meta-analysis of diagnostic test accuracy studies by accounting for disease prevalence. Our vine copula mixed model includes the trivariate generalized linear mixed model as a special case and can also operate on the original scale of sensitivity, specificity, and disease prevalence. Our general methodology is illustrated by re-analyzing the data of two published meta-analyses. Our study suggests that there can be an improvement on trivariate generalized linear mixed model in fit to data and makes the argument for moving to vine copula random effects models especially because of their richness, including reflection asymmetric tail dependence, and computational feasibility despite their three dimensionality.
Regression Is a Univariate General Linear Model Subsuming Other Parametric Methods as Special Cases.
ERIC Educational Resources Information Center
Vidal, Sherry
Although the concept of the general linear model (GLM) has existed since the 1960s, other univariate analyses such as the t-test and the analysis of variance models have remained popular. The GLM produces an equation that minimizes the mean differences of independent variables as they are related to a dependent variable. From a computer printout…
Extending local canonical correlation analysis to handle general linear contrasts for FMRI data.
Jin, Mingwu; Nandy, Rajesh; Curran, Tim; Cordes, Dietmar
2012-01-01
Local canonical correlation analysis (CCA) is a multivariate method that has been proposed to more accurately determine activation patterns in fMRI data. In its conventional formulation, CCA has several drawbacks that limit its usefulness in fMRI. A major drawback is that, unlike the general linear model (GLM), a test of general linear contrasts of the temporal regressors has not been incorporated into the CCA formalism. To overcome this drawback, a novel directional test statistic was derived using the equivalence of multivariate multiple regression (MVMR) and CCA. This extension will allow CCA to be used for inference of general linear contrasts in more complicated fMRI designs without reparameterization of the design matrix and without reestimating the CCA solutions for each particular contrast of interest. With the proper constraints on the spatial coefficients of CCA, this test statistic can yield a more powerful test on the inference of evoked brain regional activations from noisy fMRI data than the conventional t-test in the GLM. The quantitative results from simulated and pseudoreal data and activation maps from fMRI data were used to demonstrate the advantage of this novel test statistic.
Extending Local Canonical Correlation Analysis to Handle General Linear Contrasts for fMRI Data
Jin, Mingwu; Nandy, Rajesh; Curran, Tim; Cordes, Dietmar
2012-01-01
Local canonical correlation analysis (CCA) is a multivariate method that has been proposed to more accurately determine activation patterns in fMRI data. In its conventional formulation, CCA has several drawbacks that limit its usefulness in fMRI. A major drawback is that, unlike the general linear model (GLM), a test of general linear contrasts of the temporal regressors has not been incorporated into the CCA formalism. To overcome this drawback, a novel directional test statistic was derived using the equivalence of multivariate multiple regression (MVMR) and CCA. This extension will allow CCA to be used for inference of general linear contrasts in more complicated fMRI designs without reparameterization of the design matrix and without reestimating the CCA solutions for each particular contrast of interest. With the proper constraints on the spatial coefficients of CCA, this test statistic can yield a more powerful test on the inference of evoked brain regional activations from noisy fMRI data than the conventional t-test in the GLM. The quantitative results from simulated and pseudoreal data and activation maps from fMRI data were used to demonstrate the advantage of this novel test statistic. PMID:22461786
A formulation of rotor-airframe coupling for design analysis of vibrations of helicopter airframes
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.; Walton, W. C., Jr.
1982-01-01
A linear formulation of rotor airframe coupling intended for vibration analysis in airframe structural design is presented. The airframe is represented by a finite element analysis model; the rotor is represented by a general set of linear differential equations with periodic coefficients; and the connections between the rotor and airframe are specified through general linear equations of constraint. Coupling equations are applied to the rotor and airframe equations to produce one set of linear differential equations governing vibrations of the combined rotor airframe system. These equations are solved by the harmonic balance method for the system steady state vibrations. A feature of the solution process is the representation of the airframe in terms of forced responses calculated at the rotor harmonics of interest. A method based on matrix partitioning is worked out for quick recalculations of vibrations in design studies when only relatively few airframe members are varied. All relations are presented in forms suitable for direct computer implementation.
NASA Astrophysics Data System (ADS)
Wu, Bofeng; Huang, Chao-Guang
2018-04-01
The 1 /r expansion in the distance to the source is applied to the linearized f (R ) gravity, and its multipole expansion in the radiation field with irreducible Cartesian tensors is presented. Then, the energy, momentum, and angular momentum in the gravitational waves are provided for linearized f (R ) gravity. All of these results have two parts, which are associated with the tensor part and the scalar part in the multipole expansion of linearized f (R ) gravity, respectively. The former is the same as that in General Relativity, and the latter, as the correction to the result in General Relativity, is caused by the massive scalar degree of freedom and plays an important role in distinguishing General Relativity and f (R ) gravity.
A General Accelerated Degradation Model Based on the Wiener Process.
Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning
2016-12-06
Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses.
A General Accelerated Degradation Model Based on the Wiener Process
Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning
2016-01-01
Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses. PMID:28774107
Teachers' Evaluations and Students' Achievement: A "Deviation from the Reference" Analysis
ERIC Educational Resources Information Center
Iacus, Stefano M.; Porro, Giuseppe
2011-01-01
Several studies show that teachers make use of grading practices to affect students' effort and achievement. Generally linearity is assumed in the grading equation, while it is everyone's experience that grading practices are frequently non-linear. Representing grading practices as linear can be misleading both from a descriptive and a…
A comparison of methods for the analysis of binomial clustered outcomes in behavioral research.
Ferrari, Alberto; Comelli, Mario
2016-12-01
In behavioral research, data consisting of a per-subject proportion of "successes" and "failures" over a finite number of trials often arise. This clustered binary data are usually non-normally distributed, which can distort inference if the usual general linear model is applied and sample size is small. A number of more advanced methods is available, but they are often technically challenging and a comparative assessment of their performances in behavioral setups has not been performed. We studied the performances of some methods applicable to the analysis of proportions; namely linear regression, Poisson regression, beta-binomial regression and Generalized Linear Mixed Models (GLMMs). We report on a simulation study evaluating power and Type I error rate of these models in hypothetical scenarios met by behavioral researchers; plus, we describe results from the application of these methods on data from real experiments. Our results show that, while GLMMs are powerful instruments for the analysis of clustered binary outcomes, beta-binomial regression can outperform them in a range of scenarios. Linear regression gave results consistent with the nominal level of significance, but was overall less powerful. Poisson regression, instead, mostly led to anticonservative inference. GLMMs and beta-binomial regression are generally more powerful than linear regression; yet linear regression is robust to model misspecification in some conditions, whereas Poisson regression suffers heavily from violations of the assumptions when used to model proportion data. We conclude providing directions to behavioral scientists dealing with clustered binary data and small sample sizes. Copyright © 2016 Elsevier B.V. All rights reserved.
Application of variational and Galerkin equations to linear and nonlinear finite element analysis
NASA Technical Reports Server (NTRS)
Yu, Y.-Y.
1974-01-01
The paper discusses the application of the variational equation to nonlinear finite element analysis. The problem of beam vibration with large deflection is considered. The variational equation is shown to be flexible in both the solution of a general problem and in the finite element formulation. Difficulties are shown to arise when Galerkin's equations are used in the consideration of the finite element formulation of two-dimensional linear elasticity and of the linear classical beam.
NASA Astrophysics Data System (ADS)
Wang, Qingzhi; Tan, Guanzheng; He, Yong; Wu, Min
2017-10-01
This paper considers a stability analysis issue of piecewise non-linear systems and applies it to intermittent synchronisation of chaotic systems. First, based on piecewise Lyapunov function methods, more general and less conservative stability criteria of piecewise non-linear systems in periodic and aperiodic cases are presented, respectively. Next, intermittent synchronisation conditions of chaotic systems are derived which extend existing results. Finally, Chua's circuit is taken as an example to verify the validity of our methods.
Computer-aided linear-circuit design.
NASA Technical Reports Server (NTRS)
Penfield, P.
1971-01-01
Usually computer-aided design (CAD) refers to programs that analyze circuits conceived by the circuit designer. Among the services such programs should perform are direct network synthesis, analysis, optimization of network parameters, formatting, storage of miscellaneous data, and related calculations. The program should be embedded in a general-purpose conversational language such as BASIC, JOSS, or APL. Such a program is MARTHA, a general-purpose linear-circuit analyzer embedded in APL.
ERIC Educational Resources Information Center
Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.
2009-01-01
This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…
Analysis and comparison of end effects in linear switched reluctance and hybrid motors
NASA Astrophysics Data System (ADS)
Barhoumi, El Manaa; Abo-Khalil, Ahmed Galal; Berrouche, Youcef; Wurtz, Frederic
2017-03-01
This paper presents and discusses the longitudinal and transversal end effects which affects the propulsive force of linear motors. Generally, the modeling of linear machine considers the forces distortion due to the specific geometry of linear actuators. The insertion of permanent magnets on the stator allows improving the propulsive force produced by switched reluctance linear motors. Also, the inserted permanent magnets in the hybrid structure allow reducing considerably the ends effects observed in linear motors. The analysis was conducted using 2D and 3D finite elements method. The permanent magnet reinforces the flux produced by the winding and reorients it which allows modifying the impact of end effects. Presented simulations and discussions show the importance of this study to characterize the end effects in two different linear motors.
A General Approach to Causal Mediation Analysis
ERIC Educational Resources Information Center
Imai, Kosuke; Keele, Luke; Tingley, Dustin
2010-01-01
Traditionally in the social sciences, causal mediation analysis has been formulated, understood, and implemented within the framework of linear structural equation models. We argue and demonstrate that this is problematic for 3 reasons: the lack of a general definition of causal mediation effects independent of a particular statistical model, the…
NASA Technical Reports Server (NTRS)
1980-01-01
MATHPAC image-analysis library is collection of general-purpose mathematical and statistical routines and special-purpose data-analysis and pattern-recognition routines for image analysis. MATHPAC library consists of Linear Algebra, Optimization, Statistical-Summary, Densities and Distribution, Regression, and Statistical-Test packages.
Linear systems with structure group and their feedback invariants
NASA Technical Reports Server (NTRS)
Martin, C.; Hermann, R.
1977-01-01
A general method described by Hermann and Martin (1976) for the study of the feedback invariants of linear systems is considered. It is shown that this method, which makes use of ideas of topology and algebraic geometry, is very useful in the investigation of feedback problems for which the classical methods are not suitable. The transfer function as a curve in the Grassmanian is examined. The general concepts studied in the context of specific systems and applications are organized in terms of the theory of Lie groups and algebraic geometry. Attention is given to linear systems which have a structure group, linear mechanical systems, and feedback invariants. The investigation shows that Lie group techniques are powerful and useful tools for analysis of the feedback structure of linear systems.
Speed-of-light limitations in passive linear media
NASA Astrophysics Data System (ADS)
Welters, Aaron; Avniel, Yehuda; Johnson, Steven G.
2014-08-01
We prove that well-known speed-of-light restrictions on electromagnetic energy velocity can be extended to a new level of generality, encompassing even nonlocal chiral media in periodic geometries, while at the same time weakening the underlying assumptions to only passivity and linearity of the medium (either with a transparency window or with dissipation). As was also shown by other authors under more limiting assumptions, passivity alone is sufficient to guarantee causality and positivity of the energy density (with no thermodynamic assumptions). Our proof is general enough to include a very broad range of material properties, including anisotropy, bianisotropy (chirality), nonlocality, dispersion, periodicity, and even delta functions or similar generalized functions. We also show that the "dynamical energy density" used by some previous authors in dissipative media reduces to the standard Brillouin formula for dispersive energy density in a transparency window. The results in this paper are proved by exploiting deep results from linear-response theory, harmonic analysis, and functional analysis that had previously not been brought together in the context of electrodynamics.
NASA Technical Reports Server (NTRS)
Smith, Todd E.
1991-01-01
An aeroelastic analysis is developed which has general application to all types of axial-flow turbomachinery blades. The approach is based on linear modal analysis, where the blade's dynamic response is represented as a linear combination of contributions from each of its in-vacuum free vibrational modes. A compressible linearized unsteady potential theory is used to model the flow over the oscillating blades. The two-dimensional unsteady flow is evaluated along several stacked axisymmetric strips along the span of the airfoil. The unsteady pressures at the blade surface are integrated to result in the generalized force acting on the blade due to simple harmonic motions. The unsteady aerodynamic forces are coupled to the blade normal modes in the frequency domain using modal analysis. An iterative eigenvalue problem is solved to determine the stability of the blade when the unsteady aerodynamic forces are included in the analysis. The approach is demonstrated by applying it to a high-energy subsonic turbine blade from a rocket engine turbopump power turbine. The results indicate that this turbine could undergo flutter in an edgewise mode of vibration.
Multilayer neural networks for reduced-rank approximation.
Diamantaras, K I; Kung, S Y
1994-01-01
This paper is developed in two parts. First, the authors formulate the solution to the general reduced-rank linear approximation problem relaxing the invertibility assumption of the input autocorrelation matrix used by previous authors. The authors' treatment unifies linear regression, Wiener filtering, full rank approximation, auto-association networks, SVD and principal component analysis (PCA) as special cases. The authors' analysis also shows that two-layer linear neural networks with reduced number of hidden units, trained with the least-squares error criterion, produce weights that correspond to the generalized singular value decomposition of the input-teacher cross-correlation matrix and the input data matrix. As a corollary the linear two-layer backpropagation model with reduced hidden layer extracts an arbitrary linear combination of the generalized singular vector components. Second, the authors investigate artificial neural network models for the solution of the related generalized eigenvalue problem. By introducing and utilizing the extended concept of deflation (originally proposed for the standard eigenvalue problem) the authors are able to find that a sequential version of linear BP can extract the exact generalized eigenvector components. The advantage of this approach is that it's easier to update the model structure by adding one more unit or pruning one or more units when the application requires it. An alternative approach for extracting the exact components is to use a set of lateral connections among the hidden units trained in such a way as to enforce orthogonality among the upper- and lower-layer weights. The authors call this the lateral orthogonalization network (LON) and show via theoretical analysis-and verify via simulation-that the network extracts the desired components. The advantage of the LON-based model is that it can be applied in a parallel fashion so that the components are extracted concurrently. Finally, the authors show the application of their results to the solution of the identification problem of systems whose excitation has a non-invertible autocorrelation matrix. Previous identification methods usually rely on the invertibility assumption of the input autocorrelation, therefore they can not be applied to this case.
MULTIVARIATE LINEAR MIXED MODELS FOR MULTIPLE OUTCOMES. (R824757)
We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes the latent variable model of Sammel and Ryan. The proposed model assumes a flexible correlation structure among the multiple outcomes, and allows a global test of the impact of ...
Applied Multiple Linear Regression: A General Research Strategy
ERIC Educational Resources Information Center
Smith, Brandon B.
1969-01-01
Illustrates some of the basic concepts and procedures for using regression analysis in experimental design, analysis of variance, analysis of covariance, and curvilinear regression. Applications to evaluation of instruction and vocational education programs are illustrated. (GR)
Valeri, Linda; Lin, Xihong; VanderWeele, Tyler J.
2014-01-01
Mediation analysis is a popular approach to examine the extent to which the effect of an exposure on an outcome is through an intermediate variable (mediator) and the extent to which the effect is direct. When the mediator is mis-measured the validity of mediation analysis can be severely undermined. In this paper we first study the bias of classical, non-differential measurement error on a continuous mediator in the estimation of direct and indirect causal effects in generalized linear models when the outcome is either continuous or discrete and exposure-mediator interaction may be present. Our theoretical results as well as a numerical study demonstrate that in the presence of non-linearities the bias of naive estimators for direct and indirect effects that ignore measurement error can take unintuitive directions. We then develop methods to correct for measurement error. Three correction approaches using method of moments, regression calibration and SIMEX are compared. We apply the proposed method to the Massachusetts General Hospital lung cancer study to evaluate the effect of genetic variants mediated through smoking on lung cancer risk. PMID:25220625
Non-linear behavior of fiber composite laminates
NASA Technical Reports Server (NTRS)
Hashin, Z.; Bagchi, D.; Rosen, B. W.
1974-01-01
The non-linear behavior of fiber composite laminates which results from lamina non-linear characteristics was examined. The analysis uses a Ramberg-Osgood representation of the lamina transverse and shear stress strain curves in conjunction with deformation theory to describe the resultant laminate non-linear behavior. A laminate having an arbitrary number of oriented layers and subjected to a general state of membrane stress was treated. Parametric results and comparison with experimental data and prior theoretical results are presented.
Finite-time H∞ filtering for non-linear stochastic systems
NASA Astrophysics Data System (ADS)
Hou, Mingzhe; Deng, Zongquan; Duan, Guangren
2016-09-01
This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.
Finite Element Based Structural Damage Detection Using Artificial Boundary Conditions
2007-09-01
C. (2005). Elementary Linear Algebra . New York: John Wiley and Sons. Avitable, Peter (2001, January) Experimental Modal Analysis, A Simple Non...variables under consideration. 3 Frequency sensitivities are the basis for a linear approximation to compute the change in the natural frequencies of a...THEORY The general problem statement for a non- linear constrained optimization problem is: To minimize ( )f x Objective Function Subject to
Noise limitations in optical linear algebra processors.
Batsell, S G; Jong, T L; Walkup, J F; Krile, T F
1990-05-10
A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.
ERIC Educational Resources Information Center
Thompson, Bruce
The relationship between analysis of variance (ANOVA) methods and their analogs (analysis of covariance and multiple analyses of variance and covariance--collectively referred to as OVA methods) and the more general analytic case is explored. A small heuristic data set is used, with a hypothetical sample of 20 subjects, randomly assigned to five…
A primer for biomedical scientists on how to execute model II linear regression analysis.
Ludbrook, John
2012-04-01
1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.
Nie, Z Q; Ou, Y Q; Zhuang, J; Qu, Y J; Mai, J Z; Chen, J M; Liu, X Q
2016-05-01
Conditional logistic regression analysis and unconditional logistic regression analysis are commonly used in case control study, but Cox proportional hazard model is often used in survival data analysis. Most literature only refer to main effect model, however, generalized linear model differs from general linear model, and the interaction was composed of multiplicative interaction and additive interaction. The former is only statistical significant, but the latter has biological significance. In this paper, macros was written by using SAS 9.4 and the contrast ratio, attributable proportion due to interaction and synergy index were calculated while calculating the items of logistic and Cox regression interactions, and the confidence intervals of Wald, delta and profile likelihood were used to evaluate additive interaction for the reference in big data analysis in clinical epidemiology and in analysis of genetic multiplicative and additive interactions.
Huang, Jian; Zhang, Cun-Hui
2013-01-01
The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including the generalized linear models. We study the estimation, prediction, selection and sparsity properties of the weighted ℓ1-penalized estimator in sparse, high-dimensional settings where the number of predictors p can be much larger than the sample size n. Adaptive Lasso is considered as a special case. A multistage method is developed to approximate concave regularized estimation by applying an adaptive Lasso recursively. We provide prediction and estimation oracle inequalities for single- and multi-stage estimators, a general selection consistency theorem, and an upper bound for the dimension of the Lasso estimator. Important models including the linear regression, logistic regression and log-linear models are used throughout to illustrate the applications of the general results. PMID:24348100
Johnston, K M; Gustafson, P; Levy, A R; Grootendorst, P
2008-04-30
A major, often unstated, concern of researchers carrying out epidemiological studies of medical therapy is the potential impact on validity if estimates of treatment are biased due to unmeasured confounders. One technique for obtaining consistent estimates of treatment effects in the presence of unmeasured confounders is instrumental variables analysis (IVA). This technique has been well developed in the econometrics literature and is being increasingly used in epidemiological studies. However, the approach to IVA that is most commonly used in such studies is based on linear models, while many epidemiological applications make use of non-linear models, specifically generalized linear models (GLMs) such as logistic or Poisson regression. Here we present a simple method for applying IVA within the class of GLMs using the generalized method of moments approach. We explore some of the theoretical properties of the method and illustrate its use within both a simulation example and an epidemiological study where unmeasured confounding is suspected to be present. We estimate the effects of beta-blocker therapy on one-year all-cause mortality after an incident hospitalization for heart failure, in the absence of data describing disease severity, which is believed to be a confounder. 2008 John Wiley & Sons, Ltd
Cloherty, Shaun L; Hietanen, Markus A; Suaning, Gregg J; Ibbotson, Michael R
2010-01-01
We performed optical intrinsic signal imaging of cat primary visual cortex (Area 17 and 18) while delivering bipolar electrical stimulation to the retina by way of a supra-choroidal electrode array. Using a general linear model (GLM) analysis we identified statistically significant (p < 0.01) activation in a localized region of cortex following supra-threshold electrical stimulation at a single retinal locus. (1) demonstrate that intrinsic signal imaging combined with linear model analysis provides a powerful tool for assessing cortical responses to prosthetic stimulation, and (2) confirm that supra-choroidal electrical stimulation can achieve localized activation of the cortex consistent with focal activation of the retina.
NASA Technical Reports Server (NTRS)
Middleton, W. D.; Lundry, J. L.
1976-01-01
An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. Schematics of the program structure and the individual overlays and subroutines are described.
On the equivalence of Gaussian elimination and Gauss-Jordan reduction in solving linear equations
NASA Technical Reports Server (NTRS)
Tsao, Nai-Kuan
1989-01-01
A novel general approach to round-off error analysis using the error complexity concepts is described. This is applied to the analysis of the Gaussian Elimination and Gauss-Jordan scheme for solving linear equations. The results show that the two algorithms are equivalent in terms of our error complexity measures. Thus the inherently parallel Gauss-Jordan scheme can be implemented with confidence if parallel computers are available.
An, Shengli; Zhang, Yanhong; Chen, Zheng
2012-12-01
To analyze binary classification repeated measurement data with generalized estimating equations (GEE) and generalized linear mixed models (GLMMs) using SPSS19.0. GEE and GLMMs models were tested using binary classification repeated measurement data sample using SPSS19.0. Compared with SAS, SPSS19.0 allowed convenient analysis of categorical repeated measurement data using GEE and GLMMs.
ERIC Educational Resources Information Center
Tisdell, C. C.
2017-01-01
Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…
On the repeated measures designs and sample sizes for randomized controlled trials.
Tango, Toshiro
2016-04-01
For the analysis of longitudinal or repeated measures data, generalized linear mixed-effects models provide a flexible and powerful tool to deal with heterogeneity among subject response profiles. However, the typical statistical design adopted in usual randomized controlled trials is an analysis of covariance type analysis using a pre-defined pair of "pre-post" data, in which pre-(baseline) data are used as a covariate for adjustment together with other covariates. Then, the major design issue is to calculate the sample size or the number of subjects allocated to each treatment group. In this paper, we propose a new repeated measures design and sample size calculations combined with generalized linear mixed-effects models that depend not only on the number of subjects but on the number of repeated measures before and after randomization per subject used for the analysis. The main advantages of the proposed design combined with the generalized linear mixed-effects models are (1) it can easily handle missing data by applying the likelihood-based ignorable analyses under the missing at random assumption and (2) it may lead to a reduction in sample size, compared with the simple pre-post design. The proposed designs and the sample size calculations are illustrated with real data arising from randomized controlled trials. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Huppert, Theodore J
2016-01-01
Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low levels of light to measure changes in cerebral blood oxygenation levels. In the majority of NIRS functional brain studies, analysis of this data is based on a statistical comparison of hemodynamic levels between a baseline and task or between multiple task conditions by means of a linear regression model: the so-called general linear model. Although these methods are similar to their implementation in other fields, particularly for functional magnetic resonance imaging, the specific application of these methods in fNIRS research differs in several key ways related to the sources of noise and artifacts unique to fNIRS. In this brief communication, we discuss the application of linear regression models in fNIRS and the modifications needed to generalize these models in order to deal with structured (colored) noise due to systemic physiology and noise heteroscedasticity due to motion artifacts. The objective of this work is to present an overview of these noise properties in the context of the linear model as it applies to fNIRS data. This work is aimed at explaining these mathematical issues to the general fNIRS experimental researcher but is not intended to be a complete mathematical treatment of these concepts.
NASA Technical Reports Server (NTRS)
Defigueiredo, R. J. P.
1974-01-01
General classes of nonlinear and linear transformations were investigated for the reduction of the dimensionality of the classification (feature) space so that, for a prescribed dimension m of this space, the increase of the misclassification risk is minimized.
A Linear Variable-[theta] Model for Measuring Individual Differences in Response Precision
ERIC Educational Resources Information Center
Ferrando, Pere J.
2011-01-01
Models for measuring individual response precision have been proposed for binary and graded responses. However, more continuous formats are quite common in personality measurement and are usually analyzed with the linear factor analysis model. This study extends the general Gaussian person-fluctuation model to the continuous-response case and…
Quasi-likelihood generalized linear regression analysis of fatality risk data
DOT National Transportation Integrated Search
2009-01-01
Transportation-related fatality risks is a function of many interacting human, vehicle, and environmental factors. Statisitcally valid analysis of such data is challenged both by the complexity of plausable structural models relating fatality rates t...
Qualitative analysis of certain generalized classes of quadratic oscillator systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagchi, Bijan, E-mail: bbagchi123@gmail.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Pal, Barnali, E-mail: barrna.roo@gmail.com
2016-02-15
We carry out a systematic qualitative analysis of the two quadratic schemes of generalized oscillators recently proposed by Quesne [J. Math. Phys. 56, 012903 (2015)]. By performing a local analysis of the governing potentials, we demonstrate that while the first potential admits a pair of equilibrium points one of which is typically a center for both signs of the coupling strength λ, the other points to a centre for λ < 0 but a saddle λ > 0. On the other hand, the second potential reveals only a center for both the signs of λ from a linear stability analysis.more » We carry out our study by extending Quesne’s scheme to include the effects of a linear dissipative term. An important outcome is that we run into a remarkable transition to chaos in the presence of a periodic force term fcosωt.« less
MSC products for the simulation of tire behavior
NASA Technical Reports Server (NTRS)
Muskivitch, John C.
1995-01-01
The modeling of tires and the simulation of tire behavior are complex problems. The MacNeal-Schwendler Corporation (MSC) has a number of finite element analysis products that can be used to address the complexities of tire modeling and simulation. While there are many similarities between the products, each product has a number of capabilities that uniquely enable it to be used for a specific aspect of tire behavior. This paper discusses the following programs: (1) MSC/NASTRAN - general purpose finite element program for linear and nonlinear static and dynamic analysis; (2) MSC/ADAQUS - nonlinear statics and dynamics finite element program; (3) MSC/PATRAN AFEA (Advanced Finite Element Analysis) - general purpose finite element program with a subset of linear and nonlinear static and dynamic analysis capabilities with an integrated version of MSC/PATRAN for pre- and post-processing; and (4) MSC/DYTRAN - nonlinear explicit transient dynamics finite element program.
Single-phase power distribution system power flow and fault analysis
NASA Technical Reports Server (NTRS)
Halpin, S. M.; Grigsby, L. L.
1992-01-01
Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.
Hobbs, Brian P.; Sargent, Daniel J.; Carlin, Bradley P.
2014-01-01
Assessing between-study variability in the context of conventional random-effects meta-analysis is notoriously difficult when incorporating data from only a small number of historical studies. In order to borrow strength, historical and current data are often assumed to be fully homogeneous, but this can have drastic consequences for power and Type I error if the historical information is biased. In this paper, we propose empirical and fully Bayesian modifications of the commensurate prior model (Hobbs et al., 2011) extending Pocock (1976), and evaluate their frequentist and Bayesian properties for incorporating patient-level historical data using general and generalized linear mixed regression models. Our proposed commensurate prior models lead to preposterior admissible estimators that facilitate alternative bias-variance trade-offs than those offered by pre-existing methodologies for incorporating historical data from a small number of historical studies. We also provide a sample analysis of a colon cancer trial comparing time-to-disease progression using a Weibull regression model. PMID:24795786
Langenbucher, Frieder
2005-01-01
A linear system comprising n compartments is completely defined by the rate constants between any of the compartments and the initial condition in which compartment(s) the drug is present at the beginning. The generalized solution is the time profiles of drug amount in each compartment, described by polyexponential equations. Based on standard matrix operations, an Excel worksheet computes the rate constants and the coefficients, finally the full time profiles for a specified range of time values.
A unified development of several techniques for the representation of random vectors and data sets
NASA Technical Reports Server (NTRS)
Bundick, W. T.
1973-01-01
Linear vector space theory is used to develop a general representation of a set of data vectors or random vectors by linear combinations of orthonormal vectors such that the mean squared error of the representation is minimized. The orthonormal vectors are shown to be the eigenvectors of an operator. The general representation is applied to several specific problems involving the use of the Karhunen-Loeve expansion, principal component analysis, and empirical orthogonal functions; and the common properties of these representations are developed.
NASA Astrophysics Data System (ADS)
Tisdell, C. C.
2017-08-01
Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem through a substitution. The purpose of this note is to present an alternative approach using 'exact methods', illustrating that a substitution and linearization of the problem is unnecessary. The ideas may be seen as forming a complimentary and arguably simpler approach to Azevedo and Valentino that have the potential to be assimilated and adapted to pedagogical needs of those learning and teaching exact differential equations in schools, colleges, universities and polytechnics. We illustrate how to apply the ideas through an analysis of the Gompertz equation, which is of interest in biomathematical models of tumour growth.
An Extended Microcomputer-Based Network Optimization Package.
1982-10-01
Analysis, Laxenberq, Austria, 1981, pp. 781-808. 9. Anton , H., Elementary Linear Algebra , John Wiley & Sons, New York, 1977. 10. Koopmans, T. C...fCaRUlue do leVee. aide It 001100"M OW eedea9f’ OF Nooke~e Network, generalized network, microcomputer, optimization, network with gains, linear ...Oboe &111111041 network problem, in turn, can be viewed as a specialization of a linear programuing problem having at most two non-zero entries in each
NASA Technical Reports Server (NTRS)
Egebrecht, R. A.; Thorbjornsen, A. R.
1967-01-01
Digital computer programs determine steady-state performance characteristics of active and passive linear circuits. The ac analysis program solves the basic circuit parameters. The compiler program solves these circuit parameters and in addition provides a more versatile program by allowing the user to perform mathematical and logical operations.
Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng
2013-05-01
Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Moses; Qin, Hong; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026
2013-08-15
By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus, provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complexmore » linear focusing channels.« less
Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations
NASA Astrophysics Data System (ADS)
Wyszkowska, Patrycja
2017-12-01
The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula) are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.
A single-degree-of-freedom model for non-linear soil amplification
Erdik, Mustafa Ozder
1979-01-01
For proper understanding of soil behavior during earthquakes and assessment of a realistic surface motion, studies of the large-strain dynamic response of non-linear hysteretic soil systems are indispensable. Most of the presently available studies are based on the assumption that the response of a soil deposit is mainly due to the upward propagation of horizontally polarized shear waves from the underlying bedrock. Equivalent-linear procedures, currently in common use in non-linear soil response analysis, provide a simple approach and have been favorably compared with the actual recorded motions in some particular cases. Strain compatibility in these equivalent-linear approaches is maintained by selecting values of shear moduli and damping ratios in accordance with the average soil strains, in an iterative manner. Truly non-linear constitutive models with complete strain compatibility have also been employed. The equivalent-linear approaches often raise some doubt as to the reliability of their results concerning the system response in high frequency regions. In these frequency regions the equivalent-linear methods may underestimate the surface motion by as much as a factor of two or more. Although studies are complete in their methods of analysis, they inevitably provide applications pertaining only to a few specific soil systems, and do not lead to general conclusions about soil behavior. This report attempts to provide a general picture of the soil response through the use of a single-degree-of-freedom non-linear-hysteretic model. Although the investigation is based on a specific type of nonlinearity and a set of dynamic soil properties, the method described does not limit itself to these assumptions and is equally applicable to other types of nonlinearity and soil parameters.
Hoyer, Annika; Kuss, Oliver
2018-05-01
Meta-analysis of diagnostic studies is still a rapidly developing area of biostatistical research. Especially, there is an increasing interest in methods to compare different diagnostic tests to a common gold standard. Restricting to the case of two diagnostic tests, in these meta-analyses the parameters of interest are the differences of sensitivities and specificities (with their corresponding confidence intervals) between the two diagnostic tests while accounting for the various associations across single studies and between the two tests. We propose statistical models with a quadrivariate response (where sensitivity of test 1, specificity of test 1, sensitivity of test 2, and specificity of test 2 are the four responses) as a sensible approach to this task. Using a quadrivariate generalized linear mixed model naturally generalizes the common standard bivariate model of meta-analysis for a single diagnostic test. If information on several thresholds of the tests is available, the quadrivariate model can be further generalized to yield a comparison of full receiver operating characteristic (ROC) curves. We illustrate our model by an example where two screening methods for the diagnosis of type 2 diabetes are compared.
Generalized Heisenberg algebra and (non linear) pseudo-bosons
NASA Astrophysics Data System (ADS)
Bagarello, F.; Curado, E. M. F.; Gazeau, J. P.
2018-04-01
We propose a deformed version of the generalized Heisenberg algebra by using techniques borrowed from the theory of pseudo-bosons. In particular, this analysis is relevant when non self-adjoint Hamiltonians are needed to describe a given physical system. We also discuss relations with nonlinear pseudo-bosons. Several examples are discussed.
NASA Astrophysics Data System (ADS)
van Berkel, M.; Kobayashi, T.; Igami, H.; Vandersteen, G.; Hogeweij, G. M. D.; Tanaka, K.; Tamura, N.; Zwart, H. J.; Kubo, S.; Ito, S.; Tsuchiya, H.; de Baar, M. R.; LHD Experiment Group
2017-12-01
A new methodology to analyze non-linear components in perturbative transport experiments is introduced. The methodology has been experimentally validated in the Large Helical Device for the electron heat transport channel. Electron cyclotron resonance heating with different modulation frequencies by two gyrotrons has been used to directly quantify the amplitude of the non-linear component at the inter-modulation frequencies. The measurements show significant quadratic non-linear contributions and also the absence of cubic and higher order components. The non-linear component is analyzed using the Volterra series, which is the non-linear generalization of transfer functions. This allows us to study the radial distribution of the non-linearity of the plasma and to reconstruct linear profiles where the measurements were not distorted by non-linearities. The reconstructed linear profiles are significantly different from the measured profiles, demonstrating the significant impact that non-linearity can have.
2004-02-11
the general circulation of the middle atmosphere, Philos. Trans. R. Soc. London, Ser. A, 323, 693–705. Anton , H. (2000), Elementary Linear Algebra ...Because the saturated radiances may depend slightly on tangent height as the limb path length decreases, a linear trend (described by parameters a and b...track days and interpolated onto the same limb-track orbits. The color bar scale for radiance variance is linear . (b) Digital elevations of northern
Application of conditional moment tests to model checking for generalized linear models.
Pan, Wei
2002-06-01
Generalized linear models (GLMs) are increasingly being used in daily data analysis. However, model checking for GLMs with correlated discrete response data remains difficult. In this paper, through a case study on marginal logistic regression using a real data set, we illustrate the flexibility and effectiveness of using conditional moment tests (CMTs), along with other graphical methods, to do model checking for generalized estimation equation (GEE) analyses. Although CMTs provide an array of powerful diagnostic tests for model checking, they were originally proposed in the econometrics literature and, to our knowledge, have never been applied to GEE analyses. CMTs cover many existing tests, including the (generalized) score test for an omitted covariate, as special cases. In summary, we believe that CMTs provide a class of useful model checking tools.
Robust L1-norm two-dimensional linear discriminant analysis.
Li, Chun-Na; Shao, Yuan-Hai; Deng, Nai-Yang
2015-05-01
In this paper, we propose an L1-norm two-dimensional linear discriminant analysis (L1-2DLDA) with robust performance. Different from the conventional two-dimensional linear discriminant analysis with L2-norm (L2-2DLDA), where the optimization problem is transferred to a generalized eigenvalue problem, the optimization problem in our L1-2DLDA is solved by a simple justifiable iterative technique, and its convergence is guaranteed. Compared with L2-2DLDA, our L1-2DLDA is more robust to outliers and noises since the L1-norm is used. This is supported by our preliminary experiments on toy example and face datasets, which show the improvement of our L1-2DLDA over L2-2DLDA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multivariate meta-analysis for non-linear and other multi-parameter associations
Gasparrini, A; Armstrong, B; Kenward, M G
2012-01-01
In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043
On analyticity of linear waves scattered by a layered medium
NASA Astrophysics Data System (ADS)
Nicholls, David P.
2017-10-01
The scattering of linear waves by periodic structures is a crucial phenomena in many branches of applied physics and engineering. In this paper we establish rigorous analytic results necessary for the proper numerical analysis of a class of High-Order Perturbation of Surfaces methods for simulating such waves. More specifically, we prove a theorem on existence and uniqueness of solutions to a system of partial differential equations which model the interaction of linear waves with a multiply layered periodic structure in three dimensions. This result provides hypotheses under which a rigorous numerical analysis could be conducted for recent generalizations to the methods of Operator Expansions, Field Expansions, and Transformed Field Expansions.
Buckling analysis for anisotropic laminated plates under combined inplane loads
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.
1974-01-01
The buckling analysis presented considers rectangular flat or curved general laminates subjected to combined inplane normal and shear loads. Linear theory is used in the analysis. All prebuckling deformations and any initial imperfections are ignored. The analysis method can be readily extended to longitudinally stiffened structures subjected to combined inplane normal and shear loads.
Rapid iterative reanalysis for automated design
NASA Technical Reports Server (NTRS)
Bhatia, K. G.
1973-01-01
A method for iterative reanalysis in automated structural design is presented for a finite-element analysis using the direct stiffness approach. A basic feature of the method is that the generalized stiffness and inertia matrices are expressed as functions of structural design parameters, and these generalized matrices are expanded in Taylor series about the initial design. Only the linear terms are retained in the expansions. The method is approximate because it uses static condensation, modal reduction, and the linear Taylor series expansions. The exact linear representation of the expansions of the generalized matrices is also described and a basis for the present method is established. Results of applications of the present method to the recalculation of the natural frequencies of two simple platelike structural models are presented and compared with results obtained by using a commonly applied analysis procedure used as a reference. In general, the results are in good agreement. A comparison of the computer times required for the use of the present method and the reference method indicated that the present method required substantially less time for reanalysis. Although the results presented are for relatively small-order problems, the present method will become more efficient relative to the reference method as the problem size increases. An extension of the present method to static reanalysis is described, ana a basis for unifying the static and dynamic reanalysis procedures is presented.
Caçola, Priscila M; Pant, Mohan D
2014-10-01
The purpose was to use a multi-level statistical technique to analyze how children's age, motor proficiency, and cognitive styles interact to affect accuracy on reach estimation tasks via Motor Imagery and Visual Imagery. Results from the Generalized Linear Mixed Model analysis (GLMM) indicated that only the 7-year-old age group had significant random intercepts for both tasks. Motor proficiency predicted accuracy in reach tasks, and cognitive styles (object scale) predicted accuracy in the motor imagery task. GLMM analysis is suitable to explore age and other parameters of development. In this case, it allowed an assessment of motor proficiency interacting with age to shape how children represent, plan, and act on the environment.
Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert
2012-01-01
Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, p<0.001). Univariate mixture model fits of FDGpre improved R2 from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. Conclusions Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748
Log-normal frailty models fitted as Poisson generalized linear mixed models.
Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver
2016-12-01
The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Glantz, S A; Wilson-Loots, R
2003-12-01
Because it is widely played, claims that smoking restrictions will adversely affect bingo games is used as an argument against these policies. We used publicly available data from Massachusetts to assess the impact of 100% smoke-free ordinances on profits from bingo and other gambling sponsored by charitable organisations between 1985 and 2001. We conducted two analyses: (1) a general linear model implementation of a time series analysis with net profits (adjusted to 2001 dollars) as the dependent variable, and community (as a fixed effect), year, lagged net profits, and the length of time the ordinance had been in force as the independent variables; (2) multiple linear regression of total state profits against time, lagged profits, and the percentage of the entire state population in communities that allow charitable gaming but prohibit smoking. The general linear model analysis of data from individual communities showed that, while adjusted profits fell over time, this effect was not related to the presence of an ordinance. The analysis in terms of the fraction of the population living in communities with ordinances yielded the same result. Policymakers can implement smoke-free policies without concern that these policies will affect charitable gaming.
Linear analysis of auto-organization in Hebbian neural networks.
Carlos Letelier, J; Mpodozis, J
1995-01-01
The self-organization of neurotopies where neural connections follow Hebbian dynamics is framed in terms of linear operator theory. A general and exact equation describing the time evolution of the overall synaptic strength connecting two neural laminae is derived. This linear matricial equation, which is similar to the equations used to describe oscillating systems in physics, is modified by the introduction of non-linear terms, in order to capture self-organizing (or auto-organizing) processes. The behavior of a simple and small system, that contains a non-linearity that mimics a metabolic constraint, is analyzed by computer simulations. The emergence of a simple "order" (or degree of organization) in this low-dimensionality model system is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Moses; Qin, Hong; Davidson, Ronald C.
In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. Here in this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. Themore » new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. Finally, the corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.« less
Chung, Moses; Qin, Hong; Davidson, Ronald C.; ...
2016-11-23
In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. Here in this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. Themore » new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. Finally, the corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.« less
ERIC Educational Resources Information Center
Cheshire, Daniel C.
2017-01-01
The introduction to general topology represents a challenging transition for students of advanced mathematics. It requires the generalization of their previous understanding of ideas from fields like geometry, linear algebra, and real or complex analysis to fit within a more abstract conceptual system. Students must adopt a new lexicon of…
Linear Covariance Analysis and Epoch State Estimators
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Carpenter, J. Russell
2014-01-01
This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.
Linear Covariance Analysis and Epoch State Estimators
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Carpenter, J. Russell
2012-01-01
This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.
NASA Astrophysics Data System (ADS)
Kiyono, Ken; Tsujimoto, Yutaka
2016-07-01
We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale.
Kiyono, Ken; Tsujimoto, Yutaka
2016-07-01
We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale.
Normality of raw data in general linear models: The most widespread myth in statistics
Kery, Marc; Hatfield, Jeff S.
2003-01-01
In years of statistical consulting for ecologists and wildlife biologists, by far the most common misconception we have come across has been the one about normality in general linear models. These comprise a very large part of the statistical models used in ecology and include t tests, simple and multiple linear regression, polynomial regression, and analysis of variance (ANOVA) and covariance (ANCOVA). There is a widely held belief that the normality assumption pertains to the raw data rather than to the model residuals. We suspect that this error may also occur in countless published studies, whenever the normality assumption is tested prior to analysis. This may lead to the use of nonparametric alternatives (if there are any), when parametric tests would indeed be appropriate, or to use of transformations of raw data, which may introduce hidden assumptions such as multiplicative effects on the natural scale in the case of log-transformed data. Our aim here is to dispel this myth. We very briefly describe relevant theory for two cases of general linear models to show that the residuals need to be normally distributed if tests requiring normality are to be used, such as t and F tests. We then give two examples demonstrating that the distribution of the response variable may be nonnormal, and yet the residuals are well behaved. We do not go into the issue of how to test normality; instead we display the distributions of response variables and residuals graphically.
Method for nonlinear exponential regression analysis
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1972-01-01
Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.
NASA Technical Reports Server (NTRS)
Lallemand, Pierre; Luo, Li-Shi
2000-01-01
The generalized hydrodynamics (the wave vector dependence of the transport coefficients) of a generalized lattice Boltzmann equation (LBE) is studied in detail. The generalized lattice Boltzmann equation is constructed in moment space rather than in discrete velocity space. The generalized hydrodynamics of the model is obtained by solving the dispersion equation of the linearized LBE either analytically by using perturbation technique or numerically. The proposed LBE model has a maximum number of adjustable parameters for the given set of discrete velocities. Generalized hydrodynamics characterizes dispersion, dissipation (hyper-viscosities), anisotropy, and lack of Galilean invariance of the model, and can be applied to select the values of the adjustable parameters which optimize the properties of the model. The proposed generalized hydrodynamic analysis also provides some insights into stability and proper initial conditions for LBE simulations. The stability properties of some 2D LBE models are analyzed and compared with each other in the parameter space of the mean streaming velocity and the viscous relaxation time. The procedure described in this work can be applied to analyze other LBE models. As examples, LBE models with various interpolation schemes are analyzed. Numerical results on shear flow with an initially discontinuous velocity profile (shock) with or without a constant streaming velocity are shown to demonstrate the dispersion effects in the LBE model; the results compare favorably with our theoretical analysis. We also show that whereas linear analysis of the LBE evolution operator is equivalent to Chapman-Enskog analysis in the long wave-length limit (wave vector k = 0), it can also provide results for large values of k. Such results are important for the stability and other hydrodynamic properties of the LBE method and cannot be obtained through Chapman-Enskog analysis.
Meta-analysis of studies with bivariate binary outcomes: a marginal beta-binomial model approach
Chen, Yong; Hong, Chuan; Ning, Yang; Su, Xiao
2018-01-01
When conducting a meta-analysis of studies with bivariate binary outcomes, challenges arise when the within-study correlation and between-study heterogeneity should be taken into account. In this paper, we propose a marginal beta-binomial model for the meta-analysis of studies with binary outcomes. This model is based on the composite likelihood approach, and has several attractive features compared to the existing models such as bivariate generalized linear mixed model (Chu and Cole, 2006) and Sarmanov beta-binomial model (Chen et al., 2012). The advantages of the proposed marginal model include modeling the probabilities in the original scale, not requiring any transformation of probabilities or any link function, having closed-form expression of likelihood function, and no constraints on the correlation parameter. More importantly, since the marginal beta-binomial model is only based on the marginal distributions, it does not suffer from potential misspecification of the joint distribution of bivariate study-specific probabilities. Such misspecification is difficult to detect and can lead to biased inference using currents methods. We compare the performance of the marginal beta-binomial model with the bivariate generalized linear mixed model and the Sarmanov beta-binomial model by simulation studies. Interestingly, the results show that the marginal beta-binomial model performs better than the Sarmanov beta-binomial model, whether or not the true model is Sarmanov beta-binomial, and the marginal beta-binomial model is more robust than the bivariate generalized linear mixed model under model misspecifications. Two meta-analyses of diagnostic accuracy studies and a meta-analysis of case-control studies are conducted for illustration. PMID:26303591
NASA Astrophysics Data System (ADS)
Zhang, Chenglong; Guo, Ping
2017-10-01
The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.
A FORTRAN program for the analysis of linear continuous and sample-data systems
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1976-01-01
A FORTRAN digital computer program which performs the general analysis of linearized control systems is described. State variable techniques are used to analyze continuous, discrete, and sampled data systems. Analysis options include the calculation of system eigenvalues, transfer functions, root loci, root contours, frequency responses, power spectra, and transient responses for open- and closed-loop systems. A flexible data input format allows the user to define systems in a variety of representations. Data may be entered by inputing explicit data matrices or matrices constructed in user written subroutines, by specifying transfer function block diagrams, or by using a combination of these methods.
Feasible logic Bell-state analysis with linear optics
Zhou, Lan; Sheng, Yu-Bo
2016-01-01
We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are available in current experimental technology. We can conveniently identify two of the logic Bell states. This protocol can be easily generalized to the arbitrary C-GHZ state analysis. We can also distinguish two N-logic-qubit C-GHZ states. As the previous theory and experiment both showed that the C-GHZ state has the robustness feature, this logic Bell-state analysis and C-GHZ state analysis may be essential for linear-optical quantum computation protocols whose building blocks are logic-qubit entangled state. PMID:26877208
Feasible logic Bell-state analysis with linear optics.
Zhou, Lan; Sheng, Yu-Bo
2016-02-15
We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are available in current experimental technology. We can conveniently identify two of the logic Bell states. This protocol can be easily generalized to the arbitrary C-GHZ state analysis. We can also distinguish two N-logic-qubit C-GHZ states. As the previous theory and experiment both showed that the C-GHZ state has the robustness feature, this logic Bell-state analysis and C-GHZ state analysis may be essential for linear-optical quantum computation protocols whose building blocks are logic-qubit entangled state.
ERIC Educational Resources Information Center
Feingold, Alan
2009-01-01
The use of growth-modeling analysis (GMA)--including hierarchical linear models, latent growth models, and general estimating equations--to evaluate interventions in psychology, psychiatry, and prevention science has grown rapidly over the last decade. However, an effect size associated with the difference between the trajectories of the…
Analysis techniques for multivariate root loci. [a tool in linear control systems
NASA Technical Reports Server (NTRS)
Thompson, P. M.; Stein, G.; Laub, A. J.
1980-01-01
Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.
Klamt, Steffen; Regensburger, Georg; Gerstl, Matthias P; Jungreuthmayer, Christian; Schuster, Stefan; Mahadevan, Radhakrishnan; Zanghellini, Jürgen; Müller, Stefan
2017-04-01
Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks.
Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan
2017-01-01
Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903
Robust Linear Models for Cis-eQTL Analysis.
Rantalainen, Mattias; Lindgren, Cecilia M; Holmes, Christopher C
2015-01-01
Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives), and to some extent also type I errors (false positives). Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.
NASA Technical Reports Server (NTRS)
Allen, G.
1972-01-01
The use of the theta-operator method and generalized hypergeometric functions in obtaining solutions to nth-order linear ordinary differential equations is explained. For completeness, the analysis of the differential equation to determine whether the point of expansion is an ordinary point or a regular singular point is included. The superiority of the two methods shown over the standard method is demonstrated by using all three of the methods to work out several examples. Also included is a compendium of formulae and properties of the theta operator and generalized hypergeometric functions which is complete enough to make the report self-contained.
Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, 1986 Final Report
NASA Technical Reports Server (NTRS)
Ahmad, Shahid
1991-01-01
An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons with available analytical and numerical results, the stability and high accuracy of these dynamic analysis techniques are established.
NASA Astrophysics Data System (ADS)
Pueyo, Laurent
2016-01-01
A new class of high-contrast image analysis algorithms, that empirically fit and subtract systematic noise has lead to recent discoveries of faint exoplanet /substellar companions and scattered light images of circumstellar disks. The consensus emerging in the community is that these methods are extremely efficient at enhancing the detectability of faint astrophysical signal, but do generally create systematic biases in their observed properties. This poster provides a solution this outstanding problem. We present an analytical derivation of a linear expansion that captures the impact of astrophysical over/self-subtraction in current image analysis techniques. We examine the general case for which the reference images of the astrophysical scene moves azimuthally and/or radially across the field of view as a result of the observation strategy. Our new method method is based on perturbing the covariance matrix underlying any least-squares speckles problem and propagating this perturbation through the data analysis algorithm. This work is presented in the framework of Karhunen-Loeve Image Processing (KLIP) but it can be easily generalized to methods relying on linear combination of images (instead of eigen-modes). Based on this linear expansion, obtained in the most general case, we then demonstrate practical applications of this new algorithm. We first consider the case of the spectral extraction of faint point sources in IFS data and illustrate, using public Gemini Planet Imager commissioning data, that our novel perturbation based Forward Modeling (which we named KLIP-FM) can indeed alleviate algorithmic biases. We then apply KLIP-FM to the detection of point sources and show how it decreases the rate of false negatives while keeping the rate of false positives unchanged when compared to classical KLIP. This can potentially have important consequences on the design of follow-up strategies of ongoing direct imaging surveys.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.
Linear spin-2 fields in most general backgrounds
NASA Astrophysics Data System (ADS)
Bernard, Laura; Deffayet, Cédric; Schmidt-May, Angnis; von Strauss, Mikael
2016-04-01
We derive the full perturbative equations of motion for the most general background solutions in ghost-free bimetric theory in its metric formulation. Clever field redefinitions at the level of fluctuations enable us to circumvent the problem of varying a square-root matrix appearing in the theory. This greatly simplifies the expressions for the linear variation of the bimetric interaction terms. We show that these field redefinitions exist and are uniquely invertible if and only if the variation of the square-root matrix itself has a unique solution, which is a requirement for the linearized theory to be well defined. As an application of our results we examine the constraint structure of ghost-free bimetric theory at the level of linear equations of motion for the first time. We identify a scalar combination of equations which is responsible for the absence of the Boulware-Deser ghost mode in the theory. The bimetric scalar constraint is in general not manifestly covariant in its nature. However, in the massive gravity limit the constraint assumes a covariant form when one of the interaction parameters is set to zero. For that case our analysis provides an alternative and almost trivial proof of the absence of the Boulware-Deser ghost. Our findings generalize previous results in the metric formulation of massive gravity and also agree with studies of its vielbein version.
Glantz, S; Wilson-Loots, R
2003-01-01
Background: Because it is widely played, claims that smoking restrictions will adversely affect bingo games is used as an argument against these policies. We used publicly available data from Massachusetts to assess the impact of 100% smoke-free ordinances on profits from bingo and other gambling sponsored by charitable organisations between 1985 and 2001. Methods: We conducted two analyses: (1) a general linear model implementation of a time series analysis with net profits (adjusted to 2001 dollars) as the dependent variable, and community (as a fixed effect), year, lagged net profits, and the length of time the ordinance had been in force as the independent variables; (2) multiple linear regression of total state profits against time, lagged profits, and the percentage of the entire state population in communities that allow charitable gaming but prohibit smoking. Results: The general linear model analysis of data from individual communities showed that, while adjusted profits fell over time, this effect was not related to the presence of an ordinance. The analysis in terms of the fraction of the population living in communities with ordinances yielded the same result. Conclusion: Policymakers can implement smoke-free policies without concern that these policies will affect charitable gaming. PMID:14660778
Time Advice and Learning Questions in Computer Simulations
ERIC Educational Resources Information Center
Rey, Gunter Daniel
2011-01-01
Students (N = 101) used an introductory text and a computer simulation to learn fundamental concepts about statistical analyses (e.g., analysis of variance, regression analysis and General Linear Model). Each learner was randomly assigned to one cell of a 2 (with or without time advice) x 3 (with learning questions and corrective feedback, with…
Generalized Linear Covariance Analysis
NASA Technical Reports Server (NTRS)
Carpenter, James R.; Markley, F. Landis
2014-01-01
This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.
Meta-analysis of studies with bivariate binary outcomes: a marginal beta-binomial model approach.
Chen, Yong; Hong, Chuan; Ning, Yang; Su, Xiao
2016-01-15
When conducting a meta-analysis of studies with bivariate binary outcomes, challenges arise when the within-study correlation and between-study heterogeneity should be taken into account. In this paper, we propose a marginal beta-binomial model for the meta-analysis of studies with binary outcomes. This model is based on the composite likelihood approach and has several attractive features compared with the existing models such as bivariate generalized linear mixed model (Chu and Cole, 2006) and Sarmanov beta-binomial model (Chen et al., 2012). The advantages of the proposed marginal model include modeling the probabilities in the original scale, not requiring any transformation of probabilities or any link function, having closed-form expression of likelihood function, and no constraints on the correlation parameter. More importantly, because the marginal beta-binomial model is only based on the marginal distributions, it does not suffer from potential misspecification of the joint distribution of bivariate study-specific probabilities. Such misspecification is difficult to detect and can lead to biased inference using currents methods. We compare the performance of the marginal beta-binomial model with the bivariate generalized linear mixed model and the Sarmanov beta-binomial model by simulation studies. Interestingly, the results show that the marginal beta-binomial model performs better than the Sarmanov beta-binomial model, whether or not the true model is Sarmanov beta-binomial, and the marginal beta-binomial model is more robust than the bivariate generalized linear mixed model under model misspecifications. Two meta-analyses of diagnostic accuracy studies and a meta-analysis of case-control studies are conducted for illustration. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tessore, Nicolas; Metcalf, R. Benton; Winther, Hans A.
A number of alternatives to general relativity exhibit gravitational screening in the non-linear regime of structure formation. We describe a set of algorithms that can produce weak lensing maps of large scale structure in such theories and can be used to generate mock surveys for cosmological analysis. By analysing a few basic statistics we indicate how these alternatives can be distinguished from general relativity with future weak lensing surveys.
NASA Technical Reports Server (NTRS)
Fitzjerrell, D. G.
1974-01-01
A general study of the stability of nonlinear as compared to linear control systems is presented. The analysis is general and, therefore, applies to other types of nonlinear biological control systems as well as the cardiovascular control system models. Both inherent and numerical stability are discussed for corresponding analytical and graphic methods and numerical methods.
NASA Astrophysics Data System (ADS)
Zhou, L.-Q.; Meleshko, S. V.
2017-07-01
The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.
Linear discriminant analysis with misallocation in training samples
NASA Technical Reports Server (NTRS)
Chhikara, R. (Principal Investigator); Mckeon, J.
1982-01-01
Linear discriminant analysis for a two-class case is studied in the presence of misallocation in training samples. A general appraoch to modeling of mislocation is formulated, and the mean vectors and covariance matrices of the mixture distributions are derived. The asymptotic distribution of the discriminant boundary is obtained and the asymptotic first two moments of the two types of error rate given. Certain numerical results for the error rates are presented by considering the random and two non-random misallocation models. It is shown that when the allocation procedure for training samples is objectively formulated, the effect of misallocation on the error rates of the Bayes linear discriminant rule can almost be eliminated. If, however, this is not possible, the use of Fisher rule may be preferred over the Bayes rule.
Theoretical and software considerations for nonlinear dynamic analysis
NASA Technical Reports Server (NTRS)
Schmidt, R. J.; Dodds, R. H., Jr.
1983-01-01
In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.
Nikita, Efthymia
2014-03-01
The current article explores whether the application of generalized linear models (GLM) and generalized estimating equations (GEE) can be used in place of conventional statistical analyses in the study of ordinal data that code an underlying continuous variable, like entheseal changes. The analysis of artificial data and ordinal data expressing entheseal changes in archaeological North African populations gave the following results. Parametric and nonparametric tests give convergent results particularly for P values <0.1, irrespective of whether the underlying variable is normally distributed or not under the condition that the samples involved in the tests exhibit approximately equal sizes. If this prerequisite is valid and provided that the samples are of equal variances, analysis of covariance may be adopted. GLM are not subject to constraints and give results that converge to those obtained from all nonparametric tests. Therefore, they can be used instead of traditional tests as they give the same amount of information as them, but with the advantage of allowing the study of the simultaneous impact of multiple predictors and their interactions and the modeling of the experimental data. However, GLM should be replaced by GEE for the study of bilateral asymmetry and in general when paired samples are tested, because GEE are appropriate for correlated data. Copyright © 2013 Wiley Periodicals, Inc.
A note about high blood pressure in childhood
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena; Simão, Carla
2017-06-01
In medical, behavioral and social sciences it is usual to get a binary outcome. In the present work is collected information where some of the outcomes are binary variables (1='yes'/ 0='no'). In [14] a preliminary study about the caregivers perception of pediatric hypertension was introduced. An experimental questionnaire was designed to be answered by the caregivers of routine pediatric consultation attendees in the Santa Maria's hospital (HSM). The collected data was statistically analyzed, where a descriptive analysis and a predictive model were performed. Significant relations between some socio-demographic variables and the assessed knowledge were obtained. In [14] can be found a statistical data analysis using partial questionnaire's information. The present article completes the statistical approach estimating a model for relevant remaining questions of questionnaire by Generalized Linear Models (GLM). Exploring the binary outcome issue, we intend to extend this approach using Generalized Linear Mixed Models (GLMM), but the process is still ongoing.
Linear Mixed Models: Gum and Beyond
NASA Astrophysics Data System (ADS)
Arendacká, Barbora; Täubner, Angelika; Eichstädt, Sascha; Bruns, Thomas; Elster, Clemens
2014-04-01
In Annex H.5, the Guide to the Evaluation of Uncertainty in Measurement (GUM) [1] recognizes the necessity to analyze certain types of experiments by applying random effects ANOVA models. These belong to the more general family of linear mixed models that we focus on in the current paper. Extending the short introduction provided by the GUM, our aim is to show that the more general, linear mixed models cover a wider range of situations occurring in practice and can be beneficial when employed in data analysis of long-term repeated experiments. Namely, we point out their potential as an aid in establishing an uncertainty budget and as means for gaining more insight into the measurement process. We also comment on computational issues and to make the explanations less abstract, we illustrate all the concepts with the help of a measurement campaign conducted in order to challenge the uncertainty budget in calibration of accelerometers.
NASA Astrophysics Data System (ADS)
Avitabile, Peter; O'Callahan, John
2009-01-01
Generally, response analysis of systems containing discrete nonlinear connection elements such as typical mounting connections require the physical finite element system matrices to be used in a direct integration algorithm to compute the nonlinear response analysis solution. Due to the large size of these physical matrices, forced nonlinear response analysis requires significant computational resources. Usually, the individual components of the system are analyzed and tested as separate components and their individual behavior may essentially be linear when compared to the total assembled system. However, the joining of these linear subsystems using highly nonlinear connection elements causes the entire system to become nonlinear. It would be advantageous if these linear modal subsystems could be utilized in the forced nonlinear response analysis since much effort has usually been expended in fine tuning and adjusting the analytical models to reflect the tested subsystem configuration. Several more efficient techniques have been developed to address this class of problem. Three of these techniques given as: equivalent reduced model technique (ERMT);modal modification response technique (MMRT); andcomponent element method (CEM); are presented in this paper and are compared to traditional methods.
An extended GS method for dense linear systems
NASA Astrophysics Data System (ADS)
Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi
2009-09-01
Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.
Linear relations in microbial reaction systems: a general overview of their origin, form, and use.
Noorman, H J; Heijnen, J J; Ch A M Luyben, K
1991-09-01
In microbial reaction systems, there are a number of linear relations among net conversion rates. These can be very useful in the analysis of experimental data. This article provides a general approach for the formation and application of the linear relations. Two type of system descriptions, one considering the biomass as a black box and the other based on metabolic pathways, are encountered. These are defined in a linear vector and matrix algebra framework. A correct a priori description can be obtained by three useful tests: the independency, consistency, and observability tests. The independency are different. The black box approach provides only conservations relations. They are derived from element, electrical charge, energy, and Gibbs energy balances. The metabolic approach provides, in addition to the conservation relations, metabolic and reaction relations. These result from component, energy, and Gibbs energy balances. Thus it is more attractive to use the metabolic description than the black box approach. A number of different types of linear relations given in the literature are reviewed. They are classified according to the different categories that result from the black box or the metabolic system description. Validation of hypotheses related to metabolic pathways can be supported by experimental validation of the linear metabolic relations. However, definite proof from biochemical evidence remains indispensable.
First integrals and parametric solutions of third-order ODEs admitting {\\mathfrak{sl}(2, {R})}
NASA Astrophysics Data System (ADS)
Ruiz, A.; Muriel, C.
2017-05-01
A complete set of first integrals for any third-order ordinary differential equation admitting a Lie symmetry algebra isomorphic to sl(2, {R}) is explicitly computed. These first integrals are derived from two linearly independent solutions of a linear second-order ODE, without additional integration. The general solution in parametric form can be obtained by using the computed first integrals. The study includes a parallel analysis of the four inequivalent realizations of sl(2, {R}) , and it is applied to several particular examples. These include the generalized Chazy equation, as well as an example of an equation which admits the most complicated of the four inequivalent realizations.
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
NASA Technical Reports Server (NTRS)
Downie, John D.; Goodman, Joseph W.
1989-01-01
The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.
Zheng, Xueying; Qin, Guoyou; Tu, Dongsheng
2017-05-30
Motivated by the analysis of quality of life data from a clinical trial on early breast cancer, we propose in this paper a generalized partially linear mean-covariance regression model for longitudinal proportional data, which are bounded in a closed interval. Cholesky decomposition of the covariance matrix for within-subject responses and generalized estimation equations are used to estimate unknown parameters and the nonlinear function in the model. Simulation studies are performed to evaluate the performance of the proposed estimation procedures. Our new model is also applied to analyze the data from the cancer clinical trial that motivated this research. In comparison with available models in the literature, the proposed model does not require specific parametric assumptions on the density function of the longitudinal responses and the probability function of the boundary values and can capture dynamic changes of time or other interested variables on both mean and covariance of the correlated proportional responses. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Local influence for generalized linear models with missing covariates.
Shi, Xiaoyan; Zhu, Hongtu; Ibrahim, Joseph G
2009-12-01
In the analysis of missing data, sensitivity analyses are commonly used to check the sensitivity of the parameters of interest with respect to the missing data mechanism and other distributional and modeling assumptions. In this article, we formally develop a general local influence method to carry out sensitivity analyses of minor perturbations to generalized linear models in the presence of missing covariate data. We examine two types of perturbation schemes (the single-case and global perturbation schemes) for perturbing various assumptions in this setting. We show that the metric tensor of a perturbation manifold provides useful information for selecting an appropriate perturbation. We also develop several local influence measures to identify influential points and test model misspecification. Simulation studies are conducted to evaluate our methods, and real datasets are analyzed to illustrate the use of our local influence measures.
NASA Technical Reports Server (NTRS)
Chapman, Dean R
1952-01-01
A theoretical investigation is made of the airfoil profile for minimum pressure drag at zero lift in supersonic flow. In the first part of the report a general method is developed for calculating the profile having the least pressure drag for a given auxiliary condition, such as a given structural requirement or a given thickness ratio. The various structural requirements considered include bending strength, bending stiffness, torsional strength, and torsional stiffness. No assumption is made regarding the trailing-edge thickness; the optimum value is determined in the calculations as a function of the base pressure. To illustrate the general method, the optimum airfoil, defined as the airfoil having minimum pressure drag for a given auxiliary condition, is calculated in a second part of the report using the equations of linearized supersonic flow.
Attitude Determination Error Analysis System (ADEAS) mathematical specifications document
NASA Technical Reports Server (NTRS)
Nicholson, Mark; Markley, F.; Seidewitz, E.
1988-01-01
The mathematical specifications of Release 4.0 of the Attitude Determination Error Analysis System (ADEAS), which provides a general-purpose linear error analysis capability for various spacecraft attitude geometries and determination processes, are presented. The analytical basis of the system is presented. The analytical basis of the system is presented, and detailed equations are provided for both three-axis-stabilized and spin-stabilized attitude sensor models.
NASA Astrophysics Data System (ADS)
Adegoke, Oluwashina; Dhang, Prasun; Mukhopadhyay, Banibrata; Ramadevi, M. C.; Bhattacharya, Debbijoy
2018-05-01
By analysing the time series of RXTE/PCA data, the non-linear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different non-linear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a non-linear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of non-linearity to the underlying spectral properties of the flow when the non-linear properties are related to the associated transport mechanisms describing the geometry of the flow? This work is aimed at addressing this question. Based on the connection between observed spectral and non-linear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow and general advective accretion flow. We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.
An overview of longitudinal data analysis methods for neurological research.
Locascio, Joseph J; Atri, Alireza
2011-01-01
The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models.
Effect Size Measure and Analysis of Single Subject Designs
ERIC Educational Resources Information Center
Society for Research on Educational Effectiveness, 2013
2013-01-01
One of the vexing problems in the analysis of SSD is in the assessment of the effect of intervention. Serial dependence notwithstanding, the linear model approach that has been advanced involves, in general, the fitting of regression lines (or curves) to the set of observations within each phase of the design and comparing the parameters of these…
Instructional Advice, Time Advice and Learning Questions in Computer Simulations
ERIC Educational Resources Information Center
Rey, Gunter Daniel
2010-01-01
Undergraduate students (N = 97) used an introductory text and a computer simulation to learn fundamental concepts about statistical analyses (e.g., analysis of variance, regression analysis and General Linear Model). Each learner was randomly assigned to one cell of a 2 (with or without instructional advice) x 2 (with or without time advice) x 2…
Effective Use of Multimedia Presentations to Maximize Learning within High School Science Classrooms
ERIC Educational Resources Information Center
Rapp, Eric
2013-01-01
This research used an evidenced-based experimental 2 x 2 factorial design General Linear Model with Repeated Measures Analysis of Covariance (RMANCOVA). For this analysis, time served as the within-subjects factor while treatment group (i.e., static and signaling, dynamic and signaling, static without signaling, and dynamic without signaling)…
NASA Technical Reports Server (NTRS)
Hairr, John W.; Dorris, William J.; Ingram, J. Edward; Shah, Bharat M.
1993-01-01
Interactive Stiffened Panel Analysis (ISPAN) modules, written in FORTRAN, were developed to provide an easy to use tool for creating finite element models of composite material stiffened panels. The modules allow the user to interactively construct, solve and post-process finite element models of four general types of structural panel configurations using only the panel dimensions and properties as input data. Linear, buckling and post-buckling solution capability is provided. This interactive input allows rapid model generation and solution by non finite element users. The results of a parametric study of a blade stiffened panel are presented to demonstrate the usefulness of the ISPAN modules. Also, a non-linear analysis of a test panel was conducted and the results compared to measured data and previous correlation analysis.
Analysis of Electric Field Propagation in Anisotropically Absorbing and Reflecting Waveplates
NASA Astrophysics Data System (ADS)
Carnio, B. N.; Elezzabi, A. Y.
2018-04-01
Analytical expressions are derived for half-wave plates (HWPs) and quarter-wave plates (QWPs) based on uniaxial crystals. This general analysis describes the behavior of anisotropically absorbing and reflecting waveplates across the electromagnetic spectrum, which allows for correction to the commonly used equations determined assuming isotropic absorptions and reflections. This analysis is crucial to the design and implementation of HWPs and QWPs in the terahertz regime, where uniaxial crystals used for waveplates are highly birefringent and anisotropically absorbing. The derived HWP equations describe the rotation of linearly polarized light by an arbitrary angle, whereas the QWP analysis focuses on manipulating a linearly polarized electric field to obtain any ellipticity. The HWP and QWP losses are characterized by determining equations for the total electric field magnitude transmitted through these phase-retarding elements.
Causality Analysis of fMRI Data Based on the Directed Information Theory Framework.
Wang, Zhe; Alahmadi, Ahmed; Zhu, David C; Li, Tongtong
2016-05-01
This paper aims to conduct fMRI-based causality analysis in brain connectivity by exploiting the directed information (DI) theory framework. Unlike the well-known Granger causality (GC) analysis, which relies on the linear prediction technique, the DI theory framework does not have any modeling constraints on the sequences to be evaluated and ensures estimation convergence. Moreover, it can be used to generate the GC graphs. In this paper, first, we introduce the core concepts in the DI framework. Second, we present how to conduct causality analysis using DI measures between two time series. We provide the detailed procedure on how to calculate the DI for two finite-time series. The two major steps involved here are optimal bin size selection for data digitization and probability estimation. Finally, we demonstrate the applicability of DI-based causality analysis using both the simulated data and experimental fMRI data, and compare the results with that of the GC analysis. Our analysis indicates that GC analysis is effective in detecting linear or nearly linear causal relationship, but may have difficulty in capturing nonlinear causal relationships. On the other hand, DI-based causality analysis is more effective in capturing both linear and nonlinear causal relationships. Moreover, it is observed that brain connectivity among different regions generally involves dynamic two-way information transmissions between them. Our results show that when bidirectional information flow is present, DI is more effective than GC to quantify the overall causal relationship.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.
Explicit criteria for prioritization of cataract surgery
Ma Quintana, José; Escobar, Antonio; Bilbao, Amaia
2006-01-01
Background Consensus techniques have been used previously to create explicit criteria to prioritize cataract extraction; however, the appropriateness of the intervention was not included explicitly in previous studies. We developed a prioritization tool for cataract extraction according to the RAND method. Methods Criteria were developed using a modified Delphi panel judgment process. A panel of 11 ophthalmologists was assembled. Ratings were analyzed regarding the level of agreement among panelists. We studied the effect of all variables on the final panel score using general linear and logistic regression models. Priority scoring systems were developed by means of optimal scaling and general linear models. The explicit criteria developed were summarized by means of regression tree analysis. Results Eight variables were considered to create the indications. Of the 310 indications that the panel evaluated, 22.6% were considered high priority, 52.3% intermediate priority, and 25.2% low priority. Agreement was reached for 31.9% of the indications and disagreement for 0.3%. Logistic regression and general linear models showed that the preoperative visual acuity of the cataractous eye, visual function, and anticipated visual acuity postoperatively were the most influential variables. Alternative and simple scoring systems were obtained by optimal scaling and general linear models where the previous variables were also the most important. The decision tree also shows the importance of the previous variables and the appropriateness of the intervention. Conclusion Our results showed acceptable validity as an evaluation and management tool for prioritizing cataract extraction. It also provides easy algorithms for use in clinical practice. PMID:16512893
Application of the Hyper-Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes.
Khazraee, S Hadi; Sáez-Castillo, Antonio Jose; Geedipally, Srinivas Reddy; Lord, Dominique
2015-05-01
The hyper-Poisson distribution can handle both over- and underdispersion, and its generalized linear model formulation allows the dispersion of the distribution to be observation-specific and dependent on model covariates. This study's objective is to examine the potential applicability of a newly proposed generalized linear model framework for the hyper-Poisson distribution in analyzing motor vehicle crash count data. The hyper-Poisson generalized linear model was first fitted to intersection crash data from Toronto, characterized by overdispersion, and then to crash data from railway-highway crossings in Korea, characterized by underdispersion. The results of this study are promising. When fitted to the Toronto data set, the goodness-of-fit measures indicated that the hyper-Poisson model with a variable dispersion parameter provided a statistical fit as good as the traditional negative binomial model. The hyper-Poisson model was also successful in handling the underdispersed data from Korea; the model performed as well as the gamma probability model and the Conway-Maxwell-Poisson model previously developed for the same data set. The advantages of the hyper-Poisson model studied in this article are noteworthy. Unlike the negative binomial model, which has difficulties in handling underdispersed data, the hyper-Poisson model can handle both over- and underdispersed crash data. Although not a major issue for the Conway-Maxwell-Poisson model, the effect of each variable on the expected mean of crashes is easily interpretable in the case of this new model. © 2014 Society for Risk Analysis.
Linear, multivariable robust control with a mu perspective
NASA Technical Reports Server (NTRS)
Packard, Andy; Doyle, John; Balas, Gary
1993-01-01
The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.
Linear analysis of a force reflective teleoperator
NASA Technical Reports Server (NTRS)
Biggers, Klaus B.; Jacobsen, Stephen C.; Davis, Clark C.
1989-01-01
Complex force reflective teleoperation systems are often very difficult to analyze due to the large number of components and control loops involved. One mode of a force reflective teleoperator is described. An analysis of the performance of the system based on a linear analysis of the general full order model is presented. Reduced order models are derived and correlated with the full order models. Basic effects of force feedback and position feedback are examined and the effects of time delays between the master and slave are studied. The results show that with symmetrical position-position control of teleoperators, a basic trade off must be made between the intersystem stiffness of the teleoperator, and the impedance felt by the operator in free space.
Dynamical localization of coupled relativistic kicked rotors
NASA Astrophysics Data System (ADS)
Rozenbaum, Efim B.; Galitski, Victor
2017-02-01
A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.
Statistical Tutorial | Center for Cancer Research
Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. ST is designed as a follow up to Statistical Analysis of Research Data (SARD) held in April 2018. The tutorial will apply the general principles of statistical analysis of research data including descriptive statistics, z- and t-tests of means and mean differences, simple and multiple linear regression, ANOVA tests, and Chi-Squared distribution.
Chemical networks with inflows and outflows: a positive linear differential inclusions approach.
Angeli, David; De Leenheer, Patrick; Sontag, Eduardo D
2009-01-01
Certain mass-action kinetics models of biochemical reaction networks, although described by nonlinear differential equations, may be partially viewed as state-dependent linear time-varying systems, which in turn may be modeled by convex compact valued positive linear differential inclusions. A result is provided on asymptotic stability of such inclusions, and applied to a ubiquitous biochemical reaction network with inflows and outflows, known as the futile cycle. We also provide a characterization of exponential stability of general homogeneous switched systems which is not only of interest in itself, but also plays a role in the analysis of the futile cycle. 2009 American Institute of Chemical Engineers
NASA Astrophysics Data System (ADS)
D'Souza, Adora M.; Abidin, Anas Zainul; Nagarajan, Mahesh B.; Wismüller, Axel
2016-03-01
We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 +/- 0.037) as well as the underlying network structure (Rand index = 0.87 +/- 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.
DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel
2016-03-29
We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.
Xiao, Qingtai; Xu, Jianxin; Wang, Hua
2016-08-16
A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target.
Xiao, Qingtai; Xu, Jianxin; Wang, Hua
2016-01-01
A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target. PMID:27527065
NASA Astrophysics Data System (ADS)
Zharinov, V. V.
2013-02-01
We propose a formal construction generalizing the classic de Rham complex to a wide class of models in mathematical physics and analysis. The presentation is divided into a sequence of definitions and elementary, easily verified statements; proofs are therefore given only in the key case. Linear operations are everywhere performed over a fixed number field {F} = {R},{C}. All linear spaces, algebras, and modules, although not stipulated explicitly, are by definition or by construction endowed with natural locally convex topologies, and their morphisms are continuous.
Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN
NASA Technical Reports Server (NTRS)
Sheerer, T. J.
1986-01-01
The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.
Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2004-01-01
LASTRAC is a general-purposed, physics-based transition prediction code released by NASA for Laminar Flow Control studies and transition research. The design and development of the LASTRAC code is aimed at providing an engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. It was written from scratch based on the state-of-the-art numerical methods for stability analysis and modern software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory or linear parabolized stability equations method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. This document describes the governing equations, numerical methods, code development, detailed description of input/output parameters, and case studies for the current release of LASTRAC.
Measurement system analysis of viscometers used for drilling mud characterization
NASA Astrophysics Data System (ADS)
Mat-Shayuti, M. S.; Adzhar, S. N.
2017-07-01
Viscometers in the Faculty of Chemical Engineering, University Teknologi MARA, are subject to heavy utilization from the members of the faculty. Due to doubts surrounding their result integrity and maintenance management, Measurement System Analysis was executed. 5 samples of drilling muds with varied barite content from 5 - 25 weight% were prepared and their rheological properties determined in 3 trials by 3 operators using the viscometers. Gage Linearity and Bias Study were performed using Minitab software and the result shows high biases in the range of 19.2% to 38.7%, with non-linear trend along the span of measurements. Gage Repeatability & Reproducibility (Nested) analysis later produces Percent Repeatability & Reproducibility more than 7.7% and Percent Tolerance above 30%. Lastly, good and marginal Distinct Categories output are seen among the results. Despite acceptable performance of the measurement system in Distinct Categories, the poor results in accuracy, linearity, and Percent Repeatability & Reproducibility render the gage generally not capable. Improvement to the measurement system is imminent.
Casals, Martí; Girabent-Farrés, Montserrat; Carrasco, Josep L
2014-01-01
Modeling count and binary data collected in hierarchical designs have increased the use of Generalized Linear Mixed Models (GLMMs) in medicine. This article presents a systematic review of the application and quality of results and information reported from GLMMs in the field of clinical medicine. A search using the Web of Science database was performed for published original articles in medical journals from 2000 to 2012. The search strategy included the topic "generalized linear mixed models","hierarchical generalized linear models", "multilevel generalized linear model" and as a research domain we refined by science technology. Papers reporting methodological considerations without application, and those that were not involved in clinical medicine or written in English were excluded. A total of 443 articles were detected, with an increase over time in the number of articles. In total, 108 articles fit the inclusion criteria. Of these, 54.6% were declared to be longitudinal studies, whereas 58.3% and 26.9% were defined as repeated measurements and multilevel design, respectively. Twenty-two articles belonged to environmental and occupational public health, 10 articles to clinical neurology, 8 to oncology, and 7 to infectious diseases and pediatrics. The distribution of the response variable was reported in 88% of the articles, predominantly Binomial (n = 64) or Poisson (n = 22). Most of the useful information about GLMMs was not reported in most cases. Variance estimates of random effects were described in only 8 articles (9.2%). The model validation, the method of covariate selection and the method of goodness of fit were only reported in 8.0%, 36.8% and 14.9% of the articles, respectively. During recent years, the use of GLMMs in medical literature has increased to take into account the correlation of data when modeling qualitative data or counts. According to the current recommendations, the quality of reporting has room for improvement regarding the characteristics of the analysis, estimation method, validation, and selection of the model.
Abdelnour, A. Farras; Huppert, Theodore
2009-01-01
Near-infrared spectroscopy is a non-invasive neuroimaging method which uses light to measure changes in cerebral blood oxygenation associated with brain activity. In this work, we demonstrate the ability to record and analyze images of brain activity in real-time using a 16-channel continuous wave optical NIRS system. We propose a novel real-time analysis framework using an adaptive Kalman filter and a state–space model based on a canonical general linear model of brain activity. We show that our adaptive model has the ability to estimate single-trial brain activity events as we apply this method to track and classify experimental data acquired during an alternating bilateral self-paced finger tapping task. PMID:19457389
Robbins, Blaine
2013-01-01
Sociologists, political scientists, and economists all suggest that culture plays a pivotal role in the development of large-scale cooperation. In this study, I used generalized trust as a measure of culture to explore if and how culture impacts intentional homicide, my operationalization of cooperation. I compiled multiple cross-national data sets and used pooled time-series linear regression, single-equation instrumental-variables linear regression, and fixed- and random-effects estimation techniques on an unbalanced panel of 118 countries and 232 observations spread over a 15-year time period. Results suggest that culture and large-scale cooperation form a tenuous relationship, while economic factors such as development, inequality, and geopolitics appear to drive large-scale cooperation.
Response of discrete linear systems to forcing functions with inequality constraints.
NASA Technical Reports Server (NTRS)
Michalopoulos, C. D.; Riley, T. A.
1972-01-01
An analysis is made of the maximum response of discrete, linear mechanical systems to arbitrary forcing functions which lie within specified bounds. Primary attention is focused on the complete determination of the forcing function which will engender maximum displacement to any particular mass element of a multi-degree-of-freedom system. In general, the desired forcing function is found to be a bang-bang type function, i.e., a function which switches from the maximum to the minimum bound and vice-versa at certain instants of time. Examples of two-degree-of-freedom systems, with and without damping, are presented in detail. Conclusions are drawn concerning the effect of damping on the switching times and the general procedure for finding these times is discussed.
Analysis of Two Advanced Smoothing Algorithms.
1985-09-01
59 B. METHODOLOGY . ......... ........... 60 6 C. TESTING AND RESULTS ---- LINEAR UNDERLYING FUNCTION...SMOOTHING ALGORITHMS ...... .................... 94 A. GENERAL ......... ....................... .. 94 B. METHODOLOGY ............................ .95 C...to define succinctly. 59 B. METHODOLOGY There is no established procedure to follow in testing the efficiency and effectiveness of a smoothing
Some aspects of mathematical and chemical modeling of complex chemical processes
NASA Technical Reports Server (NTRS)
Nemes, I.; Botar, L.; Danoczy, E.; Vidoczy, T.; Gal, D.
1983-01-01
Some theoretical questions involved in the mathematical modeling of the kinetics of complex chemical process are discussed. The analysis is carried out for the homogeneous oxidation of ethylbenzene in the liquid phase. Particular attention is given to the determination of the general characteristics of chemical systems from an analysis of mathematical models developed on the basis of linear algebra.
Analysis of Parasite and Other Skewed Counts
Alexander, Neal
2012-01-01
Objective To review methods for the statistical analysis of parasite and other skewed count data. Methods Statistical methods for skewed count data are described and compared, with reference to those used over a ten year period of Tropical Medicine and International Health. Two parasitological datasets are used for illustration. Results Ninety papers were identified, 89 with descriptive and 60 with inferential analysis. A lack of clarity is noted in identifying measures of location, in particular the Williams and geometric mean. The different measures are compared, emphasizing the legitimacy of the arithmetic mean for skewed data. In the published papers, the t test and related methods were often used on untransformed data, which is likely to be invalid. Several approaches to inferential analysis are described, emphasizing 1) non-parametric methods, while noting that they are not simply comparisons of medians, and 2) generalized linear modelling, in particular with the negative binomial distribution. Additional methods, such as the bootstrap, with potential for greater use are described. Conclusions Clarity is recommended when describing transformations and measures of location. It is suggested that non-parametric methods and generalized linear models are likely to be sufficient for most analyses. PMID:22943299
An Overview of Longitudinal Data Analysis Methods for Neurological Research
Locascio, Joseph J.; Atri, Alireza
2011-01-01
The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models. PMID:22203825
NASA Astrophysics Data System (ADS)
Hau, Jan-Niklas; Oberlack, Martin; Chagelishvili, George
2017-04-01
We present a unifying solution framework for the linearized compressible equations for two-dimensional linearly sheared unbounded flows using the Lie symmetry analysis. The full set of symmetries that are admitted by the underlying system of equations is employed to systematically derive the one- and two-dimensional optimal systems of subalgebras, whose connected group reductions lead to three distinct invariant ansatz functions for the governing sets of partial differential equations (PDEs). The purpose of this analysis is threefold and explicitly we show that (i) there are three invariant solutions that stem from the optimal system. These include a general ansatz function with two free parameters, as well as the ansatz functions of the Kelvin mode and the modal approach. Specifically, the first approach unifies these well-known ansatz functions. By considering two limiting cases of the free parameters and related algebraic transformations, the general ansatz function is reduced to either of them. This fact also proves the existence of a link between the Kelvin mode and modal ansatz functions, as these appear to be the limiting cases of the general one. (ii) The Lie algebra associated with the Lie group admitted by the PDEs governing the compressible dynamics is a subalgebra associated with the group admitted by the equations governing the incompressible dynamics, which allows an additional (scaling) symmetry. Hence, any consequences drawn from the compressible case equally hold for the incompressible counterpart. (iii) In any of the systems of ordinary differential equations, derived by the three ansatz functions in the compressible case, the linearized potential vorticity is a conserved quantity that allows us to analyze vortex and wave mode perturbations separately.
NASA Astrophysics Data System (ADS)
Karakatsanis, Nicolas A.; Rahmim, Arman
2014-03-01
Graphical analysis is employed in the research setting to provide quantitative estimation of PET tracer kinetics from dynamic images at a single bed. Recently, we proposed a multi-bed dynamic acquisition framework enabling clinically feasible whole-body parametric PET imaging by employing post-reconstruction parameter estimation. In addition, by incorporating linear Patlak modeling within the system matrix, we enabled direct 4D reconstruction in order to effectively circumvent noise amplification in dynamic whole-body imaging. However, direct 4D Patlak reconstruction exhibits a relatively slow convergence due to the presence of non-sparse spatial correlations in temporal kinetic analysis. In addition, the standard Patlak model does not account for reversible uptake, thus underestimating the influx rate Ki. We have developed a novel whole-body PET parametric reconstruction framework in the STIR platform, a widely employed open-source reconstruction toolkit, a) enabling accelerated convergence of direct 4D multi-bed reconstruction, by employing a nested algorithm to decouple the temporal parameter estimation from the spatial image update process, and b) enhancing the quantitative performance particularly in regions with reversible uptake, by pursuing a non-linear generalized Patlak 4D nested reconstruction algorithm. A set of published kinetic parameters and the XCAT phantom were employed for the simulation of dynamic multi-bed acquisitions. Quantitative analysis on the Ki images demonstrated considerable acceleration in the convergence of the nested 4D whole-body Patlak algorithm. In addition, our simulated and patient whole-body data in the postreconstruction domain indicated the quantitative benefits of our extended generalized Patlak 4D nested reconstruction for tumor diagnosis and treatment response monitoring.
Geary, David C.; Nicholas, Alan; Li, Yaoran; Sun, Jianguo
2016-01-01
The contributions of domain-general abilities and domain-specific knowledge to subsequent mathematics achievement were longitudinally assessed (n = 167) through 8th grade. First grade intelligence and working memory and prior grade reading achievement indexed domain-general effects and domain-specific effects were indexed by prior grade mathematics achievement and mathematical cognition measures of prior grade number knowledge, addition skills, and fraction knowledge. Use of functional data analysis enabled grade-by-grade estimation of overall domain-general and domain-specific effects on subsequent mathematics achievement, the relative importance of individual domain-general and domain-specific variables on this achievement, and linear and non-linear across-grade estimates of these effects. The overall importance of domain-general abilities for subsequent achievement was stable across grades, with working memory emerging as the most important domain-general ability in later grades. The importance of prior mathematical competencies on subsequent mathematics achievement increased across grades, with number knowledge and arithmetic skills critical in all grades and fraction knowledge in later grades. Overall, domain-general abilities were more important than domain-specific knowledge for mathematics learning in early grades but general abilities and domain-specific knowledge were equally important in later grades. PMID:28781382
Can you trust the parametric standard errors in nonlinear least squares? Yes, with provisos.
Tellinghuisen, Joel
2018-04-01
Questions about the reliability of parametric standard errors (SEs) from nonlinear least squares (LS) algorithms have led to a general mistrust of these precision estimators that is often unwarranted. The importance of non-Gaussian parameter distributions is illustrated by converting linear models to nonlinear by substituting e A , ln A, and 1/A for a linear parameter a. Monte Carlo (MC) simulations characterize parameter distributions in more complex cases, including when data have varying uncertainty and should be weighted, but weights are neglected. This situation leads to loss of precision and erroneous parametric SEs, as is illustrated for the Lineweaver-Burk analysis of enzyme kinetics data and the analysis of isothermal titration calorimetry data. Non-Gaussian parameter distributions are generally asymmetric and biased. However, when the parametric SE is <10% of the magnitude of the parameter, both the bias and the asymmetry can usually be ignored. Sometimes nonlinear estimators can be redefined to give more normal distributions and better convergence properties. Variable data uncertainty, or heteroscedasticity, can sometimes be handled by data transforms but more generally requires weighted LS, which in turn require knowledge of the data variance. Parametric SEs are rigorously correct in linear LS under the usual assumptions, and are a trustworthy approximation in nonlinear LS provided they are sufficiently small - a condition favored by the abundant, precise data routinely collected in many modern instrumental methods. Copyright © 2018 Elsevier B.V. All rights reserved.
Yock, Adam D; Rao, Arvind; Dong, Lei; Beadle, Beth M; Garden, Adam S; Kudchadker, Rajat J; Court, Laurence E
2014-05-01
The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: -11.6%-23.8%) and 14.6% (range: -7.3%-27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: -6.8%-40.3%) and 13.1% (range: -1.5%-52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: -11.1%-20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography images and facilitate improved treatment management.
A statistical package for computing time and frequency domain analysis
NASA Technical Reports Server (NTRS)
Brownlow, J.
1978-01-01
The spectrum analysis (SPA) program is a general purpose digital computer program designed to aid in data analysis. The program does time and frequency domain statistical analyses as well as some preanalysis data preparation. The capabilities of the SPA program include linear trend removal and/or digital filtering of data, plotting and/or listing of both filtered and unfiltered data, time domain statistical characterization of data, and frequency domain statistical characterization of data.
Dynamic System Coupler Program (DYSCO 4.1). Volume 1. Theoretical Manual
1989-01-01
present analysis is as follows: 1. Triplet X, Y, Z represents an inertia frame, R. The R system coordinates are the rotor shaft axes when there is...small perturbation analysis . 2.5 3-D MODAL STRUCTURE - CFM3 A three-dimensional structure is represented as a linear combination of orth ogonal modes...Include rotor blade damage modeling, Elgen analysis development, general time history solution development, frequency domain solution development
NASA Astrophysics Data System (ADS)
Colera, Manuel; Pérez-Saborid, Miguel
2018-06-01
We have carried out a numerical study of the influence of the upstream Mach number on the flutter of a two-dimensional, cantilevered, flexible plate subject to a subsonic, inviscid, open flow. We have assumed a linear elastic model for the plate and that the fluid flow is governed by the linearized potential theory. The fluid equations are solved with a novel frequency-domain, finite differences method to obtain the generalized aerodynamic forces as a function of the plate displacements. Then, these generalized forces are coupled to the equation of motion of the plate and an eigenvalue analysis is performed to find the flutter point. The obtained results are in good agreement with those of related theoretical and experimental studies found in the literature. To the best of our knowledge, the analysis performed here is the first self-consistent, parametric study of the influence of the compressibility on the flutter point of a two-dimensional cantilevered plate in subsonic flow.
Structural Loads Analysis for Wave Energy Converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rij, Jennifer A; Yu, Yi-Hsiang; Guo, Yi
2017-06-03
This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluidmore » dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process.« less
Chen, Han; Wang, Chaolong; Conomos, Matthew P.; Stilp, Adrienne M.; Li, Zilin; Sofer, Tamar; Szpiro, Adam A.; Chen, Wei; Brehm, John M.; Celedón, Juan C.; Redline, Susan; Papanicolaou, George J.; Thornton, Timothy A.; Laurie, Cathy C.; Rice, Kenneth; Lin, Xihong
2016-01-01
Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. PMID:27018471
Classical and sequential limit analysis revisited
NASA Astrophysics Data System (ADS)
Leblond, Jean-Baptiste; Kondo, Djimédo; Morin, Léo; Remmal, Almahdi
2018-04-01
Classical limit analysis applies to ideal plastic materials, and within a linearized geometrical framework implying small displacements and strains. Sequential limit analysis was proposed as a heuristic extension to materials exhibiting strain hardening, and within a fully general geometrical framework involving large displacements and strains. The purpose of this paper is to study and clearly state the precise conditions permitting such an extension. This is done by comparing the evolution equations of the full elastic-plastic problem, the equations of classical limit analysis, and those of sequential limit analysis. The main conclusion is that, whereas classical limit analysis applies to materials exhibiting elasticity - in the absence of hardening and within a linearized geometrical framework -, sequential limit analysis, to be applicable, strictly prohibits the presence of elasticity - although it tolerates strain hardening and large displacements and strains. For a given mechanical situation, the relevance of sequential limit analysis therefore essentially depends upon the importance of the elastic-plastic coupling in the specific case considered.
Competing regression models for longitudinal data.
Alencar, Airlane P; Singer, Julio M; Rocha, Francisco Marcelo M
2012-03-01
The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretest-posttest longitudinal data. In particular, we consider log-normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE-based models may be preferable when the goal is to compare the marginal expected responses. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.
Chu, Annie; Cui, Jenny; Dinov, Ivo D
2009-03-01
The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models.
Control design for robust stability in linear regulators: Application to aerospace flight control
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1986-01-01
Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.
Mengerink, Y; Peters, R; Kerkhoff, M; Hellenbrand, J; Omloo, H; Andrien, J; Vestjens, M; van der Wal, S
2000-05-05
By separating the first six linear and cyclic oligomers of polyamide-6 on a reversed-phase high-performance liquid chromatographic system after sandwich injection, quantitative determination of these oligomers becomes feasible. Low-wavelength UV detection of the different oligomers and selective post-column reaction detection of the linear oligomers with o-phthalic dicarboxaldehyde (OPA) and 3-mercaptopropionic acid (3-MPA) are discussed. A general methodology for quantification of oligomers in polymers was developed. It is demonstrated that the empirically determined group-equivalent absorption coefficients and quench factors are a convenient way of quantifying linear and cyclic oligomers of nylon-6. The overall long-term performance of the method was studied by monitoring a reference sample and the calibration factors of the linear and cyclic oligomers.
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Muravyov, Alexander A.
2002-01-01
Two new equivalent linearization implementations for geometrically nonlinear random vibrations are presented. Both implementations are based upon a novel approach for evaluating the nonlinear stiffness within commercial finite element codes and are suitable for use with any finite element code having geometrically nonlinear static analysis capabilities. The formulation includes a traditional force-error minimization approach and a relatively new version of a potential energy-error minimization approach, which has been generalized for multiple degree-of-freedom systems. Results for a simply supported plate under random acoustic excitation are presented and comparisons of the displacement root-mean-square values and power spectral densities are made with results from a nonlinear time domain numerical simulation.
NASA Technical Reports Server (NTRS)
Bodley, C. S.; Devers, A. D.; Park, A. C.
1975-01-01
Analytical procedures and digital computer code are presented for the dynamic analysis of a flexible spacecraft with rotating components. Topics, considered include: (1) nonlinear response in the time domain, and (2) linear response in the frequency domain. The spacecraft is assumed to consist of an assembly of connected rigid or flexible subassemblies. The total system is not restricted to a topological connection arrangement and may be acting under the influence of passive or active control systems and external environments. The analytics and associated digital code provide the user with the capability to establish spacecraft system nonlinear total response for specified initial conditions, linear perturbation response about a calculated or specified nominal motion, general frequency response and graphical display, and spacecraft system stability analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbero, E.J.
1989-01-01
In this study, a computational model for accurate analysis of composite laminates and laminates with including delaminated interfaces is developed. An accurate prediction of stress distributions, including interlaminar stresses, is obtained by using the Generalized Laminate Plate Theory of Reddy in which layer-wise linear approximation of the displacements through the thickness is used. Analytical as well as finite-element solutions of the theory are developed for bending and vibrations of laminated composite plates for the linear theory. Geometrical nonlinearity, including buckling and postbuckling are included and used to perform stress analysis of laminated plates. A general two dimensional theory of laminatedmore » cylindrical shells is also developed in this study. Geometrical nonlinearity and transverse compressibility are included. Delaminations between layers of composite plates are modelled by jump discontinuity conditions at the interfaces. The theory includes multiple delaminations through the thickness. Geometric nonlinearity is included to capture layer buckling. The strain energy release rate distribution along the boundary of delaminations is computed by a novel algorithm. The computational models presented herein are accurate for global behavior and particularly appropriate for the study of local effects.« less
Using structural equation modeling for network meta-analysis.
Tu, Yu-Kang; Wu, Yun-Chun
2017-07-14
Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison. SEM provides a very flexible framework for univariate and multivariate meta-analysis, and its potential as a powerful tool for advanced meta-analysis is still to be explored.
Spherically symmetric analysis on open FLRW solution in non-linear massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chien-I; Izumi, Keisuke; Chen, Pisin, E-mail: chienichiang@berkeley.edu, E-mail: izumi@phys.ntu.edu.tw, E-mail: chen@slac.stanford.edu
2012-12-01
We study non-linear massive gravity in the spherically symmetric context. Our main motivation is to investigate the effect of helicity-0 mode which remains elusive after analysis of cosmological perturbation around an open Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. The non-linear form of the effective energy-momentum tensor stemming from the mass term is derived for the spherically symmetric case. Only in the special case where the area of the two sphere is not deviated away from the FLRW universe, the effective energy momentum tensor becomes completely the same as that of cosmological constant. This opens a window for discriminating the non-linear massive gravity frommore » general relativity (GR). Indeed, by further solving these spherically symmetric gravitational equations of motion in vacuum to the linear order, we obtain a solution which has an arbitrary time-dependent parameter. In GR, this parameter is a constant and corresponds to the mass of a star. Our result means that Birkhoff's theorem no longer holds in the non-linear massive gravity and suggests that energy can probably be emitted superluminously (with infinite speed) on the self-accelerating background by the helicity-0 mode, which could be a potential plague of this theory.« less
A general numerical analysis program for the superconducting quasiparticle mixer
NASA Technical Reports Server (NTRS)
Hicks, R. G.; Feldman, M. J.; Kerr, A. R.
1986-01-01
A user-oriented computer program SISCAP (SIS Computer Analysis Program) for analyzing SIS mixers is described. The program allows arbitrary impedance terminations to be specified at all LO harmonics and sideband frequencies. It is therefore able to treat a much more general class of SIS mixers than the widely used three-frequency analysis, for which the harmonics are assumed to be short-circuited. An additional program, GETCHI, provides the necessary input data to program SISCAP. The SISCAP program performs a nonlinear analysis to determine the SIS junction voltage waveform produced by the local oscillator. The quantum theory of mixing is used in its most general form, treating the large signal properties of the mixer in the time domain. A small signal linear analysis is then used to find the conversion loss and port impedances. The noise analysis includes thermal noise from the termination resistances and shot noise from the periodic LO current. Quantum noise is not considered. Many aspects of the program have been adequately verified and found accurate.
NASA Astrophysics Data System (ADS)
Rose, Michael Benjamin
A novel trajectory and attitude control and navigation analysis tool for powered ascent is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions, orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator execution uncertainties, and random disturbances. The tool is developed by applying both Monte Carlo and linear covariance analysis techniques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The nonlinear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF), Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated, and the linear covariance simulation is developed. The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo and linear covariance techniques and their trajectory and attitude control dispersion, propellant dispersion, orbit insertion dispersion, and navigation error results are validated and compared. Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent result given the many complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation. Although the application and results presented are for a lunar, single-stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical formulations that are discussed are applicable to ascent on Earth or other planets as well as other rocket-powered systems such as sounding rockets and ballistic missiles.
Diagnostics for generalized linear hierarchical models in network meta-analysis.
Zhao, Hong; Hodges, James S; Carlin, Bradley P
2017-09-01
Network meta-analysis (NMA) combines direct and indirect evidence comparing more than 2 treatments. Inconsistency arises when these 2 information sources differ. Previous work focuses on inconsistency detection, but little has been done on how to proceed after identifying inconsistency. The key issue is whether inconsistency changes an NMA's substantive conclusions. In this paper, we examine such discrepancies from a diagnostic point of view. Our methods seek to detect influential and outlying observations in NMA at a trial-by-arm level. These observations may have a large effect on the parameter estimates in NMA, or they may deviate markedly from other observations. We develop formal diagnostics for a Bayesian hierarchical model to check the effect of deleting any observation. Diagnostics are specified for generalized linear hierarchical NMA models and investigated for both published and simulated datasets. Results from our example dataset using either contrast- or arm-based models and from the simulated datasets indicate that the sources of inconsistency in NMA tend not to be influential, though results from the example dataset suggest that they are likely to be outliers. This mimics a familiar result from linear model theory, in which outliers with low leverage are not influential. Future extensions include incorporating baseline covariates and individual-level patient data. Copyright © 2017 John Wiley & Sons, Ltd.
LAMPAT and LAMPATNL User’s Manual
2012-09-01
nonlinearity. These tools are implemented as subroutines in the finite element software ABAQUS . This user’s manual provides information on the proper...model either through the General tab of the Edit Job dialog box in Abaqus /CAE or the command line with user=( subroutine filename). Table 1...Selection of software product and subroutine . Static Analysis With Abaqus /Standard Dynamic Analysis With Abaqus /Explicit Linear, uncoupled
Forced vibration analysis of rotating cyclic structures in NASTRAN
NASA Technical Reports Server (NTRS)
Elchuri, V.; Gallo, A. M.; Skalski, S. C.
1981-01-01
A new capability was added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axis of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation were included. The theoretical, user's, programmer's and demonstration manuals for this new capability are presented.
The microcomputer scientific software series 3: general linear model--analysis of variance.
Harold M. Rauscher
1985-01-01
A BASIC language set of programs, designed for use on microcomputers, is presented. This set of programs will perform the analysis of variance for any statistical model describing either balanced or unbalanced designs. The program computes and displays the degrees of freedom, Type I sum of squares, and the mean square for the overall model, the error, and each factor...
A conformal approach for the analysis of the non-linear stability of radiation cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luebbe, Christian, E-mail: c.luebbe@ucl.ac.uk; Department of Mathematics, University of Leicester, University Road, LE1 8RH; Valiente Kroon, Juan Antonio, E-mail: j.a.valiente-kroon@qmul.ac.uk
2013-01-15
The conformal Einstein equations for a trace-free (radiation) perfect fluid are derived in terms of the Levi-Civita connection of a conformally rescaled metric. These equations are used to provide a non-linear stability result for de Sitter-like trace-free (radiation) perfect fluid Friedman-Lemaitre-Robertson-Walker cosmological models. The solutions thus obtained exist globally towards the future and are future geodesically complete. - Highlights: Black-Right-Pointing-Pointer We study the Einstein-Euler system in General Relativity using conformal methods. Black-Right-Pointing-Pointer We analyze the structural properties of the associated evolution equations. Black-Right-Pointing-Pointer We establish the non-linear stability of pure radiation cosmological models.
Threat Appeals: The Fear-Persuasion Relationship is Linear and Curvilinear.
Dillard, James Price; Li, Ruobing; Huang, Yan
2017-11-01
Drive theory may be seen as the first scientific theory of health and risk communication. However, its prediction of a curvilinear association between fear and persuasion is generally held to be incorrect. A close rereading of Hovland et al. reveals that within- and between-persons processes were conflated. Using a message that advocated obtaining a screening for colonoscopy, this study (N = 259) tested both forms of the inverted-U hypothesis. In the between-persons data, analyses revealed a linear effect that was consistent with earlier investigations. However, the data showed an inverted-U relationship in within-persons data. Hence, the relationship between fear and persuasion is linear or curvilinear depending on the level of analysis.
Space Trajectories Error Analysis (STEAP) Programs. Volume 1: Analytic manual, update
NASA Technical Reports Server (NTRS)
1971-01-01
Manual revisions are presented for the modified and expanded STEAP series. The STEAP 2 is composed of three independent but related programs: NOMAL for the generation of n-body nominal trajectories performing a number of deterministic guidance events; ERRAN for the linear error analysis and generalized covariance analysis along specific targeted trajectories; and SIMUL for testing the mathematical models used in the navigation and guidance process. The analytic manual provides general problem description, formulation, and solution and the detailed analysis of subroutines. The programmers' manual gives descriptions of the overall structure of the programs as well as the computational flow and analysis of the individual subroutines. The user's manual provides information on the input and output quantities of the programs. These are updates to N69-36472 and N69-36473.
Smoothed Residual Plots for Generalized Linear Models. Technical Report #450.
ERIC Educational Resources Information Center
Brant, Rollin
Methods for examining the viability of assumptions underlying generalized linear models are considered. By appealing to the likelihood, a natural generalization of the raw residual plot for normal theory models is derived and is applied to investigating potential misspecification of the linear predictor. A smooth version of the plot is also…
NASA Astrophysics Data System (ADS)
Denny, Mark
2002-05-01
The physics of the fly-ball governor, introduced to regulate the speed of steam engines, is here analysed anew. The original analysis is generalized to arbitrary governor geometry. The well-known stability criterion for the linearized system breaks down for large excursions from equilibrium; we show approximately how this criterion changes.
Integration of system identification and finite element modelling of nonlinear vibrating structures
NASA Astrophysics Data System (ADS)
Cooper, Samson B.; DiMaio, Dario; Ewins, David J.
2018-03-01
The Finite Element Method (FEM), Experimental modal analysis (EMA) and other linear analysis techniques have been established as reliable tools for the dynamic analysis of engineering structures. They are often used to provide solutions to small and large structures and other variety of cases in structural dynamics, even those exhibiting a certain degree of nonlinearity. Unfortunately, when the nonlinear effects are substantial or the accuracy of the predicted response is of vital importance, a linear finite element model will generally prove to be unsatisfactory. As a result, the validated linear FE model requires further enhancement so that it can represent and predict the nonlinear behaviour exhibited by the structure. In this paper, a pragmatic approach to integrating test-based system identification and FE modelling of a nonlinear structure is presented. This integration is based on three different phases: the first phase involves the derivation of an Underlying Linear Model (ULM) of the structure, the second phase includes experiment-based nonlinear identification using measured time series and the third phase covers augmenting the linear FE model and experimental validation of the nonlinear FE model. The proposed case study is demonstrated on a twin cantilever beam assembly coupled with a flexible arch shaped beam. In this case, polynomial-type nonlinearities are identified and validated with force-controlled stepped-sine test data at several excitation levels.
Robbins, Blaine
2013-01-01
Sociologists, political scientists, and economists all suggest that culture plays a pivotal role in the development of large-scale cooperation. In this study, I used generalized trust as a measure of culture to explore if and how culture impacts intentional homicide, my operationalization of cooperation. I compiled multiple cross-national data sets and used pooled time-series linear regression, single-equation instrumental-variables linear regression, and fixed- and random-effects estimation techniques on an unbalanced panel of 118 countries and 232 observations spread over a 15-year time period. Results suggest that culture and large-scale cooperation form a tenuous relationship, while economic factors such as development, inequality, and geopolitics appear to drive large-scale cooperation. PMID:23527211
Stollar, Elliott J.; Lin, Hong; Davidson, Alan R.; Forman-Kay, Julie D.
2012-01-01
There is increasing evidence for the functional importance of multiple dynamically populated states within single proteins. However, peptide binding by protein-protein interaction domains, such as the SH3 domain, has generally been considered to involve the full engagement of peptide to the binding surface with minimal dynamics and simple methods to determine dynamics at the binding surface for multiple related complexes have not been described. We have used NMR spectroscopy combined with isothermal titration calorimetry to comprehensively examine the extent of engagement to the yeast Abp1p SH3 domain for 24 different peptides. Over one quarter of the domain residues display co-linear chemical shift perturbation (CCSP) behavior, in which the position of a given chemical shift in a complex is co-linear with the same chemical shift in the other complexes, providing evidence that each complex exists as a unique dynamic rapidly inter-converting ensemble. The extent the specificity determining sub-surface of AbpSH3 is engaged as judged by CCSP analysis correlates with structural and thermodynamic measurements as well as with functional data, revealing the basis for significant structural and functional diversity amongst the related complexes. Thus, CCSP analysis can distinguish peptide complexes that may appear identical in terms of general structure and percent peptide occupancy but have significant local binding differences across the interface, affecting their ability to transmit conformational change across the domain and resulting in functional differences. PMID:23251481
Carstensen, C.; Feischl, M.; Page, M.; Praetorius, D.
2014-01-01
This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. PMID:25983390
Risk prediction for myocardial infarction via generalized functional regression models.
Ieva, Francesca; Paganoni, Anna M
2016-08-01
In this paper, we propose a generalized functional linear regression model for a binary outcome indicating the presence/absence of a cardiac disease with multivariate functional data among the relevant predictors. In particular, the motivating aim is the analysis of electrocardiographic traces of patients whose pre-hospital electrocardiogram (ECG) has been sent to 118 Dispatch Center of Milan (the Italian free-toll number for emergencies) by life support personnel of the basic rescue units. The statistical analysis starts with a preprocessing of ECGs treated as multivariate functional data. The signals are reconstructed from noisy observations. The biological variability is then removed by a nonlinear registration procedure based on landmarks. Thus, in order to perform a data-driven dimensional reduction, a multivariate functional principal component analysis is carried out on the variance-covariance matrix of the reconstructed and registered ECGs and their first derivatives. We use the scores of the Principal Components decomposition as covariates in a generalized linear model to predict the presence of the disease in a new patient. Hence, a new semi-automatic diagnostic procedure is proposed to estimate the risk of infarction (in the case of interest, the probability of being affected by Left Bundle Brunch Block). The performance of this classification method is evaluated and compared with other methods proposed in literature. Finally, the robustness of the procedure is checked via leave-j-out techniques. © The Author(s) 2013.
A spectral analysis of the domain decomposed Monte Carlo method for linear systems
Slattery, Stuart R.; Evans, Thomas M.; Wilson, Paul P. H.
2015-09-08
The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear oper- ator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approxi- mation and the mean chord approximation are applied to estimate the leakagemore » frac- tion of random walks from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem in numerical experiments to test the models for symmetric operators with spectral qualities similar to light water reactor problems. We find, in general, the derived approximations show good agreement with random walk lengths and leakage fractions computed by the numerical experiments.« less
Analyzing linear spatial features in ecology.
Buettel, Jessie C; Cole, Andrew; Dickey, John M; Brook, Barry W
2018-06-01
The spatial analysis of dimensionless points (e.g., tree locations on a plot map) is common in ecology, for instance using point-process statistics to detect and compare patterns. However, the treatment of one-dimensional linear features (fiber processes) is rarely attempted. Here we appropriate the methods of vector sums and dot products, used regularly in fields like astrophysics, to analyze a data set of mapped linear features (logs) measured in 12 × 1-ha forest plots. For this demonstrative case study, we ask two deceptively simple questions: do trees tend to fall downhill, and if so, does slope gradient matter? Despite noisy data and many potential confounders, we show clearly that topography (slope direction and steepness) of forest plots does matter to treefall. More generally, these results underscore the value of mathematical methods of physics to problems in the spatial analysis of linear features, and the opportunities that interdisciplinary collaboration provides. This work provides scope for a variety of future ecological analyzes of fiber processes in space. © 2018 by the Ecological Society of America.
Waveguide coupling in the few-cycle regime
NASA Astrophysics Data System (ADS)
Leblond, Hervé; Terniche, Said
2016-04-01
We consider the coupling of two optical waveguides in the few-cycle regime. The analysis is performed in the frame of a generalized Kadomtsev-Petviashvili model. A set of two coupled modified Korteweg-de Vries equations is derived, and it is shown that three types of coupling can occur, involving the linear index, the dispersion, or the nonlinearity. The linear nondispersive coupling is investigated numerically, showing the formation of vector solitons. Separate pulses may be trapped together if they have not initially the same location, size, or phase, and even if their initial frequencies differ.
Interaction Analysis in MANOVA.
ERIC Educational Resources Information Center
Betz, M. Austin
Simultaneous test procedures (STPS for short) in the context of the unrestricted full rank general linear multivariate model for population cell means are introduced and utilized to analyze interactions in factorial designs. By appropriate choice of an implying hypothesis, it is shown how to test overall main effects, interactions, simple main,…
Statistical considerations in the analysis of data from replicated bioassays
USDA-ARS?s Scientific Manuscript database
Multiple-dose bioassay is generally the preferred method for characterizing virulence of insect pathogens. Linear regression of probit mortality on log dose enables estimation of LD50/LC50 and slope, the latter having substantial effect on LD90/95s (doses of considerable interest in pest management)...
NASA Technical Reports Server (NTRS)
Yao, Tse-Min; Choi, Kyung K.
1987-01-01
An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.
A generalized reaction diffusion model for spatial structure formed by motile cells.
Ochoa, F L
1984-01-01
A non-linear stability analysis using a multi-scale perturbation procedure is carried out on a model of a generalized reaction diffusion mechanism which involves only a single equation but which nevertheless exhibits bifurcation to non-uniform states. The patterns generated by this model by variation in a parameter related to the scalar dimensions of domain of definition, indicate its capacity to represent certain key morphogenetic features of multicellular systems formed by motile cells.
Functional Techniques for Data Analysis
NASA Technical Reports Server (NTRS)
Tomlinson, John R.
1997-01-01
This dissertation develops a new general method of solving Prony's problem. Two special cases of this new method have been developed previously. They are the Matrix Pencil and the Osculatory Interpolation. The dissertation shows that they are instances of a more general solution type which allows a wide ranging class of linear functional to be used in the solution of the problem. This class provides a continuum of functionals which provide new methods that can be used to solve Prony's problem.
Generalization and capacity of extensively large two-layered perceptrons.
Rosen-Zvi, Michal; Engel, Andreas; Kanter, Ido
2002-09-01
The generalization ability and storage capacity of a treelike two-layered neural network with a number of hidden units scaling as the input dimension is examined. The mapping from the input to the hidden layer is via Boolean functions; the mapping from the hidden layer to the output is done by a perceptron. The analysis is within the replica framework where an order parameter characterizing the overlap between two networks in the combined space of Boolean functions and hidden-to-output couplings is introduced. The maximal capacity of such networks is found to scale linearly with the logarithm of the number of Boolean functions per hidden unit. The generalization process exhibits a first-order phase transition from poor to perfect learning for the case of discrete hidden-to-output couplings. The critical number of examples per input dimension, alpha(c), at which the transition occurs, again scales linearly with the logarithm of the number of Boolean functions. In the case of continuous hidden-to-output couplings, the generalization error decreases according to the same power law as for the perceptron, with the prefactor being different.
[Analysis of variance of repeated data measured by water maze with SPSS].
Qiu, Hong; Jin, Guo-qin; Jin, Ru-feng; Zhao, Wei-kang
2007-01-01
To introduce the method of analyzing repeated data measured by water maze with SPSS 11.0, and offer a reference statistical method to clinical and basic medicine researchers who take the design of repeated measures. Using repeated measures and multivariate analysis of variance (ANOVA) process of the general linear model in SPSS and giving comparison among different groups and different measure time pairwise. Firstly, Mauchly's test of sphericity should be used to judge whether there were relations among the repeatedly measured data. If any (P
Automatic classification of artifactual ICA-components for artifact removal in EEG signals.
Winkler, Irene; Haufe, Stefan; Tangermann, Michael
2011-08-02
Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts. We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects. Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components. We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.
Spike-train spectra and network response functions for non-linear integrate-and-fire neurons.
Richardson, Magnus J E
2008-11-01
Reduced models have long been used as a tool for the analysis of the complex activity taking place in neurons and their coupled networks. Recent advances in experimental and theoretical techniques have further demonstrated the usefulness of this approach. Despite the often gross simplification of the underlying biophysical properties, reduced models can still present significant difficulties in their analysis, with the majority of exact and perturbative results available only for the leaky integrate-and-fire model. Here an elementary numerical scheme is demonstrated which can be used to calculate a number of biologically important properties of the general class of non-linear integrate-and-fire models. Exact results for the first-passage-time density and spike-train spectrum are derived, as well as the linear response properties and emergent states of recurrent networks. Given that the exponential integrate-fire model has recently been shown to agree closely with the experimentally measured response of pyramidal cells, the methodology presented here promises to provide a convenient tool to facilitate the analysis of cortical-network dynamics.
Complexity-reduced implementations of complete and null-space-based linear discriminant analysis.
Lu, Gui-Fu; Zheng, Wenming
2013-10-01
Dimensionality reduction has become an important data preprocessing step in a lot of applications. Linear discriminant analysis (LDA) is one of the most well-known dimensionality reduction methods. However, the classical LDA cannot be used directly in the small sample size (SSS) problem where the within-class scatter matrix is singular. In the past, many generalized LDA methods has been reported to address the SSS problem. Among these methods, complete linear discriminant analysis (CLDA) and null-space-based LDA (NLDA) provide good performances. The existing implementations of CLDA are computationally expensive. In this paper, we propose a new and fast implementation of CLDA. Our proposed implementation of CLDA, which is the most efficient one, is equivalent to the existing implementations of CLDA in theory. Since CLDA is an extension of null-space-based LDA (NLDA), our implementation of CLDA also provides a fast implementation of NLDA. Experiments on some real-world data sets demonstrate the effectiveness of our proposed new CLDA and NLDA algorithms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rapid solution of large-scale systems of equations
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1994-01-01
The analysis and design of complex aerospace structures requires the rapid solution of large systems of linear and nonlinear equations, eigenvalue extraction for buckling, vibration and flutter modes, structural optimization and design sensitivity calculation. Computers with multiple processors and vector capabilities can offer substantial computational advantages over traditional scalar computer for these analyses. These computers fall into two categories: shared memory computers and distributed memory computers. This presentation covers general-purpose, highly efficient algorithms for generation/assembly or element matrices, solution of systems of linear and nonlinear equations, eigenvalue and design sensitivity analysis and optimization. All algorithms are coded in FORTRAN for shared memory computers and many are adapted to distributed memory computers. The capability and numerical performance of these algorithms will be addressed.
Financial Distress Prediction using Linear Discriminant Analysis and Support Vector Machine
NASA Astrophysics Data System (ADS)
Santoso, Noviyanti; Wibowo, Wahyu
2018-03-01
A financial difficulty is the early stages before the bankruptcy. Bankruptcies caused by the financial distress can be seen from the financial statements of the company. The ability to predict financial distress became an important research topic because it can provide early warning for the company. In addition, predicting financial distress is also beneficial for investors and creditors. This research will be made the prediction model of financial distress at industrial companies in Indonesia by comparing the performance of Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) combined with variable selection technique. The result of this research is prediction model based on hybrid Stepwise-SVM obtains better balance among fitting ability, generalization ability and model stability than the other models.
Riding and handling qualities of light aircraft: A review and analysis
NASA Technical Reports Server (NTRS)
Smetana, F. O.; Summery, D. C.; Johnson, W. D.
1972-01-01
Design procedures and supporting data necessary for configuring light aircraft to obtain desired responses to pilot commands and gusts are presented. The procedures employ specializations of modern military and jet transport practice where these provide an improvement over earlier practice. General criteria for riding and handling qualities are discussed in terms of the airframe dynamics. Methods available in the literature for calculating the coefficients required for a linearized analysis of the airframe dynamics are reviewed in detail. The review also treats the relation of spin and stall to airframe geometry. Root locus analysis is used to indicate the sensitivity of airframe dynamics to variations in individual stability derivatives and to variations in geometric parameters. Computer programs are given for finding the frequencies, damping ratios, and time constants of all rigid body modes and for generating time histories of aircraft motions in response to control inputs. Appendices are included presenting the derivation of the linearized equations of motion; the stability derivatives; the transfer functions; approximate solutions for the frequency, damping ratio, and time constants; an indication of methods to be used when linear analysis is inadequate; sample calculations; and an explanation of the use of root locus diagrams and Bode plots.
Guisan, Antoine; Edwards, T.C.; Hastie, T.
2002-01-01
An important statistical development of the last 30 years has been the advance in regression analysis provided by generalized linear models (GLMs) and generalized additive models (GAMs). Here we introduce a series of papers prepared within the framework of an international workshop entitled: Advances in GLMs/GAMs modeling: from species distribution to environmental management, held in Riederalp, Switzerland, 6-11 August 2001. We first discuss some general uses of statistical models in ecology, as well as provide a short review of several key examples of the use of GLMs and GAMs in ecological modeling efforts. We next present an overview of GLMs and GAMs, and discuss some of their related statistics used for predictor selection, model diagnostics, and evaluation. Included is a discussion of several new approaches applicable to GLMs and GAMs, such as ridge regression, an alternative to stepwise selection of predictors, and methods for the identification of interactions by a combined use of regression trees and several other approaches. We close with an overview of the papers and how we feel they advance our understanding of their application to ecological modeling. ?? 2002 Elsevier Science B.V. All rights reserved.
Nonlinear dynamics of laser systems with elements of a chaos: Advanced computational code
NASA Astrophysics Data System (ADS)
Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Kuznetsova, A. A.; Buyadzhi, A. A.; Prepelitsa, G. P.; Ternovsky, V. B.
2017-10-01
A general, uniform chaos-geometric computational approach to analysis, modelling and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum generators system etc) with elements of the deterministic chaos is briefly presented. The approach is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc There are firstly presented the numerical data on the topological and dynamical invariants (in particular, the correlation, embedding, Kaplan-York dimensions, the Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and hyperchaotic regimes.
NASA Technical Reports Server (NTRS)
Noah, S. T.; Kim, Y. B.
1991-01-01
A general approach is developed for determining the periodic solutions and their stability of nonlinear oscillators with piecewise-smooth characteristics. A modified harmonic balance/Fourier transform procedure is devised for the analysis. The procedure avoids certain numerical differentiation employed previously in determining the periodic solutions, therefore enhancing the reliability and efficiency of the method. Stability of the solutions is determined via perturbations of their state variables. The method is applied to a forced oscillator interacting with a stop of finite stiffness. Flip and fold bifurcations are found to occur. This led to the identification of parameter ranges in which chaotic response occurred.
[Approach to the Development of Mind and Persona].
Sawaguchi, Toshiko
2018-01-01
To access medical specialists by health specialists working in the regional health field, the possibility of utilizing the voice approach for dissociative identity disorder (DID) patients as a health assessment for medical access (HAMA) was investigated. The first step is to investigate whether the plural personae in a single DID patient can be discriminated by voice analysis. Voices of DID patients including these with different personae were extracted from YouTube and were analysed using the software PRAAT with basic frequency, oral factors, chin factors and tongue factors. In addition, RAKUGO story teller voices made artificially and dramatically were analysed in the same manner. Quantitive and qualitative analysis method were carried out and nested logistic regression and a nested generalized linear model was developed. The voice from different personae in one DID patient could be visually and easily distinquished using basic frequency curve, cluster analysis and factor analysis. In the canonical analysis, only Roy's maximum root was <0.01. In the nested generalized linear model, the model using a standard deviation (SD) indicator fit best and some other possibilities are shown here. In DID patients, the short transition time among plural personae could guide to the risky situation such as suicide. So if the voice approach can show the time threshold of changes between the different personae, it would be useful as an Access Assessment in the form of a simple HAMA.
The linear stability of the post-Newtonian triangular equilibrium in the three-body problem
NASA Astrophysics Data System (ADS)
Yamada, Kei; Tsuchiya, Takuya
2017-12-01
Continuing a work initiated in an earlier publication (Yamada et al. in Phys Rev D 91:124016, 2015), we reexamine the linear stability of the triangular solution in the relativistic three-body problem for general masses by the standard linear algebraic analysis. In this paper, we start with the Einstein-Infeld-Hoffmann form of equations of motion for N-body systems in the uniformly rotating frame. As an extension of the previous work, we consider general perturbations to the equilibrium, i.e., we take account of perturbations orthogonal to the orbital plane, as well as perturbations lying on it. It is found that the orthogonal perturbations depend on each other by the first post-Newtonian (1PN) three-body interactions, though these are independent of the lying ones likewise the Newtonian case. We also show that the orthogonal perturbations do not affect the condition of stability. This is because these do not grow with time, but always precess with two frequency modes, namely, the same with the orbital frequency and the slightly different one due to the 1PN effect. The condition of stability, which is identical to that obtained by the previous work (Yamada et al. 2015) and is valid for the general perturbations, is obtained from the lying perturbations.
Dai, James Y.; Chan, Kwun Chuen Gary; Hsu, Li
2014-01-01
Instrumental variable regression is one way to overcome unmeasured confounding and estimate causal effect in observational studies. Built on structural mean models, there has been considerale work recently developed for consistent estimation of causal relative risk and causal odds ratio. Such models can sometimes suffer from identification issues for weak instruments. This hampered the applicability of Mendelian randomization analysis in genetic epidemiology. When there are multiple genetic variants available as instrumental variables, and causal effect is defined in a generalized linear model in the presence of unmeasured confounders, we propose to test concordance between instrumental variable effects on the intermediate exposure and instrumental variable effects on the disease outcome, as a means to test the causal effect. We show that a class of generalized least squares estimators provide valid and consistent tests of causality. For causal effect of a continuous exposure on a dichotomous outcome in logistic models, the proposed estimators are shown to be asymptotically conservative. When the disease outcome is rare, such estimators are consistent due to the log-linear approximation of the logistic function. Optimality of such estimators relative to the well-known two-stage least squares estimator and the double-logistic structural mean model is further discussed. PMID:24863158
Thermal conductivity of disordered two-dimensional binary alloys.
Zhou, Yang; Guo, Zhi-Xin; Cao, Hai-Yuan; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao
2016-10-20
Using non-equilibrium molecular dynamics simulations, we have studied the effect of disorder on the thermal conductivity of two-dimensional (2D) C 1-x N x alloys. We find that the thermal conductivity not only depends on the substitution concentration of nitrogen, but also strongly depends on the disorder distribution. A general linear relationship is revealed between the thermal conductivity and the participation ratio of phonons in 2D alloys. Localization mode analysis further indicates that the thermal conductivity variation in the ordered alloys can be attributed to the number of inequivalent atoms. As for the disordered alloys, we find that the thermal conductivity variation can be described by a simple linear formula with the disorder degree and the substitution concentration. The present study suggests some general guidance for phonon manipulation and thermal engineering in low dimensional alloys.
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.
1991-01-01
Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.
The application of information theory for the research of aging and aging-related diseases.
Blokh, David; Stambler, Ilia
2017-10-01
This article reviews the application of information-theoretical analysis, employing measures of entropy and mutual information, for the study of aging and aging-related diseases. The research of aging and aging-related diseases is particularly suitable for the application of information theory methods, as aging processes and related diseases are multi-parametric, with continuous parameters coexisting alongside discrete parameters, and with the relations between the parameters being as a rule non-linear. Information theory provides unique analytical capabilities for the solution of such problems, with unique advantages over common linear biostatistics. Among the age-related diseases, information theory has been used in the study of neurodegenerative diseases (particularly using EEG time series for diagnosis and prediction), cancer (particularly for establishing individual and combined cancer biomarkers), diabetes (mainly utilizing mutual information to characterize the diseased and aging states), and heart disease (mainly for the analysis of heart rate variability). Few works have employed information theory for the analysis of general aging processes and frailty, as underlying determinants and possible early preclinical diagnostic measures for aging-related diseases. Generally, the use of information-theoretical analysis permits not only establishing the (non-linear) correlations between diagnostic or therapeutic parameters of interest, but may also provide a theoretical insight into the nature of aging and related diseases by establishing the measures of variability, adaptation, regulation or homeostasis, within a system of interest. It may be hoped that the increased use of such measures in research may considerably increase diagnostic and therapeutic capabilities and the fundamental theoretical mathematical understanding of aging and disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Feature-space-based FMRI analysis using the optimal linear transformation.
Sun, Fengrong; Morris, Drew; Lee, Wayne; Taylor, Margot J; Mills, Travis; Babyn, Paul S
2010-09-01
The optimal linear transformation (OLT), an image analysis technique of feature space, was first presented in the field of MRI. This paper proposes a method of extending OLT from MRI to functional MRI (fMRI) to improve the activation-detection performance over conventional approaches of fMRI analysis. In this method, first, ideal hemodynamic response time series for different stimuli were generated by convolving the theoretical hemodynamic response model with the stimulus timing. Second, constructing hypothetical signature vectors for different activity patterns of interest by virtue of the ideal hemodynamic responses, OLT was used to extract features of fMRI data. The resultant feature space had particular geometric clustering properties. It was then classified into different groups, each pertaining to an activity pattern of interest; the applied signature vector for each group was obtained by averaging. Third, using the applied signature vectors, OLT was applied again to generate fMRI composite images with high SNRs for the desired activity patterns. Simulations and a blocked fMRI experiment were employed for the method to be verified and compared with the general linear model (GLM)-based analysis. The simulation studies and the experimental results indicated the superiority of the proposed method over the GLM-based analysis in detecting brain activities.
A powerful and flexible approach to the analysis of RNA sequence count data.
Zhou, Yi-Hui; Xia, Kai; Wright, Fred A
2011-10-01
A number of penalization and shrinkage approaches have been proposed for the analysis of microarray gene expression data. Similar techniques are now routinely applied to RNA sequence transcriptional count data, although the value of such shrinkage has not been conclusively established. If penalization is desired, the explicit modeling of mean-variance relationships provides a flexible testing regimen that 'borrows' information across genes, while easily incorporating design effects and additional covariates. We describe BBSeq, which incorporates two approaches: (i) a simple beta-binomial generalized linear model, which has not been extensively tested for RNA-Seq data and (ii) an extension of an expression mean-variance modeling approach to RNA-Seq data, involving modeling of the overdispersion as a function of the mean. Our approaches are flexible, allowing for general handling of discrete experimental factors and continuous covariates. We report comparisons with other alternate methods to handle RNA-Seq data. Although penalized methods have advantages for very small sample sizes, the beta-binomial generalized linear model, combined with simple outlier detection and testing approaches, appears to have favorable characteristics in power and flexibility. An R package containing examples and sample datasets is available at http://www.bios.unc.edu/research/genomic_software/BBSeq yzhou@bios.unc.edu; fwright@bios.unc.edu Supplementary data are available at Bioinformatics online.
Transverse instability of periodic and generalized solitary waves for a fifth-order KP model
NASA Astrophysics Data System (ADS)
Haragus, Mariana; Wahlén, Erik
2017-02-01
We consider a fifth-order Kadomtsev-Petviashvili equation which arises as a two-dimensional model in the classical water-wave problem. This equation possesses a family of generalized line solitary waves which decay exponentially to periodic waves at infinity. We prove that these solitary waves are transversely spectrally unstable and that this instability is induced by the transverse instability of the periodic tails. We rely upon a detailed spectral analysis of some suitably chosen linear operators.
On the characteristic exponents of the general three-body problem
NASA Technical Reports Server (NTRS)
Broucke, R.
1976-01-01
A description is given of some properties of the characteristic exponents of the general three-body problem. The variational equations on which the analysis is based are obtained by linearizing the Lagrangian equations of motion in the neighborhood of a given known solution. Attention is given to the fundamental matrix of solutions, the characteristic equation, the three trivial solutions of the variational equations of the three-body problem, symmetric periodic orbits, and the half-period properties of symmetric periodic orbits.
Generalized Multilevel Structural Equation Modeling
ERIC Educational Resources Information Center
Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew
2004-01-01
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…
NASA Technical Reports Server (NTRS)
Lee, Y. M.
1971-01-01
Using a linearized theory of thermally and mechanically interacting mixture of linear elastic solid and viscous fluid, we derive a fundamental relation in an integral form called a reciprocity relation. This reciprocity relation relates the solution of one initial-boundary value problem with a given set of initial and boundary data to the solution of a second initial-boundary value problem corresponding to a different initial and boundary data for a given interacting mixture. From this general integral relation, reciprocity relations are derived for a heat-conducting linear elastic solid, and for a heat-conducting viscous fluid. An initial-boundary value problem is posed and solved for the mixture of linear elastic solid and viscous fluid. With the aid of the Laplace transform and the contour integration, a real integral representation for the displacement of the solid constituent is obtained as one of the principal results of the analysis.
Analyzing Response Times in Tests with Rank Correlation Approaches
ERIC Educational Resources Information Center
Ranger, Jochen; Kuhn, Jorg-Tobias
2013-01-01
It is common practice to log-transform response times before analyzing them with standard factor analytical methods. However, sometimes the log-transformation is not capable of linearizing the relation between the response times and the latent traits. Therefore, a more general approach to response time analysis is proposed in the current…
Factor Scores, Structure and Communality Coefficients: A Primer
ERIC Educational Resources Information Center
Odum, Mary
2011-01-01
(Purpose) The purpose of this paper is to present an easy-to-understand primer on three important concepts of factor analysis: Factor scores, structure coefficients, and communality coefficients. Given that statistical analyses are a part of a global general linear model (GLM), and utilize weights as an integral part of analyses (Thompson, 2006;…
Evaluating a Policing Strategy Intended to Disrupt an Illicit Street-Level Drug Market
ERIC Educational Resources Information Center
Corsaro, Nicholas; Brunson, Rod K.; McGarrell, Edmund F.
2010-01-01
The authors examined a strategic policing initiative that was implemented in a high crime Nashville, Tennessee neighborhood by utilizing a mixed-methodological evaluation approach in order to provide (a) a descriptive process assessment of program fidelity; (b) an interrupted time-series analysis relying upon generalized linear models; (c)…
Item Response Theory Using Hierarchical Generalized Linear Models
ERIC Educational Resources Information Center
Ravand, Hamdollah
2015-01-01
Multilevel models (MLMs) are flexible in that they can be employed to obtain item and person parameters, test for differential item functioning (DIF) and capture both local item and person dependence. Papers on the MLM analysis of item response data have focused mostly on theoretical issues where applications have been add-ons to simulation…
Interpreting Regression Results: beta Weights and Structure Coefficients are Both Important.
ERIC Educational Resources Information Center
Thompson, Bruce
Various realizations have led to less frequent use of the "OVA" methods (analysis of variance--ANOVA--among others) and to more frequent use of general linear model approaches such as regression. However, too few researchers understand all the various coefficients produced in regression. This paper explains these coefficients and their…
A Multilevel Study of the Role of Environment in Adolescent Substance Use
ERIC Educational Resources Information Center
Steen, Julie A.
2010-01-01
The purpose of this study is to assess the relationships between county-level characteristics and adolescent use of alcohol, cigarettes, and marijuana. The study consisted of a hierarchical generalized linear analysis of secondary data from the Florida Youth Substance Abuse Survey. Variables on the county level included the percent of adolescents…
Aeroelastic analysis of a troposkien-type wind turbine blade
NASA Technical Reports Server (NTRS)
Nitzsche, F.
1981-01-01
The linear aeroelastic equations for one curved blade of a vertical axis wind turbine in state vector form are presented. The method is based on a simple integrating matrix scheme together with the transfer matrix idea. The method is proposed as a convenient way of solving the associated eigenvalue problem for general support conditions.
The Effects of Measurement Error on Statistical Models for Analyzing Change. Final Report.
ERIC Educational Resources Information Center
Dunivant, Noel
The results of six major projects are discussed including a comprehensive mathematical and statistical analysis of the problems caused by errors of measurement in linear models for assessing change. In a general matrix representation of the problem, several new analytic results are proved concerning the parameters which affect bias in…
Power Analysis for Complex Mediational Designs Using Monte Carlo Methods
ERIC Educational Resources Information Center
Thoemmes, Felix; MacKinnon, David P.; Reiser, Mark R.
2010-01-01
Applied researchers often include mediation effects in applications of advanced methods such as latent variable models and linear growth curve models. Guidance on how to estimate statistical power to detect mediation for these models has not yet been addressed in the literature. We describe a general framework for power analyses for complex…
Establishing a Spinal Injury Criterion for Military Seats
1997-01-01
Table represents 54 Trials (18 [phase I] + 36 [phase II]); "Combined Effects" of Delta V, Gpk & ATD Size illM-l A General Linear Model (GLM) analysis...5thpercentilemale AID would not have compliedwith the tolerance criterion under the higher impulse severity levels (i.e., 20 and 30 Gpk ). Similarly, the
ERIC Educational Resources Information Center
Dubnjakovic, Ana
2012-01-01
The current study investigates factors influencing increase in reference transactions in a typical week in academic libraries across the United States of America. Employing multiple regression analysis and general linear modeling, variables of interest from the "Academic Library Survey (ALS) 2006" survey (sample size 3960 academic libraries) were…
Logit Models for the Analysis of Two-Way Categorical Data
ERIC Educational Resources Information Center
Draxler, Clemens
2011-01-01
This article discusses the application of logit models for the analyses of 2-way categorical observations. The models described are generalized linear models using the logit link function. One of the models is the Rasch model (Rasch, 1960). The objective is to test hypotheses of marginal and conditional independence between explanatory quantities…
Understanding a Normal Distribution of Data (Part 2).
Maltenfort, Mitchell
2016-02-01
Completing the discussion of data normality, advanced techniques for analysis of non-normal data are discussed including data transformation, Generalized Linear Modeling, and bootstrapping. Relative strengths and weaknesses of each technique are helpful in choosing a strategy, but help from a statistician is usually necessary to analyze non-normal data using these methods.
Chen, Han; Wang, Chaolong; Conomos, Matthew P; Stilp, Adrienne M; Li, Zilin; Sofer, Tamar; Szpiro, Adam A; Chen, Wei; Brehm, John M; Celedón, Juan C; Redline, Susan; Papanicolaou, George J; Thornton, Timothy A; Laurie, Cathy C; Rice, Kenneth; Lin, Xihong
2016-04-07
Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM's constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Brown, Angus M
2006-04-01
The objective of this present study was to demonstrate a method for fitting complex electrophysiological data with multiple functions using the SOLVER add-in of the ubiquitous spreadsheet Microsoft Excel. SOLVER minimizes the difference between the sum of the squares of the data to be fit and the function(s) describing the data using an iterative generalized reduced gradient method. While it is a straightforward procedure to fit data with linear functions, and we have previously demonstrated a method of non-linear regression analysis of experimental data based upon a single function, it is more complex to fit data with multiple functions, usually requiring specialized expensive computer software. In this paper we describe an easily understood program for fitting experimentally acquired data, in this case the stimulus-evoked compound action potential from the mouse optic nerve, with multiple Gaussian functions. The program is flexible and can be applied to describe data with a wide variety of user-input functions.
Dimeric spectra analysis in Microsoft Excel: a comparative study.
Gilani, A Ghanadzadeh; Moghadam, M; Zakerhamidi, M S
2011-11-01
The purpose of this work is to introduce the reader to an Add-in implementation, Decom. This implementation provides the whole processing requirements for analysis of dimeric spectra. General linear and nonlinear decomposition algorithms were integrated as an Excel Add-in for easy installation and usage. In this work, the results of several samples investigations were compared to those obtained by Datan. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.
Lin, Huiming; Fu, Bo; Qin, Guoyou; Zhu, Zhongyi
2017-12-01
We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed method and use simulation studies to compare its finite sample performance with that of Qu's method, the complete-case generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated using data from a longitudinal cohort study. © 2017, The International Biometric Society.
Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H
2017-10-25
Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.
Flow assignment model for quantitative analysis of diverting bulk freight from road to railway
Liu, Chang; Wang, Jiaxi; Xiao, Jie; Liu, Siqi; Wu, Jianping; Li, Jian
2017-01-01
Since railway transport possesses the advantage of high volume and low carbon emissions, diverting some freight from road to railway will help reduce the negative environmental impacts associated with transport. This paper develops a flow assignment model for quantitative analysis of diverting truck freight to railway. First, a general network which considers road transportation, railway transportation, handling and transferring is established according to all the steps in the whole transportation process. Then general functions which embody the factors which the shippers will pay attention to when choosing mode and path are formulated. The general functions contain the congestion cost on road, the capacity constraints of railways and freight stations. Based on the general network and general cost function, a user equilibrium flow assignment model is developed to simulate the flow distribution on the general network under the condition that all shippers choose transportation mode and path independently. Since the model is nonlinear and challenging, we adopt a method that uses tangent lines to constitute envelope curve to linearize it. Finally, a numerical example is presented to test the model and show the method of making quantitative analysis of bulk freight modal shift between road and railway. PMID:28771536
Biostatistics Series Module 6: Correlation and Linear Regression.
Hazra, Avijit; Gogtay, Nithya
2016-01-01
Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.
Biostatistics Series Module 6: Correlation and Linear Regression
Hazra, Avijit; Gogtay, Nithya
2016-01-01
Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient (r). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation (y = a + bx), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous. PMID:27904175
Estimation of group means when adjusting for covariates in generalized linear models.
Qu, Yongming; Luo, Junxiang
2015-01-01
Generalized linear models are commonly used to analyze categorical data such as binary, count, and ordinal outcomes. Adjusting for important prognostic factors or baseline covariates in generalized linear models may improve the estimation efficiency. The model-based mean for a treatment group produced by most software packages estimates the response at the mean covariate, not the mean response for this treatment group for the studied population. Although this is not an issue for linear models, the model-based group mean estimates in generalized linear models could be seriously biased for the true group means. We propose a new method to estimate the group mean consistently with the corresponding variance estimation. Simulation showed the proposed method produces an unbiased estimator for the group means and provided the correct coverage probability. The proposed method was applied to analyze hypoglycemia data from clinical trials in diabetes. Copyright © 2014 John Wiley & Sons, Ltd.
Introduction to Generalized Functions with Applications in Aerodynamics and Aeroacoustics
NASA Technical Reports Server (NTRS)
Farassat, F.
1994-01-01
Generalized functions have many applications in science and engineering. One useful aspect is that discontinuous functions can be handled as easily as continuous or differentiable functions and provide a powerful tool in formulating and solving many problems of aerodynamics and acoustics. Furthermore, generalized function theory elucidates and unifies many ad hoc mathematical approaches used by engineers and scientists. We define generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support, then introduce the concept of generalized differentiation. Generalized differentiation is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some results of classical analysis, are derived with the generalized function theory. Other applications of the generalized function theory in aerodynamics discussed here are the derivations of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of the finite part of divergent integrals, the derivation of the Oswatitsch integral equation of transonic flow, and the analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics include the derivation of the Kirchhoff formula for moving surfaces, the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.
Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data
NASA Technical Reports Server (NTRS)
Knepper, D. H., Jr. (Principal Investigator); Hutchinson, R. M.; Sawatzky, D. L.; Trexler, D. W.; Bruns, D. L.; Nicolais, S. M.
1973-01-01
The author has identified the following significant results. Topography was found to be the most important factor defining folds on ERTS-1 imagery of northwestern Colorado; tonal variations caused by rock reflectance and vegetation type and density are the next most important factors. Photo-linears mapped on ERTS-1 imagery of central Colorado correlate well with ground-measured joint and fracture trends. In addition, photo-linears have been successfully used to determine the location and distribution of metallic mineral deposits in the Colorado Mineral Belt. True color composites are best for general geologic analysis and false color composites prepared with positive/negative masks are useful for enhancing local geologic phenomena. During geologic analysis of any given area, ERTS-1 imagery from several different dates should be studied.
Estimation of Quasi-Stiffness of the Human Hip in the Stance Phase of Walking
Shamaei, Kamran; Sawicki, Gregory S.; Dollar, Aaron M.
2013-01-01
This work presents a framework for selection of subject-specific quasi-stiffness of hip orthoses and exoskeletons, and other devices that are intended to emulate the biological performance of this joint during walking. The hip joint exhibits linear moment-angular excursion behavior in both the extension and flexion stages of the resilient loading-unloading phase that consists of terminal stance and initial swing phases. Here, we establish statistical models that can closely estimate the slope of linear fits to the moment-angle graph of the hip in this phase, termed as the quasi-stiffness of the hip. Employing an inverse dynamics analysis, we identify a series of parameters that can capture the nearly linear hip quasi-stiffnesses in the resilient loading phase. We then employ regression analysis on experimental moment-angle data of 216 gait trials across 26 human adults walking over a wide range of gait speeds (0.75–2.63 m/s) to obtain a set of general-form statistical models that estimate the hip quasi-stiffnesses using body weight and height, gait speed, and hip excursion. We show that the general-form models can closely estimate the hip quasi-stiffness in the extension (R2 = 92%) and flexion portions (R2 = 89%) of the resilient loading phase of the gait. We further simplify the general-form models and present a set of stature-based models that can estimate the hip quasi-stiffness for the preferred gait speed using only body weight and height with an average error of 27% for the extension stage and 37% for the flexion stage. PMID:24349136
General functioning predicts reward and punishment learning in schizophrenia.
Somlai, Zsuzsanna; Moustafa, Ahmed A; Kéri, Szabolcs; Myers, Catherine E; Gluck, Mark A
2011-04-01
Previous studies investigating feedback-driven reinforcement learning in patients with schizophrenia have provided mixed results. In this study, we explored the clinical predictors of reward and punishment learning using a probabilistic classification learning task. Patients with schizophrenia (n=40) performed similarly to healthy controls (n=30) on the classification learning task. However, more severe negative and general symptoms were associated with lower reward-learning performance, whereas poorer general psychosocial functioning was correlated with both lower reward- and punishment-learning performances. Multiple linear regression analyses indicated that general psychosocial functioning was the only significant predictor of reinforcement learning performance when education, antipsychotic dose, and positive, negative and general symptoms were included in the analysis. These results suggest a close relationship between reinforcement learning and general psychosocial functioning in schizophrenia. Published by Elsevier B.V.
Probabilistic boundary element method
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Raveendra, S. T.
1989-01-01
The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.
Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains
Krumin, Michael; Shoham, Shy
2010-01-01
Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705
SOCR Analyses – an Instructional Java Web-based Statistical Analysis Toolkit
Chu, Annie; Cui, Jenny; Dinov, Ivo D.
2011-01-01
The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test. The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website. In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models. PMID:21546994
Optimal analytic method for the nonlinear Hasegawa-Mima equation
NASA Astrophysics Data System (ADS)
Baxter, Mathew; Van Gorder, Robert A.; Vajravelu, Kuppalapalle
2014-05-01
The Hasegawa-Mima equation is a nonlinear partial differential equation that describes the electric potential due to a drift wave in a plasma. In the present paper, we apply the method of homotopy analysis to a slightly more general Hasegawa-Mima equation, which accounts for hyper-viscous damping or viscous dissipation. First, we outline the method for the general initial/boundary value problem over a compact rectangular spatial domain. We use a two-stage method, where both the convergence control parameter and the auxiliary linear operator are optimally selected to minimize the residual error due to the approximation. To do the latter, we consider a family of operators parameterized by a constant which gives the decay rate of the solutions. After outlining the general method, we consider a number of concrete examples in order to demonstrate the utility of this approach. The results enable us to study properties of the initial/boundary value problem for the generalized Hasegawa-Mima equation. In several cases considered, we are able to obtain solutions with extremely small residual errors after relatively few iterations are computed (residual errors on the order of 10-15 are found in multiple cases after only three iterations). The results demonstrate that selecting a parameterized auxiliary linear operator can be extremely useful for minimizing residual errors when used concurrently with the optimal homotopy analysis method, suggesting that this approach can prove useful for a number of nonlinear partial differential equations arising in physics and nonlinear mechanics.
Variable selection for marginal longitudinal generalized linear models.
Cantoni, Eva; Flemming, Joanna Mills; Ronchetti, Elvezio
2005-06-01
Variable selection is an essential part of any statistical analysis and yet has been somewhat neglected in the context of longitudinal data analysis. In this article, we propose a generalized version of Mallows's C(p) (GC(p)) suitable for use with both parametric and nonparametric models. GC(p) provides an estimate of a measure of model's adequacy for prediction. We examine its performance with popular marginal longitudinal models (fitted using GEE) and contrast results with what is typically done in practice: variable selection based on Wald-type or score-type tests. An application to real data further demonstrates the merits of our approach while at the same time emphasizing some important robust features inherent to GC(p).
Impulsive synchronization of stochastic reaction-diffusion neural networks with mixed time delays.
Sheng, Yin; Zeng, Zhigang
2018-07-01
This paper discusses impulsive synchronization of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions and hybrid time delays. By virtue of inequality techniques, theories of stochastic analysis, linear matrix inequalities, and the contradiction method, sufficient criteria are proposed to ensure exponential synchronization of the addressed stochastic reaction-diffusion neural networks with mixed time delays via a designed impulsive controller. Compared with some recent studies, the neural network models herein are more general, some restrictions are relaxed, and the obtained conditions enhance and generalize some published ones. Finally, two numerical simulations are performed to substantiate the validity and merits of the developed theoretical analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wood, Phillip Karl; Jackson, Kristina M
2013-08-01
Researchers studying longitudinal relationships among multiple problem behaviors sometimes characterize autoregressive relationships across constructs as indicating "protective" or "launch" factors or as "developmental snares." These terms are used to indicate that initial or intermediary states of one problem behavior subsequently inhibit or promote some other problem behavior. Such models are contrasted with models of "general deviance" over time in which all problem behaviors are viewed as indicators of a common linear trajectory. When fit of the "general deviance" model is poor and fit of one or more autoregressive models is good, this is taken as support for the inhibitory or enhancing effect of one construct on another. In this paper, we argue that researchers consider competing models of growth before comparing deviance and time-bound models. Specifically, we propose use of the free curve slope intercept (FCSI) growth model (Meredith & Tisak, 1990) as a general model to typify change in a construct over time. The FCSI model includes, as nested special cases, several statistical models often used for prospective data, such as linear slope intercept models, repeated measures multivariate analysis of variance, various one-factor models, and hierarchical linear models. When considering models involving multiple constructs, we argue the construct of "general deviance" can be expressed as a single-trait multimethod model, permitting a characterization of the deviance construct over time without requiring restrictive assumptions about the form of growth over time. As an example, prospective assessments of problem behaviors from the Dunedin Multidisciplinary Health and Development Study (Silva & Stanton, 1996) are considered and contrasted with earlier analyses of Hussong, Curran, Moffitt, and Caspi (2008), which supported launch and snare hypotheses. For antisocial behavior, the FCSI model fit better than other models, including the linear chronometric growth curve model used by Hussong et al. For models including multiple constructs, a general deviance model involving a single trait and multimethod factors (or a corresponding hierarchical factor model) fit the data better than either the "snares" alternatives or the general deviance model previously considered by Hussong et al. Taken together, the analyses support the view that linkages and turning points cannot be contrasted with general deviance models absent additional experimental intervention or control.
WOOD, PHILLIP KARL; JACKSON, KRISTINA M.
2014-01-01
Researchers studying longitudinal relationships among multiple problem behaviors sometimes characterize autoregressive relationships across constructs as indicating “protective” or “launch” factors or as “developmental snares.” These terms are used to indicate that initial or intermediary states of one problem behavior subsequently inhibit or promote some other problem behavior. Such models are contrasted with models of “general deviance” over time in which all problem behaviors are viewed as indicators of a common linear trajectory. When fit of the “general deviance” model is poor and fit of one or more autoregressive models is good, this is taken as support for the inhibitory or enhancing effect of one construct on another. In this paper, we argue that researchers consider competing models of growth before comparing deviance and time-bound models. Specifically, we propose use of the free curve slope intercept (FCSI) growth model (Meredith & Tisak, 1990) as a general model to typify change in a construct over time. The FCSI model includes, as nested special cases, several statistical models often used for prospective data, such as linear slope intercept models, repeated measures multivariate analysis of variance, various one-factor models, and hierarchical linear models. When considering models involving multiple constructs, we argue the construct of “general deviance” can be expressed as a single-trait multimethod model, permitting a characterization of the deviance construct over time without requiring restrictive assumptions about the form of growth over time. As an example, prospective assessments of problem behaviors from the Dunedin Multidisciplinary Health and Development Study (Silva & Stanton, 1996) are considered and contrasted with earlier analyses of Hussong, Curran, Moffitt, and Caspi (2008), which supported launch and snare hypotheses. For antisocial behavior, the FCSI model fit better than other models, including the linear chronometric growth curve model used by Hussong et al. For models including multiple constructs, a general deviance model involving a single trait and multimethod factors (or a corresponding hierarchical factor model) fit the data better than either the “snares” alternatives or the general deviance model previously considered by Hussong et al. Taken together, the analyses support the view that linkages and turning points cannot be contrasted with general deviance models absent additional experimental intervention or control. PMID:23880389
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yavari, M., E-mail: yavari@iaukashan.ac.ir
2016-06-15
We generalize the results of Nesterenko [13, 14] and Gogilidze and Surovtsev [15] for DNA structures. Using the generalized Hamiltonian formalism, we investigate solutions of the equilibrium shape equations for the linear free energy model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yangho; Lee, Byung-Kook, E-mail: bklee@sch.ac.kr
Introduction: The objective of this study was to evaluate associations between blood lead, cadmium, and mercury levels with estimated glomerular filtration rate in a general population of South Korean adults. Methods: This was a cross-sectional study based on data obtained in the Korean National Health and Nutrition Examination Survey (KNHANES) (2008-2010). The final analytical sample consisted of 5924 participants. Estimated glomerular filtration rate (eGFR) was calculated using the MDRD Study equation as an indicator of glomerular function. Results: In multiple linear regression analysis of log2-transformed blood lead as a continuous variable on eGFR, after adjusting for covariates including cadmium andmore » mercury, the difference in eGFR levels associated with doubling of blood lead were -2.624 mL/min per 1.73 m Superscript-Two (95% CI: -3.803 to -1.445). In multiple linear regression analysis using quartiles of blood lead as the independent variable, the difference in eGFR levels comparing participants in the highest versus the lowest quartiles of blood lead was -3.835 mL/min per 1.73 m Superscript-Two (95% CI: -5.730 to -1.939). In a multiple linear regression analysis using blood cadmium and mercury, as continuous or categorical variables, as independent variables, neither metal was a significant predictor of eGFR. Odds ratios (ORs) and 95% CI values for reduced eGFR calculated for log2-transformed blood metals and quartiles of the three metals showed similar trends after adjustment for covariates. Discussion: In this large, representative sample of South Korean adults, elevated blood lead level was consistently associated with lower eGFR levels and with the prevalence of reduced eGFR even in blood lead levels below 10 {mu}g/dL. In conclusion, elevated blood lead level was associated with lower eGFR in a Korean general population, supporting the role of lead as a risk factor for chronic kidney disease.« less
Tools for Basic Statistical Analysis
NASA Technical Reports Server (NTRS)
Luz, Paul L.
2005-01-01
Statistical Analysis Toolset is a collection of eight Microsoft Excel spreadsheet programs, each of which performs calculations pertaining to an aspect of statistical analysis. These programs present input and output data in user-friendly, menu-driven formats, with automatic execution. The following types of calculations are performed: Descriptive statistics are computed for a set of data x(i) (i = 1, 2, 3 . . . ) entered by the user. Normal Distribution Estimates will calculate the statistical value that corresponds to cumulative probability values, given a sample mean and standard deviation of the normal distribution. Normal Distribution from two Data Points will extend and generate a cumulative normal distribution for the user, given two data points and their associated probability values. Two programs perform two-way analysis of variance (ANOVA) with no replication or generalized ANOVA for two factors with four levels and three repetitions. Linear Regression-ANOVA will curvefit data to the linear equation y=f(x) and will do an ANOVA to check its significance.
Reduced-order modeling of soft robots
Chenevier, Jean; González, David; Aguado, J. Vicente; Chinesta, Francisco
2018-01-01
We present a general strategy for the modeling and simulation-based control of soft robots. Although the presented methodology is completely general, we restrict ourselves to the analysis of a model robot made of hyperelastic materials and actuated by cables or tendons. To comply with the stringent real-time constraints imposed by control algorithms, a reduced-order modeling strategy is proposed that allows to minimize the amount of online CPU cost. Instead, an offline training procedure is proposed that allows to determine a sort of response surface that characterizes the response of the robot. Contrarily to existing strategies, the proposed methodology allows for a fully non-linear modeling of the soft material in a hyperelastic setting as well as a fully non-linear kinematic description of the movement without any restriction nor simplifying assumption. Examples of different configurations of the robot were analyzed that show the appeal of the method. PMID:29470496
Solving Graph Laplacian Systems Through Recursive Bisections and Two-Grid Preconditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponce, Colin; Vassilevski, Panayot S.
2016-02-18
We present a parallelizable direct method for computing the solution to graph Laplacian-based linear systems derived from graphs that can be hierarchically bipartitioned with small edge cuts. For a graph of size n with constant-size edge cuts, our method decomposes a graph Laplacian in time O(n log n), and then uses that decomposition to perform a linear solve in time O(n log n). We then use the developed technique to design a preconditioner for graph Laplacians that do not have this property. Finally, we augment this preconditioner with a two-grid method that accounts for much of the preconditioner's weaknesses. Wemore » present an analysis of this method, as well as a general theorem for the condition number of a general class of two-grid support graph-based preconditioners. Numerical experiments illustrate the performance of the studied methods.« less
Engdahl, Bo; Tambs, Kristian; Borchgrevink, Hans M; Hoffman, Howard J
2005-01-01
This study aims to describe the association between otoacoustic emissions (OAEs) and pure-tone hearing thresholds (PTTs) in an unscreened adult population (N =6415), to determine the efficiency by which TEOAEs and DPOAEs can identify ears with elevated PTTs, and to investigate whether a combination of DPOAE and TEOAE responses improves this performance. Associations were examined by linear regression analysis and ANOVA. Test performance was assessed by receiver operator characteristic (ROC) curves. The relation between OAEs and PTTs appeared curvilinear with a moderate degree of non-linearity. Combining DPOAEs and TEOAEs improved performance. Test performance depended on the cut-off thresholds defining elevated PTTs with optimal values between 25 and 45 dB HL, depending on frequency and type of OAE measure. The unique constitution of the present large sample, which reflects the general adult population, makes these results applicable to population-based studies and screening programs.
Correlations among Brain Gray Matter Volumes, Age, Gender, and Hemisphere in Healthy Individuals
Taki, Yasuyuki; Thyreau, Benjamin; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Kawashima, Ryuta; Fukuda, Hiroshi
2011-01-01
To determine the relationship between age and gray matter structure and how interactions between gender and hemisphere impact this relationship, we examined correlations between global or regional gray matter volume and age, including interactions of gender and hemisphere, using a general linear model with voxel-based and region-of-interest analyses. Brain magnetic resonance images were collected from 1460 healthy individuals aged 20–69 years; the images were linearly normalized and segmented and restored to native space for analysis of global gray matter volume. Linearly normalized images were then non-linearly normalized and smoothed for analysis of regional gray matter volume. Analysis of global gray matter volume revealed a significant negative correlation between gray matter ratio (gray matter volume divided by intracranial volume) and age in both genders, and a significant interaction effect of age × gender on the gray matter ratio. In analyzing regional gray matter volume, the gray matter volume of all regions showed significant main effects of age, and most regions, with the exception of several including the inferior parietal lobule, showed a significant age × gender interaction. Additionally, the inferior temporal gyrus showed a significant age × gender × hemisphere interaction. No regional volumes showed significant age × hemisphere interactions. Our study may contribute to clarifying the mechanism(s) of normal brain aging in each brain region. PMID:21818377
Koda, Shin-ichi
2015-05-28
It has been shown by some existing studies that some linear dynamical systems defined on a dendritic network are equivalent to those defined on a set of one-dimensional networks in special cases and this transformation to the simple picture, which we call linear chain (LC) decomposition, has a significant advantage in understanding properties of dendrimers. In this paper, we expand the class of LC decomposable system with some generalizations. In addition, we propose two general sufficient conditions for LC decomposability with a procedure to systematically realize the LC decomposition. Some examples of LC decomposable linear dynamical systems are also presented with their graphs. The generalization of the LC decomposition is implemented in the following three aspects: (i) the type of linear operators; (ii) the shape of dendritic networks on which linear operators are defined; and (iii) the type of symmetry operations representing the symmetry of the systems. In the generalization (iii), symmetry groups that represent the symmetry of dendritic systems are defined. The LC decomposition is realized by changing the basis of a linear operator defined on a dendritic network into bases of irreducible representations of the symmetry group. The achievement of this paper makes it easier to utilize the LC decomposition in various cases. This may lead to a further understanding of the relation between structure and functions of dendrimers in future studies.
Collision of a Ball with a Barbell and Related Impulse Problems
ERIC Educational Resources Information Center
Mungan, Carl E.
2007-01-01
The collision of a ball with the end of a barbell illustrates the combined conservation laws of linear and angular momentum. This paper considers the instructive but unfamiliar case where the ball's incident direction of travel makes an acute angle with the barbell's connecting rod. The analysis uses the coefficient of restitution generalized to…
ERIC Educational Resources Information Center
Maassen, Peter, A. M.; Potman, Henry P.
1990-01-01
The new strategic planning system in Dutch higher education is described and the usefulness of strategic planning in higher education institutions in general is discussed. Three models are distinguished: linear, adaptive, and interpretive. Evidence suggesting the system has resulted in more homogenization than diversification is presented.…
A Geometric Analysis of when Fixed Weighting Schemes Will Outperform Ordinary Least Squares
ERIC Educational Resources Information Center
Davis-Stober, Clintin P.
2011-01-01
Many researchers have demonstrated that fixed, exogenously chosen weights can be useful alternatives to Ordinary Least Squares (OLS) estimation within the linear model (e.g., Dawes, Am. Psychol. 34:571-582, 1979; Einhorn & Hogarth, Org. Behav. Human Perform. 13:171-192, 1975; Wainer, Psychol. Bull. 83:213-217, 1976). Generalizing the approach of…
Dynamical Analysis in the Mathematical Modelling of Human Blood Glucose
ERIC Educational Resources Information Center
Bae, Saebyok; Kang, Byungmin
2012-01-01
We want to apply the geometrical method to a dynamical system of human blood glucose. Due to the educational importance of model building, we show a relatively general modelling process using observational facts. Next, two models of some concrete forms are analysed in the phase plane by means of linear stability, phase portrait and vector…
The Challenge of Separating Effects of Simultaneous Education Projects on Student Achievement
ERIC Educational Resources Information Center
Ma, Xin; Ma, Lingling
2009-01-01
When multiple education projects operate in an overlapping or rear-ended manner, it is always a challenge to separate unique project effects on schooling outcomes. Our analysis represents a first attempt to address this challenge. A three-level hierarchical linear model (HLM) was presented as a general analytical framework to separate program…
Variational Bayesian Parameter Estimation Techniques for the General Linear Model
Starke, Ludger; Ostwald, Dirk
2017-01-01
Variational Bayes (VB), variational maximum likelihood (VML), restricted maximum likelihood (ReML), and maximum likelihood (ML) are cornerstone parametric statistical estimation techniques in the analysis of functional neuroimaging data. However, the theoretical underpinnings of these model parameter estimation techniques are rarely covered in introductory statistical texts. Because of the widespread practical use of VB, VML, ReML, and ML in the neuroimaging community, we reasoned that a theoretical treatment of their relationships and their application in a basic modeling scenario may be helpful for both neuroimaging novices and practitioners alike. In this technical study, we thus revisit the conceptual and formal underpinnings of VB, VML, ReML, and ML and provide a detailed account of their mathematical relationships and implementational details. We further apply VB, VML, ReML, and ML to the general linear model (GLM) with non-spherical error covariance as commonly encountered in the first-level analysis of fMRI data. To this end, we explicitly derive the corresponding free energy objective functions and ensuing iterative algorithms. Finally, in the applied part of our study, we evaluate the parameter and model recovery properties of VB, VML, ReML, and ML, first in an exemplary setting and then in the analysis of experimental fMRI data acquired from a single participant under visual stimulation. PMID:28966572
Q estimation of seismic data using the generalized S-transform
NASA Astrophysics Data System (ADS)
Hao, Yaju; Wen, Xiaotao; Zhang, Bo; He, Zhenhua; Zhang, Rui; Zhang, Jinming
2016-12-01
Quality factor, Q, is a parameter that characterizes the energy dissipation during seismic wave propagation. The reservoir pore is one of the main factors that affect the value of Q. Especially, when pore space is filled with oil or gas, the rock usually exhibits a relative low Q value. Such a low Q value has been used as a direct hydrocarbon indicator by many researchers. The conventional Q estimation method based on spectral ratio suffers from the problem of waveform tuning; hence, many researchers have introduced time-frequency analysis techniques to tackle this problem. Unfortunately, the window functions adopted in time-frequency analysis algorithms such as continuous wavelet transform (CWT) and S-transform (ST) contaminate the amplitude spectra because the seismic signal is multiplied by the window functions during time-frequency decomposition. The basic assumption of the spectral ratio method is that there is a linear relationship between natural logarithmic spectral ratio and frequency. However, this assumption does not hold if we take the influence of window functions into consideration. In this paper, we first employ a recently developed two-parameter generalized S-transform (GST) to obtain the time-frequency spectra of seismic traces. We then deduce the non-linear relationship between natural logarithmic spectral ratio and frequency. Finally, we obtain a linear relationship between natural logarithmic spectral ratio and a newly defined parameter γ by ignoring the negligible second order term. The gradient of this linear relationship is 1/Q. Here, the parameter γ is a function of frequency and source wavelet. Numerical examples for VSP and post-stack reflection data confirm that our algorithm is capable of yielding accurate results. The Q-value results estimated from field data acquired in western China show reasonable comparison with oil-producing well location.
NASA Astrophysics Data System (ADS)
Wati, S.; Fitriana, L.; Mardiyana
2018-04-01
Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.
Asymptotic analysis of dissipative waves with applications to their numerical simulation
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1990-01-01
Various problems involving the interplay of asymptotics and numerics in the analysis of wave propagation in dissipative systems are studied. A general approach to the asymptotic analysis of linear, dissipative waves is developed. It was applied to the derivation of asymptotic boundary conditions for numerical solutions on unbounded domains. Applications include the Navier-Stokes equations. Multidimensional traveling wave solutions to reaction-diffusion equations are also considered. A preliminary numerical investigation of a thermo-diffusive model of flame propagation in a channel with heat loss at the walls is presented.
Transient analysis of 1D inhomogeneous media by dynamic inhomogeneous finite element method
NASA Astrophysics Data System (ADS)
Yang, Zailin; Wang, Yao; Hei, Baoping
2013-12-01
The dynamic inhomogeneous finite element method is studied for use in the transient analysis of onedimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.
Information theoretic analysis of linear shift-invariant edge-detection operators
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2012-06-01
Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the influences by the image gathering process. However, experiments show that the image gathering process has a profound impact on the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. We perform an end-to-end information theory based system analysis to assess linear shift-invariant edge-detection algorithms. We evaluate the performance of the different algorithms as a function of the characteristics of the scene and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge-detection algorithm is regarded as having high performance only if the information rate from the scene to the edge image approaches its maximum possible. This goal can be achieved only by jointly optimizing all processes. Our information-theoretic assessment provides a new tool that allows us to compare different linear shift-invariant edge detectors in a common environment.
NASA Astrophysics Data System (ADS)
Sadiq, Nauman; Ahmad, Mushtaq; Farooq, M.; Jan, Qasim
2018-06-01
Linear and nonlinear kinetic Alfven waves (KAWs) are studied in collisionless, non-relativistic two fluid quantum magneto-plasmas by considering arbitrary temperature degeneracy. A general coupling parameter is applied to discuss the range of validity of the proposed model in nearly degenerate and nearly non-degenerate plasma limits. Linear analysis of KAWs shows an increase (decrease) in frequency with the increase in parameter ζ ( δ ) for the nearly non-degenerate (nearly degenerate) plasma limit. The energy integral equation in the form of Sagdeev potential is obtained by using the approach of the Lorentz transformation. The analysis reveals that the amplitude of the Sagdeev potential curves and soliton structures remains the same, but the potential depth and width of soliton structure change for both the limiting cases. It is further observed that only density hump structures are formed in the sub-alfvenic region for value Kz 2 > 1 . The effects of parameters ζ, δ on the nonlinear properties of KAWs are shown in graphical plots. New results for comparison with earlier work have also been highlighted. The significance of this work to astrophysical plasmas is also emphasized.
Non-Newtonian Hele-Shaw Flow and the Saffman-Taylor Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondic, L.; Shelley, M.J.; Palffy-Muhoray, P.
We explore the Saffman-Taylor instability of a gas bubble expanding into a shear thinning liquid in a radial Hele-Shaw cell. Using Darcy{close_quote}s law generalized for non-Newtonian fluids, we perform simulations of the full dynamical problem. The simulations show that shear thinning significantly influences the developing interfacial patterns. Shear thinning can suppress tip splitting, and produce fingers which oscillate during growth and shed side branches. Emergent length scales show reasonable agreement with a general linear stability analysis. {copyright} {ital 1998} {ital The American Physical Society}
Gradient optimization and nonlinear control
NASA Technical Reports Server (NTRS)
Hasdorff, L.
1976-01-01
The book represents an introduction to computation in control by an iterative, gradient, numerical method, where linearity is not assumed. The general language and approach used are those of elementary functional analysis. The particular gradient method that is emphasized and used is conjugate gradient descent, a well known method exhibiting quadratic convergence while requiring very little more computation than simple steepest descent. Constraints are not dealt with directly, but rather the approach is to introduce them as penalty terms in the criterion. General conjugate gradient descent methods are developed and applied to problems in control.
Wen, Cheng; Dallimer, Martin; Carver, Steve; Ziv, Guy
2018-05-06
Despite the great potential of mitigating carbon emission, development of wind farms is often opposed by local communities due to the visual impact on landscape. A growing number of studies have applied nonmarket valuation methods like Choice Experiments (CE) to value the visual impact by eliciting respondents' willingness to pay (WTP) or willingness to accept (WTA) for hypothetical wind farms through survey questions. Several meta-analyses have been found in the literature to synthesize results from different valuation studies, but they have various limitations related to the use of the prevailing multivariate meta-regression analysis. In this paper, we propose a new meta-analysis method to establish general functions for the relationships between the estimated WTP or WTA and three wind farm attributes, namely the distance to residential/coastal areas, the number of turbines and turbine height. This method involves establishing WTA or WTP functions for individual studies, fitting the average derivative functions and deriving the general integral functions of WTP or WTA against wind farm attributes. Results indicate that respondents in different studies consistently showed increasing WTP for moving wind farms to greater distances, which can be fitted by non-linear (natural logarithm) functions. However, divergent preferences for the number of turbines and turbine height were found in different studies. We argue that the new analysis method proposed in this paper is an alternative to the mainstream multivariate meta-regression analysis for synthesizing CE studies and the general integral functions of WTP or WTA against wind farm attributes are useful for future spatial modelling and benefit transfer studies. We also suggest that future multivariate meta-analyses should include non-linear components in the regression functions. Copyright © 2018. Published by Elsevier B.V.
Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals
2011-01-01
Background Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts. Methods We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects. Results Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components. Conclusions We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies. PMID:21810266
Graph embedding and extensions: a general framework for dimensionality reduction.
Yan, Shuicheng; Xu, Dong; Zhang, Benyu; Zhang, Hong-Jiang; Yang, Qiang; Lin, Stephen
2007-01-01
Over the past few decades, a large family of algorithms - supervised or unsupervised; stemming from statistics or geometry theory - has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different motivations of these algorithms, we present in this paper a general formulation known as graph embedding to unify them within a common framework. In graph embedding, each algorithm can be considered as the direct graph embedding or its linear/kernel/tensor extension of a specific intrinsic graph that describes certain desired statistical or geometric properties of a data set, with constraints from scale normalization or a penalty graph that characterizes a statistical or geometric property that should be avoided. Furthermore, the graph embedding framework can be used as a general platform for developing new dimensionality reduction algorithms. By utilizing this framework as a tool, we propose a new supervised dimensionality reduction algorithm called Marginal Fisher Analysis in which the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring points of the same class, while the penalty graph connects the marginal points and characterizes the interclass separability. We show that MFA effectively overcomes the limitations of the traditional Linear Discriminant Analysis algorithm due to data distribution assumptions and available projection directions. Real face recognition experiments show the superiority of our proposed MFA in comparison to LDA, also for corresponding kernel and tensor extensions.
Generalized topology for resonators having N commensurate harmonics
NASA Astrophysics Data System (ADS)
Danzi, Francesco; Gibert, James M.; Frulla, Giacomo; Cestino, Enrico
2018-04-01
Despite the ubiquity of both linear and nonlinear multimember resonators in MEMS and kinetic energy harvesting devices very few research efforts examine the orientation of members in the resonator on its dynamic behavior. Previous efforts to design this type of resonator constrains the members to have relative orientations that are 0○ or 90○ to each other, i.e., the elements are connected inline with adjoining members or are perpendicular to adjoining members. The work expands upon the existing body of research by considering the effect of the relative orientation between members on the dynamic behavior of the system. In this manuscript, we derive a generalized reduced-order model for the design of a multi-member planar resonator that has integer multiple modal frequencies. The model is based on a Rayleigh Ritz approximation where the number of degrees of freedom equals the number of structural members in the resonator. The analysis allows the generation of design curves, representing all the possible solutions for modal frequencies that are commensurate. The generalized model, valid for an N-DOF structure, is then restricted for a 2- and 3-DOF system/member resonator, where the linear dynamic behavior of the resonator is investigated in depth. Furthermore, this analysis demonstrates a rule of thumb; relaxing restrictions on the relative orientation of members in a planar structure, allows the structure to exhibit exactly N commensurable frequencies if it contains N members.
A powerful and flexible approach to the analysis of RNA sequence count data
Zhou, Yi-Hui; Xia, Kai; Wright, Fred A.
2011-01-01
Motivation: A number of penalization and shrinkage approaches have been proposed for the analysis of microarray gene expression data. Similar techniques are now routinely applied to RNA sequence transcriptional count data, although the value of such shrinkage has not been conclusively established. If penalization is desired, the explicit modeling of mean–variance relationships provides a flexible testing regimen that ‘borrows’ information across genes, while easily incorporating design effects and additional covariates. Results: We describe BBSeq, which incorporates two approaches: (i) a simple beta-binomial generalized linear model, which has not been extensively tested for RNA-Seq data and (ii) an extension of an expression mean–variance modeling approach to RNA-Seq data, involving modeling of the overdispersion as a function of the mean. Our approaches are flexible, allowing for general handling of discrete experimental factors and continuous covariates. We report comparisons with other alternate methods to handle RNA-Seq data. Although penalized methods have advantages for very small sample sizes, the beta-binomial generalized linear model, combined with simple outlier detection and testing approaches, appears to have favorable characteristics in power and flexibility. Availability: An R package containing examples and sample datasets is available at http://www.bios.unc.edu/research/genomic_software/BBSeq Contact: yzhou@bios.unc.edu; fwright@bios.unc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21810900
Evaluation of a Nonlinear Finite Element Program - ABAQUS.
1983-03-15
anisotropic properties. * MATEXP - Linearly elastic thermal expansions with isotropic, orthotropic and anisotropic properties. * MATELG - Linearly...elastic materials for general sections (options available for beam and shell elements). • MATEXG - Linearly elastic thermal expansions for general...decomposition of a matrix. * Q-R algorithm • Vector normalization, etc. Obviously, by consolidating all the utility subroutines in a library, ABAQUS has
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1975-01-01
A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft.
CSOLNP: Numerical Optimization Engine for Solving Non-linearly Constrained Problems.
Zahery, Mahsa; Maes, Hermine H; Neale, Michael C
2017-08-01
We introduce the optimizer CSOLNP, which is a C++ implementation of the R package RSOLNP (Ghalanos & Theussl, 2012, Rsolnp: General non-linear optimization using augmented Lagrange multiplier method. R package version, 1) alongside some improvements. CSOLNP solves non-linearly constrained optimization problems using a Sequential Quadratic Programming (SQP) algorithm. CSOLNP, NPSOL (a very popular implementation of SQP method in FORTRAN (Gill et al., 1986, User's guide for NPSOL (version 4.0): A Fortran package for nonlinear programming (No. SOL-86-2). Stanford, CA: Stanford University Systems Optimization Laboratory), and SLSQP (another SQP implementation available as part of the NLOPT collection (Johnson, 2014, The NLopt nonlinear-optimization package. Retrieved from http://ab-initio.mit.edu/nlopt)) are three optimizers available in OpenMx package. These optimizers are compared in terms of runtimes, final objective values, and memory consumption. A Monte Carlo analysis of the performance of the optimizers was performed on ordinal and continuous models with five variables and one or two factors. While the relative difference between the objective values is less than 0.5%, CSOLNP is in general faster than NPSOL and SLSQP for ordinal analysis. As for continuous data, none of the optimizers performs consistently faster than the others. In terms of memory usage, we used Valgrind's heap profiler tool, called Massif, on one-factor threshold models. CSOLNP and NPSOL consume the same amount of memory, while SLSQP uses 71 MB more memory than the other two optimizers.
Linear discrete systems with memory: a generalization of the Langmuir model
NASA Astrophysics Data System (ADS)
Băleanu, Dumitru; Nigmatullin, Raoul R.
2013-10-01
In this manuscript we analyzed a general solution of the linear nonlocal Langmuir model within time scale calculus. Several generalizations of the Langmuir model are presented together with their exact corresponding solutions. The physical meaning of the proposed models are investigated and their corresponding geometries are reported.
Inference regarding multiple structural changes in linear models with endogenous regressors☆
Hall, Alastair R.; Han, Sanggohn; Boldea, Otilia
2012-01-01
This paper considers the linear model with endogenous regressors and multiple changes in the parameters at unknown times. It is shown that minimization of a Generalized Method of Moments criterion yields inconsistent estimators of the break fractions, but minimization of the Two Stage Least Squares (2SLS) criterion yields consistent estimators of these parameters. We develop a methodology for estimation and inference of the parameters of the model based on 2SLS. The analysis covers the cases where the reduced form is either stable or unstable. The methodology is illustrated via an application to the New Keynesian Phillips Curve for the US. PMID:23805021
Perceptual distortion analysis of color image VQ-based coding
NASA Astrophysics Data System (ADS)
Charrier, Christophe; Knoblauch, Kenneth; Cherifi, Hocine
1997-04-01
It is generally accepted that a RGB color image can be easily encoded by using a gray-scale compression technique on each of the three color planes. Such an approach, however, fails to take into account correlations existing between color planes and perceptual factors. We evaluated several linear and non-linear color spaces, some introduced by the CIE, compressed with the vector quantization technique for minimum perceptual distortion. To study these distortions, we measured contrast and luminance of the video framebuffer, to precisely control color. We then obtained psychophysical judgements to measure how well these methods work to minimize perceptual distortion in a variety of color space.
Passive quantum error correction of linear optics networks through error averaging
NASA Astrophysics Data System (ADS)
Marshman, Ryan J.; Lund, Austin P.; Rohde, Peter P.; Ralph, Timothy C.
2018-02-01
We propose and investigate a method of error detection and noise correction for bosonic linear networks using a method of unitary averaging. The proposed error averaging does not rely on ancillary photons or control and feedforward correction circuits, remaining entirely passive in its operation. We construct a general mathematical framework for this technique and then give a series of proof of principle examples including numerical analysis. Two methods for the construction of averaging are then compared to determine the most effective manner of implementation and probe the related error thresholds. Finally we discuss some of the potential uses of this scheme.
Shear-flexible finite-element models of laminated composite plates and shells
NASA Technical Reports Server (NTRS)
Noor, A. K.; Mathers, M. D.
1975-01-01
Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.
Dynamical density functional theory analysis of the laning instability in sheared soft matter.
Scacchi, A; Archer, A J; Brader, J M
2017-12-01
Using dynamical density functional theory (DDFT) methods we investigate the laning instability of a sheared colloidal suspension. The nonequilibrium ordering at the laning transition is driven by nonaffine particle motion arising from interparticle interactions. Starting from a DDFT which incorporates the nonaffine motion, we perform a linear stability analysis that enables identification of the regions of parameter space where lanes form. We illustrate our general approach by applying it to a simple one-component fluid of soft penetrable particles.
An improved silver staining procedure for schizodeme analysis in polyacrylamide gradient gels.
Gonçalves, A M; Nehme, N S; Morel, C M
1990-01-01
A simple protocol is described for the silver staining of polyacrylamide gradient gels used for the separation of restriction fragments of kinetoplast DNA [schizodeme analysis of trypanosomatids (Morel et al., 1980)]. The method overcomes the problems of non-uniform staining and strong background color which are frequently encountered when conventional protocols for silver staining of linear gels are applied to gradient gels. The method described has proven to be of general applicability for DNA, RNA and protein separations in gradient gels.
Synthesis of stiffened shells of revolution
NASA Technical Reports Server (NTRS)
Thornton, W. A.
1974-01-01
Computer programs for the synthesis of shells of various configurations were developed. The conditions considered are: (1) uniform shells (mainly cones) using a membrane buckling analysis, (2) completely uniform shells (cones, spheres, toroidal segments) using linear bending prebuckling analysis, and (3) revision of second design process to reduce the number of design variables to about 30 by considering piecewise uniform designs. A perturbation formula was derived and this allows exact derivatives of the general buckling load to be computed with little additional computer time.
Right-sizing statistical models for longitudinal data.
Wood, Phillip K; Steinley, Douglas; Jackson, Kristina M
2015-12-01
Arguments are proposed that researchers using longitudinal data should consider more and less complex statistical model alternatives to their initially chosen techniques in an effort to "right-size" the model to the data at hand. Such model comparisons may alert researchers who use poorly fitting, overly parsimonious models to more complex, better-fitting alternatives and, alternatively, may identify more parsimonious alternatives to overly complex (and perhaps empirically underidentified and/or less powerful) statistical models. A general framework is proposed for considering (often nested) relationships between a variety of psychometric and growth curve models. A 3-step approach is proposed in which models are evaluated based on the number and patterning of variance components prior to selection of better-fitting growth models that explain both mean and variation-covariation patterns. The orthogonal free curve slope intercept (FCSI) growth model is considered a general model that includes, as special cases, many models, including the factor mean (FM) model (McArdle & Epstein, 1987), McDonald's (1967) linearly constrained factor model, hierarchical linear models (HLMs), repeated-measures multivariate analysis of variance (MANOVA), and the linear slope intercept (linearSI) growth model. The FCSI model, in turn, is nested within the Tuckerized factor model. The approach is illustrated by comparing alternative models in a longitudinal study of children's vocabulary and by comparing several candidate parametric growth and chronometric models in a Monte Carlo study. (c) 2015 APA, all rights reserved).
Linear Approximation to Optimal Control Allocation for Rocket Nozzles with Elliptical Constraints
NASA Technical Reports Server (NTRS)
Orr, Jeb S.; Wall, Johnm W.
2011-01-01
In this paper we present a straightforward technique for assessing and realizing the maximum control moment effectiveness for a launch vehicle with multiple constrained rocket nozzles, where elliptical deflection limits in gimbal axes are expressed as an ensemble of independent quadratic constraints. A direct method of determining an approximating ellipsoid that inscribes the set of attainable angular accelerations is derived. In the case of a parameterized linear generalized inverse, the geometry of the attainable set is computationally expensive to obtain but can be approximated to a high degree of accuracy with the proposed method. A linear inverse can then be optimized to maximize the volume of the true attainable set by maximizing the volume of the approximating ellipsoid. The use of a linear inverse does not preclude the use of linear methods for stability analysis and control design, preferred in practice for assessing the stability characteristics of the inertial and servoelastic coupling appearing in large boosters. The present techniques are demonstrated via application to the control allocation scheme for a concept heavy-lift launch vehicle.
Transverse beam dynamics in non-linear Fixed Field Alternating Gradient accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haj, Tahar M.; Meot, F.
2016-03-02
In this paper, we present some aspects of the transverse beam dynamics in Fixed Field Ring Accelerators (FFRA): we start from the basic principles in order to derive the linearized transverse particle equations of motion for FFRA, essentially FFAGs and cyclotrons are considered here. This is a simple extension of a previous work valid for linear lattices that we generalized by including the bending terms to ensure its correctness for FFAG lattice. The space charge term (contribution of the internal coulombian forces of the beam) is contained as well, although it is not discussed here. The emphasis is on themore » scaling FFAG type: a collaboration work is undertaken in view of better understanding the properties of the 150 MeV scaling FFAG at KURRI in Japan, and progress towards high intensity operation. Some results of the benchmarking work between different codes are presented. Analysis of certain type of field imperfections revealed some interesting features about this machine that explain some of the experimental results and generalize the concept of a scaling FFAG to a non-scaling one for which the tune variations obey a well-defined law.« less
Investigation of Sunspot Area Varying with Sunspot Number
NASA Astrophysics Data System (ADS)
Li, K. J.; Li, F. Y.; Zhang, J.; Feng, W.
2016-11-01
The statistical relationship between sunspot area (SA) and sunspot number (SN) is investigated through analysis of their daily observation records from May 1874 to April 2015. For a total of 1607 days, representing 3 % of the total interval considered, either SA or SN had a value of zero while the other parameter did not. These occurrences most likely reflect the report of short-lived spots by a single observatory and subsequent averaging of zero values over multiple stations. The main results obtained are as follows: i) The number of spotless days around the minimum of a solar cycle is statistically negatively correlated with the maximum strength of solar activity of that cycle. ii) The probability distribution of SA generally decreases monotonically with SA, but the distribution of SN generally increases first, then it decreases as a whole. The different probability distribution of SA and SN should strengthen their non-linear relation, and the correction factor [k] in the definition of SN may be one of the factors that cause the non-linearity. iii) The non-linear relation of SA and SN indeed exists statistically, and it is clearer during the maximum epoch of a solar cycle.
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-04-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-03-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Modeling exposure–lag–response associations with distributed lag non-linear models
Gasparrini, Antonio
2014-01-01
In biomedical research, a health effect is frequently associated with protracted exposures of varying intensity sustained in the past. The main complexity of modeling and interpreting such phenomena lies in the additional temporal dimension needed to express the association, as the risk depends on both intensity and timing of past exposures. This type of dependency is defined here as exposure–lag–response association. In this contribution, I illustrate a general statistical framework for such associations, established through the extension of distributed lag non-linear models, originally developed in time series analysis. This modeling class is based on the definition of a cross-basis, obtained by the combination of two functions to flexibly model linear or nonlinear exposure-responses and the lag structure of the relationship, respectively. The methodology is illustrated with an example application to cohort data and validated through a simulation study. This modeling framework generalizes to various study designs and regression models, and can be applied to study the health effects of protracted exposures to environmental factors, drugs or carcinogenic agents, among others. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24027094
Statistical image quantification toward optimal scan fusion and change quantification
NASA Astrophysics Data System (ADS)
Potesil, Vaclav; Zhou, Xiang Sean
2007-03-01
Recent advance of imaging technology has brought new challenges and opportunities for automatic and quantitative analysis of medical images. With broader accessibility of more imaging modalities for more patients, fusion of modalities/scans from one time point and longitudinal analysis of changes across time points have become the two most critical differentiators to support more informed, more reliable and more reproducible diagnosis and therapy decisions. Unfortunately, scan fusion and longitudinal analysis are both inherently plagued with increased levels of statistical errors. A lack of comprehensive analysis by imaging scientists and a lack of full awareness by physicians pose potential risks in clinical practice. In this paper, we discuss several key error factors affecting imaging quantification, studying their interactions, and introducing a simulation strategy to establish general error bounds for change quantification across time. We quantitatively show that image resolution, voxel anisotropy, lesion size, eccentricity, and orientation are all contributing factors to quantification error; and there is an intricate relationship between voxel anisotropy and lesion shape in affecting quantification error. Specifically, when two or more scans are to be fused at feature level, optimal linear fusion analysis reveals that scans with voxel anisotropy aligned with lesion elongation should receive a higher weight than other scans. As a result of such optimal linear fusion, we will achieve a lower variance than naïve averaging. Simulated experiments are used to validate theoretical predictions. Future work based on the proposed simulation methods may lead to general guidelines and error lower bounds for quantitative image analysis and change detection.
An approximate generalized linear model with random effects for informative missing data.
Follmann, D; Wu, M
1995-03-01
This paper develops a class of models to deal with missing data from longitudinal studies. We assume that separate models for the primary response and missingness (e.g., number of missed visits) are linked by a common random parameter. Such models have been developed in the econometrics (Heckman, 1979, Econometrica 47, 153-161) and biostatistics (Wu and Carroll, 1988, Biometrics 44, 175-188) literature for a Gaussian primary response. We allow the primary response, conditional on the random parameter, to follow a generalized linear model and approximate the generalized linear model by conditioning on the data that describes missingness. The resultant approximation is a mixed generalized linear model with possibly heterogeneous random effects. An example is given to illustrate the approximate approach, and simulations are performed to critique the adequacy of the approximation for repeated binary data.
ERIC Educational Resources Information Center
Williams, Daniel G.
Planners in multicounty rural areas can use the Rural Development, Activity Analysis Planning (RDAAP) model to try to influence the optimal growth of their areas among different general economic goals. The model implies that best industries for rural areas have: high proportion of imported inputs; low transportation costs; high value added/output…
Nathaniel E. Seavy; Suhel Quader; John D. Alexander; C. John Ralph
2005-01-01
The success of avian monitoring programs to effectively guide management decisions requires that studies be efficiently designed and data be properly analyzed. A complicating factor is that point count surveys often generate data with non-normal distributional properties. In this paper we review methods of dealing with deviations from normal assumptions, and we focus...
ERIC Educational Resources Information Center
Deane, Paul; Graf, Edith Aurora; Higgins, Derrick; Futagi, Yoko; Lawless, René
2006-01-01
This study focuses on the relationship between item modeling and evidence-centered design (ECD); it considers how an appropriately generalized item modeling software tool can support systematic identification and exploitation of task-model variables, and then examines the feasibility of this goal, using linear-equation items as a test case. The…
ERIC Educational Resources Information Center
Lazar, Ann A.; Zerbe, Gary O.
2011-01-01
Researchers often compare the relationship between an outcome and covariate for two or more groups by evaluating whether the fitted regression curves differ significantly. When they do, researchers need to determine the "significance region," or the values of the covariate where the curves significantly differ. In analysis of covariance (ANCOVA),…
A flexible count data regression model for risk analysis.
Guikema, Seth D; Coffelt, Jeremy P; Goffelt, Jeremy P
2008-02-01
In many cases, risk and reliability analyses involve estimating the probabilities of discrete events such as hardware failures and occurrences of disease or death. There is often additional information in the form of explanatory variables that can be used to help estimate the likelihood of different numbers of events in the future through the use of an appropriate regression model, such as a generalized linear model. However, existing generalized linear models (GLM) are limited in their ability to handle the types of variance structures often encountered in using count data in risk and reliability analysis. In particular, standard models cannot handle both underdispersed data (variance less than the mean) and overdispersed data (variance greater than the mean) in a single coherent modeling framework. This article presents a new GLM based on a reformulation of the Conway-Maxwell Poisson (COM) distribution that is useful for both underdispersed and overdispersed count data and demonstrates this model by applying it to the assessment of electric power system reliability. The results show that the proposed COM GLM can provide as good of fits to data as the commonly used existing models for overdispered data sets while outperforming these commonly used models for underdispersed data sets.
Dynamics of modulated beams in spectral domain
Yampolsky, Nikolai A.
2017-07-16
General formalism for describing dynamics of modulated beams along linear beamlines is developed. We describe modulated beams with spectral distribution function which represents Fourier transform of the conventional beam distribution function in the 6-dimensional phase space. The introduced spectral distribution function is localized in some region of the spectral domain for nearly monochromatic modulations. It can be characterized with a small number of typical parameters such as the lowest order moments of the spectral distribution. We study evolution of the modulated beams in linear beamlines and find that characteristic spectral parameters transform linearly. The developed approach significantly simplifies analysis ofmore » various schemes proposed for seeding X-ray free electron lasers. We use this approach to study several recently proposed schemes and find the bandwidth of the output bunching in each case.« less
An Index and Test of Linear Moderated Mediation.
Hayes, Andrew F
2015-01-01
I describe a test of linear moderated mediation in path analysis based on an interval estimate of the parameter of a function linking the indirect effect to values of a moderator-a parameter that I call the index of moderated mediation. This test can be used for models that integrate moderation and mediation in which the relationship between the indirect effect and the moderator is estimated as linear, including many of the models described by Edwards and Lambert ( 2007 ) and Preacher, Rucker, and Hayes ( 2007 ) as well as extensions of these models to processes involving multiple mediators operating in parallel or in serial. Generalization of the method to latent variable models is straightforward. Three empirical examples describe the computation of the index and the test, and its implementation is illustrated using Mplus and the PROCESS macro for SPSS and SAS.
The primer vector in linear, relative-motion equations. [spacecraft trajectory optimization
NASA Technical Reports Server (NTRS)
1980-01-01
Primer vector theory is used in analyzing a set of linear, relative-motion equations - the Clohessy-Wiltshire equations - to determine the criteria and necessary conditions for an optimal, N-impulse trajectory. Since the state vector for these equations is defined in terms of a linear system of ordinary differential equations, all fundamental relations defining the solution of the state and costate equations, and the necessary conditions for optimality, can be expressed in terms of elementary functions. The analysis develops the analytical criteria for improving a solution by (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of (1) fixed-end conditions, two-impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized rendezvous problem. A sequence of rendezvous problems is solved to illustrate the analysis and the computational procedure.
Resultant as the determinant of a Koszul complex
NASA Astrophysics Data System (ADS)
Anokhina, A. S.; Morozov, A. Yu.; Shakirov, Sh. R.
2009-09-01
The determinant is a very important characteristic of a linear map between vector spaces. Two generalizations of linear maps are intensively used in modern theory: linear complexes (nilpotent chains of linear maps) and nonlinear maps. The determinant of a complex and the resultant are then the corresponding generalizations of the determinant of a linear map. It turns out that these two quantities are related: the resultant of a nonlinear map is the determinant of the corresponding Koszul complex. We give an elementary introduction into these notions and relations, which will definitely play a role in the future development of theoretical physics.
An analysis of hypercritical states in elastic and inelastic systems
NASA Astrophysics Data System (ADS)
Kowalczk, Maciej
The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.
Primal-dual techniques for online algorithms and mechanisms
NASA Astrophysics Data System (ADS)
Liaghat, Vahid
An offline algorithm is one that knows the entire input in advance. An online algorithm, however, processes its input in a serial fashion. In contrast to offline algorithms, an online algorithm works in a local fashion and has to make irrevocable decisions without having the entire input. Online algorithms are often not optimal since their irrevocable decisions may turn out to be inefficient after receiving the rest of the input. For a given online problem, the goal is to design algorithms which are competitive against the offline optimal solutions. In a classical offline scenario, it is often common to see a dual analysis of problems that can be formulated as a linear or convex program. Primal-dual and dual-fitting techniques have been successfully applied to many such problems. Unfortunately, the usual tricks come short in an online setting since an online algorithm should make decisions without knowing even the whole program. In this thesis, we study the competitive analysis of fundamental problems in the literature such as different variants of online matching and online Steiner connectivity, via online dual techniques. Although there are many generic tools for solving an optimization problem in the offline paradigm, in comparison, much less is known for tackling online problems. The main focus of this work is to design generic techniques for solving integral linear optimization problems where the solution space is restricted via a set of linear constraints. A general family of these problems are online packing/covering problems. Our work shows that for several seemingly unrelated problems, primal-dual techniques can be successfully applied as a unifying approach for analyzing these problems. We believe this leads to generic algorithmic frameworks for solving online problems. In the first part of the thesis, we show the effectiveness of our techniques in the stochastic settings and their applications in Bayesian mechanism design. In particular, we introduce new techniques for solving a fundamental linear optimization problem, namely, the stochastic generalized assignment problem (GAP). This packing problem generalizes various problems such as online matching, ad allocation, bin packing, etc. We furthermore show applications of such results in the mechanism design by introducing Prophet Secretary, a novel Bayesian model for online auctions. In the second part of the thesis, we focus on the covering problems. We develop the framework of "Disk Painting" for a general class of network design problems that can be characterized by proper functions. This class generalizes the node-weighted and edge-weighted variants of several well-known Steiner connectivity problems. We furthermore design a generic technique for solving the prize-collecting variants of these problems when there exists a dual analysis for the non-prize-collecting counterparts. Hence, we solve the online prize-collecting variants of several network design problems for the first time. Finally we focus on designing techniques for online problems with mixed packing/covering constraints. We initiate the study of degree-bounded graph optimization problems in the online setting by designing an online algorithm with a tight competitive ratio for the degree-bounded Steiner forest problem. We hope these techniques establishes a starting point for the analysis of the important class of online degree-bounded optimization on graphs.
Bisimulation equivalence of differential-algebraic systems
NASA Astrophysics Data System (ADS)
Megawati, Noorma Yulia; Schaft, Arjan van der
2018-01-01
In this paper, the notion of bisimulation relation for linear input-state-output systems is extended to general linear differential-algebraic (DAE) systems. Geometric control theory is used to derive a linear-algebraic characterisation of bisimulation relations, and an algorithm for computing the maximal bisimulation relation between two linear DAE systems. The general definition is specialised to the case where the matrix pencil sE - A is regular. Furthermore, by developing a one-sided version of bisimulation, characterisations of simulation and abstraction are obtained.
Babaei, Behzad; Velasquez-Mao, Aaron J; Thomopoulos, Stavros; Elson, Elliot L; Abramowitch, Steven D; Genin, Guy M
2017-05-01
The time- and frequency-dependent properties of connective tissue define their physiological function, but are notoriously difficult to characterize. Well-established tools such as linear viscoelasticity and the Fung quasi-linear viscoelastic (QLV) model impose forms on responses that can mask true tissue behavior. Here, we applied a more general discrete quasi-linear viscoelastic (DQLV) model to identify the static and dynamic time- and frequency-dependent behavior of rabbit medial collateral ligaments. Unlike the Fung QLV approach, the DQLV approach revealed that energy dissipation is elevated at a loading period of ∼10s. The fitting algorithm was applied to the entire loading history on each specimen, enabling accurate estimation of the material's viscoelastic relaxation spectrum from data gathered from transient rather than only steady states. The application of the DQLV method to cyclically loading regimens has broad applicability for the characterization of biological tissues, and the results suggest a mechanistic basis for the stretching regimens most favored by athletic trainers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Babaei, Behzad; Velasquez-Mao, Aaron J.; Thomopoulos, Stavros; Elson, Elliot L.; Abramowitch, Steven D.; Genin, Guy M.
2017-01-01
The time- and frequency-dependent properties of connective tissue define their physiological function, but are notoriously difficult to characterize. Well-established tools such as linear viscoelasticity and the Fung quasi-linear viscoelastic (QLV) model impose forms on responses that can mask true tissue behavior. Here, we applied a more general discrete quasi-linear viscoelastic (DQLV) model to identify the static and dynamic time- and frequency-dependent behavior of rabbit medial collateral ligaments. Unlike the Fung QLV approach, the DQLV approach revealed that energy dissipation is elevated at a loading period of ~10 seconds. The fitting algorithm was applied to the entire loading history on each specimen, enabling accurate estimation of the material's viscoelastic relaxation spectrum from data gathered from transient rather than only steady states. The application of the DQLV method to cyclically loading regimens has broad applicability for the characterization of biological tissues, and the results suggest a mechanistic basis for the stretching regimens most favored by athletic trainers. PMID:28088071
A penalized framework for distributed lag non-linear models.
Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G
2017-09-01
Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.
Using Linear and Quadratic Functions to Teach Number Patterns in Secondary School
ERIC Educational Resources Information Center
Kenan, Kok Xiao-Feng
2017-01-01
This paper outlines an approach to definitively find the general term in a number pattern, of either a linear or quadratic form, by using the general equation of a linear or quadratic function. This approach is governed by four principles: (1) identifying the position of the term (input) and the term itself (output); (2) recognising that each…
NASA Technical Reports Server (NTRS)
Johnson, F. T.
1980-01-01
A method for solving the linear integral equations of incompressible potential flow in three dimensions is presented. Both analysis (Neumann) and design (Dirichlet) boundary conditions are treated in a unified approach to the general flow problem. The method is an influence coefficient scheme which employs source and doublet panels as boundary surfaces. Curved panels possessing singularity strengths, which vary as polynomials are used, and all influence coefficients are derived in closed form. These and other features combine to produce an efficient scheme which is not only versatile but eminently suited to the practical realities of a user-oriented environment. A wide variety of numerical results demonstrating the method is presented.
Selective Catalytic Combustion Sensors for Reactive Organic Analysis
NASA Technical Reports Server (NTRS)
Innes, W. B.
1971-01-01
Sensors involving a vanadia-alumina catalyst bed-thermocouple assembly satisfy requirements for simple, reproducible and rapid continuous analysis or reactive organics. Responses generally increase with temperature to 400 C and increase to a maximum with flow rate/catalyst volume. Selectivity decreases with temperature. Response time decreases with flow rate and increases with catalyst volume. At chosen optimum conditions calculated response which is additive and linear agrees better with photochemical reactivity than other methods for various automotive sources, and response to vehicle exhaust is insensitive to flow rate. Application to measurement of total reactive organics in vehicle exhaust as well as for gas chromatography detection illustrate utility. The approach appears generally applicable to high thermal effect reactions involving first order kinetics.
Reynolds, Matthew R
2013-03-01
The linear loadings of intelligence test composite scores on a general factor (g) have been investigated recently in factor analytic studies. Spearman's law of diminishing returns (SLODR), however, implies that the g loadings of test scores likely decrease in magnitude as g increases, or they are nonlinear. The purpose of this study was to (a) investigate whether the g loadings of composite scores from the Differential Ability Scales (2nd ed.) (DAS-II, C. D. Elliott, 2007a, Differential Ability Scales (2nd ed.). San Antonio, TX: Pearson) were nonlinear and (b) if they were nonlinear, to compare them with linear g loadings to demonstrate how SLODR alters the interpretation of these loadings. Linear and nonlinear confirmatory factor analysis (CFA) models were used to model Nonverbal Reasoning, Verbal Ability, Visual Spatial Ability, Working Memory, and Processing Speed composite scores in four age groups (5-6, 7-8, 9-13, and 14-17) from the DAS-II norming sample. The nonlinear CFA models provided better fit to the data than did the linear models. In support of SLODR, estimates obtained from the nonlinear CFAs indicated that g loadings decreased as g level increased. The nonlinear portion for the nonverbal reasoning loading, however, was not statistically significant across the age groups. Knowledge of general ability level informs composite score interpretation because g is less likely to produce differences, or is measured less, in those scores at higher g levels. One implication is that it may be more important to examine the pattern of specific abilities at higher general ability levels. PsycINFO Database Record (c) 2013 APA, all rights reserved.
On the Impact of a Quadratic Acceleration Term in the Analysis of Position Time Series
NASA Astrophysics Data System (ADS)
Bogusz, Janusz; Klos, Anna; Bos, Machiel Simon; Hunegnaw, Addisu; Teferle, Felix Norman
2016-04-01
The analysis of Global Navigation Satellite System (GNSS) position time series generally assumes that each of the coordinate component series is described by the sum of a linear rate (velocity) and various periodic terms. The residuals, the deviations between the fitted model and the observations, are then a measure of the epoch-to-epoch scatter and have been used for the analysis of the stochastic character (noise) of the time series. Often the parameters of interest in GNSS position time series are the velocities and their associated uncertainties, which have to be determined with the highest reliability. It is clear that not all GNSS position time series follow this simple linear behaviour. Therefore, we have added an acceleration term in the form of a quadratic polynomial function to the model in order to better describe the non-linear motion in the position time series. This non-linear motion could be a response to purely geophysical processes, for example, elastic rebound of the Earth's crust due to ice mass loss in Greenland, artefacts due to deficiencies in bias mitigation models, for example, of the GNSS satellite and receiver antenna phase centres, or any combination thereof. In this study we have simulated 20 time series with different stochastic characteristics such as white, flicker or random walk noise of length of 23 years. The noise amplitude was assumed at 1 mm/y-/4. Then, we added the deterministic part consisting of a linear trend of 20 mm/y (that represents the averaged horizontal velocity) and accelerations ranging from minus 0.6 to plus 0.6 mm/y2. For all these data we estimated the noise parameters with Maximum Likelihood Estimation (MLE) using the Hector software package without taken into account the non-linear term. In this way we set the benchmark to then investigate how the noise properties and velocity uncertainty may be affected by any un-modelled, non-linear term. The velocities and their uncertainties versus the accelerations for different types of noise are determined. Furthermore, we have selected 40 globally distributed stations that have a clear non-linear behaviour from two different International GNSS Service (IGS) analysis centers: JPL (Jet Propulsion Laboratory) and BLT (British Isles continuous GNSS Facility and University of Luxembourg Tide Gauge Benchmark Monitoring (TIGA) Analysis Center). We obtained maximum accelerations of -1.8±1.2 mm2/y and -4.5±3.3 mm2/y for the horizontal and vertical components, respectively. The noise analysis tests have shown that the addition of the non-linear term has significantly whitened the power spectra of the position time series, i.e. shifted the spectral index from flicker towards white noise.
Inference of directed climate networks: role of instability of causality estimation methods
NASA Astrophysics Data System (ADS)
Hlinka, Jaroslav; Hartman, David; Vejmelka, Martin; Paluš, Milan
2013-04-01
Climate data are increasingly analyzed by complex network analysis methods, including graph-theoretical approaches [1]. For such analysis, links between localized nodes of climate network are typically quantified by some statistical measures of dependence (connectivity) between measured variables of interest. To obtain information on the directionality of the interactions in the networks, a wide range of methods exists. These can be broadly divided into linear and nonlinear methods, with some of the latter having the theoretical advantage of being model-free, and principally a generalization of the former [2]. However, as a trade-off, this generality comes together with lower accuracy - in particular if the system was close to linear. In an overall stationary system, this may potentially lead to higher variability in the nonlinear network estimates. Therefore, with the same control of false alarms, this may lead to lower sensitivity for detection of real changes in the network structure. These problems are discussed on the example of daily SAT and SLP data from the NCEP/NCAR reanalysis dataset. We first reduce the dimensionality of data using PCA with VARIMAX rotation to detect several dozens of components that together explain most of the data variability. We further construct directed climate networks applying a selection of most widely used methods - variants of linear Granger causality and conditional mutual information. Finally, we assess the stability of the detected directed climate networks by computing them in sliding time windows. To understand the origin of the observed instabilities and their range, we also apply the same procedure to two types of surrogate data: either with non-stationarity in network structure removed, or imposed in a controlled way. In general, the linear methods show stable results in terms of overall similarity of directed climate networks inferred. For instance, for different decades of SAT data, the Spearman correlation of edge weights in the networks is ~ 0.6. The networks constructed using nonlinear measures were in general less stable both in real data and stationarized surrogates. Interestingly, when the nonlinear method parameters are optimized with respect to temporal stability of the networks, the networks seem to converge close to those detected by linear Granger causality. This provides further evidence for the hypothesis of overall sparsity and weakness of nonlinear coupling in climate networks on this spatial and temporal scale [3] and sufficient support for the use of linear methods in this context, unless specific clearly detectable nonlinear phenomena are targeted. Acknowledgement: This study is supported by the Czech Science Foundation, Project No. P103/11/J068. [1] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M. & Hwang, D. U.: Complex networks: Structure and dynamics, Physics Reports, 2006, 424, 175-308 [2] Barnett, L.; Barrett, A. B. & Seth, A. K.: Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables, Physical Review Letters, 2009, 103, 238701 [3] Hlinka, J.; Hartman, D.; Vejmelka, M.; Novotná, D.; Paluš, M.: Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity, submitted preprint (http://arxiv.org/abs/1211.6688)
Steyrl, David; Scherer, Reinhold; Faller, Josef; Müller-Putz, Gernot R
2016-02-01
There is general agreement in the brain-computer interface (BCI) community that although non-linear classifiers can provide better results in some cases, linear classifiers are preferable. Particularly, as non-linear classifiers often involve a number of parameters that must be carefully chosen. However, new non-linear classifiers were developed over the last decade. One of them is the random forest (RF) classifier. Although popular in other fields of science, RFs are not common in BCI research. In this work, we address three open questions regarding RFs in sensorimotor rhythm (SMR) BCIs: parametrization, online applicability, and performance compared to regularized linear discriminant analysis (LDA). We found that the performance of RF is constant over a large range of parameter values. We demonstrate - for the first time - that RFs are applicable online in SMR-BCIs. Further, we show in an offline BCI simulation that RFs statistically significantly outperform regularized LDA by about 3%. These results confirm that RFs are practical and convenient non-linear classifiers for SMR-BCIs. Taking into account further properties of RFs, such as independence from feature distributions, maximum margin behavior, multiclass and advanced data mining capabilities, we argue that RFs should be taken into consideration for future BCIs.
Mathematical modeling of spinning elastic bodies for modal analysis.
NASA Technical Reports Server (NTRS)
Likins, P. W.; Barbera, F. J.; Baddeley, V.
1973-01-01
The problem of modal analysis of an elastic appendage on a rotating base is examined to establish the relative advantages of various mathematical models of elastic structures and to extract general inferences concerning the magnitude and character of the influence of spin on the natural frequencies and mode shapes of rotating structures. In realization of the first objective, it is concluded that except for a small class of very special cases the elastic continuum model is devoid of useful results, while for constant nominal spin rate the distributed-mass finite-element model is quite generally tractable, since in the latter case the governing equations are always linear, constant-coefficient, ordinary differential equations. Although with both of these alternatives the details of the formulation generally obscure the essence of the problem and permit very little engineering insight to be gained without extensive computation, this difficulty is not encountered when dealing with simple concentrated mass models.
NASA Technical Reports Server (NTRS)
Hodges, D. H., Roberta.
1976-01-01
The stability of elastic flap bending, lead-lag bending, and torsion of uniform, untwisted, cantilever rotor blades without chordwise offsets between the elastic, mass, tension, and areodynamic center axes is investigated for the hovering flight condition. The equations of motion are obtained by simplifying the general, nonlinear, partial differential equations of motion of an elastic rotating cantilever blade. The equations are adapted for a linearized stability analysis in the hovering flight condition by prescribing aerodynamic forces, applying Galerkin's method, and linearizing the resulting ordinary differential equations about the equilibrium operating condition. The aerodynamic forces are obtained from strip theory based on a quasi-steady approximation of two-dimensional unsteady airfoil theory. Six coupled mode shapes, calculated from free vibration about the equilibrium operating condition, are used in the linearized stability analysis. The study emphasizes the effects of two types of structural coupling that strongly influence the stability of hingeless rotor blades. The first structural coupling is the linear coupling between flap and lead-lag bending of the rotor blade. The second structural coupling is a nonlinear coupling between flap bending, lead-lag bending, and torsion deflections. Results are obtained for a wide variety of hingeless rotor configurations and operating conditions in order to provide a reasonably complete picture of hingeless rotor blade stability characteristics.
NASA Astrophysics Data System (ADS)
Domnisoru, L.; Modiga, A.; Gasparotti, C.
2016-08-01
At the ship's design, the first step of the hull structural assessment is based on the longitudinal strength analysis, with head wave equivalent loads by the ships' classification societies’ rules. This paper presents an enhancement of the longitudinal strength analysis, considering the general case of the oblique quasi-static equivalent waves, based on the own non-linear iterative procedure and in-house program. The numerical approach is developed for the mono-hull ships, without restrictions on 3D-hull offset lines non-linearities, and involves three interlinked iterative cycles on floating, pitch and roll trim equilibrium conditions. Besides the ship-wave equilibrium parameters, the ship's girder wave induced loads are obtained. As numerical study case we have considered a large LPG liquefied petroleum gas carrier. The numerical results of the large LPG are compared with the statistical design values from several ships' classification societies’ rules. This study makes possible to obtain the oblique wave conditions that are inducing the maximum loads into the large LPG ship's girder. The numerical results of this study are pointing out that the non-linear iterative approach is necessary for the computation of the extreme loads induced by the oblique waves, ensuring better accuracy of the large LPG ship's longitudinal strength assessment.
Quantum corrections to the generalized Proca theory via a matter field
NASA Astrophysics Data System (ADS)
Amado, André; Haghani, Zahra; Mohammadi, Azadeh; Shahidi, Shahab
2017-09-01
We study the quantum corrections to the generalized Proca theory via matter loops. We consider two types of interactions, linear and nonlinear in the vector field. Calculating the one-loop correction to the vector field propagator, three- and four-point functions, we show that the non-linear interactions are harmless, although they renormalize the theory. The linear matter-vector field interactions introduce ghost degrees of freedom to the generalized Proca theory. Treating the theory as an effective theory, we calculate the energy scale up to which the theory remains healthy.
Linear and non-linear Modified Gravity forecasts with future surveys
NASA Astrophysics Data System (ADS)
Casas, Santiago; Kunz, Martin; Martinelli, Matteo; Pettorino, Valeria
2017-12-01
Modified Gravity theories generally affect the Poisson equation and the gravitational slip in an observable way, that can be parameterized by two generic functions (η and μ) of time and space. We bin their time dependence in redshift and present forecasts on each bin for future surveys like Euclid. We consider both Galaxy Clustering and Weak Lensing surveys, showing the impact of the non-linear regime, with two different semi-analytical approximations. In addition to these future observables, we use a prior covariance matrix derived from the Planck observations of the Cosmic Microwave Background. In this work we neglect the information from the cross correlation of these observables, and treat them as independent. Our results show that η and μ in different redshift bins are significantly correlated, but including non-linear scales reduces or even eliminates the correlation, breaking the degeneracy between Modified Gravity parameters and the overall amplitude of the matter power spectrum. We further apply a Zero-phase Component Analysis and identify which combinations of the Modified Gravity parameter amplitudes, in different redshift bins, are best constrained by future surveys. We extend the analysis to two particular parameterizations of μ and η and consider, in addition to Euclid, also SKA1, SKA2, DESI: we find in this case that future surveys will be able to constrain the current values of η and μ at the 2-5% level when using only linear scales (wavevector k < 0 . 15 h/Mpc), depending on the specific time parameterization; sensitivity improves to about 1% when non-linearities are included.
The Dropout Learning Algorithm
Baldi, Pierre; Sadowski, Peter
2014-01-01
Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations. PMID:24771879
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Moses; Qin, Hong; Gilson, Erik
2013-01-01
By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously-rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complex linearmore » focusing channels.« less
Uncertainty Analysis of the Grazing Flow Impedance Tube
NASA Technical Reports Server (NTRS)
Brown, Martha C.; Jones, Michael G.; Watson, Willie R.
2012-01-01
This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear with respect to sound pressure level. These liners allow for evaluation of the effects of measurement uncertainty on impedances educed with linear and nonlinear liners. In general, the measurement uncertainty is observed to be larger for the nonlinear liners, with the largest uncertainty occurring near anti-resonance. A sensitivity analysis of the aerodynamic parameters (Mach number, static temperature, and static pressure) used in the impedance eduction process is also conducted using a Monte-Carlo approach. This sensitivity analysis demonstrates that the impedance eduction process is virtually insensitive to each of these parameters.
The Analysis and Construction of Perfectly Matched Layers for the Linearized Euler Equations
NASA Technical Reports Server (NTRS)
Hesthaven, J. S.
1997-01-01
We present a detailed analysis of a recently proposed perfectly matched layer (PML) method for the absorption of acoustic waves. The split set of equations is shown to be only weakly well-posed, and ill-posed under small low order perturbations. This analysis provides the explanation for the stability problems associated with the split field formulation and illustrates why applying a filter has a stabilizing effect. Utilizing recent results obtained within the context of electromagnetics, we develop strongly well-posed absorbing layers for the linearized Euler equations. The schemes are shown to be perfectly absorbing independent of frequency and angle of incidence of the wave in the case of a non-convecting mean flow. In the general case of a convecting mean flow, a number of techniques is combined to obtain a absorbing layers exhibiting PML-like behavior. The efficacy of the proposed absorbing layers is illustrated though computation of benchmark problems in aero-acoustics.
Lin, Zi-Jing; Li, Lin; Cazzell, Mary; Liu, Hanli
2014-08-01
Diffuse optical tomography (DOT) is a variant of functional near infrared spectroscopy and has the capability of mapping or reconstructing three dimensional (3D) hemodynamic changes due to brain activity. Common methods used in DOT image analysis to define brain activation have limitations because the selection of activation period is relatively subjective. General linear model (GLM)-based analysis can overcome this limitation. In this study, we combine the atlas-guided 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with risk decision-making processes. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The Balloon Analog Risk Task (BART) is a valid experimental model and has been commonly used to assess human risk-taking actions and tendencies while facing risks. We have used the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making from 37 human participants (22 males and 15 females). Voxel-wise GLM analysis was performed after a human brain atlas template and a depth compensation algorithm were combined to form atlas-guided DOT images. In this work, we wish to demonstrate the excellence of using voxel-wise GLM analysis with DOT to image and study cognitive functions in response to risk decision-making. Results have shown significant hemodynamic changes in the dorsal lateral prefrontal cortex (DLPFC) during the active-choice mode and a different activation pattern between genders; these findings correlate well with published literature in functional magnetic resonance imaging (fMRI) and fNIRS studies. Copyright © 2014 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Xu, Xueli; von Davier, Matthias
2008-01-01
The general diagnostic model (GDM) utilizes located latent classes for modeling a multidimensional proficiency variable. In this paper, the GDM is extended by employing a log-linear model for multiple populations that assumes constraints on parameters across multiple groups. This constrained model is compared to log-linear models that assume…
NASA Astrophysics Data System (ADS)
Baldysz, Zofia; Nykiel, Grzegorz; Araszkiewicz, Andrzej; Figurski, Mariusz; Szafranek, Karolina
2016-09-01
The main purpose of this research was to acquire information about consistency of ZTD (zenith total delay) linear trends and seasonal components between two consecutive GPS reprocessing campaigns. The analysis concerned two sets of the ZTD time series which were estimated during EUREF (Reference Frame Sub-Commission for Europe) EPN (Permanent Network) reprocessing campaigns according to 2008 and 2015 MUT AC (Military University of Technology Analysis Centre) scenarios. Firstly, Lomb-Scargle periodograms were generated for 57 EPN stations to obtain a characterisation of oscillations occurring in the ZTD time series. Then, the values of seasonal components and linear trends were estimated using the LSE (least squares estimation) approach. The Mann-Kendall trend test was also carried out to verify the presence of linear long-term ZTD changes. Finally, differences in seasonal signals and linear trends between these two data sets were investigated. All these analyses were conducted for the ZTD time series of two lengths: a shortened 16-year series and a full 18-year one. In the case of spectral analysis, amplitudes of the annual and semi-annual periods were almost exactly the same for both reprocessing campaigns. Exceptions were found for only a few stations and they did not exceed 1 mm. The estimated trends were also similar. However, for the reprocessing performed in 2008, the trends values were usually higher. In general, shortening of the analysed time period by 2 years resulted in a decrease of the linear trends values of about 0.07 mm yr-1. This was confirmed by analyses based on two data sets.
Chua, Joyce; Culpan, Jane; Menon, Edward
2016-05-01
To evaluate the longer-term effects of electromechanical gait trainers (GTs) combined with conventional physiotherapy on health status, function, and ambulation in people with subacute stroke in comparison with conventional physiotherapy given alone. Randomized controlled trial with intention-to-treat analysis. Community hospital in Singapore. Nonambulant individuals (N=106) recruited approximately 1 month poststroke. Both groups received 45 minutes of physiotherapy 6 times per week for 8 weeks as follows: the GT group received 20 minutes of GT training and 5 minutes of stance/gait training in contrast with 25 minutes of stance/gait training for the control group. Both groups completed 10 minutes of standing and 10 minutes of cycling. The primary outcome was the Functional Ambulation Category (FAC). Secondary outcomes were the Barthel Index (BI), gait speed and endurance, and Stroke Impact Scale (SIS). Measures were taken at baseline and 4, 8, 12, 24, and 48 weeks. Generalized linear model analysis showed significant improvement over time (independent of group) for the FAC, BI, and SIS physical and participation subscales. However, no significant group × time or group differences were observed for any of the outcome variables after generalized linear model analysis. The use of GTs combined with conventional physiotherapy can be as effective as conventional physiotherapy applied alone for people with subacute stroke. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NDVI-Based analysis on the influence of human activities on vegetation variation on Hainan Island
NASA Astrophysics Data System (ADS)
Luo, Hongxia; Dai, Shengpei; Xie, Zhenghui; Fang, Jihua
2018-02-01
Using the Moderate Resolution Imaging Spectroradiometer-normalized difference vegetation index (NDVI) dataset, we analyzed the predicted NDVI values variation and the influence of human activities on vegetation on Hainan Island during 2001-2015. We investigated the roles of human activities in vegetation variation, particularly from 2002 when implemented the Grain-for-Greenprogram on Hainan Island. The trend analysis, linear regression model and residual analysis were used to analyze the data. The results of the study showed that (1) The predicted vegetation on Hainan Island showed an general upward trend with a linear growth rate of 0.0025/10y (p<0.05) over the past 15 years. The areas where vegetation increasedaccounted for 52.28%, while the areas where vegetation decreased accounted for 47.72%. (2) The residual NDVI values across the region significantly increased, with a growth rate of 0.023/10y.The vegetation increased across 35.95% of Hainan Island, while it decreased in 20.2% of the area as a result of human activities. (3) In general, human activities had played a positive role in the vegetation increase on Hainan Island, and the residual NDVI trend of this region showed positive outcomes for vegetation variation after implementing ecological engineering projects. However, it indicated a growing risk of vegetation degradation in the coastal region of Hainan Island as a result of rapid urbanization, land reclamation.
Sleep quality and correlates of poor sleep in patients with rheumatoid arthritis.
Løppenthin, K; Esbensen, B A; Jennum, P; Østergaard, M; Tolver, A; Thomsen, T; Midtgaard, J
2015-12-01
The objective of this study is to examine sleep quality and correlates of poor sleep in patients with rheumatoid arthritis (RA). Five hundred patients with RA were recruited from a rheumatology outpatient clinic and included in this cross-sectional study. Sleep quality and disturbances were assessed using the Pittsburgh Sleep Quality Index (PSQI). Other instruments included the Multidimensional Fatigue Inventory, the Epworth Sleepiness Scale, and the Health Assessment Questionnaire. Disease activity was assessed according to disease activity score DAS28-CRP-based. Complete scores on PSQI were obtained from 384 patients (77 %). In those, the prevalence of poor sleep (PSQI >5) was 61 %, and the mean global PSQI score was 7.54 (SD 4.17). A linear association was found between poor sleep and mental fatigue, reduced activity related to fatigue, physical fatigue, and general fatigue. Mental fatigue and general fatigue were independently associated with sleep quality, sleep latency, sleep duration, sleep efficiency, and daytime dysfunction. However, in the linear multivariate analysis, only general fatigue 1.06 (95 % CI 1.03-1.09) and mental fatigue 1.03 (95 % CI 1.01-1.05) were found to be significant correlates for reporting poor sleep. This study shows that a majority of patients with RA experience poor sleep and that general fatigue and mental fatigue are associated with poor sleep.
Papadimitriou, Konstantinos I.; Liu, Shih-Chii; Indiveri, Giacomo; Drakakis, Emmanuel M.
2014-01-01
The field of neuromorphic silicon synapse circuits is revisited and a parsimonious mathematical framework able to describe the dynamics of this class of log-domain circuits in the aggregate and in a systematic manner is proposed. Starting from the Bernoulli Cell Formalism (BCF), originally formulated for the modular synthesis and analysis of externally linear, time-invariant logarithmic filters, and by means of the identification of new types of Bernoulli Cell (BC) operators presented here, a generalized formalism (GBCF) is established. The expanded formalism covers two new possible and practical combinations of a MOS transistor (MOST) and a linear capacitor. The corresponding mathematical relations codifying each case are presented and discussed through the tutorial treatment of three well-known transistor-level examples of log-domain neuromorphic silicon synapses. The proposed mathematical tool unifies past analysis approaches of the same circuits under a common theoretical framework. The speed advantage of the proposed mathematical framework as an analysis tool is also demonstrated by a compelling comparative circuit analysis example of high order, where the GBCF and another well-known log-domain circuit analysis method are used for the determination of the input-output transfer function of the high (4th) order topology. PMID:25653579
Papadimitriou, Konstantinos I; Liu, Shih-Chii; Indiveri, Giacomo; Drakakis, Emmanuel M
2014-01-01
The field of neuromorphic silicon synapse circuits is revisited and a parsimonious mathematical framework able to describe the dynamics of this class of log-domain circuits in the aggregate and in a systematic manner is proposed. Starting from the Bernoulli Cell Formalism (BCF), originally formulated for the modular synthesis and analysis of externally linear, time-invariant logarithmic filters, and by means of the identification of new types of Bernoulli Cell (BC) operators presented here, a generalized formalism (GBCF) is established. The expanded formalism covers two new possible and practical combinations of a MOS transistor (MOST) and a linear capacitor. The corresponding mathematical relations codifying each case are presented and discussed through the tutorial treatment of three well-known transistor-level examples of log-domain neuromorphic silicon synapses. The proposed mathematical tool unifies past analysis approaches of the same circuits under a common theoretical framework. The speed advantage of the proposed mathematical framework as an analysis tool is also demonstrated by a compelling comparative circuit analysis example of high order, where the GBCF and another well-known log-domain circuit analysis method are used for the determination of the input-output transfer function of the high (4(th)) order topology.
Structural Analysis and Testing of an Erectable Truss for Precision Segmented Reflector Application
NASA Technical Reports Server (NTRS)
Collins, Timothy J.; Fichter, W. B.; Adams, Richard R.; Javeed, Mehzad
1995-01-01
This paper describes analysis and test results obtained at Langley Research Center (LaRC) on a doubly curved testbed support truss for precision reflector applications. Descriptions of test procedures and experimental results that expand upon previous investigations are presented. A brief description of the truss is given, and finite-element-analysis models are described. Static-load and vibration test procedures are discussed, and experimental results are shown to be repeatable and in generally good agreement with linear finite-element predictions. Truss structural performance (as determined by static deflection and vibration testing) is shown to be predictable and very close to linear. Vibration test results presented herein confirm that an anomalous mode observed during initial testing was due to the flexibility of the truss support system. Photogrammetric surveys with two 131-in. reference scales show that the root-mean-square (rms) truss-surface accuracy is about 0.0025 in. Photogrammetric measurements also indicate that the truss coefficient of thermal expansion (CTE) is in good agreement with that predicted by analysis. A detailed description of the photogrammetric procedures is included as an appendix.
Phase space analysis in anisotropic optical systems
NASA Technical Reports Server (NTRS)
Rivera, Ana Leonor; Chumakov, Sergey M.; Wolf, Kurt Bernardo
1995-01-01
From the minimal action principle follows the Hamilton equations of evolution for geometric optical rays in anisotropic media. As in classical mechanics of velocity-dependent potentials, the velocity and the canonical momentum are not parallel, but differ by an anisotropy vector potential, similar to that of linear electromagnetism. Descartes' well known diagram for refraction is generalized and a factorization theorem holds for interfaces between two anisotropic media.
Zhao, Yingfeng; Liu, Sanyang
2016-01-01
We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.
Structural Equation Modeling: A Framework for Ocular and Other Medical Sciences Research
Christ, Sharon L.; Lee, David J.; Lam, Byron L.; Diane, Zheng D.
2017-01-01
Structural equation modeling (SEM) is a modeling framework that encompasses many types of statistical models and can accommodate a variety of estimation and testing methods. SEM has been used primarily in social sciences but is increasingly used in epidemiology, public health, and the medical sciences. SEM provides many advantages for the analysis of survey and clinical data, including the ability to model latent constructs that may not be directly observable. Another major feature is simultaneous estimation of parameters in systems of equations that may include mediated relationships, correlated dependent variables, and in some instances feedback relationships. SEM allows for the specification of theoretically holistic models because multiple and varied relationships may be estimated together in the same model. SEM has recently expanded by adding generalized linear modeling capabilities that include the simultaneous estimation of parameters of different functional form for outcomes with different distributions in the same model. Therefore, mortality modeling and other relevant health outcomes may be evaluated. Random effects estimation using latent variables has been advanced in the SEM literature and software. In addition, SEM software has increased estimation options. Therefore, modern SEM is quite general and includes model types frequently used by health researchers, including generalized linear modeling, mixed effects linear modeling, and population average modeling. This article does not present any new information. It is meant as an introduction to SEM and its uses in ocular and other health research. PMID:24467557
Yang, Qichun; Zhang, Xuesong; Xu, Xingya; ...
2017-05-29
Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less
Endo, Akira; Sato, Tatsuhiko
2013-04-01
Absorbed doses, linear energy transfers (LETs) and quality factors of secondary charged particles in organs and tissues, generated via the interactions of the spontaneous fission neutrons from (252)Cf and (244)Pu within the human body, were studied using the Particle and Heavy Ion Transport Code System (PHITS) coupled with the ICRP Reference Phantom. Both the absorbed doses and the quality factors in target organs generally decrease with increasing distance from the source organ. The analysis of LET distributions of secondary charged particles led to the identification of the relationship between LET spectra and target-source organ locations. A comparison between human body-averaged mean quality factors and fluence-averaged radiation weighting factors showed that the current numerical conventions for the radiation weighting factors of neutrons, updated in ICRP103, and the quality factors for internal exposure are valid.
Fuzzy linear model for production optimization of mining systems with multiple entities
NASA Astrophysics Data System (ADS)
Vujic, Slobodan; Benovic, Tomo; Miljanovic, Igor; Hudej, Marjan; Milutinovic, Aleksandar; Pavlovic, Petar
2011-12-01
Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.
NASA Astrophysics Data System (ADS)
Trifoniuk, L. I.; Ushenko, Yu. A.; Sidor, M. I.; Minzer, O. P.; Gritsyuk, M. V.; Novakovskaya, O. Y.
2014-08-01
The work consists of investigation results of diagnostic efficiency of a new azimuthally stable Mueller-matrix method of analysis of laser autofluorescence coordinate distributions of biological tissues histological sections. A new model of generalized optical anisotropy of biological tissues protein networks is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase anisotropy (linear birefringence and optical activity) and linear (circular) dichroism is taken into account. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistic analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the 1st to the 4th order) of differentiation of histological sections of uterus wall tumor - group 1 (dysplasia) and group 2 (adenocarcinoma) are estimated.
Quasi-Linear Vacancy Dynamics Modeling and Circuit Analysis of the Bipolar Memristor
Abraham, Isaac
2014-01-01
The quasi-linear transport equation is investigated for modeling the bipolar memory resistor. The solution accommodates vacancy and circuit level perspectives on memristance. For the first time in literature the component resistors that constitute the contemporary dual variable resistor circuit model are quantified using vacancy parameters and derived from a governing partial differential equation. The model describes known memristor dynamics even as it generates new insight about vacancy migration, bottlenecks to switching speed and elucidates subtle relationships between switching resistance range and device parameters. The model is shown to comply with Chua's generalized equations for the memristor. Independent experimental results are used throughout, to validate the insights obtained from the model. The paper concludes by implementing a memristor-capacitor filter and compares its performance to a reference resistor-capacitor filter to demonstrate that the model is usable for practical circuit analysis. PMID:25390634
NASA Astrophysics Data System (ADS)
Ushenko, Yu. O.; Pashkovskaya, N. V.; Marchuk, Y. F.; Dubolazov, O. V.; Savich, V. O.
2015-08-01
The work consists of investigation results of diagnostic efficiency of a new azimuthally stable Muellermatrix method of analysis of laser autofluorescence coordinate distributions of biological liquid layers. A new model of generalized optical anisotropy of biological tissues protein networks is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase anisotropy (linear birefringence and optical activity) and linear (circular) dichroism is taken into account. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistic analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the 1st to the 4th order) of differentiation of human urine polycrystalline layers for the sake of diagnosing and differentiating cholelithiasis with underlying chronic cholecystitis (group 1) and diabetes mellitus of degree II (group 2) are estimated.
Quasi-linear vacancy dynamics modeling and circuit analysis of the bipolar memristor.
Abraham, Isaac
2014-01-01
The quasi-linear transport equation is investigated for modeling the bipolar memory resistor. The solution accommodates vacancy and circuit level perspectives on memristance. For the first time in literature the component resistors that constitute the contemporary dual variable resistor circuit model are quantified using vacancy parameters and derived from a governing partial differential equation. The model describes known memristor dynamics even as it generates new insight about vacancy migration, bottlenecks to switching speed and elucidates subtle relationships between switching resistance range and device parameters. The model is shown to comply with Chua's generalized equations for the memristor. Independent experimental results are used throughout, to validate the insights obtained from the model. The paper concludes by implementing a memristor-capacitor filter and compares its performance to a reference resistor-capacitor filter to demonstrate that the model is usable for practical circuit analysis.
NASA Astrophysics Data System (ADS)
Ushenko, Yuriy A.; Koval, Galina D.; Ushenko, Alexander G.; Dubolazov, Olexander V.; Ushenko, Vladimir A.; Novakovskaia, Olga Yu.
2016-07-01
This research presents investigation results of the diagnostic efficiency of an azimuthally stable Mueller-matrix method of analysis of laser autofluorescence of polycrystalline films of dried uterine cavity peritoneal fluid. A model of the generalized optical anisotropy of films of dried peritoneal fluid is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase (linear and circular birefringence) and amplitude (linear and circular dichroism) anisotropies is taken into consideration. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistical analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the first to the fourth order) of differentiation of polycrystalline films of dried peritoneal fluid, group 1 (healthy donors) and group 2 (uterus endometriosis patients), are determined.
NASA Astrophysics Data System (ADS)
Ushenko, A. G.; Dubolazov, O. V.; Ushenko, Vladimir A.; Ushenko, Yu. A.; Sakhnovskiy, M. Yu.; Prydiy, O. G.; Lakusta, I. I.; Novakovskaya, O. Yu.; Melenko, S. R.
2016-12-01
This research presents investigation results of diagnostic efficiency of a new azimuthally stable Mueller-matrix method of laser autofluorescence coordinate distributions analysis of dried polycrystalline films of uterine cavity peritoneal fluid. A new model of generalized optical anisotropy of biological tissues protein networks is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase anisotropy (linear birefringence and optical activity) and linear (circular) dichroism is taken into account. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistic analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the 1st to the 4th order) of differentiation of dried polycrystalline films of peritoneal fluid - group 1 (healthy donors) and group 2 (uterus endometriosis patients) are estimated.
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.; Hodges, Dewey H.
1987-01-01
The General Rotorcraft Aeromechanical Stability Program (GRASP) was developed to analyse the steady-state and linearized dynamic behavior of rotorcraft in hovering and axial flight conditions. Because of the nature of problems GRASP was created to solve, the geometrically nonlinear behavior of beams is one area in which the program must perform well in order to be of any value. Numerical results obtained from GRASP are compared to both static and dynamic experimental data obtained for a cantilever beam undergoing large displacements and rotations caused by deformations. The correlation is excellent in all cases.
NASA Technical Reports Server (NTRS)
Muraca, R. J.; Stephens, M. V.; Dagenhart, J. R.
1975-01-01
A general analysis capable of predicting performance characteristics of cross-wind axis turbines was developed, including the effects of airfoil geometry, support struts, blade aspect ratio, windmill solidity, blade interference and curved flow. The results were compared with available wind tunnel results for a catenary blade shape. A theoretical performance curve for an aerodynamically efficient straight blade configuration was also presented. In addition, a linearized analytical solution applicable for straight configurations was developed. A listing of the computer program developed for numerical solutions of the general performance equations is included in the appendix.
Development of control strategies for safe microburst penetration: A progress report
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1987-01-01
A single-engine, propeller-driven, general-aviation model was incorporated into the nonlinear simulation and into the linear analysis of root loci and frequency response. Full-scale wind tunnel data provided its aerodynamic model, and the thrust model included the airspeed dependent effects of power and propeller efficiency. Also, the parameters of the Jet Transport model were changed to correspond more closely to the Boeing 727. In order to study their effects on steady-state repsonse to vertical wind inputs, altitude and total specific energy (air-relative and inertial) feedback capabilities were added to the nonlinear and linear models. Multiloop system design goals were defined. Attempts were made to develop controllers which achieved these goals.
NASA Astrophysics Data System (ADS)
Toufik, Mekkaoui; Atangana, Abdon
2017-10-01
Recently a new concept of fractional differentiation with non-local and non-singular kernel was introduced in order to extend the limitations of the conventional Riemann-Liouville and Caputo fractional derivatives. A new numerical scheme has been developed, in this paper, for the newly established fractional differentiation. We present in general the error analysis. The new numerical scheme was applied to solve linear and non-linear fractional differential equations. We do not need a predictor-corrector to have an efficient algorithm, in this method. The comparison of approximate and exact solutions leaves no doubt believing that, the new numerical scheme is very efficient and converges toward exact solution very rapidly.
Wavelet regression model in forecasting crude oil price
NASA Astrophysics Data System (ADS)
Hamid, Mohd Helmie; Shabri, Ani
2017-05-01
This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.
Linear regression in astronomy. II
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.; Babu, Gutti J.
1992-01-01
A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.
Sampling schemes and parameter estimation for nonlinear Bernoulli-Gaussian sparse models
NASA Astrophysics Data System (ADS)
Boudineau, Mégane; Carfantan, Hervé; Bourguignon, Sébastien; Bazot, Michael
2016-06-01
We address the sparse approximation problem in the case where the data are approximated by the linear combination of a small number of elementary signals, each of these signals depending non-linearly on additional parameters. Sparsity is explicitly expressed through a Bernoulli-Gaussian hierarchical model in a Bayesian framework. Posterior mean estimates are computed using Markov Chain Monte-Carlo algorithms. We generalize the partially marginalized Gibbs sampler proposed in the linear case in [1], and build an hybrid Hastings-within-Gibbs algorithm in order to account for the nonlinear parameters. All model parameters are then estimated in an unsupervised procedure. The resulting method is evaluated on a sparse spectral analysis problem. It is shown to converge more efficiently than the classical joint estimation procedure, with only a slight increase of the computational cost per iteration, consequently reducing the global cost of the estimation procedure.
Benevolent Ideology and Women's Economic Decision-Making: When Sexism Is Hurting Men's Wallet.
Silvestre, Aude; Sarlet, Marie; Huart, Johanne; Dardenne, Benoit
2016-01-01
Can ideology, as a widespread "expectation creator," impact economic decisions? In two studies we investigated the influence of the Benevolent Sexism (BS) ideology (which dictates that men should provide for passive and nurtured women) on women's economic decision-making. In Study 1, using a Dictator Game in which women decided how to share amounts of money with men, results of a Generalized Linear Mixed Model analysis show that higher endorsement of BS and contextual expectations of benevolence were associated with more very unequal offers. Similarly, in an Ultimatum Game in which women received monetary offers from men, Study 2's Generalized Linear Mixed Model's results revealed that BS led women to reject more very unequal offers. If women's endorsement of BS ideology and expectations of benevolence prove contrary to reality, they may strike back at men. These findings show that BS ideology creates expectations that shape male-female relationships in a way that could be prejudicial to men.
Benevolent Ideology and Women’s Economic Decision-Making: When Sexism Is Hurting Men’s Wallet
Silvestre, Aude; Sarlet, Marie; Huart, Johanne; Dardenne, Benoit
2016-01-01
Can ideology, as a widespread “expectation creator,” impact economic decisions? In two studies we investigated the influence of the Benevolent Sexism (BS) ideology (which dictates that men should provide for passive and nurtured women) on women’s economic decision-making. In Study 1, using a Dictator Game in which women decided how to share amounts of money with men, results of a Generalized Linear Mixed Model analysis show that higher endorsement of BS and contextual expectations of benevolence were associated with more very unequal offers. Similarly, in an Ultimatum Game in which women received monetary offers from men, Study 2’s Generalized Linear Mixed Model’s results revealed that BS led women to reject more very unequal offers. If women’s endorsement of BS ideology and expectations of benevolence prove contrary to reality, they may strike back at men. These findings show that BS ideology creates expectations that shape male-female relationships in a way that could be prejudicial to men. PMID:26870955
Method for transition prediction in high-speed boundary layers, phase 2
NASA Astrophysics Data System (ADS)
Herbert, T.; Stuckert, G. K.; Lin, N.
1993-09-01
The parabolized stability equations (PSE) are a new and more reliable approach to analyzing the stability of streamwise varying flows such as boundary layers. This approach has been previously validated for idealized incompressible flows. Here, the PSE are formulated for highly compressible flows in general curvilinear coordinates to permit the analysis of high-speed boundary-layer flows over fairly general bodies. Vigorous numerical studies are carried out to study convergence and accuracy of the linear-stability code LSH and the linear/nonlinear PSE code PSH. Physical interfaces are set up to analyze the M = 8 boundary layer over a blunt cone calculated by using a thin-layer Navier Stokes (TNLS) code and the flow over a sharp cone at angle of attack calculated using the AFWAL parabolized Navier-Stokes (PNS) code. While stability and transition studies at high speeds are far from routine, the method developed here is the best tool available to research the physical processes in high-speed boundary layers.
Zhang, Z; Guillaume, F; Sartelet, A; Charlier, C; Georges, M; Farnir, F; Druet, T
2012-10-01
In many situations, genome-wide association studies are performed in populations presenting stratification. Mixed models including a kinship matrix accounting for genetic relatedness among individuals have been shown to correct for population and/or family structure. Here we extend this methodology to generalized linear mixed models which properly model data under various distributions. In addition we perform association with ancestral haplotypes inferred using a hidden Markov model. The method was shown to properly account for stratification under various simulated scenari presenting population and/or family structure. Use of ancestral haplotypes resulted in higher power than SNPs on simulated datasets. Application to real data demonstrates the usefulness of the developed model. Full analysis of a dataset with 4600 individuals and 500 000 SNPs was performed in 2 h 36 min and required 2.28 Gb of RAM. The software GLASCOW can be freely downloaded from www.giga.ulg.ac.be/jcms/prod_381171/software. francois.guillaume@jouy.inra.fr Supplementary data are available at Bioinformatics online.
Practical robustness measures in multivariable control system analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lehtomaki, N. A.
1981-01-01
The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.
NASA Astrophysics Data System (ADS)
Majumdar, Paulami; Greeley, Jeffrey
2018-04-01
Linear scaling relations of adsorbate energies across a range of catalytic surfaces have emerged as a central interpretive paradigm in heterogeneous catalysis. They are, however, typically developed for low adsorbate coverages which are not always representative of realistic heterogeneous catalytic environments. Herein, we present generalized linear scaling relations on transition metals that explicitly consider adsorbate-coadsorbate interactions at variable coverages. The slopes of these scaling relations do not follow the simple bond counting principles that govern scaling on transition metals at lower coverages. The deviations from bond counting are explained using a pairwise interaction model wherein the interaction parameter determines the slope of the scaling relationship on a given metal at variable coadsorbate coverages, and the slope across different metals at fixed coadsorbate coverage is approximated by adding a coverage-dependent correction to the standard bond counting contribution. The analysis provides a compact explanation for coverage-dependent deviations from bond counting in scaling relationships and suggests a useful strategy for incorporation of coverage effects into catalytic trends studies.
Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.
Yunes, Nicolás; Siemens, Xavier
2013-01-01
This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime . Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.
Evaluation of algorithms for geological thermal-inertia mapping
NASA Technical Reports Server (NTRS)
Miller, S. H.; Watson, K.
1977-01-01
The errors incurred in producing a thermal inertia map are of three general types: measurement, analysis, and model simplification. To emphasize the geophysical relevance of these errors, they were expressed in terms of uncertainty in thermal inertia and compared with the thermal inertia values of geologic materials. Thus the applications and practical limitations of the technique were illustrated. All errors were calculated using the parameter values appropriate to a site at the Raft River, Id. Although these error values serve to illustrate the magnitudes that can be expected from the three general types of errors, extrapolation to other sites should be done using parameter values particular to the area. Three surface temperature algorithms were evaluated: linear Fourier series, finite difference, and Laplace transform. In terms of resulting errors in thermal inertia, the Laplace transform method is the most accurate (260 TIU), the forward finite difference method is intermediate (300 TIU), and the linear Fourier series method the least accurate (460 TIU).
NASA Astrophysics Data System (ADS)
Kwon, Young-Sam; Li, Fucai
2018-03-01
In this paper we study the incompressible limit of the degenerate quantum compressible Navier-Stokes equations in a periodic domain T3 and the whole space R3 with general initial data. In the periodic case, by applying the refined relative entropy method and carrying out the detailed analysis on the oscillations of velocity, we prove rigorously that the gradient part of the weak solutions (velocity) of the degenerate quantum compressible Navier-Stokes equations converge to the strong solution of the incompressible Navier-Stokes equations. Our results improve considerably the ones obtained by Yang, Ju and Yang [25] where only the well-prepared initial data case is considered. While for the whole space case, thanks to the Strichartz's estimates of linear wave equations, we can obtain the convergence of the weak solutions of the degenerate quantum compressible Navier-Stokes equations to the strong solution of the incompressible Navier-Stokes/Euler equations with a linear damping term. Moreover, the convergence rates are also given.
NASA Astrophysics Data System (ADS)
Soltanian-Zadeh, Hamid; Windham, Joe P.
1992-04-01
Maximizing the minimum absolute contrast-to-noise ratios (CNRs) between a desired feature and multiple interfering processes, by linear combination of images in a magnetic resonance imaging (MRI) scene sequence, is attractive for MRI analysis and interpretation. A general formulation of the problem is presented, along with a novel solution utilizing the simple and numerically stable method of Gram-Schmidt orthogonalization. We derive explicit solutions for the case of two interfering features first, then for three interfering features, and, finally, using a typical example, for an arbitrary number of interfering feature. For the case of two interfering features, we also provide simplified analytical expressions for the signal-to-noise ratios (SNRs) and CNRs of the filtered images. The technique is demonstrated through its applications to simulated and acquired MRI scene sequences of a human brain with a cerebral infarction. For these applications, a 50 to 100% improvement for the smallest absolute CNR is obtained.
Diaz, Francisco J
2016-10-15
We propose statistical definitions of the individual benefit of a medical or behavioral treatment and of the severity of a chronic illness. These definitions are used to develop a graphical method that can be used by statisticians and clinicians in the data analysis of clinical trials from the perspective of personalized medicine. The method focuses on assessing and comparing individual effects of treatments rather than average effects and can be used with continuous and discrete responses, including dichotomous and count responses. The method is based on new developments in generalized linear mixed-effects models, which are introduced in this article. To illustrate, analyses of data from the Sequenced Treatment Alternatives to Relieve Depression clinical trial of sequences of treatments for depression and data from a clinical trial of respiratory treatments are presented. The estimation of individual benefits is also explained. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Performance analysis of a generalized upset detection procedure
NASA Technical Reports Server (NTRS)
Blough, Douglas M.; Masson, Gerald M.
1987-01-01
A general procedure for upset detection in complex systems, called the data block capture and analysis upset monitoring process is described and analyzed. The process consists of repeatedly recording a fixed amount of data from a set of predetermined observation lines of the system being monitored (i.e., capturing a block of data), and then analyzing the captured block in an attempt to determine whether the system is functioning correctly. The algorithm which analyzes the data blocks can be characterized in terms of the amount of time it requires to examine a given length data block to ascertain the existence of features/conditions that have been predetermined to characterize the upset-free behavior of the system. The performance of linear, quadratic, and logarithmic data analysis algorithms is rigorously characterized in terms of three performance measures: (1) the probability of correctly detecting an upset; (2) the expected number of false alarms; and (3) the expected latency in detecting upsets.
Presnyakova, Darya; Archer, Will; Braun, David R; Flear, Wesley
2015-01-01
This study investigates morphological differences between flakes produced via "core and flake" technologies and those resulting from bifacial shaping strategies. We investigate systematic variation between two technological groups of flakes using experimentally produced assemblages, and then apply the experimental model to the Cutting 10 Mid -Pleistocene archaeological collection from Elandsfontein, South Africa. We argue that a specific set of independent variables--and their interactions--including external platform angle, platform depth, measures of thickness variance and flake curvature should distinguish between these two technological groups. The role of these variables in technological group separation was further investigated using the Generalized Linear Model as well as Linear Discriminant Analysis. The Discriminant model was used to classify archaeological flakes from the Cutting 10 locality in terms of their probability of association, within either experimentally developed technological group. The results indicate that the selected independent variables play a central role in separating core and flake from bifacial technologies. Thickness evenness and curvature had the greatest effect sizes in both the Generalized Linear and Discriminant models. Interestingly the interaction between thickness evenness and platform depth was significant and played an important role in influencing technological group membership. The identified interaction emphasizes the complexity in attempting to distinguish flake production strategies based on flake morphological attributes. The results of the discriminant function analysis demonstrate that the majority of flakes at the Cutting 10 locality were not associated with the production of the numerous Large Cutting Tools found at the site, which corresponds with previous suggestions regarding technological behaviors reflected in this assemblage.
Presnyakova, Darya; Archer, Will; Braun, David R.; Flear, Wesley
2015-01-01
This study investigates morphological differences between flakes produced via “core and flake” technologies and those resulting from bifacial shaping strategies. We investigate systematic variation between two technological groups of flakes using experimentally produced assemblages, and then apply the experimental model to the Cutting 10 Mid -Pleistocene archaeological collection from Elandsfontein, South Africa. We argue that a specific set of independent variables—and their interactions—including external platform angle, platform depth, measures of thickness variance and flake curvature should distinguish between these two technological groups. The role of these variables in technological group separation was further investigated using the Generalized Linear Model as well as Linear Discriminant Analysis. The Discriminant model was used to classify archaeological flakes from the Cutting 10 locality in terms of their probability of association, within either experimentally developed technological group. The results indicate that the selected independent variables play a central role in separating core and flake from bifacial technologies. Thickness evenness and curvature had the greatest effect sizes in both the Generalized Linear and Discriminant models. Interestingly the interaction between thickness evenness and platform depth was significant and played an important role in influencing technological group membership. The identified interaction emphasizes the complexity in attempting to distinguish flake production strategies based on flake morphological attributes. The results of the discriminant function analysis demonstrate that the majority of flakes at the Cutting 10 locality were not associated with the production of the numerous Large Cutting Tools found at the site, which corresponds with previous suggestions regarding technological behaviors reflected in this assemblage. PMID:26111251
Liu, Lan; Jiang, Tao
2007-01-01
With the launch of the international HapMap project, the haplotype inference problem has attracted a great deal of attention in the computational biology community recently. In this paper, we study the question of how to efficiently infer haplotypes from genotypes of individuals related by a pedigree without mating loops, assuming that the hereditary process was free of mutations (i.e. the Mendelian law of inheritance) and recombinants. We model the haplotype inference problem as a system of linear equations as in [10] and present an (optimal) linear-time (i.e. O(mn) time) algorithm to generate a particular solution (A particular solution of any linear system is an assignment of numerical values to the variables in the system which satisfies the equations in the system.) to the haplotype inference problem, where m is the number of loci (or markers) in a genotype and n is the number of individuals in the pedigree. Moreover, the algorithm also provides a general solution (A general solution of any linear system is denoted by the span of a basis in the solution space to its associated homogeneous system, offset from the origin by a vector, namely by any particular solution. A general solution for ZRHC is very useful in practice because it allows the end user to efficiently enumerate all solutions for ZRHC and performs tasks such as random sampling.) in O(mn2) time, which is optimal because the size of a general solution could be as large as Theta(mn2). The key ingredients of our construction are (i) a fast consistency checking procedure for the system of linear equations introduced in [10] based on a careful investigation of the relationship between the equations (ii) a novel linear-time method for solving linear equations without invoking the Gaussian elimination method. Although such a fast method for solving equations is not known for general systems of linear equations, we take advantage of the underlying loop-free pedigree graph and some special properties of the linear equations.
Performance Analysis and Design Synthesis (PADS) computer program. Volume 3: User manual
NASA Technical Reports Server (NTRS)
1972-01-01
The two-fold purpose of the Performance Analysis and Design Synthesis (PADS) computer program is discussed. The program can size launch vehicles in conjunction with calculus-of-variations optimal trajectories and can also be used as a general purpose branched trajectory optimization program. For trajectory optimization alone or with sizing, PADS has two trajectory modules. The first trajectory module uses the method of steepest descent. The second module uses the method of quasi-linearization, which requires a starting solution from the first trajectory module.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Shweta, E-mail: jshweta09@gmail.com; Sharma, Prerana; Chhajlani, R. K.
2015-07-31
The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability.
Translation invariant time-dependent massive gravity: Hamiltonian analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mourad, Jihad; Steer, Danièle A.; Noui, Karim, E-mail: mourad@apc.univ-paris7.fr, E-mail: karim.noui@lmpt.univ-tours.fr, E-mail: steer@apc.univ-paris7.fr
2014-09-01
The canonical structure of the massive gravity in the first order moving frame formalism is studied. We work in the simplified context of translation invariant fields, with mass terms given by general non-derivative interactions, invariant under the diagonal Lorentz group, depending on the moving frame as well as a fixed reference frame. We prove that the only mass terms which give 5 propagating degrees of freedom are the dRGT mass terms, namely those which are linear in the lapse. We also complete the Hamiltonian analysis with the dynamical evolution of the system.
A discourse on sensitivity analysis for discretely-modeled structures
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Haftka, Raphael T.
1991-01-01
A descriptive review is presented of the most recent methods for performing sensitivity analysis of the structural behavior of discretely-modeled systems. The methods are generally but not exclusively aimed at finite element modeled structures. Topics included are: selections of finite difference step sizes; special consideration for finite difference sensitivity of iteratively-solved response problems; first and second derivatives of static structural response; sensitivity of stresses; nonlinear static response sensitivity; eigenvalue and eigenvector sensitivities for both distinct and repeated eigenvalues; and sensitivity of transient response for both linear and nonlinear structural response.
On bipartite pure-state entanglement structure in terms of disentanglement
NASA Astrophysics Data System (ADS)
Herbut, Fedor
2006-12-01
Schrödinger's disentanglement [E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935)], i.e., remote state decomposition, as a physical way to study entanglement, is carried one step further with respect to previous work in investigating the qualitative side of entanglement in any bipartite state vector. Remote measurement (or, equivalently, remote orthogonal state decomposition) from previous work is generalized to remote linearly independent complete state decomposition both in the nonselective and the selective versions. The results are displayed in terms of commutative square diagrams, which show the power and beauty of the physical meaning of the (antiunitary) correlation operator inherent in the given bipartite state vector. This operator, together with the subsystem states (reduced density operators), constitutes the so-called correlated subsystem picture. It is the central part of the antilinear representation of a bipartite state vector, and it is a kind of core of its entanglement structure. The generalization of previously elaborated disentanglement expounded in this article is a synthesis of the antilinear representation of bipartite state vectors, which is reviewed, and the relevant results of [Cassinelli et al., J. Math. Anal. Appl. 210, 472 (1997)] in mathematical analysis, which are summed up. Linearly independent bases (finite or infinite) are shown to be almost as useful in some quantum mechanical studies as orthonormal ones. Finally, it is shown that linearly independent remote pure-state preparation carries the highest probability of occurrence. This singles out linearly independent remote influence from all possible ones.
Principal Curves on Riemannian Manifolds.
Hauberg, Soren
2016-09-01
Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimizes a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the effectiveness of the Riemannian principal curves on several manifolds and datasets.
Xu, Jiansong; Potenza, Marc N.; Calhoun, Vince D.; Zhang, Rubin; Yip, Sarah W.; Wall, John T.; Pearlson, Godfrey D.; Worhunsky, Patrick D.; Garrison, Kathleen A.; Moran, Joseph M.
2016-01-01
Functional magnetic resonance imaging (fMRI) studies regularly use univariate general-linear-model-based analyses (GLM). Their findings are often inconsistent across different studies, perhaps because of several fundamental brain properties including functional heterogeneity, balanced excitation and inhibition (E/I), and sparseness of neuronal activities. These properties stipulate heterogeneous neuronal activities in the same voxels and likely limit the sensitivity and specificity of GLM. This paper selectively reviews findings of histological and electrophysiological studies and fMRI spatial independent component analysis (sICA) and reports new findings by applying sICA to two existing datasets. The extant and new findings consistently demonstrate several novel features of brain functional organization not revealed by GLM. They include overlap of large-scale functional networks (FNs) and their concurrent opposite modulations, and no significant modulations in activity of most FNs across the whole brain during any task conditions. These novel features of brain functional organization are highly consistent with the brain’s properties of functional heterogeneity, balanced E/I, and sparseness of neuronal activity, and may help reconcile inconsistent GLM findings. PMID:27592153
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qichun; Zhang, Xuesong; Xu, Xingya
Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less
Deep and Structured Robust Information Theoretic Learning for Image Analysis.
Deng, Yue; Bao, Feng; Deng, Xuesong; Wang, Ruiping; Kong, Youyong; Dai, Qionghai
2016-07-07
This paper presents a robust information theoretic (RIT) model to reduce the uncertainties, i.e. missing and noisy labels, in general discriminative data representation tasks. The fundamental pursuit of our model is to simultaneously learn a transformation function and a discriminative classifier that maximize the mutual information of data and their labels in the latent space. In this general paradigm, we respectively discuss three types of the RIT implementations with linear subspace embedding, deep transformation and structured sparse learning. In practice, the RIT and deep RIT are exploited to solve the image categorization task whose performances will be verified on various benchmark datasets. The structured sparse RIT is further applied to a medical image analysis task for brain MRI segmentation that allows group-level feature selections on the brain tissues.
Atmospheric planetary wave response to external forcing
NASA Technical Reports Server (NTRS)
Stevens, D. E.; Reiter, E. R.
1985-01-01
The tools of observational analysis, complex general circulation modeling, and simpler modeling approaches were combined in order to attack problems on the largest spatial scales of the earth's atmosphere. Two different models were developed and applied. The first is a two level, global spectral model which was designed primarily to test the effects of north-south sea surface temperature anomaly (SSTA) gradients between the equatorial and midlatitude north Pacific. The model is nonlinear, contains both radiation and a moisture budget with associated precipitation and surface evaporation, and utilizes a linear balance dynamical framework. Supporting observational analysis of atmospheric planetary waves is briefly summarized. More extensive general circulation models have also been used to consider the problem of the atmosphere's response, especially in the horizontal propagation of planetary scale waves, to SSTA.
Saynes-Vásquez, Alfredo; Vibrans, Heike; Vergara-Silva, Francisco; Caballero, Javier
2016-01-01
This study reports on the socio-demographic and locality factors that influence ethnobiological knowledge in three communities of Zapotec indigenous people of the Isthmus of Tehuantepec, Mexico. It uses local botanical nomenclature as a proxy for general ethnobiological knowledge. In each of these communities (one urban and two rural), 100 adult men were interviewed aided with a field herbarium. Fifty had a background in farming, and 50 worked in the secondary or tertiary sector as their main economic activity, totaling 300 interviews. Using a field herbarium with samples of 30 common and rare wild regional species, we documented visual recognition, knowledge of the local life form, generic and specific names and uses (five knowledge levels measuring knowledge depth). The relationship between sociodemographic variables and knowledge was analyzed with simple correlations. Differences between the three communities and the five knowledge levels were then evaluated with a discriminant analysis. A general linear analysis identified factors and covariables that influenced the observed differences. Differences between the groups with different economic activities were estimated with a t-test for independent samples. Most of the relationships found between sociodemographic variables and plant knowledge were expected: age and rurality were positively related with knowledge and years of formal schooling was negatively related. However, the somewhat less rural site had more traditional knowledge due to local circumstances. The general linear model explained 70-77% of the variation, a high value. It showed that economic activity was by far the most important factor influencing knowledge, by a factor of five. The interaction of locality and economic activity followed. The discriminant analysis assigned interviewees correctly to their localities in 94% of the cases, strengthening the evidence for intracultural variation. Both sociodemographic and historic intracultural differences heavily influence local knowledge.
Saynes-Vásquez, Alfredo; Vibrans, Heike; Vergara-Silva, Francisco; Caballero, Javier
2016-01-01
This study reports on the socio-demographic and locality factors that influence ethnobiological knowledge in three communities of Zapotec indigenous people of the Isthmus of Tehuantepec, Mexico. It uses local botanical nomenclature as a proxy for general ethnobiological knowledge. In each of these communities (one urban and two rural), 100 adult men were interviewed aided with a field herbarium. Fifty had a background in farming, and 50 worked in the secondary or tertiary sector as their main economic activity, totaling 300 interviews. Using a field herbarium with samples of 30 common and rare wild regional species, we documented visual recognition, knowledge of the local life form, generic and specific names and uses (five knowledge levels measuring knowledge depth). The relationship between sociodemographic variables and knowledge was analyzed with simple correlations. Differences between the three communities and the five knowledge levels were then evaluated with a discriminant analysis. A general linear analysis identified factors and covariables that influenced the observed differences. Differences between the groups with different economic activities were estimated with a t-test for independent samples. Most of the relationships found between sociodemographic variables and plant knowledge were expected: age and rurality were positively related with knowledge and years of formal schooling was negatively related. However, the somewhat less rural site had more traditional knowledge due to local circumstances. The general linear model explained 70–77% of the variation, a high value. It showed that economic activity was by far the most important factor influencing knowledge, by a factor of five. The interaction of locality and economic activity followed. The discriminant analysis assigned interviewees correctly to their localities in 94% of the cases, strengthening the evidence for intracultural variation. Both sociodemographic and historic intracultural differences heavily influence local knowledge. PMID:26986077
Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data.
Ying, Gui-Shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard
2017-04-01
To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field in the elderly. When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI -0.03 to 0.32D, p = 0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, p = 0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller p-values, while analysis of the worse eye provided larger p-values than mixed effects models and marginal models. In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision.
Generalized Bezout's Theorem and its applications in coding theory
NASA Technical Reports Server (NTRS)
Berg, Gene A.; Feng, Gui-Liang; Rao, T. R. N.
1996-01-01
This paper presents a generalized Bezout theorem which can be used to determine a tighter lower bound of the number of distinct points of intersection of two or more curves for a large class of plane curves. A new approach to determine a lower bound on the minimum distance (and also the generalized Hamming weights) for algebraic-geometric codes defined from a class of plane curves is introduced, based on the generalized Bezout theorem. Examples of more efficient linear codes are constructed using the generalized Bezout theorem and the new approach. For d = 4, the linear codes constructed by the new construction are better than or equal to the known linear codes. For d greater than 5, these new codes are better than the known codes. The Klein code over GF(2(sup 3)) is also constructed.
Meta-analysis in Stata using gllamm.
Bagos, Pantelis G
2015-12-01
There are several user-written programs for performing meta-analysis in Stata (Stata Statistical Software: College Station, TX: Stata Corp LP). These include metan, metareg, mvmeta, and glst. However, there are several cases for which these programs do not suffice. For instance, there is no software for performing univariate meta-analysis with correlated estimates, for multilevel or hierarchical meta-analysis, or for meta-analysis of longitudinal data. In this work, we show with practical applications that many disparate models, including but not limited to the ones mentioned earlier, can be fitted using gllamm. The software is very versatile and can handle a wide variety of models with applications in a wide range of disciplines. The method presented here takes advantage of these modeling capabilities and makes use of appropriate transformations, based on the Cholesky decomposition of the inverse of the covariance matrix, known as generalized least squares, in order to handle correlated data. The models described earlier can be thought of as special instances of a general linear mixed-model formulation, but to the author's knowledge, a general exposition in order to incorporate all the available models for meta-analysis as special cases and the instructions to fit them in Stata has not been presented so far. Source code is available at http:www.compgen.org/tools/gllamm. Copyright © 2015 John Wiley & Sons, Ltd.
Modelling of Asphalt Concrete Stiffness in the Linear Viscoelastic Region
NASA Astrophysics Data System (ADS)
Mazurek, Grzegorz; Iwański, Marek
2017-10-01
Stiffness modulus is a fundamental parameter used in the modelling of the viscoelastic behaviour of bituminous mixtures. On the basis of the master curve in the linear viscoelasticity range, the mechanical properties of asphalt concrete at different loading times and temperatures can be predicted. This paper discusses the construction of master curves under rheological mathematical models i.e. the sigmoidal function model (MEPDG), the fractional model, and Bahia and co-workers’ model in comparison to the results from mechanistic rheological models i.e. the generalized Huet-Sayegh model, the generalized Maxwell model and the Burgers model. For the purposes of this analysis, the reference asphalt concrete mix (denoted as AC16W) intended for the binder coarse layer and for traffic category KR3 (5×105
General Linearized Theory of Quantum Fluctuations around Arbitrary Limit Cycles
NASA Astrophysics Data System (ADS)
Navarrete-Benlloch, Carlos; Weiss, Talitha; Walter, Stefan; de Valcárcel, Germán J.
2017-09-01
The theory of Gaussian quantum fluctuations around classical steady states in nonlinear quantum-optical systems (also known as standard linearization) is a cornerstone for the analysis of such systems. Its simplicity, together with its accuracy far from critical points or situations where the nonlinearity reaches the strong coupling regime, has turned it into a widespread technique, being the first method of choice in most works on the subject. However, such a technique finds strong practical and conceptual complications when one tries to apply it to situations in which the classical long-time solution is time dependent, a most prominent example being spontaneous limit-cycle formation. Here, we introduce a linearization scheme adapted to such situations, using the driven Van der Pol oscillator as a test bed for the method, which allows us to compare it with full numerical simulations. On a conceptual level, the scheme relies on the connection between the emergence of limit cycles and the spontaneous breaking of the symmetry under temporal translations. On the practical side, the method keeps the simplicity and linear scaling with the size of the problem (number of modes) characteristic of standard linearization, making it applicable to large (many-body) systems.
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1997-01-01
A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.
Mazo Lopera, Mauricio A; Coombes, Brandon J; de Andrade, Mariza
2017-09-27
Gene-environment (GE) interaction has important implications in the etiology of complex diseases that are caused by a combination of genetic factors and environment variables. Several authors have developed GE analysis in the context of independent subjects or longitudinal data using a gene-set. In this paper, we propose to analyze GE interaction for discrete and continuous phenotypes in family studies by incorporating the relatedness among the relatives for each family into a generalized linear mixed model (GLMM) and by using a gene-based variance component test. In addition, we deal with collinearity problems arising from linkage disequilibrium among single nucleotide polymorphisms (SNPs) by considering their coefficients as random effects under the null model estimation. We show that the best linear unbiased predictor (BLUP) of such random effects in the GLMM is equivalent to the ridge regression estimator. This equivalence provides a simple method to estimate the ridge penalty parameter in comparison to other computationally-demanding estimation approaches based on cross-validation schemes. We evaluated the proposed test using simulation studies and applied it to real data from the Baependi Heart Study consisting of 76 families. Using our approach, we identified an interaction between BMI and the Peroxisome Proliferator Activated Receptor Gamma ( PPARG ) gene associated with diabetes.
A Few New 2+1-Dimensional Nonlinear Dynamics and the Representation of Riemann Curvature Tensors
NASA Astrophysics Data System (ADS)
Wang, Yan; Zhang, Yufeng; Zhang, Xiangzhi
2016-09-01
We first introduced a linear stationary equation with a quadratic operator in ∂x and ∂y, then a linear evolution equation is given by N-order polynomials of eigenfunctions. As applications, by taking N=2, we derived a (2+1)-dimensional generalized linear heat equation with two constant parameters associative with a symmetric space. When taking N=3, a pair of generalized Kadomtsev-Petviashvili equations with the same eigenvalues with the case of N=2 are generated. Similarly, a second-order flow associative with a homogeneous space is derived from the integrability condition of the two linear equations, which is a (2+1)-dimensional hyperbolic equation. When N=3, the third second flow associative with the homogeneous space is generated, which is a pair of new generalized Kadomtsev-Petviashvili equations. Finally, as an application of a Hermitian symmetric space, we established a pair of spectral problems to obtain a new (2+1)-dimensional generalized Schrödinger equation, which is expressed by the Riemann curvature tensors.
Delas, Suncica; Zagorac, Nebojsa; Katić, Ratko
2008-06-01
In order to identify the biomotor systems that determine performance of competitive gymnastics elements in elementary school male sixth-graders, factor structures of morphological characteristics and basic motor abilities were determined first, followed by relations of the morphological-motor system factors obtained with a set of criterion variables evaluating specific motor skills in competitive gymnastics in 110 male children aged 12 years +/- 3 months. Factor analysis of 17 morphological measures produced three morphological factors: factor of mesoectoendomorphy (general morphological factor) and factor of pronounced endomorphy, i.e. excessive adipose tissue, along with low skeleton longitudinality. Factor analysis of 16 motor variables yielded four motor factors: factor of general motoricity; factor integrating leg flexibility and arm explosiveness; factor juxtaposing body flexibility and repetitive leg strength; and factor predominantly defining leg movement frequency. Three significant canonical correlations, i.e. linear combinations, explained the association between the set of six latent variables of the morphological and basic motor system, and five variables assessing the knowledge in competitive gymnastics. The first canonical linear combination was based on the favorable and predominant impact of the general motor factor (a system integrating leg explosiveness, whole body coordination, relative arm and trunk strength, and arm movement frequency), along with unfavorable effect of morphological factors on the gymnastics elements performance, squat vault and handstand in particular The relation of the second pair of canonical factors pointed to the effects of leg flexibility and arm explosiveness on the cartwheel and backward pullover mount performance, whereas the relation of the third pair of canonical factors showed a favorable impact of the general morphological factor and leg movement frequency regulator on the forward shoulderkip from increase, cartwheel and handstand performance.
Next Linear Collider Home Page
Welcome to the Next Linear Collider NLC Home Page If you would like to learn about linear colliders in general and about this next-generation linear collider project's mission, design ideas, and Linear Collider. line | NLC Home | NLC Technical | SLAC | mcdunn Tuesday, February 14, 2006 01:32:11 PM
Control of Distributed Parameter Systems
1990-08-01
vari- ant of the general Lotka - Volterra model for interspecific competition. The variant described the emergence of one subpopulation from another as a...distribut ion unlimited. I&. ARSTRACT (MAUMUnw2O1 A unified arioroximation framework for Parameter estimation In general linear POE models has been completed...unified approximation framework for parameter estimation in general linear PDE models. This framework has provided the theoretical basis for a number of
Vision though afocal instruments: generalized magnification and eye-instrument interaction
NASA Astrophysics Data System (ADS)
Harris, William F.; Evans, Tanya
2018-04-01
In Gaussian optics all observers experience the same magnification, the instrument's angular magnification, when viewing distant objects though a telescope or other afocal instruments. However, analysis in linear optics shows that this is not necessarily so in the presence of astigmatism. Because astigmatism may distort and rotate images it is appropriate to work with generalized angular magnification represented by a 2 × 2 matrix. An expression is derived for the generalized magnification for an arbitrary eye looking through an arbitrary afocal instrument. With afocal instruments containing astigmatic refracting elements not all eyes experience the same generalized magnification; there is interaction between eye and instrument. Eye-instrument interaction may change as the instrument is rotated about its longitudinal axis, there being no interaction in particular orientations. A simple numerical example is given. For sake of completeness, expressions for generalized magnification are also presented in the case of instruments that are not afocal and objects that are not distant.
Design and performance of an analysis-by-synthesis class of predictive speech coders
NASA Technical Reports Server (NTRS)
Rose, Richard C.; Barnwell, Thomas P., III
1990-01-01
The performance of a broad class of analysis-by-synthesis linear predictive speech coders is quantified experimentally. The class of coders includes a number of well-known techniques as well as a very large number of speech coders which have not been named or studied. A general formulation for deriving the parametric representation used in all of the coders in the class is presented. A new coder, named the self-excited vocoder, is discussed because of its good performance with low complexity, and because of the insight this coder gives to analysis-by-synthesis coders in general. The results of a study comparing the performances of different members of this class are presented. The study takes the form of a series of formal subjective and objective speech quality tests performed on selected coders. The results of this study lead to some interesting and important observations concerning the controlling parameters for analysis-by-synthesis speech coders.
Multivariate Longitudinal Analysis with Bivariate Correlation Test
Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory
2016-01-01
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model’s parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated. PMID:27537692
Multivariate Longitudinal Analysis with Bivariate Correlation Test.
Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory
2016-01-01
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.
Dyer, Bryce; Hassani, Hossein; Shadi, Mehran
2016-01-01
The format of cycling time trials in England, Wales and Northern Ireland, involves riders competing individually over several fixed race distances of 10-100 miles in length and using time constrained formats of 12 and 24 h in duration. Drawing on data provided by the national governing body that covers the regions of England and Wales, an analysis of six male competition record progressions was undertaken to illustrate its progression. Future forecasts are then projected through use of the Singular Spectrum Analysis technique. This method has not been applied to sport-based time series data before. All six records have seen a progressive improvement and are non-linear in nature. Five records saw their highest level of record change during the 1950-1969 period. Whilst new record frequency generally has reduced since this period, the magnitude of performance improvement has generally increased. The Singular Spectrum Analysis technique successfully provided forecasted projections in the short to medium term with a high level of fit to the time series data.
Almalik, Osama; Nijhuis, Michiel B; van den Heuvel, Edwin R
2014-01-01
Shelf-life estimation usually requires that at least three registration batches are tested for stability at multiple storage conditions. The shelf-life estimates are often obtained by linear regression analysis per storage condition, an approach implicitly suggested by ICH guideline Q1E. A linear regression analysis combining all data from multiple storage conditions was recently proposed in the literature when variances are homogeneous across storage conditions. The combined analysis is expected to perform better than the separate analysis per storage condition, since pooling data would lead to an improved estimate of the variation and higher numbers of degrees of freedom, but this is not evident for shelf-life estimation. Indeed, the two approaches treat the observed initial batch results, the intercepts in the model, and poolability of batches differently, which may eliminate or reduce the expected advantage of the combined approach with respect to the separate approach. Therefore, a simulation study was performed to compare the distribution of simulated shelf-life estimates on several characteristics between the two approaches and to quantify the difference in shelf-life estimates. In general, the combined statistical analysis does estimate the true shelf life more consistently and precisely than the analysis per storage condition, but it did not outperform the separate analysis in all circumstances.
NASA Technical Reports Server (NTRS)
Press, Harry; Mazelsky, Bernard
1954-01-01
The applicability of some results from the theory of generalized harmonic analysis (or power-spectral analysis) to the analysis of gust loads on airplanes in continuous rough air is examined. The general relations for linear systems between power spectrums of a random input disturbance and an output response are used to relate the spectrum of airplane load in rough air to the spectrum of atmospheric gust velocity. The power spectrum of loads is shown to provide a measure of the load intensity in terms of the standard deviation (root mean square) of the load distribution for an airplane in flight through continuous rough air. For the case of a load output having a normal distribution, which appears from experimental evidence to apply to homogeneous rough air, the standard deviation is shown to describe the probability distribution of loads or the proportion of total time that the load has given values. Thus, for airplane in flight through homogeneous rough air, the probability distribution of loads may be determined from a power-spectral analysis. In order to illustrate the application of power-spectral analysis to gust-load analysis and to obtain an insight into the relations between loads and airplane gust-response characteristics, two selected series of calculations are presented. The results indicate that both methods of analysis yield results that are consistent to a first approximation.
ERIC Educational Resources Information Center
Kanbayashi, Toshiyuki
2016-01-01
In recent years, teachers' increased workloads have become an issue for policy, and have been multiply pointed out, deriving as they do from peripheral duties such as paperwork, in academic research as well. However, these mentions have not been based on sufficiently solid proof. Here, this paper compares teacher working hours surveys extant from…
Nonlinear stability of Gardner breathers
NASA Astrophysics Data System (ADS)
Alejo, Miguel A.
2018-01-01
We show that breather solutions of the Gardner equation, a natural generalization of the KdV and mKdV equations, are H2 (R) stable. Through a variational approach, we characterize Gardner breathers as minimizers of a new Lyapunov functional and we study the associated spectral problem, through (i) the analysis of the spectrum of explicit linear systems (spectral stability), and (ii) controlling degenerated directions by using low regularity conservation laws.
NASA Astrophysics Data System (ADS)
Vintila, Iuliana; Gavrus, Adinel
2017-10-01
The present research paper proposes the validation of a rigorous computation model used as a numerical tool to identify rheological behavior of complex emulsions W/O. Considering a three-dimensional description of a general viscoplastic flow it is detailed the thermo-mechanical equations used to identify fluid or soft material's rheological laws starting from global experimental measurements. Analyses are conducted for complex emulsions W/O having generally a Bingham behavior using the shear stress - strain rate dependency based on a power law and using an improved analytical model. Experimental results are investigated in case of rheological behavior for crude and refined rapeseed/soybean oils and four types of corresponding W/O emulsions using different physical-chemical composition. The rheological behavior model was correlated with the thermo-mechanical analysis of a plane-plane rheometer, oil content, chemical composition, particle size and emulsifier's concentration. The parameters of rheological laws describing the industrial oils and the W/O concentrated emulsions behavior were computed from estimated shear stresses using a non-linear regression technique and from experimental torques using the inverse analysis tool designed by A. Gavrus (1992-2000).
NASA Astrophysics Data System (ADS)
Sun, Limin; Chen, Lin
2017-10-01
Residual mode correction is found crucial in calibrating linear resonant absorbers for flexible structures. The classic modal representation augmented with stiffness and inertia correction terms accounting for non-resonant modes improves the calibration accuracy and meanwhile avoids complex modal analysis of the full system. This paper explores the augmented modal representation in calibrating control devices with nonlinearity, by studying a taut cable attached with a general viscous damper and its Equivalent Dynamic Systems (EDSs), i.e. the augmented modal representations connected to the same damper. As nonlinearity is concerned, Frequency Response Functions (FRFs) of the EDSs are investigated in detail for parameter calibration, using the harmonic balance method in combination with numerical continuation. The FRFs of the EDSs and corresponding calibration results are then compared with those of the full system documented in the literature for varied structural modes, damper locations and nonlinearity. General agreement is found and in particular the EDS with both stiffness and inertia corrections (quasi-dynamic correction) performs best among available approximate methods. This indicates that the augmented modal representation although derived from linear cases is applicable to a relatively wide range of damper nonlinearity. Calibration of nonlinear devices by this means still requires numerical analysis while the efficiency is largely improved owing to the system order reduction.
Chen, Gang; Adleman, Nancy E.; Saad, Ziad S.; Leibenluft, Ellen; Cox, RobertW.
2014-01-01
All neuroimaging packages can handle group analysis with t-tests or general linear modeling (GLM). However, they are quite hamstrung when there are multiple within-subject factors or when quantitative covariates are involved in the presence of a within-subject factor. In addition, sphericity is typically assumed for the variance–covariance structure when there are more than two levels in a within-subject factor. To overcome such limitations in the traditional AN(C)OVA and GLM, we adopt a multivariate modeling (MVM) approach to analyzing neuroimaging data at the group level with the following advantages: a) there is no limit on the number of factors as long as sample sizes are deemed appropriate; b) quantitative covariates can be analyzed together with within- subject factors; c) when a within-subject factor is involved, three testing methodologies are provided: traditional univariate testing (UVT)with sphericity assumption (UVT-UC) and with correction when the assumption is violated (UVT-SC), and within-subject multivariate testing (MVT-WS); d) to correct for sphericity violation at the voxel level, we propose a hybrid testing (HT) approach that achieves equal or higher power via combining traditional sphericity correction methods (Greenhouse–Geisser and Huynh–Feldt) with MVT-WS. PMID:24954281
Rise time analysis of pulsed klystron-modulator for efficiency improvement of linear colliders
NASA Astrophysics Data System (ADS)
Oh, J. S.; Cho, M. H.; Namkung, W.; Chung, K. H.; Shintake, T.; Matsumoto, H.
2000-04-01
In linear accelerators, the periods during the rise and fall of a klystron-modulator pulse cannot be used to generate RF power. Thus, these periods need to be minimized to get high efficiency, especially in large-scale machines. In this paper, we present a simplified and generalized voltage rise time function of a pulsed modulator with a high-power klystron load using the equivalent circuit analysis method. The optimum pulse waveform is generated when this pulsed power system is tuned with a damping factor of ˜0.85. The normalized rise time chart presented in this paper allows one to predict the rise time and pulse shape of the pulsed power system in general. The results can be summarized as follows: The large distributed capacitance in the pulse tank and operating parameters, Vs× Tp , where Vs is load voltage and Tp is the pulse width, are the main factors determining the pulse rise time in the high-power RF system. With an RF pulse compression scheme, up to ±3% ripple of the modulator voltage is allowed without serious loss of compressor efficiency, which allows the modulator efficiency to be improved as well. The wiring inductance should be minimized to get the fastest rise time.
Rio, Daniel E.; Rawlings, Robert R.; Woltz, Lawrence A.; Gilman, Jodi; Hommer, Daniel W.
2013-01-01
A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function. PMID:23840281
Rio, Daniel E; Rawlings, Robert R; Woltz, Lawrence A; Gilman, Jodi; Hommer, Daniel W
2013-01-01
A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function.
Automating approximate Bayesian computation by local linear regression.
Thornton, Kevin R
2009-07-07
In several biological contexts, parameter inference often relies on computationally-intensive techniques. "Approximate Bayesian Computation", or ABC, methods based on summary statistics have become increasingly popular. A particular flavor of ABC based on using a linear regression to approximate the posterior distribution of the parameters, conditional on the summary statistics, is computationally appealing, yet no standalone tool exists to automate the procedure. Here, I describe a program to implement the method. The software package ABCreg implements the local linear-regression approach to ABC. The advantages are: 1. The code is standalone, and fully-documented. 2. The program will automatically process multiple data sets, and create unique output files for each (which may be processed immediately in R), facilitating the testing of inference procedures on simulated data, or the analysis of multiple data sets. 3. The program implements two different transformation methods for the regression step. 4. Analysis options are controlled on the command line by the user, and the program is designed to output warnings for cases where the regression fails. 5. The program does not depend on any particular simulation machinery (coalescent, forward-time, etc.), and therefore is a general tool for processing the results from any simulation. 6. The code is open-source, and modular.Examples of applying the software to empirical data from Drosophila melanogaster, and testing the procedure on simulated data, are shown. In practice, the ABCreg simplifies implementing ABC based on local-linear regression.
Validation of drift and diffusion coefficients from experimental data
NASA Astrophysics Data System (ADS)
Riera, R.; Anteneodo, C.
2010-04-01
Many fluctuation phenomena, in physics and other fields, can be modeled by Fokker-Planck or stochastic differential equations whose coefficients, associated with drift and diffusion components, may be estimated directly from the observed time series. Its correct characterization is crucial to determine the system quantifiers. However, due to the finite sampling rates of real data, the empirical estimates may significantly differ from their true functional forms. In the literature, low-order corrections, or even no corrections, have been applied to the finite-time estimates. A frequent outcome consists of linear drift and quadratic diffusion coefficients. For this case, exact corrections have been recently found, from Itô-Taylor expansions. Nevertheless, model validation constitutes a necessary step before determining and applying the appropriate corrections. Here, we exploit the consequences of the exact theoretical results obtained for the linear-quadratic model. In particular, we discuss whether the observed finite-time estimates are actually a manifestation of that model. The relevance of this analysis is put into evidence by its application to two contrasting real data examples in which finite-time linear drift and quadratic diffusion coefficients are observed. In one case the linear-quadratic model is readily rejected while in the other, although the model constitutes a very good approximation, low-order corrections are inappropriate. These examples give warning signs about the proper interpretation of finite-time analysis even in more general diffusion processes.
Measured and predicted structural behavior of the HiMAT tailored composite wing
NASA Technical Reports Server (NTRS)
Nelson, Lawrence H.
1987-01-01
A series of load tests was conducted on the HiMAT tailored composite wing. Coupon tests were also run on a series of unbalanced laminates, including the ply configuration of the wing, the purpose of which was to compare the measured and predicted behavior of unbalanced laminates, including - in the case of the wing - a comparison between the behavior of the full scale structure and coupon tests. Both linear and nonlinear finite element (NASTRAN) analyses were carried out on the wing. Both linear and nonlinear point-stress analyses were performed on the coupons. All test articles were instrumented with strain gages, and wing deflections measured. The leading and trailing edges were found to have no effect on the response of the wing to applied loads. A decrease in the stiffness of the wing box was evident over the 27-test program. The measured load-strain behavior of the wing was found to be linear, in contrast to coupon tests of the same laminate, which were nonlinear. A linear NASTRAN analysis of the wing generally correlated more favorably with measurements than did a nonlinear analysis. An examination of the predicted deflections in the wing root region revealed an anomalous behavior of the structural model that cannot be explained. Both hysteresis and creep appear to be less significant in the wing tests than in the corresponding laminate coupon tests.
Kholeif, S A
2001-06-01
A new method that belongs to the differential category for determining the end points from potentiometric titration curves is presented. It uses a preprocess to find first derivative values by fitting four data points in and around the region of inflection to a non-linear function, and then locate the end point, usually as a maximum or minimum, using an inverse parabolic interpolation procedure that has an analytical solution. The behavior and accuracy of the sigmoid and cumulative non-linear functions used are investigated against three factors. A statistical evaluation of the new method using linear least-squares method validation and multifactor data analysis are covered. The new method is generally applied to symmetrical and unsymmetrical potentiometric titration curves, and the end point is calculated using numerical procedures only. It outperforms the "parent" regular differential method in almost all factors levels and gives accurate results comparable to the true or estimated true end points. Calculated end points from selected experimental titration curves compatible with the equivalence point category of methods, such as Gran or Fortuin, are also compared with the new method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moatimid, Galal M.; Obied Allah, M. H.; Hassan, Mohamed A.
2013-10-15
In this paper, the Kelvin-Helmholtz instability of viscous incompressible magnetic fluid fully saturated porous media is achieved through the viscous potential theory. The flow is considered to be through semi-permeable boundaries above and below the fluids through which the fluid may either be blown in or sucked out, in a direction normal to the main streaming direction of the fluid flow. An oblique magnetic field, mass, heat transfer, and surface tension are present across the interface. Through the linear stability analysis, a general dispersion relation is derived and the natural curves are plotted. Therefore, the linear stability condition is discussedmore » in some depth. In view of the multiple time scale technique, the Ginzburg–Landau equation, which describes the behavior of the system in the nonlinear approach, is obtained. The effects of the orientation of the magnetic fields on the stability configuration in linear, as well as nonlinear approaches, are discussed. It is found that the Darcy's coefficient for the porous layers plays a stabilizing role. The injection of the fluids at both boundaries has a stabilizing effect, in contrast with the suction at both boundaries.« less
Pei, Soo-Chang; Ding, Jian-Jiun
2005-03-01
Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.
A refined analysis of composite laminates. [theory of statics and dynamics
NASA Technical Reports Server (NTRS)
Srinivas, S.
1973-01-01
The purpose of this paper is to develop a sufficiently accurate analysis, which is much simpler than exact three-dimensional analysis, for statics and dynamics of composite laminates. The governing differential equations and boundary conditions are derived by following a variational approach. The displacements are assumed piecewise linear across the thickness and the effects of transverse shear deformations and rotary inertia are included. A procedure for obtaining the general solution of the above governing differential equations in the form of hyperbolic-trigonometric series is given. The accuracy of the present theory is assessed by obtaining results for free vibrations and flexure of simply supported rectangular laminates and comparing them with results from exact three-dimensional analysis.
Vossoughi, Mehrdad; Ayatollahi, S M T; Towhidi, Mina; Ketabchi, Farzaneh
2012-03-22
The summary measure approach (SMA) is sometimes the only applicable tool for the analysis of repeated measurements in medical research, especially when the number of measurements is relatively large. This study aimed to describe techniques based on summary measures for the analysis of linear trend repeated measures data and then to compare performances of SMA, linear mixed model (LMM), and unstructured multivariate approach (UMA). Practical guidelines based on the least squares regression slope and mean of response over time for each subject were provided to test time, group, and interaction effects. Through Monte Carlo simulation studies, the efficacy of SMA vs. LMM and traditional UMA, under different types of covariance structures, was illustrated. All the methods were also employed to analyze two real data examples. Based on the simulation and example results, it was found that the SMA completely dominated the traditional UMA and performed convincingly close to the best-fitting LMM in testing all the effects. However, the LMM was not often robust and led to non-sensible results when the covariance structure for errors was misspecified. The results emphasized discarding the UMA which often yielded extremely conservative inferences as to such data. It was shown that summary measure is a simple, safe and powerful approach in which the loss of efficiency compared to the best-fitting LMM was generally negligible. The SMA is recommended as the first choice to reliably analyze the linear trend data with a moderate to large number of measurements and/or small to moderate sample sizes.
Adaptive convex combination approach for the identification of improper quaternion processes.
Ujang, Bukhari Che; Jahanchahi, Cyrus; Took, Clive Cheong; Mandic, Danilo P
2014-01-01
Data-adaptive optimal modeling and identification of real-world vector sensor data is provided by combining the fractional tap-length (FT) approach with model order selection in the quaternion domain. To account rigorously for the generality of such processes, both second-order circular (proper) and noncircular (improper), the proposed approach in this paper combines the FT length optimization with both the strictly linear quaternion least mean square (QLMS) and widely linear QLMS (WL-QLMS). A collaborative approach based on QLMS and WL-QLMS is shown to both identify the type of processes (proper or improper) and to track their optimal parameters in real time. Analysis shows that monitoring the evolution of the convex mixing parameter within the collaborative approach allows us to track the improperness in real time. Further insight into the properties of those algorithms is provided by establishing a relationship between the steady-state error and optimal model order. The approach is supported by simulations on model order selection and identification of both strictly linear and widely linear quaternion-valued systems, such as those routinely used in renewable energy (wind) and human-centered computing (biomechanics).
Immittance Data Validation by Kramers‐Kronig Relations – Derivation and Implications
2017-01-01
Abstract Explicitly based on causality, linearity (superposition) and stability (time invariance) and implicit on continuity (consistency), finiteness (convergence) and uniqueness (single valuedness) in the time domain, Kramers‐Kronig (KK) integral transform (KKT) relations for immittances are derived as pure mathematical constructs in the complex frequency domain using the two‐sided (bilateral) Laplace integral transform (LT) reduced to the Fourier domain for sufficiently rapid exponential decaying, bounded immittances. Novel anti KK relations are also derived to distinguish LTI (linear, time invariant) systems from non‐linear, unstable and acausal systems. All relations can be used to test KK transformability on the LTI principles of linearity, stability and causality of measured and model data by Fourier transform (FT) in immittance spectroscopy (IS). Also, integral transform relations are provided to estimate (conjugate) immittances at zero and infinite frequency particularly useful to normalise data and compare data. Also, important implications for IS are presented and suggestions for consistent data analysis are made which generally apply likewise to complex valued quantities in many fields of engineering and natural sciences. PMID:29577007
Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis
NASA Technical Reports Server (NTRS)
Freund, Roland W.
1991-01-01
We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.
Wu, Jibo
2016-01-01
In this article, a generalized difference-based ridge estimator is proposed for the vector parameter in a partial linear model when the errors are dependent. It is supposed that some additional linear constraints may hold to the whole parameter space. Its mean-squared error matrix is compared with the generalized restricted difference-based estimator. Finally, the performance of the new estimator is explained by a simulation study and a numerical example.
Generalized massive optimal data compression
NASA Astrophysics Data System (ADS)
Alsing, Justin; Wandelt, Benjamin
2018-05-01
In this paper, we provide a general procedure for optimally compressing N data down to n summary statistics, where n is equal to the number of parameters of interest. We show that compression to the score function - the gradient of the log-likelihood with respect to the parameters - yields n compressed statistics that are optimal in the sense that they preserve the Fisher information content of the data. Our method generalizes earlier work on linear Karhunen-Loéve compression for Gaussian data whilst recovering both lossless linear compression and quadratic estimation as special cases when they are optimal. We give a unified treatment that also includes the general non-Gaussian case as long as mild regularity conditions are satisfied, producing optimal non-linear summary statistics when appropriate. As a worked example, we derive explicitly the n optimal compressed statistics for Gaussian data in the general case where both the mean and covariance depend on the parameters.
Chen, Hung-Yuan; Chiu, Yen-Ling; Hsu, Shih-Ping; Pai, Mei-Fen; Ju-YehYang; Lai, Chun-Fu; Lu, Hui-Min; Huang, Shu-Chen; Yang, Shao-Yu; Wen, Su-Yin; Chiu, Hsien-Ching; Hu, Fu-Chang; Peng, Yu-Sen; Jee, Shiou-Hwa
2013-01-01
Background Uremic pruritus is a common and intractable symptom in patients on chronic hemodialysis, but factors associated with the severity of pruritus remain unclear. This study aimed to explore the associations of metabolic factors and dialysis adequacy with the aggravation of pruritus. Methods We conducted a 5-year prospective cohort study on patients with maintenance hemodialysis. A visual analogue scale (VAS) was used to assess the intensity of pruritus. Patient demographic and clinical characteristics, laboratory parameters, dialysis adequacy (assessed by Kt/V), and pruritus intensity were recorded at baseline and follow-up. Change score analysis of the difference score of VAS between baseline and follow-up was performed using multiple linear regression models. The optimal threshold of Kt/V, which is associated with the aggravation of uremic pruritus, was determined by generalized additive models and receiver operating characteristic analysis. Results A total of 111 patients completed the study. Linear regression analysis showed that lower Kt/V and use of low-flux dialyzer were significantly associated with the aggravation of pruritus after adjusting for the baseline pruritus intensity and a variety of confounding factors. The optimal threshold value of Kt/V for pruritus was 1.5 suggested by both generalized additive models and receiver operating characteristic analysis. Conclusions Hemodialysis with the target of Kt/V ≥1.5 and use of high-flux dialyzer may reduce the intensity of pruritus in patients on chronic hemodialysis. Further clinical trials are required to determine the optimal dialysis dose and regimen for uremic pruritus. PMID:23940749
Role of diversity in ICA and IVA: theory and applications
NASA Astrophysics Data System (ADS)
Adalı, Tülay
2016-05-01
Independent component analysis (ICA) has been the most popular approach for solving the blind source separation problem. Starting from a simple linear mixing model and the assumption of statistical independence, ICA can recover a set of linearly-mixed sources to within a scaling and permutation ambiguity. It has been successfully applied to numerous data analysis problems in areas as diverse as biomedicine, communications, finance, geo- physics, and remote sensing. ICA can be achieved using different types of diversity—statistical property—and, can be posed to simultaneously account for multiple types of diversity such as higher-order-statistics, sample dependence, non-circularity, and nonstationarity. A recent generalization of ICA, independent vector analysis (IVA), generalizes ICA to multiple data sets and adds the use of one more type of diversity, statistical dependence across the data sets, for jointly achieving independent decomposition of multiple data sets. With the addition of each new diversity type, identification of a broader class of signals become possible, and in the case of IVA, this includes sources that are independent and identically distributed Gaussians. We review the fundamentals and properties of ICA and IVA when multiple types of diversity are taken into account, and then ask the question whether diversity plays an important role in practical applications as well. Examples from various domains are presented to demonstrate that in many scenarios it might be worthwhile to jointly account for multiple statistical properties. This paper is submitted in conjunction with the talk delivered for the "Unsupervised Learning and ICA Pioneer Award" at the 2016 SPIE Conference on Sensing and Analysis Technologies for Biomedical and Cognitive Applications.
Non-Linear Approach in Kinesiology Should Be Preferred to the Linear--A Case of Basketball.
Trninić, Marko; Jeličić, Mario; Papić, Vladan
2015-07-01
In kinesiology, medicine, biology and psychology, in which research focus is on dynamical self-organized systems, complex connections exist between variables. Non-linear nature of complex systems has been discussed and explained by the example of non-linear anthropometric predictors of performance in basketball. Previous studies interpreted relations between anthropometric features and measures of effectiveness in basketball by (a) using linear correlation models, and by (b) including all basketball athletes in the same sample of participants regardless of their playing position. In this paper the significance and character of linear and non-linear relations between simple anthropometric predictors (AP) and performance criteria consisting of situation-related measures of effectiveness (SE) in basketball were determined and evaluated. The sample of participants consisted of top-level junior basketball players divided in three groups according to their playing time (8 minutes and more per game) and playing position: guards (N = 42), forwards (N = 26) and centers (N = 40). Linear (general model) and non-linear (general model) regression models were calculated simultaneously and separately for each group. The conclusion is viable: non-linear regressions are frequently superior to linear correlations when interpreting actual association logic among research variables.
NASA Astrophysics Data System (ADS)
Ikelle, Luc T.; Osen, Are; Amundsen, Lasse; Shen, Yunqing
2004-12-01
The classical linear solutions to the problem of multiple attenuation, like predictive deconvolution, τ-p filtering, or F-K filtering, are generally fast, stable, and robust compared to non-linear solutions, which are generally either iterative or in the form of a series with an infinite number of terms. These qualities have made the linear solutions more attractive to seismic data-processing practitioners. However, most linear solutions, including predictive deconvolution or F-K filtering, contain severe assumptions about the model of the subsurface and the class of free-surface multiples they can attenuate. These assumptions limit their usefulness. In a recent paper, we described an exception to this assertion for OBS data. We showed in that paper that a linear and non-iterative solution to the problem of attenuating free-surface multiples which is as accurate as iterative non-linear solutions can be constructed for OBS data. We here present a similar linear and non-iterative solution for attenuating free-surface multiples in towed-streamer data. For most practical purposes, this linear solution is as accurate as the non-linear ones.
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Hosseini, Kamyar; Samadani, Farzan; Raza, Nauman
2018-07-01
A wide range of problems in different fields of the applied sciences especially non-linear optics is described by non-linear Schrödinger's equations (NLSEs). In the present paper, a specific type of NLSEs known as the cubic-quintic non-linear Schrödinger's equation including an anti-cubic term has been studied. The generalized Kudryashov method along with symbolic computation package has been exerted to carry out this objective. As a consequence, a series of optical soliton solutions have formally been retrieved. It is corroborated that the generalized form of Kudryashov method is a direct, effectual, and reliable technique to deal with various types of non-linear Schrödinger's equations.
Global GNSS processing based on the raw observation approach
NASA Astrophysics Data System (ADS)
Strasser, Sebastian; Zehentner, Norbert; Mayer-Gürr, Torsten
2017-04-01
Many global navigation satellite system (GNSS) applications, e.g. Precise Point Positioning (PPP), require high-quality GNSS products, such as precise GNSS satellite orbits and clocks. These products are routinely determined by analysis centers of the International GNSS Service (IGS). The current processing methods of the analysis centers make use of the ionosphere-free linear combination to reduce the ionospheric influence. Some of the analysis centers also form observation differences, in general double-differences, to eliminate several additional error sources. The raw observation approach is a new GNSS processing approach that was developed at Graz University of Technology for kinematic orbit determination of low Earth orbit (LEO) satellites and subsequently adapted to global GNSS processing in general. This new approach offers some benefits compared to well-established approaches, such as a straightforward incorporation of new observables due to the avoidance of observation differences and linear combinations. This becomes especially important in view of the changing GNSS landscape with two new systems, the European system Galileo and the Chinese system BeiDou, currently in deployment. GNSS products generated at Graz University of Technology using the raw observation approach currently comprise precise GNSS satellite orbits and clocks, station positions and clocks, code and phase biases, and Earth rotation parameters. To evaluate the new approach, products generated using the Global Positioning System (GPS) constellation and observations from the global IGS station network are compared to those of the IGS analysis centers. The comparisons show that the products generated at Graz University of Technology are on a similar level of quality to the products determined by the IGS analysis centers. This confirms that the raw observation approach is applicable to global GNSS processing. Some areas requiring further work have been identified, enabling future improvements of the method.
Quantitative analysis of eyes and other optical systems in linear optics.
Harris, William F; Evans, Tanya; van Gool, Radboud D
2017-05-01
To show that 14-dimensional spaces of augmented point P and angle Q characteristics, matrices obtained from the ray transference, are suitable for quantitative analysis although only the latter define an inner-product space and only on it can one define distances and angles. The paper examines the nature of the spaces and their relationships to other spaces including symmetric dioptric power space. The paper makes use of linear optics, a three-dimensional generalization of Gaussian optics. Symmetric 2 × 2 dioptric power matrices F define a three-dimensional inner-product space which provides a sound basis for quantitative analysis (calculation of changes, arithmetic means, etc.) of refractive errors and thin systems. For general systems the optical character is defined by the dimensionally-heterogeneous 4 × 4 symplectic matrix S, the transference, or if explicit allowance is made for heterocentricity, the 5 × 5 augmented symplectic matrix T. Ordinary quantitative analysis cannot be performed on them because matrices of neither of these types constitute vector spaces. Suitable transformations have been proposed but because the transforms are dimensionally heterogeneous the spaces are not naturally inner-product spaces. The paper obtains 14-dimensional spaces of augmented point P and angle Q characteristics. The 14-dimensional space defined by the augmented angle characteristics Q is dimensionally homogenous and an inner-product space. A 10-dimensional subspace of the space of augmented point characteristics P is also an inner-product space. The spaces are suitable for quantitative analysis of the optical character of eyes and many other systems. Distances and angles can be defined in the inner-product spaces. The optical systems may have multiple separated astigmatic and decentred refracting elements. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Nonlinear Dynamic Models in Advanced Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry
2002-01-01
To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.
NASA Astrophysics Data System (ADS)
Wang, Xuezhen; Lai, Jiancheng; Song, Yang; Li, Zhenhua
2018-05-01
It is generally recognized that circularly polarized light is preferentially maintained over linearly polarized light in turbid medium with Mie scatterers. However, in this work, the anomalous depolarization anisotropy is reported in the backscattering area near the point of illumination. Both experimental and Monte Carlo simulations show preferential retention of linear polarization states compared to circular polarization states in a specific backscattering area. Further analysis indicates that the anomalous depolarization behavior in the specific area is induced by lateral scattering events, which own low circular polarization memory. In addition, it is also found that the size of the anomalous depolarization area is related to the transport mean free path of the turbid medium.
EEG feature selection method based on decision tree.
Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun
2015-01-01
This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.
A Permutation Approach for Selecting the Penalty Parameter in Penalized Model Selection
Sabourin, Jeremy A; Valdar, William; Nobel, Andrew B
2015-01-01
Summary We describe a simple, computationally effcient, permutation-based procedure for selecting the penalty parameter in LASSO penalized regression. The procedure, permutation selection, is intended for applications where variable selection is the primary focus, and can be applied in a variety of structural settings, including that of generalized linear models. We briefly discuss connections between permutation selection and existing theory for the LASSO. In addition, we present a simulation study and an analysis of real biomedical data sets in which permutation selection is compared with selection based on the following: cross-validation (CV), the Bayesian information criterion (BIC), Scaled Sparse Linear Regression, and a selection method based on recently developed testing procedures for the LASSO. PMID:26243050
Tori and chaos in a simple C1-system
NASA Astrophysics Data System (ADS)
Roessler, O. E.; Kahiert, C.; Ughleke, B.
A piecewise-linear autonomous 3-variable ordinary differential equation is presented which permits analytical modeling of chaotic attractors. A once-differentiable system of equations is defined which consists of two linear half-systems which meet along a threshold plane. The trajectories described by each equation is thereby continuous along the divide, forming a one-parameter family of invariant tori. The addition of a damping term produces a system of equations for various chaotic attractors. Extension of the system by means of a 4-variable generalization yields hypertori and hyperchaos. It is noted that the hierarchy established is amenable to analysis by the use of Poincare half-maps. Applications of the systems of ordinary differential equations to modeling turbulent flows are discussed.
A Flight Dynamics Model for a Multi-Actuated Flexible Rocket Vehicle
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2011-01-01
A comprehensive set of motion equations for a multi-actuated flight vehicle is presented. The dynamics are derived from a vector approach that generalizes the classical linear perturbation equations for flexible launch vehicles into a coupled three-dimensional model. The effects of nozzle and aerosurface inertial coupling, sloshing propellant, and elasticity are incorporated without restrictions on the position, orientation, or number of model elements. The present formulation is well suited to matrix implementation for large-scale linear stability and sensitivity analysis and is also shown to be extensible to nonlinear time-domain simulation through the application of a special form of Lagrange s equations in quasi-coordinates. The model is validated through frequency-domain response comparison with a high-fidelity planar implementation.
Quasi-Linear Parameter Varying Representation of General Aircraft Dynamics Over Non-Trim Region
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob
2007-01-01
For applying linear parameter varying (LPV) control synthesis and analysis to a nonlinear system, it is required that a nonlinear system be represented in the form of an LPV model. In this paper, a new representation method is developed to construct an LPV model from a nonlinear mathematical model without the restriction that an operating point must be in the neighborhood of equilibrium points. An LPV model constructed by the new method preserves local stabilities of the original nonlinear system at "frozen" scheduling parameters and also represents the original nonlinear dynamics of a system over a non-trim region. An LPV model of the motion of FASER (Free-flying Aircraft for Subscale Experimental Research) is constructed by the new method.
Pérez-Hernández, Oscar; Giesler, Loren J.
2014-01-01
Soil texture has been commonly associated with the population density of Heterodera glycines (soybean cyst nematode: SCN), but such an association has been mainly described in terms of textural classes. In this study, multivariate analysis and a generalized linear modeling approach were used to elucidate the quantitative relationship of soil texture with the observed SCN population density reduction after annual corn rotation in Nebraska. Forty-five commercial production fields were sampled in 2009, 2010, and 2011 and SCN population density (eggs/100 cm3 of soil) for each field was determined before (Pi) and after (Pf) annual corn rotation from ten 3 × 3-m sampling grids. Principal components analysis revealed that, compared with silt and clay, sand had a stronger association with SCN Pi and Pf. Cluster analysis using the average linkage method and confirmed through 1,000 bootstrap simulations identified two groups: one corresponding to predominant silt-and-clay fields and other to sand-predominant fields. This grouping suggested that SCN relative percent population decline was higher in the sandy than in the silt-and-clay predominant group. However, when groups were compared for their SCN population density reduction using Pf as the response, Pi as a covariate, and incorporating the year and field variability, a negative binomial generalized linear model indicated that the SCN population density reduction was not statistically different between the sand-predominant field group and the silt-and-clay predominant group. PMID:24987160
A new approach for modeling gravitational radiation from the inspiral of two neutron stars
NASA Astrophysics Data System (ADS)
Luke, Stephen A.
In this dissertation, a new method of applying the ADM formalism of general relativity to model the gravitational radiation emitted from the realistic inspiral of a neutron star binary is described. A description of the conformally flat condition (CFC) is summarized, and the ADM equations are solved by use of the CFC approach for a neutron star binary. The advantages and limitations of this approach are discussed, and the need for a more accurate improvement to this approach is described. To address this need, a linearized perturbation of the CFC spatial three metric is then introduced. The general relativistic hydrodynamic equations are then allowed to evolve against this basis under the assumption that the first-order corrections to the hydrodynamic variables are negligible compared to their CFC values. As a first approximation, the linear corrections to the conformal factor, lapse function, and shift vector are also assumed to be small compared to the extrinsic curvature and the three metric. A boundary matching method is then introduced as a way of computing the gravitational radiation of this relativistic system without use of the multipole expansion as employed by earlier applications of the CFC approach. It is assumed that at a location far from the source, the three metric is accurately described by a linear correction to Minkowski spacetime. The two polarizations of gravitational radiation can then be computed at that point in terms of the linearized correction to the metric. The evolution equations obtained from the linearized perturbative correction to the CFC approach and the method for recovery of the gravity wave signal are then tested by use of a three-dimensional numerical simulation. This code is used to compute the gravity wave signal emitted a pair of equal mass neutron stars in quasi-stable circular orbits at a point early in their inspiral phase. From this simple numerical analysis, the correct general trend of gravitational radiation is recovered. Comparisons with (5/2) post-Newtonian solutions show a similar gravitational waveform, although inaccuracies are still found to exist from this computation. Finally, several areas for improvement and potential future applications of this technique are discussed.
A class of all digital phase locked loops - Modelling and analysis.
NASA Technical Reports Server (NTRS)
Reddy, C. P.; Gupta, S. C.
1972-01-01
An all digital phase locked loop which tracks the phase of the incoming signal once per carrier cycle is proposed. The different elements and their functions, and the phase lock operation are explained in detail. The general digital loop operation is governed by a non-linear difference equation from which a suitable model is developed. The lock range for the general model is derived. The performance of the digital loop for phase step, and frequency step inputs for different levels of quantization without loop filter, are studied. The analytical results are checked by simulating the actual system on the digital computer.
Effect of fine dust particles and finite electron inertia of rotating magnetized plasma
NASA Astrophysics Data System (ADS)
Kumar, V.; Sutar, D. L.; Pensia, R. K.; Sharma, S.
2018-05-01
A theoretical investigation has been made of the effect of fine dust particles, viscosity and electron inertia on Jeans instability in a self-gravitating magnetized rotating plasma. The MHD model is used to formulate the problem in which a general dispersion relation. A general dispersion relation is obtained from the linearized perturbation equations using the normal mode analysis method. The analytical expressions of the growth rate of Jeans instability are obtained for the longitudinal and transverse mode of propagation. The present result shows that the Jeans criterion of instability is modified due to the presence of viscosity, rotation, and magnetic field.
Phase retrieval in generalized optical interferometry systems.
Farriss, Wesley E; Fienup, James R; Malhotra, Tanya; Vamivakas, A Nick
2018-02-05
Modal analysis of an optical field via generalized interferometry (GI) is a novel technique that treats said field as a linear superposition of transverse modes and recovers the amplitudes of modal weighting coefficients. We use phase retrieval by nonlinear optimization to recover the phase of these modal weighting coefficients. Information diversity increases the robustness of the algorithm by better constraining the solution. Additionally, multiple sets of random starting phase values assist the algorithm in overcoming local minima. The algorithm was able to recover nearly all coefficient phases for simulated fields consisting of up to 21 superpositioned Hermite Gaussian modes from simulated data and proved to be resilient to shot noise.
Chiu, Chi-yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-ling; Xiong, Momiao; Fan, Ruzong
2017-01-01
To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data. PMID:28000696
Chiu, Chi-Yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-Ling; Xiong, Momiao; Fan, Ruzong
2017-02-01
To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data.
The Use of Shrinkage Techniques in the Estimation of Attrition Rates for Large Scale Manpower Models
1988-07-27
auto regressive model combined with a linear program that solves for the coefficients using MAD. But this success has diminished with time (Rowe...8217Harrison-Stevens Forcasting and the Multiprocess Dy- namic Linear Model ", The American Statistician, v.40, pp. 12 9 - 1 3 5 . 1986. 8. Box, G. E. P. and...1950. 40. McCullagh, P. and Nelder, J., Generalized Linear Models , Chapman and Hall. 1983. 41. McKenzie, E. General Exponential Smoothing and the
NASA Astrophysics Data System (ADS)
Donroman, T.; Chesoh, S.; Lim, A.
2018-04-01
This study aimed to investigate the variation patterns of fish fingerling abundance based on month, year and sampling site. Monthly collecting data set of the Na Thap tidal river of southern Thailand, were obtained from June 2005 to October 2015. The square root transformation was employed for maintaining the fingerling data normality. Factor analysis was applied for clustering number of fingerling species and multiple linear regression was used to examine the association between fingerling density and year, month and site. Results from factor analysis classified fingerling into 3 factors based on saline preference; saline water, freshwater and ubiquitous species. The results showed a statistically high significant relation between fingerling density, month, year and site. Abundance of saline water and ubiquitous fingerling density showed similar pattern. Downstream site presented highest fingerling density whereas almost of freshwater fingerling occurred in upstream. This finding confirmed that factor analysis and the general linear regression method can be used as an effective tool for predicting and monitoring wild fingerling density in order to sustain fish stock management.
Suprun, Elena V; Saveliev, Anatoly A; Evtugyn, Gennady A; Lisitsa, Alexander V; Bulko, Tatiana V; Shumyantseva, Victoria V; Archakov, Alexander I
2012-03-15
A novel direct antibodies-free electrochemical approach for acute myocardial infarction (AMI) diagnosis has been developed. For this purpose, a combination of the electrochemical assay of plasma samples with chemometrics was proposed. Screen printed carbon electrodes modified with didodecyldimethylammonium bromide were used for plasma charactrerization by cyclic (CV) and square wave voltammetry and square wave (SWV) voltammetry. It was shown that the cathodic peak in voltammograms at about -250 mV vs. Ag/AgCl can be associated with AMI. In parallel tests, cardiac myoglobin and troponin I, the AMI biomarkers, were determined in each sample by RAMP immunoassay. The applicability of the electrochemical testing for AMI diagnostics was confirmed by statistical methods: generalized linear model (GLM), linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA), artificial neural net (multi-layer perception, MLP), and support vector machine (SVM), all of which were created to obtain the "True-False" distribution prediction where "True" and "False" are, respectively, positive and negative decision about an illness event. Copyright © 2011 Elsevier B.V. All rights reserved.
Non-linear programming in shakedown analysis with plasticity and friction
NASA Astrophysics Data System (ADS)
Spagnoli, A.; Terzano, M.; Barber, J. R.; Klarbring, A.
2017-07-01
Complete frictional contacts, when subjected to cyclic loading, may sometimes develop a favourable situation where slip ceases after a few cycles, an occurrence commonly known as frictional shakedown. Its resemblance to shakedown in plasticity has prompted scholars to apply direct methods, derived from the classical theorems of limit analysis, in order to assess a safe limit to the external loads applied on the system. In circumstances where zones of plastic deformation develop in the material (e.g., because of the large stress concentrations near the sharp edges of a complete contact), it is reasonable to expect an effect of mutual interaction of frictional slip and plastic strains on the load limit below which the global behaviour is non dissipative, i.e., both slip and plastic strains go to zero after some dissipative load cycles. In this paper, shakedown of general two-dimensional discrete systems, involving both friction and plasticity, is discussed and the shakedown limit load is calculated using a non-linear programming algorithm based on the static theorem of limit analysis. An illustrative example related to an elastic-plastic solid containing a frictional crack is provided.
Focal spot motion of linear accelerators and its effect on portal image analysis.
Sonke, Jan-Jakob; Brand, Bob; van Herk, Marcel
2003-06-01
The focal spot of a linear accelerator is often considered to have a fully stable position. In practice, however, the beam control loop of a linear accelerator needs to stabilize after the beam is turned on. As a result, some motion of the focal spot might occur during the start-up phase of irradiation. When acquiring portal images, this motion will affect the projected position of anatomy and field edges, especially when low exposures are used. In this paper, the motion of the focal spot and the effect of this motion on portal image analysis are quantified. A slightly tilted narrow slit phantom was placed at the isocenter of several linear accelerators and images were acquired (3.5 frames per second) by means of an amorphous silicon flat panel imager positioned approximately 0.7 m below the isocenter. The motion of the focal spot was determined by converting the tilted slit images to subpixel accurate line spread functions. The error in portal image analysis due to focal spot motionwas estimated by a subtraction of the relative displacement of the projected slit from the relative displacement of the field edges. It was found that the motion of the focal spot depends on the control system and design of the accelerator. The shift of the focal spot at the start of irradiation ranges between 0.05-0.7 mm in the gun-target (GT) direction. In the left-right (AB) direction the shift is generally smaller. The resulting error in portal image analysis due to focal spotmotion ranges between 0.05-1.1 mm for a dose corresponding to two monitor units (MUs). For 20 MUs, the effect of the focal spot motion reduces to 0.01-0.3 mm. The error in portal image analysis due to focal spot motion can be reduced by reducing the applied dose rate.
Deng, De-Ming; Chang, Cheng-Hung
2015-05-14
Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.
Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B
2015-09-01
Simulation of periodontal ligament (PDL) using non-linear finite element method (FEM) analysis gives better insight into understanding of the biology of tooth movement. The stresses in the PDL were evaluated for intrusion and lingual root torque using non-linear properties. A three-dimensional (3D) FEM model of the maxillary incisors was generated using Solidworks modeling software. Stresses in the PDL were evaluated for intrusive and lingual root torque movements by 3D FEM using ANSYS software. These stresses were compared with linear and non-linear analyses. For intrusive and lingual root torque movements, distribution of stress over the PDL was within the range of optimal stress value as proposed by Lee, but was exceeding the force system given by Proffit as optimum forces for orthodontic tooth movement with linear properties. When same force load was applied in non-linear analysis, stresses were more compared to linear analysis and were beyond the optimal stress range as proposed by Lee for both intrusive and lingual root torque. To get the same stress as linear analysis, iterations were done using non-linear properties and the force level was reduced. This shows that the force level required for non-linear analysis is lesser than that of linear analysis.
Feed-forward control of gear mesh vibration using piezoelectric actuators
NASA Technical Reports Server (NTRS)
Montague, Gerald T.; Kascak, Albert F.; Palazzolo, Alan; Manchala, Daniel; Thomas, Erwin
1994-01-01
This paper presents a novel means for suppressing gear mesh-related vibrations. The key components in this approach are piezoelectric actuators and a high-frequency, analog feed-forward controller. Test results are presented and show up to a 70-percent reduction in gear mesh acceleration and vibration control up to 4500 Hz. The principle of the approach is explained by an analysis of a harmonically excited, general linear vibratory system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai Zehui; Guo Juan; College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006
We propose an asymmetric quantum cloning scheme. Based on the proposal and experiment by Andersen et al. [Phys. Rev. Lett. 94, 240503 (2005)], we generalize it to two asymmetric cases: quantum cloning with asymmetry between output clones and between quadrature variables. These optical implementations also employ linear elements and homodyne detection only. Finally, we also compare the utility of symmetric and asymmetric cloning in an analysis of a squeezed-state quantum key distribution protocol and find that the asymmetric one is more advantageous.
Comparative Design, Modeling, and Control Analysis of Robotic Transmissions
1990-08-01
Stiffening transmission behaviors are shown to be of a conditionally stabilizing nature, while also reducing the dynamic range of impedance- and torque...A closer look. 228 (f) REDEX Cycloidal Gear Reducer - A closer look. 234 (g) Brushless DC Sensorimotors. 239 (4.4) Conclusions 244 (4.4.1) General...the environment profile with the bearing-follower and the rocker arm. Figure 5.2: Experimental Torque Linearity of Brushless DC Motor - Measured vs
UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis
2013-06-01
CRN Common Random Numbers CSV Comma Separated Values DoE Design of Experiment GLM Generalized Linear Model HVT High Value Target JAR Java ARchive JMF... Java Media Framework JRE Java runtime environment Mason Multi-Agent Simulator Of Networks MOE Measure Of Effectiveness MOP Measures Of Performance...with every set several times, and to write a CSV file with the results. Rather than scripting the agent behavior deterministically, the agents should
The scattering analog for infiltration in porous media
NASA Astrophysics Data System (ADS)
Philip, J. R.
1989-11-01
This review takes the form of a set of Chinese boxes. The outermost box gives a brief general account of modem developments in the mathematical physics of unsaturated flow in soils and porous media. This provides the necessary foundations for the second box, which describes the quasi-linear analysis of steady multidimensional unsaturated flow, which is an essential prerequisite to the analog. Only then can we proceed to the innermost box, devoted to our major theme. An exact analog exists between steady quasi-linear flow in unsaturated soils and porous media and the scattering of plane pulses, and the analog carries over to the scattering of plane harmonic waves. Numerous established results, and powerful techniques such as Watson transforms, far-field scattering functions, and optical theorems, become available for the solution and understanding of problems of multidimensional infiltration. These are needed, in particular, to provide the asymptotics of the physically interesting and practically important limit of flows strongly dominated by gravity, with capillary effects weak but nonzero. This is the limit of large s, where s is a characteristic length of the water supply surface normalized with respect to the sorptive length of the soil. These problems are singular in the sense that ignoring capillarity gives a totally incorrect picture of the wetted region. In terms of the optical analog, neglecting capillarity is equivalent to using geometrical optics, with coherent shadows projected to infinity. When exact solutions involve exotic functions, difficulties of both analysis and series summation may be avoided through use of small-s and large-s expansions provided by the analog. Numerous examples are given of solutions obtained through the analog. The scope for extending the application to flows from surface sources, to anisotropic and heterogeneous media, to unsteady flows, and to linear convection-diffusion processes in general is described briefly.
Capisizu, Ana; Aurelian, Sorina; Zamfirescu, Andreea; Omer, Ioana; Haras, Monica; Ciobotaru, Camelia; Onose, Liliana; Spircu, Tiberiu; Onose, Gelu
2015-01-01
To assess the impact of socio-demographic and comorbidity factors, and quantified depressive symptoms on disability in inpatients. Observational cross-sectional study, including a number of 80 elderly (16 men, 64 women; mean age 72.48 years; standard deviation 9.95 years) admitted in the Geriatrics Clinic of "St. Luca" Hospital, Bucharest, between May-July, 2012. We used the Functional Independence Measure, Geriatric Depression Scale and an array of socio-demographic and poly-pathology parameters. Statistical analysis included Wilcoxon and Kruskal-Wallis tests for ordinal variables, linear bivariate correlations, general linear model analysis, ANOVA. FIM scores were negatively correlated with age (R=-0.301; 95%CI=-0.439 -0.163; p=0.007); GDS scores had a statistically significant negative correlation (R=-0.322; 95% CI=-0.324 -0.052; p=0.004) with FIM scores. A general linear model, including other variables (gender, age, provenance, matrimonial state, living conditions, education, respectively number of chronic illnesses) as factors, found living conditions (p=0.027) and the combination of matrimonial state and gender (p=0.004) to significantly influence FIM scores. ANOVA showed significant differences in FIM scores stratified by the number of chronic diseases (p=0.035). Our study objectified the negative impact of depression on functional status; interestingly, education had no influence on FIM scores; living conditions and a combination of matrimonial state and gender had an important impact: patients with living spouses showed better functional scores than divorced/widowers; the number of chronic diseases also affected the FIM scores: lower in patients with significant polypathology. These findings should be considered when designing geriatric rehabilitation programs, especially for home--including skilled--cares.
Lambert, Ronald J W; Mytilinaios, Ioannis; Maitland, Luke; Brown, Angus M
2012-08-01
This study describes a method to obtain parameter confidence intervals from the fitting of non-linear functions to experimental data, using the SOLVER and Analysis ToolPaK Add-In of the Microsoft Excel spreadsheet. Previously we have shown that Excel can fit complex multiple functions to biological data, obtaining values equivalent to those returned by more specialized statistical or mathematical software. However, a disadvantage of using the Excel method was the inability to return confidence intervals for the computed parameters or the correlations between them. Using a simple Monte-Carlo procedure within the Excel spreadsheet (without recourse to programming), SOLVER can provide parameter estimates (up to 200 at a time) for multiple 'virtual' data sets, from which the required confidence intervals and correlation coefficients can be obtained. The general utility of the method is exemplified by applying it to the analysis of the growth of Listeria monocytogenes, the growth inhibition of Pseudomonas aeruginosa by chlorhexidine and the further analysis of the electrophysiological data from the compound action potential of the rodent optic nerve. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Zheng, Wenming; Lin, Zhouchen; Wang, Haixian
2014-04-01
A novel discriminant analysis criterion is derived in this paper under the theoretical framework of Bayes optimality. In contrast to the conventional Fisher's discriminant criterion, the major novelty of the proposed one is the use of L1 norm rather than L2 norm, which makes it less sensitive to the outliers. With the L1-norm discriminant criterion, we propose a new linear discriminant analysis (L1-LDA) method for linear feature extraction problem. To solve the L1-LDA optimization problem, we propose an efficient iterative algorithm, in which a novel surrogate convex function is introduced such that the optimization problem in each iteration is to simply solve a convex programming problem and a close-form solution is guaranteed to this problem. Moreover, we also generalize the L1-LDA method to deal with the nonlinear robust feature extraction problems via the use of kernel trick, and hereafter proposed the L1-norm kernel discriminant analysis (L1-KDA) method. Extensive experiments on simulated and real data sets are conducted to evaluate the effectiveness of the proposed method in comparing with the state-of-the-art methods.
Nonlinear stability analysis of Darcy’s flow with viscous heating
Alves, Leonardo S. de B.; Barletta, Antonio
2016-01-01
The nonlinear stability of a rectangular porous channel saturated by a fluid is here investigated. The aspect ratio of the channel is assumed to be variable. The channel walls are considered impermeable and adiabatic except for the horizontal top which is assumed to be isothermal. The viscous dissipation is acting inside the channel as internal heat generator. A basic throughflow is imposed, and the nonlinear convective stability is investigated by means of the generalized integral transform technique. The neutral stability curve is compared with the one obtained by the linear stability analysis already present in the literature. The growth rate analysis of different unstable modes is performed. The Nusselt number is investigated for several supercritical configurations in order to better understand how the system behaves when conditions far away from neutral stability are considered. The patterns of the neutrally stable convective cells are also reported. Nonlinear simulations support the results obtained by means of the linear stability analysis, confirming that viscous dissipation alone is indeed capable of inducing mixed convection. Low Gebhart or high Péclet numbers lead to a transient overheating of the originally motionless fluid before it settles in its convective steady state. PMID:27279772
Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data
Ying, Gui-shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard
2017-01-01
Purpose To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. Methods We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field data in the elderly. Results When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI −0.03 to 0.32D, P=0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, P=0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller P-values, while analysis of the worse eye provided larger P-values than mixed effects models and marginal models. Conclusion In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision. PMID:28102741
Implementing general quantum measurements on linear optical and solid-state qubits
NASA Astrophysics Data System (ADS)
Ota, Yukihiro; Ashhab, Sahel; Nori, Franco
2013-03-01
We show a systematic construction for implementing general measurements on a single qubit, including both strong (or projection) and weak measurements. We mainly focus on linear optical qubits. The present approach is composed of simple and feasible elements, i.e., beam splitters, wave plates, and polarizing beam splitters. We show how the parameters characterizing the measurement operators are controlled by the linear optical elements. We also propose a method for the implementation of general measurements in solid-state qubits. Furthermore, we show an interesting application of the general measurements, i.e., entanglement amplification. YO is partially supported by the SPDR Program, RIKEN. SA and FN acknowledge ARO, NSF grant No. 0726909, JSPS-RFBR contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.
Viscoelastic stability in a single-screw channel flow
NASA Astrophysics Data System (ADS)
Agbessi, Y.; Bu, L. X.; Béreaux, Y.; Charmeau, J.-Y.
2018-05-01
In this work, we perform a linear stability analysis on pressure and drag flows of an Upper Convected Maxwell viscoelastic fluid. We use the well-recognised method of expanding the disturbances in Chebyschev polynomials and solve the resulting generalized eigenvalues problem with a collocation spectra method. Both the level of elasticity and the back-pressure vary. In a second stage, recent analytic solutions of viscoelastic fluid flows in slowly varying sections [1] are used to extend this stability analysis to flows in a compression or in a diverging section of a single screw channel, for example a wave mixing screw.
Parallel inhomogeneity and the Alfven resonance. 1: Open field lines
NASA Technical Reports Server (NTRS)
Hansen, P. J.; Harrold, B. G.
1994-01-01
In light of a recent demonstration of the general nonexistence of a singularity at the Alfven resonance in cold, ideal, linearized magnetohydrodynamics, we examine the effect of a small density gradient parallel to uniform, open ambient magnetic field lines. To lowest order, energy deposition is quantitatively unaffected but occurs continuously over a thickened layer. This effect is illustrated in a numerical analysis of a plasma sheet boundary layer model with perfectly absorbing boundary conditions. Consequences of the results are discussed, both for the open field line approximation and for the ensuing closed field line analysis.
Confidence Intervals for Assessing Heterogeneity in Generalized Linear Mixed Models
ERIC Educational Resources Information Center
Wagler, Amy E.
2014-01-01
Generalized linear mixed models are frequently applied to data with clustered categorical outcomes. The effect of clustering on the response is often difficult to practically assess partly because it is reported on a scale on which comparisons with regression parameters are difficult to make. This article proposes confidence intervals for…
Estimation of Complex Generalized Linear Mixed Models for Measurement and Growth
ERIC Educational Resources Information Center
Jeon, Minjeong
2012-01-01
Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…
A General Linear Model (GLM) was used to evaluate the deviation of predicted values from expected values for a complex environmental model. For this demonstration, we used the default level interface of the Regional Mercury Cycling Model (R-MCM) to simulate epilimnetic total mer...
Posterior propriety for hierarchical models with log-likelihoods that have norm bounds
Michalak, Sarah E.; Morris, Carl N.
2015-07-17
Statisticians often use improper priors to express ignorance or to provide good frequency properties, requiring that posterior propriety be verified. Our paper addresses generalized linear mixed models, GLMMs, when Level I parameters have Normal distributions, with many commonly-used hyperpriors. It provides easy-to-verify sufficient posterior propriety conditions based on dimensions, matrix ranks, and exponentiated norm bounds, ENBs, for the Level I likelihood. Since many familiar likelihoods have ENBs, which is often verifiable via log-concavity and MLE finiteness, our novel use of ENBs permits unification of posterior propriety results and posterior MGF/moment results for many useful Level I distributions, including those commonlymore » used with multilevel generalized linear models, e.g., GLMMs and hierarchical generalized linear models, HGLMs. Furthermore, those who need to verify existence of posterior distributions or of posterior MGFs/moments for a multilevel generalized linear model given a proper or improper multivariate F prior as in Section 1 should find the required results in Sections 1 and 2 and Theorem 3 (GLMMs), Theorem 4 (HGLMs), or Theorem 5 (posterior MGFs/moments).« less
NASA Technical Reports Server (NTRS)
Wiggins, R. A.
1972-01-01
The discrete general linear inverse problem reduces to a set of m equations in n unknowns. There is generally no unique solution, but we can find k linear combinations of parameters for which restraints are determined. The parameter combinations are given by the eigenvectors of the coefficient matrix. The number k is determined by the ratio of the standard deviations of the observations to the allowable standard deviations in the resulting solution. Various linear combinations of the eigenvectors can be used to determine parameter resolution and information distribution among the observations. Thus we can determine where information comes from among the observations and exactly how it constraints the set of possible models. The application of such analyses to surface-wave and free-oscillation observations indicates that (1) phase, group, and amplitude observations for any particular mode provide basically the same type of information about the model; (2) observations of overtones can enhance the resolution considerably; and (3) the degree of resolution has generally been overestimated for many model determinations made from surface waves.
Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel
2015-09-10
Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.
Advanced statistics: linear regression, part II: multiple linear regression.
Marill, Keith A
2004-01-01
The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.
Dimension Reduction With Extreme Learning Machine.
Kasun, Liyanaarachchi Lekamalage Chamara; Yang, Yan; Huang, Guang-Bin; Zhang, Zhengyou
2016-08-01
Data may often contain noise or irrelevant information, which negatively affect the generalization capability of machine learning algorithms. The objective of dimension reduction algorithms, such as principal component analysis (PCA), non-negative matrix factorization (NMF), random projection (RP), and auto-encoder (AE), is to reduce the noise or irrelevant information of the data. The features of PCA (eigenvectors) and linear AE are not able to represent data as parts (e.g. nose in a face image). On the other hand, NMF and non-linear AE are maimed by slow learning speed and RP only represents a subspace of original data. This paper introduces a dimension reduction framework which to some extend represents data as parts, has fast learning speed, and learns the between-class scatter subspace. To this end, this paper investigates a linear and non-linear dimension reduction framework referred to as extreme learning machine AE (ELM-AE) and sparse ELM-AE (SELM-AE). In contrast to tied weight AE, the hidden neurons in ELM-AE and SELM-AE need not be tuned, and their parameters (e.g, input weights in additive neurons) are initialized using orthogonal and sparse random weights, respectively. Experimental results on USPS handwritten digit recognition data set, CIFAR-10 object recognition, and NORB object recognition data set show the efficacy of linear and non-linear ELM-AE and SELM-AE in terms of discriminative capability, sparsity, training time, and normalized mean square error.
Determination of water depth with high-resolution satellite imagery over variable bottom types
Stumpf, Richard P.; Holderied, Kristine; Sinclair, Mark
2003-01-01
A standard algorithm for determining depth in clear water from passive sensors exists; but it requires tuning of five parameters and does not retrieve depths where the bottom has an extremely low albedo. To address these issues, we developed an empirical solution using a ratio of reflectances that has only two tunable parameters and can be applied to low-albedo features. The two algorithms--the standard linear transform and the new ratio transform--were compared through analysis of IKONOS satellite imagery against lidar bathymetry. The coefficients for the ratio algorithm were tuned manually to a few depths from a nautical chart, yet performed as well as the linear algorithm tuned using multiple linear regression against the lidar. Both algorithms compensate for variable bottom type and albedo (sand, pavement, algae, coral) and retrieve bathymetry in water depths of less than 10-15 m. However, the linear transform does not distinguish depths >15 m and is more subject to variability across the studied atolls. The ratio transform can, in clear water, retrieve depths in >25 m of water and shows greater stability between different areas. It also performs slightly better in scattering turbidity than the linear transform. The ratio algorithm is somewhat noisier and cannot always adequately resolve fine morphology (structures smaller than 4-5 pixels) in water depths >15-20 m. In general, the ratio transform is more robust than the linear transform.
NASA Astrophysics Data System (ADS)
Bičák, Jiří; Schmidt, Josef
2016-01-01
The question of the uniqueness of energy-momentum tensors in the linearized general relativity and in the linear massive gravity is analyzed without using variational techniques. We start from a natural ansatz for the form of the tensor (for example, that it is a linear combination of the terms quadratic in the first derivatives), and require it to be conserved as a consequence of field equations. In the case of the linear gravity in a general gauge we find a four-parametric system of conserved second-rank tensors which contains a unique symmetric tensor. This turns out to be the linearized Landau-Lifshitz pseudotensor employed often in full general relativity. We elucidate the relation of the four-parametric system to the expression proposed recently by Butcher et al. "on physical grounds" in harmonic gauge, and we show that the results coincide in the case of high-frequency waves in vacuum after a suitable averaging. In the massive gravity we show how one can arrive at the expression which coincides with the "generalized linear symmetric Landau-Lifshitz" tensor. However, there exists another uniquely given simpler symmetric tensor which can be obtained by adding the divergence of a suitable superpotential to the canonical energy-momentum tensor following from the Fierz-Pauli action. In contrast to the symmetric tensor derived by the Belinfante procedure which involves the second derivatives of the field variables, this expression contains only the field and its first derivatives. It is simpler than the generalized Landau-Lifshitz tensor but both yield the same total quantities since they differ by the divergence of a superpotential. We also discuss the role of the gauge conditions in the proofs of the uniqueness. In the Appendix, the symbolic tensor manipulation software cadabra is briefly described. It is very effective in obtaining various results which would otherwise require lengthy calculations.
Symmetry Analysis of Gauge-Invariant Field Equations via a Generalized Harrison-Estabrook Formalism.
NASA Astrophysics Data System (ADS)
Papachristou, Costas J.
The Harrison-Estabrook formalism for the study of invariance groups of partial differential equations is generalized and extended to equations that define, through their solutions, sections on vector bundles of various kinds. Applications include the Dirac, Yang-Mills, and self-dual Yang-Mills (SDYM) equations. The latter case exhibits interesting connections between the internal symmetries of SDYM and the existence of integrability characteristics such as a linear ("inverse scattering") system and Backlund transformations (BT's). By "verticalizing" the generators of coordinate point transformations of SDYM, nine nonlocal, generalized (as opposed to local, point) symmetries are constructed. The observation is made that the prolongations of these symmetries are parametric BT's for SDYM. It is thus concluded that the entire point group of SDYM contributes, upon verticalization, BT's to the system.
Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro
2015-04-05
The generalized Born model in the Onufriev, Bashford, and Case (Onufriev et al., Proteins: Struct Funct Genet 2004, 55, 383) implementation has emerged as one of the best compromises between accuracy and speed of computation. For simulations of nucleic acids, however, a number of issues should be addressed: (1) the generalized Born model is based on a linear model and the linearization of the reference Poisson-Boltmann equation may be questioned for highly charged systems as nucleic acids; (2) although much attention has been given to potentials, solvation forces could be much less sensitive to linearization than the potentials; and (3) the accuracy of the Onufriev-Bashford-Case (OBC) model for nucleic acids depends on fine tuning of parameters. Here, we show that the linearization of the Poisson Boltzmann equation has mild effects on computed forces, and that with optimal choice of the OBC model parameters, solvation forces, essential for molecular dynamics simulations, agree well with those computed using the reference Poisson-Boltzmann model. © 2015 Wiley Periodicals, Inc.
Tackling non-linearities with the effective field theory of dark energy and modified gravity
NASA Astrophysics Data System (ADS)
Frusciante, Noemi; Papadomanolakis, Georgios
2017-12-01
We present the extension of the effective field theory framework to the mildly non-linear scales. The effective field theory approach has been successfully applied to the late time cosmic acceleration phenomenon and it has been shown to be a powerful method to obtain predictions about cosmological observables on linear scales. However, mildly non-linear scales need to be consistently considered when testing gravity theories because a large part of the data comes from those scales. Thus, non-linear corrections to predictions on observables coming from the linear analysis can help in discriminating among different gravity theories. We proceed firstly by identifying the necessary operators which need to be included in the effective field theory Lagrangian in order to go beyond the linear order in perturbations and then we construct the corresponding non-linear action. Moreover, we present the complete recipe to map any single field dark energy and modified gravity models into the non-linear effective field theory framework by considering a general action in the Arnowitt-Deser-Misner formalism. In order to illustrate this recipe we proceed to map the beyond-Horndeski theory and low-energy Hořava gravity into the effective field theory formalism. As a final step we derived the 4th order action in term of the curvature perturbation. This allowed us to identify the non-linear contributions coming from the linear order perturbations which at the next order act like source terms. Moreover, we confirm that the stability requirements, ensuring the positivity of the kinetic term and the speed of propagation for scalar mode, are automatically satisfied once the viability of the theory is demanded at linear level. The approach we present here will allow to construct, in a model independent way, all the relevant predictions on observables at mildly non-linear scales.
Asymptotic aspect of derivations in Banach algebras.
Roh, Jaiok; Chang, Ick-Soon
2017-01-01
We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.
NASA Technical Reports Server (NTRS)
Nakazawa, Shohei
1991-01-01
Formulations and algorithms implemented in the MHOST finite element program are discussed. The code uses a novel concept of the mixed iterative solution technique for the efficient 3-D computations of turbine engine hot section components. The general framework of variational formulation and solution algorithms are discussed which were derived from the mixed three field Hu-Washizu principle. This formulation enables the use of nodal interpolation for coordinates, displacements, strains, and stresses. Algorithmic description of the mixed iterative method includes variations for the quasi static, transient dynamic and buckling analyses. The global-local analysis procedure referred to as the subelement refinement is developed in the framework of the mixed iterative solution, of which the detail is presented. The numerically integrated isoparametric elements implemented in the framework is discussed. Methods to filter certain parts of strain and project the element discontinuous quantities to the nodes are developed for a family of linear elements. Integration algorithms are described for linear and nonlinear equations included in MHOST program.
Analysis and generation of groundwater concentration time series
NASA Astrophysics Data System (ADS)
Crăciun, Maria; Vamoş, Călin; Suciu, Nicolae
2018-01-01
Concentration time series are provided by simulated concentrations of a nonreactive solute transported in groundwater, integrated over the transverse direction of a two-dimensional computational domain and recorded at the plume center of mass. The analysis of a statistical ensemble of time series reveals subtle features that are not captured by the first two moments which characterize the approximate Gaussian distribution of the two-dimensional concentration fields. The concentration time series exhibit a complex preasymptotic behavior driven by a nonstationary trend and correlated fluctuations with time-variable amplitude. Time series with almost the same statistics are generated by successively adding to a time-dependent trend a sum of linear regression terms, accounting for correlations between fluctuations around the trend and their increments in time, and terms of an amplitude modulated autoregressive noise of order one with time-varying parameter. The algorithm generalizes mixing models used in probability density function approaches. The well-known interaction by exchange with the mean mixing model is a special case consisting of a linear regression with constant coefficients.
Analysis and design of a six-degree-of-freedom Stewart platform-based robotic wrist
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami; Zhou, Zhen-Lei
1991-01-01
The kinematic analysis and implementation of a six degree of freedom robotic wrist which is mounted to a general open-kinetic chain manipulator to serve as a restbed for studying precision robotic assembly in space is discussed. The wrist design is based on the Stewart Platform mechanism and consists mainly of two platforms and six linear actuators driven by DC motors. Position feedback is achieved by linear displacement transducers mounted along the actuators and force feedback is obtained by a 6 degree of freedom force sensor mounted between the gripper and the payload platform. The robot wrist inverse kinematics which computes the required actuator lengths corresponding to Cartesian variables has a closed-form solution. The forward kinematics is solved iteratively using the Newton-Ralphson method which simultaneously provides a modified Jacobian Matrix which relates length velocities to Cartesian translational velocities and time rates of change of roll-pitch-yaw angles. Results of computer simulation conducted to evaluate the efficiency of the forward kinematics and Modified Jacobian Matrix are discussed.
NASA Astrophysics Data System (ADS)
Kothavale, Shantaram; Katariya, Santosh; Sekar, Nagaiyan
2018-01-01
Rigid pyrazino-phenanthroline based donor-π-acceptor-π-auxiliary acceptor type compounds have been studied for their linear and non-linear optical properties. The non-linear optical (NLO) behavior of these dyes was studied by calculating the values of static α , β and γ using solvatochromic as well as computational methods. The results obtained by solvatochromic method are correlated theoretically with Density Functional Theory (DFT) using B3LYP/6-31G (d), CAM B3LYP/6-31 G(d), B3LYP/6-31++ g(d,P) and CAM B3LYP/6-31++ g(d,P) methods. The results reveal that, among all four computational methods CAM-B3LYP/6-31++ g(d,P) performs well for the calculation of linear polarizability (α) and first order hyperpolarizability (β), while CAM-B3LYP/6-31 g(d,P) for the calculation of second order hyperpolarizability (ϒ). Overall TPA depends on the molecular structure variation with increase in complexity and molecular weight, which implies that both the number of branches and the size of π-framework are important factors for the molecular TPA in this chromophoric system. Generalized Mulliken-Hush (GMH) analysis is performed to study the effective charge transfer from donor to acceptor.
NASA Astrophysics Data System (ADS)
Bezruczko, N.; Stanley, T.; Battle, M.; Latty, C.
2016-11-01
Despite broad sweeping pronouncements by international research organizations that social sciences are being integrated into global research programs, little attention has been directed toward obstacles blocking productive collaborations. In particular, social sciences routinely implement nonlinear, ordinal measures, which fundamentally inhibit integration with overarching scientific paradigms. The widely promoted general linear model in contemporary social science methods is largely based on untransformed scores and ratings, which are neither objective nor linear. This issue has historically separated physical and social sciences, which this report now asserts is unnecessary. In this research, nonlinear, subjective caregiver ratings of confidence to care for children supported by complex, medical technologies were transformed to an objective scale defined by logits (N=70). Transparent linear units from this transformation provided foundational insights into measurement properties of a social- humanistic caregiving construct, which clarified physical and social caregiver implications. Parameterized items and ratings were also subjected to multivariate hierarchical analysis, then decomposed to demonstrate theoretical coherence (R2 >.50), which provided further support for convergence of mathematical parameterization, physical expectations, and a social-humanistic construct. These results present substantial support for improving integration of social sciences with contemporary scientific research programs by emphasizing construction of common variables with objective, linear units.
Action-angle formulation of generalized, orbit-based, fast-ion diagnostic weight functions
NASA Astrophysics Data System (ADS)
Stagner, L.; Heidbrink, W. W.
2017-09-01
Due to the usually complicated and anisotropic nature of the fast-ion distribution function, diagnostic velocity-space weight functions, which indicate the sensitivity of a diagnostic to different fast-ion velocities, are used to facilitate the analysis of experimental data. Additionally, when velocity-space weight functions are discretized, a linear equation relating the fast-ion density and the expected diagnostic signal is formed. In a technique known as velocity-space tomography, many measurements can be combined to create an ill-conditioned system of linear equations that can be solved using various computational methods. However, when velocity-space weight functions (which by definition ignore spatial dependencies) are used, velocity-space tomography is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostic measurements. In this work, we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e., orbit tomography. In depth derivations of orbit weight functions for the neutron, neutral particle analyzer, and fast-ion D-α diagnostics are also shown.
NASA Astrophysics Data System (ADS)
Kala, Zdeněk; Kala, Jiří
2011-09-01
The main focus of the paper is the analysis of the influence of residual stress on the ultimate limit state of a hot-rolled member in compression. The member was modelled using thin-walled elements of type SHELL 181 and meshed in the programme ANSYS. Geometrical and material non-linear analysis was used. The influence of residual stress was studied using variance-based sensitivity analysis. In order to obtain more general results, the non-dimensional slenderness was selected as a study parameter. Comparison of the influence of the residual stress with the influence of other dominant imperfections is illustrated in the conclusion of the paper. All input random variables were considered according to results of experimental research.
NASA Astrophysics Data System (ADS)
Zhang, L.; Dang, H. Z.; Tan, J.; Bao, D.; Zhao, Y. B.; Qian, G. Z.
2015-12-01
Theoretical and experimental investigations on the dynamic and thermodynamic characteristics of a linear compressor incorporating the thermodynamic characteristics of the inertance tube pulse tube cold finger have been made. Both the compressor and cold finger are assumed as a one-dimensional thermodynamic model. The governing equations of the thermodynamic characteristics of the working gas are summarized, and the effects of the cooling performance on the working gas in the compression space are discussed. Based on the analysis of the working gas, the governing equations of the dynamic and thermodynamic characteristics of the compressor are deduced, and then the principles of achieving the optimal performance of the compressor are discussed in detail. Systematic experimental investigations are conducted on a developed moving-coil linear compressor which drives a pulse tube cold finger, which indicate the general agreement with the simulated results, and thus verify the rationality of the theoretical model and analyses.