Science.gov

Sample records for analysis identifies genes

  1. Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes.

    PubMed

    Jones, Ashley R; Troakes, Claire; King, Andrew; Sahni, Vibhu; De Jong, Simone; Bossers, Koen; Papouli, Efterpi; Mirza, Muddassar; Al-Sarraj, Safa; Shaw, Christopher E; Shaw, Pamela J; Kirby, Janine; Veldink, Jan H; Macklis, Jeffrey D; Powell, John F; Al-Chalabi, Ammar

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons resulting in progressive paralysis. Gene expression studies of ALS only rarely identify the same gene pathways as gene association studies. We hypothesized that analyzing tissues by matching on degree of disease severity would identify different patterns of gene expression from a traditional case-control comparison. We analyzed gene expression changes in 4 postmortem central nervous system regions, stratified by severity of motor neuron loss. An overall comparison of cases (n = 6) and controls (n = 3) identified known ALS gene, SOX5, as showing differential expression (log2 fold change = 0.09, p = 5.5 × 10(-5)). Analyses stratified by disease severity identified expression changes in C9orf72 (p = 2.77 × 10(-3)), MATR3 (p = 3.46 × 10(-3)), and VEGFA (p = 8.21 × 10(-4)), all implicated in ALS through genetic studies, and changes in other genes in pathways involving RNA processing and immune response. These findings suggest that analysis of gene expression stratified by disease severity can identify major ALS genes and may be more efficient than traditional case-control comparison. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Identifying genes of gene regulatory networks using formal concept analysis.

    PubMed

    Gebert, Jutta; Motameny, Susanne; Faigle, Ulrich; Forst, Christian V; Schrader, Rainer

    2008-03-01

    In order to understand the behavior of a gene regulatory network, it is essential to know the genes that belong to it. Identifying the correct members (e.g., in order to build a model) is a difficult task even for small subnetworks. Usually only few members of a network are known and one needs to guess the missing members based on experience or informed speculation. It is beneficial if one can additionally rely on experimental data to support this guess. In this work we present a new method based on formal concept analysis to detect unknown members of a gene regulatory network from gene expression time series data. We show that formal concept analysis is able to find a list of candidate genes for inclusion into a partially known basic network. This list can then be reduced by a statistical analysis so that the resulting genes interact strongly with the basic network and therefore should be included when modeling the network. The method has been applied to the DNA repair system of Mycobacterium tuberculosis. In this application, our method produces comparable results to an already existing method of component selection while it is applicable to a broader range of problems.

  3. Rice transcriptome analysis to identify possible herbicide quinclorac detoxification genes

    PubMed Central

    Xu, Wenying; Di, Chao; Zhou, Shaoxia; Liu, Jia; Li, Li; Liu, Fengxia; Yang, Xinling; Ling, Yun; Su, Zhen

    2015-01-01

    Quinclorac is a highly selective auxin-type herbicide and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world's rice yield. The herbicide mode of action of quinclorac has been proposed, and hormone interactions affecting quinclorac signaling has been identified. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and other environmental health problems. In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate genes of P450 families such as CYP81, CYP709C, and CYP72A were universally induced by different herbicides. Some Arabidopsis genes of the same P450 family were up-regulated under quinclorac treatment. We conducted rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution. PMID:26483837

  4. Analysis of gene expression profile identifies potential biomarkers for atherosclerosis

    PubMed Central

    Liu, Luran; Liu, Yan; Liu, Chang; Zhang, Zhuobo; Du, Yaojun; Zhao, Hao

    2016-01-01

    The present study aimed to identify potential biomarkers for atherosclerosis via analysis of gene expression profiles. The microarray dataset no. GSE20129 was downloaded from the Gene Expression Omnibus database. A total of 118 samples from the peripheral blood of female patients was used, including 47 atherosclerotic and 71 non-atherosclerotic patients. The differentially expressed genes (DEGs) in the atherosclerosis samples were identified using the Limma package. Gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses for DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery tool. The recursive feature elimination (RFE) algorithm was applied for feature selection via iterative classification, and support vector machine classifier was used for the validation of prediction accuracy. A total of 430 DEGs in the atherosclerosis samples were identified, including 149 up- and 281 downregulated genes. Subsequently, the RFE algorithm was used to identify 11 biomarkers, whose receiver operating characteristic curves had an area under curve of 0.92, indicating that the identified 11 biomarkers were representative. The present study indicated that APH1B, JAM3, FBLN2, CSAD and PSTPIP2 may have important roles in the progression of atherosclerosis in females and may be potential biomarkers for early diagnosis and prognosis as well as treatment targets for this disease. PMID:27573188

  5. Identifying genes related with rheumatoid arthritis via system biology analysis.

    PubMed

    Liu, Tao; Lin, Xinmei; Yu, Hongjian

    2015-10-15

    Rheumatoid arthritis (RA) is a chronic, inflammatory joint disease that mainly attacks synovial joints. However, the underlying systematic relationship among different genes and biological processes involved in the pathogenesis are still unclear. By analyzing and comparing the transcriptional profiles from RA, OA (osteoarthritis) patients as well as ND (normal donors) with bioinformatics methods, we tend to uncover the potential molecular networks and critical genes which play important roles in RA and OA development. Initially, hierarchical clustering was performed to classify the overall transcriptional profiles. Differentially expressed genes (DEGs) between ND and RA and OA patients were identified. Furthermore, PPI networks were constructed, functional modules were extracted, and functional annotation was also applied. Our functional analysis identifies 22 biological processes and 2 KEGG pathways enriched in the commonly-regulated gene set. However, we found that number of set of genes differentially expressed genes only between RA and ND reaches up to 244, indicating this gene set may specifically accounts for processing to disease of RA. Additionally, 142 biological processes and 19 KEGG pathways are over-represented by these 244 genes. Meanwhile, although another 21 genes were differentially expressed only in OA and ND, no biological process nor pathway is over-represented by them.

  6. Phage cluster relationships identified through single gene analysis

    PubMed Central

    2013-01-01

    Background Phylogenetic comparison of bacteriophages requires whole genome approaches such as dotplot analysis, genome pairwise maps, and gene content analysis. Currently mycobacteriophages, a highly studied phage group, are categorized into related clusters based on the comparative analysis of whole genome sequences. With the recent explosion of phage isolation, a simple method for phage cluster prediction would facilitate analysis of crude or complex samples without whole genome isolation and sequencing. The hypothesis of this study was that mycobacteriophage-cluster prediction is possible using comparison of a single, ubiquitous, semi-conserved gene. Tape Measure Protein (TMP) was selected to test the hypothesis because it is typically the longest gene in mycobacteriophage genomes and because regions within the TMP gene are conserved. Results A single gene, TMP, identified the known Mycobacteriophage clusters and subclusters using a Gepard dotplot comparison or a phylogenetic tree constructed from global alignment and maximum likelihood comparisons. Gepard analysis of 247 mycobacteriophage TMP sequences appropriately recovered 98.8% of the subcluster assignments that were made by whole-genome comparison. Subcluster-specific primers within TMP allow for PCR determination of the mycobacteriophage subcluster from DNA samples. Using the single-gene comparison approach for siphovirus coliphages, phage groupings by TMP comparison reflected relationships observed in a whole genome dotplot comparison and confirm the potential utility of this approach to another widely studied group of phages. Conclusions TMP sequence comparison and PCR results support the hypothesis that a single gene can be used for distinguishing phage cluster and subcluster assignments. TMP single-gene analysis can quickly and accurately aid in mycobacteriophage classification. PMID:23777341

  7. Meta-analysis of gene expression data identifies causal genes for prostate cancer.

    PubMed

    Wang, Xiang-Yang; Hao, Jian-Wei; Zhou, Rui-Jin; Zhang, Xiang-Sheng; Yan, Tian-Zhong; Ding, De-Gang; Shan, Lei

    2013-01-01

    Prostate cancer is a leading cause of death in male populations across the globe. With the advent of gene expression arrays, many microarray studies have been conducted in prostate cancer, but the results have varied across different studies. To better understand the genetic and biologic mechanisms of prostate cancer, we conducted a meta-analysis of two studies on prostate cancer. Eight key genes were identified to be differentially expressed with progression. After gene co-expression analysis based on data from the GEO database, we obtained a co- expressed gene list which included 725 genes. Gene Ontology analysis revealed that these genes are involved in actin filament-based processes, locomotion and cell morphogenesis. Further analysis of the gene list should provide important clues for developing new prognostic markers and therapeutic targets.

  8. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

    PubMed

    Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin

    2017-08-01

    This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  9. Gastric Cancer Associated Genes Identified by an Integrative Analysis of Gene Expression Data

    PubMed Central

    Jiang, Bing; Li, Shuwen; Jiang, Zhi

    2017-01-01

    Gastric cancer is one of the most severe complex diseases with high morbidity and mortality in the world. The molecular mechanisms and risk factors for this disease are still not clear since the cancer heterogeneity caused by different genetic and environmental factors. With more and more expression data accumulated nowadays, we can perform integrative analysis for these data to understand the complexity of gastric cancer and to identify consensus players for the heterogeneous cancer. In the present work, we screened the published gene expression data and analyzed them with integrative tool, combined with pathway and gene ontology enrichment investigation. We identified several consensus differentially expressed genes and these genes were further confirmed with literature mining; at last, two genes, that is, immunoglobulin J chain and C-X-C motif chemokine ligand 17, were screened as novel gastric cancer associated genes. Experimental validation is proposed to further confirm this finding. PMID:28232943

  10. Reconstructability analysis as a tool for identifying gene-gene interactions in studies of human diseases.

    PubMed

    Shervais, Stephen; Kramer, Patricia L; Westaway, Shawn K; Cox, Nancy J; Zwick, Martin

    2010-01-01

    There are a number of common human diseases for which the genetic component may include an epistatic interaction of multiple genes. Detecting these interactions with standard statistical tools is difficult because there may be an interaction effect, but minimal or no main effect. Reconstructability analysis (RA) uses Shannon's information theory to detect relationships between variables in categorical datasets. We applied RA to simulated data for five different models of gene-gene interaction, and find that even with heritability levels as low as 0.008, and with the inclusion of 50 non-associated genes in the dataset, we can identify the interacting gene pairs with an accuracy of > or =80%. We applied RA to a real dataset of type 2 non-insulin-dependent diabetes (NIDDM) cases and controls, and closely approximated the results of more conventional single SNP disease association studies. In addition, we replicated prior evidence for epistatic interactions between SNPs on chromosomes 2 and 15.

  11. Gene-based rare allele analysis identified a risk gene of Alzheimer's disease.

    PubMed

    Kim, Jong Hun; Song, Pamela; Lim, Hyunsun; Lee, Jae-Hyung; Lee, Jun Hong; Park, Sun Ah

    2014-01-01

    Alzheimer's disease (AD) has a strong propensity to run in families. However, the known risk genes excluding APOE are not clinically useful. In various complex diseases, gene studies have targeted rare alleles for unsolved heritability. Our study aims to elucidate previously unknown risk genes for AD by targeting rare alleles. We used data from five publicly available genetic studies from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the database of Genotypes and Phenotypes (dbGaP). A total of 4,171 cases and 9,358 controls were included. The genotype information of rare alleles was imputed using 1,000 genomes. We performed gene-based analysis of rare alleles (minor allele frequency≤3%). The genome-wide significance level was defined as meta P<1.8×10(-6) (0.05/number of genes in human genome = 0.05/28,517). ZNF628, which is located at chromosome 19q13.42, showed a genome-wide significant association with AD. The association of ZNF628 with AD was not dependent on APOE ε4. APOE and TREM2 were also significantly associated with AD, although not at genome-wide significance levels. Other genes identified by targeting common alleles could not be replicated in our gene-based rare allele analysis. We identified that rare variants in ZNF628 are associated with AD. The protein encoded by ZNF628 is known as a transcription factor. Furthermore, the associations of APOE and TREM2 with AD were highly significant, even in gene-based rare allele analysis, which implies that further deep sequencing of these genes is required in AD heritability studies.

  12. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    PubMed

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Gene expression patterns combined with bioinformatics analysis identify genes associated with cholangiocarcinoma.

    PubMed

    Li, Chen; Shen, Weixing; Shen, Sheng; Ai, Zhilong

    2013-12-01

    To explore the molecular mechanisms of cholangiocarcinoma (CC), microarray technology was used to find biomarkers for early detection and diagnosis. The gene expression profiles from 6 patients with CC and 5 normal controls were downloaded from Gene Expression Omnibus and compared. As a result, 204 differentially co-expressed genes (DCGs) in CC patients compared to normal controls were identified using a computational bioinformatics analysis. These genes were mainly involved in coenzyme metabolic process, peptidase activity and oxidation reduction. A regulatory network was constructed by mapping the DCGs to known regulation data. Four transcription factors, FOXC1, ZIC2, NKX2-2 and GCGR, were hub nodes in the network. In conclusion, this study provides a set of targets useful for future investigations into molecular biomarker studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia

    PubMed Central

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-01-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ∼1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10−11) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10−4), excitability (P=9.0 × 10−4) and cell adhesion and trans-synaptic signaling (P=2.4 × 10−3). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia. PMID:21931320

  15. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia.

    PubMed

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-10-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ~1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10(-11)) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10(-4)), excitability (P=9.0 × 10(-4)) and cell adhesion and trans-synaptic signaling (P=2.4 × 10(-3)). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia.

  16. Gene expression analysis at multiple time-points identifies key genes for nerve regeneration.

    PubMed

    Pan, Bin; Liu, Yi; Yan, Jia-Yin; Wang, Yao; Yao, Xue; Zhou, Heng-Xing; Lu, Lu; Kong, Xiao-Hong; Feng, Shi-Qing

    2017-03-01

    The purpose of this study was to provide a comprehensive understanding of gene expression during Wallerian degeneration and axon regeneration after peripheral nerve injury. A microarray was used to detect gene expression in the distal nerve 0, 3, 7, and 14 days after sciatic nerve crush. Bioinformatic analysis was used to predict function of the differentially expressed mRNAs. Microarray results and the key pathways were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Differentially expressed mRNAs at different time-points (3, 7, and 14 days) after injury were identified and compared with a control group (0 day). Nine general trends of changes in gene expression were identified. Key signal pathways and 9 biological processes closely associated with nerve regeneration were identified and verified. Differentially expressed genes and biological processes and pathways associated with axonal regeneration may elucidate the molecular-biological mechanisms underlying peripheral nerve regeneration. Muscle Nerve 55: 373-383, 2017. © 2016 Wiley Periodicals, Inc.

  17. Systematic analysis of microarray datasets to identify Parkinson's disease-associated pathways and genes

    PubMed Central

    Feng, Yinling; Wang, Xuefeng

    2017-01-01

    In order to investigate commonly disturbed genes and pathways in various brain regions of patients with Parkinson's disease (PD), microarray datasets from previous studies were collected and systematically analyzed. Different normalization methods were applied to microarray datasets from different platforms. A strategy combining gene co-expression networks and clinical information was adopted, using weighted gene co-expression network analysis (WGCNA) to screen for commonly disturbed genes in different brain regions of patients with PD. Functional enrichment analysis of commonly disturbed genes was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Co-pathway relationships were identified with Pearson's correlation coefficient tests and a hypergeometric distribution-based test. Common genes in pathway pairs were selected out and regarded as risk genes. A total of 17 microarray datasets from 7 platforms were retained for further analysis. Five gene coexpression modules were identified, containing 9,745, 736, 233, 101 and 93 genes, respectively. One module was significantly correlated with PD samples and thus the 736 genes it contained were considered to be candidate PD-associated genes. Functional enrichment analysis demonstrated that these genes were implicated in oxidative phosphorylation and PD. A total of 44 pathway pairs and 52 risk genes were revealed, and a risk gene pathway relationship network was constructed. Eight modules were identified and were revealed to be associated with PD, cancers and metabolism. A number of disturbed pathways and risk genes were unveiled in PD, and these findings may help advance understanding of PD pathogenesis. PMID:28098893

  18. Systematic analysis of microarray datasets to identify Parkinson's disease‑associated pathways and genes.

    PubMed

    Feng, Yinling; Wang, Xuefeng

    2017-03-01

    In order to investigate commonly disturbed genes and pathways in various brain regions of patients with Parkinson's disease (PD), microarray datasets from previous studies were collected and systematically analyzed. Different normalization methods were applied to microarray datasets from different platforms. A strategy combining gene co‑expression networks and clinical information was adopted, using weighted gene co‑expression network analysis (WGCNA) to screen for commonly disturbed genes in different brain regions of patients with PD. Functional enrichment analysis of commonly disturbed genes was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Co‑pathway relationships were identified with Pearson's correlation coefficient tests and a hypergeometric distribution‑based test. Common genes in pathway pairs were selected out and regarded as risk genes. A total of 17 microarray datasets from 7 platforms were retained for further analysis. Five gene coexpression modules were identified, containing 9,745, 736, 233, 101 and 93 genes, respectively. One module was significantly correlated with PD samples and thus the 736 genes it contained were considered to be candidate PD‑associated genes. Functional enrichment analysis demonstrated that these genes were implicated in oxidative phosphorylation and PD. A total of 44 pathway pairs and 52 risk genes were revealed, and a risk gene pathway relationship network was constructed. Eight modules were identified and were revealed to be associated with PD, cancers and metabolism. A number of disturbed pathways and risk genes were unveiled in PD, and these findings may help advance understanding of PD pathogenesis.

  19. Analysis of gene order conservation in eukaryotes identifies transcriptionally and functionally linked genes.

    PubMed

    Dávila López, Marcela; Martínez Guerra, Juan José; Samuelsson, Tore

    2010-05-14

    The order of genes in eukaryotes is not entirely random. Studies of gene order conservation are important to understand genome evolution and to reveal mechanisms why certain neighboring genes are more difficult to separate during evolution. Here, genome-wide gene order information was compiled for 64 species, representing a wide variety of eukaryotic phyla. This information is presented in a browser where gene order may be displayed and compared between species. Factors related to non-random gene order in eukaryotes were examined by considering pairs of neighboring genes. The evolutionary conservation of gene pairs was studied with respect to relative transcriptional direction, intergenic distance and functional relationship as inferred by gene ontology. The results show that among gene pairs that are conserved the divergently and co-directionally transcribed genes are much more common than those that are convergently transcribed. Furthermore, highly conserved pairs, in particular those of fungi, are characterized by a short intergenic distance. Finally, gene pairs of metazoa and fungi that are evolutionary conserved and that are divergently transcribed are much more likely to be related by function as compared to poorly conserved gene pairs. One example is the ribosomal protein gene pair L13/S16, which is unusual as it occurs both in fungi and alveolates. A specific functional relationship between these two proteins is also suggested by the fact that they are part of the same operon in both eubacteria and archaea. In conclusion, factors associated with non-random gene order in eukaryotes include relative gene orientation, intergenic distance and functional relationships. It seems likely that certain pairs of genes are conserved because the genes involved have a transcriptional and/or functional relationship. The results also indicate that studies of gene order conservation aid in identifying genes that are related in terms of transcriptional control.

  20. Analysis of Gene Order Conservation in Eukaryotes Identifies Transcriptionally and Functionally Linked Genes

    PubMed Central

    Dávila López, Marcela; Martínez Guerra, Juan José; Samuelsson, Tore

    2010-01-01

    The order of genes in eukaryotes is not entirely random. Studies of gene order conservation are important to understand genome evolution and to reveal mechanisms why certain neighboring genes are more difficult to separate during evolution. Here, genome-wide gene order information was compiled for 64 species, representing a wide variety of eukaryotic phyla. This information is presented in a browser where gene order may be displayed and compared between species. Factors related to non-random gene order in eukaryotes were examined by considering pairs of neighboring genes. The evolutionary conservation of gene pairs was studied with respect to relative transcriptional direction, intergenic distance and functional relationship as inferred by gene ontology. The results show that among gene pairs that are conserved the divergently and co-directionally transcribed genes are much more common than those that are convergently transcribed. Furthermore, highly conserved pairs, in particular those of fungi, are characterized by a short intergenic distance. Finally, gene pairs of metazoa and fungi that are evolutionary conserved and that are divergently transcribed are much more likely to be related by function as compared to poorly conserved gene pairs. One example is the ribosomal protein gene pair L13/S16, which is unusual as it occurs both in fungi and alveolates. A specific functional relationship between these two proteins is also suggested by the fact that they are part of the same operon in both eubacteria and archaea. In conclusion, factors associated with non-random gene order in eukaryotes include relative gene orientation, intergenic distance and functional relationships. It seems likely that certain pairs of genes are conserved because the genes involved have a transcriptional and/or functional relationship. The results also indicate that studies of gene order conservation aid in identifying genes that are related in terms of transcriptional control. PMID:20498846

  1. Effective Boolean dynamics analysis to identify functionally important genes in large-scale signaling networks.

    PubMed

    Trinh, Hung-Cuong; Kwon, Yung-Keun

    2015-11-01

    Efficiently identifying functionally important genes in order to understand the minimal requirements of normal cellular development is challenging. To this end, a variety of structural measures have been proposed and their effectiveness has been investigated in recent literature; however, few studies have shown the effectiveness of dynamics-based measures. This led us to investigate a dynamic measure to identify functionally important genes, and the effectiveness of which was verified through application on two large-scale human signaling networks. We specifically consider Boolean sensitivity-based dynamics against an update-rule perturbation (BSU) as a dynamic measure. Through investigations on two large-scale human signaling networks, we found that genes with relatively high BSU values show slower evolutionary rate and higher proportions of essential genes and drug targets than other genes. Gene-ontology analysis showed clear differences between the former and latter groups of genes. Furthermore, we compare the identification accuracies of essential genes and drug targets via BSU and five well-known structural measures. Although BSU did not always show the best performance, it effectively identified the putative set of genes, which is significantly different from the results obtained via the structural measures. Most interestingly, BSU showed the highest synergy effect in identifying the functionally important genes in conjunction with other measures. Our results imply that Boolean-sensitive dynamics can be used as a measure to effectively identify functionally important genes in signaling networks.

  2. Identifying suitable reference genes for gene expression analysis in developing skeletal muscle in pigs.

    PubMed

    Niu, Guanglin; Yang, Yalan; Zhang, YuanYuan; Hua, Chaoju; Wang, Zishuai; Tang, Zhonglin; Li, Kui

    2016-01-01

    The selection of suitable reference genes is crucial to accurately evaluate and normalize the relative expression level of target genes for gene function analysis. However, commonly used reference genes have variable expression levels in developing skeletal muscle. There are few reports that systematically evaluate the expression stability of reference genes across prenatal and postnatal developing skeletal muscle in mammals. Here, we used quantitative PCR to examine the expression levels of 15 candidate reference genes (ACTB, GAPDH, RNF7, RHOA, RPS18, RPL32, PPIA, H3F3, API5, B2M, AP1S1, DRAP1, TBP, WSB, and VAPB) in porcine skeletal muscle at 26 different developmental stages (15 prenatal and 11 postnatal periods). We evaluated gene expression stability using the computer algorithms geNorm, NormFinder, and BestKeeper. Our results indicated that GAPDH and ACTB had the greatest variability among the candidate genes across prenatal and postnatal stages of skeletal muscle development. RPS18, API5, and VAPB had stable expression levels in prenatal stages, whereas API5, RPS18, RPL32, and H3F3 had stable expression levels in postnatal stages. API5 and H3F3 expression levels had the greatest stability in all tested prenatal and postnatal stages, and were the most appropriate reference genes for gene expression normalization in developing skeletal muscle. Our data provide valuable information for gene expression analysis during different stages of skeletal muscle development in mammals. This information can provide a valuable guide for the analysis of human diseases.

  3. Identifying suitable reference genes for gene expression analysis in developing skeletal muscle in pigs

    PubMed Central

    Zhang, YuanYuan; Hua, Chaoju; Wang, Zishuai; Li, Kui

    2016-01-01

    The selection of suitable reference genes is crucial to accurately evaluate and normalize the relative expression level of target genes for gene function analysis. However, commonly used reference genes have variable expression levels in developing skeletal muscle. There are few reports that systematically evaluate the expression stability of reference genes across prenatal and postnatal developing skeletal muscle in mammals. Here, we used quantitative PCR to examine the expression levels of 15 candidate reference genes (ACTB, GAPDH, RNF7, RHOA, RPS18, RPL32, PPIA, H3F3, API5, B2M, AP1S1, DRAP1, TBP, WSB, and VAPB) in porcine skeletal muscle at 26 different developmental stages (15 prenatal and 11 postnatal periods). We evaluated gene expression stability using the computer algorithms geNorm, NormFinder, and BestKeeper. Our results indicated that GAPDH and ACTB had the greatest variability among the candidate genes across prenatal and postnatal stages of skeletal muscle development. RPS18, API5, and VAPB had stable expression levels in prenatal stages, whereas API5, RPS18, RPL32, and H3F3 had stable expression levels in postnatal stages. API5 and H3F3 expression levels had the greatest stability in all tested prenatal and postnatal stages, and were the most appropriate reference genes for gene expression normalization in developing skeletal muscle. Our data provide valuable information for gene expression analysis during different stages of skeletal muscle development in mammals. This information can provide a valuable guide for the analysis of human diseases. PMID:27994956

  4. Bioinformatic analysis of nematode migration-associated genes identifies novel vertebrate neural crest markers.

    PubMed

    Kwon, Seung-Hae; Park, Ok Kyu; Nie, Shuyi; Kwak, Jina; Hwang, Byung Joon; Bronner, Marianne E; Kee, Yun

    2014-01-01

    Neural crest cells are highly motile, yet a limited number of genes governing neural crest migration have been identified by conventional studies. To test the hypothesis that cell migration genes are likely to be conserved over large evolutionary distances and from diverse tissues, we searched for vertebrate homologs of genes important for migration of various cell types in the invertebrate nematode and examined their expression during vertebrate neural crest cell migration. Our systematic analysis utilized a combination of comparative genomic scanning, functional pathway analysis and gene expression profiling to uncover previously unidentified genes expressed by premigratory, emigrating and/or migrating neural crest cells. The results demonstrate that similar gene sets are expressed in migratory cell types across distant animals and different germ layers. Bioinformatics analysis of these factors revealed relationships between these genes within signaling pathways that may be important during neural crest cell migration.

  5. Analysis of pan-genome to identify the core genes and essential genes of Brucella spp.

    PubMed

    Yang, Xiaowen; Li, Yajie; Zang, Juan; Li, Yexia; Bie, Pengfei; Lu, Yanli; Wu, Qingmin

    2016-04-01

    Brucella spp. are facultative intracellular pathogens, that cause a contagious zoonotic disease, that can result in such outcomes as abortion or sterility in susceptible animal hosts and grave, debilitating illness in humans. For deciphering the survival mechanism of Brucella spp. in vivo, 42 Brucella complete genomes from NCBI were analyzed for the pan-genome and core genome by identification of their composition and function of Brucella genomes. The results showed that the total 132,143 protein-coding genes in these genomes were divided into 5369 clusters. Among these, 1710 clusters were associated with the core genome, 1182 clusters with strain-specific genes and 2477 clusters with dispensable genomes. COG analysis indicated that 44 % of the core genes were devoted to metabolism, which were mainly responsible for energy production and conversion (COG category C), and amino acid transport and metabolism (COG category E). Meanwhile, approximately 35 % of the core genes were in positive selection. In addition, 1252 potential essential genes were predicted in the core genome by comparison with a prokaryote database of essential genes. The results suggested that the core genes in Brucella genomes are relatively conservation, and the energy and amino acid metabolism play a more important role in the process of growth and reproduction in Brucella spp. This study might help us to better understand the mechanisms of Brucella persistent infection and provide some clues for further exploring the gene modules of the intracellular survival in Brucella spp.

  6. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis

    PubMed Central

    2011-01-01

    Background Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. Results In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. Conclusions This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs. PMID:21729286

  7. Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease.

    PubMed

    Liu, Jing; Jing, Ling; Tu, Xilin

    2016-03-05

    The analysis of the potential molecule targets of coronary artery disease (CAD) is critical for understanding the molecular mechanisms of disease. However, studies of global microarray gene co-expression analysis of CAD still remain limited. Microarray data of CAD (GSE23561) were downloaded from Gene Expression Omnibus, including peripheral blood samples from CAD patients (n = 6) and controls (n = 9). Limma package in R was used to identify the differentially expressed genes (DEGs) between CAD and control samples. Using weighted gene co-expression network analysis (WGCNA) package in R, WGCNA was performed to identify significant modules in the network. Then, functional and pathway enrichment analyses were conducted for genes in the most significant module using DAVID software. Moreover, hub genes in the module were analyzed by isubpathwayminer package in R and GenCLiP 2.0 tool to identify the significant sub-pathways. Total 3711 DEGs and 21 modules for them were identified in CAD samples. The most significant module was associated with the pathways of hypertrophic cardiomyopathy and membrane related functions. In addition, the top 30 hub genes with high connectivity in the module were selected, and two genes (G6PD and S100A7) were taken as key molecules via sub-pathway screening and data mining. A module associated with hypertrophic cardiomyopathy pathway was detected in CAD samples. G6PD and S100A7 were the potential targets in CAD. Our finding might provide novel insight into the underlying molecular mechanism of CAD.

  8. Candidate genes for the progression of malignant gliomas identified by microarray analysis.

    PubMed

    Bozinov, Oliver; Köhler, Sylvia; Samans, Birgit; Benes, Ludwig; Miller, Dorothea; Ritter, Markus; Sure, Ulrich; Bertalanffy, Helmut

    2008-01-01

    Malignant astrocytomas of World Health Organization (WHO) grade III or IV have a reduced median survival time, and possible pathways have been described for the progression of anaplastic astrocytomas and glioblastomas, but the molecular basis of malignant astrocytoma progression is still poorly understood. Microarray analysis provides the chance to accelerate studies by comparison of the expression of thousands of genes in these tumours and consequently identify targeting genes. We compared the transcriptional profile of 4,608 genes in tumours of 15 patients including 6 anaplastic astrocytomas (WHO grade III) and 9 glioblastomas (WHO grade IV) using microarray analysis. The microarray data were corroborated by real-time reverse transcription-polymerase chain reaction analysis of two selected genes. We identified 166 gene alterations with a fold change of 2 and higher whose mRNA levels differed (absolute value of the t statistic of 1.96) between the two malignant glioma groups. Further analyses confirmed same transcription directions for Olig2 and IL-13Ralpha2 in anaplastic astrocytomas as compared to glioblastomas. Microarray analyses with a close binary question reveal numerous interesting candidate genes, which need further histochemical testing after selection for confirmation. IL-13Ralpha2 and Olig2 have been identified and confirmed to be interesting candidate genes whose differential expression likely plays a role in malignant progression of astrocytomas.

  9. Cluster Analysis of Tumor Suppressor Genes in Canine Leukocytes Identifies Activation State

    PubMed Central

    Daly, Julie-Anne; Mortlock, Sally-Anne; Taylor, Rosanne M.; Williamson, Peter

    2015-01-01

    Cells of the immune system undergo activation and subsequent proliferation in the normal course of an immune response. Infrequently, the molecular and cellular events that underlie the mechanisms of proliferation are dysregulated and may lead to oncogenesis, leading to tumor formation. The most common forms of immunological cancers are lymphomas, which in dogs account for 8%–20% of all cancers, affecting up to 1.2% of the dog population. Key genes involved in negatively regulating proliferation of lymphocytes include a group classified as tumor suppressor genes (TSGs). These genes are also known to be associated with progression of lymphoma in humans, mice, and dogs and are potential candidates for pathological grading and diagnosis. The aim of the present study was to analyze TSG profiles in stimulated leukocytes from dogs to identify genes that discriminate an activated phenotype. A total of 554 TSGs and three gene set collections were analyzed from microarray data. Cluster analysis of three subsets of genes discriminated between stimulated and unstimulated cells. These included 20 most upregulated and downregulated TSGs, TSG in hallmark gene sets significantly enriched in active cells, and a selection of candidate TSGs, p15 (CDKN2B), p18 (CDKN2C), p19 (CDKN1A), p21 (CDKN2A), p27 (CDKN1B), and p53 (TP53) in the third set. Analysis of two subsets suggested that these genes or a subset of these genes may be used as a specialized PCR set for additional analysis. PMID:27478369

  10. A Comprehensive Gene Expression Meta-analysis Identifies Novel Immune Signatures in Rheumatoid Arthritis Patients

    PubMed Central

    Afroz, Sumbul; Giddaluru, Jeevan; Vishwakarma, Sandeep; Naz, Saima; Khan, Aleem Ahmed; Khan, Nooruddin

    2017-01-01

    Rheumatoid arthritis (RA), a symmetric polyarticular arthritis, has long been feared as one of the most disabling forms of arthritis. Identification of gene signatures associated with RA onset and progression would lead toward development of novel diagnostics and therapeutic interventions. This study was undertaken to identify unique gene signatures of RA patients through large-scale meta-profiling of a diverse collection of gene expression data sets. We carried out a meta-analysis of 8 publicly available RA patients’ (107 RA patients and 76 healthy controls) gene expression data sets and further validated a few meta-signatures in RA patients through quantitative real-time PCR (RT-qPCR). We identified a robust meta-profile comprising 33 differentially expressed genes, which were consistently and significantly expressed across all the data sets. Our meta-analysis unearthed upregulation of a few novel gene signatures including PLCG2, HLA-DOB, HLA-F, EIF4E2, and CYFIP2, which were validated in peripheral blood mononuclear cell samples of RA patients. Further, functional and pathway enrichment analysis reveals perturbation of several meta-genes involved in signaling pathways pertaining to inflammation, antigen presentation, hypoxia, and apoptosis during RA. Additionally, PLCG2 (phospholipase Cγ2) popped out as a novel meta-gene involved in most of the pathways relevant to RA including inflammasome activation, platelet aggregation, and activation, thereby suggesting PLCG2 as a potential therapeutic target for controlling excessive inflammation during RA. In conclusion, these findings highlight the utility of meta-analysis approach in identifying novel gene signatures that might provide mechanistic insights into disease onset, progression and possibly lead toward the development of better diagnostic and therapeutic interventions against RA. PMID:28210261

  11. A Comprehensive Gene Expression Meta-analysis Identifies Novel Immune Signatures in Rheumatoid Arthritis Patients.

    PubMed

    Afroz, Sumbul; Giddaluru, Jeevan; Vishwakarma, Sandeep; Naz, Saima; Khan, Aleem Ahmed; Khan, Nooruddin

    2017-01-01

    Rheumatoid arthritis (RA), a symmetric polyarticular arthritis, has long been feared as one of the most disabling forms of arthritis. Identification of gene signatures associated with RA onset and progression would lead toward development of novel diagnostics and therapeutic interventions. This study was undertaken to identify unique gene signatures of RA patients through large-scale meta-profiling of a diverse collection of gene expression data sets. We carried out a meta-analysis of 8 publicly available RA patients' (107 RA patients and 76 healthy controls) gene expression data sets and further validated a few meta-signatures in RA patients through quantitative real-time PCR (RT-qPCR). We identified a robust meta-profile comprising 33 differentially expressed genes, which were consistently and significantly expressed across all the data sets. Our meta-analysis unearthed upregulation of a few novel gene signatures including PLCG2, HLA-DOB, HLA-F, EIF4E2, and CYFIP2, which were validated in peripheral blood mononuclear cell samples of RA patients. Further, functional and pathway enrichment analysis reveals perturbation of several meta-genes involved in signaling pathways pertaining to inflammation, antigen presentation, hypoxia, and apoptosis during RA. Additionally, PLCG2 (phospholipase Cγ2) popped out as a novel meta-gene involved in most of the pathways relevant to RA including inflammasome activation, platelet aggregation, and activation, thereby suggesting PLCG2 as a potential therapeutic target for controlling excessive inflammation during RA. In conclusion, these findings highlight the utility of meta-analysis approach in identifying novel gene signatures that might provide mechanistic insights into disease onset, progression and possibly lead toward the development of better diagnostic and therapeutic interventions against RA.

  12. Gene Expression Profiling Combined with Bioinformatics Analysis Identify Biomarkers for Parkinson Disease

    PubMed Central

    Diao, Hongyu; Li, Xinxing; Hu, Sheng; Liu, Yunhui

    2012-01-01

    Parkinson disease (PD) progresses relentlessly and affects approximately 4% of the population aged over 80 years old. It is difficult to diagnose in its early stages. The purpose of our study is to identify molecular biomarkers for PD initiation using a computational bioinformatics analysis of gene expression. We downloaded the gene expression profile of PD from Gene Expression Omnibus and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in PD patients compared to controls. Besides, we built a regulatory network by mapping the DCGs to known regulatory data between transcription factors (TFs) and target genes and calculated the regulatory impact factor of each transcription factor. As the results, a total of 1004 genes associated with PD initiation were identified. Pathway enrichment of these genes suggests that biological processes of protein turnover were impaired in PD. In the regulatory network, HLF, E2F1 and STAT4 were found have altered expression levels in PD patients. The expression levels of other transcription factors, NKX3-1, TAL1, RFX1 and EGR3, were not found altered. However, they regulated differentially expressed genes. In conclusion, we suggest that HLF, E2F1 and STAT4 may be used as molecular biomarkers for PD; however, more work is needed to validate our result. PMID:23284986

  13. Gene expression profiling combined with bioinformatics analysis identify biomarkers for Parkinson disease.

    PubMed

    Diao, Hongyu; Li, Xinxing; Hu, Sheng; Liu, Yunhui

    2012-01-01

    Parkinson disease (PD) progresses relentlessly and affects approximately 4% of the population aged over 80 years old. It is difficult to diagnose in its early stages. The purpose of our study is to identify molecular biomarkers for PD initiation using a computational bioinformatics analysis of gene expression. We downloaded the gene expression profile of PD from Gene Expression Omnibus and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in PD patients compared to controls. Besides, we built a regulatory network by mapping the DCGs to known regulatory data between transcription factors (TFs) and target genes and calculated the regulatory impact factor of each transcription factor. As the results, a total of 1004 genes associated with PD initiation were identified. Pathway enrichment of these genes suggests that biological processes of protein turnover were impaired in PD. In the regulatory network, HLF, E2F1 and STAT4 were found have altered expression levels in PD patients. The expression levels of other transcription factors, NKX3-1, TAL1, RFX1 and EGR3, were not found altered. However, they regulated differentially expressed genes. In conclusion, we suggest that HLF, E2F1 and STAT4 may be used as molecular biomarkers for PD; however, more work is needed to validate our result.

  14. Analysis of gene expression in the nervous system identifies key genes and novel candidates for health and disease.

    PubMed

    Carpanini, Sarah M; Wishart, Thomas M; Gillingwater, Thomas H; Manson, Jean C; Summers, Kim M

    2017-04-01

    The incidence of neurodegenerative diseases in the developed world has risen over the last century, concomitant with an increase in average human lifespan. A major challenge is therefore to identify genes that control neuronal health and viability with a view to enhancing neuronal health during ageing and reducing the burden of neurodegeneration. Analysis of gene expression data has recently been used to infer gene functions for a range of tissues from co-expression networks. We have now applied this approach to transcriptomic datasets from the mammalian nervous system available in the public domain. We have defined the genes critical for influencing neuronal health and disease in different neurological cell types and brain regions. The functional contribution of genes in each co-expression cluster was validated using human disease and knockout mouse phenotypes, pathways and gene ontology term annotation. Additionally a number of poorly annotated genes were implicated by this approach in nervous system function. Exploiting gene expression data available in the public domain allowed us to validate key nervous system genes and, importantly, to identify additional genes with minimal functional annotation but with the same expression pattern. These genes are thus novel candidates for a role in neurological health and disease and could now be further investigated to confirm their function and regulation during ageing and neurodegeneration.

  15. Challenges in identifying cancer genes by analysis of exome sequencing data

    PubMed Central

    Hofree, Matan; Carter, Hannah; Kreisberg, Jason F.; Bandyopadhyay, Sourav; Mischel, Paul S.; Friend, Stephen; Ideker, Trey

    2016-01-01

    Massively parallel sequencing has permitted an unprecedented examination of the cancer exome, leading to predictions that all genes important to cancer will soon be identified by genetic analysis of tumours. To examine this potential, here we evaluate the ability of state-of-the-art sequence analysis methods to specifically recover known cancer genes. While some cancer genes are identified by analysis of recurrence, spatial clustering or predicted impact of somatic mutations, many remain undetected due to lack of power to discriminate driver mutations from the background mutational load (13–60% recall of cancer genes impacted by somatic single-nucleotide variants, depending on the method). Cancer genes not detected by mutation recurrence also tend to be missed by all types of exome analysis. Nonetheless, these genes are implicated by other experiments such as functional genetic screens and expression profiling. These challenges are only partially addressed by increasing sample size and will likely hold even as greater numbers of tumours are analysed. PMID:27417679

  16. De novo Transcriptome Analysis of Miscanthus lutarioriparius Identifies Candidate Genes in Rhizome Development

    PubMed Central

    Hu, Ruibo; Yu, Changjiang; Wang, Xiaoyu; Jia, Chunlin; Pei, Shengqiang; He, Kang; He, Guo; Kong, Yingzhen; Zhou, Gongke

    2017-01-01

    HIGHLIGHT De novo transcriptome profiling of five tissues reveals candidate genes putatively involved in rhizome development in M. lutarioriparius. Miscanthus lutarioriparius is a promising lignocellulosic feedstock for second-generation bioethanol production. However, the genomic resource for this species is relatively limited thus hampers our understanding of the molecular mechanisms underlying many important biological processes. In this study, we performed the first de novo transcriptome analysis of five tissues (leaf, stem, root, lateral bud and rhizome bud) of M. lutarioriparius with an emphasis to identify putative genes involved in rhizome development. Approximately 66 gigabase (GB) paired-end clean reads were obtained and assembled into 169,064 unigenes with an average length of 759 bp. Among these unigenes, 103,899 (61.5%) were annotated in seven public protein databases. Differential gene expression profiling analysis revealed that 4,609, 3,188, 1,679, 1,218, and 1,077 genes were predominantly expressed in root, leaf, stem, lateral bud, and rhizome bud, respectively. Their expression patterns were further classified into 12 distinct clusters. Pathway enrichment analysis revealed that genes predominantly expressed in rhizome bud were mainly involved in primary metabolism and hormone signaling and transduction pathways. Noteworthy, 19 transcription factors (TFs) and 16 hormone signaling pathway-related genes were identified to be predominantly expressed in rhizome bud compared with the other tissues, suggesting putative roles in rhizome formation and development. In addition, a predictive regulatory network was constructed between four TFs and six auxin and abscisic acid (ABA) -related genes. Furthermore, the expression of 24 rhizome-specific genes was further validated by quantitative real-time RT-PCR (qRT-PCR) analysis. Taken together, this study provide a global portrait of gene expression across five different tissues and reveal preliminary insights

  17. Suppression subtractive hybridization and comparative expression analysis to identify developmentally regulated genes in filamentous fungi.

    PubMed

    Gesing, Stefan; Schindler, Daniel; Nowrousian, Minou

    2013-09-01

    Ascomycetes differentiate four major morphological types of fruiting bodies (apothecia, perithecia, pseudothecia and cleistothecia) that are derived from an ancestral fruiting body. Thus, fruiting body differentiation is most likely controlled by a set of common core genes. One way to identify such genes is to search for genes with evolutionary conserved expression patterns. Using suppression subtractive hybridization (SSH), we selected differentially expressed transcripts in Pyronema confluens (Pezizales) by comparing two cDNA libraries specific for sexual and for vegetative development, respectively. The expression patterns of selected genes from both libraries were verified by quantitative real time PCR. Expression of several corresponding homologous genes was found to be conserved in two members of the Sordariales (Sordaria macrospora and Neurospora crassa), a derived group of ascomycetes that is only distantly related to the Pezizales. Knockout studies with N. crassa orthologues of differentially regulated genes revealed a functional role during fruiting body development for the gene NCU05079, encoding a putative MFS peptide transporter. These data indicate conserved gene expression patterns and a functional role of the corresponding genes during fruiting body development; such genes are candidates of choice for further functional analysis.

  18. Candidate chemosensory genes identified in the endoparasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) by antennal transcriptome analysis.

    PubMed

    Sheng, Sheng; Liao, Cheng-Wu; Zheng, Yu; Zhou, Yu; Xu, Yan; Song, Wen-Miao; He, Peng; Zhang, Jian; Wu, Fu-An

    2017-06-01

    Meteorus pulchricornis is an endoparasitoid wasp which attacks the larvae of various lepidopteran pests. We present the first antennal transcriptome dataset for M. pulchricornis. A total of 48,845,072 clean reads were obtained and 34,967 unigenes were assembled. Of these, 15,458 unigenes showed a significant similarity (E-value <10(-5)) to known proteins in the NCBI non-redundant protein database. Gene ontology (GO) and cluster of orthologous groups (COG) analyses were used to classify the functions of M. pulchricornis antennae genes. We identified 16 putative odorant-binding protein (OBP) genes, eight chemosensory protein (CSP) genes, 99 olfactory receptor (OR) genes, 19 ionotropic receptor (IR) genes and one sensory neuron membrane protein (SNMP) gene. BLASTx best hit results and phylogenetic analysis both indicated that these chemosensory genes were most closely related to those found in other hymenopteran species. Real-time quantitative PCR assays showed that 14 MpulOBP genes were antennae-specific. Of these, MpulOBP6, MpulOBP9, MpulOBP10, MpulOBP12, MpulOBP15 and MpulOBP16 were found to have greater expression in the antennae than in other body parts, while MpulOBP2 and MpulOBP3 were expressed predominately in the legs and abdomens, respectively. These results might provide a foundation for future studies of olfactory genes and chemoreception in M. pulchricornis. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Application of biclustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials.

    PubMed

    Williams, Andrew; Halappanavar, Sabina

    2015-01-01

    The presence of diverse types of nanomaterials (NMs) in commerce is growing at an exponential pace. As a result, human exposure to these materials in the environment is inevitable, necessitating the need for rapid and reliable toxicity testing methods to accurately assess the potential hazards associated with NMs. In this study, we applied biclustering and gene set enrichment analysis methods to derive essential features of altered lung transcriptome following exposure to NMs that are associated with lung-specific diseases. Several datasets from public microarray repositories describing pulmonary diseases in mouse models following exposure to a variety of substances were examined and functionally related biclusters of genes showing similar expression profiles were identified. The identified biclusters were then used to conduct a gene set enrichment analysis on pulmonary gene expression profiles derived from mice exposed to nano-titanium dioxide (nano-TiO2), carbon black (CB) or carbon nanotubes (CNTs) to determine the disease significance of these data-driven gene sets. Biclusters representing inflammation (chemokine activity), DNA binding, cell cycle, apoptosis, reactive oxygen species (ROS) and fibrosis processes were identified. All of the NM studies were significant with respect to the bicluster related to chemokine activity (DAVID; FDR p-value = 0.032). The bicluster related to pulmonary fibrosis was enriched in studies where toxicity induced by CNT and CB studies was investigated, suggesting the potential for these materials to induce lung fibrosis. The pro-fibrogenic potential of CNTs is well established. Although CB has not been shown to induce fibrosis, it induces stronger inflammatory, oxidative stress and DNA damage responses than nano-TiO2 particles. The results of the analysis correctly identified all NMs to be inflammogenic and only CB and CNTs as potentially fibrogenic. In addition to identifying several previously defined, functionally relevant gene

  20. Novel linkage disequilibrium clustering algorithm identifies new lupus genes on meta-analysis of GWAS datasets.

    PubMed

    Saeed, Mohammad

    2017-05-01

    Systemic lupus erythematosus (SLE) is a complex disorder. Genetic association studies of complex disorders suffer from the following three major issues: phenotypic heterogeneity, false positive (type I error), and false negative (type II error) results. Hence, genes with low to moderate effects are missed in standard analyses, especially after statistical corrections. OASIS is a novel linkage disequilibrium clustering algorithm that can potentially address false positives and negatives in genome-wide association studies (GWAS) of complex disorders such as SLE. OASIS was applied to two SLE dbGAP GWAS datasets (6077 subjects; ∼0.75 million single-nucleotide polymorphisms). OASIS identified three known SLE genes viz. IFIH1, TNIP1, and CD44, not previously reported using these GWAS datasets. In addition, 22 novel loci for SLE were identified and the 5 SLE genes previously reported using these datasets were verified. OASIS methodology was validated using single-variant replication and gene-based analysis with GATES. This led to the verification of 60% of OASIS loci. New SLE genes that OASIS identified and were further verified include TNFAIP6, DNAJB3, TTF1, GRIN2B, MON2, LATS2, SNX6, RBFOX1, NCOA3, and CHAF1B. This study presents the OASIS algorithm, software, and the meta-analyses of two publicly available SLE GWAS datasets along with the novel SLE genes. Hence, OASIS is a novel linkage disequilibrium clustering method that can be universally applied to existing GWAS datasets for the identification of new genes.

  1. Gene dosage, expression, and ontology analysis identifies driver genes in the carcinogenesis and chemoradioresistance of cervical cancer.

    PubMed

    Lando, Malin; Holden, Marit; Bergersen, Linn C; Svendsrud, Debbie H; Stokke, Trond; Sundfør, Kolbein; Glad, Ingrid K; Kristensen, Gunnar B; Lyng, Heidi

    2009-11-01

    Integrative analysis of gene dosage, expression, and ontology (GO) data was performed to discover driver genes in the carcinogenesis and chemoradioresistance of cervical cancers. Gene dosage and expression profiles of 102 locally advanced cervical cancers were generated by microarray techniques. Fifty-two of these patients were also analyzed with the Illumina expression method to confirm the gene expression results. An independent cohort of 41 patients was used for validation of gene expressions associated with clinical outcome. Statistical analysis identified 29 recurrent gains and losses and 3 losses (on 3p, 13q, 21q) associated with poor outcome after chemoradiotherapy. The intratumor heterogeneity, assessed from the gene dosage profiles, was low for these alterations, showing that they had emerged prior to many other alterations and probably were early events in carcinogenesis. Integration of the alterations with gene expression and GO data identified genes that were regulated by the alterations and revealed five biological processes that were significantly overrepresented among the affected genes: apoptosis, metabolism, macromolecule localization, translation, and transcription. Four genes on 3p (RYBP, GBE1) and 13q (FAM48A, MED4) correlated with outcome at both the gene dosage and expression level and were satisfactorily validated in the independent cohort. These integrated analyses yielded 57 candidate drivers of 24 genetic events, including novel loci responsible for chemoradioresistance. Further mapping of the connections among genetic events, drivers, and biological processes suggested that each individual event stimulates specific processes in carcinogenesis through the coordinated control of multiple genes. The present results may provide novel therapeutic opportunities of both early and advanced stage cervical cancers.

  2. Transcriptional Profile Analysis of RPGRORF15 Frameshift Mutation Identifies Novel Genes Associated with Retinal Degeneration

    PubMed Central

    Genini, Sem; Zangerl, Barbara; Slavik, Julianna; Acland, Gregory M.; Beltran, William A.

    2010-01-01

    Purpose. To identify genes and molecular mechanisms associated with photoreceptor degeneration in a canine model of XLRP caused by an RPGR exon ORF15 microdeletion. Methods. Expression profiles of mutant and normal retinas were compared by using canine retinal custom cDNA microarrays. qRT-PCR, Western blot analysis, and immunohistochemistry (IHC) were applied to selected genes, to confirm and expand the microarray results. Results. At 7 and 16 weeks, respectively, 56 and 18 transcripts were downregulated in the mutant retinas, but none were differentially expressed (DE) at both ages, suggesting the involvement of temporally distinct pathways. Downregulated genes included the known retina-relevant genes PAX6, CHML, and RDH11 at 7 weeks and CRX and SAG at 16 weeks. Genes directly or indirectly active in apoptotic processes were altered at 7 weeks (CAMK2G, NTRK2, PRKCB, RALA, RBBP6, RNF41, SMYD3, SPP1, and TUBB2C) and 16 weeks (SLC25A5 and NKAP). Furthermore, the DE genes at 7 weeks (ELOVL6, GLOD4, NDUFS4, and REEP1) and 16 weeks (SLC25A5 and TARS2) are related to mitochondrial functions. qRT-PCR of 18 genes confirmed the microarray results and showed DE of additional genes not on the array. Only GFAP was DE at 3 weeks of age. Western blot and IHC analyses also confirmed the high reliability of the transcriptomic data. Conclusions. Several DE genes were identified in mutant retinas. At 7 weeks, a combination of nonclassic anti- and proapoptosis genes appear to be involved in photoreceptor degeneration, whereas at both 7 and 16 weeks, the expression of mitochondria-related genes indicates that they may play a relevant role in the disease process. PMID:20574030

  3. A combined analysis of microarray gene expression studies of the human prefrontal cortex identifies genes implicated in schizophrenia.

    PubMed

    Pérez-Santiago, Josué; Diez-Alarcia, Rebeca; Callado, Luis F; Zhang, Jin X; Chana, Gursharan; White, Cory H; Glatt, Stephen J; Tsuang, Ming T; Everall, Ian P; Meana, J Javier; Woelk, Christopher H

    2012-11-01

    Small cohort sizes and modest levels of gene expression changes in brain tissue have plagued the statistical approaches employed in microarray studies investigating the mechanism of schizophrenia. To combat these problems a combined analysis of six prior microarray studies was performed to facilitate the robust statistical analysis of gene expression data from the dorsolateral prefrontal cortex of 107 patients with schizophrenia and 118 healthy subjects. Multivariate permutation tests identified 144 genes that were differentially expressed between schizophrenia and control groups. Seventy of these genes were identified as differentially expressed in at least one component microarray study but none of these individual studies had the power to identify the remaining 74 genes, demonstrating the utility of a combined approach. Gene ontology terms and biological pathways that were significantly enriched for differentially expressed genes were related to neuronal cell-cell signaling, mesenchymal induction, and mitogen-activated protein kinase signaling, which have all previously been associated with the etiopathogenesis of schizophrenia. The differential expression of BAG3, C4B, EGR1, MT1X, NEUROD6, SST and S100A8 was confirmed by real-time quantitative PCR in an independent cohort using postmortem human prefrontal cortex samples. Comparison of gene expression between schizophrenic subjects with and without detectable levels of antipsychotics in their blood suggests that the modulation of MT1X and S100A8 may be the result of drug exposure. In conclusion, this combined analysis has resulted in a statistically robust identification of genes whose dysregulation may contribute to the mechanism of schizophrenia.

  4. Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer

    PubMed Central

    Choi, Woonyoung; Park, Yun-Yong; Kim, KyoungHyun; Kim, Sang-Bae; Lee, Ju-Seog; Mills, Gordon B.; Cho, Jae Yong

    2011-01-01

    Background Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future. Methodology/Principal Findings Using microarray technology, we generated a gene expression profile of human gastric cancer–specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A) whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern. Conclusions/Significance We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment. PMID:21931799

  5. Transcriptome Analysis Identifies Key Candidate Genes Mediating Purple Ovary Coloration in Asiatic Hybrid Lilies

    PubMed Central

    Xu, Leifeng; Yang, Panpan; Yuan, Suxia; Feng, Yayan; Xu, Hua; Cao, Yuwei; Ming, Jun

    2016-01-01

    Lily tepals have a short lifespan. Once the tepals senesce, the ornamental value of the flower is lost. Some cultivars have attractive purple ovaries and fruits which greatly enhance the ornamental value of Asiatic hybrid lilies. However, little is known about the molecular mechanisms of anthocyanin biosynthesis in Asiatic hybrid lily ovaries. To investigate the transcriptional network that governs purple ovary coloration in Asiatic hybrid lilies, we obtained transcriptome data from green ovaries (S1) and purple ovaries (S2) of Asiatic “Tiny Padhye”. Comparative transcriptome analysis revealed 4228 differentially expressed genes. Differential expression analysis revealed that ten unigenes including four CHS genes, one CHI gene, one F3H gene, one F3′H gene, one DFR gene, one UFGT gene, and one 3RT gene were significantly up-regulated in purple ovaries. One MYB gene, LhMYB12-Lat, was identified as a key transcription factor determining the distribution of anthocyanins in Asiatic hybrid lily ovaries. Further qPCR results showed unigenes related to anthocyanin biosynthesis were highly expressed in purple ovaries of three purple-ovaried Asiatic hybrid lilies at stages 2 and 3, while they showed an extremely low level of expression in ovaries of three green-ovaried Asiatic hybrid lilies during all developmental stages. In addition, shading treatment significantly decreased pigment accumulation by suppressing the expression of several unigenes related to anthocyanin biosynthesis in ovaries of Asiatic “Tiny Padhye”. Lastly, a total of 15,048 Simple Sequence Repeats (SSRs) were identified in 13,710 sequences, and primer pairs for SSRs were designed. The results could further our understanding of the molecular mechanisms of anthocyanin biosynthesis in Asiatic hybrid lily ovaries. PMID:27879624

  6. Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice.

    PubMed

    Ramirez-Córdova, Jesús; Drnevich, Jenny; Madrigal-Pulido, Jaime Alberto; Arrizon, Javier; Allen, Kirk; Martínez-Velázquez, Moisés; Alvarez-Maya, Ikuri

    2012-08-01

    During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.

  7. Association Analysis Suggests SOD2 as a Newly Identified Candidate Gene Associated With Leprosy Susceptibility.

    PubMed

    Ramos, Geovana Brotto; Salomão, Heloisa; Francio, Angela Schneider; Fava, Vinícius Medeiros; Werneck, Renata Iani; Mira, Marcelo Távora

    2016-08-01

    Genetic studies have identified several genes and genomic regions contributing to the control of host susceptibility to leprosy. Here, we test variants of the positional and functional candidate gene SOD2 for association with leprosy in 2 independent population samples. Family-based analysis revealed an association between leprosy and allele G of marker rs295340 (P = .042) and borderline evidence of an association between leprosy and alleles C and A of markers rs4880 (P = .077) and rs5746136 (P = .071), respectively. Findings were validated in an independent case-control sample for markers rs295340 (P = .049) and rs4880 (P = .038). These results suggest SOD2 as a newly identified gene conferring susceptibility to leprosy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  8. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis

    PubMed Central

    Pesonen, Maiju; Musser, James M.; Bentley, Stephen D.; Aurell, Erik; Corander, Jukka

    2017-01-01

    Recent advances in the scale and diversity of population genomic datasets for bacteria now provide the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual bases. Here we describe a new statistical method, genomeDCA, which uses recent advances in computational structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. We apply genomeDCA to two large population data sets representing the major human pathogens Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A Streptococcus). For pneumococcus we identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resistance genes, a large network component of 384 protein coding sequences encompassed many genes critical in basic cellular functions, while another distinct component included genes associated with virulence. The group A Streptococcus (GAS) data set population represents a clonal population with relatively little genetic variation and a high level of linkage disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseudouridine synthases, which were each strongly linked to a separate set of loci across the chromosome, representing biologically plausible targets of co-selection. The population genomic analysis method applied here identifies statistically significantly co-evolving locus pairs, potentially arising from fitness selection interdependence reflecting underlying protein-protein interactions, or genes whose product activities contribute to the same phenotype. This discovery approach greatly

  9. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis.

    PubMed

    Skwark, Marcin J; Croucher, Nicholas J; Puranen, Santeri; Chewapreecha, Claire; Pesonen, Maiju; Xu, Ying Ying; Turner, Paul; Harris, Simon R; Beres, Stephen B; Musser, James M; Parkhill, Julian; Bentley, Stephen D; Aurell, Erik; Corander, Jukka

    2017-02-01

    Recent advances in the scale and diversity of population genomic datasets for bacteria now provide the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual bases. Here we describe a new statistical method, genomeDCA, which uses recent advances in computational structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. We apply genomeDCA to two large population data sets representing the major human pathogens Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A Streptococcus). For pneumococcus we identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resistance genes, a large network component of 384 protein coding sequences encompassed many genes critical in basic cellular functions, while another distinct component included genes associated with virulence. The group A Streptococcus (GAS) data set population represents a clonal population with relatively little genetic variation and a high level of linkage disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseudouridine synthases, which were each strongly linked to a separate set of loci across the chromosome, representing biologically plausible targets of co-selection. The population genomic analysis method applied here identifies statistically significantly co-evolving locus pairs, potentially arising from fitness selection interdependence reflecting underlying protein-protein interactions, or genes whose product activities contribute to the same phenotype. This discovery approach greatly

  10. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture.

    PubMed

    González-Plaza, Juan J; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  11. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture

    PubMed Central

    González-Plaza, Juan J.; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F.; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R.; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R.

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species. PMID:26973682

  12. Transcriptome analysis identifies genes with enriched expression in the mouse central Extended Amygdala

    PubMed Central

    Becker, Jérôme A. J.; Befort, Katia; Blad, Clara; Filliol, Dominique; Ghate, Aditee; Dembele, Doulaye; Thibault, Christelle; Koch, Muriel; Muller, Jean; Lardenois, Aurélie; Poch, Olivier; Kieffer, Brigitte L.

    2008-01-01

    The central Extended Amygdala (EAc) is an ensemble of highly interconnected limbic structures of the anterior brain, and forms a cellular continuum including the Bed Nucleus of the Stria Terminalis (BNST), the central nucleus of the Amygdala (CeA) and the Nucleus Accumbens shell (AcbSh). This neural network is a key site for interactions between brain reward and stress systems, and has been implicated in several aspects of drug abuse. In order to increase our understanding of EAc function at the molecular level, we undertook a genome-wide screen (Affymetrix) to identify genes whose expression is enriched in the EAc. We focused on the less-well known BNST-CeA areas of the EAc, and identified 121 genes that exhibit more than 2-fold higher expression level in the EAc compared to whole brain. Among these, forty-three genes have never been described to be expressed in the EAc. We mapped these genes throughout the brain, using non-radioactive in situ hybridization, and identified eight genes with a unique and distinct rostro-caudal expression pattern along AcbSh, BNST and CeA. Q-PCR analysis performed in brain and peripheral organ tissues indicated that, with the exception of one (Spata13), all these genes are predominantly expressed in brain. These genes encode signaling proteins (Adora2, GPR88, Arpp21 and Rem2), a transcription factor (Limh6) or proteins of unknown function (Rik130, Spata13 and Wfs1). The identification of genes with enriched expression expands our knowledge of EAc at a molecular level, and provides useful information to towards genetic manipulations within the EAc. PMID:18786617

  13. Meta-analysis of transcriptomic datasets identifies genes enriched in the mammalian circadian pacemaker.

    PubMed

    Brown, Laurence A; Williams, John; Taylor, Lewis; Thomson, Ross J; Nolan, Patrick M; Foster, Russell G; Peirson, Stuart N

    2017-09-29

    The master circadian pacemaker in mammals is located in the suprachiasmatic nuclei (SCN) which regulate physiology and behaviour, as well as coordinating peripheral clocks throughout the body. Investigating the function of the SCN has often focused on the identification of rhythmically expressed genes. However, not all genes critical for SCN function are rhythmically expressed. An alternative strategy is to characterize those genes that are selectively enriched in the SCN. Here, we examined the transcriptome of the SCN and whole brain (WB) of mice using meta-analysis of publicly deposited data across a range of microarray platforms and RNA-Seq data. A total of 79 microarrays were used (24 SCN and 55 WB samples, 4 different microarray platforms), alongside 17 RNA-Seq data files (7 SCN and 10 WB). 31 684 MGI gene symbols had data for at least one platform. Meta-analysis using a random effects model for weighting individual effect sizes (derived from differential expression between relevant SCN and WB samples) reliably detected known SCN markers. SCN-enriched transcripts identified in this study provide novel insights into SCN function, including identifying genes which may play key roles in SCN physiology or provide SCN-specific drivers. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Analysis of Pigeon (Columba) Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation.

    PubMed

    Wang, Ying; Ding, Jia-Tong; Yang, Hai-Ming; Yan, Zheng-Jie; Cao, Wei; Li, Yang-Bai

    2015-01-01

    Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp) were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species.

  15. Integrative Analysis of Genomics and Transcriptome Data to Identify Potential Functional Genes of BMDs in Females.

    PubMed

    Chen, Yuan-Cheng; Guo, Yan-Fang; He, Hao; Lin, Xu; Wang, Xia-Fang; Zhou, Rou; Li, Wen-Ting; Pan, Dao-Yan; Shen, Jie; Deng, Hong-Wen

    2016-05-01

    Osteoporosis is known to be highly heritable. However, to date, the findings from more than 20 genome-wide association studies (GWASs) have explained less than 6% of genetic risks. Studies suggest that the missing heritability data may be because of joint effects among genes. To identify novel heritability for osteoporosis, we performed a system-level study on bone mineral density (BMD) by weighted gene coexpression network analysis (WGCNA), using the largest GWAS data set for BMD in the field, Genetic Factors for Osteoporosis Consortium (GEFOS-2), and a transcriptomic gene expression data set generated from transiliac bone biopsies in women. A weighted gene coexpression network was generated for 1574 genes with GWAS nominal evidence of association (p ≤ 0.05) based on dissimilarity measurement on the expression data. Twelve distinct gene modules were identified, and four modules showed nominally significant associations with BMD (p ≤ 0.05), but only one module, the yellow module, demonstrated a good correlation between module membership (MM) and gene significance (GS), suggesting that the yellow module serves an important biological role in bone regulation. Interestingly, through characterization of module content and topology, the yellow module was found to be significantly enriched with contractile fiber part (GO:044449), which is widely recognized as having a close relationship between muscle and bone. Furthermore, detailed submodule analyses of important candidate genes (HOMER1, SPTBN1) by all edges within the yellow module implied significant enrichment of functional connections between bone and cytoskeletal protein binding. Our study yielded novel information from system genetics analyses of GWAS data jointly with transcriptomic data. The findings highlighted a module and several genes in the model as playing important roles in the regulation of bone mass in females, which may yield novel insights into the genetic basis of osteoporosis. © 2016

  16. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development

    NASA Technical Reports Server (NTRS)

    Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.

    2003-01-01

    BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.

  17. Transcriptome Analysis Identifies the Dysregulation of Ultraviolet Target Genes in Human Skin Cancers.

    PubMed

    Shen, Yao; Kim, Arianna L; Du, Rong; Liu, Liang

    2016-01-01

    Exposure to ultraviolet radiation (UVR) is a major risk factor for both melanoma and non-melanoma skin cancers. In addition to its mutagenic effect, UVR can also induce substantial transcriptional instability in skin cells affecting thousands of genes, including many cancer genes, suggesting that transcriptional instability may be another important etiological factor in skin photocarcinogenesis. In this study, we performed detailed transcriptomic profiling studies to characterize the kinetic changes in global gene expression in human keratinocytes exposed to different UVR conditions. We identified a subset of UV-responsive genes as UV signature genes (UVSGs) based on 1) conserved UV-responsiveness of this subset of genes among different keratinocyte lines; and 2) UV-induced persistent changes in their mRNA levels long after exposure. Interestingly, 11 of the UVSGs were shown to be critical to skin cancer cell proliferation and survival. Through computational Gene Set Enrichment Analysis, we demonstrated that a significant portion of the UVSGs were dysregulated in human skin squamous cell carcinomas, but not in other human malignancies. This highlights the potential and specificity of the UVSGs in clinical diagnosis of UV damage and stratification of skin cancer risk.

  18. Transcriptome Analysis Identifies the Dysregulation of Ultraviolet Target Genes in Human Skin Cancers

    PubMed Central

    Shen, Yao; Kim, Arianna L.; Du, Rong; Liu, Liang

    2016-01-01

    Exposure to ultraviolet radiation (UVR) is a major risk factor for both melanoma and non-melanoma skin cancers. In addition to its mutagenic effect, UVR can also induce substantial transcriptional instability in skin cells affecting thousands of genes, including many cancer genes, suggesting that transcriptional instability may be another important etiological factor in skin photocarcinogenesis. In this study, we performed detailed transcriptomic profiling studies to characterize the kinetic changes in global gene expression in human keratinocytes exposed to different UVR conditions. We identified a subset of UV-responsive genes as UV signature genes (UVSGs) based on 1) conserved UV-responsiveness of this subset of genes among different keratinocyte lines; and 2) UV-induced persistent changes in their mRNA levels long after exposure. Interestingly, 11 of the UVSGs were shown to be critical to skin cancer cell proliferation and survival. Through computational Gene Set Enrichment Analysis, we demonstrated that a significant portion of the UVSGs were dysregulated in human skin squamous cell carcinomas, but not in other human malignancies. This highlights the potential and specificity of the UVSGs in clinical diagnosis of UV damage and stratification of skin cancer risk. PMID:27643989

  19. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa.

    PubMed

    Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo

    2014-11-01

    Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops.

  20. Evolutionary analysis of vision genes identifies potential drivers of visual differences between giraffe and okapi

    PubMed Central

    Agaba, Morris; Cavener, Douglas R.

    2017-01-01

    Background The capacity of visually oriented species to perceive and respond to visual signal is integral to their evolutionary success. Giraffes are closely related to okapi, but the two species have broad range of phenotypic differences including their visual capacities. Vision studies rank giraffe’s visual acuity higher than all other artiodactyls despite sharing similar vision ecological determinants with many of them. The extent to which the giraffe’s unique visual capacity and its difference with okapi is reflected by changes in their vision genes is not understood. Methods The recent availability of giraffe and okapi genomes provided opportunity to identify giraffe and okapi vision genes. Multiple strategies were employed to identify thirty-six candidate mammalian vision genes in giraffe and okapi genomes. Quantification of selection pressure was performed by a combination of branch-site tests of positive selection and clade models of selection divergence through comparing giraffe and okapi vision genes and orthologous sequences from other mammals. Results Signatures of selection were identified in key genes that could potentially underlie giraffe and okapi visual adaptations. Importantly, some genes that contribute to optical transparency of the eye and those that are critical in light signaling pathway were found to show signatures of adaptive evolution or selection divergence. Comparison between giraffe and other ruminants identifies significant selection divergence in CRYAA and OPN1LW. Significant selection divergence was identified in SAG while positive selection was detected in LUM when okapi is compared with ruminants and other mammals. Sequence analysis of OPN1LW showed that at least one of the sites known to affect spectral sensitivity of the red pigment is uniquely divergent between giraffe and other ruminants. Discussion By taking a systemic approach to gene function in vision, the results provide the first molecular clues associated with

  1. Evolutionary analysis of vision genes identifies potential drivers of visual differences between giraffe and okapi.

    PubMed

    Ishengoma, Edson; Agaba, Morris; Cavener, Douglas R

    2017-01-01

    The capacity of visually oriented species to perceive and respond to visual signal is integral to their evolutionary success. Giraffes are closely related to okapi, but the two species have broad range of phenotypic differences including their visual capacities. Vision studies rank giraffe's visual acuity higher than all other artiodactyls despite sharing similar vision ecological determinants with many of them. The extent to which the giraffe's unique visual capacity and its difference with okapi is reflected by changes in their vision genes is not understood. The recent availability of giraffe and okapi genomes provided opportunity to identify giraffe and okapi vision genes. Multiple strategies were employed to identify thirty-six candidate mammalian vision genes in giraffe and okapi genomes. Quantification of selection pressure was performed by a combination of branch-site tests of positive selection and clade models of selection divergence through comparing giraffe and okapi vision genes and orthologous sequences from other mammals. Signatures of selection were identified in key genes that could potentially underlie giraffe and okapi visual adaptations. Importantly, some genes that contribute to optical transparency of the eye and those that are critical in light signaling pathway were found to show signatures of adaptive evolution or selection divergence. Comparison between giraffe and other ruminants identifies significant selection divergence in CRYAA and OPN1LW. Significant selection divergence was identified in SAG while positive selection was detected in LUM when okapi is compared with ruminants and other mammals. Sequence analysis of OPN1LW showed that at least one of the sites known to affect spectral sensitivity of the red pigment is uniquely divergent between giraffe and other ruminants. By taking a systemic approach to gene function in vision, the results provide the first molecular clues associated with giraffe and okapi vision adaptations. At

  2. Functional analysis to identify genes in wine yeast adaptation to low-temperature fermentation.

    PubMed

    Salvadó, Z; Chiva, R; Rozès, N; Cordero-Otero, R; Guillamón, J M

    2012-07-01

      To identify genes and proteins involved in adaptation to low-temperature fermentations in a commercial wine yeast.   Nine proteins were identified as representing the most significant changes in proteomic maps during the first 24 h of fermentation at low (13°C) and standard temperature (25°C). These proteins were mainly involved in stress response and in glucose and nitrogen metabolism. Transcription analysis of the genes encoding most of these proteins within the same time frame of wine fermentation presented a good correlation with proteomic data. Knockout and overexpressing strains of some of these genes were constructed and tested to evaluate their ability to start the fermentation process. The strain overexpressing ILV5 improved its fermentation activity in the first hours of fermentation. This strain showed a quicker process of mitochondrial degeneration, an altered intracellular amino acid profile and laxer nitrogen catabolite repression regulation.   The proteomic and transcriptomic analysis is useful to detect key molecular adaptation mechanisms of biotechnological interest for industrial processes. ILV5 gene seems to be important in wine yeast adaptation to low-temperature fermentation.   This study provides information that might help improve the future performance of wine yeast, either by genetic modification or by adaptation during industrial production. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  3. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    PubMed Central

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides. PMID:27625674

  4. Computational Gene Expression Modeling Identifies Salivary Biomarker Analysis that Predict Oral Feeding Readiness in the Newborn

    PubMed Central

    Maron, Jill L.; Hwang, Jooyeon S.; Pathak, Subash; Ruthazer, Robin; Russell, Ruby L.; Alterovitz, Gil

    2014-01-01

    Objective To combine mathematical modeling of salivary gene expression microarray data and systems biology annotation with RT-qPCR amplification to identify (phase I) and validate (phase II) salivary biomarker analysis for the prediction of oral feeding readiness in preterm infants. Study design Comparative whole transcriptome microarray analysis from 12 preterm newborns pre- and post-oral feeding success was used for computational modeling and systems biology analysis to identify potential salivary transcripts associated with oral feeding success (phase I). Selected gene expression biomarkers (15 from computational modeling; 6 evidence-based; and 3 reference) were evaluated by RT-qPCR amplification on 400 salivary samples from successful (n=200) and unsuccessful (n=200) oral feeders (phase II). Genes, alone and in combination, were evaluated by a multivariate analysis controlling for sex and post-conceptional age (PCA) to determine the probability that newborns achieved successful oral feeding. Results Advancing post-conceptional age (p < 0.001) and female sex (p = 0.05) positively predicted an infant’s ability to feed orally. A combination of five genes, NPY2R (hunger signaling), AMPK (energy homeostasis), PLXNA1 (olfactory neurogenesis), NPHP4 (visual behavior) and WNT3 (facial development), in addition to PCA and sex, demonstrated good accuracy for determining feeding success (AUROC = 0.78). Conclusions We have identified objective and biologically relevant salivary biomarkers that noninvasively assess a newborn’s developing brain, sensory and facial development as they relate to oral feeding success. Understanding the mechanisms that underlie the development of oral feeding readiness through translational and computational methods may improve clinical decision making while decreasing morbidities and health care costs. PMID:25620512

  5. Large-Scale Gene-Centric Meta-analysis across 32 Studies Identifies Multiple Lipid Loci

    PubMed Central

    Asselbergs, Folkert W.; Guo, Yiran; van Iperen, Erik P.A.; Sivapalaratnam, Suthesh; Tragante, Vinicius; Lanktree, Matthew B.; Lange, Leslie A.; Almoguera, Berta; Appelman, Yolande E.; Barnard, John; Baumert, Jens; Beitelshees, Amber L.; Bhangale, Tushar R.; Chen, Yii-Der Ida; Gaunt, Tom R.; Gong, Yan; Hopewell, Jemma C.; Johnson, Toby; Kleber, Marcus E.; Langaee, Taimour Y.; Li, Mingyao; Li, Yun R.; Liu, Kiang; McDonough, Caitrin W.; Meijs, Matthijs F.L.; Middelberg, Rita P.S.; Musunuru, Kiran; Nelson, Christopher P.; O’Connell, Jeffery R.; Padmanabhan, Sandosh; Pankow, James S.; Pankratz, Nathan; Rafelt, Suzanne; Rajagopalan, Ramakrishnan; Romaine, Simon P.R.; Schork, Nicholas J.; Shaffer, Jonathan; Shen, Haiqing; Smith, Erin N.; Tischfield, Sam E.; van der Most, Peter J.; van Vliet-Ostaptchouk, Jana V.; Verweij, Niek; Volcik, Kelly A.; Zhang, Li; Bailey, Kent R.; Bailey, Kristian M.; Bauer, Florianne; Boer, Jolanda M.A.; Braund, Peter S.; Burt, Amber; Burton, Paul R.; Buxbaum, Sarah G.; Chen, Wei; Cooper-DeHoff, Rhonda M.; Cupples, L. Adrienne; deJong, Jonas S.; Delles, Christian; Duggan, David; Fornage, Myriam; Furlong, Clement E.; Glazer, Nicole; Gums, John G.; Hastie, Claire; Holmes, Michael V.; Illig, Thomas; Kirkland, Susan A.; Kivimaki, Mika; Klein, Ronald; Klein, Barbara E.; Kooperberg, Charles; Kottke-Marchant, Kandice; Kumari, Meena; LaCroix, Andrea Z.; Mallela, Laya; Murugesan, Gurunathan; Ordovas, Jose; Ouwehand, Willem H.; Post, Wendy S.; Saxena, Richa; Scharnagl, Hubert; Schreiner, Pamela J.; Shah, Tina; Shields, Denis C.; Shimbo, Daichi; Srinivasan, Sathanur R.; Stolk, Ronald P.; Swerdlow, Daniel I.; Taylor, Herman A.; Topol, Eric J.; Toskala, Elina; van Pelt, Joost L.; van Setten, Jessica; Yusuf, Salim; Whittaker, John C.; Zwinderman, A.H.; Anand, Sonia S.; Balmforth, Anthony J.; Berenson, Gerald S.; Bezzina, Connie R.; Boehm, Bernhard O.; Boerwinkle, Eric; Casas, Juan P.; Caulfield, Mark J.; Clarke, Robert; Connell, John M.; Cruickshanks, Karen J.; Davidson, Karina W.; Day, Ian N.M.; de Bakker, Paul I.W.; Doevendans, Pieter A.; Dominiczak, Anna F.; Hall, Alistair S.; Hartman, Catharina A.; Hengstenberg, Christian; Hillege, Hans L.; Hofker, Marten H.; Humphries, Steve E.; Jarvik, Gail P.; Johnson, Julie A.; Kaess, Bernhard M.; Kathiresan, Sekar; Koenig, Wolfgang; Lawlor, Debbie A.; März, Winfried; Melander, Olle; Mitchell, Braxton D.; Montgomery, Grant W.; Munroe, Patricia B.; Murray, Sarah S.; Newhouse, Stephen J.; Onland-Moret, N. Charlotte; Poulter, Neil; Psaty, Bruce; Redline, Susan; Rich, Stephen S.; Rotter, Jerome I.; Schunkert, Heribert; Sever, Peter; Shuldiner, Alan R.; Silverstein, Roy L.; Stanton, Alice; Thorand, Barbara; Trip, Mieke D.; Tsai, Michael Y.; van der Harst, Pim; van der Schoot, Ellen; van der Schouw, Yvonne T.; Verschuren, W.M. Monique; Watkins, Hugh; Wilde, Arthur A.M.; Wolffenbuttel, Bruce H.R.; Whitfield, John B.; Hovingh, G. Kees; Ballantyne, Christie M.; Wijmenga, Cisca; Reilly, Muredach P.; Martin, Nicholas G.; Wilson, James G.; Rader, Daniel J.; Samani, Nilesh J.; Reiner, Alex P.; Hegele, Robert A.; Kastelein, John J.P.; Hingorani, Aroon D.; Talmud, Philippa J.; Hakonarson, Hakon; Elbers, Clara C.; Keating, Brendan J.; Drenos, Fotios

    2012-01-01

    Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TGs), can be identified by a dense gene-centric approach. Our meta-analysis of 32 studies in 66,240 individuals of European ancestry was based on the custom ∼50,000 SNP genotyping array (the ITMAT-Broad-CARe array) covering ∼2,000 candidate genes. SNP-lipid associations were replicated either in a cohort comprising an additional 24,736 samples or within the Global Lipid Genetic Consortium. We identified four, six, ten, and four unreported SNPs in established lipid genes for HDL-C, LDL-C, TC, and TGs, respectively. We also identified several lipid-related SNPs in previously unreported genes: DGAT2, HCAR2, GPIHBP1, PPARG, and FTO for HDL-C; SOCS3, APOH, SPTY2D1, BRCA2, and VLDLR for LDL-C; SOCS3, UGT1A1, BRCA2, UBE3B, FCGR2A, CHUK, and INSIG2 for TC; and SERPINF2, C4B, GCK, GATA4, INSR, and LPAL2 for TGs. The proportion of explained phenotypic variance in the subset of studies providing individual-level data was 9.9% for HDL-C, 9.5% for LDL-C, 10.3% for TC, and 8.0% for TGs. This large meta-analysis of lipid phenotypes with the use of a dense gene-centric approach identified multiple SNPs not previously described in established lipid genes and several previously unknown loci. The explained phenotypic variance from this approach was comparable to that from a meta-analysis of GWAS data, suggesting that a focused genotyping approach can further increase the understanding of heritability of plasma lipids. PMID:23063622

  6. Microarray analysis of hepatic gene expression identifies new genes involved in steatotic liver

    PubMed Central

    Guillén, Natalia; Navarro, María A.; Arnal, Carmen; Noone, Enda; Arbonés-Mainar, José M.; Acín, Sergio; Surra, Joaquín C.; Muniesa, Pedro; Roche, Helen M.; Osada, Jesús

    2009-01-01

    Trans-10, cis-12-conjugated linoleic acid (CLA)-enriched diets promote fatty liver in mice, while cis-9, trans-11-CLA ameliorates this effect, suggesting regulation of multiple genes. To test this hypothesis, apoE-deficient mice were fed a Western-type diet enriched with linoleic acid isomers, and their hepatic gene expression was analyzed with DNA microarrays. To provide an initial screening of candidate genes, only 12 with remarkably modified expression between both CLA isomers were considered and confirmed by quantitative RT-PCR. Additionally mRNA expression of 15 genes involved in lipid metabolism was also studied. Ten genes (Fsp27, Aqp4, Cd36, Ly6d, Scd1, Hsd3b5, Syt1, Cyp7b1, and Tff3) showed significant associations among their expressions and the degree of hepatic steatosis. Their involvement was also analyzed in other models of steatosis. In hyperhomocysteinemic mice lacking Cbs gene, only Fsp27, Cd36, Scd1, Syt1, and Hsd3b5 hepatic expressions were associated with steatosis. In apoE-deficient mice consuming olive-enriched diet displaying reduction of the fatty liver, only Fsp27 and Syt1 expressions were found associated. Using this strategy, we have shown that expression of these genes is highly associated with hepatic steatosis in a genetic disease such as Cbs deficiency and in two common situations such as Western diets containing CLA isomers or a Mediterranean-type diet. Conclusion: The results highlight new processes involved in lipid handling in liver and will help to understand the complex human pathology providing new proteins and new strategies to cope with hepatic steatosis. PMID:19258494

  7. Genome wide transcriptome analysis of dendritic cells identifies genes with altered expression in psoriasis.

    PubMed

    Filkor, Kata; Hegedűs, Zoltán; Szász, András; Tubak, Vilmos; Kemény, Lajos; Kondorosi, Éva; Nagy, István

    2013-01-01

    Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS) or peptidoglycan (PGN) induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs) upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (Kegg) analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified numerous genes with

  8. Large-Scale Gene-Centric Analysis Identifies Novel Variants for Coronary Artery Disease

    PubMed Central

    2011-01-01

    Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10−33; LPA:p<10−19; 1p13.3:p<10−17) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10−7). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06–1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and

  9. Large-scale gene-centric analysis identifies novel variants for coronary artery disease.

    PubMed

    2011-09-01

    Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10(-33); LPA:p<10(-19); 1p13.3:p<10(-17)) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10(-7)). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06-1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and

  10. High Throughput Gene Expression Analysis Identifies Reliable Expression Markers of Human Corneal Endothelial Cells

    PubMed Central

    Chng, Zhenzhi; Peh, Gary S. L.; Herath, Wishva B.; Cheng, Terence Y. D.; Ang, Heng-Pei; Toh, Kah-Peng; Robson, Paul; Mehta, Jodhbir S.; Colman, Alan

    2013-01-01

    Considerable interest has been generated for the development of suitable corneal endothelial graft alternatives through cell-tissue engineering, which can potentially alleviate the shortage of corneal transplant material. The advent of less invasive suture-less key-hole surgery options such as Descemet’s Stripping Endothelial Keratoplasty (DSEK) and Descemet’s Membrane Endothelial Keratoplasty (DMEK), which involve transplantation of solely the endothelial layer instead of full thickness cornea, provide further impetus for the development of alternative endothelial grafts for clinical applications. A major challenge for this endeavor is the lack of specific markers for this cell type. To identify genes that reliably mark corneal endothelial cells (CECs) in vivo and in vitro, we performed RNA-sequencing on freshly isolated human CECs (from both young and old donors), CEC cultures, and corneal stroma. Gene expression of these corneal cell types was also compared to that of other human tissue types. Based on high throughput comparative gene expression analysis, we identified a panel of markers that are: i) highly expressed in CECs from both young donors and old donors; ii) expressed in CECs in vivo and in vitro; and iii) not expressed in corneal stroma keratocytes and the activated corneal stroma fibroblasts. These were SLC4A11, COL8A2 and CYYR1. The use of this panel of genes in combination reliably ascertains the identity of the CEC cell type. PMID:23844023

  11. Comparative Transcriptome Analysis of White and Purple Potato to Identify Genes Involved in Anthocyanin Biosynthesis

    PubMed Central

    Liu, Yuhui; Lin-Wang, Kui; Deng, Cecilia; Warran, Ben; Wang, Li; Yu, Bin; Yang, Hongyu; Wang, Jing; Espley, Richard V.; Zhang, Junlian; Wang, Di; Allan, Andrew C.

    2015-01-01

    Introduction The potato (Solanum tuberosum) cultivar ‘Xin Daping’ is tetraploid with white skin and white flesh, while the cultivar ‘Hei Meiren’ is also tetraploid with purple skin and purple flesh. Comparative transcriptome analysis of white and purple cultivars was carried out using high-throughput RNA sequencing in order to further understand the mechanism of anthocyanin biosynthesis in potato. Methods and Results By aligning transcript reads to the recently published diploid potato genome and de novo assembly, 209 million paired-end Illumina RNA-seq reads from these tetraploid cultivars were assembled on to 60,930 transcripts, of which 27,754 (45.55%) are novel transcripts and 9393 alternative transcripts. Using a comparison of the RNA-sequence datasets, multiple versions of the genes encoding anthocyanin biosynthetic steps and regulatory transcription factors were identified. Other novel genes potentially involved in anthocyanin biosynthesis in potato tubers were also discovered. Real-time qPCR validation of candidate genes revealed good correlation with the transcriptome data. SNPs (Single Nucleotide Polymorphism) and indels were predicted and validated for the transcription factors MYB AN1 and bHLH1 and the biosynthetic gene anthocyanidin 3-O-glucosyltransferase (UFGT). Conclusions These results contribute to our understanding of the molecular mechanism of white and purple potato development, by identifying differential responses of biosynthetic gene family members together with the variation in structural genes and transcription factors in this highly heterozygous crop. This provides an excellent platform and resource for future genetic and functional genomic research. PMID:26053878

  12. Comparative Transcriptome Analysis Identifies CCDC80 as a Novel Gene Associated with Pulmonary Arterial Hypertension.

    PubMed

    Sasagawa, Shota; Nishimura, Yuhei; Sawada, Hirofumi; Zhang, Erquan; Okabe, Shiko; Murakami, Soichiro; Ashikawa, Yoshifumi; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Mitani, Yoshihide; Maruyama, Kazuo; Tanaka, Toshio

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a heterogeneous disorder associated with a progressive increase in pulmonary artery resistance and pressure. Although various therapies have been developed, the 5-year survival rate of PAH patients remains low. There is thus an important need to identify novel genes that are commonly dysregulated in PAH of various etiologies and could be used as biomarkers and/or therapeutic targets. In this study, we performed comparative transcriptome analysis of five mammalian PAH datasets downloaded from a public database. We identified 228 differentially expressed genes (DEGs) from a rat PAH model caused by inhibition of vascular endothelial growth factor receptor under hypoxic conditions, 379 DEGs from a mouse PAH model associated with systemic sclerosis, 850 DEGs from a mouse PAH model associated with schistosomiasis, 1598 DEGs from one cohort of human PAH patients, and 4260 DEGs from a second cohort of human PAH patients. Gene-by-gene comparison identified four genes that were differentially upregulated or downregulated in parallel in all five sets of DEGs. Expression of coiled-coil domain containing 80 (CCDC80) and anterior gradient two genes was significantly increased in the five datasets, whereas expression of SMAD family member six and granzyme A was significantly decreased. Weighted gene co-expression network analysis revealed a connection between CCDC80 and collagen type I alpha 1 (COL1A1) expression. To validate the function of CCDC80 in vivo, we knocked out ccdc80 in zebrafish using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. In vivo imaging of zebrafish expressing a fluorescent protein in endothelial cells showed that ccdc80 deletion significantly increased the diameter of the ventral artery, a vessel supplying blood to the gills. We also demonstrated that expression of col1a1 and endothelin-1 mRNA was significantly decreased in the ccdc80-knockout zebrafish. Finally, we examined Ccdc

  13. Comparative Transcriptome Analysis Identifies CCDC80 as a Novel Gene Associated with Pulmonary Arterial Hypertension

    PubMed Central

    Sasagawa, Shota; Nishimura, Yuhei; Sawada, Hirofumi; Zhang, Erquan; Okabe, Shiko; Murakami, Soichiro; Ashikawa, Yoshifumi; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Mitani, Yoshihide; Maruyama, Kazuo; Tanaka, Toshio

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a heterogeneous disorder associated with a progressive increase in pulmonary artery resistance and pressure. Although various therapies have been developed, the 5-year survival rate of PAH patients remains low. There is thus an important need to identify novel genes that are commonly dysregulated in PAH of various etiologies and could be used as biomarkers and/or therapeutic targets. In this study, we performed comparative transcriptome analysis of five mammalian PAH datasets downloaded from a public database. We identified 228 differentially expressed genes (DEGs) from a rat PAH model caused by inhibition of vascular endothelial growth factor receptor under hypoxic conditions, 379 DEGs from a mouse PAH model associated with systemic sclerosis, 850 DEGs from a mouse PAH model associated with schistosomiasis, 1598 DEGs from one cohort of human PAH patients, and 4260 DEGs from a second cohort of human PAH patients. Gene-by-gene comparison identified four genes that were differentially upregulated or downregulated in parallel in all five sets of DEGs. Expression of coiled-coil domain containing 80 (CCDC80) and anterior gradient two genes was significantly increased in the five datasets, whereas expression of SMAD family member six and granzyme A was significantly decreased. Weighted gene co-expression network analysis revealed a connection between CCDC80 and collagen type I alpha 1 (COL1A1) expression. To validate the function of CCDC80 in vivo, we knocked out ccdc80 in zebrafish using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. In vivo imaging of zebrafish expressing a fluorescent protein in endothelial cells showed that ccdc80 deletion significantly increased the diameter of the ventral artery, a vessel supplying blood to the gills. We also demonstrated that expression of col1a1 and endothelin-1 mRNA was significantly decreased in the ccdc80-knockout zebrafish. Finally, we examined Ccdc

  14. Transcriptome Analysis to Identify Cold-Responsive Genes in Amur Carp (Cyprinus carpio haematopterus)

    PubMed Central

    He, XuLing

    2015-01-01

    The adaptation of fish to low temperatures is the result of long-term evolution. Amur carp (Cyprinus carpio haematopterus) survives low temperatures (0-4°C) for six months per year. Therefore, we chose this fish as a model organism to study the mechanisms of cold-adaptive responses using high-throughput sequencing technology. This system provided an excellent model for exploring the relationship between evolutionary genomic changes and environmental adaptations. The Amur carp transcriptome was sequenced using the Illumina platform and was assembled into 163,121 cDNA contigs, with an average read length of 594 bp and an N50 length of 913 bp. A total of 162,339 coding sequences (CDSs) were identified and of 32,730 unique CDSs were annotated. Gene Ontology (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to classify all CDSs into different functional categories. A large number of cold-responsive genes were detected in different tissues at different temperatures. A total of 9,427 microsatellites were identified and classified, with 1952 identifying in cold-responsive genes. Based on GO enrichment analysis of the cold-induced genes, “protein localization” and “protein transport” were the most highly represented biological processes. “Circadian rhythm,” “protein processing in endoplasmic reticulum,” “endocytosis,” “insulin signaling pathway,” and “lysosome” were the most highly enriched pathways for the genes induced by cold stress. Our data greatly contribute to the common carp (C. carpio) transcriptome resource, and the identification of cold-responsive genes in different tissues at different temperatures will aid in deciphering the genetic basis of ecological and environmental adaptations in this species. Based on our results, the Amur carp has evolved special strategies to survive low temperatures, and these strategies include the system-wide or tissue-specific induction

  15. Bioinformatics analysis to identify the critical genes, microRNAs and long noncoding RNAs in melanoma.

    PubMed

    Zhang, Qian; Wang, Yang; Liang, Jiulong; Tian, Yaguang; Zhang, Yu; Tao, Kai

    2017-07-01

    Melanoma, which is usually induced by ultraviolet light exposure and the following DNA damage, is the most dangerous skin cancer. The purpose of the present study was to screen key molecules involved in melanoma.Microarray data of E-MTAB-1862 were downloaded from the ArrayExpress database, which included 21 primary melanoma samples and 11 benign nevus samples. In addition, the RNASeq version 2 and microRNA (miRNA) sequencing data of cutaneous melanoma were downloaded from The Cancer Genome Atlas database. After identifying the differentially expressed genes (DEGs) using Limma package, enrichment analysis and protein-protein interaction (PPI) network analysis were performed separately for them using DAVID software and Cytoscape software. In addition, survival analysis and regulatory network analysis were further performed by log-rank test and Cytoscape software, respectively. Moreover, real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to further verify the expression patterns of several selected DEGs.A total of 382 DEGs were identified in primary melanoma samples, including 206 upregulated genes and 176 downregulated genes. Functional enrichment analysis showed that COL17A1 was enriched in epidermis development. In the PPI network, CXCL8 (degree = 29) and STAT1 (degree = 28) had higher degrees and could interact with each other. Survival analysis showed that 21 DEGs, 55 long noncoding RNAs (lncRNAs) and 32 miRNAs were found to be associated with prognosis. Furthermore, several regulatory relationships were found in the lncRNA-gene regulatory network (such as RP11-361L15.4 targeting COL17A1) and the miRNA-gene regulatory network (such as hsa-miR-375 targeting CCL27 and hsa-miR-375 targeting insulin-like growth factor 1 receptor [IGF1R]). Real-time RT-PCR results showed that the overall direction of differential expression was consistent except COL17A1.CXCL8 interacted with STAT1, CCL27, and IGF1R targeted by hsa-miR-375, and COL

  16. Cross-species gene expression analysis identifies a novel set of genes implicated in human insulin sensitivity.

    PubMed

    Chaudhuri, Rima; Khoo, Poh Sim; Tonks, Katherine; Junutula, Jagath R; Kolumam, Ganesh; Modrusan, Zora; Samocha-Bonet, Dorit; Meoli, Christopher C; Hocking, Samantha; Fazakerley, Daniel J; Stöckli, Jacqueline; Hoehn, Kyle L; Greenfield, Jerry R; Yang, Jean Yee Hwa; James, David E

    2015-01-01

    Insulin resistance (IR) is one of the earliest predictors of type 2 diabetes. However, diagnosis of IR is limited. High fat fed mouse models provide key insights into IR. We hypothesized that early features of IR are associated with persistent changes in gene expression (GE) and endeavored to (a) develop novel methods for improving signal:noise in analysis of human GE using mouse models; (b) identify a GE motif that accurately diagnoses IR in humans; and (c) identify novel biology associated with IR in humans. We integrated human muscle GE data with longitudinal mouse GE data and developed an unbiased three-level cross-species analysis platform (single gene, gene set, and networks) to generate a gene expression motif (GEM) indicative of IR. A logistic regression classification model validated GEM in three independent human data sets (n=115). This GEM of 93 genes substantially improved diagnosis of IR compared with routine clinical measures across multiple independent data sets. Individuals misclassified by GEM possessed other metabolic features raising the possibility that they represent a separate metabolic subclass. The GEM was enriched in pathways previously implicated in insulin action and revealed novel associations between β-catenin and Jak1 and IR. Functional analyses using small molecule inhibitors showed an important role for these proteins in insulin action. This study shows that systems approaches for identifying molecular signatures provides a powerful way to stratify individuals into discrete metabolic groups. Moreover, we speculate that the β-catenin pathway may represent a novel biomarker for IR in humans that warrant future investigation.

  17. Transcriptome Analysis of Recurrently Deregulated Genes across Multiple Cancers Identifies New Pan-Cancer Biomarkers.

    PubMed

    Kaczkowski, Bogumil; Tanaka, Yuji; Kawaji, Hideya; Sandelin, Albin; Andersson, Robin; Itoh, Masayoshi; Lassmann, Timo; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R

    2016-01-15

    Genes that are commonly deregulated in cancer are clinically attractive as candidate pan-diagnostic markers and therapeutic targets. To globally identify such targets, we compared Cap Analysis of Gene Expression profiles from 225 different cancer cell lines and 339 corresponding primary cell samples to identify transcripts that are deregulated recurrently in a broad range of cancer types. Comparing RNA-seq data from 4,055 tumors and 563 normal tissues profiled in the The Cancer Genome Atlas and FANTOM5 datasets, we identified a core transcript set with theranostic potential. Our analyses also revealed enhancer RNAs, which are upregulated in cancer, defining promoters that overlap with repetitive elements (especially SINE/Alu and LTR/ERV1 elements) that are often upregulated in cancer. Lastly, we documented for the first time upregulation of multiple copies of the REP522 interspersed repeat in cancer. Overall, our genome-wide expression profiling approach identified a comprehensive set of candidate biomarkers with pan-cancer potential, and extended the perspective and pathogenic significance of repetitive elements that are frequently activated during cancer progression.

  18. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms

    PubMed Central

    Rice, K L; Lin, X; Wolniak, K; Ebert, B L; Berkofsky-Fessler, W; Buzzai, M; Sun, Y; Xi, C; Elkin, P; Levine, R; Golub, T; Gilliland, D G; Crispino, J D; Licht, J D; Zhang, W

    2011-01-01

    Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3–23.3 (n=1), 9q33.1–34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31–36.33 (n=6), 17q21.2–q21.31 (n=5) and 17q25.1–25.3 (n=5) and deletions affecting 18p11.31–11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a ‘HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal. PMID:22829077

  19. A genetic pedigree analysis to identify gene mutations involved in femoral head necrosis.

    PubMed

    Wang, Lin; Pan, Hehai; Zhu, Zhen-An

    2014-10-01

    The present study presents results from a linkage and mutation screening analysis aiming to identify the causative gene of femoral head necrosis, also known as osteonecrosis of femoral head (ONFH), in a Chinese pedigree. We collected clinical data on the osteonecrosis pedigree, and extracted blood and genomic DNA from the family members. Polymerase chain reaction (PCR) and direct sequencing allowed to identify a mutation in the COL2A1 gene of the proband; the clinical manifestations of the proband meet the criteria for osteonecrosis. The exons of COL2A1 were amplified by polymerase chain reaction and mutation screening was conducted by direct sequencing in all the family members. The locus was also sequenced in 50 unrelated healthy controls. The c.3665G>A heterozygous mutation was detected in patients of the pedigree, but not in healthy individuals. We conclude that a mutation in the COL2A1 gene is the causative agent of ONFH in this family. Therefore, this mutation may be associated with osteonecrosis in Chinese populations.

  20. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    PubMed

    Dong, Xiangshu; Yi, Hankuil; Lee, Jeongyeo; Nou, Ill-Sup; Han, Ching-Tack; Hur, Yoonkang

    2015-01-01

    Genome-wide dissection of the heat stress response (HSR) is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT): 5.2% (2,142 genes) in Chiifu and 3.7% (1,535 genes) in Kenshin. The most enriched GO (Gene Ontology) items included 'response to heat', 'response to reactive oxygen species (ROS)', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps) and heat shock factor (Hsf)-like proteins such as HsfB2A (Bra029292), whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853), protein kinases, and phosphatases. Among heat stress (HS) marker genes in Arabidopsis, only exportin 1A (XPO1A) (Bra008580, Bra006382) can be applied to B. rapa for basal thermotolerance (BT) and short-term acquired thermotolerance (SAT) gene. CYP707A3 (Bra025083, Bra021965), which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF) genes, including DREB2A (Bra005852), were involved in HS tolerance in both lines, Bra024224 (MYB41) and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1]) were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  1. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa

    PubMed Central

    Dong, Xiangshu; Yi, Hankuil; Lee, Jeongyeo; Nou, Ill-Sup; Han, Ching-Tack; Hur, Yoonkang

    2015-01-01

    Genome-wide dissection of the heat stress response (HSR) is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5– 4 h at 45°C (high temperature, HT): 5.2% (2,142 genes) in Chiifu and 3.7% (1,535 genes) in Kenshin. The most enriched GO (Gene Ontology) items included ‘response to heat’, ‘response to reactive oxygen species (ROS)’, ‘response to temperature stimulus’, ‘response to abiotic stimulus’, and ‘MAPKKK cascade’. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps) and heat shock factor (Hsf)-like proteins such as HsfB2A (Bra029292), whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853), protein kinases, and phosphatases. Among heat stress (HS) marker genes in Arabidopsis, only exportin 1A (XPO1A) (Bra008580, Bra006382) can be applied to B. rapa for basal thermotolerance (BT) and short-term acquired thermotolerance (SAT) gene. CYP707A3 (Bra025083, Bra021965), which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF) genes, including DREB2A (Bra005852), were involved in HS tolerance in both lines, Bra024224 (MYB41) and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1]) were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data

  2. Joint QTL mapping and gene expression analysis identify positional candidate genes influencing pork quality traits

    PubMed Central

    González-Prendes, Rayner; Quintanilla, Raquel; Cánovas, Angela; Manunza, Arianna; Figueiredo Cardoso, Tainã; Jordana, Jordi; Noguera, José Luis; Pena, Ramona N.; Amills, Marcel

    2017-01-01

    Meat quality traits have an increasing importance in the pig industry because of their strong impact on consumer acceptance. Herewith, we have combined phenotypic and microarray expression data to map loci with potential effects on five meat quality traits recorded in the longissimus dorsi (LD) and gluteus medius (GM) muscles of 350 Duroc pigs, i.e. pH at 24 hours post-mortem (pH24), electric conductivity (CE) and muscle redness (a*), lightness (L*) and yellowness (b*). We have found significant genome-wide associations for CE of LD on SSC4 (~104 Mb), SSC5 (~15 Mb) and SSC13 (~137 Mb), while several additional regions were significantly associated with meat quality traits at the chromosome-wide level. There was a low positional concordance between the associations found for LD and GM traits, a feature that reflects the existence of differences in the genetic determinism of meat quality phenotypes in these two muscles. The performance of an eQTL search for SNPs mapping to the regions associated with meat quality traits demonstrated that the GM a* SSC3 and pH24 SSC17 QTL display positional concordance with cis-eQTL regulating the expression of several genes with a potential role on muscle metabolism. PMID:28054563

  3. Gene-based analysis identified the gene ZNF248 is associated with late-onset asthma in African Americans.

    PubMed

    Wang, Leyao; Salinas, Yasmmyn D; DeWan, Andrew T

    2016-07-01

    Late-onset asthma (LOA) has distinct characteristics and its pathogenesis might rely on unique pathways. Although current studies are focused primarily on childhood asthma, more research is needed to show the mechanisms underlying LOA. To conduct genomewide association analysis and gene-based analysis to identify single-nucleotide polymorphisms and genes associated with LOA. The Women's Health Initiative (WHI) observational cohort and the Multi-Ethnic Study of Atherosclerosis (MESA) were used to identify subjects with LOA. The association between LOA and body mass index and smoking was evaluated. In the discovery stage of the genetic analysis, 1,218 African American subjects from WHI with genotype data (271 cases and 947 controls) were used for single-nucleotide polymorphism and gene-based association analyses. Significant or suggestive results were subsequently investigated in an independent African American population from MESA (38 cases and 806 controls). In WHI, the relative odds for LOA in obese vs normal-weight subjects was 2.55 (95% confidence interval 1.74-3.76). Ever smokers also had greater odds for LOA compared with never smokers (odds ratio 1.59, 95% confidence interval 1.21-2.09). The same trends were observed in MESA. In WHI, 6 single-nucleotide polymorphisms were associated with LOA at a genomewide-suggestive significance level (P < 1.0 × 10(-5)). The gene ZNF248 was associated with LOA and reached genomewide significance (P = 4.0 × 10(-7)). In MESA, the association between ZNF248 and LOA was successfully replicated (P = .015). Smoking and obesity are risk factors for LOA. ZNF248 confers increased susceptibility to LOA in African Americans. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Genome Wide Transcriptome Analysis of Dendritic Cells Identifies Genes with Altered Expression in Psoriasis

    PubMed Central

    Szász, András; Tubak, Vilmos; Kemény, Lajos; Kondorosi, Éva; Nagy, István

    2013-01-01

    Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS) or peptidoglycan (PGN) induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs) upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (Kegg) analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified numerous genes with

  5. Expression Quantitative Trait Loci Analysis Identifies Associations Between Genotype and Gene Expression in Human Intestine

    PubMed Central

    KABAKCHIEV, BOYKO; SILVERBERG, MARK S.

    2013-01-01

    BACKGROUND & AIMS Genome-wide association studies have greatly increased our understanding of intestinal disease. However, little is known about how genetic variations result in phenotypic changes. Some polymorphisms have been shown to modulate quantifiable phenotypic traits; these are called quantitative trait loci. Quantitative trait loci that affect levels of gene expression are called expression quantitative trait loci (eQTL), which can provide insight into the biological relevance of data from genome-wide association studies. We performed a comprehensive eQTL scan of intestinal tissue. METHODS Total RNA was extracted from ileal biopsy specimens and genomic DNA was obtained from whole-blood samples from the same cohort of individuals. Cis- and trans-eQTL analyses were performed using a custom software pipeline for samples from 173 subjects. The analyses determined the expression levels of 19,047 unique autosomal genes listed in the US National Center for Biotechnology Information database and more than 580,000 variants from the Single Nucleotide Polymorphism database. RESULTS The presence of more than 15,000 cis- and trans-eQTL was detected with statistical significance. eQTL associated with the same expression trait were in high linkage disequilibrium. Comparative analysis with previous eQTL studies showed that 30% to 40% of genes identified as eQTL in monocytes, liver tissue, lymphoblastoid cell lines, T cells, and fibroblasts are also eQTL in ileal tissue. Conversely, most of the significant eQTL have not been previously identified and could be tissue specific. These are involved in many cell functions, including division and antigen processing and presentation. Our analysis confirmed that previously published cis-eQTL are single nucleotide polymorphisms associated with inflammatory bowel disease: rs2298428/UBE2L3, rs1050152/SLC22A4, and SLC22A5. We identified many new associations between inflammatory bowel disease susceptibility loci and gene expression

  6. Meta-analysis of transcriptome data identifies a novel 5-gene pancreatic adenocarcinoma classifier

    PubMed Central

    Bhasin, Manoj K.; Ndebele, Kenneth; Bucur, Octavian; Yee, Eric U.; Otu, Hasan H.; Plati, Jessica; Bullock, Andrea; Gu, Xuesong; Castan, Eduardo; Zhang, Peng; Najarian, Robert; Muraru, Maria S.

    2016-01-01

    Purpose Pancreatic ductal adenocarcinoma (PDAC) is largely incurable due to late diagnosis. Superior early detection biomarkers are critical to improving PDAC survival and risk stratification. Experimental Design Optimized meta-analysis of PDAC transcriptome datasets identified and validated key PDAC biomarkers. PDAC-specific expression of a 5-gene biomarker panel was measured by qRT-PCR in microdissected patient-derived FFPE tissues. Cell-based assays assessed impact of two of these biomarkers, TMPRSS4 and ECT2, on PDAC cells. Results A 5-gene PDAC classifier (TMPRSS4, AHNAK2, POSTN, ECT2, SERPINB5) achieved on average 95% sensitivity and 89% specificity in discriminating PDAC from non-tumor samples in four training sets and similar performance (sensitivity = 94%, specificity = 89.6%) in five independent validation datasets. This classifier accurately discriminated PDAC from chronic pancreatitis (AUC = 0.83), other cancers (AUC = 0.89), and non-tumor from PDAC precursors (AUC = 0.92) in three independent datasets. Importantly, the classifier distinguished PanIN from healthy pancreas in the PDX1-Cre;LSL-KrasG12D PDAC mouse model. Discriminatory expression of the PDAC classifier genes was confirmed in microdissected FFPE samples of PDAC and matched surrounding non-tumor pancreas or pancreatitis. Notably, knock-down of TMPRSS4 and ECT2 reduced PDAC soft agar growth and cell viability and TMPRSS4 knockdown also blocked PDAC migration and invasion. Conclusions This study identified and validated a highly accurate 5-gene PDAC classifier for discriminating PDAC and early precursor lesions from non-malignant tissue that may facilitate early diagnosis and risk stratification upon validation in prospective clinical trials. Cell-based experiments of two overexpressed proteins encoded by the panel, TMPRSS4 and ECT2, suggest a causal link to PDAC development and progression, confirming them as potential therapeutic targets. PMID:26993610

  7. Transcriptome Analysis of Syringa oblata Lindl. Inflorescence Identifies Genes Associated with Pigment Biosynthesis and Scent Metabolism

    PubMed Central

    Zheng, Jian; Hu, Zenghui; Guan, Xuelian; Dou, Dequan; Bai, Guo; Wang, Yu; Guo, Yingtian; Li, Wei; Leng, Pingsheng

    2015-01-01

    Syringa oblata Lindl. is a woody ornamental plant with high economic value and characteristics that include early flowering, multiple flower colors, and strong fragrance. Despite a long history of cultivation, the genetics and molecular biology of S. oblata are poorly understood. Transcriptome and expression profiling data are needed to identify genes and to better understand the biological mechanisms of floral pigments and scents in this species. Nine cDNA libraries were obtained from three replicates of three developmental stages: inflorescence with enlarged flower buds not protruded, inflorescence with corolla lobes not displayed, and inflorescence with flowers fully opened and emitting strong fragrance. Using the Illumina RNA-Seq technique, 319,425,972 clean reads were obtained and were assembled into 104,691 final unigenes (average length of 853 bp), 41.75% of which were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 36,967 were assigned to gene ontology categories and 19,956 were assigned to eukaryoticorthologous groups. Using the Kyoto Encyclopedia of Genes and Genomes pathway database, 12,388 unigenes were sorted into 286 pathways. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at different flower stages and that were related to floral pigment biosynthesis and fragrance metabolism. This comprehensive transcriptomic analysis provides fundamental information on the genes and pathways involved in flower secondary metabolism and development in S. oblata, providing a useful database for further research on S. oblata and other plants of genus Syringa. PMID:26587670

  8. Transcriptome Analysis of Syringa oblata Lindl. Inflorescence Identifies Genes Associated with Pigment Biosynthesis and Scent Metabolism.

    PubMed

    Zheng, Jian; Hu, Zenghui; Guan, Xuelian; Dou, Dequan; Bai, Guo; Wang, Yu; Guo, Yingtian; Li, Wei; Leng, Pingsheng

    2015-01-01

    Syringa oblata Lindl. is a woody ornamental plant with high economic value and characteristics that include early flowering, multiple flower colors, and strong fragrance. Despite a long history of cultivation, the genetics and molecular biology of S. oblata are poorly understood. Transcriptome and expression profiling data are needed to identify genes and to better understand the biological mechanisms of floral pigments and scents in this species. Nine cDNA libraries were obtained from three replicates of three developmental stages: inflorescence with enlarged flower buds not protruded, inflorescence with corolla lobes not displayed, and inflorescence with flowers fully opened and emitting strong fragrance. Using the Illumina RNA-Seq technique, 319,425,972 clean reads were obtained and were assembled into 104,691 final unigenes (average length of 853 bp), 41.75% of which were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 36,967 were assigned to gene ontology categories and 19,956 were assigned to eukaryoticorthologous groups. Using the Kyoto Encyclopedia of Genes and Genomes pathway database, 12,388 unigenes were sorted into 286 pathways. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at different flower stages and that were related to floral pigment biosynthesis and fragrance metabolism. This comprehensive transcriptomic analysis provides fundamental information on the genes and pathways involved in flower secondary metabolism and development in S. oblata, providing a useful database for further research on S. oblata and other plants of genus Syringa.

  9. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora.

    PubMed

    Mondego, Jorge Mc; Vidal, Ramon O; Carazzolle, Marcelo F; Tokuda, Eric K; Parizzi, Lucas P; Costa, Gustavo Gl; Pereira, Luiz Fp; Andrade, Alan C; Colombo, Carlos A; Vieira, Luiz Ge; Pereira, Gonçalo Ag

    2011-02-08

    Coffee is one of the world's most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency. Assembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories. We present the first comprehensive genome-wide transcript profile study of C. arabica and C

  10. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora

    PubMed Central

    2011-01-01

    Background Coffee is one of the world's most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency. Results Assembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories. Conclusion We present the first comprehensive genome-wide transcript

  11. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets.

    PubMed

    Vinayagam, Arunachalam; Gibson, Travis E; Lee, Ho-Joon; Yilmazel, Bahar; Roesel, Charles; Hu, Yanhui; Kwon, Young; Sharma, Amitabh; Liu, Yang-Yu; Perrimon, Norbert; Barabási, Albert-László

    2016-05-03

    The protein-protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as "indispensable," "neutral," or "dispensable," which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network's control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets.

  12. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets

    PubMed Central

    Vinayagam, Arunachalam; Gibson, Travis E.; Lee, Ho-Joon; Yilmazel, Bahar; Roesel, Charles; Hu, Yanhui; Kwon, Young; Sharma, Amitabh; Liu, Yang-Yu; Perrimon, Norbert; Barabási, Albert-László

    2016-01-01

    The protein–protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as “indispensable,” “neutral,” or “dispensable,” which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network’s control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets. PMID:27091990

  13. Exome sequencing coupled with mRNA analysis identifies NDUFAF6 as a Leigh gene.

    PubMed

    Bianciardi, Laura; Imperatore, Valentina; Fernandez-Vizarra, Erika; Lopomo, Angela; Falabella, Micol; Furini, Simone; Galluzzi, Paolo; Grosso, Salvatore; Zeviani, Massimo; Renieri, Alessandra; Mari, Francesca; Frullanti, Elisa

    2016-11-01

    We report here the case of a young male who started to show verbal fluency disturbance, clumsiness and gait anomalies at the age of 3.5years and presented bilateral striatal necrosis. Clinically, the diagnosis was compatible with Leigh syndrome but the underlying molecular defect remained elusive even after exome analysis using autosomal/X-linked recessive or de novo models. Dosage of respiratory chain activity on fibroblasts, but not in muscle, underlined a deficit in complex I. Re-analysis of heterozygous probably pathogenic variants, inherited from one healthy parent, identified the p.Ala178Pro in NDUFAF6, a complex I assembly factor. RNA analysis showed an almost mono-allelic expression of the mutated allele in blood and fibroblasts and puromycin treatment on cultured fibroblasts did not lead to the rescue of the maternal allele expression, not supporting the involvement of nonsense-mediated RNA decay mechanism. Complementation assay underlined a recovery of complex I activity after transduction of the wild-type gene. Since the second mutation was not detected and promoter methylation analysis resulted normal, we hypothesized a non-exonic event in the maternal allele affecting a regulatory element that, in conjunction with the paternal mutation, leads to the autosomal recessive disorder and the different allele expression in various tissues. This paper confirms NDUFAF6 as a genuine morbid gene and proposes the coupling of exome sequencing with mRNA analysis as a method useful for enhancing the exome sequencing detection rate when the simple application of classical inheritance models fails.

  14. Microarray Analysis Identifies Cerebellar Genes Sensitive to Chronic Ethanol Treatment in PKCγ Mice

    PubMed Central

    Bowers, Barbara J.; Radcliffe, Richard A.; Smith, Amy M.; Miyamoto-Ditmon, Jill; Wehner, Jeanne M.

    2007-01-01

    Neuroadaptive changes that occur in the development of ethanol tolerance may be the result of alterations in gene expression. We have shown that PKCγ wild-type mice develop tolerance to the sedative-hypnotic effects of ethanol after chronic ethanol treatment; whereas, mutant mice do not, making these genotypes a suitable model for identifying changes in gene expression related to tolerance development. Using a two-stage process, several genes were initially identified using microarray analyses of cerebellar tissue from ethanol-treated PKCγ mutant and wild-type mice. Subsequent confirmation of a subset of these genes using qRT-PCR was done to verify gene expression changes. A total of 109 genes from different functional classifications were identified in these groups on the microarrays. Eight genes were selected for verification: three, Twik-1, Plp, and Adk2, were chosen as genes related to tolerance; another three, Hsp70.2, Bdnf, and Th, were chosen as genes related to resistance to tolerance; and two genes, JunB and Nur77, were selected as candidate genes sensitive to chronic ethanol. The results from the verification experiments indicated that Twik-1, which codes for a potassium channel, was associated with tolerance and appeared to be dependent on the presence of PKCγ. No genes were confirmed to be related to resistance to tolerance; however, expression of two of these, Hsp70.2 and Th, were found to be sensitive to chronic ethanol and were added to the transcription factors, JunB and Nur77, confirmed by qRT-PCR, as a subset of genes that respond to chronic ethanol. PMID:17157717

  15. Identifying Tinnitus-Related Genes Based on a Side-Effect Network Analysis

    PubMed Central

    Elgoyhen, A B; Langguth, B; Nowak, W; Schecklmann, M; De Ridder, D; Vanneste, S

    2014-01-01

    Tinnitus, phantom sound perception, is a worldwide highly prevalent disorder for which no clear underlying pathology has been established and for which no approved drug is on the market. Thus, there is an urgent need for new approaches to understand this condition. We used a network pharmacology side-effect analysis to search for genes that are involved in tinnitus generation. We analyzed a network of 1,313 drug–target pairs, based on 275 compounds that elicit tinnitus as side effect and their targets reported in databases, and used a quantitative score to identify emergent significant targets that were more common than expected at random. Cyclooxigenase 1 and 2 were significant, which validates our approach, since salicylate is a known tinnitus generator. More importantly, we predict previously unknown tinnitus-related targets. The present results have important implications toward understanding tinnitus pathophysiology and might pave the way toward the design of novel pharmacotherapies. PMID:24477090

  16. Transcriptional Analysis of Gli3 Mutants Identifies Wnt Target Genes in the Developing Hippocampus

    PubMed Central

    Hasenpusch-Theil, Kerstin; Magnani, Dario; Amaniti, Eleni-Maria; Han, Lin; Armstrong, Douglas

    2012-01-01

    Early development of the hippocampus, which is essential for spatial memory and learning, is controlled by secreted signaling molecules of the Wnt gene family and by Wnt/β-catenin signaling. Despite its importance, little is known, however, about Wnt-regulated genes during hippocampal development. Here, we used the Gli3 mutant mouse extra-toes (XtJ), in which Wnt gene expression in the forebrain is severely affected, as a tool in a microarray analyses to identify potential Wnt target genes. This approach revealed 53 candidate genes with restricted or graded expression patterns in the dorsomedial telencephalon. We identified conserved Tcf/Lef-binding sites in telencephalon-specific enhancers of several of these genes, including Dmrt3, Gli3, Nfia, and Wnt8b. Binding of Lef1 to these sites was confirmed using electrophoretic mobility shift assays. Mutations in these Tcf/Lef-binding sites disrupted or reduced enhancer activity in vivo. Moreover, ectopic activation of Wnt/β-catenin signaling in an ex vivo explant system led to increased telencephalic expression of these genes. Finally, conditional inactivation of Gli3 results in defective hippocampal growth. Collectively, these data strongly suggest that we have identified a set of direct Wnt target genes in the developing hippocampus and provide inside into the genetic hierarchy underlying Wnt-regulated hippocampal development. PMID:22235033

  17. Comparative Analysis of Cluster Validity Indices in Identifying Some Possible Genes Mediating Certain Cancers.

    PubMed

    Ghosh, Anupam; Dhara, Bibhas Chandra; De, Rajat K

    2013-04-01

    In this article, we compare the performance of 19 cluster validity indices, in identifying some possible genes mediating certain cancers, based on gene expression data. For the purpose of this comparison, we have developed a method. The proposed method involves cluster generation, selection of the best k-value or c-values, cluster identification, identifying the altered gene cluster, scoring an altered gene cluster and determining the best k-value or c-value exploring through biological repositories. The effectiveness of the method has been demonstrated on three gene expression data sets dealing with human lung cancer, colon cancer, and leukemia. Here, we have used three clustering algorithms, i.e., k-means, PAM and fuzzy c-means. We have used biochemical pathways related to these cancers and p-value statistics for validating the study. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Using Formal Concept Analysis to Identify Negative Correlations in Gene Expression Data.

    PubMed

    Tu, Xudong; Wang, Yuanliang; Zhang, Maolan; Wu, Jinchuan

    2016-01-01

    Recently, many biological studies reported that two groups of genes tend to show negatively correlated or opposite expression tendency in many biological processes or pathways. The negative correlation between genes may imply an important biological mechanism. In this study, we proposed a FCA-based negative correlation algorithm (NCFCA) that can effectively identify opposite expression tendency between two gene groups in gene expression data. After applying it to expression data of cell cycle-regulated genes in yeast, we found that six minichromosome maintenance family genes showed the opposite changing tendency with eight core histone family genes. Furthermore, we confirmed that the negative correlation expression pattern between these two families may be conserved in the cell cycle. Finally, we discussed the reasons underlying the negative correlation of six minichromosome maintenance (MCM) family genes with eight core histone family genes. Our results revealed that negative correlation is an important and potential mechanism that maintains the balance of biological systems by repressing some genes while inducing others. It can thus provide new understanding of gene expression and regulation, the causes of diseases, etc.

  19. Can modular analysis identify disease-associated candidate genes for therapeutics?

    PubMed

    Tegnér, Jesper

    2009-01-01

    Complex diseases such as allergy change gene expression in several cell types and tissues. Benson and colleagues have now shown, in a paper in BMC Systems Biology, that this complexity can be studied effectively using an integrated experimental and computational modular analysis. Their strategy revealed a core of allergy-associated genes of potential therapeutic value.

  20. Analysis of multiple transcriptomes of the African oil palm (Elaeis guineensis) to identify reference genes for RT-qPCR.

    PubMed

    Xia, Wei; Mason, Annaliese S; Xiao, Yong; Liu, Zheng; Yang, Yaodong; Lei, Xintao; Wu, Xiaoming; Ma, Zilong; Peng, Ming

    2014-08-20

    The African oil palm (Elaeis guineensis), which is grown in tropical and subtropical regions, is a highly productive oil-bearing crop. For gene expression-based analyses such as reverse transcription-quantitative real time PCR (RT-qPCR), reference genes are essential to provide a baseline with which to quantify relative gene expression. Normalization using reliable reference genes is critical in correctly interpreting expression data from RT-qPCR. In order to identify suitable reference genes in African oil palm, 17 transcriptomes of different tissues obtained from NCBI were systematically assessed for gene expression variation. In total, 53 putative candidate reference genes with coefficient of variation values <3.0 were identified: 18 in reproductive tissue and 35 in vegetative tissue. Analysis for enriched functions showed that approximately 90% of identified genes were clustered in cell component gene functions, and 12 out of 53 genes were traditional housekeeping genes. We selected and validated 16 reference genes chosen from leaf tissue transcriptomes by using RT-qPCR in sets of cold, drought and high salinity treated samples, and ranked expression stability using statistical algorithms geNorm, Normfinder and Bestkeeper. Genes encoding actin, adenine phosphoribosyltransferase and eukaryotic initiation factor 4A genes were the most stable genes over the cold, drought and high salinity stresses. Identification of stably expressed genes as reference gene candidates from multiple transcriptome datasets was found to be reliable and efficient, and some traditional housekeeping genes were more stably expressed than others. We provide a useful molecular genetic resource for future gene expression studies in African oil palm, facilitating molecular genetics approaches for crop improvement in this species. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney

    PubMed Central

    Westland, Rik; Verbitsky, Miguel; Vukojevic, Katarina; Perry, Brittany J.; Fasel, David A.; Zwijnenburg, Petra J.G.; Bökenkamp, Arend; Gille, Johan J.P.; Saraga-Babic, Mirna; Ghiggeri, Gian Marco; D’Agati, Vivette D.; Schreuder, Michiel F.; Gharavi, Ali G.; van Wijk, Joanna A.E.; Sanna-Cherchi, Simone

    2016-01-01

    Copy number variations associate with different developmental phenotypes and represent a major cause of congenital anomalies of the kidney and urinary tract (CAKUT). Because rare pathogenic copy number variations are often large and contain multiple genes, identification of the underlying genetic drivers has proven to be difficult. Here we studied the role of rare copy number variations in 80 patients from the KIMONO-study cohort for which pathogenic mutations in three genes commonly implicated in CAKUT were excluded. In total, 13 known or novel genomic imbalances in 11 of 80 patients were absent or extremely rare in 23,362 population controls. To identify the most likely genetic drivers for the CAKUT phenotype underlying these rare copy number variations, we used a systematic in silico approach based on frequency in a large dataset of controls, annotation with publicly available databases for developmental diseases, tolerance and haploinsufficiency scores, and gene expression profile in the developing kidney and urinary tract. Five novel candidate genes for CAKUT were identified that showed specific expression in the human and mouse developing urinary tract. Among these genes, DLG1 and KIF12 are likely novel susceptibility genes for CAKUT in humans. Thus, there is a significant role of genomic imbalance in the determination of kidney developmental phenotypes. Additionally, we defined a systematic strategy to identify genetic drivers underlying rare copy number variations. PMID:26352300

  2. Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney.

    PubMed

    Westland, Rik; Verbitsky, Miguel; Vukojevic, Katarina; Perry, Brittany J; Fasel, David A; Zwijnenburg, Petra J G; Bökenkamp, Arend; Gille, Johan J P; Saraga-Babic, Mirna; Ghiggeri, Gian Marco; D'Agati, Vivette D; Schreuder, Michiel F; Gharavi, Ali G; van Wijk, Joanna A E; Sanna-Cherchi, Simone

    2015-12-01

    Copy number variations associate with different developmental phenotypes and represent a major cause of congenital anomalies of the kidney and urinary tract (CAKUT). Because rare pathogenic copy number variations are often large and contain multiple genes, identification of the underlying genetic drivers has proven to be difficult. Here we studied the role of rare copy number variations in 80 patients from the KIMONO study cohort for which pathogenic mutations in three genes commonly implicated in CAKUT were excluded. In total, 13 known or novel genomic imbalances in 11 of 80 patients were absent or extremely rare in 23,362 population controls. To identify the most likely genetic drivers for the CAKUT phenotype underlying these rare copy number variations, we used a systematic in silico approach based on frequency in a large data set of controls, annotation with publicly available databases for developmental diseases, tolerance and haploinsufficiency scores, and gene expression profile in the developing kidney and urinary tract. Five novel candidate genes for CAKUT were identified that showed specific expression in the human and mouse developing urinary tract. Among these genes, DLG1 and KIF12 are likely novel susceptibility genes for CAKUT in humans. Thus, there is a significant role of genomic imbalance in the determination of kidney developmental phenotypes. Additionally, we defined a systematic strategy to identify genetic drivers underlying rare copy number variations.

  3. Featured Article: Transcriptional landscape analysis identifies differently expressed genes involved in follicle-stimulating hormone induced postmenopausal osteoporosis.

    PubMed

    Maasalu, Katre; Laius, Ott; Zhytnik, Lidiia; Kõks, Sulev; Prans, Ele; Reimann, Ene; Märtson, Aare

    2017-01-01

    Osteoporosis is a disorder associated with bone tissue reorganization, bone mass, and mineral density. Osteoporosis can severely affect postmenopausal women, causing bone fragility and osteoporotic fractures. The aim of the current study was to compare blood mRNA profiles of postmenopausal women with and without osteoporosis, with the aim of finding different gene expressions and thus targets for future osteoporosis biomarker studies. Our study consisted of transcriptome analysis of whole blood serum from 12 elderly female osteoporotic patients and 12 non-osteoporotic elderly female controls. The transcriptome analysis was performed with RNA sequencing technology. For data analysis, the edgeR package of R Bioconductor was used. Two hundred and fourteen genes were expressed differently in osteoporotic compared with non-osteoporotic patients. Statistical analysis revealed 20 differently expressed genes with a false discovery rate of less than 1.47 × 10(-4) among osteoporotic patients. The expression of 10 genes were up-regulated and 10 down-regulated. Further statistical analysis identified a potential osteoporosis mRNA biomarker pattern consisting of six genes: CACNA1G, ALG13, SBK1, GGT7, MBNL3, and RIOK3. Functional ingenuity pathway analysis identified the strongest candidate genes with regard to potential involvement in a follicle-stimulating hormone activated network of increased osteoclast activity and hypogonadal bone loss. The differentially expressed genes identified in this study may contribute to future research of postmenopausal osteoporosis blood biomarkers.

  4. Use of eQTL Analysis for the Discovery of Target Genes Identified by GWAS

    DTIC Science & Technology

    2012-04-01

    prostate tissue-specific expression quantitative trait loci (eQTL) dataset; and 2) utilize this dataset to identify candidate genes for existing...set of 500 samples of normal prostate tissue sampled from men with PC. To date, we have pre-screened normal prostate tissue with the use of H&E...stained sections from 4000 men having a radical prostatectomy in order to identify those cases meeting our strict selection criteria for further

  5. Gene-Based Genome-Wide Association Analysis in European and Asian Populations Identified Novel Genes for Rheumatoid Arthritis

    PubMed Central

    Zhu, Hong; Xia, Wei; Mo, Xing-Bo; Lin, Xiang; Qiu, Ying-Hua; Yi, Neng-Jun; Zhang, Yong-Hong; Deng, Fei-Yan; Lei, Shu-Feng

    2016-01-01

    Objective Rheumatoid arthritis (RA) is a complex autoimmune disease. Using a gene-based association research strategy, the present study aims to detect unknown susceptibility to RA and to address the ethnic differences in genetic susceptibility to RA between European and Asian populations. Methods Gene-based association analyses were performed with KGG 2.5 by using publicly available large RA datasets (14,361 RA cases and 43,923 controls of European subjects, 4,873 RA cases and 17,642 controls of Asian Subjects). For the newly identified RA-associated genes, gene set enrichment analyses and protein-protein interactions analyses were carried out with DAVID and STRING version 10.0, respectively. Differential expression verification was conducted using 4 GEO datasets. The expression levels of three selected ‘highly verified’ genes were measured by ELISA among our in-house RA cases and controls. Results A total of 221 RA-associated genes were newly identified by gene-based association study, including 71‘overlapped’, 76 ‘European-specific’ and 74 ‘Asian-specific’ genes. Among them, 105 genes had significant differential expressions between RA patients and health controls at least in one dataset, especially for 20 genes including 11 ‘overlapped’ (ABCF1, FLOT1, HLA-F, IER3, TUBB, ZKSCAN4, BTN3A3, HSP90AB1, CUTA, BRD2, HLA-DMA), 5 ‘European-specific’ (PHTF1, RPS18, BAK1, TNFRSF14, SUOX) and 4 ‘Asian-specific’ (RNASET2, HFE, BTN2A2, MAPK13) genes whose differential expressions were significant at least in three datasets. The protein expressions of two selected genes FLOT1 (P value = 1.70E-02) and HLA-DMA (P value = 4.70E-02) in plasma were significantly different in our in-house samples. Conclusion Our study identified 221 novel RA-associated genes and especially highlighted the importance of 20 candidate genes on RA. The results addressed ethnic genetic background differences for RA susceptibility between European and Asian populations and

  6. Integrative Analysis of DNA Methylation and Gene Expression Data Identifies EPAS1 as a Key Regulator of COPD

    PubMed Central

    Yoo, Seungyeul; Takikawa, Sachiko; Geraghty, Patrick; Argmann, Carmen; Campbell, Joshua; Lin, Luan; Huang, Tao; Tu, Zhidong; Feronjy, Robert; Spira, Avrum; Schadt, Eric E.; Powell, Charles A.; Zhu, Jun

    2015-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a ‘causal’ role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology. PMID:25569234

  7. Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD.

    PubMed

    Yoo, Seungyeul; Takikawa, Sachiko; Geraghty, Patrick; Argmann, Carmen; Campbell, Joshua; Lin, Luan; Huang, Tao; Tu, Zhidong; Foronjy, Robert F; Feronjy, Robert; Spira, Avrum; Schadt, Eric E; Powell, Charles A; Zhu, Jun

    2015-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a 'causal' role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology.

  8. Integromic Analysis of Genetic Variation and Gene Expression Identifies Networks for Cardiovascular Disease Phenotypes

    PubMed Central

    Yao, Chen; Chen, Brian H.; Joehanes, Roby; Otlu, Burcak; Zhang, Xiaoling; Liu, Chunyu; Huan, Tianxiao; Tastan, Oznur; Cupples, L. Adrienne; Meigs, James B.; Fox, Caroline S.; Freedman, Jane E.; Courchesne, Paul; O’Donnell, Christopher J.; Munson, Peter J.; Keles, Sunduz; Levy, Daniel

    2015-01-01

    Background Cardiovascular disease (CVD) reflects a highly coordinated complex of traits. Although genome-wide association studies have reported numerous single nucleotide polymorphisms (SNPs) to be associated with CVD, the role of most of these variants in disease processes remains unknown. Methods and Results We built a CVD network using 1512 SNPs associated with 21 CVD traits in genome-wide association studies (at P≤5×10−8) and cross-linked different traits by virtue of their shared SNP associations. We then explored whole blood gene expression in relation to these SNPs in 5257 participants in the Framingham Heart Study. At a false discovery rate <0.05, we identified 370 cis-expression quantitative trait loci (eQTLs; SNPs associated with altered expression of nearby genes) and 44 trans-eQTLs (SNPs associated with altered expression of remote genes). The eQTL network revealed 13 CVD-related modules. Searching for association of eQTL genes with CVD risk factors (lipids, blood pressure, fasting blood glucose, and body mass index) in the same individuals, we found examples in which the expression of eQTL genes was significantly associated with these CVD phenotypes. In addition, mediation tests suggested that a subset of SNPs previously associated with CVD phenotypes in genome-wide association studies may exert their function by altering expression of eQTL genes (eg, LDLR and PCSK7), which in turn may promote interindividual variation in phenotypes. Conclusions Using a network approach to analyze CVD traits, we identified complex networks of SNP-phenotype and SNP-transcript connections. Integrating the CVD network with phenotypic data, we identified biological pathways that may provide insights into potential drug targets for treatment or prevention of CVD. PMID:25533967

  9. Analysis of CATMA transcriptome data identifies hundreds of novel functional genes and improves gene models in the Arabidopsis genome

    PubMed Central

    Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Brunaud, Véronique; Taconnat, Ludivine; Bitton, Frédérique; Balzergue, Sandrine; Jullien, Pauline E; Ingouff, Mathieu; Thareau, Vincent; Schiex, Thomas; Lecharny, Alain; Renou, Jean-Pierre

    2007-01-01

    Background Since the finishing of the sequencing of the Arabidopsis thaliana genome, the Arabidopsis community and the annotator centers have been working on the improvement of gene annotation at the structural and functional levels. In this context, we have used the large CATMA resource on the Arabidopsis transcriptome to search for genes missed by different annotation processes. Probes on the CATMA microarrays are specific gene sequence tags (GSTs) based on the CDS models predicted by the Eugene software. Among the 24 576 CATMA v2 GSTs, 677 are in regions considered as intergenic by the TAIR annotation. We analyzed the cognate transcriptome data in the CATMA resource and carried out data-mining to characterize novel genes and improve gene models. Results The statistical analysis of the results of more than 500 hybridized samples distributed among 12 organs provides an experimental validation for 465 novel genes. The hybridization evidence was confirmed by RT-PCR approaches for 88% of the 465 novel genes. Comparisons with the current annotation show that these novel genes often encode small proteins, with an average size of 137 aa. Our approach has also led to the improvement of pre-existing gene models through both the extension of 16 CDS and the identification of 13 gene models erroneously constituted of two merged CDS. Conclusion This work is a noticeable step forward in the improvement of the Arabidopsis genome annotation. We increased the number of Arabidopsis validated genes by 465 novel transcribed genes to which we associated several functional annotations such as expression profiles, sequence conservation in plants, cognate transcripts and protein motifs. PMID:17980019

  10. A Stratified Transcriptomics Analysis of Polygenic Fat and Lean Mouse Adipose Tissues Identifies Novel Candidate Obesity Genes

    PubMed Central

    Morton, Nicholas M.; Nelson, Yvonne B.; Michailidou, Zoi; Di Rollo, Emma M.; Ramage, Lynne; Hadoke, Patrick W. F.; Seckl, Jonathan R.; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J.; Dunbar, Donald R.

    2011-01-01

    Background Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. Results To enrich for adipose tissue obesity genes a ‘snap-shot’ pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. Conclusions A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes

  11. Comparative analysis of gene expression profiles for several migrating cell types identifies cell migration regulators.

    PubMed

    Bae, Young-Kyung; Macabenta, Frank; Curtis, Heather Leigh; Stathopoulos, Angelike

    2017-04-18

    Cell migration is an instrumental process that ensures cells are properly positioned to support the specification of distinct tissue types during development. To provide insight, we used fluorescence activated cell sorting (FACS) to isolate two migrating cell types from the Drosophila embryo: caudal visceral mesoderm (CVM) cells, precursors of longitudinal muscles of the gut, and hemocytes (HCs), the Drosophila equivalent of blood cells. ~350 genes were identified from each of the sorted samples using RNA-seq, and in situ hybridization was used to confirm expression within each cell type or, alternatively, within other interacting, co-sorted cell types. To start, the two gene expression profiling datasets were compared to identify cell migration regulators that are potentially generally-acting. 73 genes were present in both CVM cell and HC gene expression profiles, including the transcription factor zinc finger homeodomain-1 (zfh1). Comparisons with gene expression profiles of Drosophila border cells that migrate during oogenesis had a more limited overlap, with only the genes neyo (neo) and singed (sn) found to be expressed in border cells as well as CVM cells and HCs, respectively. Neo encodes a protein with Zona pellucida domain linked to cell polarity, while sn encodes an actin binding protein. Tissue specific RNAi expression coupled with live in vivo imaging was used to confirm cell-autonomous roles for zfh1 and neo in supporting CVM cell migration, whereas previous studies had demonstrated a role for Sn in supporting HC migration. In addition, comparisons were made to migrating cells from vertebrates. Seven genes were found expressed by chick neural crest cells, CVM cells, and HCs including extracellular matrix (ECM) proteins and proteases. In summary, we show that genes shared in common between CVM cells, HCs, and other migrating cell types can help identify regulators of cell migration. Our analyses show that neo in addition to zfh1 and sn studied

  12. Identifying Genes Involved in the Iron Metabolism Pathway Through Transcriptomic Analysis

    NASA Astrophysics Data System (ADS)

    Khana, D.

    2016-02-01

    Iron oxidizing bacteria are important to the biological iron cycle but the mechanism of Fe-oxidation is poorly understood. TAG-1 is a new isolate that grows on both Fe(II) and H2, thus can be used for transcriptomic analysis of gene expression involved in iron metabolism. The actB1 gene encodes for a component of alternative complex III (ACIII), which functionally replaces cytochrome bc1/b6f of the electron transport chain. We hypothesized if ACIII is involved in iron metabolism, then actB1 expression will be higher in TAG-1 cells grown on Fe(II) than H2. TAG-1 was grown on zero valent iron (ZVI) and H2 gas and direct cell counts were used to determine substrate preference. TAG-1 cells consistently grew more on ZVI. ActB1 gene expression was determined via quantitative PCR and compared to the housekeeping gene recA. ActB1 gene expression was higher in TAG-1 grown on ZVI after 48, 72, and 96 hour time points. The recA gene failed to amplify despite the use of various primers. We conclude that ActB1 was expressed in the presence of both substrates indicating a poor biomarker for Fe-oxidation.

  13. Gene-set meta-analysis of lung cancer identifies pathway related to systemic lupus erythematosus.

    PubMed

    Rosenberger, Albert; Sohns, Melanie; Friedrichs, Stefanie; Hung, Rayjean J; Fehringer, Gord; McLaughlin, John; Amos, Christopher I; Brennan, Paul; Risch, Angela; Brüske, Irene; Caporaso, Neil E; Landi, Maria Teresa; Christiani, David C; Wei, Yongyue; Bickeböller, Heike

    2017-01-01

    Gene-set analysis (GSA) is an approach using the results of single-marker genome-wide association studies when investigating pathways as a whole with respect to the genetic basis of a disease. We performed a meta-analysis of seven GSAs for lung cancer, applying the method META-GSA. Overall, the information taken from 11,365 cases and 22,505 controls from within the TRICL/ILCCO consortia was used to investigate a total of 234 pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. META-GSA reveals the systemic lupus erythematosus KEGG pathway hsa05322, driven by the gene region 6p21-22, as also implicated in lung cancer (p = 0.0306). This gene region is known to be associated with squamous cell lung carcinoma. The most important genes driving the significance of this pathway belong to the genomic areas HIST1-H4L, -1BN, -2BN, -H2AK, -H4K and C2/C4A/C4B. Within these areas, the markers most significantly associated with LC are rs13194781 (located within HIST12BN) and rs1270942 (located between C2 and C4A). We have discovered a pathway currently marked as specific to systemic lupus erythematosus as being significantly implicated in lung cancer. The gene region 6p21-22 in this pathway appears to be more extensively associated with lung cancer than previously assumed. Given wide-stretched linkage disequilibrium to the area APOM/BAG6/MSH5, there is currently simply not enough information or evidence to conclude whether the potential pleiotropy of lung cancer and systemic lupus erythematosus is spurious, biological, or mediated. Further research into this pathway and gene region will be necessary.

  14. Gene-set meta-analysis of lung cancer identifies pathway related to systemic lupus erythematosus

    PubMed Central

    Sohns, Melanie; Friedrichs, Stefanie; Hung, Rayjean J.; Fehringer, Gord; McLaughlin, John; Amos, Christopher I.; Brennan, Paul; Risch, Angela; Brüske, Irene; Caporaso, Neil E.; Landi, Maria Teresa; Christiani, David C.; Wei, Yongyue; Bickeböller, Heike

    2017-01-01

    Introduction Gene-set analysis (GSA) is an approach using the results of single-marker genome-wide association studies when investigating pathways as a whole with respect to the genetic basis of a disease. Methods We performed a meta-analysis of seven GSAs for lung cancer, applying the method META-GSA. Overall, the information taken from 11,365 cases and 22,505 controls from within the TRICL/ILCCO consortia was used to investigate a total of 234 pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results META-GSA reveals the systemic lupus erythematosus KEGG pathway hsa05322, driven by the gene region 6p21-22, as also implicated in lung cancer (p = 0.0306). This gene region is known to be associated with squamous cell lung carcinoma. The most important genes driving the significance of this pathway belong to the genomic areas HIST1-H4L, -1BN, -2BN, -H2AK, -H4K and C2/C4A/C4B. Within these areas, the markers most significantly associated with LC are rs13194781 (located within HIST12BN) and rs1270942 (located between C2 and C4A). Conclusions We have discovered a pathway currently marked as specific to systemic lupus erythematosus as being significantly implicated in lung cancer. The gene region 6p21-22 in this pathway appears to be more extensively associated with lung cancer than previously assumed. Given wide-stretched linkage disequilibrium to the area APOM/BAG6/MSH5, there is currently simply not enough information or evidence to conclude whether the potential pleiotropy of lung cancer and systemic lupus erythematosus is spurious, biological, or mediated. Further research into this pathway and gene region will be necessary. PMID:28273134

  15. Genetic and expression analysis of cattle identifies candidate genes in pathways responding to Trypanosoma congolense infection

    PubMed Central

    Noyes, Harry; Brass, Andy; Obara, Isaiah; Anderson, Susan; Archibald, Alan L.; Bradley, Dan G.; Fisher, Paul; Freeman, Abigail; Gibson, John; Gicheru, Michael; Hall, Laurence; Hanotte, Olivier; Hulme, Helen; McKeever, Declan; Murray, Caitriona; Oh, Sung Jung; Tate, Catriona; Smith, Ken; Tapio, Miika; Wambugu, John; Williams, Diana J.; Agaba, Morris; Kemp, Stephen J.

    2011-01-01

    African bovine trypanosomiasis caused by Trypanosoma sp., is a major constraint on cattle productivity in sub-Saharan Africa. Some African Bos taurus breeds are highly tolerant of infection, but the potentially more productive Bos indicus zebu breeds are much more susceptible. Zebu cattle are well adapted for plowing and haulage, and increasing their tolerance of trypanosomiasis could have a major impact on crop cultivation as well as dairy and beef production. We used three strategies to obtain short lists of candidate genes within QTL that were previously shown to regulate response to infection. We analyzed the transcriptomes of trypanotolerant N'Dama and susceptible Boran cattle after infection with Trypanosoma congolense. We sequenced EST libraries from these two breeds to identify polymorphisms that might underlie previously identified quantitative trait loci (QTL), and we assessed QTL regions and candidate loci for evidence of selective sweeps. The scan of the EST sequences identified a previously undescribed polymorphism in ARHGAP15 in the Bta2 trypanotolerance QTL. The polymorphism affects gene function in vitro and could contribute to the observed differences in expression of the MAPK pathway in vivo. The expression data showed that TLR and MAPK pathways responded to infection, and the former contained TICAM1, which is within a QTL on Bta7. Genetic analyses showed that selective sweeps had occurred at TICAM1 and ARHGAP15 loci in African taurine cattle, making them strong candidates for the genes underlying the QTL. Candidate QTL genes were identified in other QTL by their expression profile and the pathways in which they participate. PMID:21593421

  16. Functional data analysis for identifying nonlinear models of gene regulatory networks

    PubMed Central

    2010-01-01

    Background A key problem in systems biology is estimating dynamical models of gene regulatory networks. Traditionally, this has been done using regression or other ad-hoc methods when the model is linear. More detailed, realistic modeling studies usually employ nonlinear dynamical models, which lead to computationally difficult parameter estimation problems. Functional data analysis methods, however, offer a means to simplify fitting by transforming the problem from one of matching modeled and observed dynamics to one of matching modeled and observed time derivatives–a regression problem, albeit a nonlinear one. Results We formulate a functional data analysis approach for estimating the parameters of nonlinear dynamical models and evaluate this approach on data from two real systems, the gap gene system of Drosophila melanogaster and the synthetic IRMA network, which was created expressly as a test case for genetic network inference. We also evaluate the approach on simulated data sets generated by the GeneNetWeaver program, the basis for the annual DREAM reverse engineering challenge. We assess the accuracy with which the correct regulatory relationships within the networks are extracted, and consider alternative methods of regularization for the purpose of overfitting avoidance. We also show that the computational efficiency of the functional data analysis approach, and the decomposability of the resulting regression problem, allow us to explicitly enumerate and evaluate all possible regulator combinations for every gene. This gives deeper insight into the the relevance of different regulators or regulator combinations, and lets one check for alternative regulatory explanations. Conclusions Functional data analysis is a powerful approach for estimating detailed nonlinear models of gene expression dynamics, allowing efficient and accurate estimation of regulatory architecture. PMID:21143801

  17. Analysis of clones from a human cartilage cDNA library provides insight into chondrocyte gene expression and identifies novel candidate genes for the osteochondrodysplasias.

    PubMed

    Krakow, Deborah; Sebald, Eiman T; Pogue, Robert; Rimoin, Lauren P; King, Lily; Cohn, Daniel H

    2003-05-01

    To begin to define the gene expression pattern in fetal cartilage and to identify uncharacterized candidate genes for the osteochondrodysplasias, we analyzed clones from a fetal cartilage cDNA library. Sequence analysis of 420 cDNA clones identified 210 clones derived from established genes but, for many of them, expression in cartilage had not been previously reported. Among the established genes were 14 genes known to produce skeletal abnormalities in either humans or mice when mutated. Thirty-two uncharacterized genes and their respective chromosomal positions were also identified. To further understand the expression profile of these genes in fetal cartilage, we constructed a cDNA microarray utilizing the clones. The microarray was used to determine which genes had higher expression in cartilage as compared with dedifferentiated, cultured chondrocytes. Many of the established genes, as well as five of the uncharacterized genes, had increased expression in cartilage, suggesting an important role for these genes in the differentiated state of chondrocytes. These data provide new candidate genes for the osteochondrodysplasias and demonstrate the usefulness of cartilage cDNA microarrays in expanding our understanding of the complexity of fetal cartilage gene expression.

  18. Gene expression analysis identifies new candidate genes associated with the development of black skin spots in Corriedale sheep.

    PubMed

    Peñagaricano, Francisco; Zorrilla, Pilar; Naya, Hugo; Robello, Carlos; Urioste, Jorge I

    2012-02-01

    The white coat colour of sheep is an important economic trait. For unknown reasons, some animals are born with, and others develop with time, black skin spots that can also produce pigmented fibres. The presence of pigmented fibres in the white wool significantly decreases the fibre quality. The aim of this work was to study gene expression in black spots (with and without pigmented fibres) and white skin by microarray techniques, in order to identify the possible genes involved in the development of this trait. Five unrelated Corriedale sheep were used and, for each animal, the three possible comparisons (three different hybridisations) between the three samples of interest were performed. Differential gene expression patterns were analysed using different t-test approaches. Most of the major genes with well-known roles in skin pigmentation, e.g. ASIP, MC1R and C-KIT, showed no significant difference in the gene expression between white skin and black spots. On the other hand, many of the differentially expressed genes (raw P-value < 0.005) detected in this study, e.g. C-FOS, KLF4 and UFC1, fulfil biological functions that are plausible to be involved in the formation of black spots. The gene expression of C-FOS and KLF4, transcription factors involved in the cellular response to external factors such as ultraviolet light, was validated by quantitative polymerase chain reaction (PCR). This exploratory study provides a list of candidate genes that could be associated with the development of black skin spots that should be studied in more detail. Characterisation of these genes will enable us to discern the molecular mechanisms involved in the development of this feature and, hence, increase our understanding of melanocyte biology and skin pigmentation. In sheep, understanding this phenomenon is a first step towards developing molecular tools to assist in the selection against the presence of pigmented fibres in white wool.

  19. Microarray analysis identifies candidate genes for key roles in coral development.

    PubMed

    Grasso, Lauretta C; Maindonald, John; Rudd, Stephen; Hayward, David C; Saint, Robert; Miller, David J; Ball, Eldon E

    2008-11-14

    Anthozoan cnidarians are amongst the simplest animals at the tissue level of organization, but are surprisingly complex and vertebrate-like in terms of gene repertoire. As major components of tropical reef ecosystems, the stony corals are anthozoans of particular ecological significance. To better understand the molecular bases of both cnidarian development in general and coral-specific processes such as skeletogenesis and symbiont acquisition, microarray analysis was carried out through the period of early development - when skeletogenesis is initiated, and symbionts are first acquired. Of 5081 unique peptide coding genes, 1084 were differentially expressed (P Genes of likely relevance to the processes of settlement, metamorphosis, calcification and interaction with symbionts were characterised further and their spatial expression patterns investigated using whole-mount in situ hybridization. This study is the first large-scale investigation of developmental gene expression for any cnidarian, and has provided candidate genes for key roles in many aspects of coral biology, including calcification, metamorphosis and symbiont uptake. One surprising finding is that some of these genes have clear counterparts in higher animals but are not present in the closely-related sea anemone Nematostella. Secondly, coral-specific processes (i.e. traits which distinguish corals from their close relatives) may be analogous to similar processes in distantly related organisms. This first large-scale application of microarray analysis demonstrates the potential of this approach for investigating many aspects of coral biology, including the effects of stress and disease.

  20. Microarray analysis identifies candidate genes for key roles in coral development

    PubMed Central

    Grasso, Lauretta C; Maindonald, John; Rudd, Stephen; Hayward, David C; Saint, Robert; Miller, David J; Ball, Eldon E

    2008-01-01

    Background Anthozoan cnidarians are amongst the simplest animals at the tissue level of organization, but are surprisingly complex and vertebrate-like in terms of gene repertoire. As major components of tropical reef ecosystems, the stony corals are anthozoans of particular ecological significance. To better understand the molecular bases of both cnidarian development in general and coral-specific processes such as skeletogenesis and symbiont acquisition, microarray analysis was carried out through the period of early development – when skeletogenesis is initiated, and symbionts are first acquired. Results Of 5081 unique peptide coding genes, 1084 were differentially expressed (P ≤ 0.05) in comparisons between four different stages of coral development, spanning key developmental transitions. Genes of likely relevance to the processes of settlement, metamorphosis, calcification and interaction with symbionts were characterised further and their spatial expression patterns investigated using whole-mount in situ hybridization. Conclusion This study is the first large-scale investigation of developmental gene expression for any cnidarian, and has provided candidate genes for key roles in many aspects of coral biology, including calcification, metamorphosis and symbiont uptake. One surprising finding is that some of these genes have clear counterparts in higher animals but are not present in the closely-related sea anemone Nematostella. Secondly, coral-specific processes (i.e. traits which distinguish corals from their close relatives) may be analogous to similar processes in distantly related organisms. This first large-scale application of microarray analysis demonstrates the potential of this approach for investigating many aspects of coral biology, including the effects of stress and disease. PMID:19014561

  1. Gene expression profiles in the rat streptococcal cell wall-induced arthritis model identified using microarray analysis.

    PubMed

    Rioja, Inmaculada; Clayton, Chris L; Graham, Simon J; Life, Paul F; Dickson, Marion C

    2005-01-01

    Experimental arthritis models are considered valuable tools for delineating mechanisms of inflammation and autoimmune phenomena. Use of microarray-based methods represents a new and challenging approach that allows molecular dissection of complex autoimmune diseases such as arthritis. In order to characterize the temporal gene expression profile in joints from the reactivation model of streptococcal cell wall (SCW)-induced arthritis in Lewis (LEW/N) rats, total RNA was extracted from ankle joints from naive, SCW injected, or phosphate buffered saline injected animals (time course study) and gene expression was analyzed using Affymetrix oligonucleotide microarray technology (RAE230A). After normalization and statistical analysis of data, 631 differentially expressed genes were sorted into clusters based on their levels and kinetics of expression using Spotfire profile search and K-mean cluster analysis. Microarray-based data for a subset of genes were validated using real-time PCR TaqMan analysis. Analysis of the microarray data identified 631 genes (441 upregulated and 190 downregulated) that were differentially expressed (Delta > 1.8, P < 0.01), showing specific levels and patterns of gene expression. The genes exhibiting the highest fold increase in expression on days -13.8, -13, or 3 were involved in chemotaxis, inflammatory response, cell adhesion and extracellular matrix remodelling. Transcriptome analysis identified 10 upregulated genes (Delta > 5), which have not previously been associated with arthritis pathology and are located in genomic regions associated with autoimmune disease. The majority of the downregulated genes were associated with metabolism, transport and regulation of muscle development. In conclusion, the present study describes the temporal expression of multiple disease-associated genes with potential pathophysiological roles in the reactivation model of SCW-induced arthritis in Lewis (LEW/N) rat. These findings improve our understanding of

  2. Gene expression profiles in the rat streptococcal cell wall-induced arthritis model identified using microarray analysis

    PubMed Central

    Rioja, Inmaculada; Clayton, Chris L; Graham, Simon J; Life, Paul F; Dickson, Marion C

    2005-01-01

    Experimental arthritis models are considered valuable tools for delineating mechanisms of inflammation and autoimmune phenomena. Use of microarray-based methods represents a new and challenging approach that allows molecular dissection of complex autoimmune diseases such as arthritis. In order to characterize the temporal gene expression profile in joints from the reactivation model of streptococcal cell wall (SCW)-induced arthritis in Lewis (LEW/N) rats, total RNA was extracted from ankle joints from naïve, SCW injected, or phosphate buffered saline injected animals (time course study) and gene expression was analyzed using Affymetrix oligonucleotide microarray technology (RAE230A). After normalization and statistical analysis of data, 631 differentially expressed genes were sorted into clusters based on their levels and kinetics of expression using Spotfire® profile search and K-mean cluster analysis. Microarray-based data for a subset of genes were validated using real-time PCR TaqMan® analysis. Analysis of the microarray data identified 631 genes (441 upregulated and 190 downregulated) that were differentially expressed (Delta > 1.8, P < 0.01), showing specific levels and patterns of gene expression. The genes exhibiting the highest fold increase in expression on days -13.8, -13, or 3 were involved in chemotaxis, inflammatory response, cell adhesion and extracellular matrix remodelling. Transcriptome analysis identified 10 upregulated genes (Delta > 5), which have not previously been associated with arthritis pathology and are located in genomic regions associated with autoimmune disease. The majority of the downregulated genes were associated with metabolism, transport and regulation of muscle development. In conclusion, the present study describes the temporal expression of multiple disease-associated genes with potential pathophysiological roles in the reactivation model of SCW-induced arthritis in Lewis (LEW/N) rat. These findings improve our

  3. SERPINA1 Full-Gene Sequencing Identifies Rare Mutations Not Detected in Targeted Mutation Analysis.

    PubMed

    Graham, Rondell P; Dina, Michelle A; Howe, Sarah C; Butz, Malinda L; Willkomm, Kurt S; Murray, David L; Snyder, Melissa R; Rumilla, Kandelaria M; Halling, Kevin C; Highsmith, W Edward

    2015-11-01

    Genetic α-1 antitrypsin (AAT) deficiency is characterized by low serum AAT levels and the identification of causal mutations or an abnormal protein. It needs to be distinguished from deficiency because of nongenetic causes, and diagnostic delay may contribute to worse patient outcome. Current routine clinical testing assesses for only the most common mutations. We wanted to determine the proportion of unexplained cases of AAT deficiency that harbor causal mutations not identified through current standard allele-specific genotyping and isoelectric focusing (IEF). All prospective cases from December 1, 2013, to October 1, 2014, with a low serum AAT level not explained by allele-specific genotyping and IEF were assessed through full-gene sequencing with a direct sequencing method for pathogenic mutations. We reviewed the results using American Council of Medical Genetics criteria. Of 3523 cases, 42 (1.2%) met study inclusion criteria. Pathogenic or likely pathogenic mutations not identified through clinical testing were detected through full-gene sequencing in 16 (38%) of the 42 cases. Rare mutations not detected with current allele-specific testing and IEF underlie a substantial proportion of genetic AAT deficiency. Full-gene sequencing, therefore, has the ability to improve accuracy in the diagnosis of AAT deficiency. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. Integrated analysis of genome-wide DNA methylation and gene expression profiles identifies potential novel biomarkers of rectal cancer

    PubMed Central

    Zhang, Jinning; Zhou, Yuhui; Dang, Shuwei; Chen, Hongsheng; Wu, Qiong; Liu, Ming

    2016-01-01

    DNA methylation was regarded as the promising biomarker for rectal cancer diagnosis. However, the optimal methylation biomarkers with ideal diagnostic performance for rectal cancer are still limited. To identify new molecular markers for rectal cancer, we mapped DNA methylation and transcriptomic profiles in the six rectal cancer and paired normal samples. Further analysis revealed the hypermethylated probes in cancer prone to be located in gene promoter. Meanwhile, transcriptome analysis presented 773 low-expressed and 1,161 over-expressed genes in rectal cancer. Correction analysis identified a panel of 36 genes with an inverse correlation between methylation and gene expression levels, including 10 known colorectal cancer related genes. From the other 26 novel marker genes, GFRA1 and GSTM2 were selected for further analysis on the basis of their biological functions. Further experiment analysis confirmed their methylation and expression status in a larger number (44) of rectal cancer samples, and ROC curves showed higher AUC than SEPT9, which has been used as a biomarker in rectal cancer. Our data suggests that aberrant DNA methylation of contiguous CpG sites in methylation array may be potential diagnostic markers of rectal cancer. PMID:27566576

  5. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits.

    PubMed

    Pan, Yu; Bradley, Glyn; Pyke, Kevin; Ball, Graham; Lu, Chungui; Fray, Rupert; Marshall, Alexandra; Jayasuta, Subhalai; Baxter, Charles; van Wijk, Rik; Boyden, Laurie; Cade, Rebecca; Chapman, Natalie H; Fraser, Paul D; Hodgman, Charlie; Seymour, Graham B

    2013-03-01

    Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening.

  6. Genome-wide association analysis identifies potential regulatory genes for eumelanin pigmentation in chicken plumage.

    PubMed

    Yang, L; Du, X; Wei, S; Gu, L; Li, N; Gong, Y; Li, S

    2017-10-01

    Plumage color in chicken is determined by the proportion of eumelanin and pheomelanin pigmentation. As the main ingredient in plumage melanin, eumelanin plays a key role in the dark black, brown and grey coloration. However, very few studies have been performed to identify the related genes and mutations on a genome-wide scale. Herein, a resource family consisting of one backcross population and two F2 cross populations between a black roster and Yukou Brown I parent stockbreed was constructed for identification of genes related to eumelanin pigmentation. Chickens with eumelanin in their plumage were classified as the case group, and the rest were considered the control group. A genome-wide association study of this phenotype and genotypes using Affymetrix 600K HD SNP arrays in this F2 family revealed 13 significantly associated SNPs and in 10 separate genes on chromosomes 1, 2, 3 and 5. Based on previous studies in model species, we inferred that genes, including NUAK family kinase 1 (NUAK1) and sonic hedgehog (SHH), may play roles in the development of neural crest cells or melanoblasts during the embryonic period, which may also affect the eumelanin pigmentation. Our results facilitate the understanding of the genetic basis of eumelanin pigmentation in chicken plumage. © 2017 Stichting International Foundation for Animal Genetics.

  7. Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors.

    PubMed

    Koster, Roelof; Mitra, Nandita; D'Andrea, Kurt; Vardhanabhuti, Saran; Chung, Charles C; Wang, Zhaoming; Loren Erickson, R; Vaughn, David J; Litchfield, Kevin; Rahman, Nazneen; Greene, Mark H; McGlynn, Katherine A; Turnbull, Clare; Chanock, Stephen J; Nathanson, Katherine L; Kanetsky, Peter A

    2014-11-15

    Genome-wide association (GWA) studies of testicular germ cell tumor (TGCT) have identified 18 susceptibility loci, some containing genes encoding proteins important in male germ cell development. Deletions of one of these genes, DMRT1, lead to male-to-female sex reversal and are associated with development of gonadoblastoma. To further explore genetic association with TGCT, we undertook a pathway-based analysis of SNP marker associations in the Penn GWAs (349 TGCT cases and 919 controls). We analyzed a custom-built sex determination gene set consisting of 32 genes using three different methods of pathway-based analysis. The sex determination gene set ranked highly compared with canonical gene sets, and it was associated with TGCT (FDRG = 2.28 × 10(-5), FDRM = 0.014 and FDRI = 0.008 for Gene Set Analysis-SNP (GSA-SNP), Meta-Analysis Gene Set Enrichment of Variant Associations (MAGENTA) and Improved Gene Set Enrichment Analysis for Genome-wide Association Study (i-GSEA4GWAS) analysis, respectively). The association remained after removal of DMRT1 from the gene set (FDRG = 0.0002, FDRM = 0.055 and FDRI = 0.009). Using data from the NCI GWA scan (582 TGCT cases and 1056 controls) and UK scan (986 TGCT cases and 4946 controls), we replicated these findings (NCI: FDRG = 0.006, FDRM = 0.014, FDRI = 0.033, and UK: FDRG = 1.04 × 10(-6), FDRM = 0.016, FDRI = 0.025). After removal of DMRT1 from the gene set, the sex determination gene set remains associated with TGCT in the NCI (FDRG = 0.039, FDRM = 0.050 and FDRI = 0.055) and UK scans (FDRG = 3.00 × 10(-5), FDRM = 0.056 and FDRI = 0.044). With the exception of DMRT1, genes in the sex determination gene set have not previously been identified as TGCT susceptibility loci in these GWA scans, demonstrating the complementary nature of a pathway-based approach for genome-wide analysis of TGCT.

  8. Epigenetic genome-wide analysis identifies BEX1 as a candidate tumour suppressor gene in paediatric intracranial ependymoma.

    PubMed

    Karakoula, Katherine; Jacques, Thomas S; Phipps, Kim P; Harkness, William; Thompson, Dominic; Harding, Brian N; Darling, John L; Warr, Tracy J

    2014-04-28

    Promoter hypermethylation and transcriptional silencing is a common epigenetic mechanism of gene inactivation in cancer. To identify targets of epigenetic silencing in paediatric intracranial ependymoma, we used a pharmacological unmasking approach through treatment of 3 ependymoma short-term cell cultures with the demethylating agent 5-Aza-2'-deoxycytidine followed by global expression microarray analysis. We identified 55 candidate epigenetically silenced genes, which are involved in the regulation of apoptosis, Wnt signalling, p53 and cell differentiation. The methylation status of 26 of these genes was further determined by combined bisulfite restriction analysis (COBRA) and genomic sequencing in a cohort of 40 ependymoma samples. The most frequently methylated genes were BEX1 (27/40 cases), BAI2 (20/40), CCND2 (18/40), and CDKN2A (14/40). A high correlation between promoter hypermethylation and decreased gene expression levels was established by real-time quantitative PCR, suggesting the involvement of these genes in ependymoma tumourigenesis. Furthermore, ectopic expression of brain-expressed X-linked 1 (BEX1) in paediatric ependymoma short-term cell cultures significantly suppressed cell proliferation and colony formation. These data suggest that promoter hypermethylation contributes to silencing of target genes in paediatric intracranial ependymoma. Epigenetic inactivation of BEX1 supports its role as a candidate tumour suppressor gene in intracranial ependymoma, and a potential target for novel therapies for ependymoma in children.

  9. Transcriptomic Analysis Identifies Differentially Expressed Genes (DEGs) Associated with Bolting and Flowering in Radish (Raphanus sativus L.)

    PubMed Central

    Nie, Shanshan; Li, Chao; Wang, Yan; Xu, Liang; Muleke, Everlyne M.; Tang, Mingjia; Sun, Xiaochuan; Liu, Liwang

    2016-01-01

    The transition of vegetative growth to bolting and flowering is an important process in the life cycle of plants, which is determined by numerous genes forming an intricate network of bolting and flowering. However, no comprehensive identification and profiling of bolting and flowering-related genes have been carried out in radish. In this study, RNA-Seq technology was applied to analyze the differential gene expressions during the transition from vegetative stage to reproductive stage in radish. A total of 5922 differentially expressed genes (DEGs) including 779 up-regulated and 5143 down-regulated genes were isolated. Functional enrichment analysis suggested that some DEGs were involved in hormone signaling pathways and the transcriptional regulation of bolting and flowering. KEGG-based analysis identified 37 DEGs being involved in phytohormone signaling pathways. Moreover, 95 DEGs related to bolting and flowering were identified and integrated into various flowering pathways. Several critical genes including FT, CO, SOC1, FLC, and LFY were characterized and profiled by RT-qPCR analysis. Correlation analysis indicated that 24 miRNA-DEG pairs were involved in radish bolting and flowering. Finally, a miRNA-DEG-based schematic model of bolting and flowering regulatory network was proposed in radish. These outcomes provided significant insights into genetic control of radish bolting and flowering, and would facilitate unraveling molecular regulatory mechanism underlying bolting and flowering in root vegetable crops. PMID:27252709

  10. Transcriptomic Analysis Identifies Differentially Expressed Genes (DEGs) Associated with Bolting and Flowering in Radish (Raphanus sativus L.).

    PubMed

    Nie, Shanshan; Li, Chao; Wang, Yan; Xu, Liang; Muleke, Everlyne M; Tang, Mingjia; Sun, Xiaochuan; Liu, Liwang

    2016-01-01

    The transition of vegetative growth to bolting and flowering is an important process in the life cycle of plants, which is determined by numerous genes forming an intricate network of bolting and flowering. However, no comprehensive identification and profiling of bolting and flowering-related genes have been carried out in radish. In this study, RNA-Seq technology was applied to analyze the differential gene expressions during the transition from vegetative stage to reproductive stage in radish. A total of 5922 differentially expressed genes (DEGs) including 779 up-regulated and 5143 down-regulated genes were isolated. Functional enrichment analysis suggested that some DEGs were involved in hormone signaling pathways and the transcriptional regulation of bolting and flowering. KEGG-based analysis identified 37 DEGs being involved in phytohormone signaling pathways. Moreover, 95 DEGs related to bolting and flowering were identified and integrated into various flowering pathways. Several critical genes including FT, CO, SOC1, FLC, and LFY were characterized and profiled by RT-qPCR analysis. Correlation analysis indicated that 24 miRNA-DEG pairs were involved in radish bolting and flowering. Finally, a miRNA-DEG-based schematic model of bolting and flowering regulatory network was proposed in radish. These outcomes provided significant insights into genetic control of radish bolting and flowering, and would facilitate unraveling molecular regulatory mechanism underlying bolting and flowering in root vegetable crops.

  11. Identifying the Genes Responsible for Iron-Limited Condition in Riemerella anatipestifer CH-1 through RNA-Seq-Based Analysis

    PubMed Central

    Huang, Mi; Zhu, DeKang; Wang, MingShu; Jia, RenYong; Chen, Shun; Sun, KunFeng; Yang, Qiao; Wu, Ying; Biville, Francis

    2017-01-01

    One of the important elements for most bacterial growth is iron, the bioavailability of which is limited in hosts. Riemerella anatipestifer (R. anatipestifer, RA), an important duck pathogen, requires iron to live. However, the genes involved in iron metabolism and the mechanisms of iron transport are largely unknown. Here, we investigated the transcriptomic effects of iron limitation condition on R. anatipestifer CH-1 using the RNA-Seq and RNA-Seq-based analysis. Data analysis revealed genes encoding functions related to iron homeostasis, including a number of putative TonB-dependent receptor systems, a HmuY-like protein-dependent hemin (an iron-containing porphyrin) uptake system, a Feo system, a gene cluster related to starch utilization, and genes encoding hypothetical proteins that were significantly upregulated in response to iron limitation. Compared to the number of upregulated genes, more genes were significantly downregulated in response to iron limitation. The downregulated genes mainly encoded a number of outer membrane receptors, DNA-binding proteins, phage-related proteins, and many hypothetical proteins. This information suggested that RNA-Seq-based analysis in iron-limited medium is an effective and fast method for identifying genes involved in iron uptake in R. anatipestifer CH-1. PMID:28540303

  12. Gene by stress genome-wide interaction analysis and path analysis identify EBF1 as a cardiovascular and metabolic risk gene.

    PubMed

    Singh, Abanish; Babyak, Michael A; Nolan, Daniel K; Brummett, Beverly H; Jiang, Rong; Siegler, Ilene C; Kraus, William E; Shah, Svati H; Williams, Redford B; Hauser, Elizabeth R

    2015-06-01

    We performed gene-environment interaction genome-wide association analysis (G × E GWAS) to identify SNPs whose effects on metabolic traits are modified by chronic psychosocial stress in the Multi-Ethnic Study of Atherosclerosis (MESA). In Whites, the G × E GWAS for hip circumference identified five SNPs within the Early B-cell Factor 1 (EBF1) gene, all of which were in strong linkage disequilibrium. The gene-by-stress interaction (SNP × STRESS) term P-values were genome-wide significant (Ps = 7.14E-09 to 2.33E-08, uncorrected; Ps = 1.99E-07 to 5.18E-07, corrected for genomic control). The SNP-only (without interaction) model P-values (Ps = 0.011-0.022) were not significant at the conventional genome-wide significance level. Further analysis of related phenotypes identified gene-by-stress interaction effects for waist circumference, body mass index (BMI), fasting glucose, type II diabetes status, and common carotid intimal-medial thickness (CCIMT), supporting a proposed model of gene-by-stress interaction that connects cardiovascular disease (CVD) risk factor endophenotypes such as central obesity and increased blood glucose or diabetes to CVD itself. Structural equation path analysis suggested that the path from chronic psychosocial stress to CCIMT via hip circumference and fasting glucose was larger (estimate = 0.26, P = 0.033, 95% CI = 0.02-0.49) in the EBF1 rs4704963 CT/CC genotypes group than the same path in the TT group (estimate = 0.004, P = 0.34, 95% CI = -0.004-0.012). We replicated the association of the EBF1 SNPs and hip circumference in the Framingham Offspring Cohort (gene-by-stress term P-values = 0.007-0.012) as well as identified similar path relationships. This observed and replicated interaction between psychosocial stress and variation in the EBF1 gene may provide a biological hypothesis for the complex relationship between psychosocial stress, central obesity, diabetes, and cardiovascular disease.

  13. Mutation Analysis Identifies GUCY2D as the Major Gene Responsible for Autosomal Dominant Progressive Cone Degeneration

    PubMed Central

    Kitiratschky, Veronique B. D.; Wilke, Robert; Renner, Agnes B.; Kellner, Ulrich; Vadalà, Maria; Birch, David G.; Wissinger, Bernd; Zrenner, Eberhart; Kohl, Susanne

    2017-01-01

    Purpose Heterozygous mutations in the GUCY2D gene, which encodes the membrane-bound retinal guanylyl cyclase-1 protein (RetGC-1), have been shown to cause autosomal dominant inherited cone degeneration and cone–rod degeneration (adCD, adCRD). The present study was a comprehensive screening of the GUCY2D gene in 27 adCD and adCRD unrelated families of these rare disorders. Methods Mutation analysis was performed by direct sequencing as well as PCR and subsequent restriction length polymorphism analysis (PCR/RFLP). Haplotype analysis was performed in selected patients by using microsatellite markers. Results GUCY2D gene mutations were identified in 11 (40%) of 27 patients, and all mutations clustered to codon 838, including two known and one novel missense mutation: p.R838C, p.R838H, and p.R838G. Haplotype analysis showed that among the studied patients only two of the six analyzed p.R838C mutation carriers shared a common haplotype and that none of the p.R838H mutation carriers did. Conclusions GUCY2D is a major gene responsible for progressive autosomal dominant cone degeneration. All identified mutations localize to codon 838. Haplotype analysis indicates that in most cases these mutations arise independently. Thus, codon 838 is likely to be a mutation hotspot in the GUCY2D gene. PMID:18487367

  14. Cross-Species Functional Genomic Analysis Identifies Resistance Genes of the Histone Deacetylase Inhibitor Valproic Acid

    PubMed Central

    Forthun, Rakel Brendsdal; SenGupta, Tanima; Skjeldam, Hanne Kim; Lindvall, Jessica Margareta; McCormack, Emmet; Gjertsen, Bjørn Tore; Nilsen, Hilde

    2012-01-01

    The mechanisms of successful epigenetic reprogramming in cancer are not well characterized as they involve coordinated removal of repressive marks and deposition of activating marks by a large number of histone and DNA modification enzymes. Here, we have used a cross-species functional genomic approach to identify conserved genetic interactions to improve therapeutic effect of the histone deacetylase inhibitor (HDACi) valproic acid, which increases survival in more than 20% of patients with advanced acute myeloid leukemia (AML). Using a bidirectional synthetic lethality screen revealing genes that increased or decreased VPA sensitivity in C. elegans, we identified novel conserved sensitizers and synthetic lethal interactors of VPA. One sensitizer identified as a conserved determinant of therapeutic success of HDACi was UTX (KDM6A), which demonstrates a functional relationship between protein acetylation and lysine-specific methylation. The synthetic lethal screen identified resistance programs that compensated for the HDACi-induced global hyper-acetylation, and confirmed MAPKAPK2, HSP90AA1, HSP90AB1 and ACTB as conserved hubs in a resistance program for HDACi that are drugable in human AML cell lines. Hence, these resistance hubs represent promising novel targets for refinement of combinatorial epigenetic anti-cancer therapy. PMID:23155442

  15. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence.

    PubMed

    Sniekers, Suzanne; Stringer, Sven; Watanabe, Kyoko; Jansen, Philip R; Coleman, Jonathan R I; Krapohl, Eva; Taskesen, Erdogan; Hammerschlag, Anke R; Okbay, Aysu; Zabaneh, Delilah; Amin, Najaf; Breen, Gerome; Cesarini, David; Chabris, Christopher F; Iacono, William G; Ikram, M Arfan; Johannesson, Magnus; Koellinger, Philipp; Lee, James J; Magnusson, Patrik K E; McGue, Matt; Miller, Mike B; Ollier, William E R; Payton, Antony; Pendleton, Neil; Plomin, Robert; Rietveld, Cornelius A; Tiemeier, Henning; van Duijn, Cornelia M; Posthuma, Danielle

    2017-07-01

    Intelligence is associated with important economic and health-related life outcomes. Despite intelligence having substantial heritability (0.54) and a confirmed polygenic nature, initial genetic studies were mostly underpowered. Here we report a meta-analysis for intelligence of 78,308 individuals. We identify 336 associated SNPs (METAL P < 5 × 10(-8)) in 18 genomic loci, of which 15 are new. Around half of the SNPs are located inside a gene, implicating 22 genes, of which 11 are new findings. Gene-based analyses identified an additional 30 genes (MAGMA P < 2.73 × 10(-6)), of which all but one had not been implicated previously. We show that the identified genes are predominantly expressed in brain tissue, and pathway analysis indicates the involvement of genes regulating cell development (MAGMA competitive P = 3.5 × 10(-6)). Despite the well-known difference in twin-based heritability for intelligence in childhood (0.45) and adulthood (0.80), we show substantial genetic correlation (rg = 0.89, LD score regression P = 5.4 × 10(-29)). These findings provide new insight into the genetic architecture of intelligence.

  16. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    PubMed Central

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2. PMID:15738400

  17. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2.

  18. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2.

  19. Integrated analysis of mutation data from various sources identifies key genes and signaling pathways in hepatocellular carcinoma.

    PubMed

    Zhang, Yuannv; Qiu, Zhaoping; Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers.

  20. Integrated Analysis of Mutation Data from Various Sources Identifies Key Genes and Signaling Pathways in Hepatocellular Carcinoma

    PubMed Central

    Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Background Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. Principal Findings In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Conclusions Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers. PMID:24988079

  1. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    PubMed Central

    2012-01-01

    Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that

  2. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Gupta, Vidya S

    2012-05-08

    The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were

  3. An Integrative Transcriptomic Analysis for Identifying Novel Target Genes Corresponding to Severity Spectrum in Spinal Muscular Atrophy

    PubMed Central

    Yang, Chung-Wei; Chen, Chien-Lin; Chou, Wei-Chun; Lin, Ho-Chen; Jong, Yuh-Jyh; Tsai, Li-Kai; Chuang, Chun-Yu

    2016-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disease resulting from a recessive mutation in the SMN1 gene. This disease affects multiple organ systems with varying degrees of severity. Exploration of the molecular pathological changes occurring in different cell types in SMA is crucial for developing new therapies. This study collected 39 human microarray datasets from ArrayExpress and GEO databases to build an integrative transcriptomic analysis for recognizing novel SMA targets. The transcriptomic analysis was conducted through combining weighted correlation network analysis (WGCNA) for gene module detection, gene set enrichment analysis (GSEA) for functional categorization and filtration, and Cytoscape (visual interaction gene network analysis) for target gene identification. Seven novel target genes (Bmp4, Serpine1, Gata6, Ptgs2, Bcl2, IL6 and Cntn1) of SMA were revealed, and are all known in the regulation of TNFα for controlling neural, cardiac and bone development. Sequentially, the differentially expressed patterns of these 7 target genes in mouse tissues (e.g., spinal cord, heart, muscles and bone) were validated in SMA mice of different severities (pre-symptomatic, mildly symptomatic, and severely symptomatic). In severely symptomatic SMA mice, TNFα was up-regulated with attenuation of Bmp4 and increase of Serpine1 and Gata6 (a pathway in neural and cardiac development), but not in pre-symptomatic and mildly symptomatic SMA mice. The severely symptomatic SMA mice also had the elevated levels of Ptgs2 and Bcl2 (a pathway in skeletal development) as well as IL6 and Cntn1 (a pathway in nervous system development). Thus, the 7 genes identified in this study might serve as potential target genes for future investigations of disease pathogenesis and SMA therapy. PMID:27331400

  4. ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-β and constitutively active receptor induced gene expression

    PubMed Central

    Lux, Andreas; Salway, Fiona; Dressman, Holly K; Kröner-Lux, Gabriele; Hafner, Mathias; Day, Philip JR; Marchuk, Douglas A; Garland, John

    2006-01-01

    Background TGF-β1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-β signalling is mediated by the TβRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-β utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway. Consequently, a perturbance of ALK1, ALK5 or TβRII activity leads to vascular defects. Mutations in ALK1 cause the vascular disorder hereditary hemorrhagic telangiectasia (HHT). Methods The identification of ALK1 and not ALK5 regulated genes in endothelial cells, might help to better understand the development of HHT. Therefore, the human microvascular endothelial cell line HMEC-1 was infected with a recombinant constitutively active ALK1 adenovirus, and gene expression was studied by using gene arrays and quantitative real-time PCR analysis. Results After 24 hours, 34 genes were identified to be up-regulated by ALK1 signalling. Analysing ALK1 regulated gene expression after 4 hours revealed 13 genes to be up- and 2 to be down-regulated. Several of these genes, including IL-8, ET-1, ID1, HPTPη and TEAD4 are reported to be involved in angiogenesis. Evaluation of ALK1 regulated gene expression in different human endothelial cell types was not in complete agreement. Further on, disparity between constitutively active ALK1 and TGF-β1 induced gene expression in HMEC-1 cells and primary HUVECs was observed. Conclusion Gene array analysis identified 49 genes to be regulated by ALK1 signalling and at least 14 genes are reported to be involved in angiogenesis. There was substantial agreement between the gene array and quantitative real-time PCR data. The angiogenesis related genes might be potential HHT modifier genes. In addition, the results suggest endothelial cell type specific ALK1 and TGF-β signalling. PMID:16594992

  5. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.)

    PubMed Central

    Horvath, David P; Chao, Wun S; Suttle, Jeffrey C; Thimmapuram, Jyothi; Anderson, James V

    2008-01-01

    Background Dormancy of buds is a critical developmental process that allows perennial plants to survive extreme seasonal variations in climate. Dormancy transitions in underground crown buds of the model herbaceous perennial weed leafy spurge were investigated using a 23 K element cDNA microarray. These data represent the first large-scale transcriptome analysis of dormancy in underground buds of an herbaceous perennial species. Crown buds collected monthly from August through December, over a five year period, were used to monitor the changes in the transcriptome during dormancy transitions. Results Nearly 1,000 genes were differentially-expressed through seasonal dormancy transitions. Expected patterns of gene expression were observed for previously characterized genes and physiological processes indicated that resolution in our analysis was sufficient for identifying shifts in global gene expression. Conclusion Gene ontology of differentially-expressed genes suggests dormancy transitions require specific alterations in transport functions (including induction of a series of mitochondrial substrate carriers, and sugar transporters), ethylene, jasmonic acid, auxin, gibberellic acid, and abscisic acid responses, and responses to stress (primarily oxidative and cold/drought). Comparison to other dormancy microarray studies indicated that nearly half of the genes identified in our study were also differentially expressed in at least two other plant species during dormancy transitions. This comparison allowed us to identify a particular MADS-box transcription factor related to the DORMANCY ASSOCIATED MADS-BOX genes from peach and hypothesize that it may play a direct role in dormancy induction and maintenance through regulation of FLOWERING LOCUS T. PMID:19014493

  6. Integrated Analysis of DNA Methylation and mRNA Expression Profiles Data to Identify Key Genes in Lung Adenocarcinoma

    PubMed Central

    Jin, Xiang; Li, Xiaodan; Guan, Yinghui

    2016-01-01

    Introduction. Lung adenocarcinoma (LAC) is the most frequent type of lung cancer and has a high metastatic rate at an early stage. This study is aimed at identifying LAC-associated genes. Materials and Methods. GSE62950 downloaded from Gene Expression Omnibus included a DNA methylation dataset and an mRNA expression profiles dataset, both of which included 28 LAC tissue samples and 28 adjacent normal tissue samples. The differentially expressed genes (DEGs) were screened by Limma package in R, and their functions were predicted by enrichment analysis using TargetMine online tool. Then, protein-protein interaction (PPI) network was constructed using STRING and Cytoscape. Finally, LAC-associated methylation sites were identified by CpGassoc package in R and mapped to the DEGs to obtain LAC-associated DEGs. Results. Total 913 DEGs were identified in LAC tissues. In the PPI networks, MAD2L1, AURKB, CCNB2, CDC20, and WNT3A had higher degrees, and the first four genes might be involved in LAC through interaction. Total 8856 LAC-associated methylation sites were identified and mapped to the DEGs. And there were 29 LAC-associated methylation sites located in 27 DEGs (e.g., SH3GL2, BAI3, CDH13, JAM2, MT1A, LHX6, and IGFBP3). Conclusions. These key genes might play a role in pathogenesis of LAC. PMID:27610375

  7. Genetic network and gene set enrichment analysis to identify biomarkers related to cigarette smoking and lung cancer.

    PubMed

    Fang, Xiaocong; Netzer, Michael; Baumgartner, Christian; Bai, Chunxue; Wang, Xiangdong

    2013-02-01

    Cigarette smoking is the most demonstrated risk factor for the development of lung cancer, while the related genetic mechanisms are still unclear. The preprocessed microarray expression dataset was downloaded from Gene Expression Omnibus database. Samples were classified according to the disease state, stage and smoking state. A new computational strategy was applied for the identification and biological interpretation of new candidate genes in lung cancer and smoking by coupling a network-based approach with gene set enrichment analysis. Network analysis was performed by pair-wise comparison according to the disease states (tumor or normal), smoking states (current smokers or nonsmokers or former smokers), or the disease stage (stages I-IV). The most activated metabolic pathways were identified by gene set enrichment analysis. Panels of top ranked gene candidates in smoking or cancer development were identified, including genes involved in cell proliferation and drug metabolism like cytochrome P450 and WW domain containing transcription regulator 1. Semaphorin 5A and protein phosphatase 1F are the common genes represented as major hubs in both the smoking and cancer related network. Six pathways, e.g. cell cycle, DNA replication, RNA transport, protein processing in endoplasmic reticulum, vascular smooth muscle contraction and endocytosis were commonly involved in smoking and lung cancer when comparing the top ten selected pathways. New approach of bioinformatics for biomarker identification and validation can probe into deep genetic relationships between cigarette smoking and lung cancer. Our studies indicate that disease-specific network biomarkers, interaction between genes/proteins, or cross-talking of pathways provide more specific values for the development of precision therapies for lung. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Temporal retinal transcriptome and systems biology analysis identifies key pathways and hub genes in Staphylococcus aureus endophthalmitis.

    PubMed

    Rajamani, Deepa; Singh, Pawan Kumar; Rottmann, Bruce G; Singh, Natasha; Bhasin, Manoj K; Kumar, Ashok

    2016-02-11

    Bacterial endophthalmitis remains a devastating inflammatory condition associated with permanent vision loss. Hence, assessing the host response in this disease may provide new targets for intervention. Using a mouse model of Staphylococcus aureus (SA) endophthalmitis and performing retinal transcriptome analysis, we discovered progressive changes in the expression of 1,234 genes. Gene ontology (GO) and pathway analyses revealed the major pathways impacted in endophthalmitis includes: metabolism, inflammatory/immune, antimicrobial, cell trafficking, and lipid biosynthesis. Among the immune/inflammation pathways, JAK/Stat and IL-17A signaling were the most significantly affected. Interactive network-based analyses identified 13 focus hub genes (IL-6, IL-1β, CXCL2, STAT3, NUPR1, Jun, CSF1, CYR61, CEBPB, IGF-1, EGFR1, SPP1, and TGM2) within these important pathways. The expression of hub genes confirmed by qRT-PCR, ELISA (IL-6, IL-1β, and CXCL2), and Western blot or immunostaining (CEBP, STAT3, NUPR1, and IGF1) showed strong correlation with transcriptome data. Since TLR2 plays an important role in SA endophthalmitis, counter regulation analysis of TLR2 ligand pretreated retina or the use of retinas from TLR2 knockout mice showed the down-regulation of inflammatory regulatory genes. Collectively, our study provides, for the first time, a comprehensive analysis of the transcriptomic response and identifies key pathways regulating retinal innate responses in staphylococcal endophthalmitis.

  9. Gene co-expression network analysis identifies porcine genes associated with variation in metabolizing fenbendazole and flunixin meglumine in the liver.

    PubMed

    Howard, Jeremy T; Ashwell, Melissa S; Baynes, Ronald E; Brooks, James D; Yeatts, James L; Maltecca, Christian

    2017-05-02

    Identifying individual genetic variation in drug metabolism pathways is of importance not only in livestock, but also in humans in order to provide the ultimate goal of giving the right drug at the right dose at the right time. Our objective was to identify individual genes and gene networks involved in metabolizing fenbendazole (FBZ) and flunixin meglumine (FLU) in swine liver. The population consisted of female and castrated male pigs that were sired by boars represented by 4 breeds. Progeny were randomly placed into groups: no drug (UNT), FLU or FBZ administered. Liver transcriptome profiles from 60 animals with extreme (i.e. fast or slow drug metabolism) pharmacokinetic (PK) profiles were generated from RNA sequencing. Multiple cytochrome P450 (CYP1A1, CYP2A19 and CYP2C36) genes displayed different transcript levels across treated versus UNT. Weighted gene co-expression network analysis identified 5 and 3 modules of genes correlated with PK parameters and a portion of these were enriched for biological processes relevant to drug metabolism for FBZ and FLU, respectively. Genes within identified modules were shown to have a higher transcript level relationship (i.e. connectivity) in treated versus UNT animals. Investigation into the identified genes would allow for greater insight into FBZ and FLU metabolism.

  10. Transcriptome analysis identifies genes involved in adventitious branches formation of Gracilaria lichenoides in vitro

    PubMed Central

    Wang, Wenlei; Li, Huanqin; Lin, Xiangzhi; Yang, Shanjun; Wang, Zhaokai; Fang, Baishan

    2015-01-01

    Tissue culture could solve the problems associated with Gracilaria cultivation, including the consistent supply of high-quality seed stock, strain improvement, and efficient mass culture of high-yielding commercial strains. However, STC lags behind that of higher plants because of the paucity of genomic information. Transcriptome analysis and the identification of potential unigenes involved in the formation and regeneration of callus or direct induction of ABs are essential. Herein, the CK, EWAB and NPA G. lichenoides transcriptomes were analyzed using the Illumina sequencing platform in first time. A total of 17,922,453,300 nucleotide clean bases were generated and assembled into 21,294 unigenes, providing a total gene space of 400,912,038 nucleotides with an average length of 1,883 and N 50 of 5,055 nucleotides and a G + C content of 52.02%. BLAST analysis resulted in the assignment of 13,724 (97.5%), 3,740 (26.6%), 9,934 (70.6%), 10,611 (75.4%), 9,490 (67.4%), and 7,773 (55.2%) unigenes were annotated to the NR, NT, Swiss-Prot, KEGG, COG, and GO databases, respectively, and the total of annotated unigenes was 14,070. A total of 17,099 transcripts were predicted to possess open reading frames, including 3,238 predicted and 13,861 blasted based on protein databases. In addition, 3,287 SSRs were detected in G.lichenoides, providing further support for genetic variation and marker-assisted selection in the future. Our results suggest that auxin polar transport, auxin signal transduction, crosstalk with other endogenous plant hormones and antioxidant systems, play important roles for ABs formation in G. lichenoides explants in vitro. The present findings will facilitate further studies on gene discovery and on the molecular mechanisms underlying the tissue culture of seaweed. PMID:26657019

  11. Transcriptome analysis identifies genes involved in adventitious branches formation of Gracilaria lichenoides in vitro.

    PubMed

    Wang, Wenlei; Li, Huanqin; Lin, Xiangzhi; Yang, Shanjun; Wang, Zhaokai; Fang, Baishan

    2015-12-11

    Tissue culture could solve the problems associated with Gracilaria cultivation, including the consistent supply of high-quality seed stock, strain improvement, and efficient mass culture of high-yielding commercial strains. However, STC lags behind that of higher plants because of the paucity of genomic information. Transcriptome analysis and the identification of potential unigenes involved in the formation and regeneration of callus or direct induction of ABs are essential. Herein, the CK, EWAB and NPA G. lichenoides transcriptomes were analyzed using the Illumina sequencing platform in first time. A total of 17,922,453,300 nucleotide clean bases were generated and assembled into 21,294 unigenes, providing a total gene space of 400,912,038 nucleotides with an average length of 1,883 and N 50 of 5,055 nucleotides and a G + C content of 52.02%. BLAST analysis resulted in the assignment of 13,724 (97.5%), 3,740 (26.6%), 9,934 (70.6%), 10,611 (75.4%), 9,490 (67.4%), and 7,773 (55.2%) unigenes were annotated to the NR, NT, Swiss-Prot, KEGG, COG, and GO databases, respectively, and the total of annotated unigenes was 14,070. A total of 17,099 transcripts were predicted to possess open reading frames, including 3,238 predicted and 13,861 blasted based on protein databases. In addition, 3,287 SSRs were detected in G.lichenoides, providing further support for genetic variation and marker-assisted selection in the future. Our results suggest that auxin polar transport, auxin signal transduction, crosstalk with other endogenous plant hormones and antioxidant systems, play important roles for ABs formation in G. lichenoides explants in vitro. The present findings will facilitate further studies on gene discovery and on the molecular mechanisms underlying the tissue culture of seaweed.

  12. Gametogenesis in the Pacific Oyster Crassostrea gigas: A Microarrays-Based Analysis Identifies Sex and Stage Specific Genes

    PubMed Central

    Dheilly, Nolwenn M.; Lelong, Christophe; Huvet, Arnaud; Kellner, Kristell; Dubos, Marie-Pierre; Riviere, Guillaume; Boudry, Pierre; Favrel, Pascal

    2012-01-01

    Background The Pacific oyster Crassostrea gigas (Mollusca, Lophotrochozoa) is an alternative and irregular protandrous hermaphrodite: most individuals mature first as males and then change sex several times. Little is known about genetic and phenotypic basis of sex differentiation in oysters, and little more about the molecular pathways regulating reproduction. We have recently developed and validated a microarray containing 31,918 oligomers (Dheilly et al., 2011) representing the oyster transcriptome. The application of this microarray to the study of mollusk gametogenesis should provide a better understanding of the key factors involved in sex differentiation and the regulation of oyster reproduction. Methodology/Principal Findings Gene expression was studied in gonads of oysters cultured over a yearly reproductive cycle. Principal component analysis and hierarchical clustering showed a significant divergence in gene expression patterns of males and females coinciding with the start of gonial mitosis. ANOVA analysis of the data revealed 2,482 genes differentially expressed during the course of males and/or females gametogenesis. The expression of 434 genes could be localized in either germ cells or somatic cells of the gonad by comparing the transcriptome of female gonads to the transcriptome of stripped oocytes and somatic tissues. Analysis of the annotated genes revealed conserved molecular mechanisms between mollusks and mammals: genes involved in chromatin condensation, DNA replication and repair, mitosis and meiosis regulation, transcription, translation and apoptosis were expressed in both male and female gonads. Most interestingly, early expressed male-specific genes included bindin and a dpy-30 homolog and female-specific genes included foxL2, nanos homolog 3, a pancreatic lipase related protein, cd63 and vitellogenin. Further functional analyses are now required in order to investigate their role in sex differentiation in oysters. Conclusions

  13. Time-course microarray analysis for identifying candidate genes involved in obesity-associated pathological changes in the mouse colon.

    PubMed

    Bae, Yun Jung; Kim, Sung-Eun; Hong, Seong Yeon; Park, Taesun; Lee, Sang Gyu; Choi, Myung-Sook; Sung, Mi-Kyung

    2016-01-01

    Obesity is known to increase the risk of colorectal cancer. However, mechanisms underlying the pathogenesis of obesity-induced colorectal cancer are not completely understood. The purposes of this study were to identify differentially expressed genes in the colon of mice with diet-induced obesity and to select candidate genes as early markers of obesity-associated abnormal cell growth in the colon. C57BL/6N mice were fed normal diet (11% fat energy) or high-fat diet (40% fat energy) and were euthanized at different time points. Genome-wide expression profiles of the colon were determined at 2, 4, 8, and 12 weeks. Cluster analysis was performed using expression data of genes showing log2 fold change of ≥1 or ≤-1 (twofold change), based on time-dependent expression patterns, followed by virtual network analysis. High-fat diet-fed mice showed significant increase in body weight and total visceral fat weight over 12 weeks. Time-course microarray analysis showed that 50, 47, 36, and 411 genes were differentially expressed at 2, 4, 8, and 12 weeks, respectively. Ten cluster profiles representing distinguishable patterns of genes differentially expressed over time were determined. Cluster 4, which consisted of genes showing the most significant alterations in expression in response to high-fat diet over 12 weeks, included Apoa4 (apolipoprotein A-IV), Ppap2b (phosphatidic acid phosphatase type 2B), Cel (carboxyl ester lipase), and Clps (colipase, pancreatic), which interacted strongly with surrounding genes associated with colorectal cancer or obesity. Our data indicate that Apoa4, Ppap2b, Cel, and Clps are candidate early marker genes associated with obesity-related pathological changes in the colon. Genome-wide analyses performed in the present study provide new insights on selecting novel genes that may be associated with the development of diseases of the colon.

  14. Affected Kindred Analysis of Human X Chromosome Exomes to Identify Novel X-Linked Intellectual Disability Genes

    PubMed Central

    Niranjan, Tejasvi S.; Skinner, Cindy; May, Melanie; Turner, Tychele; Rose, Rebecca; Stevenson, Roger; Schwartz, Charles E.; Wang, Tao

    2015-01-01

    X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome) in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families) using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders. PMID:25679214

  15. Affected kindred analysis of human X chromosome exomes to identify novel X-linked intellectual disability genes.

    PubMed

    Niranjan, Tejasvi S; Skinner, Cindy; May, Melanie; Turner, Tychele; Rose, Rebecca; Stevenson, Roger; Schwartz, Charles E; Wang, Tao

    2015-01-01

    X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome) in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families) using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders.

  16. Exome array analysis identifies GPR35 as a novel susceptibility gene for anthracycline-induced cardiotoxicity in childhood cancer.

    PubMed

    Ruiz-Pinto, Sara; Pita, Guillermo; Patiño-García, Ana; Alonso, Javier; Pérez-Martínez, Antonio; Cartón, Antonio J; Gutiérrez-Larraya, Federico; Alonso, María R; Barnes, Daniel R; Dennis, Joe; Michailidou, Kyriaki; Gómez-Santos, Carmen; Thompson, Deborah J; Easton, Douglas F; Benítez, Javier; González-Neira, Anna

    2017-09-27

    Pediatric cancer survivors are a steadily growing population; however, chronic anthracycline-induced cardiotoxicity (AIC) is a serious long-term complication leading to considerable morbidity. We aimed to identify new genes and low-frequency variants influencing the susceptibility to AIC for pediatric cancer patients. We studied the association of variants on the Illumina HumanExome BeadChip array in 83 anthracycline-treated pediatric cancer patients. In addition to single-variant association tests, we carried out a gene-based analysis to investigate the combined effects of common and low-frequency variants to chronic AIC. Although no single-variant showed an association with chronic AIC that was statistically significant after correction for multiple testing, we identified a novel significant association for G protein-coupled receptor 35 (GPR35) by gene-based testing, a gene with potential roles in cardiac physiology and pathology (P=7.0×10), which remained statistically significant after correction for multiple testing (PFDR=0.03). The greatest contribution to this observed association was made by rs12468485, a missense variant (p.Thr253Met, c.758C>T, minor allele frequency=0.04), with the T allele associated with an increased risk of chronic AIC and more severe symptomatic cardiac manifestations at low anthracycline doses. Using exome array data, we identified GPR35 as a novel susceptibility gene associated with chronic AIC in pediatric cancer patients.

  17. Comparative Transcriptome Analysis Identifies Candidate Genes Related to Skin Color Differentiation in Red Tilapia

    PubMed Central

    Zhu, Wenbin; Wang, Lanmei; Dong, Zaijie; Chen, Xingting; Song, Feibiao; Liu, Nian; Yang, Hui; Fu, Jianjun

    2016-01-01

    Red tilapia is becoming more popular for aquaculture production in China in recent years. However, the pigmentation differentiation in genetic breeding is the main problem limiting its development of commercial red tilapia culture and the genetic basis of skin color variation is still unknown. In this study, we conducted Illumina sequencing of transcriptome on three color variety red tilapia. A total of 224,895,758 reads were generated, resulting in 160,762 assembled contigs that were used as reference contigs. The contigs of red tilapia transcriptome had hits in the range of 53.4% to 86.7% of the unique proteins of zebrafish, fugu, medaka, three-spined stickleback and tilapia. And 44,723 contigs containing 77,423 simple sequence repeats (SSRs) were identified, with 16,646 contigs containing more than one SSR. Three skin transcriptomes were compared pairwise and the results revealed that there were 148 common significantly differentially expressed unigenes and several key genes related to pigment synthesis, i.e. tyr, tyrp1, silv, sox10, slc24a5, cbs and slc7a11, were included. The results will facilitate understanding the molecular mechanisms of skin pigmentation differentiation in red tilapia and accelerate the molecular selection of the specific strain with consistent skin colors. PMID:27511178

  18. Comparative Transcriptome Analysis Identifies Candidate Genes Related to Skin Color Differentiation in Red Tilapia.

    PubMed

    Zhu, Wenbin; Wang, Lanmei; Dong, Zaijie; Chen, Xingting; Song, Feibiao; Liu, Nian; Yang, Hui; Fu, Jianjun

    2016-08-11

    Red tilapia is becoming more popular for aquaculture production in China in recent years. However, the pigmentation differentiation in genetic breeding is the main problem limiting its development of commercial red tilapia culture and the genetic basis of skin color variation is still unknown. In this study, we conducted Illumina sequencing of transcriptome on three color variety red tilapia. A total of 224,895,758 reads were generated, resulting in 160,762 assembled contigs that were used as reference contigs. The contigs of red tilapia transcriptome had hits in the range of 53.4% to 86.7% of the unique proteins of zebrafish, fugu, medaka, three-spined stickleback and tilapia. And 44,723 contigs containing 77,423 simple sequence repeats (SSRs) were identified, with 16,646 contigs containing more than one SSR. Three skin transcriptomes were compared pairwise and the results revealed that there were 148 common significantly differentially expressed unigenes and several key genes related to pigment synthesis, i.e. tyr, tyrp1, silv, sox10, slc24a5, cbs and slc7a11, were included. The results will facilitate understanding the molecular mechanisms of skin pigmentation differentiation in red tilapia and accelerate the molecular selection of the specific strain with consistent skin colors.

  19. Meta-analysis of gene expression studies in endometrial cancer identifies gene expression profiles associated with aggressive disease and patient outcome

    PubMed Central

    O’Mara, Tracy A.; Zhao, Min; Spurdle, Amanda B.

    2016-01-01

    Although endometrioid endometrial cancer (EEC; comprising ~80% of all endometrial cancers diagnosed) is typically associated with favourable patient outcome, a significant portion (~20%) of women with this subtype will relapse. We hypothesised that gene expression predictors of the more aggressive non-endometrioid endometrial cancers (NEEC) could be used to predict EEC patients with poor prognosis. To explore this hypothesis, we performed meta-analysis of 12 gene expression microarray studies followed by validation using RNA-Seq data from The Cancer Genome Atlas (TCGA) and identified 1,253 genes differentially expressed between EEC and NEEC. Analysis found 121 genes were associated with poor outcome among EEC patients. Forward selection likelihood-based modelling identified a 9-gene signature associated with EEC outcome in our discovery RNA-Seq dataset which remained significant after adjustment for clinical covariates, but was not significant in a smaller RNA-Seq dataset. Our study demonstrates the value of employing meta-analysis to improve the power of gene expression microarray data, and highlight genes and molecular pathways of importance for endometrial cancer therapy. PMID:27830726

  20. Meta-analysis of gene expression studies in endometrial cancer identifies gene expression profiles associated with aggressive disease and patient outcome.

    PubMed

    O'Mara, Tracy A; Zhao, Min; Spurdle, Amanda B

    2016-11-10

    Although endometrioid endometrial cancer (EEC; comprising ~80% of all endometrial cancers diagnosed) is typically associated with favourable patient outcome, a significant portion (~20%) of women with this subtype will relapse. We hypothesised that gene expression predictors of the more aggressive non-endometrioid endometrial cancers (NEEC) could be used to predict EEC patients with poor prognosis. To explore this hypothesis, we performed meta-analysis of 12 gene expression microarray studies followed by validation using RNA-Seq data from The Cancer Genome Atlas (TCGA) and identified 1,253 genes differentially expressed between EEC and NEEC. Analysis found 121 genes were associated with poor outcome among EEC patients. Forward selection likelihood-based modelling identified a 9-gene signature associated with EEC outcome in our discovery RNA-Seq dataset which remained significant after adjustment for clinical covariates, but was not significant in a smaller RNA-Seq dataset. Our study demonstrates the value of employing meta-analysis to improve the power of gene expression microarray data, and highlight genes and molecular pathways of importance for endometrial cancer therapy.

  1. Integrative analysis of copy number and transcriptional expression profiles in esophageal cancer to identify a novel driver gene for therapy

    PubMed Central

    Dong, Gaochao; Mao, Qixing; Yu, Decai; Zhang, Yi; Qiu, Mantang; Dong, Gaoyue; Chen, Qiang; Xia, Wenjie; Wang, Jie; Xu, Lin; Jiang, Feng

    2017-01-01

    An increasing amount of evidence has highlighted the critical roles that copy number variants play in cancer progression. Here, we systematically analyzed the copy number alterations and differentially transcribed genes. Integrative analysis of the association between copy number variants and differential gene expression suggested that copy number variants will lead to aberrant expression of the corresponding genes. We performed a KEGG pathway and GO analysis, which revealed that cell cycle may have an effective role in the progression of esophageal cancer. FAM60A was then screened out as a potential prognostic factor through survival analysis and correlation analysis with clinical-pathological parameters. We subsequently showed that silencing of FAM60A could inhibit esophageal carcinoma tumor cell growth, migration and invasion in vitro. Through the bioinformatic analysis, we predict that FAM60A may act as a transcriptional factor to regulate genes that are correlated with each cell cycle. In summary, we comprehensively analyzed copy number segments and transcriptional expression profiles, which provided a novel approach to identify clinical biomarkers and therapeutic targets of esophageal carcinoma. PMID:28169357

  2. Expression Analysis of Immune Related Genes Identified from the Coelomocytes of Sea Cucumber (Apostichopus japonicus) in Response to LPS Challenge

    PubMed Central

    Dong, Ying; Sun, Hongjuan; Zhou, Zunchun; Yang, Aifu; Chen, Zhong; Guan, Xiaoyan; Gao, Shan; Wang, Bai; Jiang, Bei; Jiang, Jingwei

    2014-01-01

    The sea cucumber (Apostichopus japonicus) occupies a basal position during the evolution of deuterostomes and is also an important aquaculture species. In order to identify more immune effectors, transcriptome sequencing of A. japonicus coelomocytes in response to lipopolysaccharide (LPS) challenge was performed using the Illumina HiSeq™ 2000 platform. One hundred and seven differentially expressed genes were selected and divided into four functional categories including pathogen recognition (25 genes), reorganization of cytoskeleton (27 genes), inflammation (41 genes) and apoptosis (14 genes). They were analyzed to elucidate the mechanisms of host-pathogen interactions and downstream signaling transduction. Quantitative real-time polymerase chain reactions (qRT-PCRs) of 10 representative genes validated the accuracy and reliability of RNA sequencing results with the correlation coefficients from 0.88 to 0.98 and p-value <0.05. Expression analysis of immune-related genes after LPS challenge will be useful in understanding the immune response mechanisms of A. japonicus against pathogen invasion and developing strategies for resistant markers selection. PMID:25421239

  3. Genome-wide analysis of histone modifications by ChIP-chip to identify silenced genes in gastric cancer.

    PubMed

    Zhu, Xinjiang; Liu, Jian; Xu, Xiaoyang; Zhang, Chundong; Dai, Dongqiu

    2015-05-01

    The present study aimed to identify novel histone modification markers in gastric cancer (GC) by chromatin immunoprecipitation microarray (ChIP-chip) analysis and to determine whether these markers were able to discriminate between normal and GC cells. We also tested for correlations with DNA methylation. We probed a human CpG island microarray with DNA from a GC cell line (MKN45) by chromatin immunoprecipitation (ChIP). ChIP-reverse-transcriptase quantitative polymerase chain reaction PCR (RT-qPCR) was used to validate the microarray results. Additionally, mRNA expression levels and the DNA methylation of potential target genes were evaluated by RT-qPCR and methylation-specific PCR (MSP). The moults showed that 134 genes exhibited the highest signal-to-noise ratio of H3-K9 trimethylation over acetylation and 46 genes exhibited the highest signal-to-noise ratio of H3-K9 trimethylation over H3-K4 trimethylation in MKN45 cells. The ChIP-qPCR results agreed with those obtained from the ChIP-chip analysis. Aberrant DNA methylation status and mRNA expression levels were also identified for selected genes (PSD, SMARCC1 and Vps37A) in the GC cell lines. The results suggest that CpG island microarray coupled with ChIP (ChIP-chip) can identify novel targets of gene silencing in GC. Additionally, ChIP-chip is the best approach for assessing the genome-wide status of epigenetic regulation, which may allow for a broader genomic understanding compared to the knowledge that has been accumulated from single-gene studies.

  4. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land

    PubMed Central

    Shi, Peng; Zhang, Jianzhi

    2007-01-01

    Two evolutionarily unrelated superfamilies of G-protein coupled receptors, V1Rs and V2Rs, bind pheromones and “ordinary” odorants to initiate vomeronasal chemical senses in vertebrates, which play important roles in many aspects of an organism’s daily life such as mating, territoriality, and foraging. To study the macroevolution of vomeronasal sensitivity, we identified all V1R and V2R genes from the genome sequences of 11 vertebrates. Our analysis suggests the presence of multiple V1R and V2R genes in the common ancestor of teleost fish and tetrapods and reveals an exceptionally large among-species variation in the sizes of these gene repertoires. Interestingly, the ratio of the number of intact V1R genes to that of V2R genes increased by ∼50-fold as land vertebrates evolved from aquatic vertebrates. A similar increase was found for the ratio of the number of class II odorant receptor (OR) genes to that of class I genes, but not in other vertebrate gene families. Because V1Rs and class II ORs have been suggested to bind to small airborne chemicals, whereas V2Rs and class I ORs recognize water-soluble molecules, these increases reflect a rare case of adaptation to terrestrial life at the gene family level. Several gene families known to function in concert with V2Rs in the mouse are absent outside rodents, indicating rapid changes of interactions between vomeronasal receptors and their molecular partners. Taken together, our results demonstrate the exceptional evolutionary fluidity of vomeronasal receptors, making them excellent targets for studying the molecular basis of physiological and behavioral diversity and adaptation. PMID:17210926

  5. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model.

    PubMed

    Dai, Bing; David, Valentin; Martin, Aline; Huang, Jinsong; Li, Hua; Jiao, Yan; Gu, Weikuan; Quarles, L Darryl

    2012-01-01

    Elevations of circulating Fibroblast growth factor 23 (FGF23) are associated with adverse cardiovascular outcomes and progression of renal failure in chronic kidney disease (CKD). Efforts to identify gene products whose transcription is directly regulated by FGF23 stimulation of fibroblast growth factor receptors (FGFR)/α-Klotho complexes in the kidney is confounded by both systemic alterations in calcium, phosphorus and vitamin D metabolism and intrinsic alterations caused by the underlying renal pathology in CKD. To identify FGF23 responsive genes in the kidney that might explain the association between FGF23 and adverse outcomes in CKD, we performed comparative genome wide analysis of gene expression profiles in the kidney of the Collagen 4 alpha 3 null mice (Col4a3(-/-)) model of progressive kidney disease with kidney expression profiles of Hypophosphatemic (Hyp) and FGF23 transgenic mouse models of elevated FGF23. The different complement of potentially confounding factors in these models allowed us to identify genes that are directly targeted by FGF23. This analysis found that α-Klotho, an anti-aging hormone and FGF23 co-receptor, was decreased by FGF23. We also identified additional FGF23-responsive transcripts and activation of networks associated with renal damage and chronic inflammation, including lipocalin 2 (Lcn2), transforming growth factor beta (TGF-β) and tumor necrosis factor-alpha (TNF-α) signaling pathways. Finally, we found that FGF23 suppresses angiotensin-converting enzyme 2 (ACE2) expression in the kidney, thereby providing a pathway for FGF23 regulation of the renin-angiotensin system. These gene products provide a possible mechanistic links between elevated FGF23 and pathways responsible for renal failure progression and cardiovascular diseases.

  6. Meta-Analysis Identifies Gene-by-Environment Interactions as Demonstrated in a Study of 4,965 Mice

    PubMed Central

    Joo, Jong Wha J.; Shih, Diana; Davis, Richard C.; Lusis, Aldons J.; Eskin, Eleazar

    2014-01-01

    Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis

  7. Single nucleotide polymorphism microarray analysis in cortisol-secreting adrenocortical adenomas identifies new candidate genes and pathways.

    PubMed

    Ronchi, Cristina L; Leich, Ellen; Sbiera, Silviu; Weismann, Dirk; Rosenwald, Andreas; Allolio, Bruno; Fassnacht, Martin

    2012-03-01

    The genetic mechanisms underlying adrenocortical tumor development are still largely unknown. We used high-resolution single nucleotide polymorphism microarrays (Affymetrix SNP 6.0) to detect copy number alterations (CNAs) and copy-neutral losses of heterozygosity (cnLOH) in 15 cortisol-secreting adrenocortical adenomas with matched blood samples. We focused on microalterations aiming to discover new candidate genes involved in early tumorigenesis and/or autonomous cortisol secretion. We identified 962 CNAs with a median of 18 CNAs per sample. Half of them involved noncoding regions, 89% were less than 100 kb, and 28% were found in at least two samples. The most frequently gained regions were 5p15.33, 6q16.1, 7p22.3-22.2, 8q24.3, 9q34.2-34.3, 11p15.5, 11q11, 12q12, 16q24.3, 20p11.1-20q21.11, and Xq28 (≥20% of cases), most of them being identified in the same three adenomas. These regions contained among others genes like NOTCH1, CYP11B2, HRAS, and IGF2. Recurrent losses were less common and smaller than gains, being mostly localized at 1p, 6q, and 11q. Pathway analysis revealed that Notch signaling was the most frequently altered. We identified 46 recurrent CNAs that each affected a single gene (31 gains and 15 losses), including genes involved in steroidogenesis (CYP11B1) or tumorigenesis (CTNNB1, EPHA7, SGK1, STIL, FHIT). Finally, 20 small cnLOH in four cases affecting 15 known genes were found. Our findings provide the first high-resolution genome-wide view of chromosomal changes in cortisol-secreting adenomas and identify novel candidate genes, such as HRAS, EPHA7, and SGK1. Furthermore, they implicate that the Notch1 signaling pathway might be involved in the molecular pathogenesis of adrenocortical tumors.

  8. Performance Analysis of Network Model to Identify Healthy and Cancerous Colon Genes.

    PubMed

    Roy, Tanusree; Barman, Soma

    2016-03-01

    Modeling of cancerous and healthy Homo Sapiens colon gene using electrical network is proposed to study their behavior. In this paper, the individual amino acid models are designed using hydropathy index of amino acid side chain. The phase and magnitude responses of genes are examined to screen out cancer from healthy genes. The performance of proposed modeling technique is judged using various performance measurement metrics such as accuracy, sensitivity, specificity, etc. The network model performance is increased with frequency, which is analyzed using the receiver operating characteristic curve. The accuracy of the model is tested on colon genes and achieved maximum 97% at 10-MHz frequency.

  9. Use of eQTL Analysis for the Discovery of Target Genes Identified by GWAS

    DTIC Science & Technology

    2013-04-01

    density representation of the scatterplot with %GC on the x-axis and log2(GeneCount) on the y-axis. A loess smoother line is shown indicating the...general pattern of all the Gene Count values for this particular subject. Similarly, Figure 55 to 79 shows the loess smoother line for each subject. Based...Distribution of Total Gene Counts) for each Subject by RunID 59 Figure 55: Distribution of Percent GC versus log2(Gene Count + 1) with a loess smoother for

  10. Transcriptomic Analysis Identifies Candidate Genes and Gene Sets Controlling the Response of Porcine Peripheral Blood Mononuclear Cells to Poly I:C Stimulation

    PubMed Central

    Wang, Jiying; Wang, Yanping; Wang, Huaizhong; Wang, Haifei; Liu, Jian-Feng; Wu, Ying; Guo, Jianfeng

    2016-01-01

    Polyinosinic-polycytidylic acid (poly I:C), a synthetic dsRNA analog, has been demonstrated to have stimulatory effects similar to viral dsRNA. To gain deep knowledge of the host transcriptional response of pigs to poly I:C stimulation, in the present study, we cultured and stimulated peripheral blood mononuclear cells (PBMC) of piglets of one Chinese indigenous breed (Dapulian) and one modern commercial breed (Landrace) with poly I:C, and compared their transcriptional profiling using RNA-sequencing (RNA-seq). Our results indicated that poly I:C stimulation can elicit significantly differentially expressed (DE) genes in Dapulian (g = 290) as well as Landrace (g = 85). We also performed gene set analysis using the Gene Set Enrichment Analysis (GSEA) package, and identified some significantly enriched gene sets in Dapulian (g = 18) and Landrace (g = 21). Most of the shared DE genes and gene sets were immune-related, and may play crucial rules in the immune response of poly I:C stimulation. In addition, we detected large sets of significantly DE genes and enriched gene sets when comparing the gene expression profile between the two breeds, including control and poly I:C stimulation groups. Besides immune-related functions, some of the DE genes and gene sets between the two breeds were involved in development and growth of various tissues, which may be correlated with the different characteristics of the two breeds. The DE genes and gene sets detected herein provide crucial information towards understanding the immune regulation of antiviral responses, and the molecular mechanisms of different genetic resistance to viral infection, in modern and indigenous pigs. PMID:26935416

  11. Transcriptomic Analysis Identifies Candidate Genes and Gene Sets Controlling the Response of Porcine Peripheral Blood Mononuclear Cells to Poly I:C Stimulation.

    PubMed

    Wang, Jiying; Wang, Yanping; Wang, Huaizhong; Wang, Haifei; Liu, Jian-Feng; Wu, Ying; Guo, Jianfeng

    2016-05-03

    Polyinosinic-polycytidylic acid (poly I:C), a synthetic dsRNA analog, has been demonstrated to have stimulatory effects similar to viral dsRNA. To gain deep knowledge of the host transcriptional response of pigs to poly I:C stimulation, in the present study, we cultured and stimulated peripheral blood mononuclear cells (PBMC) of piglets of one Chinese indigenous breed (Dapulian) and one modern commercial breed (Landrace) with poly I:C, and compared their transcriptional profiling using RNA-sequencing (RNA-seq). Our results indicated that poly I:C stimulation can elicit significantly differentially expressed (DE) genes in Dapulian (g = 290) as well as Landrace (g = 85). We also performed gene set analysis using the Gene Set Enrichment Analysis (GSEA) package, and identified some significantly enriched gene sets in Dapulian (g = 18) and Landrace (g = 21). Most of the shared DE genes and gene sets were immune-related, and may play crucial rules in the immune response of poly I:C stimulation. In addition, we detected large sets of significantly DE genes and enriched gene sets when comparing the gene expression profile between the two breeds, including control and poly I:C stimulation groups. Besides immune-related functions, some of the DE genes and gene sets between the two breeds were involved in development and growth of various tissues, which may be correlated with the different characteristics of the two breeds. The DE genes and gene sets detected herein provide crucial information towards understanding the immune regulation of antiviral responses, and the molecular mechanisms of different genetic resistance to viral infection, in modern and indigenous pigs.

  12. Analysis of Nicotiana tabacum PIN genes identifies NtPIN4 as a key regulator of axillary bud growth.

    PubMed

    Xie, Xiaodong; Qin, Guangyong; Si, Ping; Luo, Zhaopeng; Gao, Junping; Chen, Xia; Zhang, Jianfeng; Wei, Pan; Xia, Qingyou; Lin, Fucheng; Yang, Jun

    2017-01-27

    The plant-specific PIN-FORMED (PIN) auxin efflux proteins have been well characterized in many plant species, where they are crucial in the regulation of auxin transport in various aspects of plant development. However, little is known about the exact roles of the PIN genes during plant development in Nicotiana species. This study investigated the PIN genes in tobacco (N. tabacum) and in two ancestral species (N. sylvestris and N. tomentosiformis). Genome-wide analysis of the N. tabacum genome identified 20 genes of the PIN family. An in-depth phylogenetic analysis of the PIN genes of N. tabacum, N. sylvestris and N. tomentosiformis was conducted. NtPIN4 expression was strongly induced by the application of exogenous IAA, but was downregulated by the application of ABA, a strigolactone analogue, and cytokinin, as well as by decapitation treatments, suggesting that the NtPIN4 expression level is likely positively regulated by auxin. Expression analysis indicated that NtPIN4 was highly expressed in tobacco stems and shoots, which was further validated through analysis of the activity of the NtPIN4 promoter. We used CRISPR-Cas9 technology to generate mutants for NtPIN4 and observed that both T0 and T1 plants had a significantly increased axillary bud growth phenotype, as compared with the wild-type plants. Therefore, NtPIN4 offers an opportunity for studying auxin-dependent branching processes.

  13. Genome-wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma.

    PubMed

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J; Almutairi, Bader; Etchevers, Heather C; McConville, Carmel; Malik, Karim T A; Brown, Keith W

    2017-04-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome-wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome-wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down-regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest-expressing tumors had reduced relapse-free survival. Our functional studies showed that knock-down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.

  14. Differentially expressed immune-related genes in hemocytes of the pearl oyster Pinctada fucata against allograft identified by transcriptome analysis.

    PubMed

    Wei, Jinfen; Liu, Baosuo; Fan, Sigang; Li, Haimei; Chen, Mingqiang; Zhang, Bo; Su, Jiaqi; Meng, Zihao; Yu, Dahui

    2017-03-01

    The pearl oyster Pinctada fucata is commonly cultured for marine pearls in China. To culture pearls, a mantle piece from a donor pearl oyster is grafted with a nucleus into a receptor. This transplanted mantle piece may be rejected by the immune system of the recipient oyster, thus reducing the success of transplantation. However, there have been limited studies about the oyster's immune defense against allograft. In this study, hemocyte transcriptome analysis was performed to detect the immune responses to allograft in P. fucata at 0 h and 48 h after a transplant. The sequencing reaction produced 92.5 million reads that were mapped against the reference genome sequences of P. fucata. The Gene Ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to identify all immune-related differentially expressed genes (DEGs). Compared with patterns at 0 h, a total of 798 DEGs were identified, including 410 up-regulated and 388 down-regulated genes at 48 h. The expression levels of interleukin receptor and toll-like receptor in hemocytes were increased significantly 48 h post-transplant, indicating that the oyster immune response was induced. Finally, altered levels of 18 randomly selected immune-related DEGs were confirmed by quantitative real-time PCR (qRT-PCR). Our results provide the basis for further analysis of the immune rejection of allotransplantation.

  15. QTLminer: identifying genes regulating quantitative traits.

    PubMed

    Alberts, Rudi; Schughart, Klaus

    2010-10-15

    Quantitative trait locus (QTL) mapping identifies genomic regions that likely contain genes regulating a quantitative trait. However, QTL regions may encompass tens to hundreds of genes. To find the most promising candidate genes that regulate the trait, the biologist typically collects information from multiple resources about the genes in the QTL interval. This process is very laborious and time consuming. QTLminer is a bioinformatics tool that automatically performs QTL region analysis. It is available in GeneNetwork and it integrates information such as gene annotation, gene expression and sequence polymorphisms for all the genes within a given genomic interval. QTLminer substantially speeds up discovery of the most promising candidate genes within a QTL region.

  16. Brain transcriptomic analysis in paper wasps identifies genes associated with behaviour across social insect lineages

    PubMed Central

    Toth, Amy L.; Varala, Kranthi; Henshaw, Michael T.; Rodriguez-Zas, Sandra L.; Hudson, Matthew E.; Robinson, Gene E.

    2010-01-01

    Comparative sociogenomics has the potential to provide important insights into how social behaviour evolved. We examined brain gene expression profiles of the primitively eusocial wasp Polistes metricus and compared the results with a growing base of brain gene expression information for the advanced eusocial honeybee, Apis mellifera. We studied four female wasp groups that show variation in foraging/provisioning behaviour and reproductive status, using our newly developed microarray representing approximately 3248 P. metricus genes based on sequences generated from high-throughput pyrosequencing. We found differences in the expression of approximately 389 genes across the four groups. Pathways known from Drosophila melanogaster to be related to lipid metabolism, heat and stress response, and various forms of solitary behaviour were associated with behavioural differences among wasps. Forty-five per cent of differentially expressed transcripts showed significant associations with foraging/provisioning status, and 14 per cent with reproductive status. By comparing these two gene lists with lists of genes previously shown to be differentially expressed in association with honeybee division of labour, we found a significant overlap of genes associated with foraging/provisioning, but not reproduction, across the two species. These results suggest common molecular roots for foraging division of labour in two independently evolved social insect species and the possibility of more lineage-specific roots of reproductive behaviour. We explore the implications of these findings for the idea that there is a conserved ‘genetic toolkit’ for division of labour across multiple lineages. PMID:20236980

  17. Rat Hepatocytes Weighted Gene Co-Expression Network Analysis Identifies Specific Modules and Hub Genes Related to Liver Regeneration after Partial Hepatectomy

    PubMed Central

    Zhou, Yun; Xu, Jiucheng; Liu, Yunqing; Li, Juntao; Chang, Cuifang; Xu, Cunshuan

    2014-01-01

    The recovery of liver mass is mainly mediated by proliferation of hepatocytes after 2/3 partial hepatectomy (PH) in rats. Studying the gene expression profiles of hepatocytes after 2/3 PH will be helpful to investigate the molecular mechanisms of liver regeneration (LR). We report here the first application of weighted gene co-expression network analysis (WGCNA) to analyze the biological implications of gene expression changes associated with LR. WGCNA identifies 12 specific gene modules and some hub genes from hepatocytes genome-scale microarray data in rat LR. The results suggest that upregulated MCM5 may promote hepatocytes proliferation during LR; BCL3 may play an important role by activating or inhibiting NF-kB pathway; MAPK9 may play a permissible role in DNA replication by p38 MAPK inactivation in hepatocytes proliferation stage. Thus, WGCNA can provide novel insight into understanding the molecular mechanisms of LR. PMID:24743545

  18. Analysis of microarray-identified genes and microRNAs associated with drug resistance in ovarian cancer.

    PubMed

    Zou, Jing; Yin, Fuqiang; Wang, Qi; Zhang, Wei; Li, Li

    2015-01-01

    The aim of this study was to identify potential microRNAs and genes associated with drug resistance in ovarian cancer through web-available microarrays. The drug resistant-related microRNA microarray dataset GS54665 and mRNA dataset GSE33482, GSE28646, and GSE15372 were downloaded from the Gene Expression Omnibus database. Dysregulated microRNAs/genes were screened with GEO2R and were further identified in SKOV3 (SKOV3/DDP) and A2780 (A2780/DDP) cells by real-time quantitative PCR (qRT-PCR), and then their associations with drug resistance was analyzed by comprehensive bioinformatic analyses. Nine microRNAs (microRNA-199a-5p, microRNA-199a-3p, microRNA-199b-3p, microRNA-215, microRNA-335, microRNA-18b, microRNA-363, microRNA-645 and microRNA-141) and 38 genes were identified to be differentially expressed in drug-resistant ovarian cancer cells, with seven genes (NHSL1, EPHA3, USP51, ZSCAN4, EPHA7, SNCA and PI15) exhibited exactly the same expression trends in all three microarrays. Biological process annotation and pathway enrichment analysis of the 9 microRNAs and 38 genes identified several drug resistant-related signaling pathways, and the microRNA-mRNA interaction revealed the existence of a targeted regulatory relationship between the 9 microRNAs and most of the 38 genes. The expression of 9 microRNAs and the 7 genes by qRT-PCR in SKOV3/DDP and A2780/DDP cells indicating a consistent expression profile with the microarrays. Among those, the expression of EPHA7 and PI15 were negatively correlated with that of microRNA-141, and they were also identified as potential targets of this microRNA via microRNA-mRNA interaction. We thus concluded that microRNA-141, EPHA7, and PI15 might jointly participate in the regulation of drug resistance in ovarian cancer and serve as potential targets in targeted therapies.

  19. Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain.

    PubMed

    Francki, Michael G; Hayton, Sarah; Gummer, Joel P A; Rawlinson, Catherine; Trengove, Robert D

    2016-02-01

    Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite analysis to mature grain of wheat homoeologous group 3 ditelosomic lines, selected compounds that showed significant variation between wheat lines Chinese Spring and at least one ditelosomic line, tracked the genes encoding enzymes of their biochemical pathway using the wheat genome survey sequence and determined the genetic components underlying metabolite variation. A total of 412 analytes were resolved in the wheat grain metabolome, and principal component analysis indicated significant differences in metabolite profiles between Chinese Spring and each ditelosomic lines. The grain metabolome identified 55 compounds positively matched against a mass spectral library where the majority showed significant differences between Chinese Spring and at least one ditelosomic line. Trehalose and branched-chain amino acids were selected for detailed investigation, and it was expected that if genes encoding enzymes directly related to their biochemical pathways were located on homoeologous group 3 chromosomes, then corresponding ditelosomic lines would have a significant reduction in metabolites compared with Chinese Spring. Although a proportion showed a reduction, some lines showed significant increases in metabolites, indicating that genes directly and indirectly involved in biosynthetic pathways likely regulate the metabolome. Therefore, this study demonstrated that wheat aneuploid lines are suitable experimental genetic system to validate metabolomics-genomics networks.

  20. Use of eQTL Analysis for the Discovery of Target Genes Identified by GWAS

    DTIC Science & Technology

    2014-04-01

    of the scatterplot with %GC on the x-axis and log2(GeneCount) on the y-axis. A loess smoother line is shown indicating the general pattern of all the...Gene Count values for this particular subject. Similarly, Figure 55 to 79 shows the loess smoother line for each subject. Based on this plot, it...Counts) for each Subject by RunID 59 Figure 55: Distribution of Percent GC versus log2(Gene Count + 1) with a loess smoother for each subject by

  1. Analysis of high-throughput RNAi screening data in identifying genes mediating sensitivity to chemotherapeutic drugs: statistical approaches and perspectives.

    PubMed

    Ye, Fei; Bauer, Joshua A; Pietenpol, Jennifer A; Shyr, Yu

    2012-01-01

    High-throughput RNA interference (RNAi) screens have been used to find genes that, when silenced, result in sensitivity to certain chemotherapy drugs. Researchers therefore can further identify drug-sensitive targets and novel drug combinations that sensitize cancer cells to chemotherapeutic drugs. Considerable uncertainty exists about the efficiency and accuracy of statistical approaches used for RNAi hit selection in drug sensitivity studies. Researchers require statistical methods suitable for analyzing high-throughput RNAi screening data that will reduce false-positive and false-negative rates. In this study, we carried out a simulation study to evaluate four types of statistical approaches (fold-change/ratio, parametric tests/statistics, sensitivity index, and linear models) with different scenarios of RNAi screenings for drug sensitivity studies. With the simulated datasets, the linear model resulted in significantly lower false-negative and false-positive rates. Based on the results of the simulation study, we then make recommendations of statistical analysis methods for high-throughput RNAi screening data in different scenarios. We assessed promising methods using real data from a loss-of-function RNAi screen to identify hits that modulate paclitaxel sensitivity in breast cancer cells. High-confidence hits with specific inhibitors were further analyzed for their ability to inhibit breast cancer cell growth. Our analysis identified a number of gene targets with inhibitors known to enhance paclitaxel sensitivity, suggesting other genes identified may merit further investigation. RNAi screening can identify druggable targets and novel drug combinations that can sensitize cancer cells to chemotherapeutic drugs. However, applying an inappropriate statistical method or model to the RNAi screening data will result in decreased power to detect the true hits and increase false positive and false negative rates, leading researchers to draw incorrect conclusions. In

  2. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling.

    PubMed

    Kuo, Taiyi; Lew, Michelle J; Mayba, Oleg; Harris, Charles A; Speed, Terence P; Wang, Jen-Chywan

    2012-07-10

    Glucocorticoids elicit a variety of biological responses in skeletal muscle, including inhibiting protein synthesis and insulin-stimulated glucose uptake and promoting proteolysis. Thus, excess or chronic glucocorticoid exposure leads to muscle atrophy and insulin resistance. Glucocorticoids propagate their signal mainly through glucocorticoid receptors (GR), which, upon binding to ligands, translocate to the nucleus and bind to genomic glucocorticoid response elements to regulate the transcription of nearby genes. Using a combination of chromatin immunoprecipitation sequencing and microarray analysis, we identified 173 genes in mouse C2C12 myotubes. The mouse genome contains GR-binding regions in or near these genes, and gene expression is regulated by glucocorticoids. Eight of these genes encode proteins known to regulate distinct signaling events in insulin/insulin-like growth factor 1 pathways. We found that overexpression of p85α, one of these eight genes, caused a decrease in C2C12 myotube diameters, mimicking the effect of glucocorticoids. Moreover, reducing p85α expression by RNA interference in C2C12 myotubes significantly compromised the ability of glucocorticoids to inhibit Akt and p70 S6 kinase activity and reduced glucocorticoid induction of insulin receptor substrate 1 phosphorylation at serine 307. This phosphorylation is associated with insulin resistance. Furthermore, decreasing p85α expression abolished glucocorticoid inhibition of protein synthesis and compromised glucocorticoid-induced reduction of cell diameters in C2C12 myotubes. Finally, a glucocorticoid response element was identified in the p85α GR-binding regions. In summary, our studies identified GR-regulated transcriptional networks in myotubes and showed that p85α plays a critical role in glucocorticoid-induced insulin resistance and muscle atrophy in C2C12 myotubes.

  3. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling

    PubMed Central

    Kuo, Taiyi; Lew, Michelle J.; Mayba, Oleg; Harris, Charles A.; Speed, Terence P.; Wang, Jen-Chywan

    2012-01-01

    Glucocorticoids elicit a variety of biological responses in skeletal muscle, including inhibiting protein synthesis and insulin-stimulated glucose uptake and promoting proteolysis. Thus, excess or chronic glucocorticoid exposure leads to muscle atrophy and insulin resistance. Glucocorticoids propagate their signal mainly through glucocorticoid receptors (GR), which, upon binding to ligands, translocate to the nucleus and bind to genomic glucocorticoid response elements to regulate the transcription of nearby genes. Using a combination of chromatin immunoprecipitation sequencing and microarray analysis, we identified 173 genes in mouse C2C12 myotubes. The mouse genome contains GR-binding regions in or near these genes, and gene expression is regulated by glucocorticoids. Eight of these genes encode proteins known to regulate distinct signaling events in insulin/insulin-like growth factor 1 pathways. We found that overexpression of p85α, one of these eight genes, caused a decrease in C2C12 myotube diameters, mimicking the effect of glucocorticoids. Moreover, reducing p85α expression by RNA interference in C2C12 myotubes significantly compromised the ability of glucocorticoids to inhibit Akt and p70 S6 kinase activity and reduced glucocorticoid induction of insulin receptor substrate 1 phosphorylation at serine 307. This phosphorylation is associated with insulin resistance. Furthermore, decreasing p85α expression abolished glucocorticoid inhibition of protein synthesis and compromised glucocorticoid-induced reduction of cell diameters in C2C12 myotubes. Finally, a glucocorticoid response element was identified in the p85α GR-binding regions. In summary, our studies identified GR-regulated transcriptional networks in myotubes and showed that p85α plays a critical role in glucocorticoid-induced insulin resistance and muscle atrophy in C2C12 myotubes. PMID:22733784

  4. Transcriptome analysis in Cucumis sativus identifies genes involved in multicellular trichome development.

    PubMed

    Zhao, Jun-Long; Pan, Jun-Song; Guan, Yuan; Nie, Jing-Tao; Yang, Jun-Jun; Qu, Mei-Ling; He, Huan-Le; Cai, Run

    2015-05-01

    The regulatory gene network of unicellular trichome development in Arabidopsis thaliana has been studied intensively, but that of multicellular remains unclear. In the present study, we characterized cucumber trichomes as representative multicellular and unbranched structures, but in a spontaneous mutant, mict (micro-trichome), all trichomes showed a micro-size and stunted morphologies. We revealed the transcriptome profile using Illumina HiSeq 2000 sequencing technology, and determined that a total of 1391 genes exhibited differential expression. We further validated the accuracy of the transcriptome data by RT-qPCR and found that 43 genes encoding critical transcription factors were likely involved in multicellular trichome development. These 43 candidate genes were subdivided into seven groups: homeodomain, MYB-domain, WRKY-domain, bHLH-domain, ethylene-responsive, zinc finger and other transcription factor genes. Our findings also serve as a powerful tool to further study the relevant molecular networks, and provide a new perspective for investigating this complex and species-specific developmental process.

  5. Comparative transcriptome analysis of tobacco (Nicotiana tabacum) leaves to identify aroma compound-related genes expressed in different cultivated regions.

    PubMed

    Lei, Bo; Zhao, Xue-Hua; Zhang, Kai; Zhang, Jie; Ren, Wei; Ren, Zhu; Chen, Yi; Zhao, Hui-Na; Pan, Wen-Jie; Chen, Wei; Li, Hong-Xun; Deng, Wen-Ya; Ding, Fu-Zhang; Lu, Kun

    2013-01-01

    To identify genes that are differentially expressed in tobacco in response to environmental changes and to decipher the mechanisms by which aromatic carotenoids are formed in tobacco, an Agilent Tobacco Gene Expression microarray was adapted for transcriptome comparison of tobacco leaves derived from three cultivated regions of China, Kaiyang (KY), Weining (WN) and Tianzhu (TZ). A total of 1,005 genes were differentially expressed between leaves derived from KY and TZ, 733 between KY and WN, and 517 between TZ and WN. Genes that were upregulated in leaves from WN and TZ tended to be involved in secondary metabolism pathways, and included several carotenoid pathway genes, e.g., NtPYS, NtPDS, and NtLCYE, whereas those that were down-regulated tended to be involved in the response to temperature and light. The expression of 10 differentially expressed genes (DEGs) was evaluated by real-time quantitative polymerase chain reaction (qRT-PCR) and found to be consistent with the microarray data. Gene Ontology and MapMan analyses indicate that the genes that were differentially expressed among the three cultivated regions were associated with the light reaction of photosystem II, response to stimuli, and secondary metabolism. High-performance liquid chromatography (HPLC) analysis showed that leaves derived from KY had the lowest levels of lutein, β-carotene, and neoxanthin, whereas the total carotenoid content in leaves from TZ was greatest, a finding that could well be explained by the expression patterns of DEGs in the carotenoid pathway. These results may help elucidate the molecular mechanisms underlying environmental adaptation and accumulation of aroma compounds in tobacco.

  6. De Novo Transcriptome Analysis to Identify Anthocyanin Biosynthesis Genes Responsible for Tissue-Specific Pigmentation in Zoysiagrass (Zoysia japonica Steud.)

    PubMed Central

    Ahn, Jong Hwa; Kim, June-Sik; Kim, Seungill; Soh, Hye Yeon; Shin, Hosub; Jang, Hosung; Ryu, Ju Hyun; Kim, Ahyeong; Yun, Kil-Young; Kim, Shinje; Kim, Ki Sun; Choi, Doil; Huh, Jin Hoe

    2015-01-01

    Zoysiagrass (Zoysia japonica Steud.) is commonly found in temperate climate regions and widely used for lawns, in part, owing to its uniform green color. However, some zoysiagrass cultivars accumulate red to purple pigments in their spike and stolon tissues, thereby decreasing the aesthetic value. Here we analyzed the anthocyanin contents of two zoysiagrass cultivars ‘Anyang-jungji’ (AJ) and ‘Greenzoa’ (GZ) that produce spikes and stolons with purple and green colors, respectively, and revealed that cyanidin and petunidin were primarily accumulated in the pigmented tissues. In parallel, we performed a de novo transcriptome assembly and identified differentially expressed genes between the two cultivars. We found that two anthocyanin biosynthesis genes encoding anthocyanidin synthase (ANS) and dihydroflavonol 4-reductase (DFR) were preferentially upregulated in the purple AJ spike upon pigmentation. Both ANS and DFR genes were also highly expressed in other zoysiagrass cultivars with purple spikes and stolons, but their expression levels were significantly low in the cultivars with green tissues. We observed that recombinant ZjDFR1 and ZjANS1 proteins successfully catalyze the conversions of dihydroflavonols into leucoanthocyanidins and leucoanthocyanidins into anthocyanidins, respectively. These findings strongly suggest that upregulation of ANS and DFR is responsible for tissue-specific anthocyanin biosynthesis and differential pigmentation in zoysiagrass. The present study also demonstrates the feasibility of a de novo transcriptome analysis to identify the key genes associated with specific traits, even in the absence of reference genome information. PMID:25905914

  7. De Novo Transcriptome Analysis to Identify Anthocyanin Biosynthesis Genes Responsible for Tissue-Specific Pigmentation in Zoysiagrass (Zoysia japonica Steud.).

    PubMed

    Ahn, Jong Hwa; Kim, June-Sik; Kim, Seungill; Soh, Hye Yeon; Shin, Hosub; Jang, Hosung; Ryu, Ju Hyun; Kim, Ahyeong; Yun, Kil-Young; Kim, Shinje; Kim, Ki Sun; Choi, Doil; Huh, Jin Hoe

    2015-01-01

    Zoysiagrass (Zoysia japonica Steud.) is commonly found in temperate climate regions and widely used for lawns, in part, owing to its uniform green color. However, some zoysiagrass cultivars accumulate red to purple pigments in their spike and stolon tissues, thereby decreasing the aesthetic value. Here we analyzed the anthocyanin contents of two zoysiagrass cultivars 'Anyang-jungji' (AJ) and 'Greenzoa' (GZ) that produce spikes and stolons with purple and green colors, respectively, and revealed that cyanidin and petunidin were primarily accumulated in the pigmented tissues. In parallel, we performed a de novo transcriptome assembly and identified differentially expressed genes between the two cultivars. We found that two anthocyanin biosynthesis genes encoding anthocyanidin synthase (ANS) and dihydroflavonol 4-reductase (DFR) were preferentially upregulated in the purple AJ spike upon pigmentation. Both ANS and DFR genes were also highly expressed in other zoysiagrass cultivars with purple spikes and stolons, but their expression levels were significantly low in the cultivars with green tissues. We observed that recombinant ZjDFR1 and ZjANS1 proteins successfully catalyze the conversions of dihydroflavonols into leucoanthocyanidins and leucoanthocyanidins into anthocyanidins, respectively. These findings strongly suggest that upregulation of ANS and DFR is responsible for tissue-specific anthocyanin biosynthesis and differential pigmentation in zoysiagrass. The present study also demonstrates the feasibility of a de novo transcriptome analysis to identify the key genes associated with specific traits, even in the absence of reference genome information.

  8. Clinical and Genomic Analysis of Liver Abscess-Causing Klebsiella pneumoniae Identifies New Liver Abscess-Associated Virulence Genes

    PubMed Central

    Ye, Meiping; Tu, Jianfei; Jiang, Jianping; Bi, Yingmin; You, Weibo; Zhang, Yanliang; Ren, Jianmin; Zhu, Taohui; Cao, Zhuo; Yu, Zuochun; Shao, Chuxiao; Shen, Zhen; Ding, Baixing; Yuan, Jinyi; Zhao, Xu; Guo, Qinglan; Xu, Xiaogang; Huang, Jinwei; Wang, Minggui

    2016-01-01

    Hypervirulent variants of Klebsiella pneumoniae (hvKp) that cause invasive community-acquired pyogenic liver abscess (PLA) have emerged globally. Little is known about the virulence determinants associated with hvKp, except for the virulence genes rmpA/A2 and siderophores (iroBCD/iucABCD) carried by the pK2044-like large virulence plasmid. Here, we collected most recent clinical isolates of hvKp from PLA samples in China, and performed clinical, molecular, and genomic sequencing analyses. We found that 90.9% (40/44) of the pathogens causing PLA were K. pneumoniae. Among the 40 LA-Kp, K1 (62.5%), and K2 (17.5%) were the dominant serotypes, and ST23 (47.5%) was the major sequence type. S1-PFGE analyses demonstrated that although 77.5% (31/40) of the LA-Kp isolates harbored a single large virulence plasmid varied in size, 5 (12.5%) isolates had no plasmid and 4 (10%) had two or three plasmids. Whole genome sequencing and comparative analysis of 3 LA-Kp and 3 non-LA-Kp identified 133 genes present only in LA-Kp. Further, large scale screening of the 133 genes in 45 LA-Kp and 103 non-LA-Kp genome sequences from public databases identified 30 genes that were highly associated with LA-Kp, including iroBCD, iucABCD and rmpA/A2 and 21 new genes. Then, these 21 new genes were analyzed in 40 LA-Kp and 86 non-LA-Kp clinical isolates collected in this study by PCR, showing that new genes were present 80–100% among LA-Kp isolates while 2–11% in K. pneumoniae isolates from sputum and urine. Several of the 21 genes have been proposed as virulence factors in other bacteria, such as the gene encoding SAM-dependent methyltransferase and pagO which protects bacteria from phagocytosis. Taken together, these genes are likely new virulence factors contributing to the hypervirulence phenotype of hvKp, and may deepen our understanding of virulence mechanism of hvKp. PMID:27965935

  9. Clinical and Genomic Analysis of Liver Abscess-Causing Klebsiella pneumoniae Identifies New Liver Abscess-Associated Virulence Genes.

    PubMed

    Ye, Meiping; Tu, Jianfei; Jiang, Jianping; Bi, Yingmin; You, Weibo; Zhang, Yanliang; Ren, Jianmin; Zhu, Taohui; Cao, Zhuo; Yu, Zuochun; Shao, Chuxiao; Shen, Zhen; Ding, Baixing; Yuan, Jinyi; Zhao, Xu; Guo, Qinglan; Xu, Xiaogang; Huang, Jinwei; Wang, Minggui

    2016-01-01

    Hypervirulent variants of Klebsiella pneumoniae (hvKp) that cause invasive community-acquired pyogenic liver abscess (PLA) have emerged globally. Little is known about the virulence determinants associated with hvKp, except for the virulence genes rmpA/A2 and siderophores (iroBCD/iucABCD) carried by the pK2044-like large virulence plasmid. Here, we collected most recent clinical isolates of hvKp from PLA samples in China, and performed clinical, molecular, and genomic sequencing analyses. We found that 90.9% (40/44) of the pathogens causing PLA were K. pneumoniae. Among the 40 LA-Kp, K1 (62.5%), and K2 (17.5%) were the dominant serotypes, and ST23 (47.5%) was the major sequence type. S1-PFGE analyses demonstrated that although 77.5% (31/40) of the LA-Kp isolates harbored a single large virulence plasmid varied in size, 5 (12.5%) isolates had no plasmid and 4 (10%) had two or three plasmids. Whole genome sequencing and comparative analysis of 3 LA-Kp and 3 non-LA-Kp identified 133 genes present only in LA-Kp. Further, large scale screening of the 133 genes in 45 LA-Kp and 103 non-LA-Kp genome sequences from public databases identified 30 genes that were highly associated with LA-Kp, including iroBCD, iucABCD and rmpA/A2 and 21 new genes. Then, these 21 new genes were analyzed in 40 LA-Kp and 86 non-LA-Kp clinical isolates collected in this study by PCR, showing that new genes were present 80-100% among LA-Kp isolates while 2-11% in K. pneumoniae isolates from sputum and urine. Several of the 21 genes have been proposed as virulence factors in other bacteria, such as the gene encoding SAM-dependent methyltransferase and pagO which protects bacteria from phagocytosis. Taken together, these genes are likely new virulence factors contributing to the hypervirulence phenotype of hvKp, and may deepen our understanding of virulence mechanism of hvKp.

  10. Exome array analysis identifies ETFB as a novel susceptibility gene for anthracycline-induced cardiotoxicity in cancer patients.

    PubMed

    Ruiz-Pinto, Sara; Pita, Guillermo; Martín, Miguel; Alonso-Gordoa, Teresa; Barnes, Daniel R; Alonso, María R; Herraez, Belén; García-Miguel, Purificación; Alonso, Javier; Pérez-Martínez, Antonio; Cartón, Antonio J; Gutiérrez-Larraya, Federico; García-Sáenz, José A; Benítez, Javier; Easton, Douglas F; Patiño-García, Ana; González-Neira, Anna

    2017-09-14

    Anthracyclines are widely used chemotherapeutic drugs that can cause progressive and irreversible cardiac damage and fatal heart failure. Several genetic variants associated with anthracycline-induced cardiotoxicity (AIC) have been identified, but they explain only a small proportion of the interindividual differences in AIC susceptibility. In this study, we evaluated the association of low-frequency variants with risk of chronic AIC using the Illumina HumanExome BeadChip array in a discovery cohort of 61 anthracycline-treated breast cancer patients with replication in a second independent cohort of 83 anthracycline-treated pediatric cancer patients, using gene-based tests (SKAT-O). The most significant associated gene in the discovery cohort was ETFB (electron transfer flavoprotein beta subunit) involved in mitochondrial β-oxidation and ATP production (P = 4.16 × 10(-4)) and this association was replicated in an independent set of anthracycline-treated cancer patients (P = 2.81 × 10(-3)). Within ETFB, we found that the missense variant rs79338777 (p.Pro52Leu; c.155C > T) made the greatest contribution to the observed gene association and it was associated with increased risk of chronic AIC in the two cohorts separately and when combined (OR 9.00, P = 1.95 × 10(-4), 95% CI 2.83-28.6). We identified and replicated a novel gene, ETFB, strongly associated with chronic AIC independently of age at tumor onset and related to anthracycline-mediated mitochondrial dysfunction. Although experimental verification and further studies in larger patient cohorts are required to confirm our finding, we demonstrated that exome array data analysis represents a valuable strategy to identify novel genes contributing to the susceptibility to chronic AIC.

  11. Comprehensive Analysis of the COBRA-Like (COBL) Gene Family in Gossypium Identifies Two COBLs Potentially Associated with Fiber Quality

    PubMed Central

    Niu, Erli; Shang, Xiaoguang; Cheng, Chaoze; Bao, Jianghao; Zeng, Yanda; Cai, Caiping; Du, Xiongming; Guo, Wangzhen

    2015-01-01

    COBRA-Like (COBL) genes, which encode a plant-specific glycosylphosphatidylinositol (GPI) anchored protein, have been proven to be key regulators in the orientation of cell expansion and cellulose crystallinity status. Genome-wide analysis has been performed in A. thaliana, O. sativa, Z. mays and S. lycopersicum, but little in Gossypium. Here we identified 19, 18 and 33 candidate COBL genes from three sequenced cotton species, diploid cotton G. raimondii, G. arboreum and tetraploid cotton G. hirsutum acc. TM-1, respectively. These COBL members were anchored onto 10 chromosomes in G. raimondii and could be divided into two subgroups. Expression patterns of COBL genes showed highly developmental and spatial regulation in G. hirsutum acc. TM-1. Of them, GhCOBL9 and GhCOBL13 were preferentially expressed at the secondary cell wall stage of fiber development and had significantly co-upregulated expression with cellulose synthase genes GhCESA4, GhCESA7 and GhCESA8. Besides, GhCOBL9 Dt and GhCOBL13 Dt were co-localized with previously reported cotton fiber quality quantitative trait loci (QTLs) and the favorable allele types of GhCOBL9 Dt had significantly positive correlations with fiber quality traits, indicating that these two genes might play an important role in fiber development. PMID:26710066

  12. Genome-wide transcriptome analysis in the ovaries of two goats identifies differentially expressed genes related to fecundity.

    PubMed

    Miao, Xiangyang; Luo, Qingmiao; Qin, Xiaoyu

    2016-05-10

    The goats are widely kept as livestock throughout the world. Two excellent domestic breeds in China, the Laiwu Black and Jining Grey goats, have different fecundities and prolificacies. Although the goat genome sequences have been resolved recently, little is known about the gene regulations at the transcriptional level in goat. To understand the molecular and genetic mechanisms related to the fecundities and prolificacies, we performed genome-wide sequencing of the mRNAs from two breeds of goat using the next-generation RNA-Seq technology and used functional annotation to identify pathways of interest. Digital gene expression analysis showed 338 genes were up-regulated in the Jining Grey goats and 404 were up-regulated in the Laiwu Black goats. Quantitative real-time PCR verified the reliability of the RNA-Seq data. This study suggests that multiple genes responsible for various biological functions and signaling pathways are differentially expressed in the two different goat breeds, and these genes might be involved in the regulation of goat fecundity and prolificacy. Taken together, our study provides insight into the transcriptional regulation in the ovaries of 2 species of goats that might serve as a key resource for understanding goat fecundity, prolificacy and genetic diversity between species.

  13. Comprehensive Analysis of the COBRA-Like (COBL) Gene Family in Gossypium Identifies Two COBLs Potentially Associated with Fiber Quality.

    PubMed

    Niu, Erli; Shang, Xiaoguang; Cheng, Chaoze; Bao, Jianghao; Zeng, Yanda; Cai, Caiping; Du, Xiongming; Guo, Wangzhen

    2015-01-01

    COBRA-Like (COBL) genes, which encode a plant-specific glycosylphosphatidylinositol (GPI) anchored protein, have been proven to be key regulators in the orientation of cell expansion and cellulose crystallinity status. Genome-wide analysis has been performed in A. thaliana, O. sativa, Z. mays and S. lycopersicum, but little in Gossypium. Here we identified 19, 18 and 33 candidate COBL genes from three sequenced cotton species, diploid cotton G. raimondii, G. arboreum and tetraploid cotton G. hirsutum acc. TM-1, respectively. These COBL members were anchored onto 10 chromosomes in G. raimondii and could be divided into two subgroups. Expression patterns of COBL genes showed highly developmental and spatial regulation in G. hirsutum acc. TM-1. Of them, GhCOBL9 and GhCOBL13 were preferentially expressed at the secondary cell wall stage of fiber development and had significantly co-upregulated expression with cellulose synthase genes GhCESA4, GhCESA7 and GhCESA8. Besides, GhCOBL9 Dt and GhCOBL13 Dt were co-localized with previously reported cotton fiber quality quantitative trait loci (QTLs) and the favorable allele types of GhCOBL9 Dt had significantly positive correlations with fiber quality traits, indicating that these two genes might play an important role in fiber development.

  14. Comparative Transcriptome Analysis of Penicillium citrinum Cultured with Different Carbon Sources Identifies Genes Involved in Citrinin Biosynthesis

    PubMed Central

    Li, Taotao; Jiang, Guoxiang; Qu, Hongxia; Wang, Yong; Xiong, Yehui; Jian, Qijie; Wu, Yu; Duan, Xuewu; Zhu, Xiangrong; Hu, Wenzhong; Wang, Jiasheng; Gong, Liang; Jiang, Yueming

    2017-01-01

    Citrinin is a toxic secondary metabolite of Penicillium citrinum and its contamination in many food items has been widely reported. However, research on the citrinin biosynthesis pathway and its regulation mechanism in P. citrinum is rarely reported. In this study, we investigated the effect of different carbon sources on citrinin production by P. citrinum and used transcriptome analysis to study the underlying molecular mechanism. Our results indicated that glucose, used as the sole carbon source, could significantly promote citrinin production by P. citrinum in Czapek’s broth medium compared with sucrose. A total of 19,967 unigenes were annotated by BLAST in Nr, Nt, Swiss-Prot and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Transcriptome comparison between P. citrinum cultured with sucrose and glucose revealed 1085 differentially expressed unigenes. Among them, 610 were upregulated while 475 were downregulated under glucose as compared to sucrose. KEGG pathway and Gene ontology (GO) analysis indicated that many metabolic processes (e.g., carbohydrate, secondary metabolism, fatty acid and amino acid metabolism) were affected, and potentially interesting genes that encoded putative components of signal transduction, stress response and transcription factor were identified. These genes obviously had important impacts on their regulation in citrinin biosynthesis, which provides a better understanding of the molecular mechanism of citrinin biosynthesis by P. citrinum. PMID:28230802

  15. Comparative Transcriptome Analysis of Penicillium citrinum Cultured with Different Carbon Sources Identifies Genes Involved in Citrinin Biosynthesis.

    PubMed

    Li, Taotao; Jiang, Guoxiang; Qu, Hongxia; Wang, Yong; Xiong, Yehui; Jian, Qijie; Wu, Yu; Duan, Xuewu; Zhu, Xiangrong; Hu, Wenzhong; Wang, Jiasheng; Gong, Liang; Jiang, Yueming

    2017-02-21

    Citrinin is a toxic secondary metabolite of Penicillium citrinum and its contamination in many food items has been widely reported. However, research on the citrinin biosynthesis pathway and its regulation mechanism in P. citrinum is rarely reported. In this study, we investigated the effect of different carbon sources on citrinin production by P. citrinum and used transcriptome analysis to study the underlying molecular mechanism. Our results indicated that glucose, used as the sole carbon source, could significantly promote citrinin production by P. citrinum in Czapek's broth medium compared with sucrose. A total of 19,967 unigenes were annotated by BLAST in Nr, Nt, Swiss-Prot and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Transcriptome comparison between P. citrinum cultured with sucrose and glucose revealed 1085 differentially expressed unigenes. Among them, 610 were upregulated while 475 were downregulated under glucose as compared to sucrose. KEGG pathway and Gene ontology (GO) analysis indicated that many metabolic processes (e.g., carbohydrate, secondary metabolism, fatty acid and amino acid metabolism) were affected, and potentially interesting genes that encoded putative components of signal transduction, stress response and transcription factor were identified. These genes obviously had important impacts on their regulation in citrinin biosynthesis, which provides a better understanding of the molecular mechanism of citrinin biosynthesis by P. citrinum.

  16. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    SciTech Connect

    Kim, Yongbaek; Thai-Vu Ton; De Angelo, Anthony B.; Morgan, Kevin; Devereux, Theodora R.; Anna, Colleen; Collins, Jennifer B.; Paules, Richard S.; Crosby, Lynn M.; Sills, Robert C. . E-mail: sills@niehs.nih.gov

    2006-07-15

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo arrays, with over 20,000 target genes, were used to evaluate o-NT- and BCA-induced RPMs, when compared to a non-transformed mesothelial cell line (Fred-PE). Analysis using Ingenuity Pathway Analysis software revealed 169 cancer-related genes that were categorized into binding activity, growth and proliferation, cell cycle progression, apoptosis, and invasion and metastasis. The microarray data were validated by positive correlation with quantitative real-time RT-PCR on 16 selected genes including igf1, tgfb3 and nov. Important carcinogenic pathways involved in RPM formation included insulin-like growth factor 1 (IGF-1), p38 MAPkinase, Wnt/{beta}-catenin and integrin signaling pathways. This study demonstrated that mesotheliomas in rats exposed to o-NT- and BCA were similar to mesotheliomas in humans, at least at the cellular and molecular level.

  17. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon

    NASA Technical Reports Server (NTRS)

    Wilson, James W.; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Hammond, Timothy; Allen, Pat; Ott, C. Mark; Pierson, Duane L.; Nickerson, Cheryl A.

    2002-01-01

    The low-shear environment of optimized rotation suspension culture allows both eukaryotic and prokaryotic cells to assume physiologically relevant phenotypes that have led to significant advances in fundamental investigations of medical and biological importance. This culture environment has also been used to model microgravity for ground-based studies regarding the impact of space flight on eukaryotic and prokaryotic physiology. We have previously demonstrated that low-shear modeled microgravity (LSMMG) under optimized rotation suspension culture is a novel environmental signal that regulates the virulence, stress resistance, and protein expression levels of Salmonella enterica serovar Typhimurium. However, the mechanisms used by the cells of any species, including Salmonella, to sense and respond to LSMMG and identities of the genes involved are unknown. In this study, we used DNA microarrays to elucidate the global transcriptional response of Salmonella to LSMMG. When compared with identical growth conditions under normal gravity (1 x g), LSMMG differentially regulated the expression of 163 genes distributed throughout the chromosome, representing functionally diverse groups including transcriptional regulators, virulence factors, lipopolysaccharide biosynthetic enzymes, iron-utilization enzymes, and proteins of unknown function. Many of the LSMMG-regulated genes were organized in clusters or operons. The microarray results were further validated by RT-PCR and phenotypic analyses, and they indicate that the ferric uptake regulator is involved in the LSMMG response. The results provide important insight about the Salmonella LSMMG response and could provide clues for the functioning of known Salmonella virulence systems or the identification of uncharacterized bacterial virulence strategies.

  18. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon

    NASA Technical Reports Server (NTRS)

    Wilson, James W.; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Hammond, Timothy; Allen, Pat; Ott, C. Mark; Pierson, Duane L.; Nickerson, Cheryl A.

    2002-01-01

    The low-shear environment of optimized rotation suspension culture allows both eukaryotic and prokaryotic cells to assume physiologically relevant phenotypes that have led to significant advances in fundamental investigations of medical and biological importance. This culture environment has also been used to model microgravity for ground-based studies regarding the impact of space flight on eukaryotic and prokaryotic physiology. We have previously demonstrated that low-shear modeled microgravity (LSMMG) under optimized rotation suspension culture is a novel environmental signal that regulates the virulence, stress resistance, and protein expression levels of Salmonella enterica serovar Typhimurium. However, the mechanisms used by the cells of any species, including Salmonella, to sense and respond to LSMMG and identities of the genes involved are unknown. In this study, we used DNA microarrays to elucidate the global transcriptional response of Salmonella to LSMMG. When compared with identical growth conditions under normal gravity (1 x g), LSMMG differentially regulated the expression of 163 genes distributed throughout the chromosome, representing functionally diverse groups including transcriptional regulators, virulence factors, lipopolysaccharide biosynthetic enzymes, iron-utilization enzymes, and proteins of unknown function. Many of the LSMMG-regulated genes were organized in clusters or operons. The microarray results were further validated by RT-PCR and phenotypic analyses, and they indicate that the ferric uptake regulator is involved in the LSMMG response. The results provide important insight about the Salmonella LSMMG response and could provide clues for the functioning of known Salmonella virulence systems or the identification of uncharacterized bacterial virulence strategies.

  19. A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na(+) concentration in bread wheat.

    PubMed

    Ariyarathna, H A Chandima K; Oldach, Klaus H; Francki, Michael G

    2016-01-19

    Although the HKT transporter genes ascertain some of the key determinants of crop salt tolerance mechanisms, the diversity and functional role of group II HKT genes are not clearly understood in bread wheat. The advanced knowledge on rice HKT and whole genome sequence was, therefore, used in comparative gene analysis to identify orthologous wheat group II HKT genes and their role in trait variation under different saline environments. The four group II HKTs in rice identified two orthologous gene families from bread wheat, including the known TaHKT2;1 gene family and a new distinctly different gene family designated as TaHKT2;2. A single copy of TaHKT2;2 was found on each homeologous chromosome arm 7AL, 7BL and 7DL and each gene was expressed in leaf blade, sheath and root tissues under non-stressed and at 200 mM salt stressed conditions. The proteins encoded by genes of the TaHKT2;2 family revealed more than 93% amino acid sequence identity but ≤52% amino acid identity compared to the proteins encoded by TaHKT2;1 family. Specifically, variations in known critical domains predicted functional differences between the two protein families. Similar to orthologous rice genes on chromosome 6L, TaHKT2;1 and TaHKT2;2 genes were located approximately 3 kb apart on wheat chromosomes 7AL, 7BL and 7DL, forming a static syntenic block in the two species. The chromosomal region on 7AL containing TaHKT2;1 7AL-1 co-located with QTL for shoot Na(+) concentration and yield in some saline environments. The differences in copy number, genes sequences and encoded proteins between TaHKT2;2 homeologous genes and other group II HKT gene families within and across species likely reflect functional diversity for ion selectivity and transport in plants. Evidence indicated that neither TaHKT2;2 nor TaHKT2;1 were associated with primary root Na(+) uptake but TaHKT2;1 may be associated with trait variation for Na(+) exclusion and yield in some but not all saline environments.

  20. Whole genome analysis using Bayesian models to identify candidate genes for immune response to vaccination

    USDA-ARS?s Scientific Manuscript database

    This study identified genome regions associated with variation in immune response to vaccination against bovine viral diarrhea virus type 2 (BVDV 2) in American Angus calves. Calves were born in the spring or fall of 2006-2008 (n = 620). Two doses of modified live vaccine were administered three wee...

  1. Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholest...

  2. Selection signature analysis in Holstein cattle identified genes known to affect reproduction

    USDA-ARS?s Scientific Manuscript database

    Using direct comparison of 45,878 SNPs between a group of Holstein cattle unselected since 1964 and contemporary Holsteins that on average take 30 days longer for successful conception than the 1964 Holsteins, we conducted selection signature analyses to identify genomic regions associated with dair...

  3. Single Nucleotide Polymorphism Microarray Analysis in Cortisol-Secreting Adrenocortical Adenomas Identifies New Candidate Genes and Pathways1 2

    PubMed Central

    Ronchi, Cristina L; Leich, Ellen; Sbiera, Silviu; Weismann, Dirk; Rosenwald, Andreas; Allolio, Bruno; Fassnacht, Martin

    2012-01-01

    The genetic mechanisms underlying adrenocortical tumor development are still largely unknown. We used high-resolution single nucleotide polymorphism microarrays (Affymetrix SNP 6.0) to detect copy number alterations (CNAs) and copy-neutral losses of heterozygosity (cnLOH) in 15 cortisol-secreting adrenocortical adenomas with matched blood samples. We focused on microalterations aiming to discover new candidate genes involved in early tumorigenesis and/or autonomous cortisol secretion. We identified 962 CNAs with a median of 18 CNAs per sample. Half of them involved noncoding regions, 89% were less than 100 kb, and 28% were found in at least two samples. The most frequently gained regions were 5p15.33, 6q16.1, 7p22.3-22.2, 8q24.3, 9q34.2-34.3, 11p15.5, 11q11, 12q12, 16q24.3, 20p11.1-20q21.11, and Xq28 (≥20% of cases), most of them being identified in the same three adenomas. These regions contained among others genes like NOTCH1, CYP11B2, HRAS, and IGF2. Recurrent losses were less common and smaller than gains, being mostly localized at 1p, 6q, and 11q. Pathway analysis revealed that Notch signaling was the most frequently altered. We identified 46 recurrent CNAs that each affected a single gene (31 gains and 15 losses), including genes involved in steroidogenesis (CYP11B1) or tumorigenesis (CTNNB1, EPHA7, SGK1, STIL, FHIT). Finally, 20 small cnLOH in four cases affecting 15 known genes were found. Our findings provide the first high-resolution genome-wide view of chromosomal changes in cortisol-secreting adenomas and identify novel candidate genes, such as HRAS, EPHA7, and SGK1. Furthermore, they implicate that the Notch1 signaling pathway might be involved in the molecular pathogenesis of adrenocortical tumors. PMID:22496620

  4. Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis

    PubMed Central

    Johansson, Åsa; Marroni, Fabio; Hayward, Caroline; Franklin, Christopher S.; Kirichenko, Anatoly V.; Jonasson, Inger; Hicks, Andrew A.; Vitart, Veronique; Isaacs, Aaron; Axenovich, Tatiana; Campbell, Susan; Dunlop, Malcolm G.; Floyd, Jamie; Hastie, Nick; Hofman, Albert; Knott, Sara; Kolcic, Ivana; Pichler, Irene; Polasek, Ozren; Rivadeneira, Fernando; Tenesa, Albert; Uitterlinden, André G.; Wild, Sarah H.; Zorkoltseva, Irina V.; Meitinger, Thomas; Wilson, James F.; Rudan, Igor; Campbell, Harry; Pattaro, Cristian; Pramstaller, Peter; Oostra, Ben A.; Wright, Alan F.; van Duijn, Cornelia M.; Aulchenko, Yurii S.; Gyllensten, Ulf

    2009-01-01

    Genes for height have gained interest for decades, but only recently have candidate genes started to be identified. We have performed linkage analysis and genome-wide association for height in approximately 4000 individuals from five European populations. A total of five chromosomal regions showed suggestive linkage and in one of these regions, two SNPs (rs849140 and rs1635852) were associated with height (nominal P = 7.0 × 10−8 and P = 9.6 × 10−7, respectively). In total, five SNPs across the genome showed an association with height that reached the threshold of genome-wide significance (nominal P < 1.6 × 10−7). The association with height was replicated for two SNPs (rs1635852 and rs849140) using three independent studies (n = 31 077, n=1268 and n = 5746) with overall meta P-values of 9.4 × 10−10 and 5.3 × 10−8. These SNPs are located in the JAZF1 gene, which has recently been associated with type II diabetes, prostate and endometrial cancer. JAZF1 is a transcriptional repressor of NR2C2, which results in low IGF1 serum concentrations, perinatal and early postnatal hypoglycemia and growth retardation when knocked out in mice. Both the linkage and association analyses independently identified the JAZF1 region affecting human height. We have demonstrated, through replication in additional independent populations, the consistency of the effect of the JAZF1 SNPs on height. Since this gene also has a key function in the metabolism of growth, JAZF1 represents one of the strongest candidates influencing human height identified so far. PMID:18952825

  5. Identifying, cloning and structural analysis of differentially expressed genes upon Puccinia infection of Festuca rubra var. rubra.

    PubMed

    Ergen, Neslihan Z; Dinler, Gizem; Shearman, Robert C; Budak, Hikmet

    2007-05-15

    Differentially expressed genes in response to rust infection (Puccinia sp.) in creeping red fescue (Festuca rubra var. rubra) were identified and quantified using the mRNA differential display technique. The differentially induced genes were identified as homologs of mitogen-activated protein kinase (MAPK) 3 of Arabidopsis thaliana, stem rust resistance protein Rpg1 of barley and Hsp70 of Spinacia oleracea. The change in the steady state expression levels of these genes in response to rust infection was tested by Northern blot analysis and further quantified by real-time PCR. A steady accumulation of transcripts in the course of rust infection was observed. Full-length transcript of a fescue MPK-3 was obtained by RACE PCR. Its corresponding cDNA encodes a protein with a predicted MW of 42.5 kDa which was mapped onto the structural model of homologs MAPK to illustrate the corresponding MAPK signature motifs. This study, for the first time, presents evidence on the rust infection dependent metabolic pathways in creeping red fescue.

  6. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma

    PubMed Central

    Guichard, Cécile; Amaddeo, Giuliana; Imbeaud, Sandrine; Ladeiro, Yannick; Pelletier, Laura; Maad, Ichrafe Ben; Calderaro, Julien; Bioulac-Sage, Paulette; Letexier, Mélanie; Degos, Françoise; Clément, Bruno; Balabaud, Charles; Chevet, Eric; Laurent, Alexis; Couchy, Gabrielle; Letouzé, Eric; Calvo, Fabien; Zucman-Rossi, Jessica

    2012-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. High-resolution copy number analysis of 125 tumors of which 24 were subjected to whole-exome sequencing identified 135 homozygous deletions and 994 somatic gene mutations with predicted functional consequences. We identified new recurrent alterations in 6 genes (ARID1A, RPS6KA3, NFE2L2, IRF2, CDH8 and PROKR2) not previously described in HCC. Functional analyses demonstrated tumor suppressor properties for IRF2 whose inactivation, exclusively found in hepatitis B virus related tumors, leads to impaired TP53 function. Alternatively, inactivation of proteins involved in chromatin remodeling was frequent and predominant in alcohol related tumors. Moreover, activation of the oxidative stress metabolism and inactivation of RPS6KA3 were new pathways associated with WNT/β-catenin activation, thereby suggesting a cooperative effect in tumorigenesis. This study shows the dramatic somatic genetic diversity in HCC, it reveals interactions between oncogene and tumor suppressor gene mutations markedly related to specific risk factors. PMID:22561517

  7. Comprehensive Computational Analysis of GWAS Loci Identifies CCR2 as a Candidate Gene for Celiac Disease Pathogenesis.

    PubMed

    Banaganapalli, Babajan; Rashidi, Omran; Saadah, Omar I; Wang, Jun; Khan, Imran Ali; Al-Aama, Jumana Y; Shaik, Noor Ahmad; Elango, Ramu

    2017-08-01

    Celiac disease (CD) is a gluten intolerance disorder with known genetic contribution. The recent fine mapping and genome-wide association studies (GWAS) have identified up to 57 non-HLA CD susceptibility SNPs, majority of which are non-coding variants lacking any functional annotation. Therefore, we adopted multidimensional computational approach for uncovering the plausible mechanisms through which these GWAS SNPs are connected to CD pathogenesis. At initial phase, we identified that 25 (43.85%) out of 57 CD-SNPs lies in evolutionarily constrained genetic element regions. In follow-up phases, through computational (CADD, GWAVA, and FATHMM algorithms) deleterious intensity measurements, we have discovered that 42 (3.94%) out of 1065 variants (57 CD-lead and 1008-linked SNPs; r(2)  ≥ 0.8) are differentially deleterious in nature to CD. Further functional scrutinization of these CD variants by public domain eQTL mapping, gene expression, knockout mouse model, and pathway analyses revealed that deleterious SNPs of CCR2 gene influences its expression levels and may also elicit a cascade of T-cell-mediated immunological events leading to intestinal gluten intolerance in genetically susceptible individuals. This study demonstrates the utility of integrated in silico analysis of annotations, gene expression, and pathways in prioritizing the potential complex disease variants from large-scale open source genomic data. J. Cell. Biochem. 118: 2193-2207, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci.

    PubMed

    Saxena, Richa; Elbers, Clara C; Guo, Yiran; Peter, Inga; Gaunt, Tom R; Mega, Jessica L; Lanktree, Matthew B; Tare, Archana; Castillo, Berta Almoguera; Li, Yun R; Johnson, Toby; Bruinenberg, Marcel; Gilbert-Diamond, Diane; Rajagopalan, Ramakrishnan; Voight, Benjamin F; Balasubramanyam, Ashok; Barnard, John; Bauer, Florianne; Baumert, Jens; Bhangale, Tushar; Böhm, Bernhard O; Braund, Peter S; Burton, Paul R; Chandrupatla, Hareesh R; Clarke, Robert; Cooper-DeHoff, Rhonda M; Crook, Errol D; Davey-Smith, George; Day, Ian N; de Boer, Anthonius; de Groot, Mark C H; Drenos, Fotios; Ferguson, Jane; Fox, Caroline S; Furlong, Clement E; Gibson, Quince; Gieger, Christian; Gilhuijs-Pederson, Lisa A; Glessner, Joseph T; Goel, Anuj; Gong, Yan; Grant, Struan F A; Grobbee, Diederick E; Hastie, Claire; Humphries, Steve E; Kim, Cecilia E; Kivimaki, Mika; Kleber, Marcus; Meisinger, Christa; Kumari, Meena; Langaee, Taimour Y; Lawlor, Debbie A; Li, Mingyao; Lobmeyer, Maximilian T; Maitland-van der Zee, Anke-Hilse; Meijs, Matthijs F L; Molony, Cliona M; Morrow, David A; Murugesan, Gurunathan; Musani, Solomon K; Nelson, Christopher P; Newhouse, Stephen J; O'Connell, Jeffery R; Padmanabhan, Sandosh; Palmen, Jutta; Patel, Sanjey R; Pepine, Carl J; Pettinger, Mary; Price, Thomas S; Rafelt, Suzanne; Ranchalis, Jane; Rasheed, Asif; Rosenthal, Elisabeth; Ruczinski, Ingo; Shah, Sonia; Shen, Haiqing; Silbernagel, Günther; Smith, Erin N; Spijkerman, Annemieke W M; Stanton, Alice; Steffes, Michael W; Thorand, Barbara; Trip, Mieke; van der Harst, Pim; van der A, Daphne L; van Iperen, Erik P A; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V; Verweij, Niek; Wolffenbuttel, Bruce H R; Young, Taylor; Zafarmand, M Hadi; Zmuda, Joseph M; Boehnke, Michael; Altshuler, David; McCarthy, Mark; Kao, W H Linda; Pankow, James S; Cappola, Thomas P; Sever, Peter; Poulter, Neil; Caulfield, Mark; Dominiczak, Anna; Shields, Denis C; Bhatt, Deepak L; Bhatt, Deepak; Zhang, Li; Curtis, Sean P; Danesh, John; Casas, Juan P; van der Schouw, Yvonne T; Onland-Moret, N Charlotte; Doevendans, Pieter A; Dorn, Gerald W; Farrall, Martin; FitzGerald, Garret A; Hamsten, Anders; Hegele, Robert; Hingorani, Aroon D; Hofker, Marten H; Huggins, Gordon S; Illig, Thomas; Jarvik, Gail P; Johnson, Julie A; Klungel, Olaf H; Knowler, William C; Koenig, Wolfgang; März, Winfried; Meigs, James B; Melander, Olle; Munroe, Patricia B; Mitchell, Braxton D; Bielinski, Susan J; Rader, Daniel J; Reilly, Muredach P; Rich, Stephen S; Rotter, Jerome I; Saleheen, Danish; Samani, Nilesh J; Schadt, Eric E; Shuldiner, Alan R; Silverstein, Roy; Kottke-Marchant, Kandice; Talmud, Philippa J; Watkins, Hugh; Asselbergs, Folkert W; Asselbergs, Folkert; de Bakker, Paul I W; McCaffery, Jeanne; Wijmenga, Cisca; Sabatine, Marc S; Wilson, James G; Reiner, Alex; Bowden, Donald W; Hakonarson, Hakon; Siscovick, David S; Keating, Brendan J

    2012-03-09

    To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom ∼50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with ∼2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 × 10(-9)) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p < 2.4 × 10(-6)). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 × 10(-7)) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 × 10(-15)). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 × 10(-8)). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Large-Scale Gene-Centric Meta-Analysis across 39 Studies Identifies Type 2 Diabetes Loci

    PubMed Central

    Saxena, Richa; Elbers, Clara C.; Guo, Yiran; Peter, Inga; Gaunt, Tom R.; Mega, Jessica L.; Lanktree, Matthew B.; Tare, Archana; Castillo, Berta Almoguera; Li, Yun R.; Johnson, Toby; Bruinenberg, Marcel; Gilbert-Diamond, Diane; Rajagopalan, Ramakrishnan; Voight, Benjamin F.; Balasubramanyam, Ashok; Barnard, John; Bauer, Florianne; Baumert, Jens; Bhangale, Tushar; Böhm, Bernhard O.; Braund, Peter S.; Burton, Paul R.; Chandrupatla, Hareesh R.; Clarke, Robert; Cooper-DeHoff, Rhonda M.; Crook, Errol D.; Davey-Smith, George; Day, Ian N.; de Boer, Anthonius; de Groot, Mark C.H.; Drenos, Fotios; Ferguson, Jane; Fox, Caroline S.; Furlong, Clement E.; Gibson, Quince; Gieger, Christian; Gilhuijs-Pederson, Lisa A.; Glessner, Joseph T.; Goel, Anuj; Gong, Yan; Grant, Struan F.A.; Grobbee, Diederick E.; Hastie, Claire; Humphries, Steve E.; Kim, Cecilia E.; Kivimaki, Mika; Kleber, Marcus; Meisinger, Christa; Kumari, Meena; Langaee, Taimour Y.; Lawlor, Debbie A.; Li, Mingyao; Lobmeyer, Maximilian T.; Maitland-van der Zee, Anke-Hilse; Meijs, Matthijs F.L.; Molony, Cliona M.; Morrow, David A.; Murugesan, Gurunathan; Musani, Solomon K.; Nelson, Christopher P.; Newhouse, Stephen J.; O'Connell, Jeffery R.; Padmanabhan, Sandosh; Palmen, Jutta; Patel, Sanjey R.; Pepine, Carl J.; Pettinger, Mary; Price, Thomas S.; Rafelt, Suzanne; Ranchalis, Jane; Rasheed, Asif; Rosenthal, Elisabeth; Ruczinski, Ingo; Shah, Sonia; Shen, Haiqing; Silbernagel, Günther; Smith, Erin N.; Spijkerman, Annemieke W.M.; Stanton, Alice; Steffes, Michael W.; Thorand, Barbara; Trip, Mieke; van der Harst, Pim; van der A, Daphne L.; van Iperen, Erik P.A.; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V.; Verweij, Niek; Wolffenbuttel, Bruce H.R.; Young, Taylor; Zafarmand, M. Hadi; Zmuda, Joseph M.; Boehnke, Michael; Altshuler, David; McCarthy, Mark; Kao, W.H. Linda; Pankow, James S.; Cappola, Thomas P.; Sever, Peter; Poulter, Neil; Caulfield, Mark; Dominiczak, Anna; Shields, Denis C.; Bhatt, Deepak L.; Zhang, Li; Curtis, Sean P.; Danesh, John; Casas, Juan P.; van der Schouw, Yvonne T.; Onland-Moret, N. Charlotte; Doevendans, Pieter A.; Dorn, Gerald W.; Farrall, Martin; FitzGerald, Garret A.; Hamsten, Anders; Hegele, Robert; Hingorani, Aroon D.; Hofker, Marten H.; Huggins, Gordon S.; Illig, Thomas; Jarvik, Gail P.; Johnson, Julie A.; Klungel, Olaf H.; Knowler, William C.; Koenig, Wolfgang; März, Winfried; Meigs, James B.; Melander, Olle; Munroe, Patricia B.; Mitchell, Braxton D.; Bielinski, Susan J.; Rader, Daniel J.; Reilly, Muredach P.; Rich, Stephen S.; Rotter, Jerome I.; Saleheen, Danish; Samani, Nilesh J.; Schadt, Eric E.; Shuldiner, Alan R.; Silverstein, Roy; Kottke-Marchant, Kandice; Talmud, Philippa J.; Watkins, Hugh; Asselbergs, Folkert W.; de Bakker, Paul I.W.; McCaffery, Jeanne; Wijmenga, Cisca; Sabatine, Marc S.; Wilson, James G.; Reiner, Alex; Bowden, Donald W.; Hakonarson, Hakon; Siscovick, David S.; Keating, Brendan J.

    2012-01-01

    To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom ∼50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with ∼2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 × 10−9) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p < 2.4 × 10−6). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 × 10−7) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 × 10−15). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 × 10−8). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups. PMID:22325160

  10. Identifying candidate genes for 2p15p16.1 microdeletion syndrome using clinical, genomic, and functional analysis.

    PubMed

    Bagheri, Hani; Badduke, Chansonette; Qiao, Ying; Colnaghi, Rita; Abramowicz, Iga; Alcantara, Diana; Dunham, Christopher; Wen, Jiadi; Wildin, Robert S; Nowaczyk, Malgorzata J M; Eichmeyer, Jennifer; Lehman, Anna; Maranda, Bruno; Martell, Sally; Shan, Xianghong; Lewis, Suzanne M E; O'Driscoll, Mark; Gregory-Evans, Cheryl Y; Rajcan-Separovic, Evica

    2016-03-17

    The 2p15p16.1 microdeletion syndrome has a core phenotype consisting of intellectual disability, microcephaly, hypotonia, delayed growth, common craniofacial features, and digital anomalies. So far, more than 20 cases of 2p15p16.1 microdeletion syndrome have been reported in the literature; however, the size of the deletions and their breakpoints vary, making it difficult to identify the candidate genes. Recent reports pointed to 4 genes (XPO1, USP34, BCL11A, and REL) that were included, alone or in combination, in the smallest deletions causing the syndrome. Here, we describe 8 new patients with the 2p15p16.1 deletion and review all published cases to date. We demonstrate functional deficits for the above 4 candidate genes using patients' lymphoblast cell lines (LCLs) and knockdown of their orthologs in zebrafish. All genes were dosage sensitive on the basis of reduced protein expression in LCLs. In addition, deletion of XPO1, a nuclear exporter, cosegregated with nuclear accumulation of one of its cargo molecules (rpS5) in patients' LCLs. Other pathways associated with these genes (e.g., NF-κB and Wnt signaling as well as the DNA damage response) were not impaired in patients' LCLs. Knockdown of xpo1a, rel, bcl11aa, and bcl11ab resulted in abnormal zebrafish embryonic development including microcephaly, dysmorphic body, hindered growth, and small fins as well as structural brain abnormalities. Our multifaceted analysis strongly implicates XPO1, REL, and BCL11A as candidate genes for 2p15p16.1 microdeletion syndrome.

  11. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    PubMed

    Reyes-Gibby, Cielito C; Melkonian, Stephanie C; Wang, Jian; Yu, Robert K; Shelburne, Samuel A; Lu, Charles; Gunn, Gary Brandon; Chambers, Mark S; Hanna, Ehab Y; Yeung, Sai-Ching J; Shete, Sanjay

    2017-01-01

    Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA), a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive) and thymine degradation pathways (p = 1.06-08) were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis). The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67). In conclusion, gene network analysis identified novel molecules and biological

  12. Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes

    PubMed Central

    Tafolla-Arellano, Julio C.; Zheng, Yi; Sun, Honghe; Jiao, Chen; Ruiz-May, Eliel; Hernández-Oñate, Miguel A.; González-León, Alberto; Báez-Sañudo, Reginaldo; Fei, Zhangjun; Domozych, David; Rose, Jocelyn K. C.; Tiznado-Hernández, Martín E.

    2017-01-01

    Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative cuticle-associated genes, we analyzed the transcriptomes of peels from ripe and overripe mango fruit using RNA-Seq. Approximately 400 million reads were generated and de novo assembled into 107,744 unigenes, with a mean length of 1,717 bp and with this information an online Mango RNA-Seq Database (http://bioinfo.bti.cornell.edu/cgi-bin/mango/index.cgi) which is a valuable genomic resource for molecular research into the biology of mango fruit was created. RNA-Seq analysis suggested that the pathway leading to biosynthesis of the cuticle component, cutin, is up-regulated during overripening. This data was supported by analysis of the expression of several putative cuticle-associated genes and by gravimetric and microscopic studies of cuticle deposition, revealing a complex continuous pattern of cuticle deposition during fruit development and involving substantial accumulation during ripening/overripening. PMID:28425468

  13. Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes.

    PubMed

    Tafolla-Arellano, Julio C; Zheng, Yi; Sun, Honghe; Jiao, Chen; Ruiz-May, Eliel; Hernández-Oñate, Miguel A; González-León, Alberto; Báez-Sañudo, Reginaldo; Fei, Zhangjun; Domozych, David; Rose, Jocelyn K C; Tiznado-Hernández, Martín E

    2017-04-20

    Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative cuticle-associated genes, we analyzed the transcriptomes of peels from ripe and overripe mango fruit using RNA-Seq. Approximately 400 million reads were generated and de novo assembled into 107,744 unigenes, with a mean length of 1,717 bp and with this information an online Mango RNA-Seq Database (http://bioinfo.bti.cornell.edu/cgi-bin/mango/index.cgi) which is a valuable genomic resource for molecular research into the biology of mango fruit was created. RNA-Seq analysis suggested that the pathway leading to biosynthesis of the cuticle component, cutin, is up-regulated during overripening. This data was supported by analysis of the expression of several putative cuticle-associated genes and by gravimetric and microscopic studies of cuticle deposition, revealing a complex continuous pattern of cuticle deposition during fruit development and involving substantial accumulation during ripening/overripening.

  14. Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes

    NASA Astrophysics Data System (ADS)

    Tafolla-Arellano, Julio C.; Zheng, Yi; Sun, Honghe; Jiao, Chen; Ruiz-May, Eliel; Hernández-Oñate, Miguel A.; González-León, Alberto; Báez-Sañudo, Reginaldo; Fei, Zhangjun; Domozych, David; Rose, Jocelyn K. C.; Tiznado-Hernández, Martín E.

    2017-04-01

    Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative cuticle-associated genes, we analyzed the transcriptomes of peels from ripe and overripe mango fruit using RNA-Seq. Approximately 400 million reads were generated and de novo assembled into 107,744 unigenes, with a mean length of 1,717 bp and with this information an online Mango RNA-Seq Database (http://bioinfo.bti.cornell.edu/cgi-bin/mango/index.cgi) which is a valuable genomic resource for molecular research into the biology of mango fruit was created. RNA-Seq analysis suggested that the pathway leading to biosynthesis of the cuticle component, cutin, is up-regulated during overripening. This data was supported by analysis of the expression of several putative cuticle-associated genes and by gravimetric and microscopic studies of cuticle deposition, revealing a complex continuous pattern of cuticle deposition during fruit development and involving substantial accumulation during ripening/overripening.

  15. An automated RNA-Seq analysis pipeline to identify and visualize differentially expressed genes and pathways in CHO cells.

    PubMed

    Chen, Chun; Le, Huong; Goudar, Chetan T

    2015-01-01

    Recent advances in RNA-Seq based comparative transcriptomics have opened up a unique opportunity to understand the mechanisms of different phenotypes in bioprocessing-related cell lines including Chinese hamster ovary (CHO) cells. However, simple and powerful tools are needed to translate large data sets into biologically relevant information that can be leveraged for genetic engineering and cell culture medium and process development. While tools exist to perform specific tasks associated with transcriptomics analysis, integrated end to end solutions that span the entire spectrum of raw data processing to visualization of gene expression changes on canonical pathways are rare. Additionally, these are not automated and require substantial user intervention. To address this gap, we have developed an automated RNA-Seq analysis pipeline in R which leverages the latest public domain statistical advances in transcriptomics data analysis. This pipeline reads RNA-Seq gene count data, identifies differentially expressed genes and differentially expressed pathways, and provides multiple intuitive visualizations as outputs. By using two publicly available CHO RNA-Seq datasets, we have demonstrated the utility of this pipeline. Subsequently, this pipeline was used to demonstrate transcriptomic similarity between laboratory- and pilot-scale bioreactors, helping make a case for the suitability of the lab-scale bioreactor as a scaled-down model. Automated end to end RNA-Seq data analysis approaches such as the one presented in this study will shorten the time required from acquiring sequencing data to biological interpretation of the results and can help accelerate the adoption of RNA-Seq analysis and thus mechanism-driven approaches for cell line and bioprocess optimization. © 2015 American Institute of Chemical Engineers.

  16. Discrete roles of a microsomal linoleate desaturase gene in olive identified by spatiotemporal transcriptional analysis.

    PubMed

    Banilas, Georgios; Nikiforiadis, Alkis; Makariti, Ifigenia; Moressis, Anastassios; Hatzopoulos, Polydefkis

    2007-04-01

    The relative abundance of alpha-linolenic (alpha-LeA) compared with linoleic acid is associated with the developmental stage and the plant species and is proposed to have important physiological effects on both vegetative and reproductive plant development. The enzymes responsible for catalyzing the conversion of linoleic acid to alpha-LeA, the omega-3 fatty acid desaturases (FADs), are localized in the plastid or the endoplasmic reticulum (ER). Here we present the isolation of an ER-type omega-3 FAD gene (OeFAD3) from olive (Olea europaea L.). Expression patterns of OeFAD3 in different seed tissues and mesocarps during olive fruit development showed that its contribution to olive oil biosynthesis and modification is minimal. Regulation of OeFAD3 differed from that of its plastidial counterpart, being preferentially expressed in proliferating tissues, in concert with the active membrane biogenesis required for cell division. Trienoic acid-deficient Arabidopsis mutants are male sterile, because alpha-LeA-derived jasmonic acid (JA) is required for pollen development. However, the upregulation of OeFAD3 in different pistil tissues, particularly in vascular bundles and ovaries, rather than in anthers, implies a critical role of alpha-LeA in female gametophyte development in olive, corroborating results from JA-defective tomato mutants that are female sterile but not male sterile.

  17. Analysis of the nucleoprotein gene identifies three distinct lineages of viral haemorrhagic septicemia virus (VHSV) within the European marine environment

    USGS Publications Warehouse

    Snow, M.; Cunningham, C.O.; Melvin, W.T.; Kurath, G.

    1999-01-01

    A ribonuclease (RNase) protection assay (RPA) has been used to detect nucleotide sequence variation within the nucleoprotein gene of 39 viral haemorrhagic septicaemia virus (VHSV) isolates of European marine origin. The classification of VHSV isolates based on RPA cleavage patterns permitted the identification of ten distinct groups of viruses based on differences at the molecular level. The nucleotide sequence of representatives of each of these groupings was determined and subjected to phylogenetic analysis. This revealed grouping of the European marine isolates of VHSV into three genotypes circulating within distinct geographic areas. A fourth genotype was identified comprising isolates originating from North America. Phylogenetic analyses indicated that VHSV isolates recovered from wild caught fish around the British Isles were genetically related to isolates responsible for losses in farmed turbot. Furthermore, a relationship between naturally occurring marine isolates and VHSV isolates causing mortality among rainbow trout in continental Europe was demonstrated. Analysis of the nucleoprotein gene identifies distinct lineages of viral haemorrhagic septicaemia virus within the European marine environment. Virus Res. 63, 35-44. Available from: 

  18. Genome-wide Association Analysis Identifies PDE4D as an Asthma-Susceptibility Gene

    PubMed Central

    Himes, Blanca E.; Hunninghake, Gary M.; Baurley, James W.; Rafaels, Nicholas M.; Sleiman, Patrick; Strachan, David P.; Wilk, Jemma B.; Willis-Owen, Saffron A.G.; Klanderman, Barbara; Lasky-Su, Jessica; Lazarus, Ross; Murphy, Amy J.; Soto-Quiros, Manuel E.; Avila, Lydiana; Beaty, Terri; Mathias, Rasika A.; Ruczinski, Ingo; Barnes, Kathleen C.; Celedón, Juan C.; Cookson, William O.C.; Gauderman, W. James; Gilliland, Frank D.; Hakonarson, Hakon; Lange, Christoph; Moffatt, Miriam F.; O'Connor, George T.; Raby, Benjamin A.; Silverman, Edwin K.; Weiss, Scott T.

    2009-01-01

    Asthma, a chronic airway disease with known heritability, affects more than 300 million people around the world. A genome-wide association (GWA) study of asthma with 359 cases from the Childhood Asthma Management Program (CAMP) and 846 genetically matched controls from the Illumina ICONdb public resource was performed. The strongest region of association seen was on chromosome 5q12 in PDE4D. The phosphodiesterase 4D, cAMP-specific (phosphodiesterase E3 dunce homolog, Drosophila) gene (PDE4D) is a regulator of airway smooth-muscle contractility, and PDE4 inhibitors have been developed as medications for asthma. Allelic p values for top SNPs in this region were 4.3 × 10−07 for rs1588265 and 9.7 × 10−07 for rs1544791. Replications were investigated in ten independent populations with different ethnicities, study designs, and definitions of asthma. In seven white and Hispanic replication populations, two PDE4D SNPs had significant results with p values less than 0.05, and five had results in the same direction as the original population but had p values greater than 0.05. Combined p values for 18,891 white and Hispanic individuals (4,342 cases) in our replication populations were 4.1 × 10−04 for rs1588265 and 9.2 × 10−04 for rs1544791. In three black replication populations, which had different linkage disequilibrium patterns than the other populations, original findings were not replicated. Further study of PDE4D variants might lead to improved understanding of the role of PDE4D in asthma pathophysiology and the efficacy of PDE4 inhibitor medications. PMID:19426955

  19. Computational Analysis of Breast Cancer GWAS Loci Identifies the Putative Deleterious Effect of STXBP4 and ZNF404 Gene Variants.

    PubMed

    Masoodi, Tariq Ahmad; Banaganapalli, Babajan; Vaidyanathan, Venkatesh; Talluri, Venkateswar R; Shaik, Noor A

    2017-04-19

    The genome-wide association studies (GWAS) have enabled us in identifying different breast cancer (BC) susceptibility loci. However, majority of these are non-coding variants with no annotated biological function. We investigated such 78 noncoding genome wide associated SNPs of BC and further expanded the list to 2,162 variants with strong linkage-disequilibrium (LD, r(2) ≥0.8). Using multiple publically available algorithms such as CADD, GWAVA, and FATHAMM, we classified all these variants into deleterious, damaging, or benign categories. Out of total 2,241 variants, 23 (1.02%) variants were extreme deleterious (rank 1), 70 (3.12%) variants were deleterious (rank 2), and 1,937 (86.43%) variants were benign (rank 3). The results show 14% of lead or associated variants are under strong negative selection (GERP++ RS ≥2), and ∼22% are under balancing selection (Tajima's D score >2) in CEU population of 1KGP-the regions being positively selected (GERP++ RS <0) in mammalian evolution. The expression quantitative trait loci of highest deleteriously ranked genes were tested on relevant adipose and breast tissues, the results of which were extended for protein expression on breast tissues. From the concordance analysis of ranking system of GWAVA, CADD, and FATHMM, eQTL and protein expression, we identified the deleterious SNPs localized in STXBP4 and ZNF404 genes which might play a role in BC development by dysregulating its gene expression. This simple approach will be easier to implement and to prioritize large scale GWAS data for variety of diseases and link to the potentially unrecognized functional roles of genes. J. Cell. Biochem. 9999: 1-12, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone

    PubMed Central

    Wilson, Michael H.; Holman, Tara J.; Sørensen, Iben; Cancho-Sanchez, Ester; Wells, Darren M.; Swarup, Ranjan; Knox, J. Paul; Willats, William G. T.; Ubeda-Tomás, Susana; Holdsworth, Michael; Bennett, Malcolm J.; Vissenberg, Kris; Hodgman, T. Charlie

    2015-01-01

    Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS), through the rapid and late elongation zones (REZ, LEZ) to the maturation zone and the rest of the root, including the emerging lateral roots. Other compositional changes included extensin and xyloglucan levels peaking in the REZ and increasing levels of arabinogalactan-proteins (AGP) epitopes from the MS to the LEZ, which remained high through the subsequent mature zones. Immuno-staining using the same antibodies identified the tissue and (sub)cellular localization of many epitopes. Extensins were localized in epidermal and cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells to the stele. The transcriptome analysis found several gene families peaking in the REZ. These included a large family of peroxidases (which produce the reactive oxygen species (ROS) needed for cell expansion), and three xyloglucan endo-transglycosylase/hydrolase genes (XTH17, XTH18, and XTH19). The significance of the latter may be related to a role in breaking and re-joining xyloglucan cross-bridges between cellulose microfibrils, a process which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root lengths, confirming a role of the corresponding proteins in root extension

  1. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators.

    PubMed

    Clarke, Luka A; Botelho, Hugo M; Sousa, Lisete; Falcao, Andre O; Amaral, Margarida D

    2015-11-01

    A meta-analysis of 13 independent microarray data sets was performed and gene expression profiles from cystic fibrosis (CF), similar disorders (COPD: chronic obstructive pulmonary disease, IPF: idiopathic pulmonary fibrosis, asthma), environmental conditions (smoking, epithelial injury), related cellular processes (epithelial differentiation/regeneration), and non-respiratory "control" conditions (schizophrenia, dieting), were compared. Similarity among differentially expressed (DE) gene lists was assessed using a permutation test, and a clustergram was constructed, identifying common gene markers. Global gene expression values were standardized using a novel approach, revealing that similarities between independent data sets run deeper than shared DE genes. Correlation of gene expression values identified putative gene regulators of the CF transmembrane conductance regulator (CFTR) gene, of potential therapeutic significance. Our study provides a novel perspective on CF epithelial gene expression in the context of other lung disorders and conditions, and highlights the contribution of differentiation/EMT and injury to gene signatures of respiratory disease.

  2. Knowledge-driven analysis identifies a gene-gene interaction affecting high-density lipoprotein cholesterol levels in multi-ethnic populations.

    PubMed

    Ma, Li; Brautbar, Ariel; Boerwinkle, Eric; Sing, Charles F; Clark, Andrew G; Keinan, Alon

    2012-01-01

    Total cholesterol, low-density lipoprotein cholesterol, triglyceride, and high-density lipoprotein cholesterol (HDL-C) levels are among the most important risk factors for coronary artery disease. We tested for gene-gene interactions affecting the level of these four lipids based on prior knowledge of established genome-wide association study (GWAS) hits, protein-protein interactions, and pathway information. Using genotype data from 9,713 European Americans from the Atherosclerosis Risk in Communities (ARIC) study, we identified an interaction between HMGCR and a locus near LIPC in their effect on HDL-C levels (Bonferroni corrected P(c) = 0.002). Using an adaptive locus-based validation procedure, we successfully validated this gene-gene interaction in the European American cohorts from the Framingham Heart Study (P(c) = 0.002) and the Multi-Ethnic Study of Atherosclerosis (MESA; P(c) = 0.006). The interaction between these two loci is also significant in the African American sample from ARIC (P(c) = 0.004) and in the Hispanic American sample from MESA (P(c) = 0.04). Both HMGCR and LIPC are involved in the metabolism of lipids, and genome-wide association studies have previously identified LIPC as associated with levels of HDL-C. However, the effect on HDL-C of the novel gene-gene interaction reported here is twice as pronounced as that predicted by the sum of the marginal effects of the two loci. In conclusion, based on a knowledge-driven analysis of epistasis, together with a new locus-based validation method, we successfully identified and validated an interaction affecting a complex trait in multi-ethnic populations.

  3. Phylogenetic Analysis of Seven WRKY Genes across the Palm Subtribe Attaleinae (Arecaceae) Identifies Syagrus as Sister Group of the Coconut

    PubMed Central

    Meerow, Alan W.; Noblick, Larry; Borrone, James W.; Couvreur, Thomas L. P.; Mauro-Herrera, Margarita; Hahn, William J.; Kuhn, David N.; Nakamura, Kyoko; Oleas, Nora H.; Schnell, Raymond J.

    2009-01-01

    Background The Cocoseae is one of 13 tribes of Arecaceae subfam. Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera L., the coconut, the origins of which have been one of the “abominable mysteries” of palm systematics for decades. Previous studies with predominantly plastid genes weakly supported American ancestry for the coconut but ambiguous sister relationships. In this paper, we use multiple single copy nuclear loci to address the phylogeny of the Cocoseae subtribe Attaleinae, and resolve the closest extant relative of the coconut. Methodology/Principal Findings We present the results of combined analysis of DNA sequences of seven WRKY transcription factor loci across 72 samples of Arecaceae tribe Cocoseae subtribe Attaleinae, representing all genera classified within the subtribe, and three outgroup taxa with maximum parsimony, maximum likelihood, and Bayesian approaches, producing highly congruent and well-resolved trees that robustly identify the genus Syagrus as sister to Cocos and resolve novel and well-supported relationships among the other genera of the Attaleinae. We also address incongruence among the gene trees with gene tree reconciliation analysis, and assign estimated ages to the nodes of our tree. Conclusions/Significance This study represents the as yet most extensive phylogenetic analyses of Cocoseae subtribe Attaleinae. We present a well-resolved and supported phylogeny of the subtribe that robustly indicates a sister relationship between Cocos and Syagrus. This is not only of biogeographic interest, but will also open fruitful avenues of inquiry regarding evolution of functional genes useful for crop improvement. Establishment of two major clades of American Attaleinae occurred in the Oligocene (ca. 37 MYBP) in Eastern Brazil. The divergence of Cocos from Syagrus is estimated at 35 MYBP. The biogeographic and morphological congruence that we see for

  4. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica)

    PubMed Central

    Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar

    2016-01-01

    The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple. PMID:26856238

  5. Comparative Analysis of Muscle Transcriptome between Pig Genotypes Identifies Genes and Regulatory Mechanisms Associated to Growth, Fatness and Metabolism

    PubMed Central

    Ayuso, Miriam; Fernández, Almudena; Núñez, Yolanda; Benítez, Rita; Isabel, Beatriz; Barragán, Carmen; Fernández, Ana Isabel; Rey, Ana Isabel; Medrano, Juan F.; Cánovas, Ángela; González-Bulnes, Antonio; López-Bote, Clemente; Ovilo, Cristina

    2015-01-01

    Iberian ham production includes both purebred (IB) and Duroc-crossbred (IBxDU) Iberian pigs, which show important differences in meat quality and production traits, such as muscle growth and fatness. This experiment was conducted to investigate gene expression differences, transcriptional regulation and genetic polymorphisms that could be associated with the observed phenotypic differences between IB and IBxDU pigs. Nine IB and 10 IBxDU pigs were slaughtered at birth. Morphometric measures and blood samples were obtained and samples from Biceps femoris muscle were employed for compositional and transcriptome analysis by RNA-Seq technology. Phenotypic differences were evident at this early age, including greater body size and weight in IBxDU and greater Biceps femoris intramuscular fat and plasma cholesterol content in IB newborns. We detected 149 differentially expressed genes between IB and IBxDU neonates (p < 0.01 and Fold-Change > 1. 5). Several were related to adipose and muscle tissues development (DLK1, FGF21 or UBC). The functional interpretation of the transcriptomic differences revealed enrichment of functions and pathways related to lipid metabolism in IB and to cellular and muscle growth in IBxDU pigs. Protein catabolism, cholesterol biosynthesis and immune system were functions enriched in both genotypes. We identified transcription factors potentially affecting the observed gene expression differences. Some of them have known functions on adipogenesis (CEBPA, EGRs), lipid metabolism (PPARGC1B) and myogenesis (FOXOs, MEF2D, MYOD1), which suggest a key role in the meat quality differences existing between IB and IBxDU hams. We also identified several polymorphisms showing differential segregation between IB and IBxDU pigs. Among them, non-synonymous variants were detected in several transcription factors as PPARGC1B and TRIM63 genes, which could be associated to altered gene function. Taken together, these results provide information about candidate

  6. Genome Wide Association Analysis of a Founder Population Identified TAF3 as a Gene for MCHC in Humans

    PubMed Central

    Pistis, Giorgio; Okonkwo, Shawntel U.; Traglia, Michela; Sala, Cinzia; Shin, So-Youn; Masciullo, Corrado; Buetti, Iwan; Massacane, Roberto; Mangino, Massimo; Thein, Swee-Lay; Spector, Timothy D.; Ganesh, Santhi; Pirastu, Nicola; Gasparini, Paolo; Soranzo, Nicole; Camaschella, Clara; Hart, Daniel; Green, Michael R.; Toniolo, Daniela

    2013-01-01

    The red blood cell related traits are highly heritable but their genetics are poorly defined. Only 5–10% of the total observed variance is explained by the genetic loci found to date, suggesting that additional loci should be searched using approaches alternative to large meta analysis. GWAS (Genome Wide Association Study) for red blood cell traits in a founder population cohort from Northern Italy identified a new locus for mean corpuscular hemoglobin concentration (MCHC) in the TAF3 gene. The association was replicated in two cohorts (rs1887582, P = 4.25E–09). TAF3 encodes a transcription cofactor that participates in core promoter recognition complex, and is involved in zebrafish and mouse erythropoiesis. We show here that TAF3 is required for transcription of the SPTA1 gene, encoding alpha spectrin, one of the proteins that link the plasma membrane to the actin cytoskeleton. Mutations in SPTA1 are responsible for hereditary spherocytosis, a monogenic disorder of MCHC, as well as for the normal MCHC level. Based on our results, we propose that TAF3 is required for normal erythropoiesis in human and that it might have a role in controlling the ratio between hemoglobin (Hb) and cell volume and in the dynamics of RBC maturation in healthy individuals. Finally, TAF3 represents a potential candidate or a modifier gene for disorders of red cell membrane. PMID:23935956

  7. Genetic association and gene expression analysis identify FGFR1 as a new susceptibility gene for human obesity.

    PubMed

    Jiao, Hong; Arner, Peter; Dickson, Suzanne L; Vidal, Hubert; Mejhert, Niklas; Henegar, Corneliu; Taube, Magdalena; Hansson, Caroline; Hinney, Anke; Galan, Pilar; Simon, Chantal; Silveira, Angela; Benrick, Anna; Jansson, John-Olov; Bouloumié, Anne; Langin, Dominique; Laville, Martine; Debard, Cyrille; Axelsson, Tomas; Rydén, Mikael; Kere, Juha; Dahlman-Wright, Karin; Hamsten, Anders; Clement, Karine; Dahlman, Ingrid

    2011-06-01

    Previous studies suggest a role for fibroblast growth factor receptor 1 (FGFR1) in the regulation of energy balance. Our objective was to investigate whether FGFR1 is an obesity gene by genetic association and functional studies. The study was designed to genotype common FGFR1 single-nucleotide polymorphisms (SNP) in large cohorts, confirm significant results in additional cohorts, and measure FGFR1 expression in human adipose tissue and in rodent hypothalamus. General community and referral centers for specialized care was the setting for the study. We genotyped FGFR1 SNP in 2438 obese and 2115 lean adults and 985 obese and 532 population-based children. Results were confirmed in 928 obese and 2738 population-based adults and 487 obese and 441 lean children. Abdominal sc adipose tissue was investigated in 202 subjects. We also investigated diet-induced, obese fasting, and fed rats. We analyzed the association between FGFR1 SNP and obesity. In secondary analyses, we related adipose FGFR1 expression to genotype, obesity, and degree of fat cell differentiation and related hypothalamic FGFR1 to energy balance. FGFR1 rs7012413*T was nominally associated with obesity in all four cohorts; metaanalysis odds ratio = 1.17 (95% confidence interval = 1.10-1.25), and P = 1.8 × 10(-6), which was P = 7.0 × 10(-8) in the recessive model. rs7012413*T was associated with FGFR1 expression in adipose tissue (P < 0.0001). In this organ, but not in skeletal muscle, FGFR1 mRNA (P < 0.0001) and protein (P < 0.05) were increased in obesity. In rats, hypothalamic expression of FGFR1 declined after fasting (P < ]0.001) and increased after diet-induced obesity (P < 0.05). FGFR1 is a novel obesity gene that may promote obesity by influencing adipose tissue and the hypothalamic control of appetite.

  8. Genome-Wide Methylation Analysis Identifies Genes Specific to Breast Cancer Hormone Receptor Status and Risk of Recurrence

    PubMed Central

    Fackler, Mary Jo; Umbricht, Christopher; Williams, Danielle; Argani, Pedram; Cruz, Leigh-Ann; Merino, Vanessa F.; Teo, Wei Wen; Zhang, Zhe; Huang, Peng; Visvananthan, Kala; Marks, Jeffrey; Ethier, Stephen; Gray, Joe W; Wolff, Antonio C.; Cope, Leslie M.; Sukumar, Saraswati

    2011-01-01

    To better understand the biology of hormone receptor-positive and negative breast cancer and to identify methylated gene markers of disease progression, we performed a genome-wide methylation array analysis on 103 primary invasive breast cancers and 21 normal breast samples using the Illumina Infinium HumanMethylation27 array that queried 27,578 CpG loci. Estrogen and/or progesterone receptor-positive tumors displayed more hypermethylated loci than ER-negative tumors. However, the hypermethylated loci in ER-negative tumors were clustered closer to the transcriptional start site compared to ER-positive tumors. An ER-classifier set of CpG loci was identified, which independently partitioned primary tumors into ER-subtypes. Forty (32 novel, 8 previously known) CpG loci showed differential methylation specific to either ER-positive or ER-negative tumors. Each of the 40 ER-subtype-specific loci was validated in silico using an independent, publicly available methylome dataset from The Cancer Genome Atlas (TCGA). In addition, we identified 100 methylated CpG loci that were significantly associated with disease progression; the majority of these loci were informative particularly in ER-negative breast cancer. Overall, the set was highly enriched in homeobox containing genes. This pilot study demonstrates the robustness of the breast cancer methylome and illustrates its potential to stratify and reveal biological differences between ER-subtypes of breast cancer. Further, it defines candidate ER-specific markers and identifies potential markers predictive of outcome within ER subgroups. PMID:21825015

  9. Comparative transcriptome analysis of Gastrodia elata (Orchidaceae) in response to fungus symbiosis to identify gastrodin biosynthesis-related genes.

    PubMed

    Tsai, Chi-Chu; Wu, Keh-Ming; Chiang, Tzen-Yuh; Huang, Chun-Yen; Chou, Chang-Hung; Li, Shu-Ju; Chiang, Yu-Chung

    2016-03-09

    Gastrodia elata Blume (Orchidaceae) is an important Chinese medicine with several functional components. In the life cycle of G. elata, the orchid develops a symbiotic relationship with two compatible mycorrhizal fungi Mycena spp. and Armillaria mellea during seed germination to form vegetative propagation corm and vegetative growth to develop tubers, respectively. Gastrodin (p-hydroxymethylphenol-beta-D-glucoside) is the most important functional component in G. elata, and gastrodin significantly increases from vegetative propagation corms to tubers. To address the gene regulation mechanism in gastrodin biosynthesis in G. elata, a comparative analysis of de novo transcriptome sequencing among the vegetative propagation corms and tubers of G. elata and A. mellea was conducted using deep sequencing. Transcriptome comparison between the vegetative propagation corms and juvenile tubers of G. elata revealed 703 differentially expressed unigenes, of which 298 and 405 unigenes were, respectively up-regulated (fold-change ≥ 2, q-value < 0.05, the trimmed mean of M-values (TMM)-normalized fragments per kilobase of transcript per Million mapped reads (FPKM) > 10) and down-regulated (fold-change ≤ 0.5, q-value <0.05, TMM-normalized FPKM > 10) in juvenile tubers. After Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, 112 up-regulated unigenes with KEGG Ortholog identifiers (KOids) or enzyme commission (EC) numbers were assigned to 159 isogroups involved in seventy-eight different pathways, and 132 down-regulated unigenes with KOids or EC numbers were assigned to 168 isogroups, involved in eighty different pathways. The analysis of the isogroup genes from all pathways revealed that the two unigenes TRINITY_DN54282_c0_g1 (putative monooxygenases) and TRINITY_DN50323_c0_g1 (putative glycosyltransferases) might participate in hydroxylation and glucosylation in the gastrodin biosynthetic pathway. The gene

  10. Genetic Dissection of a Blood Pressure Quantitative Trait Locus on Rat Chromosome 1 and Gene Expression Analysis Identifies SPON1 as a Novel Candidate Hypertension Gene

    PubMed Central

    Clemitson, Jenny-Rebecca; Dixon, Richard J.; Haines, Steve; Bingham, Andrew J.; Patel, Bhakti R.; Hall, Laurence; Lo, Ming; Sassard, Jean; Charchar, Fadi J.; Samani, Nilesh J.

    2007-01-01

    A region with a major effect on blood pressure is located on rat chromosome 1. We have previously isolated this region in reciprocal congenic strains (WKY.SHR-Sa and SHR.WKY-Sa) derived from a cross of the spontaneously hypertensive rat (SHR) with the Wistar-Kyoto rat (WKY) and shown that there are two distinct BP quantitative trait loci (QTLs), BP1 and BP2, in this region. Sisa1, a congenic sub-strain from the SHR.WKY-Sa animals carrying an introgressed segment of 4.3Mb, contains BP1. Here, we report further dissection of BP1 by the creation of two new mutually exclusive congenic sub-strains (Sisa1a and Sisa1b) and interrogation of candidate genes by expression profiling and targeted transcript sequencing. Only one of the sub-strains (Sisa1a) continued to demonstrate a BP difference but with a reduced introgressed segment of 3Mb. Exonic sequencing of the twenty genes located in the Sisa1a region did not identify any major differences between SHR and WKY. However, microarray expression profiling of whole kidney samples and subsequent quantitative RT-PCR identified a single gene, Spon1 that exhibited significant differential expression between the WKY and SHR genotypes at both 6 and 24 weeks of age. Western blot analysis confirmed an increased level of the Spon1 gene product in SHR kidneys. Spon1 belongs to a family of genes with anti-angiogenic properties. These findings justify further investigation of this novel positional candidate gene in BP control in hypertensive rat models and humans. PMID:17332427

  11. Expression analysis of the genes identified in GWAS of the postmortem brain tissues from patients with schizophrenia.

    PubMed

    Umeda-Yano, Satomi; Hashimoto, Ryota; Yamamori, Hidenaga; Weickert, Cynthia Shannon; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Ito, Akira; Takeda, Masatoshi

    2014-05-07

    Many gene expression studies have examined postmortem brain tissues of patients with schizophrenia. However, only a few expression studies of the genes identified in genome-wide association study (GWAS) have been published to date. We measured the expression levels of the genes identified in GWAS (ZNF804A, OPCML, RPGRIP1L, NRGN, and TCF4) of the postmortem brain tissues of patients with schizophrenia and controls from two separate sample sets (i.e., the Australian Tissue Resource Center and Stanley Medical Research Institute). We also determined whether the single-nucleotide polymorphisms (SNPs) identified in the GWAS were related to the gene expression changes in the prefrontal cortex. No difference was observed between the patients with schizophrenia and controls from the Australian Tissue Resource Center samples in the mRNA levels of ZNF804A, OPCML, RPGRIP1L, NRGN, or TCF4. The lack of mRNA change for these five transcripts was also found in the brain samples from the Stanley Medical Research Institute. In addition, no relationship between the schizophrenia-associated SNPs identified in the GWAS and the corresponding gene expression was observed in either sample set. Our results suggest that major changes in the transcript levels of the five candidate genes identified in the GWAS may not occur in adult patients with schizophrenia. The lack of linkage between the risk gene polymorphisms and the expression levels of their major transcripts suggests that the control of pan mRNA levels may not be a prominent mechanism by which the genes identified in the GWAS contribute to the pathophysiology of schizophrenia. Further studies are needed to examine how the genes identified in the GWAS contribute to the pathophysiology of schizophrenia.

  12. De Novo Transcriptome Analysis of Warburgia ugandensis to Identify Genes Involved in Terpenoids and Unsaturated Fatty Acids Biosynthesis.

    PubMed

    Wang, Xin; Zhou, Chen; Yang, Xianpeng; Miao, Di; Zhang, Yansheng

    2015-01-01

    The bark of Warburgia ugandensis (Canellaceae family) has been used as a medicinal source for a long history in many African countries. The presence of diverse terpenoids and abundant polyunsaturated fatty acids (PUFAs) in this organ contributes to its broad range of pharmacological properties. Despite its medicinal and economic importance, the knowledge on the biosynthesis of terpenoid and unsaturated fatty acid in W. ugandensis bark remains largely unknown. Therefore, it is necessary to construct a genomic and/or transcriptomic database for the functional genomics study on W. ugandensis. The chemical profiles of terpenoids and fatty acids between the bark and leaves of W. ugandensis were compared by gas chromatography-mass spectrometry (GC-MS) analysis. Meanwhile, the transcriptome database derived from both tissues was created using Illumina sequencing technology. In total, about 17.1 G clean nucleotides were obtained, and de novo assembled into 72,591 unigenes, of which about 38.06% can be aligned to the NCBI non-redundant protein database. Many candidate genes in the biosynthetic pathways of terpenoids and unsaturated fatty acids were identified, including 14 unigenes for terpene synthases. Furthermore, 2,324 unigenes were discovered to be differentially expressed between both tissues; the functions of those differentially expressed genes (DEGs) were predicted by gene ontology enrichment and metabolic pathway enrichment analyses. In addition, the expression of 12 DEGs with putative roles in terpenoid and unsaturated fatty acid metabolic pathways was confirmed by qRT-PCRs, which was consistent with the data of the RNA-sequencing. In conclusion, we constructed a comprehensive transcriptome dataset derived from the bark and leaf of W. ugandensis, which forms the basis for functional genomics studies on this plant species. Particularly, the comparative analysis of the transcriptome data between the bark and leaf will provide critical clues to reveal the regulatory

  13. De Novo Transcriptome Analysis of Warburgia ugandensis to Identify Genes Involved in Terpenoids and Unsaturated Fatty Acids Biosynthesis

    PubMed Central

    Wang, Xin; Zhou, Chen; Yang, Xianpeng; Miao, Di; Zhang, Yansheng

    2015-01-01

    The bark of Warburgia ugandensis (Canellaceae family) has been used as a medicinal source for a long history in many African countries. The presence of diverse terpenoids and abundant polyunsaturated fatty acids (PUFAs) in this organ contributes to its broad range of pharmacological properties. Despite its medicinal and economic importance, the knowledge on the biosynthesis of terpenoid and unsaturated fatty acid in W. ugandensis bark remains largely unknown. Therefore, it is necessary to construct a genomic and/or transcriptomic database for the functional genomics study on W. ugandensis. The chemical profiles of terpenoids and fatty acids between the bark and leaves of W. ugandensis were compared by gas chromatography-mass spectrometry (GC-MS) analysis. Meanwhile, the transcriptome database derived from both tissues was created using Illumina sequencing technology. In total, about 17.1 G clean nucleotides were obtained, and de novo assembled into 72,591 unigenes, of which about 38.06% can be aligned to the NCBI non-redundant protein database. Many candidate genes in the biosynthetic pathways of terpenoids and unsaturated fatty acids were identified, including 14 unigenes for terpene synthases. Furthermore, 2,324 unigenes were discovered to be differentially expressed between both tissues; the functions of those differentially expressed genes (DEGs) were predicted by gene ontology enrichment and metabolic pathway enrichment analyses. In addition, the expression of 12 DEGs with putative roles in terpenoid and unsaturated fatty acid metabolic pathways was confirmed by qRT-PCRs, which was consistent with the data of the RNA-sequencing. In conclusion, we constructed a comprehensive transcriptome dataset derived from the bark and leaf of W. ugandensis, which forms the basis for functional genomics studies on this plant species. Particularly, the comparative analysis of the transcriptome data between the bark and leaf will provide critical clues to reveal the regulatory

  14. Mutation analysis in a German family identified a new cataract-causing allele in the CRYBB2 gene

    PubMed Central

    Pauli, Silke; Söker, Torben; Klopp, Norman; Illig, Thomas; Engel, Wolfgang

    2007-01-01

    Purpose The study demonstrates the functional candidate gene analysis in a cataract family of German descent. Methods We screened a German family, clinically documented to have congenital cataracts, for mutation in the candidate genes CRYG (A to D) and CRYBB2 through polymerase chain reaction analyses and sequencing. Results Congenital cataract was first observed in a daughter of healthy parents. Her two children (a boy and a girl) also suffer from congenital cataracts and have been operated within the first weeks of birth. Morphologically, the cataract is characterized as nuclear with an additional ring-shaped cortical opacity. Molecular analysis revealed no causative mutation in any of the CRYG genes. However, sequencing of the exons of the CRYBB2 gene identified a sequence variation in exon 5 (383 A>T) with a substitution of Asp to Val at position 128. All three affected family members revealed this change but it was not observed in any of the unaffected persons of the family. The putative mutation creates a restriction site for the enzyme TaiI. This mutation was checked for in controls of randomly selected DNA samples from ophthalmologically normal individuals from the population-based KORA S4 study (n=96) and no mutation was observed. Moreover, the Asp at position 128 is within a stretch of 12 amino acids, which are highly conserved throughout the animal kingdom. For the mutant protein, the isoelectric point is raised from pH 6.50 to 6.75. Additionally, the random coil structure of the protein between the amino acids 126-139 is interrupted by a short extended strand structure. In addition, this region becomes hydrophobic (from neutral to +1) and the electrostatic potential in the region surrounding the exchanged amino acid alters from a mainly negative potential to an enlarged positive potential. Conclusions The D128V mutation segregates only in affected family members and is not seen in representative controls. It represents the first mutation outside exon 6

  15. Transcriptome Analysis in Prenatal IGF1-Deficient Mice Identifies Molecular Pathways and Target Genes Involved in Distal Lung Differentiation

    PubMed Central

    Hernández-Porras, Isabel; López, Icíar Paula; De Las Rivas, Javier; Pichel, José García

    2013-01-01

    Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1−/− mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1−/− E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1−/− lungs. IGF1 addition to Igf1−/− embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung

  16. Genomic analysis of human lung fibroblasts exposed to vanadium pentoxide to identify candidate genes for occupational bronchitis

    PubMed Central

    Ingram, Jennifer L; Antao-Menezes, Aurita; Turpin, Elizabeth A; Wallace, Duncan G; Mangum, James B; Pluta, Linda J; Thomas, Russell S; Bonner, James C

    2007-01-01

    Background Exposure to vanadium pentoxide (V2O5) is a cause of occupational bronchitis. We evaluated gene expression profiles in cultured human lung fibroblasts exposed to V2O5 in vitro in order to identify candidate genes that could play a role in inflammation, fibrosis, and repair during the pathogenesis of V2O5-induced bronchitis. Methods Normal human lung fibroblasts were exposed to V2O5 in a time course experiment. Gene expression was measured at various time points over a 24 hr period using the Affymetrix Human Genome U133A 2.0 Array. Selected genes that were significantly changed in the microarray experiment were validated by RT-PCR. Results V2O5 altered more than 1,400 genes, of which ~300 were induced while >1,100 genes were suppressed. Gene ontology categories (GO) categories unique to induced genes included inflammatory response and immune response, while GO catogories unique to suppressed genes included ubiquitin cycle and cell cycle. A dozen genes were validated by RT-PCR, including growth factors (HBEGF, VEGF, CTGF), chemokines (IL8, CXCL9, CXCL10), oxidative stress response genes (SOD2, PIPOX, OXR1), and DNA-binding proteins (GAS1, STAT1). Conclusion Our study identified a variety of genes that could play pivotal roles in inflammation, fibrosis and repair during V2O5-induced bronchitis. The induction of genes that mediate inflammation and immune responses, as well as suppression of genes involved in growth arrest appear to be important to the lung fibrotic reaction to V2O5. PMID:17459161

  17. Systematic analysis of palatal transcriptome to identify cleft palate genes within TGFβ3-knockout mice alleles: RNA-Seq analysis of TGFβ3 Mice

    PubMed Central

    2013-01-01

    Background In humans, cleft palate (CP) accounts for one of the largest number of birth defects with a complex genetic and environmental etiology. TGFβ3 has been established as an important regulator of palatal fusion in mice and it has been shown that TGFβ3-null mice exhibit CP without any other major deformities. However, the genes that regulate cellular decisions and molecular mechanisms maintained by the TGFβ3 pathway throughout palatogenesis are predominantly unexplored. Our objective in this study was to analyze global transcriptome changes within the palate during different gestational ages within TGFβ3 knockout mice to identify TGFβ3-associated genes previously unknown to be associated with the development of cleft palate. We used deep sequencing technology, RNA-Seq, to analyze the transcriptome of TGFβ3 knockout mice at crucial stages of palatogenesis, including palatal growth (E14.5), adhesion (E15.5), and fusion (E16.5). Results The overall transcriptome analysis of TGFβ3 wildtype mice (C57BL/6) reveals that almost 6000 genes were upregulated during the transition from E14.5 to E15.5 and more than 2000 were downregulated from E15.5 to E16.5. Using bioinformatics tools and databases, we identified the most comprehensive list of CP genes (n = 322) in which mutations cause CP either in humans or mice, and analyzed their expression patterns. The expression motifs of CP genes between TGFβ3+/− and TGFβ3−/− were not significantly different from each other, and the expression of the majority of CP genes remained unchanged from E14.5 to E16.5. Using these patterns, we identified 8 unique genes within TGFβ3−/− mice (Chrng, Foxc2, H19, Kcnj13, Lhx8, Meox2, Shh, and Six3), which may function as the primary contributors to the development of cleft palate in TGFβ3−/− mice. When the significantly altered CP genes were overlaid with TGFβ signaling, all of these genes followed the Smad-dependent pathway. Conclusions Our study represents the

  18. Integrative analysis of DNA copy number and gene expression in metastatic oral squamous cell carcinoma identifies genes associated with poor survival

    PubMed Central

    2010-01-01

    Background Lymphotropism in oral squamous cell carcinoma (OSCC) is one of the most important prognostic factors of 5-year survival. In an effort to identify genes that may be responsible for the initiation of OSCC lymphotropism, we examined DNA copy number gains and losses and corresponding gene expression changes from tumor cells in metastatic lymph nodes of patients with OSCC. Results We performed integrative analysis of DNA copy number alterations (CNA) and corresponding mRNA expression from OSCC cells isolated from metastatic lymph nodes of 20 patients using Affymetrix 250 K Nsp I SNP and U133 Plus 2.0 arrays, respectively. Overall, genome CNA accounted for expression changes in 31% of the transcripts studied. Genome region 11q13.2-11q13.3 shows the highest correlation between DNA CNA and expression. With a false discovery rate < 1%, 530 transcripts (461 genes) demonstrated a correlation between CNA and expression. Among these, we found two subsets that were significantly associated with OSCC (n = 122) when compared to controls, and with survival (n = 27), as tested using an independent dataset with genome-wide expression profiles for 148 primary OSCC and 45 normal oral mucosa. We fit Cox models to calculate a principal component analysis-derived risk-score for these two gene sets ('122-' or '27-transcript PC'). The models combining the 122- or 27-transcript PC with stage outperformed the model using stage alone in terms of the Area Under the Curve (AUC = 0.82 or 0.86 vs. 0.72, with p = 0.044 or 0.011, respectively). Conclusions Genes exhibiting CNA-correlated expression may have biological impact on carcinogenesis and cancer progression in OSCC. Determination of copy number-associated transcripts associated with clinical outcomes in tumor cells with an aggressive phenotype (i.e., cells metastasized to the lymph nodes) can help prioritize candidate transcripts from high-throughput data for further studies. PMID:20537188

  19. Genetic Analysis of the Rhodopsin Gene Identifies a Mosaic Dominant Retinitis Pigmentosa Mutation in a Healthy Individual

    PubMed Central

    Beryozkin, Avigail; Levy, Gal; Blumenfeld, Anat; Meyer, Segev; Namburi, Prasanthi; Morad, Yair; Gradstein, Libe; Swaroop, Anand; Banin, Eyal; Sharon, Dror

    2016-01-01

    Purpose Retinitis pigmentosa (RP) is a group of clinically and genetically heterogeneous hereditary retinal diseases that result in blindness due to photoreceptor degeneration. Mutations in the rhodopsin (RHO) gene are the most common cause of autosomal dominant RP (adRP) and are responsible for 16% to 35% of adRP cases in the Western population. Our purpose was to investigate the contribution of RHO to adRP in the Israeli and Palestinian populations. Methods Thirty-two adRP families participated in the study. Mutation detection was performed by whole exome sequencing (WES) and Sanger sequencing of RHO exons. Fluorescence PCR reactions of serially diluted samples were used to predict the percentage of mosaic cells in blood samples. Results Eight RHO disease-causing mutations were identified in nine families, with only one novel mutation, c.548-638dup91bp, identified in a family where WES failed to detect any causal variant. Segregation analysis revealed that the origin of the mutation is in a mosaic healthy individual carrying the mutation in approximately 13% of blood cells. Conclusions This is the first report of the mutation spectrum of a known adRP gene in the Israeli and Palestinian populations, leading to the identification of seven previously reported mutations and one novel mutation. Our study shows that RHO mutations are a major cause of adRP in this cohort and are responsible for 28% of adRP families. The novel mutation exhibits a unique phenomenon in which an unaffected individual is mosaic for an adRP-causing mutation. PMID:26962691

  20. Genome Analysis Identified Novel Candidate Genes for Ascochyta Blight Resistance in Chickpea Using Whole Genome Re-sequencing Data

    PubMed Central

    Li, Yongle; Ruperao, Pradeep; Batley, Jacqueline; Edwards, David; Davidson, Jenny; Hobson, Kristy; Sutton, Tim

    2017-01-01

    Ascochyta blight (AB) is a fungal disease that can significantly reduce chickpea production in Australia and other regions of the world. In this study, 69 chickpea genotypes were sequenced using whole genome re-sequencing (WGRS) methods. They included 48 Australian varieties differing in their resistance ranking to AB, 16 advanced breeding lines from the Australian chickpea breeding program, four landraces, and one accession representing the wild chickpea species Cicer reticulatum. More than 800,000 single nucleotide polymorphisms (SNPs) were identified. Population structure analysis revealed relatively narrow genetic diversity amongst recently released Australian varieties and two groups of varieties separated by the level of AB resistance. Several regions of the chickpea genome were under positive selection based on Tajima’s D test. Both Fst genome- scan and genome-wide association studies (GWAS) identified a 100 kb region (AB4.1) on chromosome 4 that was significantly associated with AB resistance. The AB4.1 region co-located to a large QTL interval of 7 Mb∼30 Mb identified previously in three different mapping populations which were genotyped at relatively low density with SSR or SNP markers. The AB4.1 region was validated by GWAS in an additional collection of 132 advanced breeding lines from the Australian chickpea breeding program, genotyped with approximately 144,000 SNPs. The reduced level of nucleotide diversity and long extent of linkage disequilibrium also suggested the AB4.1 region may have gone through selective sweeps probably caused by selection of the AB resistance trait in breeding. In total, 12 predicted genes were located in the AB4.1 QTL region, including those annotated as: NBS-LRR receptor-like kinase, wall-associated kinase, zinc finger protein, and serine/threonine protein kinases. One significant SNP located in the conserved catalytic domain of a NBS-LRR receptor-like kinase led to amino acid substitution. Transcriptional analysis

  1. A Protocol for Using Gene Set Enrichment Analysis to Identify the Appropriate Animal Model for Translational Research.

    PubMed

    Weidner, Christopher; Steinfath, Matthias; Wistorf, Elisa; Oelgeschläger, Michael; Schneider, Marlon R; Schönfelder, Gilbert

    2017-08-16

    Recent studies that compared transcriptomic datasets of human diseases with datasets from mouse models using traditional gene-to-gene comparison techniques resulted in contradictory conclusions regarding the relevance of animal models for translational research. A major reason for the discrepancies between different gene expression analyses is the arbitrary filtering of differentially expressed genes. Furthermore, the comparison of single genes between different species and platforms often is limited by technical variance, leading to misinterpretation of the con/discordance between data from human and animal models. Thus, standardized approaches for systematic data analysis are needed. To overcome subjective gene filtering and ineffective gene-to-gene comparisons, we recently demonstrated that gene set enrichment analysis (GSEA) has the potential to avoid these problems. Therefore, we developed a standardized protocol for the use of GSEA to distinguish between appropriate and inappropriate animal models for translational research. This protocol is not suitable to predict how to design new model systems a-priori, as it requires existing experimental omics data. However, the protocol describes how to interpret existing data in a standardized manner in order to select the most suitable animal model, thus avoiding unnecessary animal experiments and misleading translational studies.

  2. Gene Co-Expression Network Analysis for Identifying Modules and Functionally Enriched Pathways in Type 1 Diabetes

    PubMed Central

    Riquelme Medina, Ignacio; Lubovac-Pilav, Zelmina

    2016-01-01

    Type 1 diabetes (T1D) is a complex disease, caused by the autoimmune destruction of the insulin producing pancreatic beta cells, resulting in the body’s inability to produce insulin. While great efforts have been put into understanding the genetic and environmental factors that contribute to the etiology of the disease, the exact molecular mechanisms are still largely unknown. T1D is a heterogeneous disease, and previous research in this field is mainly focused on the analysis of single genes, or using traditional gene expression profiling, which generally does not reveal the functional context of a gene associated with a complex disorder. However, network-based analysis does take into account the interactions between the diabetes specific genes or proteins and contributes to new knowledge about disease modules, which in turn can be used for identification of potential new biomarkers for T1D. In this study, we analyzed public microarray data of T1D patients and healthy controls by applying a systems biology approach that combines network-based Weighted Gene Co-Expression Network Analysis (WGCNA) with functional enrichment analysis. Novel co-expression gene network modules associated with T1D were elucidated, which in turn provided a basis for the identification of potential pathways and biomarker genes that may be involved in development of T1D. PMID:27257970

  3. Novel genes differentially expressed between posterior and median silk gland identified by SAGE-aided transcriptome analysis.

    PubMed

    Royer, Corinne; Briolay, Jérôme; Garel, Annie; Brouilly, Patrick; Sasanuma, Shun-ichi; Sasanuma, Motoe; Shimomura, Michihiko; Keime, Céline; Gandrillon, Olivier; Huang, Yongping; Chavancy, Gérard; Mita, Kazuei; Couble, Pierre

    2011-02-01

    Serial analysis of gene expression (SAGE) profiles, from posterior and median cells of the silk gland of Bombyx mori, were analyzed and compared, so as to identify their respective distinguishing functions. The annotation of the SAGE libraries was performed with a B. mori reference tag collection, which was extracted from a novel set of Bombyx ESTs, sequenced from the 3' side. Most of the tags appeared at similar relative concentration within the two libraries, and corresponded with region-specific and highly abundant silk proteins. Strikingly, in addition to tags from silk protein mRNAs, 19 abundant tags were found (≥ 0.1%), in the median cell library, which were absent in the posterior cell tag collection. With the exception of tags from SP1 mRNA, no PSG specific tags were found in this subset class. The analysis of some of the MSG-specific transcripts, suggested that middle silk gland cells have diversified functions, in addition to their well characterized role in silk sericins synthesis and secretion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes

    PubMed Central

    Cole, Steven W.; Hawkley, Louise C.; Arevalo, Jesusa M. G.; Cacioppo, John T.

    2011-01-01

    To clarify the biological rationale for social regulation of gene expression, this study sought to identify the specific immune cell types that are transcriptionally sensitive to subjective social isolation (loneliness). Using reference distributions for the expression of each human gene in each major leukocyte subtype, we mapped the cellular origin of transcripts found to be differentially expressed in the circulating immune cells from chronically lonely individuals. Loneliness-associated genes derived primarily from plasmacytoid dendritic cells, monocytes, and, to a lesser extent, B lymphocytes. Those dynamics reflected per-cell changes in the expression of inducible genes and related more strongly to the subjective experience of loneliness than to objective social network size. Evolutionarily ancient myeloid antigen-presenting cells appear to have evolved a transcriptional sensitivity to socioenvironmental conditions that may allow them to shift basal gene expression profiles to counter the changing microbial threats associated with hostile vs. affine social conditions. PMID:21300872

  5. Transcriptome analysis of the Brassica napus-Leptosphaeria maculans pathosystem identifies receptor, signaling and structural genes underlying plant resistance.

    PubMed

    Becker, Michael G; Zhang, Xuehua; Walker, Philip L; Wan, Joey C; Millar, Jenna L; Khan, Deirdre; Granger, Matthew J; Cavers, Jacob D; Chan, Ainsley C; Fernando, Dilantha W G; Belmonte, Mark F

    2017-05-01

    The hemibiotrophic fungal pathogen Leptosphaeria maculans is the causal agent of blackleg disease in Brassica napus (canola, oilseed rape) and causes significant loss of yield worldwide. While genetic resistance has been used to mitigate the disease by means of traditional breeding strategies, there is little knowledge about the genes that contribute to blackleg resistance. RNA sequencing and a streamlined bioinformatics pipeline identified unique genes and plant defense pathways specific to plant resistance in the B. napus-L. maculans LepR1-AvrLepR1 interaction over time. We complemented our temporal analyses by monitoring gene activity directly at the infection site using laser microdissection coupled to quantitative PCR. Finally, we characterized genes involved in plant resistance to blackleg in the Arabidopsis-L. maculans model pathosystem. Data reveal an accelerated activation of the plant transcriptome in resistant host cotyledons associated with transcripts coding for extracellular receptors and phytohormone signaling molecules. Functional characterization provides direct support for transcriptome data and positively identifies resistance regulators in the Brassicaceae. Spatial gradients of gene activity were identified in response to L. maculans proximal to the site of infection. This dataset provides unprecedented spatial and temporal resolution of the genes required for blackleg resistance and serves as a valuable resource for those interested in host-pathogen interactions. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. Analysis of the effects of rare variants on splicing identifies alterations in GABAA receptor genes in autism spectrum disorder individuals

    PubMed Central

    Piton, Amélie; Jouan, Loubna; Rochefort, Daniel; Dobrzeniecka, Sylvia; Lachapelle, Karine; Dion, Patrick A; Gauthier, Julie; Rouleau, Guy A

    2013-01-01

    A large-scale sequencing screen of X-linked synaptic genes in individuals with autism spectrum disorder (ASD) or schizophrenia (SCZ), two common neurodevelopmental disorders, identified many variants most of which have no easily predictable effect on gene function. In this report, we evaluated the impact of these rare missense and silent variants on gene splicing. For this purpose, we used complementary in silico analyses, in vitro minigene-based assays and RNA prepared from lymphoblastoid cells derived from patients with these mutations. Our goal was to identify the variants which might either create or disrupt an acceptor splice site, a donor splice site or an exonic splicing enhancer, thus leading to aberrant splicing that could be involved in the pathogenesis of ASD or SCZ. We identified truncating mutations in distinct X-linked gamma-aminobutyric acid A (GABAA) receptor subunit-encoding genes, GABRQ and GABRA3, in two different families. Furthermore, missense and silent variants in nuclear RNA export factor 5 and histone deacetylase 6 were shown to partially disrupt the protein. While genes from the GABAergic pathway have previously been thought to be involved in the pathophysiology of ASD, this is the first report of ASD patients with truncating mutations in GABA receptors genes. PMID:23169495

  7. Quantitative Trait Locus and Genetical Genomics Analysis Identifies Putatively Causal Genes for Fecundity and Brooding in the Chicken.

    PubMed

    Johnsson, Martin; Jonsson, Kenneth B; Andersson, Leif; Jensen, Per; Wright, Dominic

    2015-12-04

    Life history traits such as fecundity are important to evolution because they make up components of lifetime fitness. Due to their polygenic architectures, such traits are difficult to investigate with genetic mapping. Therefore, little is known about their molecular basis. One possible way toward finding the underlying genes is to map intermediary molecular phenotypes, such as gene expression traits. We set out to map candidate quantitative trait genes for egg fecundity in the chicken by combining quantitative trait locus mapping in an advanced intercross of wild by domestic chickens with expression quantitative trait locus mapping in the same birds. We measured individual egg fecundity in 232 intercross chickens in two consecutive trials, the second one aimed at measuring brooding. We found 12 loci for different aspects of egg fecundity. We then combined the genomic confidence intervals of these loci with expression quantitative trait loci from bone and hypothalamus in the same intercross. Overlaps between egg loci and expression loci, and trait-gene expression correlations identify 29 candidates from bone and five from hypothalamus. The candidate quantitative trait genes include fibroblast growth factor 1, and mitochondrial ribosomal proteins L42 and L32. In summary, we found putative quantitative trait genes for egg traits in the chicken that may have been affected by regulatory variants under chicken domestication. These represent, to the best of our knowledge, some of the first candidate genes identified by genome-wide mapping for life history traits in an avian species.

  8. Quantitative Trait Locus and Genetical Genomics Analysis Identifies Putatively Causal Genes for Fecundity and Brooding in the Chicken

    PubMed Central

    Johnsson, Martin; Jonsson, Kenneth B.; Andersson, Leif; Jensen, Per; Wright, Dominic

    2015-01-01

    Life history traits such as fecundity are important to evolution because they make up components of lifetime fitness. Due to their polygenic architectures, such traits are difficult to investigate with genetic mapping. Therefore, little is known about their molecular basis. One possible way toward finding the underlying genes is to map intermediary molecular phenotypes, such as gene expression traits. We set out to map candidate quantitative trait genes for egg fecundity in the chicken by combining quantitative trait locus mapping in an advanced intercross of wild by domestic chickens with expression quantitative trait locus mapping in the same birds. We measured individual egg fecundity in 232 intercross chickens in two consecutive trials, the second one aimed at measuring brooding. We found 12 loci for different aspects of egg fecundity. We then combined the genomic confidence intervals of these loci with expression quantitative trait loci from bone and hypothalamus in the same intercross. Overlaps between egg loci and expression loci, and trait–gene expression correlations identify 29 candidates from bone and five from hypothalamus. The candidate quantitative trait genes include fibroblast growth factor 1, and mitochondrial ribosomal proteins L42 and L32. In summary, we found putative quantitative trait genes for egg traits in the chicken that may have been affected by regulatory variants under chicken domestication. These represent, to the best of our knowledge, some of the first candidate genes identified by genome-wide mapping for life history traits in an avian species. PMID:26637433

  9. Meta-analysis of clinical data using human meiotic genes identifies a novel cohort of highly restricted cancer-specific marker genes.

    PubMed

    Feichtinger, Julia; Aldeailej, Ibrahim; Anderson, Rebecca; Almutairi, Mikhlid; Almatrafi, Ahmed; Alsiwiehri, Naif; Griffiths, Keith; Stuart, Nicholas; Wakeman, Jane A; Larcombe, Lee; McFarlane, Ramsay J

    2012-08-01

    Identifying cancer-specific biomarkers represents an ongoing challenge to the development of novel cancer diagnostic, prognostic and therapeutic strategies. Cancer/testis (CT) genes are an important gene family with expression tightly restricted to the testis in normal individuals but which can also be activated in cancers. Here we develop a pipeline to identify new CT genes. We analysed and validated expression profiles of human meiotic genes in normal and cancerous tissue followed by meta-analyses of clinical data sets from a range of tumour types resulting in the identification of a large cohort of highly specific cancer biomarker genes, including the recombination hot spot activator PRDM9 and the meiotic cohesin genes SMC1beta and RAD21L. These genes not only provide excellent cancer biomarkers for diagnostics and prognostics, but may serve as oncogenes and have excellent drug targeting potential.

  10. Chemical and Synthetic Genetic Array Analysis Identifies Genes that Suppress Xylose Utilization and Fermentation in Saccharomyces cerevisiae

    PubMed Central

    Usher, Jane; Balderas-Hernandez, Victor; Quon, Peter; Gold, Nicholas D.; Martin, Vincent J. J.; Mahadevan, Radhakrishnan; Baetz, Kristin

    2011-01-01

    Though highly efficient at fermenting hexose sugars, Saccharomyces cerevisiae has limited ability to ferment five-carbon sugars. As a significant portion of sugars found in cellulosic biomass is the five-carbon sugar xylose, S. cerevisiae must be engineered to metabolize pentose sugars, commonly by the addition of exogenous genes from xylose fermenting fungi. However, these recombinant strains grow poorly on xylose and require further improvement through rational engineering or evolutionary adaptation. To identify unknown genes that contribute to improved xylose fermentation in these recombinant S. cerevisiae, we performed genome-wide synthetic interaction screens to identify deletion mutants that impact xylose utilization of strains expressing the xylose isomerase gene XYLA from Piromyces sp. E2 alone or with an additional copy of the endogenous xylulokinase gene XKS1. We also screened the deletion mutant array to identify mutants whose growth is affected by xylose. Our genetic network reveals that more than 80 nonessential genes from a diverse range of cellular processes impact xylose utilization. Surprisingly, we identified four genes, ALP1, ISC1, RPL20B, and BUD21, that when individually deleted improved xylose utilization of both S. cerevisiae S288C and CEN.PK strains. We further characterized BUD21 deletion mutant cells in batch fermentations and found that they produce ethanol even the absence of exogenous XYLA. We have demonstrated that the ability of laboratory strains of S. cerevisiae to utilize xylose as a sole carbon source is suppressed, which implies that S. cerevisiae may not require the addition of exogenous genes for efficient xylose fermentation. PMID:22384336

  11. Gene network analysis identifies rumen epithelial cell proliferation, differentiation and metabolic pathways perturbed by diet and correlated with methane production.

    PubMed

    Xiang, Ruidong; McNally, Jody; Rowe, Suzanne; Jonker, Arjan; Pinares-Patino, Cesar S; Oddy, V Hutton; Vercoe, Phil E; McEwan, John C; Dalrymple, Brian P

    2016-12-14

    Ruminants obtain nutrients from microbial fermentation of plant material, primarily in their rumen, a multilayered forestomach. How the different layers of the rumen wall respond to diet and influence microbial fermentation, and how these process are regulated, is not well understood. Gene expression correlation networks were constructed from full thickness rumen wall transcriptomes of 24 sheep fed two different amounts and qualities of a forage and measured for methane production. The network contained two major negatively correlated gene sub-networks predominantly representing the epithelial and muscle layers of the rumen wall. Within the epithelium sub-network gene clusters representing lipid/oxo-acid metabolism, general metabolism and proliferating and differentiating cells were identified. The expression of cell cycle and metabolic genes was positively correlated with dry matter intake, ruminal short chain fatty acid concentrations and methane production. A weak correlation between lipid/oxo-acid metabolism genes and methane yield was observed. Feed consumption level explained the majority of gene expression variation, particularly for the cell cycle genes. Many known stratified epithelium transcription factors had significantly enriched targets in the epithelial gene clusters. The expression patterns of the transcription factors and their targets in proliferating and differentiating skin is mirrored in the rumen, suggesting conservation of regulatory systems.

  12. Gene network analysis identifies rumen epithelial cell proliferation, differentiation and metabolic pathways perturbed by diet and correlated with methane production

    PubMed Central

    Xiang, Ruidong; McNally, Jody; Rowe, Suzanne; Jonker, Arjan; Pinares-Patino, Cesar S.; Oddy, V. Hutton; Vercoe, Phil E.; McEwan, John C.; Dalrymple, Brian P.

    2016-01-01

    Ruminants obtain nutrients from microbial fermentation of plant material, primarily in their rumen, a multilayered forestomach. How the different layers of the rumen wall respond to diet and influence microbial fermentation, and how these process are regulated, is not well understood. Gene expression correlation networks were constructed from full thickness rumen wall transcriptomes of 24 sheep fed two different amounts and qualities of a forage and measured for methane production. The network contained two major negatively correlated gene sub-networks predominantly representing the epithelial and muscle layers of the rumen wall. Within the epithelium sub-network gene clusters representing lipid/oxo-acid metabolism, general metabolism and proliferating and differentiating cells were identified. The expression of cell cycle and metabolic genes was positively correlated with dry matter intake, ruminal short chain fatty acid concentrations and methane production. A weak correlation between lipid/oxo-acid metabolism genes and methane yield was observed. Feed consumption level explained the majority of gene expression variation, particularly for the cell cycle genes. Many known stratified epithelium transcription factors had significantly enriched targets in the epithelial gene clusters. The expression patterns of the transcription factors and their targets in proliferating and differentiating skin is mirrored in the rumen, suggesting conservation of regulatory systems. PMID:27966600

  13. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    EPA Science Inventory

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo a...

  14. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    EPA Science Inventory

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo a...

  15. Gene expression analysis in pregnant women and their infants identifies unique fetal biomarkers that circulate in maternal blood

    USDA-ARS?s Scientific Manuscript database

    The discovery of fetal mRNA transcripts in the maternal circulation holds great promise for noninvasive prenatal diagnosis. To identify potential fetal biomarkers, we studied whole blood and plasma gene transcripts that were common to 9 term pregnant women and their newborns but absent or reduced in...

  16. Bioinformatics analysis and characteristics of VP23 encoded by the newly identified UL18 gene of duck enteritis virus

    NASA Astrophysics Data System (ADS)

    Chen, Xiwen; Cheng, Anchun; Wang, Mingshu; Xiang, Jun

    2011-10-01

    In this study, the predicted information about structures and functions of VP23 encoded by the newly identified DEV UL18 gene through bioinformatics softwares and tools. The DEV UL18 was predicted to encode a polypeptide with 322 amino acids, termed VP23, with a putative molecular mass of 35.250 kDa and a predicted isoelectric point (PI) of 8.37, no signal peptide and transmembrane domain in the polypeptide. The prediction of subcellular localization showed that the DEV-VP23 located at endoplasmic reticulum with 33.3%, mitochondrial with 22.2%, extracellular, including cell wall with 11.1%, vesicles of secretory system with 11.1%, Golgi with 11.1%, and plasma membrane with 11.1%. The acid sequence of analysis showed that the potential antigenic epitopes are situated in 45-47, 53-60, 102-105, 173-180, 185-189, 260-265, 267-271, and 292-299 amino acids. All the consequences inevitably provide some insights for further research about the DEV-VP23 and also provide a fundament for further study on the the new type clinical diagnosis of DEV and can be used for the development of new DEV vaccine.

  17. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error.

    PubMed

    Fan, Qiao; Verhoeven, Virginie J M; Wojciechowski, Robert; Barathi, Veluchamy A; Hysi, Pirro G; Guggenheim, Jeremy A; Höhn, René; Vitart, Veronique; Khawaja, Anthony P; Yamashiro, Kenji; Hosseini, S Mohsen; Lehtimäki, Terho; Lu, Yi; Haller, Toomas; Xie, Jing; Delcourt, Cécile; Pirastu, Mario; Wedenoja, Juho; Gharahkhani, Puya; Venturini, Cristina; Miyake, Masahiro; Hewitt, Alex W; Guo, Xiaobo; Mazur, Johanna; Huffman, Jenifer E; Williams, Katie M; Polasek, Ozren; Campbell, Harry; Rudan, Igor; Vatavuk, Zoran; Wilson, James F; Joshi, Peter K; McMahon, George; St Pourcain, Beate; Evans, David M; Simpson, Claire L; Schwantes-An, Tae-Hwi; Igo, Robert P; Mirshahi, Alireza; Cougnard-Gregoire, Audrey; Bellenguez, Céline; Blettner, Maria; Raitakari, Olli; Kähönen, Mika; Seppala, Ilkka; Zeller, Tanja; Meitinger, Thomas; Ried, Janina S; Gieger, Christian; Portas, Laura; van Leeuwen, Elisabeth M; Amin, Najaf; Uitterlinden, André G; Rivadeneira, Fernando; Hofman, Albert; Vingerling, Johannes R; Wang, Ya Xing; Wang, Xu; Tai-Hui Boh, Eileen; Ikram, M Kamran; Sabanayagam, Charumathi; Gupta, Preeti; Tan, Vincent; Zhou, Lei; Ho, Candice E H; Lim, Wan'e; Beuerman, Roger W; Siantar, Rosalynn; Tai, E-Shyong; Vithana, Eranga; Mihailov, Evelin; Khor, Chiea-Chuen; Hayward, Caroline; Luben, Robert N; Foster, Paul J; Klein, Barbara E K; Klein, Ronald; Wong, Hoi-Suen; Mitchell, Paul; Metspalu, Andres; Aung, Tin; Young, Terri L; He, Mingguang; Pärssinen, Olavi; van Duijn, Cornelia M; Jin Wang, Jie; Williams, Cathy; Jonas, Jost B; Teo, Yik-Ying; Mackey, David A; Oexle, Konrad; Yoshimura, Nagahisa; Paterson, Andrew D; Pfeiffer, Norbert; Wong, Tien-Yin; Baird, Paul N; Stambolian, Dwight; Wilson, Joan E Bailey; Cheng, Ching-Yu; Hammond, Christopher J; Klaver, Caroline C W; Saw, Seang-Mei; Rahi, Jugnoo S; Korobelnik, Jean-François; Kemp, John P; Timpson, Nicholas J; Smith, George Davey; Craig, Jamie E; Burdon, Kathryn P; Fogarty, Rhys D; Iyengar, Sudha K; Chew, Emily; Janmahasatian, Sarayut; Martin, Nicholas G; MacGregor, Stuart; Xu, Liang; Schache, Maria; Nangia, Vinay; Panda-Jonas, Songhomitra; Wright, Alan F; Fondran, Jeremy R; Lass, Jonathan H; Feng, Sheng; Zhao, Jing Hua; Khaw, Kay-Tee; Wareham, Nick J; Rantanen, Taina; Kaprio, Jaakko; Pang, Chi Pui; Chen, Li Jia; Tam, Pancy O; Jhanji, Vishal; Young, Alvin L; Döring, Angela; Raffel, Leslie J; Cotch, Mary-Frances; Li, Xiaohui; Yip, Shea Ping; Yap, Maurice K H; Biino, Ginevra; Vaccargiu, Simona; Fossarello, Maurizio; Fleck, Brian; Yazar, Seyhan; Tideman, Jan Willem L; Tedja, Milly; Deangelis, Margaret M; Morrison, Margaux; Farrer, Lindsay; Zhou, Xiangtian; Chen, Wei; Mizuki, Nobuhisa; Meguro, Akira; Mäkelä, Kari Matti

    2016-03-29

    Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10(-5)), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia.

  18. Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits

    PubMed Central

    Bakshi, Andrew; Zhu, Zhihong; Vinkhuyzen, Anna A. E.; Hill, W. David; McRae, Allan F.; Visscher, Peter M.; Yang, Jian

    2016-01-01

    We propose a method (fastBAT) that performs a fast set-based association analysis for human complex traits using summary-level data from genome-wide association studies (GWAS) and linkage disequilibrium (LD) data from a reference sample with individual-level genotypes. We demonstrate using simulations and analyses of real datasets that fastBAT is more accurate and orders of magnitude faster than the prevailing methods. Using fastBAT, we analyze summary data from the latest meta-analyses of GWAS on 150,064–339,224 individuals for height, body mass index (BMI), and schizophrenia. We identify 6 novel gene loci for height, 2 for BMI, and 3 for schizophrenia at PfastBAT < 5 × 10−8. The gain of power is due to multiple small independent association signals at these loci (e.g. the THRB and FOXP1 loci for schizophrenia). The method is general and can be applied to GWAS data for all complex traits and diseases in humans and to such data in other species. PMID:27604177

  19. Comprehensive meta-analysis, co-expression, and miRNA nested network analysis identifies gene candidates in citrus against Huanglongbing disease.

    PubMed

    Rawat, Nidhi; Kiran, Sandhya P; Du, Dongliang; Gmitter, Fred G; Deng, Zhanao

    2015-07-28

    Huanglongbing (HLB), the most devastating disease of citrus, is associated with infection by Candidatus Liberibacter asiaticus (CaLas) and is vectored by the Asian citrus psyllid (ACP). Recently, the molecular basis of citrus-HLB interactions has been examined using transcriptome analyses, and these analyses have identified many probe sets and pathways modulated by CaLas infection among different citrus cultivars. However, lack of consistency among reported findings indicates that an integrative approach is needed. This study was designed to identify the candidate probe sets in citrus-HLB interactions using meta-analysis and gene co-expression network modelling. Twenty-two publically available transcriptome studies on citrus-HLB interactions, comprising 18 susceptible (S) datasets and four resistant (R) datasets, were investigated using Limma and RankProd methods of meta-analysis. A combined list of 7,412 differentially expressed probe sets was generated using a Teradata in-house Structured Query Language (SQL) script. We identified the 65 most common probe sets modulated in HLB disease among different tissues from the S and R datasets. Gene ontology analysis of these probe sets suggested that carbohydrate metabolism, nutrient transport, and biotic stress were the core pathways that were modulated in citrus by CaLas infection and HLB development. We also identified R-specific probe sets, which encoded leucine-rich repeat proteins, chitinase, constitutive disease resistance (CDR), miraculins, and lectins. Weighted gene co-expression network analysis (WGCNA) was conducted on 3,499 probe sets, and 21 modules with major hub probe sets were identified. Further, a miRNA nested network was created to examine gene regulation of the 3,499 target probe sets. Results suggest that csi-miR167 and csi-miR396 could affect ion transporters and defence response pathways, respectively. Most of the potential candidate hub probe sets were co-expressed with gibberellin pathway (GA

  20. Genomics and relative expression analysis identifies key genes associated with high female to male flower ratio in Jatropha curcas L.

    PubMed

    Gangwar, Manali; Sood, Hemant; Chauhan, Rajinder Singh

    2016-04-01

    Jatropha curcas, has been projected as a major source of biodiesel due to high seed oil content (42 %). A major roadblock for commercialization of Jatropha-based biodiesel is low seed yield per inflorescence, which is affected by low female to male flower ratio (1:25-30). Molecular dissection of female flower development by analyzing genes involved in phase transitions and floral organ development is, therefore, crucial for increasing seed yield. Expression analysis of 42 genes implicated in floral organ development and sex determination was done at six floral developmental stages of a J. curcas genotype (IC561235) with inherently higher female to male flower ratio (1:8-10). Relative expression analysis of these genes was done on low ratio genotype. Genes TFL1, SUP, AP1, CRY2, CUC2, CKX1, TAA1 and PIN1 were associated with reproductive phase transition. Further, genes CUC2, TAA1, CKX1 and PIN1 were associated with female flowering while SUP and CRY2 in female flower transition. Relative expression of these genes with respect to low female flower ratio genotype showed up to ~7 folds increase in transcript abundance of SUP, TAA1, CRY2 and CKX1 genes in intermediate buds but not a significant increase (~1.25 folds) in female flowers, thereby suggesting that these genes possibly play a significant role in increased transition towards female flowering by promoting abortion of male flower primordia. The outcome of study has implications in feedstock improvement of J. curcas through functional validation and eventual utilization of key genes associated with female flowering.

  1. Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster.

    PubMed

    Borlee, Grace I; Plumley, Brooke A; Martin, Kevin H; Somprasong, Nawarat; Mangalea, Mihnea R; Islam, M Nurul; Burtnick, Mary N; Brett, Paul J; Steinmetz, Ivo; AuCoin, David P; Belisle, John T; Crick, Dean C; Schweizer, Herbert P; Borlee, Bradley R

    2017-06-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is an important public health threat due to limited therapeutic options for treatment. Efforts to improve therapeutics for B. pseudomallei infections are dependent on the need to understand the role of B. pseudomallei biofilm formation and its contribution to antibiotic tolerance and persistence as these are bacterial traits that prevent effective therapy. In order to reveal the genes that regulate and/or contribute to B. pseudomallei 1026b biofilm formation, we screened a sequence defined two-allele transposon library and identified 118 transposon insertion mutants that were deficient in biofilm formation. These mutants include transposon insertions in genes predicted to encode flagella, fimbriae, transcriptional regulators, polysaccharides, and hypothetical proteins. Polysaccharides are key constituents of biofilms and B. pseudomallei has the capacity to produce a diversity of polysaccharides, thus there is a critical need to link these biosynthetic genes with the polysaccharides they produce to better understand their biological role during infection. An allelic exchange deletion mutant of the entire B. pseudomallei biofilm-associated exopolysaccharide biosynthetic cluster was decreased in biofilm formation and produced a smooth colony morphology suggestive of the loss of exopolysaccharide production. Conversely, deletion of the previously defined capsule I polysaccharide biosynthesis gene cluster increased biofilm formation. Bioinformatics analyses combined with immunoblot analysis and glycosyl composition studies of the partially purified exopolysaccharide indicate that the biofilm-associated exopolysaccharide is neither cepacian nor the previously described acidic exopolysaccharide. The biofilm-associated exopolysaccharide described here is also specific to the B. pseudomallei complex of bacteria. Since this novel exopolysaccharide biosynthesis cluster is retained in B. mallei, it is predicted to

  2. RNAseq expression analysis of resistant and susceptible mice after influenza A virus infection identifies novel genes associated with virus replication and important for host resistance to infection.

    PubMed

    Wilk, Esther; Pandey, Ashutosh K; Leist, Sarah Rebecca; Hatesuer, Bastian; Preusse, Matthias; Pommerenke, Claudia; Wang, Junxi; Schughart, Klaus

    2015-09-02

    The host response to influenza A infections is strongly influenced by host genetic factors. Animal models of genetically diverse mouse strains are well suited to identify host genes involved in severe pathology, viral replication and immune responses. Here, we have utilized a dual RNAseq approach that allowed us to investigate both viral and host gene expression in the same individual mouse after H1N1 infection. We performed a detailed expression analysis to identify (i) correlations between changes in expression of host and virus genes, (ii) host genes involved in viral replication, and (iii) genes showing differential expression between two mouse strains that strongly differ in resistance to influenza infections. These genes may be key players involved in regulating the differences in pathogenesis and host defense mechanisms after influenza A infections. Expression levels of influenza segments correlated well with the viral load and may thus be used as surrogates for conventional viral load measurements. Furthermore, we investigated the functional role of two genes, Reg3g and Irf7, in knock-out mice and found that deletion of the Irf7 gene renders the host highly susceptible to H1N1 infection. Using RNAseq analysis we identified novel genes important for viral replication or the host defense. This study adds further important knowledge to host-pathogen-interactions and suggests additional candidates that are crucial for host susceptibility or survival during influenza A infections.

  3. Combination of microdissection and microarray analysis to identify gene expression changes between differentially located tumour cells in breast cancer.

    PubMed

    Zhu, Gang; Reynolds, Louise; Crnogorac-Jurcevic, Tatjana; Gillett, Cheryl E; Dublin, Edwin A; Marshall, John F; Barnes, Diana; D'Arrigo, Corrado; Van Trappen, Philippe O; Lemoine, Nicholas R; Hart, Ian R

    2003-06-12

    Comparison of gene expression changes between cancer cells at the periphery and in the centre of breast cancers was performed using a combination of microdissection and microarray analysis. Cancer cells from the two areas were pooled separately from five patients with ductal carcinoma in situ and separately from five patients with frankly invasive cancer. Limited total RNA, 100-200 ng, from this microdissected tissue required use of the Atlas SMART trade mark Probe Amplification Kit to synthesize and amplify cDNA and make (33)P-labelled probes. Probes were then hybridized to Atlas Human Cancer 1.2 Arrays containing 1176 known genes. Triplicate analysis revealed that 22 genes changed their expression levels in the periphery relative to the central region: 15 upregulated and seven downregulated (arbitrary threshold of 1.5-fold or greater). Differences in RNA levels were confirmed by quantitative real-time PCR for two of the genes and by changes in protein levels, detected by immunohistochemistry, for a couple of representative gene products. Thus, changes in gene expression associated with variation in microanatomical location of neoplastic cells can be detected within even small developing tumour masses.

  4. Integrated analysis of expression profiling data identifies three genes in correlation with poor prognosis of triple-negative breast cancer.

    PubMed

    Zhang, Cheng; Han, Yong; Huang, Hao; Min, Li; Qu, Like; Shou, Chengchao

    2014-06-01

    Triple-negative breast cancer (TNBC) shows more aggressive clinical behavior and poorer outcome than non-triple-negative breast cancer (NTNBC), and cannot be treated either via endocrine therapy or by Trastuzumab. For TNBC, chemotherapy is currently the mainstay of systemic medical treatment, the lack of more efficient options of treatment has been a problem in breast cancer prevention. In this study, we aimed to find genes related to prognosis in TNBC by bioinformatic analysis and to provide therapeutic candidates for TNBC treatment. We compared the differences in gene expression levels between cancer patients and healthy individuals across five breast cancer microarray databases to generate a gene cohort specifically upregulated in the NTNBC subtype, whose expression levels are ≥2-fold higher in TNBC compared to NTNBC and healthy individuals. Another two databases with clinical information were applied for following Kaplan-Meier analysis, and high expression of BIRC5, CENPA and FAM64A in this cohort were found to be related to poor survival (OS, DMFS, DFS and RFS). This correlation was also seen in patients at early stages and grades. On the other hand, the outcome of patients with synchronous upregulation of these three genes was the worst, while those with synchronous low gene level was the best. In conclusion, BIRC5, CENPA and FAM64A are specifically upregulated in TNBC, and the high expression of these three genes is associated with poor breast cancer prognosis, suggesting their clinical implication as therapeutic targets in TNBC.

  5. Analysis of gene expression profiles between apical papilla tissues, stem cells from apical papilla and cell sheet to identify the key modulators in MSCs niche.

    PubMed

    Diao, Shu; Lin, Xiao; Wang, Liping; Dong, Rui; Du, Juan; Yang, Dongmei; Fan, Zhipeng

    2017-06-01

    The microenvironmental niche plays the key role for maintaining the cell functions. The stem cells from apical papilla (SCAPs) are important for tooth development and regeneration. However, there is limited knowledge about the key factors in niche for maintaining the function of SCAPs. In this study, we analyse the gene expression profiles between apical papilla tissues, SCAPs and SCAPs cell sheet to identify the key genes in SCAPs niche. Microarray assays and bioinformatic analysis were performed to screen the differential genes between apical papilla tissues and SCAPs, and SCAPs and SCAPs cell sheet. Recombinant human BMP6 protein was used in SCAPs. Then CCK-8 assay, CFSE assay, alkaline phosphatase activity, alizarin red staining, quantitative calcium analysis and real-time reverse transcriptase-polymerase chain reaction were performed to investigate the cell proliferation and differentiation potentials of SCAPs. Microarray analysis found that 846 genes were up-regulated and 1203 genes were down-regulated in SCAPs compared with apical papilla tissues. While 240 genes were up-regulated and 50 genes were down-regulated in SCAPs compared to in SCAPs cell sheet. Moreover, only 31 gene expressions in apical papilla tissues were recovered in cell sheet compared with SCAPs. Bioinformatic analysis identified that TGF-β, WNT and MAPK signalling pathways may play an important role in SCAPs niche. Based on the analysis, we identified one key growth factor in niche, BMP6, which could enhance the cell proliferation, the osteo/dentinogenic, neurogenic and angiogenic differentiation potentials of SCAPs. Our results provided insight into the mechanisms of the microenvironmental niche which regulate the function of SCAPs, and identified the key candidate genes in niche to promote mesenchymal stem cells-mediated dental tissue regeneration. © 2017 John Wiley & Sons Ltd.

  6. Transcriptome analysis of the exocarp of apple fruit identifies light-induced genes involved in red color pigmentation.

    PubMed

    Vimolmangkang, Sornkanok; Zheng, Danman; Han, Yuepeng; Khan, M Awais; Soria-Guerra, Ruth Elena; Korban, Schuyler S

    2014-01-15

    Although the mechanism of light regulation of color pigmentation of apple fruit is not fully understood, it has been shown that light can regulate expression of genes in the anthocyanin biosynthesis pathway by inducing transcription factors (TFs). Moreover, expression of genes encoding enzymes involved in this pathway may be coordinately regulated by multiple TFs. In this study, fruits on trees of apple cv. Red Delicious were covered with paper bags during early stages of fruit development and then removed prior to maturation to analyze the transcriptome in the exocarp of apple fruit. Comparisons of gene expression profiles of fruit covered with paper bags (dark-grown treatment) and those subjected to 14 h light treatment, following removal of paper bags, were investigated using an apple microarray of 40,000 sequences. Expression profiles were investigated over three time points, at one week intervals, during fruit development. Overall, 736 genes with expression values greater than two-fold were found to be modulated by light treatment. Light-induced products were classified into 19 categories with highest scores in primary metabolism (17%) and transcription (12%). Based on the Arabidopsis gene ontology annotation, 18 genes were identified as TFs. To further confirm expression patterns of flavonoid-related genes, these were subjected to quantitative RT-PCR (qRT-PCR) using fruit of red-skinned apple cv. Red Delicious and yellow-skinned apple cv. Golden Delicious. Of these, two genes showed higher levels of expression in 'Red Delicious' than in 'Golden Delicious', and were likely involved in the regulation of fruit red color pigmentation. © 2013 Elsevier B.V. All rights reserved.

  7. Genome-Wide DNA Methylation Analysis Identifies Novel Hypomethylated Non-Pericentromeric Genes with Potential Clinical Implications in ICF Syndrome

    PubMed Central

    Gatto, S.; Gagliardi, M.; Crujeiras, A. B.; Matarazzo, M. R.; Esteller, M.; Sandoval, J.

    2015-01-01

    Introduction and Results Immunodeficiency, centromeric instability and facial anomalies syndrome (ICF) is a rare autosomal recessive disease, characterized by severe hypomethylation in pericentromeric regions of chromosomes (1, 16 and 9), marked immunodeficiency and facial anomalies. The majority of ICF patients present mutations in the DNMT3B gene, affecting the DNA methyltransferase activity of the protein. In the present study, we have used the Infinium 450K DNA methylation array to evaluate the methylation level of 450,000 CpGs in lymphoblastoid cell lines and untrasformed fibroblasts derived from ICF patients and healthy donors. Our results demonstrate that ICF-specific DNMT3B variants A603T/STP807ins and V699G/R54X cause global DNA hypomethylation compared to wild-type protein. We identified 181 novel differentially methylated positions (DMPs) including subtelomeric and intrachromosomic regions, outside the classical ICF-related pericentromeric hypomethylated positions. Interestingly, these sites were mainly located in intergenic regions and inside the CpG islands. Among the identified hypomethylated CpG-island associated genes, we confirmed the overexpression of three selected genes, BOLL, SYCP2 and NCRNA00221, in ICF compared to healthy controls, which are supposed to be expressed in germ line and silenced in somatic tissues. Conclusions In conclusion, this study contributes in clarifying the direct relationship between DNA methylation defect and gene expression impairment in ICF syndrome, identifying novel direct target genes of DNMT3B. A high percentage of the DMPs are located in the subtelomeric regions, indicating a specific role of DNMT3B in methylating these chromosomal sites. Therefore, we provide further evidence that hypomethylation in specific non-pericentromeric regions of chromosomes might be involved in the molecular pathogenesis of ICF syndrome. The detection of DNA hypomethylation at BOLL, SYCP2 and NCRNA00221 may pave the way for the

  8. Genome-Wide DNA Methylation Analysis Identifies Novel Hypomethylated Non-Pericentromeric Genes with Potential Clinical Implications in ICF Syndrome.

    PubMed

    Simo-Riudalbas, L; Diaz-Lagares, A; Gatto, S; Gagliardi, M; Crujeiras, A B; Matarazzo, M R; Esteller, M; Sandoval, J

    2015-01-01

    Immunodeficiency, centromeric instability and facial anomalies syndrome (ICF) is a rare autosomal recessive disease, characterized by severe hypomethylation in pericentromeric regions of chromosomes (1, 16 and 9), marked immunodeficiency and facial anomalies. The majority of ICF patients present mutations in the DNMT3B gene, affecting the DNA methyltransferase activity of the protein. In the present study, we have used the Infinium 450K DNA methylation array to evaluate the methylation level of 450,000 CpGs in lymphoblastoid cell lines and untrasformed fibroblasts derived from ICF patients and healthy donors. Our results demonstrate that ICF-specific DNMT3B variants A603T/STP807ins and V699G/R54X cause global DNA hypomethylation compared to wild-type protein. We identified 181 novel differentially methylated positions (DMPs) including subtelomeric and intrachromosomic regions, outside the classical ICF-related pericentromeric hypomethylated positions. Interestingly, these sites were mainly located in intergenic regions and inside the CpG islands. Among the identified hypomethylated CpG-island associated genes, we confirmed the overexpression of three selected genes, BOLL, SYCP2 and NCRNA00221, in ICF compared to healthy controls, which are supposed to be expressed in germ line and silenced in somatic tissues. In conclusion, this study contributes in clarifying the direct relationship between DNA methylation defect and gene expression impairment in ICF syndrome, identifying novel direct target genes of DNMT3B. A high percentage of the DMPs are located in the subtelomeric regions, indicating a specific role of DNMT3B in methylating these chromosomal sites. Therefore, we provide further evidence that hypomethylation in specific non-pericentromeric regions of chromosomes might be involved in the molecular pathogenesis of ICF syndrome. The detection of DNA hypomethylation at BOLL, SYCP2 and NCRNA00221 may pave the way for the development of specific clinical biomarkers

  9. RNA-Seq analysis identifies key genes associated with haustorial development in the root hemiparasite Santalum album

    PubMed Central

    Zhang, Xinhua; Berkowitz, Oliver; Teixeira da Silva, Jaime A.; Zhang, Muhan; Ma, Guohua; Whelan, James; Duan, Jun

    2015-01-01

    Santalum album (sandalwood) is one of the economically important plant species in the Santalaceae for its production of highly valued perfume oils. Sandalwood is also a hemiparasitic tree that obtains some of its water and simple nutrients by tapping into other plants through haustoria which are highly specialized organs in parasitic angiosperms. However, an understanding of the molecular mechanisms involved in haustorium development is limited. In this study, RNA sequencing (RNA-seq) analyses were performed to identify changes in gene expression and metabolic pathways associated with the development of the S. album haustorium. A total of 56,011 non-redundant contigs with a mean contig size of 618 bp were obtained by de novo assembly of the transcriptome of haustoria and non-haustorial seedling roots. A substantial number of the identified differentially expressed genes were involved in cell wall metabolism and protein metabolism, as well as mitochondrial electron transport functions. Phytohormone-mediated regulation might play an important role during haustorial development. Especially, auxin signaling is likely to be essential for haustorial initiation, and genes related to cytokinin and gibberellin biosynthesis and metabolism are involved in haustorial development. Our results suggest that genes encoding nodulin-like proteins may be important for haustorial morphogenesis in S. album. The obtained sequence data will become a rich resource for future research in this interesting species. This information improves our understanding of haustorium development in root hemiparasitic species and will allow further exploration of the detailed molecular mechanisms underlying plant parasitism. PMID:26388878

  10. Preservation Analysis of Macrophage Gene Coexpression Between Human and Mouse Identifies PARK2 as a Genetically Controlled Master Regulator of Oxidative Phosphorylation in Humans

    PubMed Central

    Codoni, Veronica; Blum, Yuna; Civelek, Mete; Proust, Carole; Franzén, Oscar; Björkegren, Johan L. M.; Le Goff, Wilfried; Cambien, Francois; Lusis, Aldons J.; Trégouët, David-Alexandre

    2016-01-01

    Macrophages are key players involved in numerous pathophysiological pathways and an in-depth characterization of their gene regulatory networks can help in better understanding how their dysfunction may impact on human diseases. We here conducted a cross-species network analysis of macrophage gene expression data between human and mouse to identify conserved networks across both species, and assessed whether such networks could reveal new disease-associated regulatory mechanisms. From a sample of 684 individuals processed for genome-wide macrophage gene expression profiling, we identified 27 groups of coexpressed genes (modules). Six modules were found preserved (P < 10−4) in macrophages from 86 mice of the Hybrid Mouse Diversity Panel. One of these modules was significantly [false discovery rate (FDR) = 8.9 × 10−11] enriched for genes belonging to the oxidative phosphorylation (OXPHOS) pathway. This pathway was also found significantly (FDR < 10−4) enriched in susceptibility genes for Alzheimer, Parkinson, and Huntington diseases. We further conducted an expression quantitative trait loci analysis to identify SNP that could regulate macrophage OXPHOS gene expression in humans. This analysis identified the PARK2 rs192804963 as a trans-acting variant influencing (minimal P-value = 4.3 × 10−8) the expression of most OXPHOS genes in humans. Further experimental work demonstrated that PARK2 knockdown expression was associated with increased OXPHOS gene expression in THP1 human macrophages. This work provided strong new evidence that PARK2 participates to the regulatory networks associated with oxidative phosphorylation and suggested that PARK2 genetic variations could act as a trans regulator of OXPHOS gene macrophage expression in humans. PMID:27558669

  11. Use of RDA analysis of knockout mice to identify myeloid genes regulated in vivo by PU.1 and C/EBPalpha.

    PubMed Central

    Iwama, A; Zhang, P; Darlington, G J; McKercher, S R; Maki, R; Tenen, D G

    1998-01-01

    PU.1 and C/EBPalpha are transcription factors essential for normal myeloid development. Loss-of-function mutation of PU.1 leads to an absolute block in monocyte/macrophage development and abnormal granulocytic development while that of C/EBPalpha causes a selective block in neutrophilic differentiation. In order to understand these phenotypes, we studied the role of PU.1 and C/EBPalpha in the regulation of myeloid target genes in vivo . Northern blot analysis revealed that mRNAs encoding receptors for M-CSF, G-CSF and GM-CSF, were expressed at low levels in PU.1(-/-) fetal liver compared with wild type. To identify additional myeloid genes regulated by PU.1 and C/EBPalpha, we performed representational difference analysis (RDA), a PCR-based subtractive hybridization using fetal livers from wild type and PU.1 or C/EBPalpha knockout mice. By introducing a new modification of RDA, that of tissue-specific gene suppression, we could selectively identify a set of differentially expressed genes specific to myeloid cells. Differentially expressed genes included both primary and secondary granule protein genes. In addition, eight novel genes were identified that were upregulated in expression during myeloid differentiation. These methods provide a general strategy for elucidating the genes affected in murine knockout models. PMID:9611252

  12. Analysis of the chromosome X exome in patients with autism spectrum disorders identified novel candidate genes, including TMLHE

    PubMed Central

    Nava, C; Lamari, F; Héron, D; Mignot, C; Rastetter, A; Keren, B; Cohen, D; Faudet, A; Bouteiller, D; Gilleron, M; Jacquette, A; Whalen, S; Afenjar, A; Périsse, D; Laurent, C; Dupuits, C; Gautier, C; Gérard, M; Huguet, G; Caillet, S; Leheup, B; Leboyer, M; Gillberg, C; Delorme, R; Bourgeron, T; Brice, A; Depienne, C

    2012-01-01

    The striking excess of affected males in autism spectrum disorders (ASD) suggests that genes located on chromosome X contribute to the etiology of these disorders. To identify new X-linked genes associated with ASD, we analyzed the entire chromosome X exome by next-generation sequencing in 12 unrelated families with two affected males. Thirty-six possibly deleterious variants in 33 candidate genes were found, including PHF8 and HUWE1, previously implicated in intellectual disability (ID). A nonsense mutation in TMLHE, which encodes the ɛ-N-trimethyllysine hydroxylase catalyzing the first step of carnitine biosynthesis, was identified in two brothers with autism and ID. By screening the TMLHE coding sequence in 501 male patients with ASD, we identified two additional missense substitutions not found in controls and not reported in databases. Functional analyses confirmed that the mutations were associated with a loss-of-function and led to an increase in trimethyllysine, the precursor of carnitine biosynthesis, in the plasma of patients. This study supports the hypothesis that rare variants on the X chromosome are involved in the etiology of ASD and contribute to the sex-ratio disequilibrium. PMID:23092983

  13. Analysis of the chromosome X exome in patients with autism spectrum disorders identified novel candidate genes, including TMLHE.

    PubMed

    Nava, C; Lamari, F; Héron, D; Mignot, C; Rastetter, A; Keren, B; Cohen, D; Faudet, A; Bouteiller, D; Gilleron, M; Jacquette, A; Whalen, S; Afenjar, A; Périsse, D; Laurent, C; Dupuits, C; Gautier, C; Gérard, M; Huguet, G; Caillet, S; Leheup, B; Leboyer, M; Gillberg, C; Delorme, R; Bourgeron, T; Brice, A; Depienne, C

    2012-10-23

    The striking excess of affected males in autism spectrum disorders (ASD) suggests that genes located on chromosome X contribute to the etiology of these disorders. To identify new X-linked genes associated with ASD, we analyzed the entire chromosome X exome by next-generation sequencing in 12 unrelated families with two affected males. Thirty-six possibly deleterious variants in 33 candidate genes were found, including PHF8 and HUWE1, previously implicated in intellectual disability (ID). A nonsense mutation in TMLHE, which encodes the ɛ-N-trimethyllysine hydroxylase catalyzing the first step of carnitine biosynthesis, was identified in two brothers with autism and ID. By screening the TMLHE coding sequence in 501 male patients with ASD, we identified two additional missense substitutions not found in controls and not reported in databases. Functional analyses confirmed that the mutations were associated with a loss-of-function and led to an increase in trimethyllysine, the precursor of carnitine biosynthesis, in the plasma of patients. This study supports the hypothesis that rare variants on the X chromosome are involved in the etiology of ASD and contribute to the sex-ratio disequilibrium.

  14. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer

    PubMed Central

    Rudin, Charles M; Durinck, Steffen; Stawiski, Eric W; Poirier, John T; Modrusan, Zora; Shames, David S; Bergbower, Emily A; Guan, Yinghui; Shin, James; Guillory, Joseph; Rivers, Celina Sanchez; Foo, Catherine K; Bhatt, Deepali; Stinson, Jeremy; Gnad, Florian; Haverty, Peter M; Gentleman, Robert; Chaudhuri, Subhra; Janakiraman, Vasantharajan; Jaiswal, Bijay S; Parikh, Chaitali; Yuan, Wenlin; Zhang, Zemin; Koeppen, Hartmut; Wu, Thomas D; Stern, Howard M; Yauch, Robert L; Huffman, Kenneth E; Paskulin, Diego D; Illei, Peter B; Varella-Garcia, Marileila; Gazdar, Adi F; de Sauvage, Frederic J; Bourgon, Richard; Minna, John D; Brock, Malcolm V; Seshagiri, Somasekar

    2013-01-01

    Small-cell lung cancer (SCLC) is an exceptionally aggressive disease with poor prognosis. Here, we obtained exome, transcriptome and copy-number alteration data from approximately 53 samples consisting of 36 primary human SCLC and normal tissue pairs and 17 matched SCLC and lymphoblastoid cell lines. We also obtained data for 4 primary tumors and 23 SCLC cell lines. We identified 22 significantly mutated genes in SCLC, including genes encoding kinases, G protein–coupled receptors and chromatin-modifying proteins. We found that several members of the SOX family of genes were mutated in SCLC. We also found SOX2 amplification in ~27% of the samples. Suppression of SOX2 using shRNAs blocked proliferation of SOX2-amplified SCLC lines. RNA sequencing identified multiple fusion transcripts and a recurrent RLF-MYCL1 fusion. Silencing of MYCL1 in SCLC cell lines that had the RLF-MYCL1 fusion decreased cell proliferation. These data provide an in-depth view of the spectrum of genomic alterations in SCLC and identify several potential targets for therapeutic intervention. PMID:22941189

  15. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer.

    PubMed

    Rudin, Charles M; Durinck, Steffen; Stawiski, Eric W; Poirier, John T; Modrusan, Zora; Shames, David S; Bergbower, Emily A; Guan, Yinghui; Shin, James; Guillory, Joseph; Rivers, Celina Sanchez; Foo, Catherine K; Bhatt, Deepali; Stinson, Jeremy; Gnad, Florian; Haverty, Peter M; Gentleman, Robert; Chaudhuri, Subhra; Janakiraman, Vasantharajan; Jaiswal, Bijay S; Parikh, Chaitali; Yuan, Wenlin; Zhang, Zemin; Koeppen, Hartmut; Wu, Thomas D; Stern, Howard M; Yauch, Robert L; Huffman, Kenneth E; Paskulin, Diego D; Illei, Peter B; Varella-Garcia, Marileila; Gazdar, Adi F; de Sauvage, Frederic J; Bourgon, Richard; Minna, John D; Brock, Malcolm V; Seshagiri, Somasekar

    2012-10-01

    Small-cell lung cancer (SCLC) is an exceptionally aggressive disease with poor prognosis. Here, we obtained exome, transcriptome and copy-number alteration data from approximately 53 samples consisting of 36 primary human SCLC and normal tissue pairs and 17 matched SCLC and lymphoblastoid cell lines. We also obtained data for 4 primary tumors and 23 SCLC cell lines. We identified 22 significantly mutated genes in SCLC, including genes encoding kinases, G protein-coupled receptors and chromatin-modifying proteins. We found that several members of the SOX family of genes were mutated in SCLC. We also found SOX2 amplification in ∼27% of the samples. Suppression of SOX2 using shRNAs blocked proliferation of SOX2-amplified SCLC lines. RNA sequencing identified multiple fusion transcripts and a recurrent RLF-MYCL1 fusion. Silencing of MYCL1 in SCLC cell lines that had the RLF-MYCL1 fusion decreased cell proliferation. These data provide an in-depth view of the spectrum of genomic alterations in SCLC and identify several potential targets for therapeutic intervention.

  16. Genetic analysis of fin development in zebrafish identifies furin and hemicentin1 as potential novel fraser syndrome disease genes.

    PubMed

    Carney, Thomas J; Feitosa, Natália Martins; Sonntag, Carmen; Slanchev, Krasimir; Kluger, Johannes; Kiyozumi, Daiji; Gebauer, Jan M; Coffin Talbot, Jared; Kimmel, Charles B; Sekiguchi, Kiyotoshi; Wagener, Raimund; Schwarz, Heinz; Ingham, Phillip W; Hammerschmidt, Matthias

    2010-04-15

    Using forward genetics, we have identified the genes mutated in two classes of zebrafish fin mutants. The mutants of the first class are characterized by defects in embryonic fin morphogenesis, which are due to mutations in a Laminin subunit or an Integrin alpha receptor, respectively. The mutants of the second class display characteristic blistering underneath the basement membrane of the fin epidermis. Three of them are due to mutations in zebrafish orthologues of FRAS1, FREM1, or FREM2, large basement membrane protein encoding genes that are mutated in mouse bleb mutants and in human patients suffering from Fraser Syndrome, a rare congenital condition characterized by syndactyly and cryptophthalmos. Fin blistering in a fourth group of zebrafish mutants is caused by mutations in Hemicentin1 (Hmcn1), another large extracellular matrix protein the function of which in vertebrates was hitherto unknown. Our mutant and dose-dependent interaction data suggest a potential involvement of Hmcn1 in Fraser complex-dependent basement membrane anchorage. Furthermore, we present biochemical and genetic data suggesting a role for the proprotein convertase FurinA in zebrafish fin development and cell surface shedding of Fras1 and Frem2, thereby allowing proper localization of the proteins within the basement membrane of forming fins. Finally, we identify the extracellular matrix protein Fibrillin2 as an indispensable interaction partner of Hmcn1. Thus we have defined a series of zebrafish mutants modelling Fraser Syndrome and have identified several implicated novel genes that might help to further elucidate the mechanisms of basement membrane anchorage and of the disease's aetiology. In addition, the novel genes might prove helpful to unravel the molecular nature of thus far unresolved cases of the human disease.

  17. Analysis of RNA Interference Lines Identifies New Functions of Maternally-Expressed Genes Involved in Embryonic Patterning in Drosophila melanogaster.

    PubMed

    Liu, Niankun; Lasko, Paul

    2015-03-31

    Embryonic patterning in Drosophila melanogaster is initially established through the activity of a number of maternally expressed genes that are expressed during oogenesis. mRNAs from some of these genes accumulate in the posterior pole plasm of the oocyte and early embryo and localize further into RNA islands, which are transient ring-like structures that form around the nuclei of future primordial germ cells (pole cells) at stage 3 of embryogenesis. As mRNAs from several genes with known functions in anterior-posterior patterning and/or germ cell specification accumulate in RNA islands, we hypothesized that some other mRNAs that localize in this manner might also function in these developmental processes. To test this, we investigated the developmental functions of 51 genes whose mRNAs accumulate in RNA islands by abrogating their activity in the female germline using RNA interference. This analysis revealed requirements for ttk, pbl, Hip14, eIF5, eIF4G, and CG9977 for progression through early oogenesis. We observed dorsal appendage defects in a proportion of eggs produced by females expressing double-stranded RNA targeting Mkrn1 or jvl, implicating these two genes in dorsal-ventral patterning. In addition, posterior patterning defects and a reduction in pole cell number were seen in the progeny of Mkrn1 females. Because the mammalian ortholog of Mkrn1 acts as an E3 ubiquitin ligase, these results suggest an additional link between protein ubiquitination and pole plasm activity.

  18. Analysis of RNA Interference Lines Identifies New Functions of Maternally-Expressed Genes Involved in Embryonic Patterning in Drosophila melanogaster

    PubMed Central

    Liu, Niankun; Lasko, Paul

    2015-01-01

    Embryonic patterning in Drosophila melanogaster is initially established through the activity of a number of maternally expressed genes that are expressed during oogenesis. mRNAs from some of these genes accumulate in the posterior pole plasm of the oocyte and early embryo and localize further into RNA islands, which are transient ring-like structures that form around the nuclei of future primordial germ cells (pole cells) at stage 3 of embryogenesis. As mRNAs from several genes with known functions in anterior–posterior patterning and/or germ cell specification accumulate in RNA islands, we hypothesized that some other mRNAs that localize in this manner might also function in these developmental processes. To test this, we investigated the developmental functions of 51 genes whose mRNAs accumulate in RNA islands by abrogating their activity in the female germline using RNA interference. This analysis revealed requirements for ttk, pbl, Hip14, eIF5, eIF4G, and CG9977 for progression through early oogenesis. We observed dorsal appendage defects in a proportion of eggs produced by females expressing double-stranded RNA targeting Mkrn1 or jvl, implicating these two genes in dorsal–ventral patterning. In addition, posterior patterning defects and a reduction in pole cell number were seen in the progeny of Mkrn1 females. Because the mammalian ortholog of Mkrn1 acts as an E3 ubiquitin ligase, these results suggest an additional link between protein ubiquitination and pole plasm activity. PMID:25834215

  19. Network Inference Analysis Identifies an APRR2-Like Gene Linked to Pigment Accumulation in Tomato and Pepper Fruits1[W][OA

    PubMed Central

    Pan, Yu; Bradley, Glyn; Pyke, Kevin; Ball, Graham; Lu, Chungui; Fray, Rupert; Marshall, Alexandra; Jayasuta, Subhalai; Baxter, Charles; van Wijk, Rik; Boyden, Laurie; Cade, Rebecca; Chapman, Natalie H.; Fraser, Paul D.; Hodgman, Charlie; Seymour, Graham B.

    2013-01-01

    Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening. PMID:23292788

  20. Flavonoid biosynthesis genes putatively identified in the aromatic plant Polygonum minus via Expressed Sequences Tag (EST) analysis.

    PubMed

    Roslan, Nur Diyana; Yusop, Jastina Mat; Baharum, Syarul Nataqain; Othman, Roohaida; Mohamed-Hussein, Zeti-Azura; Ismail, Ismanizan; Noor, Normah Mohd; Zainal, Zamri

    2012-01-01

    P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.

  1. Transcriptome Analysis to Identify the Putative Biosynthesis and Transport Genes Associated with the Medicinal Components of Achyranthes bidentata Bl.

    PubMed Central

    Li, Jinting; Wang, Can; Han, Xueping; Qi, Wanzhen; Chen, Yanqiong; Wang, Taixia; Zheng, Yi; Zhao, Xiting

    2016-01-01

    Achyranthes bidentata is a popular perennial medicine herb used for 1000s of years in China to treat various diseases. Although this herb has multiple pharmaceutical purposes in China, no transcriptomic information has been reported for this species. In addition, the understanding of several key pathways and enzymes involved in the biosynthesis of oleanolic acid and ecdysterone, two pharmacologically active classes of metabolites and major chemical constituents of A. bidentata root extracts, is limited. The aim of the present study was to characterize the transcriptome profile of the roots and leaves of A. bidentata to uncover the biosynthetic and transport mechanisms of the active components. In this study, we identified 100,987 transcripts, with an average length of 1146.8 base pairs. A total of 31,634 (31.33%) unigenes were annotated, and 12,762 unigenes were mapped to 303 pathways according to the Kyoto Encyclopedia of Genes and Genomes pathway database. Moreover, we identified a total of 260 oleanolic acid and ecdysterone genes encoding biosynthetic enzymes. Furthermore, the key enzymes involved in the oleanolic acid and ecdysterone synthesis pathways were analyzed using quantitative real-time polymerase chain reaction, revealing that the roots expressed these enzymes to a greater extent than the leaves. In addition, we identified 85 ATP-binding cassette transporters, some of which might be involved in the translocation of secondary metabolites. PMID:28018396

  2. Target gene analysis by microarrays and chromatin immunoprecipitation identifies HEY proteins as highly redundant bHLH repressors.

    PubMed

    Heisig, Julia; Weber, David; Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred

    2012-01-01

    HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression.

  3. Third-Generation Sequencing and Analysis of Four Complete Pig Liver Esterase Gene Sequences in Clones Identified by Screening BAC Library

    PubMed Central

    Zhou, Qiongqiong; Sun, Wenjuan; Liu, Xiyan; Wang, Xiliang; Xiao, Yuncai; Bi, Dingren; Yin, Jingdong; Shi, Deshi

    2016-01-01

    Aim Pig liver carboxylesterase (PLE) gene sequences in GenBank are incomplete, which has led to difficulties in studying the genetic structure and regulation mechanisms of gene expression of PLE family genes. The aim of this study was to obtain and analysis of complete gene sequences of PLE family by screening from a Rongchang pig BAC library and third-generation PacBio gene sequencing. Methods After a number of existing incomplete PLE isoform gene sequences were analysed, primers were designed based on conserved regions in PLE exons, and the whole pig genome used as a template for Polymerase chain reaction (PCR) amplification. Specific primers were then selected based on the PCR amplification results. A three-step PCR screening method was used to identify PLE-positive clones by screening a Rongchang pig BAC library and PacBio third-generation sequencing was performed. BLAST comparisons and other bioinformatics methods were applied for sequence analysis. Results Five PLE-positive BAC clones, designated BAC-10, BAC-70, BAC-75, BAC-119 and BAC-206, were identified. Sequence analysis yielded the complete sequences of four PLE genes, PLE1, PLE-B9, PLE-C4, and PLE-G2. Complete PLE gene sequences were defined as those containing regulatory sequences, exons, and introns. It was found that, not only did the PLE exon sequences of the four genes show a high degree of homology, but also that the intron sequences were highly similar. Additionally, the regulatory region of the genes contained two 720bps reverse complement sequences that may have an important function in the regulation of PLE gene expression. Significance This is the first report to confirm the complete sequences of four PLE genes. In addition, the study demonstrates that each PLE isoform is encoded by a single gene and that the various genes exhibit a high degree of sequence homology, suggesting that the PLE family evolved from a single ancestral gene. Obtaining the complete sequences of these PLE genes

  4. Global gene expression and functional network analysis of gastric cancer identify extended pathway maps and GPRC5A as a potential biomarker.

    PubMed

    Cheng, Lei; Yang, Sheng; Yang, Yanqing; Zhang, Wen; Xiao, Huasheng; Gao, Hengjun; Deng, Xiaxing; Zhang, Qinghua

    2012-12-29

    To get more understanding of the molecular mechanisms underlying gastric cancer, 25 paired samples were applied to gene expression microarray analysis. Here, expression microarray, quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemical analysis indicated that GPRC5A was significantly elevated in gastric cancer tissues. The integrative network analysis of deregulated genes generated eight subnetworks. We also mapped copy number variations (CNVs) and associated mRNA expression changes into pathways and identified WNT, RTK-Ras-PI3K-AKT, NF-κB, and PLAU-JAK-STAT pathways involved in proliferation, evading apoptosis and sustained angiogenesis, respectively. Taken together, our results reveal several interesting genes including GPRC5A as potential biomarkers for gastric cancer, and highlight more systematical insight of deregulated genes in genetic pathways of gastric carcinogenesis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Sex and tissue specific gene expression patterns identified following de novo transcriptomic analysis of the Norway lobster, Nephrops norvegicus.

    PubMed

    Rotllant, Guiomar; Nguyen, Tuan Viet; Sbragaglia, Valerio; Rahi, Lifat; Dudley, Kevin J; Hurwood, David; Ventura, Tomer; Company, Joan B; Chand, Vincent; Aguzzi, Jacopo; Mather, Peter B

    2017-08-16

    The Norway lobster, Nephrops norvegicus, is economically important in European fisheries and is a key organism in local marine ecosystems. Despite multi-faceted scientific interest in this species, our current knowledge of genetic resources in this species remains very limited. Here, we generated a reference de novo transcriptome for N. norvegicus from multiple tissues in both sexes. Bioinformatic analyses were conducted to detect transcripts that were expressed exclusively in either males or females. Patterns were validated via RT-PCR. Sixteen N. norvegicus libraries were sequenced from immature and mature ovary, testis and vas deferens (including the masculinizing androgenic gland). In addition, eyestalk, brain, thoracic ganglia and hepatopancreas tissues were screened in males and both immature and mature females. RNA-Sequencing resulted in >600 million reads. De novo assembly that combined the current dataset with two previously published libraries from eyestalk tissue, yielded a reference transcriptome of 333,225 transcripts with an average size of 708 base pairs (bp), with an N50 of 1272 bp. Sex-specific transcripts were detected primarily in gonads followed by hepatopancreas, brain, thoracic ganglia, and eyestalk, respectively. Candidate transcripts that were expressed exclusively either in males or females were highlighted and the 10 most abundant ones were validated via RT-PCR. Among the most highly expressed genes were Serine threonine protein kinase in testis and Vitellogenin in female hepatopancreas. These results align closely with gene annotation results. Moreover, a differential expression heatmap showed that the majority of differentially expressed transcripts were identified in gonad and eyestalk tissues. Results indicate that sex-specific gene expression patterns in Norway lobster are controlled by differences in gene regulation pattern between males and females in somatic tissues. The current study presents the first multi-tissue reference

  6. Systems analysis of immune responses in Marek's disease virus-infected chickens identifies a gene involved in susceptibility and highlights a possible novel pathogenicity mechanism.

    PubMed

    Smith, Jacqueline; Sadeyen, Jean-Remy; Paton, Ian R; Hocking, Paul M; Salmon, Nigel; Fife, Mark; Nair, Venugopal; Burt, David W; Kaiser, Pete

    2011-11-01

    Marek's disease virus (MDV) is a highly contagious oncogenic alphaherpesvirus that causes disease that is both a cancer model and a continuing threat to the world's poultry industry. This comprehensive gene expression study analyzes the host response to infection in both resistant and susceptible lines of chickens and inherent expression differences between the two lines following the infection of the host. A novel pathogenicity mechanism, involving the downregulation of genes containing HIC1 transcription factor binding sites as early as 4 days postinfection, was suggested from this analysis. HIC1 drives antitumor mechanisms, suggesting that MDV infection switches off genes involved in antitumor regulation several days before the expression of the MDV oncogene meq. The comparison of the gene expression data to previous QTL data identified several genes as candidates for involvement in resistance to MD. One of these genes, IRG1, was confirmed by single nucleotide polymorphism analysis to be involved in susceptibility. Its precise mechanism remains to be elucidated, although the analysis of gene expression data suggests it has a role in apoptosis. Understanding which genes are involved in susceptibility/resistance to MD and defining the pathological mechanisms of the disease gives us a much greater ability to try to reduce the incidence of this virus, which is costly to the poultry industry in terms of both animal welfare and economics.

  7. Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network.

    PubMed

    Zak, Daniel E; Gonye, Gregory E; Schwaber, James S; Doyle, Francis J

    2003-11-01

    Gene expression profiles are an increasingly common data source that can yield insights into the functions of cells at a system-wide level. The present work considers the limitations in information content of gene expression data for reverse engineering regulatory networks. An in silico genetic regulatory network was constructed for this purpose. Using the in silico network, a formal identifiability analysis was performed that considered the accuracy with which the parameters in the network could be estimated using gene expression data and prior structural knowledge (which transcription factors regulate which genes) as a function of the input perturbation and stochastic gene expression. The analysis yielded experimentally relevant results. It was observed that, in addition to prior structural knowledge, prior knowledge of kinetic parameters, particularly mRNA degradation rate constants, was necessary for the network to be identifiable. Also, with the exception of cases where the noise due to stochastic gene expression was high, complex perturbations were more favorable for identifying the network than simple ones. Although the results may be specific to the network considered, the present study provides a framework for posing similar questions in other systems.

  8. Comparative Genomic Analysis of Asian Haemorrhagic Septicaemia-Associated Strains of Pasteurella multocida Identifies More than 90 Haemorrhagic Septicaemia-Specific Genes

    PubMed Central

    Moustafa, Ahmed M.; Seemann, Torsten; Gladman, Simon; Adler, Ben; Harper, Marina; Boyce, John D.; Bennett, Mark D.

    2015-01-01

    Pasteurella multocida is the primary causative agent of a range of economically important diseases in animals, including haemorrhagic septicaemia (HS), a rapidly fatal disease of ungulates. There is limited information available on the diversity of P. multocida strains that cause HS. Therefore, we determined draft genome sequences of ten disease-causing isolates and two vaccine strains and compared these genomes using a range of bioinformatic analyses. The draft genomes of the 12 HS strains were between 2,298,035 and 2,410,300 bp in length. Comparison of these genomes with the North American HS strain, M1404, and other available P. multocida genomes (Pm70, 3480, 36950 and HN06) identified a core set of 1,824 genes. A set of 96 genes was present in all HS isolates and vaccine strains examined in this study, but absent from Pm70, 3480, 36950 and HN06. Moreover, 59 genes were shared only by the Asian B:2 strains. In two Pakistani isolates, genes with high similarity to genes in the integrative and conjugative element, ICEPmu1 from strain 36950 were identified along with a range of other antimicrobial resistance genes. Phylogenetic analysis indicated that the HS strains formed clades based on their country of isolation. Future analysis of the 96 genes unique to the HS isolates will aid the identification of HS-specific virulence attributes and facilitate the development of disease-specific diagnostic tests. PMID:26151935

  9. A meta-analysis of public microarray data identifies gene regulatory pathways deregulated in peripheral blood mononuclear cells from individuals with Systemic Lupus Erythematosus compared to those without.

    PubMed

    Kröger, Wendy; Mapiye, Darlington; Entfellner, Jean-Baka Domelevo; Tiffin, Nicki

    2016-11-15

    Systemic Lupus Erythematosus (SLE) is a complex, multi-systemic, autoimmune disease for which the underlying aetiological mechanisms are poorly understood. The genetic and molecular processes underlying lupus have been extensively investigated using a variety of -omics approaches, including genome-wide association studies, candidate gene studies and microarray experiments of differential gene expression in lupus samples compared to controls. This study analyses a combination of existing microarray data sets to identify differentially regulated genetic pathways that are dysregulated in human peripheral blood mononuclear cells from SLE patients compared to unaffected controls. Two statistical approaches, quantile discretisation and scaling, are used to combine publicly available expression microarray datasets and perform a meta-analysis of differentially expressed genes. Differentially expressed genes implicated in interferon signaling were identified by the meta-analysis, in agreement with the findings of the individual studies that generated the datasets used. In contrast to the individual studies, however, the meta-analysis and subsequent pathway analysis additionally highlighted TLR signaling, oxidative phosphorylation and diapedesis and adhesion regulatory networks as being differentially regulated in peripheral blood mononuclear cells (PBMCs) from SLE patients compared to controls. Our analysis demonstrates that it is possible to derive additional information from publicly available expression data using meta-analysis techniques, which is particularly relevant to research into rare diseases where sample numbers can be limiting.

  10. Biological activities of some Acacia spp. (Fabaceae) against new clinical isolates identified by ribosomal RNA gene-based phylogenetic analysis.

    PubMed

    Mahmoud, Mahmoud Fawzy; Alrumman, Sulaiman Abdullah; Hesham, Abd El-Latif

    2016-01-01

    Nowadays,most of the pathogenic bacteria become resistant to antibiotics. Therefore,the pharmaceutical properties of the natural plant extracts have become of interest to researchers as alternative antimicrobial agents. In this study,antibacterial activities of extract gained from Acacia etbaica, Acacia laeta, Acacia origena and Acacia pycnantha have been evaluated against isolated pathogenic bacteria (Strains MFM-01, MFM-10 and AH-09) using agar well diffusion methods.The bacterial strains were isolated from infected individuals,and their exact identification was detected on the basis of 16S rRNA gene amplification and sequence determination. Alignment results and the comparison of 16 SrRN A gene sequences of the isolates to 16 SrRN A gene sequences available in Gen Bank data base as well as the phylogenetic analysis confirmed the accurate position of the isolates as Klebsiella oxytoca strain MFM-01, Staphylococcus aureus strain MFM-10 and Klebsiella pneumoniae strain AH-09. Except for cold water, all tested solvents (Chloroform, petroleum ether, methanol, diethyl ether, and acetone) showed variation in their activity against studied bacteria. GC-MS analysis of ethanol extracts showed that four investigated Acacia species have different phyto components. Eight important pharmaceutical components were found in the legume of Acacia etbaica, seven in the legume of Acacia laeta, fifteen in the legume of Acacia origena and nine in the leaves of Acacia pycnantha. A dendrogram was constructed based on chemical composition, revealed that Acacia laeta is more closely related to Acacia etbaica forming on eclade, whereas Acacia origena less similar to other species. Our results demonstrated that, investigated plants and chemical compounds present could be used as promising antibacterial agents.

  11. A Simple Screening Approach To Prioritize Genes for Functional Analysis Identifies a Role for Interferon Regulatory Factor 7 in the Control of Respiratory Syncytial Virus Disease

    PubMed Central

    McDonald, Jacqueline U.; Kaforou, Myrsini; Clare, Simon; Hale, Christine; Ivanova, Maria; Huntley, Derek; Dorner, Marcus; Wright, Victoria J.; Levin, Michael; Martinon-Torres, Federico; Herberg, Jethro A.

    2016-01-01

    ABSTRACT Greater understanding of the functions of host gene products in response to infection is required. While many of these genes enable pathogen clearance, some enhance pathogen growth or contribute to disease symptoms. Many studies have profiled transcriptomic and proteomic responses to infection, generating large data sets, but selecting targets for further study is challenging. Here we propose a novel data-mining approach combining multiple heterogeneous data sets to prioritize genes for further study by using respiratory syncytial virus (RSV) infection as a model pathogen with a significant health care impact. The assumption was that the more frequently a gene is detected across multiple studies, the more important its role is. A literature search was performed to find data sets of genes and proteins that change after RSV infection. The data sets were standardized, collated into a single database, and then panned to determine which genes occurred in multiple data sets, generating a candidate gene list. This candidate gene list was validated by using both a clinical cohort and in vitro screening. We identified several genes that were frequently expressed following RSV infection with no assigned function in RSV control, including IFI27, IFIT3, IFI44L, GBP1, OAS3, IFI44, and IRF7. Drilling down into the function of these genes, we demonstrate a role in disease for the gene for interferon regulatory factor 7, which was highly ranked on the list, but not for IRF1, which was not. Thus, we have developed and validated an approach for collating published data sets into a manageable list of candidates, identifying novel targets for future analysis. IMPORTANCE Making the most of “big data” is one of the core challenges of current biology. There is a large array of heterogeneous data sets of host gene responses to infection, but these data sets do not inform us about gene function and require specialized skill sets and training for their utilization. Here we

  12. A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation.

    PubMed

    Zemni, R; Bienvenu, T; Vinet, M C; Sefiani, A; Carrié, A; Billuart, P; McDonell, N; Couvert, P; Francis, F; Chafey, P; Fauchereau, F; Friocourt, G; des Portes, V; Cardona, A; Frints, S; Meindl, A; Brandau, O; Ronce, N; Moraine, C; van Bokhoven, H; Ropers, H H; Sudbrak, R; Kahn, A; Fryns, J P; Beldjord, C; Chelly, J

    2000-02-01

    X-linked forms of mental retardation (MR) affect approximately 1 in 600 males and are likely to be highly heterogeneous. They can be categorized into syndromic (MRXS) and nonspecific (MRX) forms. In MRX forms, affected patients have no distinctive clinical or biochemical features. At least five MRX genes have been identified by positional cloning, but each accounts for only 0.5%-1.0% of MRX cases. Here we show that the gene TM4SF2 at Xp11.4 is inactivated by the X breakpoint of an X;2 balanced translocation in a patient with MR. Further investigation led to identification of TM4SF2 mutations in 2 of 33 other MRX families. RNA in situ hybridization showed that TM4SF2 is highly expressed in the central nervous system, including the cerebral cortex and hippocampus. TM4SF2 encodes a member of the tetraspanin family of proteins, which are known to contribute in molecular complexes including beta-1 integrins. We speculate that through this interaction, TM4SF2 might have a role in the control of neurite outgrowth.

  13. Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation.

    PubMed

    Yu, Li; Wang, Guo-Dong; Ruan, Jue; Chen, Yong-Bin; Yang, Cui-Ping; Cao, Xue; Wu, Hong; Liu, Yan-Hu; Du, Zheng-Lin; Wang, Xiao-Ping; Yang, Jing; Cheng, Shao-Chen; Zhong, Li; Wang, Lu; Wang, Xuan; Hu, Jing-Yang; Fang, Lu; Bai, Bing; Wang, Kai-Le; Yuan, Na; Wu, Shi-Fang; Li, Bao-Guo; Zhang, Jin-Guo; Yang, Ye-Qin; Zhang, Cheng-Lin; Long, Yong-Cheng; Li, Hai-Shu; Yang, Jing-Yuan; Irwin, David M; Ryder, Oliver A; Li, Ying; Wu, Chung-I; Zhang, Ya-Ping

    2016-08-01

    The snub-nosed monkey genus Rhinopithecus includes five closely related species distributed across altitudinal gradients from 800 to 4,500 m. Rhinopithecus bieti, Rhinopithecus roxellana, and Rhinopithecus strykeri inhabit high-altitude habitats, whereas Rhinopithecus brelichi and Rhinopithecus avunculus inhabit lowland regions. We report the de novo whole-genome sequence of R. bieti and genomic sequences for the four other species. Eight shared substitutions were found in six genes related to lung function, DNA repair, and angiogenesis in the high-altitude snub-nosed monkeys. Functional assays showed that the high-altitude variant of CDT1 (Ala537Val) renders cells more resistant to UV irradiation, and the high-altitude variants of RNASE4 (Asn89Lys and Thr128Ile) confer enhanced ability to induce endothelial tube formation in vitro. Genomic scans in the R. bieti and R. roxellana populations identified signatures of selection between and within populations at genes involved in functions relevant to high-altitude adaptation. These results provide valuable insights into the adaptation to high altitude in the snub-nosed monkeys.

  14. Genomic saturation mutagenesis and polygenic analysis identify novel yeast genes affecting ethyl acetate production, a non-selectable polygenic trait

    PubMed Central

    Abt, Tom Den; Souffriau, Ben; Foulquié-Moreno, Maria R.; Duitama, Jorge; Thevelein, Johan M.

    2016-01-01

    Isolation of mutants in populations of microorganisms has been a valuable tool in experimental genetics for decades. The main disadvantage, however, is the inability of isolating mutants in non-selectable polygenic traits. Most traits of organisms, however, are non-selectable and polygenic, including industrially important properties of microorganisms. The advent of powerful technologies for polygenic analysis of complex traits has allowed simultaneous identification of multiple causative mutations among many thousands of irrelevant mutations. We now show that this also applies to haploid strains of which the genome has been loaded with induced mutations so as to affect as many non-selectable, polygenic traits as possible. We have introduced about 900 mutations into single haploid yeast strains using multiple rounds of EMS mutagenesis, while maintaining the mating capacity required for genetic mapping. We screened the strains for defects in flavor production, an important non-selectable, polygenic trait in yeast alcoholic beverage production. A haploid strain with multiple induced mutations showing reduced ethyl acetate production in semi-anaerobic fermentation, was selected and the underlying quantitative trait loci (QTLs) were mapped using pooled-segregant whole-genome sequence analysis after crossing with an unrelated haploid strain. Reciprocal hemizygosity analysis and allele exchange identified PMA1 and CEM1 as causative mutant alleles and TPS1 as a causative genetic background allele. The case of CEM1 revealed that relevant mutations without observable effect in the haploid strain with multiple induced mutations (in this case due to defective mitochondria) can be identified by polygenic analysis as long as the mutations have an effect in part of the segregants (in this case those that regained fully functional mitochondria). Our results show that genomic saturation mutagenesis combined with complex trait polygenic analysis could be used successfully to

  15. Genomic saturation mutagenesis and polygenic analysis identify novel yeast genes affecting ethyl acetate production, a non-selectable polygenic trait.

    PubMed

    Abt, Tom Den; Souffriau, Ben; Foulquié-Moreno, Maria R; Duitama, Jorge; Thevelein, Johan M

    2016-03-18

    Isolation of mutants in populations of microorganisms has been a valuable tool in experimental genetics for decades. The main disadvantage, however, is the inability of isolating mutants in non-selectable polygenic traits. Most traits of organisms, however, are non-selectable and polygenic, including industrially important properties of microorganisms. The advent of powerful technologies for polygenic analysis of complex traits has allowed simultaneous identification of multiple causative mutations among many thousands of irrelevant mutations. We now show that this also applies to haploid strains of which the genome has been loaded with induced mutations so as to affect as many non-selectable, polygenic traits as possible. We have introduced about 900 mutations into single haploid yeast strains using multiple rounds of EMS mutagenesis, while maintaining the mating capacity required for genetic mapping. We screened the strains for defects in flavor production, an important non-selectable, polygenic trait in yeast alcoholic beverage production. A haploid strain with multiple induced mutations showing reduced ethyl acetate production in semi-anaerobic fermentation, was selected and the underlying quantitative trait loci (QTLs) were mapped using pooled-segregant whole-genome sequence analysis after crossing with an unrelated haploid strain. Reciprocal hemizygosity analysis and allele exchange identified PMA1 and CEM1 as causative mutant alleles and TPS1 as a causative genetic background allele. The case of CEM1 revealed that relevant mutations without observable effect in the haploid strain with multiple induced mutations (in this case due to defective mitochondria) can be identified by polygenic analysis as long as the mutations have an effect in part of the segregants (in this case those that regained fully functional mitochondria). Our results show that genomic saturation mutagenesis combined with complex trait polygenic analysis could be used successfully to

  16. A factor analysis of global GABAergic gene expression in human brain identifies specificity in response to chronic alcohol and cocaine exposure.

    PubMed

    Enoch, Mary-Anne; Baghal, Basel; Yuan, Qiaoping; Goldman, David

    2013-01-01

    Although expression patterns of GABAergic genes in rodent brain have largely been elucidated, no comprehensive studies have been performed in human brain. The purpose of this study was to identify global patterns of GABAergic gene expression in healthy adults, including trans and cis effects in the GABAA gene clusters, before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA-Seq data from 'BrainSpan' was obtained across 16 brain regions from postmortem samples from nine adults. A factor analysis was performed on global expression of 21 GABAergic pathway genes. Factor specificity for response to chronic alcohol/cocaine exposure was subsequently determined from the analysis of RNA-Seq data from postmortem hippocampus of eight alcoholics, eight cocaine addicts and eight controls. Six gene expression factors were identified. Most genes loaded (≥0.5) onto one factor; six genes loaded onto two. The largest factor (0.30 variance) included the chromosome 5 gene cluster that encodes the most common GABAA receptor, α1β2γ2, and genes encoding the α3β3γ2 receptor. Genes within this factor were largely unresponsive to chronic alcohol/cocaine exposure. In contrast, the chromosome 4 gene cluster factor (0.14 variance) encoding the α2β1γ1 receptor was influenced by chronic alcohol/cocaine exposure. Two other factors (0.17 and 0.06 variance) showed expression changes in alcoholics/cocaine addicts; these factors included genes involved in GABA synthesis and synaptic transport. Finally there were two factors that included genes with exceptionally low (0.10 variance) and high (0.09 variance) expression in the cerebellum; the former factor was unaffected by alcohol/cocaine exposure. This study has shown that there appears to be specificity of GABAergic gene groups, defined by covariation in expression, for response to chronic alcohol/cocaine exposure. These findings might have implications for combating stress

  17. High-Resolution Melting Curve Analysis of the 16S Ribosomal Gene to Detect and Identify Pathogenic and Saprophytic Leptospira Species in Colombian Isolates.

    PubMed

    Peláez Sánchez, Ronald G; Quintero, Juan Álvaro López; Pereira, Martha María; Agudelo-Flórez, Piedad

    2017-05-01

    AbstractIt is important to identify the circulating Leptospira agent to enhance the performance of serodiagnostic tests by incorporating specific antigens of native species, develop vaccines that take into account the species/serovars circulating in different regions, and optimize prevention and control strategies. The objectives of this study were to develop a polymerase chain reaction (PCR)-high-resolution melting (HRM) assay for differentiating between species of the genus Leptospira and to verify its usefulness in identifying unknown samples to species level. A set of primers from the initial region of the 16S ribosomal gene was designed to detect and differentiate the 22 species of Leptospira. Eleven reference strains were used as controls to establish the reference species and differential melting curves. Twenty-five Colombian Leptospira isolates were studied to evaluate the usefulness of the PCR-HRM assay in identifying unknown samples to species level. This identification was confirmed by sequencing and phylogenetic analysis of the 16S ribosomal gene. Eleven Leptospira species were successfully identified, except for Leptospira meyeri/Leptospira yanagawae because the sequences were 100% identical. The 25 isolates from humans, animals, and environmental water sources were identified as Leptospira santarosai (twelve), Leptospira interrogans (nine), and L. meyeri/L. yanagawae (four). The species verification was 100% concordant between PCR-HRM and phylogenetic analysis of the 16S ribosomal gene. The PCR-HRM assay designed in this study is a useful tool for identifying Leptospira species from isolates.

  18. A potential novel spontaneous preterm birth gene, AR, identified by linkage and association analysis of X chromosomal markers.

    PubMed

    Karjalainen, Minna K; Huusko, Johanna M; Ulvila, Johanna; Sotkasiira, Jenni; Luukkonen, Aino; Teramo, Kari; Plunkett, Jevon; Anttila, Verneri; Palotie, Aarno; Haataja, Ritva; Muglia, Louis J; Hallman, Mikko

    2012-01-01

    Preterm birth is the major cause of neonatal mortality and morbidity. In many cases, it has severe life-long consequences for the health and neurological development of the newborn child. More than 50% of all preterm births are spontaneous, and currently there is no effective prevention. Several studies suggest that genetic factors play a role in spontaneous preterm birth (SPTB). However, its genetic background is insufficiently characterized. The aim of the present study was to perform a linkage analysis of X chromosomal markers in SPTB in large northern Finnish families with recurrent SPTBs. We found a significant linkage signal (HLOD = 3.72) on chromosome locus Xq13.1 when the studied phenotype was being born preterm. There were no significant linkage signals when the studied phenotype was giving preterm deliveries. Two functional candidate genes, those encoding the androgen receptor (AR) and the interleukin-2 receptor gamma subunit (IL2RG), located near this locus were analyzed as candidates for SPTB in subsequent case-control association analyses. Nine single-nucleotide polymorphisms (SNPs) within these genes and an AR exon-1 CAG repeat, which was previously demonstrated to be functionally significant, were analyzed in mothers with preterm delivery (n = 272) and their offspring (n = 269), and in mothers with exclusively term deliveries (n = 201) and their offspring (n = 199), all originating from northern Finland. A replication study population consisting of individuals born preterm (n = 111) and term (n = 197) from southern Finland was also analyzed. Long AR CAG repeats (≥ 26) were overrepresented and short repeats (≤ 19) underrepresented in individuals born preterm compared to those born at term. Thus, our linkage and association results emphasize the role of the fetal genome in genetic predisposition to SPTB and implicate AR as a potential novel fetal susceptibility gene for SPTB.

  19. A Potential Novel Spontaneous Preterm Birth Gene, AR, Identified by Linkage and Association Analysis of X Chromosomal Markers

    PubMed Central

    Karjalainen, Minna K.; Huusko, Johanna M.; Ulvila, Johanna; Sotkasiira, Jenni; Luukkonen, Aino; Teramo, Kari; Plunkett, Jevon; Anttila, Verneri; Palotie, Aarno; Haataja, Ritva; Muglia, Louis J.; Hallman, Mikko

    2012-01-01

    Preterm birth is the major cause of neonatal mortality and morbidity. In many cases, it has severe life-long consequences for the health and neurological development of the newborn child. More than 50% of all preterm births are spontaneous, and currently there is no effective prevention. Several studies suggest that genetic factors play a role in spontaneous preterm birth (SPTB). However, its genetic background is insufficiently characterized. The aim of the present study was to perform a linkage analysis of X chromosomal markers in SPTB in large northern Finnish families with recurrent SPTBs. We found a significant linkage signal (HLOD  = 3.72) on chromosome locus Xq13.1 when the studied phenotype was being born preterm. There were no significant linkage signals when the studied phenotype was giving preterm deliveries. Two functional candidate genes, those encoding the androgen receptor (AR) and the interleukin-2 receptor gamma subunit (IL2RG), located near this locus were analyzed as candidates for SPTB in subsequent case-control association analyses. Nine single-nucleotide polymorphisms (SNPs) within these genes and an AR exon-1 CAG repeat, which was previously demonstrated to be functionally significant, were analyzed in mothers with preterm delivery (n = 272) and their offspring (n = 269), and in mothers with exclusively term deliveries (n = 201) and their offspring (n = 199), all originating from northern Finland. A replication study population consisting of individuals born preterm (n = 111) and term (n = 197) from southern Finland was also analyzed. Long AR CAG repeats (≥26) were overrepresented and short repeats (≤19) underrepresented in individuals born preterm compared to those born at term. Thus, our linkage and association results emphasize the role of the fetal genome in genetic predisposition to SPTB and implicate AR as a potential novel fetal susceptibility gene for SPTB. PMID:23227263

  20. Identifying essential genes in Arabidopsis thaliana.

    PubMed

    Meinke, David; Muralla, Rosanna; Sweeney, Colleen; Dickerman, Allan

    2008-09-01

    Eight years after publication of the Arabidopsis genome sequence and two years before completing the first phase of an international effort to characterize the function of every Arabidopsis gene, plant biologists remain unable to provide a definitive answer to the following basic question: what is the minimal gene set required for normal growth and development? The purpose of this review is to summarize different strategies employed to identify essential genes in Arabidopsis, an important component of the minimal gene set in plants, to present an overview of the datasets and specific genes identified to date, and to discuss the prospects for future saturation of this important class of genes. The long-term goal of this collaborative effort is to facilitate basic research in plant biology and complement ongoing research with other model organisms.

  1. Microarray hybridization analysis of light-dependent gene expression in Penicillium chrysogenum identifies bZIP transcription factor PcAtfA.

    PubMed

    Wolfers, Simon; Kamerewerd, Jens; Nowrousian, Minou; Sigl, Claudia; Zadra, Ivo; Kürnsteiner, Hubert; Kück, Ulrich; Bloemendal, Sandra

    2015-04-01

    The fungal velvet complex is a light-dependent master regulator of secondary metabolism and development in the major penicillin producer, Penicillium chrysogenum. However, the light-dependent mechanism is unclear. To identify velvet-dependent transcriptional regulators that show light-regulated expression, we performed microarray hybridizations with RNA isolated from P. chrysogenum ΔPcku70 cultures grown under 13 different long-term, light-dependent growth conditions. We compared these expression data to data from two velvet complex deletion mutants; one lacked a subunit of the velvet complex (ΔPcvelA), and the other lacked a velvet-associated protein (ΔPclaeA). We sought to identify genes that were up-regulated in light, but down-regulated in ΔPcvelA and ΔPclaeA. We identified 148 co-regulated genes that displayed this regulatory pattern. In silico analyses of the co-regulated genes identified six proteins with fungal-specific transcription factor domains. Among these, we selected the bZIP transcription factor, PcAtfA, for functional characterization in deletion and complementation strains. Our data clearly indicates that PcAtfA governs spore germination. This comparative analysis of different microarray hybridization data sets provided results that may be useful for identifying genes for future functional analyses.

  2. Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia

    PubMed Central

    Yamada, Kazuo; Gerber, David J.; Iwayama, Yoshimi; Ohnishi, Tetsuo; Ohba, Hisako; Toyota, Tomoko; Aruga, Jun; Minabe, Yoshio; Tonegawa, Susumu; Yoshikawa, Takeo

    2007-01-01

    The calcineurin cascade is central to neuronal signal transduction, and genes in this network are intriguing candidate schizophrenia susceptibility genes. To replicate and extend our previously reported association between the PPP3CC gene, encoding the calcineurin catalytic γ-subunit, and schizophrenia, we examined 84 SNPs from 14 calcineurin-related candidate genes for genetic association by using 124 Japanese schizophrenic pedigrees. Four of these genes (PPP3CC, EGR2, EGR3, and EGR4) showed nominally significant association with schizophrenia. In a postmortem brain study, EGR1, EGR2, and EGR3 transcripts were shown to be down-regulated in the prefrontal cortex of schizophrenic, but not bipolar, patients. These findings raise a potentially important role for EGR genes in schizophrenia pathogenesis. Because EGR3 is an attractive candidate gene based on its chromosomal location close to PPP3CC within 8p21.3 and its functional link to dopamine, glutamate, and neuregulin signaling, we extended our analysis by resequencing the entire EGR3 genomic interval and detected 15 SNPs. One of these, IVS1 + 607A→G SNP, displayed the strongest evidence for disease association, which was confirmed in 1,140 independent case-control samples. An in vitro promoter assay detected a possible expression-regulatory effect of this SNP. These findings support the previous genetic association of altered calcineurin signaling with schizophrenia pathogenesis and identify EGR3 as a compelling susceptibility gene. PMID:17360599

  3. Metadata Analysis of Phanerochaete chrysosporium Gene Expression Data Identified Common CAZymes Encoding Gene Expression Profiles Involved in Cellulose and Hemicellulose Degradation

    PubMed Central

    Kameshwar, Ayyappa Kumar Sista; Qin, Wensheng

    2017-01-01

    In literature, extensive studies have been conducted on popular wood degrading white rot fungus, Phanerochaete chrysosporium about its lignin degrading mechanisms compared to the cellulose and hemicellulose degrading abilities. This study delineates cellulose and hemicellulose degrading mechanisms through large scale metadata analysis of P. chrysosporium gene expression data (retrieved from NCBI GEO) to understand the common expression patterns of differentially expressed genes when cultured on different growth substrates. Genes encoding glycoside hydrolase classes commonly expressed during breakdown of cellulose such as GH-5,6,7,9,44,45,48 and hemicellulose are GH-2,8,10,11,26,30,43,47 were found to be highly expressed among varied growth conditions including simple customized and complex natural plant biomass growth mediums. Genes encoding carbohydrate esterase class enzymes CE (1,4,8,9,15,16) polysaccharide lyase class enzymes PL-8 and PL-14, and glycosyl transferases classes GT (1,2,4,8,15,20,35,39,48) were differentially expressed in natural plant biomass growth mediums. Based on these results, P. chrysosporium, on natural plant biomass substrates was found to express lignin and hemicellulose degrading enzymes more than cellulolytic enzymes except GH-61 (LPMO) class enzymes, in early stages. It was observed that the fate of P. chrysosporium transcriptome is significantly affected by the wood substrate provided. We believe, the gene expression findings in this study plays crucial role in developing genetically efficient microbe with effective cellulose and hemicellulose degradation abilities. PMID:28123349

  4. De novo assembly and transcriptome analysis of Plasmodium gallinaceum identifies the Rh5 interacting protein (ripr), and reveals a lack of EBL and RH gene family diversification.

    PubMed

    Lauron, Elvin J; Aw Yeang, Han Xian; Taffner, Samantha M; Sehgal, Ravinder N M

    2015-08-05

    Malaria parasites that infect birds can have narrow or broad host-tropisms. These differences in host specificity make avian malaria a useful model for studying the evolution and transmission of parasite assemblages across geographic ranges. The molecular mechanisms involved in host-specificity and the biology of avian malaria parasites in general are important aspects of malaria pathogenesis that warrant further examination. Here, the transcriptome of the malaria parasite Plasmodium gallinaceum was characterized to investigate the biology and the conservation of genes across various malaria parasite species. The P. gallinaceum transcriptome was annotated and KEGG pathway mapping was performed. The ripr gene and orthologous genes that play critical roles in the purine salvage pathway were identified and characterized using bioinformatics and phylogenetic methods. Analysis of the transcriptome sequence database identified essential genes of the purine salvage pathway in P. gallinaceum that shared high sequence similarity to Plasmodium falciparum when compared to other mammalian Plasmodium spp. However, based on the current sequence data, there was a lack of orthologous genes that belonged to the erythrocyte-binding-like (EBL) and reticulocyte-binding-like homologue (RH) family in P. gallinaceum. In addition, an orthologue of the Rh5 interacting protein (ripr) was identified. These findings suggest that the pathways involved in parasite red blood cell invasion are significantly different in avian Plasmodium parasites, but critical metabolic pathways are conserved throughout divergent Plasmodium taxa.

  5. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus.

    PubMed

    Bedre, Renesh; Rajasekaran, Kanniah; Mangu, Venkata Ramanarao; Sanchez Timm, Luis Eduardo; Bhatnagar, Deepak; Baisakh, Niranjan

    2015-01-01

    Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L.) pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research.

  6. A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies.

    PubMed

    Chang, Lun-Ching; Jamain, Stephane; Lin, Chien-Wei; Rujescu, Dan; Tseng, George C; Sibille, Etienne

    2014-01-01

    Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases. In support of the superior discriminative power of this novel approach, we observed no significant enrichment for GWAS-related genes in coexpression modules extracted from single studies or in meta-modules using gene expression data from non-psychiatric control subjects. Genes in the identified module encode proteins implicated in neuronal signaling and structure, including glutamate metabotropic receptors (GRM1, GRM7), GABA receptors (GABRA2, GABRA4), and neurotrophic and development-related proteins [BDNF, reelin (RELN), Ephrin receptors (EPHA3, EPHA5)]. These results are consistent with the current understanding of molecular mechanisms of MDD and provide a set of putative interacting molecular partners, potentially reflecting components of a functional module across cells and biological pathways that are synchronously recruited in MDD, other brain disorders and MDD-related illnesses. Collectively, this study demonstrates the importance of integrating transcriptome data, gene coexpression modules

  7. Integrative proteomic and gene expression analysis identify potential biomarkers for adjuvant trastuzumab resistance: analysis from the Fin-her phase III randomized trial

    PubMed Central

    Fumagalli, Debora; Rothé, Françoise; Vincent, Delphine; Ignatiadis, Michael; Desmedt, Christine; Salgado, Roberto; Sirtaine, Nicolas; Loi, Sherene; Neven, Patrick; Loibl, Sibylle; Denkert, Carsten; Joensuu, Heikki; Piccart, Martine; Sotiriou, Christos

    2015-01-01

    Trastuzumab is a remarkably effective therapy for patients with human epidermal growth factor receptor 2 (HER2) - positive breast cancer (BC). However, not all women with high levels of HER2 benefit from trastuzumab. By integrating mRNA and protein expression data from Reverse-Phase Protein Array Analysis (RPPA) in HER2-positive BC, we developed gene expression metagenes that reflect pathway activation levels. Next we assessed the ability of these metagenes to predict resistance to adjuvant trastuzumab using gene expression data from two independent datasets. 10 metagenes passed external validation (false discovery rate [fdr] < 0.05) and showed biological relevance with their pathway of origin. These metagenes were further screened for their association with trastuzumab resistance. An association with trastuzumab resistance was observed and validated only for the AnnexinA1 metagene (ANXA1). In the randomised phase III Fin-her study, tumours with low levels of the ANXA1 metagene showed a benefit from trastuzumab (multivariate: hazard ratio [HR] for distant recurrence = 0.16[95%CI 0.05–0.5]; p = 0.002; fdr = 0.03), while high expression levels of the ANXA1 metagene were associated with a lack of benefit to trastuzmab (HR = 1.29[95%CI 0.55–3.02]; p = 0.56). The association of ANXA1 with trastuzumab resistance was successfully validated in an independent series of subjects who had received trastuzumab with chemotherapy (Log Rank; p = 0.01). In conclusion, in HER2-positive BC, some proteins are associated with distinct gene expression profiles. Our findings identify the ANXA1metagene as a novel biomarker for trastuzumab resistance. PMID:26358523

  8. Integrative proteomic and gene expression analysis identify potential biomarkers for adjuvant trastuzumab resistance: analysis from the Fin-her phase III randomized trial.

    PubMed

    Sonnenblick, Amir; Brohée, Sylvain; Fumagalli, Debora; Rothé, Françoise; Vincent, Delphine; Ignatiadis, Michael; Desmedt, Christine; Salgado, Roberto; Sirtaine, Nicolas; Loi, Sherene; Neven, Patrick; Loibl, Sibylle; Denkert, Carsten; Joensuu, Heikki; Piccart, Martine; Sotiriou, Christos

    2015-10-06

    Trastuzumab is a remarkably effective therapy for patients with human epidermal growth factor receptor 2 (HER2)--positive breast cancer (BC). However, not all women with high levels of HER2 benefit from trastuzumab. By integrating mRNA and protein expression data from Reverse-Phase Protein Array Analysis (RPPA) in HER2-positive BC, we developed gene expression metagenes that reflect pathway activation levels. Next we assessed the ability of these metagenes to predict resistance to adjuvant trastuzumab using gene expression data from two independent datasets.10 metagenes passed external validation (false discovery rate [fdr] < 0.05) and showed biological relevance with their pathway of origin. These metagenes were further screened for their association with trastuzumab resistance. An association with trastuzumab resistance was observed and validated only for the AnnexinA1 metagene (ANXA1). In the randomised phase III Fin-her study, tumours with low levels of the ANXA1 metagene showed a benefit from trastuzumab (multivariate: hazard ratio [HR] for distant recurrence = 0.16[95%CI 0.05-0.5]; p = 0.002; fdr = 0.03), while high expression levels of the ANXA1 metagene were associated with a lack of benefit to trastuzmab (HR = 1.29[95%CI 0.55-3.02]; p = 0.56). The association of ANXA1 with trastuzumab resistance was successfully validated in an independent series of subjects who had received trastuzumab with chemotherapy (Log Rank; p = 0.01).In conclusion, in HER2-positive BC, some proteins are associated with distinct gene expression profiles. Our findings identify the ANXA1metagene as a novel biomarker for trastuzumab resistance.

  9. Gene-centric Meta-analysis in 87,736 Individuals of European Ancestry Identifies Multiple Blood-Pressure-Related Loci

    PubMed Central

    Tragante, Vinicius; Barnes, Michael R.; Ganesh, Santhi K.; Lanktree, Matthew B.; Guo, Wei; Franceschini, Nora; Smith, Erin N.; Johnson, Toby; Holmes, Michael V.; Padmanabhan, Sandosh; Karczewski, Konrad J.; Almoguera, Berta; Barnard, John; Baumert, Jens; Chang, Yen-Pei Christy; Elbers, Clara C.; Farrall, Martin; Fischer, Mary E.; Gaunt, Tom R.; Gho, Johannes M.I.H.; Gieger, Christian; Goel, Anuj; Gong, Yan; Isaacs, Aaron; Kleber, Marcus E.; Leach, Irene Mateo; McDonough, Caitrin W.; Meijs, Matthijs F.L.; Melander, Olle; Nelson, Christopher P.; Nolte, Ilja M.; Pankratz, Nathan; Price, Tom S.; Shaffer, Jonathan; Shah, Sonia; Tomaszewski, Maciej; van der Most, Peter J.; Van Iperen, Erik P.A.; Vonk, Judith M.; Witkowska, Kate; Wong, Caroline O.L.; Zhang, Li; Beitelshees, Amber L.; Berenson, Gerald S.; Bhatt, Deepak L.; Brown, Morris; Burt, Amber; Cooper-DeHoff, Rhonda M.; Connell, John M.; Cruickshanks, Karen J.; Curtis, Sean P.; Davey-Smith, George; Delles, Christian; Gansevoort, Ron T.; Guo, Xiuqing; Haiqing, Shen; Hastie, Claire E.; Hofker, Marten H.; Hovingh, G. Kees; Kim, Daniel S.; Kirkland, Susan A.; Klein, Barbara E.; Klein, Ronald; Li, Yun R.; Maiwald, Steffi; Newton-Cheh, Christopher; O’Brien, Eoin T.; Onland-Moret, N. Charlotte; Palmas, Walter; Parsa, Afshin; Penninx, Brenda W.; Pettinger, Mary; Vasan, Ramachandran S.; Ranchalis, Jane E.; M Ridker, Paul; Rose, Lynda M.; Sever, Peter; Shimbo, Daichi; Steele, Laura; Stolk, Ronald P.; Thorand, Barbara; Trip, Mieke D.; van Duijn, Cornelia M.; Verschuren, W. Monique; Wijmenga, Cisca; Wyatt, Sharon; Young, J. Hunter; Zwinderman, Aeilko H.; Bezzina, Connie R.; Boerwinkle, Eric; Casas, Juan P.; Caulfield, Mark J.; Chakravarti, Aravinda; Chasman, Daniel I.; Davidson, Karina W.; Doevendans, Pieter A.; Dominiczak, Anna F.; FitzGerald, Garret A.; Gums, John G.; Fornage, Myriam; Hakonarson, Hakon; Halder, Indrani; Hillege, Hans L.; Illig, Thomas; Jarvik, Gail P.; Johnson, Julie A.; Kastelein, John J.P.; Koenig, Wolfgang; Kumari, Meena; März, Winfried; Murray, Sarah S.; O’Connell, Jeffery R.; Oldehinkel, Albertine J.; Pankow, James S.; Rader, Daniel J.; Redline, Susan; Reilly, Muredach P.; Schadt, Eric E.; Kottke-Marchant, Kandice; Snieder, Harold; Snyder, Michael; Stanton, Alice V.; Tobin, Martin D.; Uitterlinden, André G.; van der Harst, Pim; van der Schouw, Yvonne T.; Samani, Nilesh J.; Watkins, Hugh; Johnson, Andrew D.; Reiner, Alex P.; Zhu, Xiaofeng; de Bakker, Paul I.W.; Levy, Daniel; Asselbergs, Folkert W.; Munroe, Patricia B.; Keating, Brendan J.

    2014-01-01

    Blood pressure (BP) is a heritable risk factor for cardiovascular disease. To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP), we genotyped ∼50,000 SNPs in up to 87,736 individuals of European ancestry and combined these in a meta-analysis. We replicated findings in an independent set of 68,368 individuals of European ancestry. Our analyses identified 11 previously undescribed associations in independent loci containing 31 genes including PDE1A, HLA-DQB1, CDK6, PRKAG2, VCL, H19, NUCB2, RELA, HOXC@ complex, FBN1, and NFAT5 at the Bonferroni-corrected array-wide significance threshold (p < 6 × 10−7) and confirmed 27 previously reported associations. Bioinformatic analysis of the 11 loci provided support for a putative role in hypertension of several genes, such as CDK6 and NUCB2. Analysis of potential pharmacological targets in databases of small molecules showed that ten of the genes are predicted to be a target for small molecules. In summary, we identified previously unknown loci associated with BP. Our findings extend our understanding of genes involved in BP regulation, which may provide new targets for therapeutic intervention or drug response stratification. PMID:24560520

  10. Gene-centric meta-analysis in 87,736 individuals of European ancestry identifies multiple blood-pressure-related loci.

    PubMed

    Tragante, Vinicius; Barnes, Michael R; Ganesh, Santhi K; Lanktree, Matthew B; Guo, Wei; Franceschini, Nora; Smith, Erin N; Johnson, Toby; Holmes, Michael V; Padmanabhan, Sandosh; Karczewski, Konrad J; Almoguera, Berta; Barnard, John; Baumert, Jens; Chang, Yen-Pei Christy; Elbers, Clara C; Farrall, Martin; Fischer, Mary E; Gaunt, Tom R; Gho, Johannes M I H; Gieger, Christian; Goel, Anuj; Gong, Yan; Isaacs, Aaron; Kleber, Marcus E; Mateo Leach, Irene; McDonough, Caitrin W; Meijs, Matthijs F L; Melander, Olle; Nelson, Christopher P; Nolte, Ilja M; Pankratz, Nathan; Price, Tom S; Shaffer, Jonathan; Shah, Sonia; Tomaszewski, Maciej; van der Most, Peter J; Van Iperen, Erik P A; Vonk, Judith M; Witkowska, Kate; Wong, Caroline O L; Zhang, Li; Beitelshees, Amber L; Berenson, Gerald S; Bhatt, Deepak L; Brown, Morris; Burt, Amber; Cooper-DeHoff, Rhonda M; Connell, John M; Cruickshanks, Karen J; Curtis, Sean P; Davey-Smith, George; Delles, Christian; Gansevoort, Ron T; Guo, Xiuqing; Haiqing, Shen; Hastie, Claire E; Hofker, Marten H; Hovingh, G Kees; Kim, Daniel S; Kirkland, Susan A; Klein, Barbara E; Klein, Ronald; Li, Yun R; Maiwald, Steffi; Newton-Cheh, Christopher; O'Brien, Eoin T; Onland-Moret, N Charlotte; Palmas, Walter; Parsa, Afshin; Penninx, Brenda W; Pettinger, Mary; Vasan, Ramachandran S; Ranchalis, Jane E; M Ridker, Paul; Rose, Lynda M; Sever, Peter; Shimbo, Daichi; Steele, Laura; Stolk, Ronald P; Thorand, Barbara; Trip, Mieke D; van Duijn, Cornelia M; Verschuren, W Monique; Wijmenga, Cisca; Wyatt, Sharon; Young, J Hunter; Zwinderman, Aeilko H; Bezzina, Connie R; Boerwinkle, Eric; Casas, Juan P; Caulfield, Mark J; Chakravarti, Aravinda; Chasman, Daniel I; Davidson, Karina W; Doevendans, Pieter A; Dominiczak, Anna F; FitzGerald, Garret A; Gums, John G; Fornage, Myriam; Hakonarson, Hakon; Halder, Indrani; Hillege, Hans L; Illig, Thomas; Jarvik, Gail P; Johnson, Julie A; Kastelein, John J P; Koenig, Wolfgang; Kumari, Meena; März, Winfried; Murray, Sarah S; O'Connell, Jeffery R; Oldehinkel, Albertine J; Pankow, James S; Rader, Daniel J; Redline, Susan; Reilly, Muredach P; Schadt, Eric E; Kottke-Marchant, Kandice; Snieder, Harold; Snyder, Michael; Stanton, Alice V; Tobin, Martin D; Uitterlinden, André G; van der Harst, Pim; van der Schouw, Yvonne T; Samani, Nilesh J; Watkins, Hugh; Johnson, Andrew D; Reiner, Alex P; Zhu, Xiaofeng; de Bakker, Paul I W; Levy, Daniel; Asselbergs, Folkert W; Munroe, Patricia B; Keating, Brendan J

    2014-03-06

    Blood pressure (BP) is a heritable risk factor for cardiovascular disease. To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP), we genotyped ~50,000 SNPs in up to 87,736 individuals of European ancestry and combined these in a meta-analysis. We replicated findings in an independent set of 68,368 individuals of European ancestry. Our analyses identified 11 previously undescribed associations in independent loci containing 31 genes including PDE1A, HLA-DQB1, CDK6, PRKAG2, VCL, H19, NUCB2, RELA, HOXC@ complex, FBN1, and NFAT5 at the Bonferroni-corrected array-wide significance threshold (p < 6 × 10(-7)) and confirmed 27 previously reported associations. Bioinformatic analysis of the 11 loci provided support for a putative role in hypertension of several genes, such as CDK6 and NUCB2. Analysis of potential pharmacological targets in databases of small molecules showed that ten of the genes are predicted to be a target for small molecules. In summary, we identified previously unknown loci associated with BP. Our findings extend our understanding of genes involved in BP regulation, which may provide new targets for therapeutic intervention or drug response stratification. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Transcriptome analysis to identify genes for peptides and proteins involved in immunity and reproduction from male accessory glands and ejaculatory duct of Bactrocera dorsalis.

    PubMed

    Wei, Dong; Tian, Chuan-Bei; Liu, Shi-Huo; Wang, Tao; Smagghe, Guy; Jia, Fu-Xian; Dou, Wei; Wang, Jin-Jun

    2016-06-01

    In the male reproductive system of insects, the male accessory glands and ejaculatory duct (MAG/ED) are important organs and their primary function is to enhance the fertility of spermatozoa. Proteins secreted by the MAG/ED are also known to induce post-mating changes and immunity responses in the female insect. To understand the gene expression profile in the MAG/ED of the oriental fruit fly Bactrocera dorsalis (Hendel), that is an important pest in fruits, we performed an Illumina-based deep sequencing of mRNA. This yielded 54,577,630 clean reads corresponding to 4.91Gb total nucleotides that were assembled and clustered to 30,669 unigenes (average 645bp). Among them, 20,419 unigenes were functionally annotated to known proteins/peptides in Gene Orthology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes pathway databases. Typically, many genes were involved in immunity and these included microbial recognition proteins and antimicrobial peptides. Subsequently, the inducible expression of these immunity-related genes was confirmed by qRT-PCR analysis when insects were challenged with immunity-inducible factors, suggesting their function in guaranteeing fertilization success. Besides, we identified some important reproductive genes such as juvenile hormone- and ecdysteroid-related genes in this de novo assembly. In conclusion, this transcriptomic sequencing of B. dorsalis MAG/ED provides insights to facilitate further functional research of reproduction, immunity and molecular evolution of reproductive proteins in this important agricultural pest.

  12. Systemic Analysis of Gene Expression Profiles Identifies ErbB3 as a Potential Drug Target in Pediatric Alveolar Rhabdomyosarcoma

    PubMed Central

    Nordberg, Janne; Mpindi, John Patrick; Iljin, Kristiina; Pulliainen, Arto Tapio; Kallajoki, Markku; Kallioniemi, Olli; Elenius, Klaus; Elenius, Varpu

    2012-01-01

    Pediatric sarcomas, including rhabdomyosarcomas, Ewing’s sarcoma, and osteosarcoma, are aggressive tumors with poor survival rates. To overcome problems associated with nonselectivity of the current therapeutic approaches, targeted therapeutics have been developed. Currently, an increasing number of such drugs are used for treating malignancies of adult patients but little is known about their effects in pediatric patients. We analyzed expression of 24 clinically approved target genes in a wide variety of pediatric normal and malignant tissues using a novel high-throughput systems biology approach. Analysis of the Genesapiens database of human transcriptomes demonstrated statistically significant up-regulation of VEGFC and EPHA2 in Ewing’s sarcoma, and ERBB3 in alveolar rhabdomyosarcomas. In silico data for ERBB3 was validated by demonstrating ErbB3 protein expression in pediatric rhabdomyosarcoma in vitro and in vivo. ERBB3 overexpression promoted whereas ERBB3-targeted siRNA suppressed rhabdomyosarcoma cell gowth, indicating a functional role for ErbB3 signaling in rhabdomyosarcoma. These data suggest that drugs targeting ErbB3, EphA2 or VEGF-C could be further tested as therapeutic targets for pediatric sarcomas. PMID:23227212

  13. Transcriptome and proteome analysis of tyrosine kinase inhibitor treated canine mast cell tumour cells identifies potentially kit signaling-dependent genes

    PubMed Central

    2012-01-01

    Background Canine mast cell tumour proliferation depends to a large extent on the activity of KIT, a tyrosine kinase receptor. Inhibitors of the KIT tyrosine kinase have recently been introduced and successfully applied as a therapeutic agent for this tumour type. However, little is known on the downstream target genes of this signaling pathway and molecular changes after inhibition. Results Transcriptome analysis of the canine mast cell tumour cell line C2 treated for up to 72 hours with the tyrosine kinase inhibitor masitinib identified significant changes in the expression levels of approximately 3500 genes or 16% of the canine genome. Approximately 40% of these genes had increased mRNA expression levels including genes associated with the pro-proliferative pathways of B- and T-cell receptors, chemokine receptors, steroid hormone receptors and EPO-, RAS and MAP kinase signaling. Proteome analysis of C2 cells treated for 72 hours identified 24 proteins with changed expression levels, most of which being involved in gene transcription, e.g. EIA3, EIA4, TARDBP, protein folding, e.g. HSP90, UCHL3, PDIA3 and protection from oxidative stress, GSTT3, SELENBP1. Conclusions Transcriptome and proteome analysis of neoplastic canine mast cells treated with masitinib confirmed the strong important and complex role of KIT in these cells. Approximately 16% of the total canine genome and thus the majority of the active genes were significantly transcriptionally regulated. Most of these changes were associated with reduced proliferation and metabolism of treated cells. Interestingly, several pro-proliferative pathways were up-regulated, which may represent attempts of masitinib treated cells to activate alternative pro-proliferative pathways. These pathways may contain hypothetical targets for a combination therapy with masitinib to further improve its therapeutic effect. PMID:22747577

  14. Integration of gene expression data with network-based analysis to identify signaling and metabolic pathways regulated during the development of osteoarthritis.

    PubMed

    Olex, Amy L; Turkett, William H; Fetrow, Jacquelyn S; Loeser, Richard F

    2014-05-25

    Osteoarthritis (OA) is characterized by remodeling and degradation of joint tissues. Microarray studies have led to a better understanding of the molecular changes that occur in tissues affected by conditions such as OA; however, such analyses are limited to the identification of a list of genes with altered transcript expression, usually at a single time point during disease progression. While these lists have identified many novel genes that are altered during the disease process, they are unable to identify perturbed relationships between genes and gene products. In this work, we have integrated a time course gene expression dataset with network analysis to gain a better systems level understanding of the early events that occur during the development of OA in a mouse model. The subnetworks that were enriched at one or more of the time points examined (2, 4, 8, and 16 weeks after induction of OA) contained genes from several pathways proposed to be important to the OA process, including the extracellular matrix-receptor interaction and the focal adhesion pathways and the Wnt, Hedgehog and TGF-β signaling pathways. The genes within the subnetworks were most active at the 2 and 4 week time points and included genes not previously studied in the OA process. A unique pathway, riboflavin metabolism, was active at the 4 week time point. These results suggest that the incorporation of network-type analyses along with time series microarray data will lead to advancements in our understanding of complex diseases such as OA at a systems level, and may provide novel insights into the pathways and processes involved in disease pathogenesis.

  15. Genome Wide Gene by Environment Interaction Analysis Identifies Common SNPs at 17q21.2 that Are Associated with Increased Body Mass Index Only among Asthmatics

    DTIC Science & Technology

    2015-12-16

    Identifies Common SNPs at 17q21.2 that Are Associated with Increased Body Mass Index Only among Asthmatics 5a. CONTRACT NUMBER 5b. GRANT...that are associated with asthma-related BMI increase, we performed a genome-wide gene by environment (asthma) interaction analysis for the outcome of...Seven SNPs clustered in 17q21.2 were identified to be associated with higher BMI among asthmatics (interaction p < 5×10-7 in MESA and p < 0.05 in

  16. A predictive approach to identify genes differentially expressed

    NASA Astrophysics Data System (ADS)

    Saraiva, Erlandson F.; Louzada, Francisco; Milan, Luís A.; Meira, Silvana; Cobre, Juliana

    2012-10-01

    The main objective of gene expression data analysis is to identify genes that present significant changes in expression levels between a treatment and a control biological condition. In this paper, we propose a Bayesian approach to identify genes differentially expressed calculating credibility intervals from predictive densities which are constructed using sampled mean treatment effect from all genes in study excluding the treatment effect of genes previously identified with statistical evidence for difference. We compare our Bayesian approach with the standard ones based on the use of the t-test and modified t-tests via a simulation study, using small sample sizes which are common in gene expression data analysis. Results obtained indicate that the proposed approach performs better than standard ones, especially for cases with mean differences and increases in treatment variance in relation to control variance. We also apply the methodologies to a publicly available data set on Escherichia coli bacteria.

  17. Genomic Profiling Identifies Novel Mutations and SNPs in ABCD1 Gene: A Molecular, Biochemical and Clinical Analysis of X-ALD Cases in India

    PubMed Central

    Kumar, Neeraj; Taneja, Krishna Kant; Kalra, Veena; Behari, Madhuri; Aneja, Satinder; Bansal, Surendra Kumar

    2011-01-01

    X-linked adrenoleukodystrophy (X-ALD) affects the nervous system white matter and adrenal cortex secondary to mutations in the ABCD1 gene that encode the peroxisomal membrane protein. We conducted a genomic and protein expression study of susceptibility gene with its clinical and biochemical analysis. To the best of our knowledge this is the first preliminary comprehensive study in Indian population that identified novel mutations and SNPs in a relatively large group. We screened 17 Indian indigenous X-linked adrenoleukodystrophy cases and 70 controls for mutations and SNPs in the exonic regions (including flanking regions) of ABCD1 gene by direct sequencing with ABI automated sequencer along with Western blot analysis of its endogenous protein, ALDP, levels in peripheral blood mononuclear cells. Single germ line mutation was identified in each index case in ABCD1 gene. We detected 4 novel mutations (2 missense and 2 deletion/insertion) and 3 novel single nucleotide polymorphisms. We observed a variable protein expression in different patients. These findings were further extended to biochemical and clinical observations as it occurs with great clinical expression variability. This is the first major study in this population that presents a different molecular genetic spectrum as compared to Caucasian population due to geographical distributions of ethnicity of patients. It enhances our knowledge of the causative mutations of X-ALD that grants holistic base to develop effective medicine against X-ALD. PMID:21966424

  18. Genomic profiling identifies novel mutations and SNPs in ABCD1 gene: a molecular, biochemical and clinical analysis of X-ALD cases in India.

    PubMed

    Kumar, Neeraj; Taneja, Krishna Kant; Kalra, Veena; Behari, Madhuri; Aneja, Satinder; Bansal, Surendra Kumar

    2011-01-01

    X-linked adrenoleukodystrophy (X-ALD) affects the nervous system white matter and adrenal cortex secondary to mutations in the ABCD1 gene that encode the peroxisomal membrane protein. We conducted a genomic and protein expression study of susceptibility gene with its clinical and biochemical analysis. To the best of our knowledge this is the first preliminary comprehensive study in Indian population that identified novel mutations and SNPs in a relatively large group. We screened 17 Indian indigenous X-linked adrenoleukodystrophy cases and 70 controls for mutations and SNPs in the exonic regions (including flanking regions) of ABCD1 gene by direct sequencing with ABI automated sequencer along with Western blot analysis of its endogenous protein, ALDP, levels in peripheral blood mononuclear cells. Single germ line mutation was identified in each index case in ABCD1 gene. We detected 4 novel mutations (2 missense and 2 deletion/insertion) and 3 novel single nucleotide polymorphisms. We observed a variable protein expression in different patients. These findings were further extended to biochemical and clinical observations as it occurs with great clinical expression variability. This is the first major study in this population that presents a different molecular genetic spectrum as compared to Caucasian population due to geographical distributions of ethnicity of patients. It enhances our knowledge of the causative mutations of X-ALD that grants holistic base to develop effective medicine against X-ALD.

  19. Allele specific expression analysis identifies regulatory variation associated with stress-related genes in the Mexican highland maize landrace Palomero Toluqueño

    PubMed Central

    González-Segovia, Eric; Ross-Ibarra, Jeffrey; Simpson, June K.

    2017-01-01

    Background Gene regulatory variation has been proposed to play an important role in the adaptation of plants to environmental stress. In the central highlands of Mexico, farmer selection has generated a unique group of maize landraces adapted to the challenges of the highland niche. In this study, gene expression in Mexican highland maize and a reference maize breeding line were compared to identify evidence of regulatory variation in stress-related genes. It was hypothesised that local adaptation in Mexican highland maize would be associated with a transcriptional signature observable even under benign conditions. Methods Allele specific expression analysis was performed using the seedling-leaf transcriptome of an F1 individual generated from the cross between the highland adapted Mexican landrace Palomero Toluqueño and the reference line B73, grown under benign conditions. Results were compared with a published dataset describing the transcriptional response of B73 seedlings to cold, heat, salt and UV treatments. Results A total of 2,386 genes were identified to show allele specific expression. Of these, 277 showed an expression difference between Palomero Toluqueño and B73 alleles under benign conditions that anticipated the response of B73 cold, heat, salt and/or UV treatments, and, as such, were considered to display a prior stress response. Prior stress response candidates included genes associated with plant hormone signaling and a number of transcription factors. Construction of a gene co-expression network revealed further signaling and stress-related genes to be among the potential targets of the transcription factors candidates. Discussion Prior activation of responses may represent the best strategy when stresses are severe but predictable. Expression differences observed here between Palomero Toluqueño and B73 alleles indicate the presence of cis-acting regulatory variation linked to stress-related genes in Palomero Toluqueño. Considered alongside

  20. Allele specific expression analysis identifies regulatory variation associated with stress-related genes in the Mexican highland maize landrace Palomero Toluqueño.

    PubMed

    Aguilar-Rangel, M Rocío; Chávez Montes, Ricardo A; González-Segovia, Eric; Ross-Ibarra, Jeffrey; Simpson, June K; Sawers, Ruairidh J H

    2017-01-01

    Gene regulatory variation has been proposed to play an important role in the adaptation of plants to environmental stress. In the central highlands of Mexico, farmer selection has generated a unique group of maize landraces adapted to the challenges of the highland niche. In this study, gene expression in Mexican highland maize and a reference maize breeding line were compared to identify evidence of regulatory variation in stress-related genes. It was hypothesised that local adaptation in Mexican highland maize would be associated with a transcriptional signature observable even under benign conditions. Allele specific expression analysis was performed using the seedling-leaf transcriptome of an F1 individual generated from the cross between the highland adapted Mexican landrace Palomero Toluqueño and the reference line B73, grown under benign conditions. Results were compared with a published dataset describing the transcriptional response of B73 seedlings to cold, heat, salt and UV treatments. A total of 2,386 genes were identified to show allele specific expression. Of these, 277 showed an expression difference between Palomero Toluqueño and B73 alleles under benign conditions that anticipated the response of B73 cold, heat, salt and/or UV treatments, and, as such, were considered to display a prior stress response. Prior stress response candidates included genes associated with plant hormone signaling and a number of transcription factors. Construction of a gene co-expression network revealed further signaling and stress-related genes to be among the potential targets of the transcription factors candidates. Prior activation of responses may represent the best strategy when stresses are severe but predictable. Expression differences observed here between Palomero Toluqueño and B73 alleles indicate the presence of cis-acting regulatory variation linked to stress-related genes in Palomero Toluqueño. Considered alongside gene annotation and population data

  1. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors.

    PubMed

    Weber, Michael; Harada, Emiko; Vess, Christoph; Roepenack-Lahaye, Edda v; Clemens, Stephan

    2004-01-01

    The hyperaccumulation of zinc (Zn) and cadmium (Cd) is a constitutive property of the metallophyte Arabidopsis halleri. We therefore used Arabidopsis GeneChips to identify genes more active in roots of A. halleri as compared to A. thaliana under control conditions. The two genes showing highest expression in A. halleri roots relative to A. thaliana roots out of more than 8000 genes present on the chip encode a nicotianamine (NA) synthase and a putative Zn2+ uptake system. The significantly higher activity of these and other genes involved in metal homeostasis under various growth conditions was confirmed by Northern and RT-PCR analyses. A. halleri roots also show higher NA synthase protein levels. Furthermore, we developed a capillary liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (CapLC-ESI-QTOF-MS)-based NA analysis procedure and consistently found higher NA levels in roots of A. halleri. Expression of a NA synthase in Zn2+-hypersensitive Schizosaccharomyces pombe cells demonstrated that formation of NA can confer Zn2+ tolerance. Taken together, these observations implicate NA in plant Zn homeostasis and NA synthase in the hyperaccumulation of Zn by A. halleri. Furthermore, the results show that comparative microarray analysis of closely related species can be a valuable tool for the elucidation of phenotypic differences between such species.

  2. Analysis of Microarray Data on Gene Expression and Methylation to Identify Long Non-coding RNAs in Non-small Cell Lung Cancer

    PubMed Central

    Feng, Nannan; Ching, Travers; Wang, Yu; Liu, Ben; Lin, Hongyan; Shi, Oumin; Zhang, Xiaohong; Zheng, Min; Zheng, Xin; Gao, Ming; Zheng, Zhi-jie; Yu, Herbert; Garmire, Lana; Qian, Biyun

    2016-01-01

    To identify what long non-coding RNAs (lncRNAs) are involved in non-small cell lung cancer (NSCLC), we analyzed microarray data on gene expression and methylation. Gene expression chip and HumanMethylation450BeadChip were used to interrogate genome-wide expression and methylation in tumor samples. Differential expression and methylation were analyzed through comparing tumors with adjacent non-tumor tissues. LncRNAs expressed differentially and correlated with coding genes and DNA methylation were validated in additional tumor samples using RT-qPCR and pyrosequencing. In vitro experiments were performed to evaluate lncRNA’s effects on tumor cells. We identified 8,500 lncRNAs expressed differentially between tumor and non-tumor tissues, of which 1,504 were correlated with mRNA expression. Two of the lncRNAs, LOC146880 and ENST00000439577, were positively correlated with expression of two cancer-related genes, KPNA2 and RCC2, respectively. High expression of LOC146880 and ENST00000439577 were also associated with poor survival. Analysis of lncRNA expression in relation to DNA methylation showed that LOC146880 expression was down-regulated by DNA methylation in its promoter. Lowering the expression of LOC146880 or ENST00000439577 in tumor cells could inhibit cell proliferation, invasion and migration. Analysis of microarray data on gene expression and methylation allows us to identify two lncRNAs, LOC146880 and ENST00000439577, which may promote the progression of NSCLC. PMID:27849024

  3. Genetic analysis identifies DDR2 as a novel gene affecting bone mineral density and osteoporotic fractures in Chinese population.

    PubMed

    Guo, Yan; Yang, Tie-Lin; Dong, Shan-Shan; Yan, Han; Hao, Ruo-Han; Chen, Xiao-Feng; Chen, Jia-Bin; Tian, Qing; Li, Jian; Shen, Hui; Deng, Hong-Wen

    2015-01-01

    DDR2 gene, playing an essential role in regulating osteoblast differentiation and chondrocyte maturation, may influence bone mineral density (BMD) and osteoporosis, but the genetic variations actually leading to the association remain to be elucidated. Therefore, the aim of this study was to investigate whether the genetic variants in DDR2 are associated with BMD and fracture risk. This study was performed in three samples from two ethnicities, including 1,300 Chinese Han subjects, 700 Chinese Han subjects (350 with osteoporotic hip fractures and 350 healthy controls) and 2,286 US white subjects. Twenty-eight SNPs in DDR2 were genotyped and tested for associations with hip BMD and fractures. We identified 3 SNPs in DDR2 significantly associated with hip BMD in the Chinese population after multiple testing adjustments, which were rs7521233 (P = 1.06×10-4, β: -0.018 for allele C), rs7553831 (P = 1.30×10-4, β: -0.018 for allele T), and rs6697469 (P = 1.59×10-3, β: -0.015 for allele C), separately. These three SNPs were in high linkage disequilibrium. Haplotype analyses detected two significantly associated haplotypes, including one haplotype in block 2 (P = 9.54×10-4, β: -0.016) where these three SNPs located. SNP rs6697469 was also associated with hip fractures (P = 0.043, OR: 1.42) in the Chinese population. The effect on fracture risk was consistent with its association with lower BMD. However, in the white population, we didn't observe significant associations with hip BMD. eQTL analyses revealed that SNPs associated with BMD also affected DDR2 mRNA expression levels in Chinese. Our findings, together with the prior biological evidence, suggest that DDR2 could be a new candidate for osteoporosis in Chinese population. Our results also reveal an ethnic difference, which highlights the need for further genetic studies in each ethnic group.

  4. Co-regulation analysis of closely linked genes identifies a highly recurrent gain on chromosome 17q25.3 in prostate cancer

    PubMed Central

    Bermudo, Raquel; Abia, David; Ferrer, Berta; Nayach, Iracema; Benguria, Alberto; Zaballos, Ángel; del Rey, Javier; Miró, Rosa; Campo, Elías; Martínez-A, Carlos; Ortiz, Ángel R; Fernández, Pedro L; Thomson, Timothy M

    2008-01-01

    Background Transcriptional profiling of prostate cancer (PC) has unveiled new markers of neoplasia and allowed insights into mechanisms underlying this disease. Genomewide analyses have also identified new chromosomal abnormalities associated with PC. The combination of both classes of data for the same sample cohort might provide better criteria for identifying relevant factors involved in neoplasia. Here we describe transcriptional signatures identifying distinct normal and tumoral prostate tissue compartments, and the inference and demonstration of a new, highly recurrent copy number gain on chromosome 17q25.3. Methods We have applied transcriptional profiling to tumoral and non-tumoral prostate samples with relatively homogeneous epithelial representations as well as pure stromal tissue from peripheral prostate and cultured cell lines, followed by quantitative RT-PCR validations and immunohistochemical analysis. In addition, we have performed in silico colocalization analysis of co-regulated genes and validation by fluorescent in situ hybridization (FISH). Results The transcriptomic analysis has allowed us to identify signatures corresponding to non-tumoral luminal and tumoral epithelium, basal epithelial cells, and prostate stromal tissue. In addition, in silico analysis of co-regulated expression of physically linked genes has allowed us to predict the occurrence of a copy number gain at chromosomal region 17q25.3. This computational inference was validated by fluorescent in situ hybridization, which showed gains in this region in over 65% of primary and metastatic tumoral samples. Conclusion Our approach permits to directly link gene copy number variations with transcript co-regulation in association with neoplastic states. Therefore, transcriptomic studies of carefully selected samples can unveil new diagnostic markers and transcriptional signatures highly specific of PC, and lead to the discovery of novel genomic abnormalities that may provide additional

  5. Genome-Wide DNA Methylation Analysis of Chinese Patients with Systemic Lupus Erythematosus Identified Hypomethylation in Genes Related to the Type I Interferon Pathway

    PubMed Central

    Yeung, Kit San; Chung, Brian Hon-Yin; Choufani, Sanaa; Mok, Mo Yin; Wong, Wai Lap; Mak, Christopher Chun Yu; Yang, Wanling; Lee, Pamela Pui Wah; Wong, Wilfred Hing Sang; Chen, Yi-an; Grafodatskaya, Daria; Wong, Raymond Woon Sing; Lau, Chak Sing; Chan, Daniel Tak Mao; Weksberg, Rosanna; Lau, Yu-Lung

    2017-01-01

    Background Epigenetic variants have been shown in recent studies to be important contributors to the pathogenesis of systemic lupus erythematosus (SLE). Here, we report a 2-step study of discovery followed by replication to identify DNA methylation alterations associated with SLE in a Chinese population. Using a genome-wide DNA methylation microarray, the Illumina Infinium HumanMethylation450 BeadChip, we compared the methylation levels of CpG sites in DNA extracted from white blood cells from 12 female Chinese SLE patients and 10 healthy female controls. Results We identified 36 CpG sites with differential loss of DNA methylation and 8 CpG sites with differential gain of DNA methylation, representing 25 genes and 7 genes, respectively. Surprisingly, 42% of the hypomethylated CpG sites were located in CpG shores, which indicated the functional importance of the loss of DNA methylation. Microarray results were replicated in another cohort of 100 SLE patients and 100 healthy controls by performing bisulfite pyrosequencing of four hypomethylated genes, MX1, IFI44L, NLRC5 and PLSCR1. In addition, loss of DNA methylation in these genes was associated with an increase in mRNA expression. Gene ontology analysis revealed that the hypomethylated genes identified in the microarray study were overrepresented in the type I interferon pathway, which has long been implicated in the pathogenesis of SLE. Conclusion Our epigenetic findings further support the importance of the type I interferon pathway in SLE pathogenesis. Moreover, we showed that the DNA methylation signatures of SLE can be defined in unfractionated white blood cells. PMID:28085900

  6. Epigenetic analysis of the IFNλ3 gene identifies a novel marker for response to therapy in HCV-infected subjects.

    PubMed

    Waring, J F; Davis, J W; Dumas, E; Cohen, D; Idler, K; Abel, S; Georgantas, R; Podsadecki, T; Dutta, S

    2016-12-07

    Chronic hepatitis C virus (HCV) infection is characterized by high interindividual variability in response to pegylated interferon and ribavirin. A genetic polymorphism on chromosome 19 (rs12979860) upstream of interferon-λ3 (IFNλ3) is associated with a twofold change in sustained virologic response rate after 48 weeks of treatment with pegylated interferon/ribavirin in HCV genotype 1 (GT1) treatment-naïve patients. We conducted epigenetic analysis on the IFNλ3 promoter to investigate whether DNA methylation is associated with response to HCV therapy. DNA samples from HCV GT1-infected subjects receiving an interferon-free paritaprevir-containing combination regimen (N=540) and from HCV-uninfected, healthy controls (N=124) were analysed for IFNλ3 methylation levels. Methylation was strongly associated with rs12979860 allele status whether adjusting for HCV status (r=65.0%, 95% CI: [60.2%, 69.5%]), or not (r=64.4%), both with P<2.2×10(-16) . In HCV GT1-infected subjects, C/C genotypes had significantly lower methylation levels relative to C/T or T/T genotypes (P<1×10(-14) ), with each T allele resulting in a nine-unit increase in mean methylation level. Methylation levels did not correlate with response in subjects treated for 12 or 24 weeks. However, non-C/C subjects with higher methylation levels were more likely to relapse when treatment duration was 8 weeks. This analysis suggests that methylation status of the IFNλ3 promoter region may be a useful parameter that identifies patients more likely to relapse following HCV therapy; however, continuing therapy for a sufficient duration can overcome this difference. These findings may provide mechanistic insight into the role of IFNλ3 genetic variants in HCV treatment response.

  7. Analysis of the murine Dtk gene identifies conservation of genomic structure within a new receptor tyrosine kinase subfamily

    SciTech Connect

    Lewis, P.M.; Crosier, K.E.; Crosier, P.S.

    1996-01-01

    The receptor tyrosine kinase Dtk/Tyro 3/Sky/rse/brt/tif is a member of a new subfamily of receptors that also includes Axl/Ufo/Ark and Eyk/Mer. These receptors are characterized by the presence of two immunoglobulin-like loops and two fibronectin type III repeats in their extracellular domains. The structure of the murine Dtk gene has been determined. The gene consists of 21 exons that are distributed over 21 kb of genomic DNA. An isoform of Dtk is generated by differential splicing of exons from the 5{prime} region of the gene. The overall genomic structure of Dtk is virtually identical to that determined for the human UFO gene. This particular genomic organization is likely to have been duplicated and closely maintained throughout evolution. 38 refs., 3 figs., 1 tab.

  8. Transcriptomic Analysis Identifies Candidate Genes Related to Intramuscular Fat Deposition and Fatty Acid Composition in the Breast Muscle of Squabs (Columba).

    PubMed

    Ye, Manhong; Zhou, Bin; Wei, Shanshan; Ding, MengMeng; Lu, Xinghui; Shi, Xuehao; Ding, Jiatong; Yang, Shengmei; Wei, Wanhong

    2016-07-07

    Despite the fact that squab is consumed throughout the world because of its high nutritional value and appreciated sensory attributes, aspects related to its characterization, and in particular genetic issues, have rarely been studied. In this study, meat traits in terms of pH, water-holding capacity, intramuscular fat content, and fatty acid profile of the breast muscle of squabs from two meat pigeon breeds were determined. Breed-specific differences were detected in fat-related traits of intramuscular fat content and fatty acid composition. RNA-Sequencing was applied to compare the transcriptomes of muscle and liver tissues between squabs of two breeds to identify candidate genes associated with the differences in the capacity of fat deposition. A total of 27 differentially expressed genes assigned to pathways of lipid metabolism were identified, of which, six genes belonged to the peroxisome proliferator-activated receptor signaling pathway along with four other genes. Our results confirmed in part previous reports in livestock and provided also a number of genes which had not been related to fat deposition so far. These genes can serve as a basis for further investigations to screen markers closely associated with intramuscular fat content and fatty acid composition in squabs. The data from this study were deposited in the National Center for Biotechnology Information (NCBI)'s Sequence Read Archive under the accession numbers SRX1680021 and SRX1680022. This is the first transcriptome analysis of the muscle and liver tissue in Columba using next generation sequencing technology. Data provided here are of potential value to dissect functional genes influencing fat deposition in squabs. Copyright © 2016 Ye et al.

  9. Transcriptomic Analysis Identifies Candidate Genes Related to Intramuscular Fat Deposition and Fatty Acid Composition in the Breast Muscle of Squabs (Columba)

    PubMed Central

    Ye, Manhong; Zhou, Bin; Wei, Shanshan; Ding, MengMeng; Lu, Xinghui; Shi, Xuehao; Ding, Jiatong; Yang, Shengmei; Wei, Wanhong

    2016-01-01

    Despite the fact that squab is consumed throughout the world because of its high nutritional value and appreciated sensory attributes, aspects related to its characterization, and in particular genetic issues, have rarely been studied. In this study, meat traits in terms of pH, water-holding capacity, intramuscular fat content, and fatty acid profile of the breast muscle of squabs from two meat pigeon breeds were determined. Breed-specific differences were detected in fat-related traits of intramuscular fat content and fatty acid composition. RNA-Sequencing was applied to compare the transcriptomes of muscle and liver tissues between squabs of two breeds to identify candidate genes associated with the differences in the capacity of fat deposition. A total of 27 differentially expressed genes assigned to pathways of lipid metabolism were identified, of which, six genes belonged to the peroxisome proliferator-activated receptor signaling pathway along with four other genes. Our results confirmed in part previous reports in livestock and provided also a number of genes which had not been related to fat deposition so far. These genes can serve as a basis for further investigations to screen markers closely associated with intramuscular fat content and fatty acid composition in squabs. The data from this study were deposited in the National Center for Biotechnology Information (NCBI)’s Sequence Read Archive under the accession numbers SRX1680021 and SRX1680022. This is the first transcriptome analysis of the muscle and liver tissue in Columba using next generation sequencing technology. Data provided here are of potential value to dissect functional genes influencing fat deposition in squabs. PMID:27175015

  10. Multiple Genes Related to Muscle Identified through a Joint Analysis of a Two-stage Genome-wide Association Study for Racing Performance of 1,156 Thoroughbreds.

    PubMed

    Shin, Dong-Hyun; Lee, Jin Woo; Park, Jong-Eun; Choi, Ik-Young; Oh, Hee-Seok; Kim, Hyeon Jeong; Kim, Heebal

    2015-06-01

    Thoroughbred, a relatively recent horse breed, is best known for its use in horse racing. Although myostatin (MSTN) variants have been reported to be highly associated with horse racing performance, the trait is more likely to be polygenic in nature. The purpose of this study was to identify genetic variants strongly associated with racing performance by using estimated breeding value (EBV) for race time as a phenotype. We conducted a two-stage genome-wide association study to search for genetic variants associated with the EBV. In the first stage of genome-wide association study, a relatively large number of markers (~54,000 single-nucleotide polymorphisms, SNPs) were evaluated in a small number of samples (240 horses). In the second stage, a relatively small number of markers identified to have large effects (170 SNPs) were evaluated in a much larger number of samples (1,156 horses). We also validated the SNPs related to MSTN known to have large effects on racing performance and found significant associations in the stage two analysis, but not in stage one. We identified 28 significant SNPs related to 17 genes. Among these, six genes have a function related to myogenesis and five genes are involved in muscle maintenance. To our knowledge, these genes are newly reported for the genetic association with racing performance of Thoroughbreds. It complements a recent horse genome-wide association studies of racing performance that identified other SNPs and genes as the most significant variants. These results will help to expand our knowledge of the polygenic nature of racing performance in Thoroughbreds.

  11. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity.

    PubMed

    Sperschneider, Jana; Gardiner, Donald M; Thatcher, Louise F; Lyons, Rebecca; Singh, Karam B; Manners, John M; Taylor, Jennifer M

    2015-05-19

    Pathogens and hosts are in an ongoing arms race and genes involved in host-pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host-pathogen interactions for experimental verification.

  12. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity

    PubMed Central

    Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930

  13. Composition of the bacterial population of refrigerated beef, identified with direct 16S rRNA gene analysis and pure culture technique.

    PubMed

    Olofsson, T C; Ahrné, S; Molin, G

    2007-09-30

    The composition of the dominating population of freshly cut beef, and beef stored at 4 degrees C for 8 d, was studied by direct analysis of the 16S rRNA gene (PCR amplification, cloning and sequencing) and compared with pure culture technique where the isolates picked from the viable plate count were identified by sequencing of the 16S rRNA gene. The composition of the bacterial population was recorded at two different time points, at the start when the viable plate count of the meat was 4 x 10(2) colony forming unit (cfu) per cm(2) and when it was 5 x 10(7) cfu per cm(2). Direct gene analysis by PCR amplification generated 30 clones, and 79 isolates were picked from the plate count, and identified by 16S rRNA gene sequencing. At the low initial bacterial load of the beef, the two sampling strategies showed variations in the composition of species. Direct 16S rRNA gene analysis revealed a domination of Bacillus-like sequences while no such sequences were found in isolates from the viable plate count. Instead the population of the plate count was dominated by Chryseobacterium spp. In contrast, the two sampling strategies matched on the multiplying beef population, where both methods indicated Pseudomonas spp. as the dominating group (99% of the population-sequences), irrespectively of sampling strategy. Pseudomonas panacis/Pseudomons brennerii was the dominating taxon (99% similarity to type strain), but sequences with highest similarity to Pseudomonas lundensis (99%), Pseudomonas beteli (99%) and Pseudomonas koreensis (100%) were also found.

  14. Candidate Gene Analysis of Tooth Agenesis Identifies Novel Mutations in Six Genes and Suggests Significant Role for WNT and EDA Signaling and Allele Combinations

    PubMed Central

    Arte, Sirpa; Parmanen, Satu; Pirinen, Sinikka; Alaluusua, Satu; Nieminen, Pekka

    2013-01-01

    Failure to develop complete dentition, tooth agenesis, is a common developmental anomaly manifested most often as isolated but also as associated with many developmental syndromes. It typically affects third molars or one or few other permanent teeth but severe agenesis is also relatively prevalent. Here we report mutational analyses of seven candidate genes in a cohort of 127 probands with non-syndromic tooth agenesis. 82 lacked more than five permanent teeth excluding third molars, called as oligodontia. We identified 28 mutations, 17 of which were novel. Together with our previous reports, we have identified two mutations in MSX1, AXIN2 and EDARADD, five in PAX9, four in EDA and EDAR, and nine in WNT10A. They were observed in 58 probands (44%), with a mean number of missing teeth of 11.7 (range 4 to 34). Almost all of these probands had severe agenesis. Only few of the probands but several relatives with heterozygous genotypes of WNT10A or EDAR conformed to the common type of non-syndromic tooth agenesis, incisor-premolar hypodontia. Mutations in MSX1 and PAX9 affected predominantly posterior teeth, whereas both deciduous and permanent incisors were especially sensitive to mutations in EDA and EDAR. Many mutations in EDAR, EDARADD and WNT10A were present in several families. Biallelic or heterozygous genotypes of WNT10A were observed in 32 and hemizygous or heterozygous genotypes of EDA, EDAR or EDARADD in 22 probands. An EDARADD variant were in seven probands present together with variants in EDAR or WNT10A, suggesting combined phenotypic effects of alleles in distinct genes. PMID:23991204

  15. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations.

    PubMed

    Arte, Sirpa; Parmanen, Satu; Pirinen, Sinikka; Alaluusua, Satu; Nieminen, Pekka

    2013-01-01

    Failure to develop complete dentition, tooth agenesis, is a common developmental anomaly manifested most often as isolated but also as associated with many developmental syndromes. It typically affects third molars or one or few other permanent teeth but severe agenesis is also relatively prevalent. Here we report mutational analyses of seven candidate genes in a cohort of 127 probands with non-syndromic tooth agenesis. 82 lacked more than five permanent teeth excluding third molars, called as oligodontia. We identified 28 mutations, 17 of which were novel. Together with our previous reports, we have identified two mutations in MSX1, AXIN2 and EDARADD, five in PAX9, four in EDA and EDAR, and nine in WNT10A. They were observed in 58 probands (44%), with a mean number of missing teeth of 11.7 (range 4 to 34). Almost all of these probands had severe agenesis. Only few of the probands but several relatives with heterozygous genotypes of WNT10A or EDAR conformed to the common type of non-syndromic tooth agenesis, incisor-premolar hypodontia. Mutations in MSX1 and PAX9 affected predominantly posterior teeth, whereas both deciduous and permanent incisors were especially sensitive to mutations in EDA and EDAR. Many mutations in EDAR, EDARADD and WNT10A were present in several families. Biallelic or heterozygous genotypes of WNT10A were observed in 32 and hemizygous or heterozygous genotypes of EDA, EDAR or EDARADD in 22 probands. An EDARADD variant were in seven probands present together with variants in EDAR or WNT10A, suggesting combined phenotypic effects of alleles in distinct genes.

  16. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns

    PubMed Central

    Jansen, Robert K.; Cai, Zhengqiu; Raubeson, Linda A.; Daniell, Henry; dePamphilis, Claude W.; Leebens-Mack, James; Müller, Kai F.; Guisinger-Bellian, Mary; Haberle, Rosemarie C.; Hansen, Anne K.; Chumley, Timothy W.; Lee, Seung-Bum; Peery, Rhiannon; McNeal, Joel R.; Kuehl, Jennifer V.; Boore, Jeffrey L.

    2007-01-01

    Angiosperms are the largest and most successful clade of land plants with >250,000 species distributed in nearly every terrestrial habitat. Many phylogenetic studies have been based on DNA sequences of one to several genes, but, despite decades of intensive efforts, relationships among early diverging lineages and several of the major clades remain either incompletely resolved or weakly supported. We performed phylogenetic analyses of 81 plastid genes in 64 sequenced genomes, including 13 new genomes, to estimate relationships among the major angiosperm clades, and the resulting trees are used to examine the evolution of gene and intron content. Phylogenetic trees from multiple methods, including model-based approaches, provide strong support for the position of Amborella as the earliest diverging lineage of flowering plants, followed by Nymphaeales and Austrobaileyales. The plastid genome trees also provide strong support for a sister relationship between eudicots and monocots, and this group is sister to a clade that includes Chloranthales and magnoliids. Resolution of relationships among the major clades of angiosperms provides the necessary framework for addressing numerous evolutionary questions regarding the rapid diversification of angiosperms. Gene and intron content are highly conserved among the early diverging angiosperms and basal eudicots, but 62 independent gene and intron losses are limited to the more derived monocot and eudicot clades. Moreover, a lineage-specific correlation was detected between rates of nucleotide substitutions, indels, and genomic rearrangements. PMID:18048330

  17. Association analysis of bitter receptor genes in five isolated populations identifies a significant correlation between TAS2R43 variants and coffee liking.

    PubMed

    Pirastu, Nicola; Kooyman, Maarten; Traglia, Michela; Robino, Antonietta; Willems, Sara M; Pistis, Giorgio; d'Adamo, Pio; Amin, Najaf; d'Eustacchio, Angela; Navarini, Luciano; Sala, Cinzia; Karssen, Lennart C; van Duijn, Cornelia; Toniolo, Daniela; Gasparini, Paolo

    2014-01-01

    Coffee, one of the most popular beverages in the world, contains many different physiologically active compounds with a potential impact on people's health. Despite the recent attention given to the genetic basis of its consumption, very little has been done in understanding genes influencing coffee preference among different individuals. Given its markedly bitter taste, we decided to verify if bitter receptor genes (TAS2Rs) variants affect coffee liking. In this light, 4066 people from different parts of Europe and Central Asia filled in a field questionnaire on coffee liking. They have been consequently recruited and included in the study. Eighty-eight SNPs covering the 25 TAS2R genes were selected from the available imputed ones and used to run association analysis for coffee liking. A significant association was detected with three SNP: one synonymous and two functional variants (W35S and H212R) on the TAS2R43 gene. Both variants have been shown to greatly reduce in vitro protein activity. Surprisingly the wild type allele, which corresponds to the functional form of the protein, is associated to higher liking of coffee. Since the hTAS2R43 receptor is sensible to caffeine, we verified if the detected variants produced differences in caffeine bitter perception on a subsample of people coming from the FVG cohort. We found a significant association between differences in caffeine perception and the H212R variant but not with the W35S, which suggests that the effect of the TAS2R43 gene on coffee liking is mediated by caffeine and in particular by the H212R variant. No other significant association was found with other TAS2R genes. In conclusion, the present study opens new perspectives in the understanding of coffee liking. Further studies are needed to clarify the role of the TAS2R43 gene in coffee hedonics and to identify which other genes and pathways are involved in its genetics.

  18. Molecular cloning of the Matrix Gla Protein gene from Xenopus laevis. Functional analysis of the promoter identifies a calcium sensitive region required for basal activity.

    PubMed

    Conceição, Natércia; Henriques, Nuno M; Ohresser, Marc C P; Hublitz, Philip; Schüle, Roland; Cancela, M Leonor

    2002-04-01

    To analyze the regulation of Matrix Gla Protein (MGP) gene expression in Xenopus laevis, we cloned the xMGP gene and its 5' region, determined their molecular organization, and characterized the transcriptional properties of the core promoter. The Xenopus MGP (xMGP) gene is organized into five exons, one more as its mammalian counterparts. The first two exons in the Xenopus gene encode the DNA sequence that corresponds to the first exon in mammals whereas the last three exons show homologous organization in the Xenopus MGP gene and in the mammalian orthologs. We characterized the transcriptional regulation of the xMGP gene in transient transfections using Xenopus A6 cells. In our assay system the identified promoter was shown to be transcriptionally active, resulting in a 12-fold induction of reporter gene expression. Deletional analysis of the 5' end of the xMGP promoter revealed a minimal activating element in the sequence from -70 to -36 bp. Synthetic reporter constructs containing three copies of the defined regulatory element delivered 400-fold superactivation, demonstrating its potential for the recruitment of transcriptional activators. In gel mobility shift assays we demonstrate binding of X. laevis nuclear factors to an extended regulatory element from -180 to -36, the specificity of the interaction was proven in competition experiments using different fragments of the xMGP promoter. By this approach the major site of factor binding was demonstrated to be included in the minimal activating promoter fragment from -70 to -36 bp. In addition, in transient transfection experiments we could show that this element mediates calcium dependent transcription and increasing concentrations of extracellular calcium lead to a significant dose dependent activation of reporter gene expression.

  19. Representational difference analysis identifies specific genes in the interaction of Giardia duodenalis with the murine intestinal epithelial cell line, IEC-6.

    PubMed

    Ma'ayeh, Showgy Yasir; Brook-Carter, Phillip Thomas

    2012-05-01

    Giardia duodenalis is a re-emerging protozoan parasite that causes diarrhoea in humans, significantly affecting the health of many people globally. To date, little is known about the genetic events underpinning the establishment of infection in host cells; however, the parasite's ventral disc, proteases and variable surface proteins (VSPs) are recognised as important pathogenic factors. In this study, representational difference analysis (RDA) was used to identify differentially expressed genes in four different Giardia isolates (WB, P-1, NF and GS/M) during the first 2h of in vitro interaction with the rat intestinal epithelial cell line, IEC-6. RDA showed that more than 40 genes were differentially expressed in each of the four Giardia isolates upon IEC-6 cells infection. Most of the up-regulated genes were common to the four isolates except for those encoding proteins possibly involved in immune evasion such as VSPs, high cysteine membrane proteins (HCMp), hypothetical proteins, and oxygen defence proteins (e.g., thioredoxin, peroxiredoxin 1). Differences in the expressed VSPs and HCMp may account for the variation in symptoms during giardiasis. Interestingly, the NF isolate solely expressed genes involved in encystation during interaction with IEC-6 (e.g., glucosamine 6-phosphate isomerase, dynamin, acid sphingomyelinase-like phosphodiesterase) suggesting that encystation signals could be different for this isolate. Common to the four isolates, transcripts for genes involved in glycolysis (e.g., glucose-6-phosphate dehydrogenase, fructose bisphosphate aldolase, enolase), attachment (γ and α1 giardins) and cysteine proteases were frequently detected. Genes involved in transcription, translation, signalling and cell cycle control were also up-regulated. This study shows that the RDA technique has selectively isolated genes involved in host-parasite interactions and complements previous microarray data. Some of the detected genes are also discussed as potential

  20. Comprehensive copy number variant (CNV) analysis of neuronal pathways genes in psychiatric disorders identifies rare variants within patients.

    PubMed

    Saus, Ester; Brunet, Anna; Armengol, Lluís; Alonso, Pino; Crespo, José M; Fernández-Aranda, Fernando; Guitart, Miriam; Martín-Santos, Rocío; Menchón, José Manuel; Navinés, Ricard; Soria, Virginia; Torrens, Marta; Urretavizcaya, Mikel; Vallès, Vicenç; Gratacòs, Mònica; Estivill, Xavier

    2010-10-01

    Copy number variations (CNV) have become an important source of human genome variability noteworthy to consider when studying genetic susceptibility to complex diseases. As recent studies have found evidences for the potential involvement of CNVs in psychiatric disorders, we have studied the dosage effect of structural genome variants as a possible susceptibility factor for different psychiatric disorders in a candidate gene approach. After selection of 68 psychiatric disorders' candidate genes overlapping with CNVs, MLPA assays were designed to determine changes in copy number of these genes. The studied sample consisted of 724 patients with psychiatric disorders (accounting for anxiety disorders, mood disorders, eating disorders and schizophrenia) and 341 control individuals. CNVs were detected in 30 out of the 68 genes screened, indicating that a considerable proportion of neuronal pathways genes contain CNVs. When testing the overall burden of rare structural genomic variants in the different psychiatric disorders compared to control individuals, there was no statistically significant difference in the total amount of gains and losses. However, 14 out of the 30 changes were only found in psychiatric disorder patients but not in control individuals. These genes include GRM7, previously associated to major depression disorder and bipolar disorder, SLC6A13, in anxiety disorders, and S100B, SSTR5 and COMT in schizophrenia. Although we have not been able to found a clear association between the studied CNVs and psychiatric disorders, the rare variants found only within the patients could account for a step further towards understanding the pathophysiology of psychiatric disorders. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. The Whole Genome Expression Analysis using Two Microarray Technologies to Identify Gene Networks That Mediate the Myocardial Phenotype of CD36 Deficiency

    PubMed Central

    Sabaouni, Imane; Moussa, Ahmed; Vannier, Brigitte; Semlali, Oussama; Pietka, Terri A; Abumrad, Nada A; Ibrahimi, Azeddine

    2013-01-01

    We have previously shown that CD36 is a membrane protein that facilitates long chain fatty acid (FA) transport by muscle tissues. We also documented the significant impact of muscle CD36 expression on heart function, skeletal muscle insulin sensitivity as well as on overall metabolism. To identify a comprehensive set of genes that are differentially regulated by CD36 expression in the heart, we used two microarray technologies (Affymetrix and Agilent) to compare gene expression in heart tissues from CD36 KnocK-Out (KO-CD36) versus wild type (WT-CD36) mice. The obtained results using the two technologies were similar with around 35 genes differentially expressed using both technologies. Absence of CD36 led to down-regulation of the expression of three groups of genes involved in pathways of FA metabolism, angiogenesis/apoptosis and structure. These data are consistent with the fact that the CD36 protein binds FA and thrombospondin 1 invoved respectively in lipid metabolism and anti-angiogenic activities. In conclusion, our findings led to validate our data analysis workflow and identify specific pathways, possibly underlying the phenotypic abnormalities in CD36 Knock -Out hearts. PMID:24250110

  2. The Whole Genome Expression Analysis using Two Microarray Technologies to Identify Gene Networks That Mediate the Myocardial Phenotype of CD36 Deficiency.

    PubMed

    Sabaouni, Imane; Moussa, Ahmed; Vannier, Brigitte; Semlali, Oussama; Pietka, Terri A; Abumrad, Nada A; Ibrahimi, Azeddine

    2013-01-01

    We have previously shown that CD36 is a membrane protein that facilitates long chain fatty acid (FA) transport by muscle tissues. We also documented the significant impact of muscle CD36 expression on heart function, skeletal muscle insulin sensitivity as well as on overall metabolism. To identify a comprehensive set of genes that are differentially regulated by CD36 expression in the heart, we used two microarray technologies (Affymetrix and Agilent) to compare gene expression in heart tissues from CD36 KnocK-Out (KO-CD36) versus wild type (WT-CD36) mice. The obtained results using the two technologies were similar with around 35 genes differentially expressed using both technologies. Absence of CD36 led to down-regulation of the expression of three groups of genes involved in pathways of FA metabolism, angiogenesis/apoptosis and structure. These data are consistent with the fact that the CD36 protein binds FA and thrombospondin 1 invoved respectively in lipid metabolism and anti-angiogenic activities. In conclusion, our findings led to validate our data analysis workflow and identify specific pathways, possibly underlying the phenotypic abnormalities in CD36 Knock -Out hearts.

  3. Identifying potential cancer driver genes by genomic data integration

    PubMed Central

    Chen, Yong; Hao, Jingjing; Jiang, Wei; He, Tong; Zhang, Xuegong; Jiang, Tao; Jiang, Rui

    2013-01-01

    Cancer is a genomic disease associated with a plethora of gene mutations resulting in a loss of control over vital cellular functions. Among these mutated genes, driver genes are defined as being causally linked to oncogenesis, while passenger genes are thought to be irrelevant for cancer development. With increasing numbers of large-scale genomic datasets available, integrating these genomic data to identify driver genes from aberration regions of cancer genomes becomes an important goal of cancer genome analysis and investigations into mechanisms responsible for cancer development. A computational method, MAXDRIVER, is proposed here to identify potential driver genes on the basis of copy number aberration (CNA) regions of cancer genomes, by integrating publicly available human genomic data. MAXDRIVER employs several optimization strategies to construct a heterogeneous network, by means of combining a fused gene functional similarity network, gene-disease associations and a disease phenotypic similarity network. MAXDRIVER was validated to effectively recall known associations among genes and cancers. Previously identified as well as novel driver genes were detected by scanning CNAs of breast cancer, melanoma and liver carcinoma. Three predicted driver genes (CDKN2A, AKT1, RNF139) were found common in these three cancers by comparative analysis. PMID:24346768

  4. Identifying potential cancer driver genes by genomic data integration

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Hao, Jingjing; Jiang, Wei; He, Tong; Zhang, Xuegong; Jiang, Tao; Jiang, Rui

    2013-12-01

    Cancer is a genomic disease associated with a plethora of gene mutations resulting in a loss of control over vital cellular functions. Among these mutated genes, driver genes are defined as being causally linked to oncogenesis, while passenger genes are thought to be irrelevant for cancer development. With increasing numbers of large-scale genomic datasets available, integrating these genomic data to identify driver genes from aberration regions of cancer genomes becomes an important goal of cancer genome analysis and investigations into mechanisms responsible for cancer development. A computational method, MAXDRIVER, is proposed here to identify potential driver genes on the basis of copy number aberration (CNA) regions of cancer genomes, by integrating publicly available human genomic data. MAXDRIVER employs several optimization strategies to construct a heterogeneous network, by means of combining a fused gene functional similarity network, gene-disease associations and a disease phenotypic similarity network. MAXDRIVER was validated to effectively recall known associations among genes and cancers. Previously identified as well as novel driver genes were detected by scanning CNAs of breast cancer, melanoma and liver carcinoma. Three predicted driver genes (CDKN2A, AKT1, RNF139) were found common in these three cancers by comparative analysis.

  5. Phylogenetic analysis of seven WRKY genes across the palm subtribe Attaleinae (Areceaceae) identifies Syagrus as sister to the coconut

    USDA-ARS?s Scientific Manuscript database

    The origins of the coconut (Cocos nucifera) have been one of the "abominable mysteries" of palm systematics for decades. Previous studies with predominantly plastid genes have indicated an American ancestry for the coconut but with weak support and ambiguous sister relationships. We used primers d...

  6. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation.

    PubMed

    Sun, Haiyue; Liu, Yushan; Gai, Yuzhuo; Geng, Jinman; Chen, Li; Liu, Hongdi; Kang, Limin; Tian, Youwen; Li, Yadong

    2015-09-02

    Cranberries (Vaccinium macrocarpon Ait.), renowned for their excellent health benefits, are an important berry crop. Here, we performed transcriptome sequencing of one cranberry cultivar, from fruits at two different developmental stages, on the Illumina HiSeq 2000 platform. Our main goals were to identify putative genes for major metabolic pathways of bioactive compounds and compare the expression patterns between white fruit (W) and red fruit (R) in cranberry. In this study, two cDNA libraries of W and R were constructed. Approximately 119 million raw sequencing reads were generated and assembled de novo, yielding 57,331 high quality unigenes with an average length of 739 bp. Using BLASTx, 38,460 unigenes were identified as putative homologs of annotated sequences in public protein databases, including NCBI NR, NT, Swiss-Prot, KEGG, COG and GO. Of these, 21,898 unigenes mapped to 128 KEGG pathways, with the metabolic pathways, secondary metabolites, glycerophospholipid metabolism, ether lipid metabolism, starch and sucrose metabolism, purine metabolism, and pyrimidine metabolism being well represented. Among them, many candidate genes were involved in flavonoid biosynthesis, transport and regulation. Furthermore, digital gene expression (DEG) analysis identified 3,257 unigenes that were differentially expressed between the two fruit developmental stages. In addition, 14,473 simple sequence repeats (SSRs) were detected. Our results present comprehensive gene expression information about the cranberry fruit transcriptome that could facilitate our understanding of the molecular mechanisms of fruit development in cranberries. Although it will be necessary to validate the functions carried out by these genes, these results could be used to improve the quality of breeding programs for the cranberry and related species.

  7. Pathway-Specific Analysis of Gene Expression Data Identifies the PI3K/Akt Pathway as a Novel Therapeutic Target in Cervical Cancer

    PubMed Central

    Schwarz, Julie K.; Payton, Jacqueline E.; Rashmi, Ramachandran; Xiang, Tao; Jia, Yunhe; Huettner, Phyllis; Rogers, Buck E.; Yang, Qin; Watson, Mark; Rader, Janet S.; Grigsby, Perry W.

    2013-01-01

    Purpose Cervical tumor response on posttherapy 2[18F]fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) is predictive of survival outcome. The purpose of this study was to use gene expression profiling to identify pathways associated with tumor metabolic response. Experimental Design This was a prospective tissue collection study for gene expression profiling of 62 pretreatment biopsies from patients with advanced cervical cancer. Patients were treated with definitive radiation. Fifty-three patients received concurrent chemotherapy. All patients underwent a pretreatment and a 3-month posttherapy FDG-PET/computed tomography (CT). Tumor RNA was harvested from fresh frozen tissue and hybridized to Affymetrix U133Plus2 GeneChips. Gene set enrichment analysis (GSEA) was used to identify signaling pathways associated with tumor metabolic response. Immunohistochemistry and in vitro FDG uptake assays were used to confirm our results. Results There were 40 biopsies from patients with a complete metabolic response (PET-negative group) and 22 biopsies from patients with incomplete metabolic response (PET-positive group). The 3-year cause-specific survival estimates were 98% for the PET-negative group and 39% for the PET-positive group (P < 0.0001). GSEA identified alterations in expression of genes associated with the PI3K/Akt signaling pathway in patients with a positive follow-up PET. Immunohistochemistry using a tissue microarray of 174 pretreatment biopsies confirmed p-Akt as a biomarker for poor prognosis in cervical cancer. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 inhibited FDG uptake in vitro in cervical cancer cell lines. Conclusions Activation of the PI3K/Akt pathway is associated with incomplete metabolic response in cervical cancer. Targeted inhibition of PI3K/Akt may improve response to chemoradiation. PMID:22235101

  8. Real-time quantitative PCR analysis of pediatric ependymomas identifies novel candidate genes including TPR at 1q25 and CHIBBY at 22q12-q13.

    PubMed

    Karakoula, Katherine; Suarez-Merino, Blanca; Ward, Samantha; Phipps, Kim P; Harkness, William; Hayward, Richard; Thompson, Dominic; Jacques, Thomas S; Harding, Brian; Beck, John; Thomas, David G T; Warr, Tracy J

    2008-11-01

    Loss of chromosome 22 and gain of 1q are the most frequent genomic aberrations in ependymomas, indicating that genes mapping to these regions are critical in their pathogenesis. Using real-time quantitative PCR, we measured relative copy numbers of 10 genes mapping to 22q12.3-q13.33 and 10 genes at 1q21-32 in a series of 47 pediatric intracranial ependymomas. Loss of one or more of the genes on 22 was detected in 81% of cases, with RAC2 and C22ORF2 at 22q12-q13.1 being deleted most frequently in 38% and 32% of ependymoma samples, respectively. Combined analysis of quantitative-PCR with methylation-specific PCR and bisulphite sequencing revealed a high rate (>60% ependymoma) of transcriptional inactivation of C22ORF2, indicating its potential importance in the development of pediatric ependymomas. Increase of relative copy numbers of at least one gene on 1q were detected in 61% of cases, with TPR at 1q25 displaying relative copy number gains in 38% of cases. Patient age was identified as a significant adverse prognostic factor, as a significantly shorter overall survival time (P = 0.0056) was observed in patients <2 years of age compared with patients who were >2 years of age. Loss of RAC2 at 22q13 or amplification of TPR at 1q25 was significantly associated with shorter overall survival in these younger patients (P = 0.0492 and P = < 0.0001, respectively). This study identifies candidate target genes within 1q and 22q that are potentially important in the pathogenesis of intracranial pediatric ependymomas.

  9. Identifying gene expression modules that define human cell fates.

    PubMed

    Germanguz, I; Listgarten, J; Cinkornpumin, J; Solomon, A; Gaeta, X; Lowry, W E

    2016-05-01

    Using a compendium of cell-state-specific gene expression data, we identified genes that uniquely define cell states, including those thought to represent various developmental stages. Our analysis sheds light on human cell fate through the identification of core genes that are altered over several developmental milestones, and across regional specification. Here we present cell-type specific gene expression data for 17 distinct cell states and demonstrate that these modules of genes can in fact define cell fate. Lastly, we introduce a web-based database to disseminate the results. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation

    PubMed Central

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-01-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant ‘Blondee’ (BLO) and its red-skin parent ‘Kidd’s D-8’ (KID), the original name of ‘Gala’, to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10–13) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. PMID:26417021

  11. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation.

    PubMed

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-12-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant 'Blondee' (BLO) and its red-skin parent 'Kidd's D-8' (KID), the original name of 'Gala', to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10(-13)) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. A genome-wide gene–gene interaction analysis identifies an epistatic gene pair for lung cancer susceptibility in Han Chinese

    PubMed Central

    Chu, Minjie; Zhang, Ruyang; Zhao, Yang; Shen, Hongbing; Chen, Feng

    2014-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. By now, genome-wide association studies (GWAS) have identified numerous loci associated with the risk of developing lung cancer. However, these loci account for only a small fraction of the familial lung cancer risk. We hypothesized that epistasis may contribute to the missing heritability. To test this hypothesis, we systematically evaluated the association of epistasis of genetic variants with risk of lung cancer in Han Chinese cohorts. We conducted a pairwise genetic interaction analysis of 591370 variants, using BOolean Operation-based Screening and Testing (BOOST), in an ongoing GWAS of lung cancer that includes 2331 cases and 3077 controls. Pairs of epistatic loci with P BOOST ≤ 1.00×10−6 were further evaluated by a logistic regression model (LRM) with covariate adjustment. Four promising epistatic pairs identified at the screening stage (P LRM ≤ 2.86×10− 13) were validated in two replication cohorts: the first from Beijing (1534 cases and 1489 controls) and the second from Shenyang and Guangzhou (2512 cases and 2449 controls). Using this combined analysis, we identified an interaction between rs2562796 and rs16832404 at 2p32.2 that was significantly associated with the risk of developing lung cancer (P LRM = 1.03×10−13 in total 13 392 subjects). This study is the first investigation of epistasis for lung cancer on a genome-wide scale in Han Chinese. It addresses part of the missing heritability in lung cancer risk and provides novel insight into the multifactorial etiology of lung cancer. PMID:24325914

  13. Dataset of microarray analysis to identify endoglin-dependent bone morphogenetic protein-2-responsive genes in the murine periodontal ligament cell line PDL-L2.

    PubMed

    Ishibashi, Osamu; Inui, Takashi

    2014-12-01

    The periodontal ligament (PDL), connective tissue located between the cementum of teeth and alveolar bone of the mandibula, plays a crucial role in the maintenance and regeneration of periodontal tissues. We previously reported that endoglin was involved in the bone morphogenetic protein (BMP)-2-induced osteogenic differentiation of mouse PDL cells, which is associated with Smad-2 phosphorylation but not Smad-1/5/8 phosphorylation. Further, we found that the BMP-2-induced Smad-2 phosphorylation was, at least in part, dependent upon endoglin. In this study, to elucidate the detailed mechanism underlying the BMP-2-induced signaling pathway unique to PDL cells, we performed a cDNA microarray analysis to identify endoglin-dependent BMP-2-responsive genes in PDL-L2, a mouse PDL-derived cell line. Here we provide experimental methods and obtained dataset to correspond with our data in Gene Expression Omnibus (GEO) Datasets.

  14. [Sequence analysis for genes encoding nucleoprotein and envelope protein of a new human coronavirus NL63 identified from a pediatric patient in Beijing by bioinformatics].

    PubMed

    Xing, Jiang-feng; Zhu, Ru-nan; Qian, Yuan; Zhao, Lin-qing; Deng, Jie; Wang, Fang; Sun, Yu

    2007-07-01

    The aim of this study was to characterize the N and E protein encoding genes of a new human coronavirus (HCoV-NL63) which was identified from one of the clinical specimens (BJ8081) collected from a 12 years-old patient with acute respiratory infection in Beijing. The complete N and E gene sequences of HCoV-NL63 were amplified from clinical sample by RT-PCR, then were cloned into the pCF-T and pUCm-T vectors respectively and sequenced. The complete sequences of N and E genes were submitted to GenBank by Sequin and compared with N and E genes of prototype HCoV-NL63 and the other coronaviruses published in GenBank. The secondary structure and the characteristics of sample BJ8081 N and E proteins were predicted by bioinformatics. It was indicated that the N and E genes amplified from sample BJ8081 were 1134 bp and 234 bp in length and the predicted proteins including 377 amino acids and 77 amino acids, respectively. The data suggested that the region of amino acids 78-85 within N protein probably was the conserved region for all coronaviruses identified so far including HCoV-NL63. The region of amino acids 15-37 for E protein was probably the transmembrane domain. In conclusion, the recombinant plasmids pCF-T-8081 N and pUCm-T-8081 E were successfully constructed and sequenced, and the data predicted by bioinformatics are helpful for the further analysis of HCoV-NL63.

  15. Multi-Species Comparative Analysis of the Equine ACE Gene Identifies a Highly Conserved Potential Transcription Factor Binding Site in Intron 16

    PubMed Central

    Hamilton, Natasha A.; Tammen, Imke; Raadsma, Herman W.

    2013-01-01

    Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism. PMID:23408978

  16. Comparative Genomics Integrated with Association Analysis Identifies Candidate Effector Genes Corresponding to Lr20 in Phenotype-Paired Puccinia triticina Isolates from Australia.

    PubMed

    Wu, Jing Qin; Sakthikumar, Sharadha; Dong, Chongmei; Zhang, Peng; Cuomo, Christina A; Park, Robert F

    2017-01-01

    Leaf rust is one of the most common and damaging diseases of wheat, and is caused by an obligate biotrophic basidiomycete, Puccinia triticina (Pt). In the present study, 20 Pt isolates from Australia, comprising 10 phenotype-matched pairs with contrasting pathogenicity for Lr20, were analyzed using whole genome sequencing. Compared to the reference genome of the American Pt isolate 1-1 BBBD Race 1, an average of 404,690 single nucleotide polymorphisms (SNPs) per isolate was found and the proportion of heterozygous SNPs was above 87% in the majority of the isolates, demonstrating a high level of polymorphism and a high rate of heterozygosity. From the genome-wide SNPs, a phylogenetic tree was inferred, which consisted of a large clade of 15 isolates representing diverse presumed clonal lineages including 14 closely related isolates and the more diverged isolate 670028, and a small clade of five isolates characterized by lower heterozygosity level. Principle component analysis detected three distinct clusters, corresponding exactly to the two major subsets of the small clade and the large clade comprising all 15 isolates without further separation of isolate 670028. While genome-wide association analysis identified 302 genes harboring at least one SNP associated with Lr20 virulence (p < 0.05), a Wilcoxon rank sum test revealed that 36 and 68 genes had significant (p < 0.05) and marginally significant (p < 0.1) differences in the counts of non-synonymous mutations between Lr20 avirulent and virulent groups, respectively. Twenty of these genes were predicted to have a signal peptide without a transmembrane segment, and hence identified as candidate effector genes corresponding to Lr20. SNP analysis also implicated the potential involvement of epigenetics and small RNA in Pt pathogenicity. Future studies are thus warranted to investigate the biological functions of the candidate effectors as well as the gene regulation mechanisms at epigenetic and post

  17. Comparative Genomics Integrated with Association Analysis Identifies Candidate Effector Genes Corresponding to Lr20 in Phenotype-Paired Puccinia triticina Isolates from Australia

    PubMed Central

    Wu, Jing Qin; Sakthikumar, Sharadha; Dong, Chongmei; Zhang, Peng; Cuomo, Christina A.; Park, Robert F.

    2017-01-01

    Leaf rust is one of the most common and damaging diseases of wheat, and is caused by an obligate biotrophic basidiomycete, Puccinia triticina (Pt). In the present study, 20 Pt isolates from Australia, comprising 10 phenotype-matched pairs with contrasting pathogenicity for Lr20, were analyzed using whole genome sequencing. Compared to the reference genome of the American Pt isolate 1-1 BBBD Race 1, an average of 404,690 single nucleotide polymorphisms (SNPs) per isolate was found and the proportion of heterozygous SNPs was above 87% in the majority of the isolates, demonstrating a high level of polymorphism and a high rate of heterozygosity. From the genome-wide SNPs, a phylogenetic tree was inferred, which consisted of a large clade of 15 isolates representing diverse presumed clonal lineages including 14 closely related isolates and the more diverged isolate 670028, and a small clade of five isolates characterized by lower heterozygosity level. Principle component analysis detected three distinct clusters, corresponding exactly to the two major subsets of the small clade and the large clade comprising all 15 isolates without further separation of isolate 670028. While genome-wide association analysis identified 302 genes harboring at least one SNP associated with Lr20 virulence (p < 0.05), a Wilcoxon rank sum test revealed that 36 and 68 genes had significant (p < 0.05) and marginally significant (p < 0.1) differences in the counts of non-synonymous mutations between Lr20 avirulent and virulent groups, respectively. Twenty of these genes were predicted to have a signal peptide without a transmembrane segment, and hence identified as candidate effector genes corresponding to Lr20. SNP analysis also implicated the potential involvement of epigenetics and small RNA in Pt pathogenicity. Future studies are thus warranted to investigate the biological functions of the candidate effectors as well as the gene regulation mechanisms at epigenetic and post

  18. Identifying novel homozygous deletions by microsatellite analysis and characterization of tumor suppressor candidate 1 gene, TUSC1, on chromosome 9p in human lung cancer

    PubMed Central

    Shan, Zhihong; Parker, Tracy; Wiest, Jonathan S

    2012-01-01

    Loss of heterozygosity (LOH) studies indicate that genetic alterations of chromosome 9p occur in numerous tumor types, suggesting the presence of tumor suppressor genes (TSGs) on chromosome 9p critical in carcinogenesis. Our previous LOH analyses in primary lung tumors led us to propose that chromosome 9p harbors other TSGs important in lung tumorigenesis. In this study, 30 non-small-cell lung cancer and 12 small-cell lung cancer cell lines were screened with 55 markers to identify new regions of homozygous deletion (HD) on chromosome 9p. Three novel noncontiguous homozygously deleted regions were detected and ranged in size from 840 kb to 7.4 Mb. One gene identified in the deletion at D9S126, TUSC1 (tumor suppressor candidate 1), is an intronless gene. Multiplex polymerase chain reaction and Southern blot confirmed the HD of TUSC1. Northern blot analysis of TUSC1 demonstrated two transcripts of approximately 2 and 1.5 kb that are likely generated by alternative polyadenylation signals. Both transcripts are expressed in several human tissues and share an open-reading frame encoding a peptide of 209 amino acids. Analysing cell line cDNAs by reverse transcriptase (RT)–PCR demonstrated downregulation of TUSC1 in cell lines with or without HDs, suggesting that TUSC1 may play a role in lung tumorigenesis. PMID:15208665

  19. Molecular analysis of the VP7 gene of pheasant rotaviruses identifies a new genotype, designated G23.

    PubMed

    Ursu, Krisztina; Kisfali, Péter; Rigó, Dóra; Ivanics, Eva; Erdélyi, Károly; Dán, Adám; Melegh, Béla; Martella, Vito; Bányai, Krisztián

    2009-01-01

    Rotavirus-associated enteritis has been reported in pheasants, but there is no information on the genetic/antigenic features of pheasant rotaviruses. In this study, we sequenced the VP7-encoding genome segment of three pheasant rotavirus strains detected during 2008 in Hungary. The full-length genome segment was 1,070 bp long, while the open reading frame was predicted to encode a 330-aa-long protein. The nucleotide sequence identities among the three pheasant rotavirus strains were high (> or =94%), whereas the range of nucleotide sequence identities to other avian and mammalian rotavirus VP7 genes fell between 68 and 73% and between 60 and 66%, respectively. Our findings indicate that these Hungarian pheasant rotaviruses need to be considered representatives of a new VP7 genotype specificity, designated G23.

  20. Machine Learning Analysis Identifies DrosophilaGrunge/Atrophin as an Important Learning and Memory Gene Required for Memory Retention and Social Learning.

    PubMed

    Kacsoh, Balint Z; Greene, Casey S; Bosco, Giovanni

    2017-09-09

    High throughput experiments are becoming increasingly common, and scientists must balance hypothesis driven experiments with genome wide data acquisition. We sought to predict novel genes involved in Drosophila learning and long-term memory from existing public high-throughput data. We performed an analysis using PILGRM, which analyzes public gene expression compendia using machine learning. We evaluated the top prediction alongside genes involved in learning and memory in IMP, an interface for functional relationship networks. We identified Grunge/Atrophin (Gug/Atro), a transcriptional repressor, histone deacetylase, as our top candidate. We find, through multiple, distinct assays, that Gug has an active role as a modulator of memory retention in the fly and its function is required in the adult mushroom body. Depletion of Gug specifically in neurons of the adult mushroom body, after cell division and neuronal development is complete, suggests that Gug function is important for memory retention through regulation of neuronal activity, and not by altering neurodevelopment. Our study provides a previously uncharacterized role for Gug as a possible regulator of neuronal plasticity at the interface of memory retention and memory extinction. Copyright © 2017, G3: Genes, Genomes, Genetics.

  1. Concordance analysis of microarray studies identifies representative gene expression changes in Parkinson's disease: a comparison of 33 human and animal studies.

    PubMed

    Oerton, Erin; Bender, Andreas

    2017-03-23

    As the popularity of transcriptomic analysis has grown, the reported lack of concordance between different studies of the same condition has become a growing concern, raising questions as to the representativeness of different study types, such as non-human disease models or studies of surrogate tissues, to gene expression in the human condition. In a comparison of 33 microarray studies of Parkinson's disease, correlation and clustering analyses were used to determine the factors influencing concordance between studies, including agreement between different tissue types, different microarray platforms, and between neurotoxic and genetic disease models and human Parkinson's disease. Concordance over all studies is low, with correlation of only 0.05 between differential gene expression signatures on average, but increases within human patients and studies of the same tissue type, rising to 0.38 for studies of human substantia nigra. Agreement of animal models, however, is dependent on model type. Studies of brain tissue from Parkinson's disease patients (specifically the substantia nigra) form a distinct group, showing patterns of differential gene expression noticeably different from that in non-brain tissues and animal models of Parkinson's disease; while comparison with other brain diseases (Alzheimer's disease and brain cancer) suggests that the mixed study types display a general signal of neurodegenerative disease. A meta-analysis of these 33 microarray studies demonstrates the greater ability of studies in humans and highly-affected tissues to identify genes previously known to be associated with Parkinson's disease. The observed clustering and concordance results suggest the existence of a 'characteristic' signal of Parkinson's disease found in significantly affected human tissues in humans. These results help to account for the consistency (or lack thereof) so far observed in microarray studies of Parkinson's disease, and act as a guide to the selection of

  2. Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes

    PubMed Central

    Edmunds, Richard C.; Su, Baofeng; Balhoff, James P.; Eames, B. Frank; Dahdul, Wasila M.; Lapp, Hilmar; Lundberg, John G.; Vision, Todd J.; Dunham, Rex A.; Mabee, Paula M.; Westerfield, Monte

    2016-01-01

    Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology. PMID:26500251

  3. Network analysis of gene expression in peripheral blood identifies mTOR and NF-κB pathways involved in antipsychotic-induced extrapyramidal symptoms.

    PubMed

    Mas, S; Gassó, P; Parellada, E; Bernardo, M; Lafuente, A

    2015-10-01

    To identify the candidate genes for pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we propose a systems biology analytical approach, based on protein-protein interaction network construction and functional annotation analysis, of changes in gene expression (Human Genome U219 Array Plate) induced by treatment with risperidone or paliperidone in peripheral blood. 12 AP-naïve patients with first-episode psychosis participated in the present study. Our analysis revealed that, in response to AP treatment, constructed networks were enriched for different biological processes in patients without EPS (ubiquitination, protein folding and adenosine triphosphate (ATP) metabolism) compared with those presenting EPS (insulin receptor signaling, lipid modification, regulation of autophagy and immune response). Moreover, the observed differences also involved specific pathways, such as anaphase promoting complex /cdc20, prefoldin/CCT/triC and ATP synthesis in no-EPS patients, and mammalian target of rapamycin and NF-κB kinases in patients with EPS. Our results showing different patterns of gene expression in EPS patients, offer new and valuable markers for pharmacogenetic studies.

  4. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.)

    USDA-ARS?s Scientific Manuscript database

    Dormancy transitions in crown buds of leafy spurge were investigated using 23K element cDNA microarrays. These data represent the first large-scale transcriptome analysis of dormancy in underground buds of an herbaceous perennial species. Crown buds collected monthly from August through December, ov...

  5. Characterization and functional analysis of a chitin synthase gene (HcCS1) identified from the freshwater pearlmussel Hyriopsis cumingii.

    PubMed

    Zheng, H F; Bai, Z Y; Lin, J Y; Wang, G L; Li, J L

    2015-12-29

    The triangle sail mussel, Hyriopsis cumingii, is the most important freshwater pearl mussel in China. However, the mechanisms underlying its chitin-mediated shell and nacre formation remain largely unknown. Here, we characterized a chitin synthase (CS) gene (HcCS1) in H. cumingii, and analyzed its possible physiological function. The complete ORF sequence of HcCS1 contained 6903 bp, encoding a 2300-amino acid protein (theoretical molecular mass = 264 kDa; isoelectric point = 6.22), and no putative signal peptide was predicted. A myosin motor head domain, a CS domain, and 12 transmembrane domains were found. The predicted spatial structures of the myosin head and CS domains were similar to the electron microscopic structure of the heavy meromyosin subfragment of chicken smooth muscle myosin and the crystal structure of bacterial cellulose synthase, respectively. This structural similarity indicates that the functions of these two domains might be conserved. Quantitative reverse transcription PCR results showed that HcCS1 was present in all detected tissues, with the highest expression levels detected in the mantle. The HcCS1 transcripts in the mantle were upregulated following shell damage from 12 to 24 h post-damage, and they peaked (approximately 1.5-fold increase) at 12 h after shell damage. These findings suggest that HcCS1 was involved in shell regeneration, and that it might participate in shell and nacre formation in this species via chitin synthesis. HcCS1 might also dynamically regulate chitin deposition during the process of shell and nacre formation with the help of its conserved myosin head domain.

  6. Functional analysis of a promoter variant identified in the CFTR gene in cis of a frameshift mutation.

    PubMed

    Viart, Victoria; Des Georges, Marie; Claustres, Mireille; Taulan, Magali

    2012-02-01

    In monogenic diseases, the presence of several sequence variations in the same allele may complicate our understanding of genotype-phenotype relationships. We described new alterations identified in a cystic fibrosis (CF) patient harboring a 48C>G promoter sequence variation associated in cis of a 3532AC>GTA mutation and in trans with the F508del mutation. Functional analyses including in vitro experiments confirmed the deleterious effect of the 3532GTA frameshift mutation through the creation of a premature termination codon. The analyses also revealed that the 48G promoter variant has a negative effect on both transcription and mRNA level, thus demonstrating the importance of analyzing all mutations or sequence variations with potential impact on CF transmembrane conductance regulator processing, even when the two known disease-causing mutations have already been detected. Our results emphasize the need to perform, wherever possible, functional studies that may greatly assist the interpretation of the disease-causing potential of rare mutation-associated sequence variations.

  7. Association Analysis of Bitter Receptor Genes in Five Isolated Populations Identifies a Significant Correlation between TAS2R43 Variants and Coffee Liking

    PubMed Central

    Pirastu, Nicola; Kooyman, Maarten; Traglia, Michela; Robino, Antonietta; Willems, Sara M.; Pistis, Giorgio; d’Adamo, Pio; Amin, Najaf; d’Eustacchio, Angela; Navarini, Luciano; Sala, Cinzia; Karssen, Lennart C.; van Duijn, Cornelia; Toniolo, Daniela; Gasparini, Paolo

    2014-01-01

    Coffee, one of the most popular beverages in the world, contains many different physiologically active compounds with a potential impact on people’s health. Despite the recent attention given to the genetic basis of its consumption, very little has been done in understanding genes influencing coffee preference among different individuals. Given its markedly bitter taste, we decided to verify if bitter receptor genes (TAS2Rs) variants affect coffee liking. In this light, 4066 people from different parts of Europe and Central Asia filled in a field questionnaire on coffee liking. They have been consequently recruited and included in the study. Eighty-eight SNPs covering the 25 TAS2R genes were selected from the available imputed ones and used to run association analysis for coffee liking. A significant association was detected with three SNP: one synonymous and two functional variants (W35S and H212R) on the TAS2R43 gene. Both variants have been shown to greatly reduce in vitro protein activity. Surprisingly the wild type allele, which corresponds to the functional form of the protein, is associated to higher liking of coffee. Since the hTAS2R43 receptor is sensible to caffeine, we verified if the detected variants produced differences in caffeine bitter perception on a subsample of people coming from the FVG cohort. We found a significant association between differences in caffeine perception and the H212R variant but not with the W35S, which suggests that the effect of the TAS2R43 gene on coffee liking is mediated by caffeine and in particular by the H212R variant. No other significant association was found with other TAS2R genes. In conclusion, the present study opens new perspectives in the understanding of coffee liking. Further studies are needed to clarify the role of the TAS2R43 gene in coffee hedonics and to identify which other genes and pathways are involved in its genetics. PMID:24647340

  8. Overexpressed genes associated with hormones in terminal ductal lobular units identified by global transcriptome analysis: An insight into the anatomic origin of breast cancer.

    PubMed

    Yang, Jianmin; Yu, Haijing; Zhang, Liang; Deng, Hua; Wang, Qi; Li, Wenping; Zhang, Anqin; Gao, Hongyi; Yin, Aihua

    2016-03-01

    Although human breast ducts and terminal ductal lobular units (TDLUs) share the same cell types, ample evidence shows that TDLUs are the predominant site for the origin of breast cancer. Yet, there is still limited information concerning the molecular mechanisms. Analysis of transcriptomic profiles in TDLUs may provide insight into early breast tumorigenesis. We compared genome-wide expression profiles of 8 matched sets of breast main duct and TDLU samples, using significance analysis of microarray (SAM) software to screen differentially expressed genes (DEGs) with fold-change >2.0 and q-value <0.05. Moreover, we used Gene Ontology for functional enrichment analysis. We identified 472 DEGs between the two tissue types, and confirmed 17 randomly chosen DEGs by quantitative reverse transcription-PCR (qRT-PCR). Notably, hormone-related pathways were highly enriched in the TDLU samples, including various hormone-related DEGs that are associated with breast carcinogenesis and tumor progression. Oncogenic upregulation in TDLUs indicates a potential inappropriate or excessive response to successive hormone stimulus during the proliferation, differentiation and lactation cycles of the human mammary gland. Imbalanced hormone reactions may finally result in the early onset of neoplastic transformation that occurs mostly in breast TDLUs.

  9. Phylogenetic analysis of seven WRKY genes across the palm subtribe Attaleinae (Arecaceae) [corrected] identifies Syagrus as sister group of the coconut.

    PubMed

    Meerow, Alan W; Noblick, Larry; Borrone, James W; Couvreur, Thomas L P; Mauro-Herrera, Margarita; Hahn, William J; Kuhn, David N; Nakamura, Kyoko; Oleas, Nora H; Schnell, Raymond J

    2009-10-06

    The Cocoseae is one of 13 tribes of Arecaceae subfam. Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera L., the coconut, the origins of which have been one of the "abominable mysteries" of palm systematics for decades. Previous studies with predominantly plastid genes weakly supported American ancestry for the coconut but ambiguous sister relationships. In this paper, we use multiple single copy nuclear loci to address the phylogeny of the Cocoseae subtribe Attaleinae, and resolve the closest extant relative of the coconut. We present the results of combined analysis of DNA sequences of seven WRKY transcription factor loci across 72 samples of Arecaceae tribe Cocoseae subtribe Attaleinae, representing all genera classified within the subtribe, and three outgroup taxa with maximum parsimony, maximum likelihood, and Bayesian approaches, producing highly congruent and well-resolved trees that robustly identify the genus Syagrus as sister to Cocos and resolve novel and well-supported relationships among the other genera of the Attaleinae. We also address incongruence among the gene trees with gene tree reconciliation analysis, and assign estimated ages to the nodes of our tree. This study represents the as yet most extensive phylogenetic analyses of Cocoseae subtribe Attaleinae. We present a well-resolved and supported phylogeny of the subtribe that robustly indicates a sister relationship between Cocos and Syagrus. This is not only of biogeographic interest, but will also open fruitful avenues of inquiry regarding evolution of functional genes useful for crop improvement. Establishment of two major clades of American Attaleinae occurred in the Oligocene (ca. 37 MYBP) in Eastern Brazil. The divergence of Cocos from Syagrus is estimated at 35 MYBP. The biogeographic and morphological congruence that we see for clades resolved in the Attaleinae suggests that WRKY loci are informative

  10. Early gene expression analysis in 9L orthotopic tumor-bearing rats identifies immune modulation in molecular response to synchrotron microbeam radiation therapy.

    PubMed

    Bouchet, Audrey; Sakakini, Nathalie; El Atifi, Michèle; Le Clec'h, Céline; Brauer, Elke; Moisan, Anaïck; Deman, Pierre; Rihet, Pascal; Le Duc, Géraldine; Pelletier, Laurent

    2013-01-01

    Synchrotron Microbeam Radiation Therapy (MRT) relies on the spatial fractionation of the synchrotron photon beam into parallel micro-beams applying several hundred of grays in their paths. Several works have reported the therapeutic interest of the radiotherapy modality at preclinical level, but biological mechanisms responsible for the described efficacy are not fully understood to date. The aim of this study was to identify the early transcriptomic responses of normal brain and glioma tissue in rats after MRT irradiation (400Gy). The transcriptomic analysis of similarly irradiated normal brain and tumor tissues was performed 6 hours after irradiation of 9 L orthotopically tumor-bearing rats. Pangenomic analysis revealed 1012 overexpressed and 497 repressed genes in the irradiated contralateral normal tissue and 344 induced and 210 repressed genes in tumor tissue. These genes were grouped in a total of 135 canonical pathways. More than half were common to both tissues with a predominance for immunity or inflammation (64 and 67% of genes for normal and tumor tissues, respectively). Several pathways involving HMGB1, toll-like receptors, C-type lectins and CD36 may serve as a link between biochemical changes triggered by irradiation and inflammation and immunological challenge. Most immune cell populations were involved: macrophages, dendritic cells, natural killer, T and B lymphocytes. Among them, our results highlighted the involvement of Th17 cell population, recently described in tumor. The immune response was regulated by a large network of mediators comprising growth factors, cytokines, lymphokines. In conclusion, early response to MRT is mainly based on inflammation and immunity which appear therefore as major contributors to MRT efficacy.

  11. Early Gene Expression Analysis in 9L Orthotopic Tumor-Bearing Rats Identifies Immune Modulation in Molecular Response to Synchrotron Microbeam Radiation Therapy

    PubMed Central

    Bouchet, Audrey; Sakakini, Nathalie; El Atifi, Michèle; Le Clec'h, Céline; Brauer, Elke; Moisan, Anaïck; Deman, Pierre; Rihet, Pascal; Le Duc, Géraldine; Pelletier, Laurent

    2013-01-01

    Synchrotron Microbeam Radiation Therapy (MRT) relies on the spatial fractionation of the synchrotron photon beam into parallel micro-beams applying several hundred of grays in their paths. Several works have reported the therapeutic interest of the radiotherapy modality at preclinical level, but biological mechanisms responsible for the described efficacy are not fully understood to date. The aim of this study was to identify the early transcriptomic responses of normal brain and glioma tissue in rats after MRT irradiation (400Gy). The transcriptomic analysis of similarly irradiated normal brain and tumor tissues was performed 6 hours after irradiation of 9 L orthotopically tumor-bearing rats. Pangenomic analysis revealed 1012 overexpressed and 497 repressed genes in the irradiated contralateral normal tissue and 344 induced and 210 repressed genes in tumor tissue. These genes were grouped in a total of 135 canonical pathways. More than half were common to both tissues with a predominance for immunity or inflammation (64 and 67% of genes for normal and tumor tissues, respectively). Several pathways involving HMGB1, toll-like receptors, C-type lectins and CD36 may serve as a link between biochemical changes triggered by irradiation and inflammation and immunological challenge. Most immune cell populations were involved: macrophages, dendritic cells, natural killer, T and B lymphocytes. Among them, our results highlighted the involvement of Th17 cell population, recently described in tumor. The immune response was regulated by a large network of mediators comprising growth factors, cytokines, lymphokines. In conclusion, early response to MRT is mainly based on inflammation and immunity which appear therefore as major contributors to MRT efficacy. PMID:24391709

  12. In vivo gene expression analysis identifies genes required for enhanced colonization of the mouse urinary tract by uropathogenic Escherichia coli strain CFT073 dsdA.

    PubMed

    Haugen, Brian J; Pellett, Shahaireen; Redford, Peter; Hamilton, Holly L; Roesch, Paula L; Welch, Rodney A

    2007-01-01

    Deletional inactivation of the gene encoding d-serine deaminase, dsdA, in uropathogenic Escherichia coli strain CFT073 results in a hypermotile strain with a hypercolonization phenotype in the bladder and kidneys of mice in a model of urinary tract infection (UTI). The in vivo gene expression profiles of CFT073 and CFT073 dsdA were compared by isolating RNA directly from the urine of mice challenged with each strain individually. Hybridization of cDNAs derived from these samples to CFT073-specific microarrays allowed identification of genes that were up- or down-regulated in the dsdA deletion strain during UTI. Up-regulated genes included the known d-serine-responsive gene dsdX, suggesting in vivo intracellular accumulation of d-serine by CFT073 dsdA. Genes encoding F1C fimbriae, both copies of P fimbriae, hemolysin, OmpF, a dipeptide transporter DppA, a heat shock chaperone IbpB, and clusters of open reading frames with unknown functions were also up-regulated. To determine the role of these genes as well as motility in the hypercolonization phenotype, mutants were constructed in the CFT073 dsdA background and tested in competition against the wild type in the murine model of UTI. Strains with deletions of one or both of the two P fimbrial operons, hlyA, fliC, ibpB, c0468, locus c3566 to c3568, or c2485 to c2490 colonized mouse bladders and kidneys at levels indistinguishable from wild type. CFT073 dsdA c2398 and CFT073 dsdA focA maintained a hypercolonization phenotype. A CFT073 dsdA dppA mutant was attenuated 10- to 50-fold in its colonization ability compared to CFT073. Our results support a role for d-serine catabolism and signaling in global virulence gene regulation of uropathogenic E. coli.

  13. Dicarbonyl/L-xylulose reductase: a potential biomarker identified by laser-capture microdissection-micro serial analysis of gene expression of human prostate adenocarcinoma.

    PubMed

    Cho-Vega, Jeong Hee; Tsavachidis, Spiridon; Do, Kim-Anh; Nakagawa, Junichi; Medeiros, L Jeffrey; McDonnell, Timothy J

    2007-12-01

    To identify genes involved in prostate carcinogenesis, we used laser-capture microdissection-micro serial analysis of gene expression to construct libraries of paired cancer and normal cells from human tissue samples. After computational comparison of the two libraries, we identified dicarbonyl/l-xylulose reductase (DCXR), an enzyme that catalyzes alpha-dicarbonyl and l-xylulose, as being significantly up-regulated in prostate cancer cells. The specificity of DCXR up-regulation for prostate cancer tissues was confirmed by quantitative real-time reverse transcriptase-PCR, virtual Northern blot, and Western blot analyses. Furthermore, DCXR expression at the protein level was assessed using fresh-frozen tissues and a tissue microarray consisting of 46 cases of organ-confined early-stage prostate cancer and 29 cases of chemohormonally treated prostate cancer. In most normal prostate epithelial cells, DCXR was expressed at low levels and was localized predominantly in the cytoplasmic membrane. In contrast, in virtually all grades of early-stage prostate cancer and in all chemohormonally treated cases, DCXR was strikingly overexpressed and was localized predominantly in the cytoplasm and nucleus. In all samples, the stromal cells were completely devoid of DCXR expression. Based on these findings, we suggest that DCXR overexpression has the potential to be an additional useful biomarker for prostate cancer.

  14. Fine mapping and conditional analysis identify a new mutation in the autoimmunity susceptibility gene BLK that leads to reduced half-life of the BLK protein

    PubMed Central

    Delgado-Vega, Angélica M; Dozmorov, Mikhail G; Quirós, Manuel Bernal; Wu, Ying-Yu; Martínez-García, Belén; Kozyrev, Sergey V; Frostegård, Johan; Truedsson, Lennart; de Ramón, Enrique; González-Escribano, María F; Ortego-Centeno, Norberto; Pons-Estel, Bernardo A; D'Alfonso, Sandra; Sebastiani, Gian Domenico; Witte, Torsten; Lauwerys, Bernard R; Endreffy, Emoke; Kovács, László; Vasconcelos, Carlos; da Silva, Berta Martins; Wren, Jonathan D; Martin, Javier; Castillejo-López, Casimiro; Alarcón-Riquelme, Marta E

    2012-01-01

    Objectives To perform fine mapping of the autoimmunity susceptibility gene BLK and identify functional variants involved in systemic lupus erythematosus (SLE). Methods Genotyping of 1163 European SLE patients and 1482 controls and imputation were performed covering the BLK gene with 158 single-nucleotide po