Science.gov

Sample records for analysis identifies up-regulation

  1. Microarray and KOG analysis of Acanthamoeba healyi genes up-regulated by mouse-brain passage.

    PubMed

    Moon, Eun-Kyung; Xuan, Ying-Hua; Kong, Hyun-Hee

    2014-08-01

    Long-term cultivation in a laboratory could reduce the virulence of Acanthamoeba. To identify virulence factors of Acanthamoeba, the authors compared the transcription profiles of long-term cultivated Acanthamoeba healyi (OLD) and three times mouse-brain passaged A. healyi (MBP) using microarray analysis and eukaryotic orthologous group (KOG) assignments. Microarray analysis revealed that 601 genes were up-regulated by mouse-brain passage. The results of real-time PCR of 8 randomly selected genes up-regulated in the MBP strain confirmed microarray analysis findings. KOG assignments showed relatively higher percentages of the MBP strain up-regulated genes in T article (signal transduction mechanism), O article (posttranslational modification, protein turnover, chaperones), C article (energy production and conversion), and J article (translation, ribosomal structure and biogenesis). In particular, the MBP strain showed higher expressions of cysteine protease and metalloprotease. A comparison of KOG assignments by microarray analysis and previous EST (expressed sequence tags) analysis showed similar populations of up-regulated genes. These results provide important information regarding the identification of virulence factors of pathogenic Acanthamoeba.

  2. A comparative proteomic study identified calreticulin and prohibitin up-regulated in adrenocortical carcinomas

    PubMed Central

    2013-01-01

    Background Identifying novel tumor biomarkers to develop more effective diagnostic and therapeutic strategies for patients with ACC is urgently needed. The aim of the study was to compare the proteomic profiles between adrenocortical carcinomas (ACC) and normal adrenocortical tissues in order to identify novel potential biomarkers for ACC. Methods The protein samples from 12 ACC tissues and their paired adjacent normal adrenocortical tissues were profiled with two-dimensional electrophoresis; and differentially expressed proteins were identified by mass spectrometry. Expression patterns of three differently expressed proteins calreticulin, prohibitin and HSP60 in ACC, adrenocortical adenomas (ACA) and normal adrenocortical tissues were further validated by immunohistochemistry. Results In our proteomic study, we identified 20 up-regulated and 9 down-regulated proteins in ACC tissues compared with paired normal controls. Most of the up-regulated proteins were focused in protein binding and oxidoreductase activity in Gene Ontology (GO) molecular function classification. By immunohistochemistry, two biomarkers calreticulin and prohibitin were validated to be overexpressed in ACC compared with adrenocortical adenomas (ACA) and normal tissues, but also calreticulin overexpression was significantly associated with tumor stages of ACC. Conclusion For the first time, calreticulin and prohibitin were identified to be novel candidate biomarkers for ACC, and their roles during ACC carcinogenesis and clinical significance deserves further investigation. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1897372598927465 PMID:23587357

  3. Exploration of Up-regulated Key Proteins in Pseudomonas Aeruginosa for High-efficiency Petroleum Degradation by Proteomic Analysis.

    PubMed

    Wang, Jun-Di; Li, Xu-Xiang; Qu, Cheng-Tun

    2017-07-11

    In this work, proteomic analysis was used to identify the up-regulated key proteins of Pseudomonas aeruginosa (P6), a bacteria used in petroleum degradation, responsible for its high efficiency in degrading crude oil. Seventeen proteins were identified as up-regulated proteins by proteomic analysis and classified by bioinformatics analysis. The results indicated that most of the up-regulated proteins were responsible for P. aeruginosa (P6) survival under harsh environmental conditions and utilization crude oil as carbon source in a better way. The physiological processes, chemotaxis to carbon sources, terminal oxidation of carbons, carbon source uptake and nutrients transport, were associated with the up-regulated proteins in the study. The findings revealed the most influential proteins and set a clear direction for future research.

  4. Multi-Layer Identification of Highly-Potent ABCA1 Up-Regulators Targeting LXRβ Using Multiple QSAR Modeling, Structural Similarity Analysis, and Molecular Docking.

    PubMed

    Chen, Meimei; Yang, Fafu; Kang, Jie; Yang, Xuemei; Lai, Xinmei; Gao, Yuxing

    2016-11-29

    In this study, in silico approaches, including multiple QSAR modeling, structural similarity analysis, and molecular docking, were applied to develop QSAR classification models as a fast screening tool for identifying highly-potent ABCA1 up-regulators targeting LXRβ based on a series of new flavonoids. Initially, four modeling approaches, including linear discriminant analysis, support vector machine, radial basis function neural network, and classification and regression trees, were applied to construct different QSAR classification models. The statistics results indicated that these four kinds of QSAR models were powerful tools for screening highly potent ABCA1 up-regulators. Then, a consensus QSAR model was developed by combining the predictions from these four models. To discover new ABCA1 up-regulators at maximum accuracy, the compounds in the ZINC database that fulfilled the requirement of structural similarity of 0.7 compared to known potent ABCA1 up-regulator were subjected to the consensus QSAR model, which led to the discovery of 50 compounds. Finally, they were docked into the LXRβ binding site to understand their role in up-regulating ABCA1 expression. The excellent binding modes and docking scores of 10 hit compounds suggested they were highly-potent ABCA1 up-regulators targeting LXRβ. Overall, this study provided an effective strategy to discover highly potent ABCA1 up-regulators.

  5. N-glycoprotein analysis discovers new up-regulated glycoproteins in colorectal cancer tissue.

    PubMed

    Nicastri, Annalisa; Gaspari, Marco; Sacco, Rosario; Elia, Laura; Gabriele, Caterina; Romano, Roberto; Rizzuto, Antonia; Cuda, Giovanni

    2014-11-07

    Colorectal cancer is one of the leading causes of death due to cancer worldwide. Therefore, the identification of high-specificity and -sensitivity biomarkers for the early detection of colorectal cancer is urgently needed. Post-translational modifications, such as glycosylation, are known to play an important role in cancer progression. In the present work, we used a quantitative proteomic technique based on (18)O stable isotope labeling to identify differentially expressed N-linked glycoproteins in colorectal cancer tissue samples compared with healthy colorectal tissue from 19 patients undergoing colorectal cancer surgery. We identified 54 up-regulated glycoproteins in colorectal cancer samples, therefore potentially involved in the biological processes of tumorigenesis. In particular, nine of these (PLOD2, DPEP1, SE1L1, CD82, PAR1, PLOD3, S12A2, LAMP3, OLFM4) were found to be up-regulated in the great majority of the cohort, and, interestingly, the association with colorectal cancer of four (PLOD2, S12A2, PLOD3, CD82) has not been hitherto described.

  6. Transcriptomic meta-analysis reveals up-regulation of gene expression functional in osteoclast differentiation in human septic shock

    PubMed Central

    Mukhopadhyay, Samanwoy; Thatoi, Pravat K.; Pandey, Abhay D.; Das, Bidyut K.; Ravindran, Balachandran; Bhattacharjee, Samsiddhi; Mohapatra, Saroj K.

    2017-01-01

    Septic shock is a major medical problem with high morbidity and mortality and incompletely understood biology. Integration of multiple data sets into a single analysis framework empowers discovery of new knowledge about the condition that may have been missed by individual analysis of each of these datasets. Electronic search was performed on medical literature and gene expression databases for selection of transcriptomic studies done in circulating leukocytes from human subjects suffering from septic shock. Gene-level meta-analysis was conducted on the six selected studies to identify the genes consistently differentially expressed in septic shock. This was followed by pathway-level analysis using three different algorithms (ORA, GSEA, SPIA). The identified up-regulated pathway, Osteoclast differentiation pathway (hsa04380) was validated in two independent cohorts. Of the pathway, 25 key genes were selected that serve as an expression signature of Septic Shock. PMID:28199355

  7. Transcriptomic meta-analysis reveals up-regulation of gene expression functional in osteoclast differentiation in human septic shock.

    PubMed

    Mukhopadhyay, Samanwoy; Thatoi, Pravat K; Pandey, Abhay D; Das, Bidyut K; Ravindran, Balachandran; Bhattacharjee, Samsiddhi; Mohapatra, Saroj K

    2017-01-01

    Septic shock is a major medical problem with high morbidity and mortality and incompletely understood biology. Integration of multiple data sets into a single analysis framework empowers discovery of new knowledge about the condition that may have been missed by individual analysis of each of these datasets. Electronic search was performed on medical literature and gene expression databases for selection of transcriptomic studies done in circulating leukocytes from human subjects suffering from septic shock. Gene-level meta-analysis was conducted on the six selected studies to identify the genes consistently differentially expressed in septic shock. This was followed by pathway-level analysis using three different algorithms (ORA, GSEA, SPIA). The identified up-regulated pathway, Osteoclast differentiation pathway (hsa04380) was validated in two independent cohorts. Of the pathway, 25 key genes were selected that serve as an expression signature of Septic Shock.

  8. Integrated proteomics identified up-regulated focal adhesion-mediated proteins in human squamous cell carcinoma in an orthotopic murine model.

    PubMed

    Granato, Daniela C; Zanetti, Mariana R; Kawahara, Rebeca; Yokoo, Sami; Domingues, Romênia R; Aragão, Annelize Z; Agostini, Michelle; Carazzolle, Marcelo F; Vidal, Ramon O; Flores, Isadora L; Korvala, Johanna; Cervigne, Nilva K; Silva, Alan R S; Coletta, Ricardo D; Graner, Edgard; Sherman, Nicholas E; Paes Leme, Adriana F

    2014-01-01

    Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics, effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues. In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together, this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules.

  9. Integrated Proteomics Identified Up-Regulated Focal Adhesion-Mediated Proteins in Human Squamous Cell Carcinoma in an Orthotopic Murine Model

    PubMed Central

    Granato, Daniela C.; Zanetti, Mariana R.; Kawahara, Rebeca; Yokoo, Sami; Domingues, Romênia R.; Aragão, Annelize Z.; Agostini, Michelle; Carazzolle, Marcelo F.; Vidal, Ramon O.; Flores, Isadora L.; Korvala, Johanna; Cervigne, Nilva K.; Silva, Alan R. S.; Coletta, Ricardo D.; Graner, Edgard; Sherman, Nicholas E.; Leme, Adriana F. Paes

    2014-01-01

    Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics, effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues. In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together, this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules. PMID:24858105

  10. Functional analysis of the buckwheat metallothionein promoter: tissue specificity pattern and up-regulation under complex stress stimuli.

    PubMed

    Bratić, Ana M; Majić, Dragana B; Samardzić, Jelena T; Maksimović, Vesna R

    2009-06-01

    To shed light on expression regulation of the metallothionein gene from buckwheat (FeMT3), functional promoter analysis was performed with a complete 5' regulatory region and two deletion variants, employing stably transformed tobacco plants. Histochemical GUS assay of transgenic tobacco lines showed the strongest signals in vascular elements of leaves and in pollen grains, while somewhat weaker staining was observed in the roots of mature plants. This tissue specificity pattern implies a possible function of buckwheat MT3 in those tissues. Quantitative GUS assay showed strong up-regulation of all three promoter constructs (proportional to the length of the regulatory region) in leaves submerged in liquid MS medium containing sucrose, after a prolonged time period. This represented a complex stress situation composed of several synergistically related stress stimuli. These findings suggest complex transcriptional regulation of FeMT3, requiring interactions among a number of different factors.

  11. Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation

    PubMed Central

    Hoehenwarter, Wolfgang; Brzobohatý, Břetislav

    2013-01-01

    In plants, numerous developmental processes are controlled by cytokinin (CK) levels and their ratios to levels of other hormones. While molecular mechanisms underlying the regulatory roles of CKs have been intensely researched, proteomic and metabolomic responses to CK deficiency are unknown. Transgenic Arabidopsis seedlings carrying inducible barley cytokinin oxidase/dehydrogenase (CaMV35S>GR>HvCKX2) and agrobacterial isopentenyl transferase (CaMV35S>GR>ipt) constructs were profiled to elucidate proteome- and metabolome-wide responses to down- and up-regulation of CK levels, respectively. Proteome profiling identified >1100 proteins, 155 of which responded to HvCKX2 and/or ipt activation, mostly involved in growth, development, and/or hormone and light signalling. The metabolome profiling covered 79 metabolites, 33 of which responded to HvCKX2 and/or ipt activation, mostly amino acids, carbohydrates, and organic acids. Comparison of the data sets obtained from activated CaMV35S>GR>HvCKX2 and CaMV35S>GR>ipt plants revealed unexpectedly extensive overlaps. Integration of the proteomic and metabolomic data sets revealed: (i) novel components of molecular circuits involved in CK action (e.g. ribosomal proteins); (ii) previously unrecognized links to redox regulation and stress hormone signalling networks; and (iii) CK content markers. The striking overlaps in profiles observed in CK-deficient and CK-overproducing seedlings might explain surprising previously reported similarities between plants with down- and up-regulated CK levels. PMID:24064926

  12. Meta-analysis reveals up-regulation of cholesterol processes in non-alcoholic and down-regulation in alcoholic fatty liver disease

    PubMed Central

    Wruck, Wasco; Adjaye, James

    2017-01-01

    AIM To compare transcriptomes of non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) in a meta-analysis of liver biopsies. METHODS Employing transcriptome data from patient liver biopsies retrieved from several public repositories we performed a meta-analysis comparing ALD and NAFLD. RESULTS We observed predominating commonalities at the transcriptome level between ALD and NAFLD, most prominently numerous down-regulated metabolic pathways and cytochrome-related pathways and a few up-regulated pathways which include ECM-receptor interaction, phagosome and lysosome. However some pathways were regulated in opposite directions in ALD and NAFLD, for example, glycolysis was down-regulated in ALD and up-regulated in NAFLD. Interestingly, we found rate-limiting genes such as HMGCR, SQLE and CYP7A1 which are associated with cholesterol processes adversely regulated between ALD (down-regulated) and NAFLD (up-regulated). We propose that similar phenotypes in both diseases may be due to a lower level of the enzyme CYP7A1 compared to the cholesterol synthesis enzymes HMGCR and SQLE. Additionally, we provide a compendium of comparative KEGG pathways regulation in ALD and NAFLD. CONCLUSION Our finding of adversely regulated cholesterol processes in ALD and NAFLD draws the focus to regulation of cholesterol secretion into bile. Thus, it will be interesting to further investigate CYP7A1-mediated cholesterol secretion into bile - also as possible drug targets. The list of potential novel biomarkers may assist differential diagnosis of ALD and NAFLD. PMID:28357032

  13. Up-regulation of Na + expression in the area postrema of total sleep deprived rats by TOF-SIMS analysis

    NASA Astrophysics Data System (ADS)

    Mai, Fu-Der; Chen, Bo-Jung; Ling, Yong-Chien; Wu, Un-In; Huang, Yi-Lun; Chang, Hung-Ming

    2008-12-01

    Area postrema (AP) is a circumventricular organ plays an important role in sodium homeostasis and cardiovascular regulation. Since sleep deficiency will cause cardiovascular dysfunction, the present study aims to determine whether sodium level would significantly alter in AP following total sleep deprivation (TSD). Sodium level was investigated in vivo by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Clinical manifestation of cardiovascular function was demonstrated by mean arterial pressure (MAP) values. Results indicated that in normal rats, TOF-SIMS spectrum revealed a major peak of sodium ion counting as 5.61 × 10 5 at m/ z 23. The sodium ions were homogeneous distributed in AP without specific localization. However, following TSD, the sodium intensity was relatively increased (6.73 × 10 5) and the signal for sodium image was strongly expressed throughout AP with definite spatial distribution. MAP of TSD rats is 138 ± 5 mmHg, which is significantly higher than that of normal ones (121 ± 3 mmHg). Regarding AP is an important area for sodium sensation and development of hypernatremic related sympatho-excitation; up-regulation of sodium expression following TSD suggests that high sodium level might over-activate AP, through complex neuronal networks involving in sympathetic regulation, which could lead to the formation of TSD relevant cardiovascular diseases.

  14. A subtracted cDNA library identifies genes up-regulated during PHOT1-mediated early step of de-etiolation in tomato (Solanum lycopersicum L.).

    PubMed

    Hloušková, Petra; Bergougnoux, Véronique

    2016-04-18

    De-etiolation is the switch from skoto- to photomorphogenesis, enabling the heterotrophic etiolated seedling to develop into an autotrophic plant. Upon exposure to blue light (BL), reduction of hypocotyl growth rate occurs in two phases: a rapid inhibition mediated by phototropin 1 (PHOT1) within the first 30-40 min of illumination, followed by the cryptochrome 1 (CRY1)-controlled establishment of the steady-state growth rate. Although some information is available for CRY1-mediated de-etiolation, less attention has been given to the PHOT1 phase of de-etiolation. We generated a subtracted cDNA library using the suppression subtractive hybridization method to investigate the molecular mechanisms of BL-induced de-etiolation in tomato (Solanum lycopersicum L.), an economically important crop. We focused our interest on the first 30 min following the exposure to BL when PHOT1 is required to induce the process. Our library generated 152 expressed sequence tags that were found to be rapidly accumulated upon exposure to BL and consequently potentially regulated by PHOT1. Annotation revealed that biological functions such as modification of chromatin structure, cell wall modification, and transcription/translation comprise an important part of events contributing to the establishment of photomorphogenesis in young tomato seedlings. Our conclusions based on bioinformatics data were supported by qRT-PCR analyses the specific investigation of V-H(+)-ATPase during de-etiolation in tomato. Our study provides the first report dealing with understanding the PHOT1-mediated phase of de-etiolation. Using subtractive cDNA library, we were able to identify important regulatory mechanisms. The profound induction of transcription/translation, as well as modification of chromatin structure, is relevant in regard to the fact that the entry into photomorphogenesis is based on a deep reprograming of the cell. Also, we postulated that BL restrains the cell expansion by the rapid modification

  15. Quantitative Proteomic Analysis Revealed 4-(methylnitrosamino)-1-(3-pyridinyl)-1-butanone-induced Up-regulation of 20S Proteasome in Cultured Human Fibroblast Cells

    PubMed Central

    Prins, John M.; Wang, Yinsheng

    2012-01-01

    The tobacco-specific N-nitrosamine, 4-(methylnitrosamino)-1-(3-pyridinyl)-1-butanone (NNK), is a well-known carcinogen. Although the ability of the metabolically activated form of NNK to generate DNA adducts is well established, little is known about the cellular pathways perturbed by NNK in its native state. In this study, we utilized stable isotope labeling by amino acid in cell culture (SILAC), together with mass spectrometry, to assess the perturbation of protein expression in GM00637 human skin fibroblast cells upon NNK exposure. With this approach, we were able to quantify 1412 proteins and 137 of them were with significantly altered expression following NNK exposure, including the up-regulation of all subunits of the 20S proteasome core complex. The up-regulation of the 20S core complex was also reflected by a significant increase in 20S proteasome activities in GM00637, IMR90 and MCF-7 cells upon NNK treatment. Furthermore, the β-adrenergic receptor (β-AR) antagonist propranolol could attenuate significantly the NNK-induced increase in proteasome activity in all the three cell lines, suggesting that up-regulation of the 20S proteasome may be mediated through the β-AR. Additionally, we found that NNK treatment altered the expression levels of other important proteins including mitochondrial proteins, cytoskeleton-associated proteins, and proteins involved in glycolysis and gluconeogenesis. Results from the present study provided novel insights into the cellular mechanisms targeted by NNK. PMID:22369695

  16. Analysis of the rice mutant dwarf and gladius leaf 1. Aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling.

    PubMed

    Komorisono, Masahiko; Ueguchi-Tanaka, Miyako; Aichi, Ikuko; Hasegawa, Yasuko; Ashikari, Motoyuki; Kitano, Hidemi; Matsuoka, Makoto; Sazuka, Takashi

    2005-08-01

    Molecular genetic studies of plant dwarf mutants have indicated that gibberellin (GA) and brassinosteroid (BR) are two major factors that determine plant height; dwarf mutants that are caused by other defects are relatively rare, especially in monocot species. Here, we report a rice (Oryza sativa) dwarf mutant, dwarf and gladius leaf 1 (dgl1), which exhibits only minimal response to GA and BR. In addition to the dwarf phenotype, dgl1 produces leaves with abnormally rounded tip regions. Positional cloning of DGL1 revealed that it encodes a 60-kD microtubule-severing katanin-like protein. The protein was found to be important in cell elongation and division, based on the observed cell phenotypes. GA biosynthetic genes are up-regulated in dgl1, but the expression of BR biosynthetic genes is not enhanced. The enhanced expression of GA biosynthetic genes in dgl1 is not caused by inappropriate GA signaling because the expression of these genes was repressed by GA3 treatment, and degradation of the rice DELLA protein SLR1 was triggered by GA3 in this mutant. Instead, aberrant microtubule organization caused by the loss of the microtubule-severing function of DGL1 may result in enhanced expression of GA biosynthetic genes in that enhanced expression was also observed in a BR-deficient mutant with aberrant microtubule organization. These results suggest that the function of DGL1 is important for cell and organ elongation in rice, and aberrant DGL1-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling.

  17. Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages

    PubMed Central

    Sotoodehnejadnematalahi, Fattah; Staples, Karl J.; Chrysanthou, Elvina; Pearson, Helen; Ziegler-Heitbrock, Loems; Burke, Bernard

    2015-01-01

    Hypoxia is a hallmark of many pathological tissues. Macrophages accumulate in hypoxic sites and up-regulate a range of hypoxia-inducible genes. The matrix proteoglycan versican has been identified as one such gene, but the mechanisms responsible for hypoxic induction are not fully characterised. Here we investigate the up-regulation of versican by hypoxia in primary human monocyte-derived macrophages (HMDM), and, intriguingly, show that versican mRNA is up-regulated much more highly (>600 fold) by long term hypoxia (5 days) than by 1 day of hypoxia (48 fold). We report that versican mRNA decay rates are not affected by hypoxia, demonstrating that hypoxic induction of versican mRNA is mediated by increased transcription. Deletion analysis of the promoter identified two regions required for high level promoter activity of luciferase reporter constructs in human macrophages. The hypoxia-inducible transcription factor HIF-1 has previously been implicated as a key potential regulator of versican expression in hypoxia, however our data suggest that HIF-1 up-regulation is unlikely to be principally responsible for the high levels of induction observed in HMDM. Treatment of HMDM with two distinct specific inhibitors of Phosphoinositide 3-kinase (PI3K), LY290042 and wortmannin, significantly reduced induction of versican mRNA by hypoxia and provides evidence of a role for PI3K in hypoxic up-regulation of versican expression. PMID:26057378

  18. Micro-RNA analysis of renal biopsies in human lupus nephritis demonstrates up-regulated miR-422a driving reduction of kallikrein-related peptidase 4.

    PubMed

    Krasoudaki, Eleni; Banos, Aggelos; Stagakis, Elias; Loupasakis, Konstantinos; Drakos, Elias; Sinatkas, Vaios; Zampoulaki, Amalia; Papagianni, Aikaterini; Iliopoulos, Dimitrios; Boumpas, Dimitrios T; Bertsias, George K

    2016-10-01

    Aberrancies in gene expression in immune effector cells and in end-organs are implicated in lupus pathogenesis. To gain insights into the mechanisms of tissue injury, we profiled the expression of micro-RNAs in inflammatory kidney lesions of human lupus nephritis (LN). Kidney specimens were from patients with active proliferative, membranous or mixed LN and unaffected control tissue. Micro-RNAs were quantified by TaqMan Low Density Arrays. Bioinformatics was employed to predict gene targets, gene networks and perturbed signaling pathways. Results were validated by transfection studies (luciferase assay, real-time PCR) and in murine LN. Protein expression was determined by immunoblotting and immunohistochemistry. Twenty-four micro-RNAs were dysregulated (9 up-regulated, 15 down-regulated) in human LN compared with control renal tissue. Their predicted gene targets participated in pathways associated with TGF-β, kinases, NF-κB, HNF4A, Wnt/β-catenin, STAT3 and IL-4. miR-422a showed the highest upregulation (17-fold) in active LN and correlated with fibrinoid necrosis lesions (β = 0.63, P = 0.002). In transfection studies, miR-422a was found to directly target kallikrein-related peptidase 4 (KLK4) mRNA. Concordantly, KLK4 mRNA was significantly reduced in the kidneys of human and murine LN and correlated inversely with miR-422a levels. Immunohistochemistry confirmed reduced KLK4 protein expression in renal mesangial and tubular epithelial cells in human and murine LN. KLK4, a serine esterase with putative renoprotective properties, is down-regulated by miR-422a in LN kidney suggesting that, in addition to immune activation, local factors may be implicated in the disease. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  19. Hepatotoxicity of piperazine designer drugs: up-regulation of key enzymes of cholesterol and lipid biosynthesis.

    PubMed

    Arbo, Marcelo Dutra; Melega, Simone; Stöber, Regina; Schug, Markus; Rempel, Eugen; Rahnenführer, Jörg; Godoy, Patricio; Reif, Raymond; Cadenas, Cristina; de Lourdes Bastos, Maria; Carmo, Helena; Hengstler, Jan G

    2016-12-01

    The piperazine derivatives most frequently consumed for recreational purposes are 1-benzylpiperazine, 1-(3,4-methylenedioxybenzyl) piperazine, 1-(3-trifluoromethylphenyl) piperazine and 1-(4-methoxyphenyl) piperazine. Generally, they are consumed as capsules, tablets or pills but also in powder or liquid forms. Currently, the precise mechanism by which piperazine designer drugs induce hepatotoxicity and whether they act by a common pathway is unclear. To answer this question, we performed a gene array study with rat hepatocytes incubated with the four designer drugs. Non-cytotoxic concentrations were chosen that neither induce a decrease in reduced glutathione or ATP depletion. Analysis of the gene array data showed a large overlap of gene expression alterations induced by the four drugs. This 'piperazine designer drug consensus signature' included 101 up-regulated and 309 down-regulated probe sets (p < 0.05; FDR adjusted). In the up-regulated genes, GO groups of cholesterol biosynthesis represented a dominant overrepresented motif. Key enzymes of cholesterol biosynthesis up-regulated by all four piperazine drugs include sterol C4-methyloxidase, isopentyl-diphosphate-Δ-isomerase, Cyp51A1, squalene epoxidase and farnesyl diphosphate synthase. Additionally, glycoprotein transmembrane nmb, which participates in cell adhesion processes, and fatty acid desaturase 1, an enzyme that regulates unsaturation of fatty acids, were also up-regulated by the four piperazine designer drugs. Regarding the down-regulated probe sets, only one gene was common to all four piperazine derivatives, the betaine-homocysteine-S-methyltransferase 2. Analysis of transcription factor binding sites of the 'piperazine designer drug consensus signature' identified the sterol regulatory element binding protein (SREBP-1) as strongly overrepresented in the up-regulated genes. SREBP transcription factors are known to regulate multiple genes of cholesterol metabolism. In conclusion, the present

  20. Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes.

    PubMed

    Camilios-Neto, Doumit; Bonato, Paloma; Wassem, Roseli; Tadra-Sfeir, Michelle Z; Brusamarello-Santos, Liziane C C; Valdameri, Glaucio; Donatti, Lucélia; Faoro, Helisson; Weiss, Vinicius A; Chubatsu, Leda S; Pedrosa, Fábio O; Souza, Emanuel M

    2014-05-16

    The rapid growth of the world's population demands an increase in food production that no longer can be reached by increasing amounts of nitrogenous fertilizers. Plant growth promoting bacteria (PGPB) might be an alternative to increase nitrogenous use efficiency (NUE) in important crops such wheat. Azospirillum brasilense is one of the most promising PGPB and wheat roots colonized by A. brasilense is a good model to investigate the molecular basis of plant-PGPB interaction including improvement in plant-NUE promoted by PGPB. We performed a dual RNA-Seq transcriptional profiling of wheat roots colonized by A. brasilense strain FP2. cDNA libraries from biological replicates of colonized and non-inoculated wheat roots were sequenced and mapped to wheat and A. brasilense reference sequences. The unmapped reads were assembled de novo. Overall, we identified 23,215 wheat expressed ESTs and 702 A. brasilense expressed transcripts. Bacterial colonization caused changes in the expression of 776 wheat ESTs belonging to various functional categories, ranging from transport activity to biological regulation as well as defense mechanism, production of phytohormones and phytochemicals. In addition, genes encoding proteins related to bacterial chemotaxi, biofilm formation and nitrogen fixation were highly expressed in the sub-set of A. brasilense expressed genes. PGPB colonization enhanced the expression of plant genes related to nutrient up-take, nitrogen assimilation, DNA replication and regulation of cell division, which is consistent with a higher proportion of colonized root cells in the S-phase. Our data support the use of PGPB as an alternative to improve nutrient acquisition in important crops such as wheat, enhancing plant productivity and sustainability.

  1. Transcriptional Analysis of PRRSV-Infected Porcine Dendritic Cell Response to Streptococcus suis Infection Reveals Up-Regulation of Inflammatory-Related Genes Expression

    PubMed Central

    Auray, Gaël; Lachance, Claude; Wang, Yingchao; Gagnon, Carl A.; Segura, Mariela; Gottschalk, Marcelo

    2016-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine pathogens and often serves as an entry door for other viral or bacterial pathogens, of which Streptococcus suis is one of the most common. Pre-infection with PRRSV leads to exacerbated disease caused by S. suis infection. Very few studies have assessed the immunological mechanisms underlying this higher susceptibility. Since antigen presenting cells play a major role in the initiation of the immune response, the in vitro transcriptional response of bone marrow-derived dendritic cells (BMDCs) and monocytes in the context of PRRSV and S. suis co-infection was investigated. BMDCs were found to be more permissive than monocytes to PRRSV infection; S. suis phagocytosis by PRRSV-infected BMDCs was found to be impaired, whereas no effect was found on bacterial intracellular survival. Transcription profile analysis, with a major focus on inflammatory genes, following S. suis infection, with and without pre-infection with PRRSV, was then performed. While PRRSV pre-infection had little effect on monocytes response to S. suis infection, a significant expression of several pro-inflammatory molecules was observed in BMDCs pre-infected with PRRSV after a subsequent infection with S. suis. While an additive effect could be observed for CCL4, CCL14, CCL20, and IL-15, a distinct synergistic up-regulatory effect was observed for IL-6, CCL5 and TNF-α after co-infection. This increased pro-inflammatory response by DCs could participate in the exacerbation of the disease observed during PRRSV and S. suis co-infection. PMID:27213692

  2. Ezrin Inhibition Up-regulates Stress Response Gene Expression*

    PubMed Central

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T.; Minas, Tsion Z.; Conn, Erin J.; Hong, Sung-Hyeok; Pauly, Gary T.; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A.; Toretsky, Jeffrey A.; Üren, Aykut

    2016-01-01

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. PMID:27137931

  3. Ezrin Inhibition Up-regulates Stress Response Gene Expression.

    PubMed

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T; Minas, Tsion Z; Conn, Erin J; Hong, Sung-Hyeok; Pauly, Gary T; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A; Toretsky, Jeffrey A; Üren, Aykut

    2016-06-17

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes.

  4. A Plant Gene Up-Regulated at Rust Infection Sites

    PubMed Central

    Ayliffe, Michael A.; Roberts, James K.; Mitchell, Heidi J.; Zhang, Ren; Lawrence, Gregory J.; Ellis, Jeffrey G.; Pryor, Tony J.

    2002-01-01

    Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a β-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%–82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a Δ1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection. PMID:12011348

  5. Identification of biotic and abiotic stress up-regulated ESTs in Gossypium arboreum.

    PubMed

    Barozai, Muhammad Younas Khan; Husnain, Tayyab

    2012-02-01

    Asiatic desi cotton (Gossypium arboreum) shows great potential against biotic and abiotic stresses. The stress resistant nature makes it a best source for the identification of biotic and abiotic stress resistant genes. As in many plants same set of genes show responding behavior against the various abiotic and biotic stresses. Thus in the present study the ESTs from the G. arboreum drought stressed leaves were subjected to find the up-regulated ESTs in abiotic and biotic stresses through homology and in-silico analysis. A cDNA library has been constructed from the drought stressed G. arboreum plant. 778 clones were randomly picked and sequenced. All these sequences were subjected to in-silico identification of biotic and abiotic up-regulated ESTs. Total 39 abiotic and biotic up-regulated ESTs were identified. The results were further validated by real-time PCR; by randomly selection of ten ESTs. These findings will help to develop stress resistant crop varieties for better yield and growth performance under stresses.

  6. High Glucose Up-regulates ADAM17 through HIF-1α in Mesangial Cells*

    PubMed Central

    Li, Renzhong; Uttarwar, Lalita; Gao, Bo; Charbonneau, Martine; Shi, Yixuan; Chan, John S. D.; Dubois, Claire M.; Krepinsky, Joan C.

    2015-01-01

    We previously showed that ADAM17 mediates high glucose-induced matrix production by kidney mesangial cells. ADAM17 expression is increased in diabetic kidneys, suggesting that its up-regulation may augment high glucose profibrotic responses. We thus studied the effects of high glucose on ADAM17 gene regulation. Primary rat mesangial cells were treated with high glucose (30 mm) or mannitol as osmotic control. High glucose dose-dependently increased ADAM17 promoter activity, transcript, and protein levels. This correlated with augmented ADAM17 activity after 24 h versus 1 h of high glucose. We tested involvement of transcription factors shown in other settings to regulate ADAM17 transcription. Promoter activation was not affected by NF-κB or Sp1 inhibitors, but was blocked by hypoxia-inducible factor-1α (HIF-1α) inhibition or down-regulation. This also prevented ADAM17 transcript and protein increases. HIF-1α activation by high glucose was shown by its increased nuclear translocation and activation of the HIF-responsive hypoxia-response element (HRE)-luciferase reporter construct. Assessment of ADAM17 promoter deletion constructs coupled with mutation analysis and ChIP studies identified HIF-1α binding to its consensus element at −607 as critical for the high glucose response. Finally, inhibitors of epidermal growth factor receptor (EGFR) and downstream PI3K/Akt, or ADAM17 itself, prevented high glucose-induced HIF-1α activation and ADAM17 up-regulation. Thus, high glucose induces ADAM17 transcriptional up-regulation in mesangial cells, which is associated with augmentation of its activity. This is mediated by HIF-1α and requires EGFR/ADAM17 signaling, demonstrating the potentiation by ADAM17 of its own up-regulation. ADAM17 inhibition thus provides a potential novel therapeutic strategy for the treatment of diabetic nephropathy. PMID:26175156

  7. Evidence That Up-Regulation of MicroRNA-29 Contributes to Postnatal Body Growth Deceleration

    PubMed Central

    Kamran, Fariha; Andrade, Anenisia C.; Nella, Aikaterini A.; Clokie, Samuel J.; Rezvani, Geoffrey; Nilsson, Ola; Baron, Jeffrey

    2015-01-01

    Body growth is rapid in infancy but subsequently slows and eventually ceases due to a progressive decline in cell proliferation that occurs simultaneously in multiple organs. We previously showed that this decline in proliferation is driven in part by postnatal down-regulation of a large set of growth-promoting genes in multiple organs. We hypothesized that this growth-limiting genetic program is orchestrated by microRNAs (miRNAs). Bioinformatic analysis identified target sequences of the miR-29 family of miRNAs to be overrepresented in age–down-regulated genes. Concomitantly, expression microarray analysis in mouse kidney and lung showed that all members of the miR-29 family, miR-29a, -b, and -c, were strongly up-regulated from 1 to 6 weeks of age. Real-time PCR confirmed that miR-29a, -b, and -c were up-regulated with age in liver, kidney, lung, and heart, and their expression levels were higher in hepatocytes isolated from 5-week-old mice than in hepatocytes from embryonic mouse liver at embryonic day 16.5. We next focused on 3 predicted miR-29 target genes (Igf1, Imp1, and Mest), all of which are growth-promoting. A 3′-untranslated region containing the predicted target sequences from each gene was placed individually in a luciferase reporter construct. Transfection of miR-29 mimics suppressed luciferase gene activity for all 3 genes, and this suppression was diminished by mutating the target sequences, suggesting that these genes are indeed regulated by miR-29. Taken together, the findings suggest that up-regulation of miR-29 during juvenile life drives the down-regulation of multiple growth-promoting genes, thus contributing to physiological slowing and eventual cessation of body growth. PMID:25866874

  8. Rice transcriptome analysis to identify possible herbicide quinclorac detoxification genes

    PubMed Central

    Xu, Wenying; Di, Chao; Zhou, Shaoxia; Liu, Jia; Li, Li; Liu, Fengxia; Yang, Xinling; Ling, Yun; Su, Zhen

    2015-01-01

    Quinclorac is a highly selective auxin-type herbicide and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world's rice yield. The herbicide mode of action of quinclorac has been proposed, and hormone interactions affecting quinclorac signaling has been identified. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and other environmental health problems. In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate genes of P450 families such as CYP81, CYP709C, and CYP72A were universally induced by different herbicides. Some Arabidopsis genes of the same P450 family were up-regulated under quinclorac treatment. We conducted rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution. PMID:26483837

  9. Antimetastatic effects of norcantharidin on hepatocellular carcinoma cells by up-regulating FAM46C expression

    PubMed Central

    Wan, Xu-Ying; Zhai, Xiao-Feng; Jiang, Yi-Ping; Han, Ting; Zhang, Qiao-Yan; Xin, Hai-Liang

    2017-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Norcantharidin (NCTD), a demethylated analog of cantharidin, possesses antimetastatic effects on HCC cells. The aim of this study was to identify target proteins of NCTD. In this study, we confirmed the antimetastatic effects of NCTD on SMMC-7721 and MHCC-97H cells. Through RNA sequencing, we found a non-canonical poly (A) polymerase, Family-with-sequence-similarity-46C (FAM46C) was up-regulated in response to NCTD exposure. Gene set enrichment analysis on The Cancer Genome Atlas liver HCC (LIHC) dataset revealed that metastasis down pathway was strongly associated with FAM46C expression. Overexpression of FAM46C in HCC cells suppressed cell migration and invasion via suppressing transforming growth factor-β (TGF-β)/Smad signaling and epithelial-mesenchymal transition (EMT) process. Additionally, the antimetastatic effects of NCTD on HCC cells were partially rescued by FAM46C knockdown. Collectively, our results suggested that FAM46C, up-regulated by NCTD treatment, played a critical role in promoting the migration and invasion of HCC cells via TGF-β/Smad signaling. We identified a new therapeutic target of NCTD. PMID:28123642

  10. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation.

    PubMed

    Li, Shih-Wen; Yang, Tsuey-Ching; Lai, Chien-Chen; Huang, Su-Hua; Liao, Jun-Ming; Wan, Lei; Lin, Ying-Ju; Lin, Cheng-Wen

    2014-09-05

    Novel influenza A H7N9 virus, which emerged in 2013, and highly pathogenic H5N1 virus, identified since 2003, pose challenges to public health and necessitate quest for new anti-influenza compounds. Anthraquinone derivatives like aloe-emodin, emodin and chrysophanol, reportedly exhibit antiviral activity. This study probes their inhibitory mechanism and effect against influenza A virus. Of three anthraquinone derivatives, aloe-emodin, with a lower cytotoxicity showed concentration-dependently reducing virus-induced cytopathic effect and inhibiting replication of influenza A in MDCK cells. 50% inhibitory concentration value of aloe-emodin on virus yield was less than 0.05 μg/ml. Proteomics and Western blot of MDCK cells indicated aloe-emodin up-regulating galectin-3, and thioredoxin as well as down-regulating nucleoside diphosphate kinase A. Western blot and quantitative PCR confirmed aloe-emodin up-regulating galectin-3 expression; recombinant galectin-3 augmented expression of antiviral genes IFN-β, IFN-γ, PKR and 2'5',-OAS in infected cells, agreeing with expression pattern of those treated with aloe-emodin. Galectin-3 also inhibited influenza A virus replication. Proteomic analysis of treated cells indicated galectin-3 up-regulation as one anti-influenza A virus action by aloe-emodin. Since galectin-3 exhibited cytokine-like regulatory actions via JAK/STAT pathways, aloe-emodin also restored NS1-inhibited STAT1-mediated antiviral responses in transfected cells: e.g., STAT1 phosphorylation of interferon (IFN) stimulation response element (ISRE)-driven promoter, RNA-dependent protein kinase (PKR) and 2'5',-oligoadenylate synthetase (2'5',-OAS) expression. Treatment with aloe-emodin could control influenza infection in humans.

  11. Acute transcriptional up-regulation specific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravity.

    PubMed

    Chatani, Masahiro; Morimoto, Hiroya; Takeyama, Kazuhiro; Mantoku, Akiko; Tanigawa, Naoki; Kubota, Koji; Suzuki, Hiromi; Uchida, Satoko; Tanigaki, Fumiaki; Shirakawa, Masaki; Gusev, Oleg; Sychev, Vladimir; Takano, Yoshiro; Itoh, Takehiko; Kudo, Akira

    2016-12-22

    Bone loss is a serious problem in spaceflight; however, the initial action of microgravity has not been identified. To examine this action, we performed live-imaging of animals during a space mission followed by transcriptome analysis using medaka transgenic lines expressing osteoblast and osteoclast-specific promoter-driven GFP and DsRed. In live-imaging for osteoblasts, the intensity of osterix- or osteocalcin-DsRed fluorescence in pharyngeal bones was significantly enhanced 1 day after launch; and this enhancement continued for 8 or 5 days. In osteoclasts, the signals of TRAP-GFP and MMP9-DsRed were highly increased at days 4 and 6 after launch in flight. HiSeq from pharyngeal bones of juvenile fish at day 2 after launch showed up-regulation of 2 osteoblast- and 3 osteoclast- related genes. Gene ontology analysis for the whole-body showed that transcription of genes in the category "nucleus" was significantly enhanced; particularly, transcription-regulators were more up-regulated at day 2 than at day 6. Lastly, we identified 5 genes, c-fos, jun-B-like, pai-1, ddit4 and tsc22d3, which were up-regulated commonly in the whole-body at days 2 and 6, and in the pharyngeal bone at day 2. Our results suggested that exposure to microgravity immediately induced dynamic alteration of gene expression levels in osteoblasts and osteoclasts.

  12. Acute transcriptional up-regulation specific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravity

    PubMed Central

    Chatani, Masahiro; Morimoto, Hiroya; Takeyama, Kazuhiro; Mantoku, Akiko; Tanigawa, Naoki; Kubota, Koji; Suzuki, Hiromi; Uchida, Satoko; Tanigaki, Fumiaki; Shirakawa, Masaki; Gusev, Oleg; Sychev, Vladimir; Takano, Yoshiro; Itoh, Takehiko; Kudo, Akira

    2016-01-01

    Bone loss is a serious problem in spaceflight; however, the initial action of microgravity has not been identified. To examine this action, we performed live-imaging of animals during a space mission followed by transcriptome analysis using medaka transgenic lines expressing osteoblast and osteoclast-specific promoter-driven GFP and DsRed. In live-imaging for osteoblasts, the intensity of osterix- or osteocalcin-DsRed fluorescence in pharyngeal bones was significantly enhanced 1 day after launch; and this enhancement continued for 8 or 5 days. In osteoclasts, the signals of TRAP-GFP and MMP9-DsRed were highly increased at days 4 and 6 after launch in flight. HiSeq from pharyngeal bones of juvenile fish at day 2 after launch showed up-regulation of 2 osteoblast- and 3 osteoclast- related genes. Gene ontology analysis for the whole-body showed that transcription of genes in the category “nucleus” was significantly enhanced; particularly, transcription-regulators were more up-regulated at day 2 than at day 6. Lastly, we identified 5 genes, c-fos, jun-B-like, pai-1, ddit4 and tsc22d3, which were up-regulated commonly in the whole-body at days 2 and 6, and in the pharyngeal bone at day 2. Our results suggested that exposure to microgravity immediately induced dynamic alteration of gene expression levels in osteoblasts and osteoclasts. PMID:28004797

  13. Identification of three proteins up-regulated by raw starch in Cytophaga sp.

    PubMed

    Shiau, Rong-Jen; Wen, Yu-Der; Jeang, Chii-Ling

    2008-12-01

    Raw starch-digesting amylases (RSDAs) in many microorganisms convert starch granules into maltodextrins and simple sugars. We cloned and sequenced from Cytophaga sp. an RSDA with an excellent raw starch digestion activity. This RSDA was highly inducible by raw starch, but not by other sugars, suggesting that an unknown signal transduction mechanism is involved in the degradation of raw starch. We used a proteomic approach to investigate the effect of raw starch on protein expression in Cytophaga sp. Using MALDI-TOF MS protein analysis, we have identified three proteins up-regulated by raw starch, i.e., a 60-kDa chaperonin (cpn60), glutaminase, and pyruvate phosphate dikinase (PPDK). Subsequent time-course studies detected an increased expression of RSDA as well as the highest expression of PPDK occurring 6 h post-incubation with raw corn starch, implying that the latter enzyme may work along with RSDA on the digestion of raw starch. Finding these proteins up-regulated by raw starch may provide an insight into how Cytophaga sp. cells respond to raw starch stimulation.

  14. Isolation of genes up-regulated by copper in a copper-tolerant birch (Betula pendula) clone.

    PubMed

    Keinänen, Sirpa I; Hassinen, Viivi H; Kärenlampi, Sirpa O; Tervahauta, Arja I

    2007-09-01

    Suppression subtractive hybridization (SSH) was used to isolate genes differentially expressed following exposure to copper (Cu) in a naturally selected Cu-tolerant birch (Betula pendula Roth.) clone originating from a disused lead/zinc smelter. Of the 352 cDNA fragments initially isolated, 108 were up-regulated by Cu, of which 55 showed over twofold induction by macroarray analysis. Searches against protein databases (Blastx) and sequence analysis provided the tentative identity of 21 genes. Three fragments lacked homology to any sequences in the databases. Most of the identified genes are involved in cellular transport, regulation or cell rescue and defense. Several genes have not previously been reported to be up-regulated by Cu, e.g., plasma intrinsic protein 2, glutamine synthetase and multi-drug resistance-associated protein (MRP4). The expression of MRP4, a vacuolar sorting receptor-like protein and an unidentified gene was studied in more detail by quantitative real-time PCR. These genes showed stronger up-regulation by Cu in the roots and shoots of the Cu-tolerant birch clone compared with a less tolerant clone. Clear clonal differences in gene expression were observed, e.g., for the regulator of chromosome condensation family protein, DnaJ protein homolog, vacuolar sorting receptor-like protein and MRP4. These findings contribute to our understanding of Cu tolerance in birch, a pioneer plant in metal-contaminated soils.

  15. Up-regulation of the complement system in subcutaneous adipocytes from nonobese, hypertriglyceridemic subjects is associated with adipocyte insulin resistance.

    PubMed

    van Greevenbroek, M M J; Ghosh, S; van der Kallen, C J H; Brouwers, M C G J; Schalkwijk, C G; Stehouwer, C D A

    2012-12-01

    Dysfunctional adipose tissue plays an important role in the etiology of the metabolic syndrome, type 2 diabetes, and dyslipidemia. However, the molecular mechanisms underlying adipocyte dysfunction are incompletely understood. The aim of the study was to identify differentially regulated pathways in sc adipocytes of dyslipidemic subjects. Whole-genome expression profiling was conducted on sc adipocytes from a discovery group of nine marginally overweight subjects with familial combined hyperlipidemia (FCHL) and nine controls of comparable body sizes as well as two independent confirmation groups. In this study, FCHL served as a model of familial insulin resistance and dyslipidemia, in the absence of frank obesity. Functional analyses and gene set enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes or a custom pathway database identified the complement system and complement regulators as one of the top up-regulated pathways in FCHL [false discovery rate (FDR) < 1E-30]. Higher adipocyte complement expression in FCHL was confirmed in the appropriate confirmation group. Higher complement gene expression was associated with lower adipocyte insulin receptor substrate-1 expression as marker of adipocyte insulin resistance, independent of age, sex, or disease status, and this association was corroborated in the two confirmation groups. Additionally, complement gene expression was associated with triglycerides in the discovery set and with triglycerides and/or waist circumference in the confirmation groups. Complement pathway up-regulation did not appear to be driven by hypertriglyceridemia because a 40% pharmacological reduction in triglycerides did not affect complement expression. These findings point to an up-regulation of a complement-related transcriptome in sc adipocytes under metabolically stressed conditions, even in the absence of overt obesity. Such up-regulation may subsequently influence downstream processes, including macrophage infiltration

  16. Isolation and characterization of a novel gene sfig in rat skeletal muscle up-regulated by spaceflight (STS-90)

    NASA Technical Reports Server (NTRS)

    Kano, Mihoko; Kitano, Takako; Ikemoto, Madoka; Hirasaka, Katsuya; Asanoma, Yuki; Ogawa, Takayuki; Takeda, Shinichi; Nonaka, Ikuya; Adams, Gregory R.; Baldwin, Kenneth M.; hide

    2003-01-01

    We obtained the skeletal muscle of rats exposed to weightless conditions during a 16-day-spaceflight (STS-90). By using a differential display technique, we identified 6 up-regulated and 3 down-regulated genes in the gastrocnemius muscle of the spaceflight rats, as compared to the ground control. The up-regulated genes included those coding Casitas B-lineage lymphoma-b, insulin growth factor binding protein-1, titin and mitochondrial gene 16 S rRNA and two novel genes (function unknown). The down-regulated genes included those encoding RNA polymerase II elongation factor-like protein, NADH dehydrogenase and one novel gene (function unknown). In the present study, we isolated and characterized one of two novel muscle genes that were remarkably up-regulated by spaceflight. The deduced amino acid sequence of the spaceflight-induced gene (sfig) comprises 86 amino acid residues and is well conserved from Drosophila to Homo sapiens. A putative leucine-zipper structure located at the N-terminal region of sfig suggests that this gene may encode a transcription factor. The up-regulated expression of this gene, confirmed by Northern blot analysis, was observed not only in the muscles of spaceflight rats but also in the muscles of tail-suspended rats, especially in the early stage of tail-suspension when gastrocnemius muscle atrophy initiated. The gene was predominantly expressed in the kidney, liver, small intestine and heart. When rat myoblastic L6 cells were grown to 100% confluence in the cell culture system, the expression of sfig was detected regardless of the cell differentiation state. These results suggest that spaceflight has many genetic effects on rat skeletal muscle.

  17. A-to-I RNA Editing Up-regulates Human Dihydrofolate Reductase in Breast Cancer.

    PubMed

    Nakano, Masataka; Fukami, Tatsuki; Gotoh, Saki; Nakajima, Miki

    2017-03-24

    Dihydrofolate reductase (DHFR) plays a key role in folate metabolism and is a target molecule of methotrexate. An increase in the cellular expression level of DHFR is one of the mechanisms of tumor resistance to methotrexate. The present study investigated the possibility that adenosine-to-inosine RNA editing, which causes nucleotide conversion by adenosine deaminase acting on RNA (ADAR) enzymes, might modulate DHFR expression. In human breast adenocarcinoma-derived MCF-7 cells, 26 RNA editing sites were identified in the 3'-UTR of DHFR. Knockdown of ADAR1 decreased the RNA editing levels of DHFR and resulted in a decrease in the DHFR mRNA and protein levels, indicating that ADAR1 up-regulates DHFR expression. Using a computational analysis, miR-25-3p and miR-125a-3p were predicted to bind to the non-edited 3'-UTR of DHFR but not to the edited sequence. The decrease in DHFR expression by the knockdown of ADAR1 was restored by transfection of antisense oligonucleotides for these miRNAs, suggesting that RNA editing mediated up-regulation of DHFR requires the function of these miRNAs. Interestingly, we observed that the knockdown of ADAR1 decreased cell viability and increased the sensitivity of MCF-7 cells to methotrexate. ADAR1 expression levels and the RNA editing levels in the 3'-UTR of DHFR in breast cancer tissues were higher than those in adjacent normal tissues. Collectively, the present study demonstrated that ADAR1 positively regulates the expression of DHFR by editing the miR-25-3p and miR-125a-3p binding sites in the 3'-UTR of DHFR, enhancing cellular proliferation and resistance to methotrexate.

  18. Nutraceutical up-regulation of serotonin paradoxically induces compulsive behavior

    USDA-ARS?s Scientific Manuscript database

    The role of diet in either the etiology or treatment of complex mental disorder is highly controversial in psychiatry. However, physiological mechanisms by which diet can influence brain chemistry – particularly that of serotonin – are well established. Here we show that dietary up-regulation of br...

  19. Mycoplasma gallisepticum Lipid Associated Membrane Proteins Up-regulate Inflammatory Genes in Chicken Tracheal Epithelial Cells via TLR-2 Ligation through an NF-κB Dependent Pathway

    PubMed Central

    Majumder, Sanjukta; Zappulla, Frank; Silbart, Lawrence K.

    2014-01-01

    Mycoplasma gallisepticum-mediated respiratory inflammation in chickens is associated with accumulation of leukocytes in the tracheal submucosa. However the molecular mechanisms underpinning these changes have not been well described. We hypothesized that the initial inflammatory events are initiated upon ligation of mycoplasma lipid associated membrane proteins (LAMP) to TLRs expressed on chicken tracheal epithelial cells (TEC). To test this hypothesis, live bacteria or LAMPs isolated from a virulent (Rlow) or a non-virulent (Rhigh) strain were incubated with primary TECs or chicken tracheae ex vivo. Microarray analysis identified up-regulation of several inflammatory and chemokine genes in TECs as early as 1.5 hours post-exposure. Kinetic analysis using RT-qPCR identified the peak of expression for most genes to be at either 1.5 or 6 hours. Ex-vivo exposure also showed up-regulation of inflammatory genes in epithelial cells by 1.5 hours. Among the commonly up-regulated genes were IL-1β, IL-6, IL-8, IL-12p40, CCL-20, and NOS-2, all of which are important immune-modulators and/or chemo-attractants of leukocytes. While these inflammatory genes were up-regulated in all four treatment groups, Rlow exposed epithelial cells both in vitro and ex vivo showed the most dramatic up-regulation, inducing over 100 unique genes by 5-fold or more in TECs. Upon addition of a TLR-2 inhibitor, LAMP-mediated gene expression of IL-1β and CCL-20 was reduced by almost 5-fold while expression of IL-12p40, IL-6, IL-8 and NOS-2 mRNA was reduced by about 2–3 fold. Conversely, an NF-κB inhibitor abrogated the response entirely for all six genes. miRNA-146a, a negative regulator of TLR-2 signaling, was up-regulated in TECs in response to either Rlow or Rhigh exposure. Taken together we conclude that LAMPs isolated from both Rhigh and Rlow induced rapid, TLR-2 dependent but transient up-regulation of inflammatory genes in primary TECs through an NF-κB dependent pathway. PMID:25401327

  20. High-antibody-producing Chinese hamster ovary cells up-regulate intracellular protein transport and glutathione synthesis.

    PubMed

    Orellana, Camila A; Marcellin, Esteban; Schulz, Benjamin L; Nouwens, Amanda S; Gray, Peter P; Nielsen, Lars K

    2015-02-06

    Chinese hamster ovary (CHO) cells are the preferred production host for therapeutic monoclonal antibodies (mAb) due to their ability to perform post-translational modifications and their successful approval history. The completion of the genome sequence for CHO cells has reignited interest in using quantitative proteomics to identify markers of good production lines. Here we applied two different proteomic techniques, iTRAQ and SWATH, for the identification of expression differences between a high- and low-antibody-producing CHO cell lines derived from the same transfection. More than 2000 proteins were quantified with 70 of them classified as differentially expressed in both techniques. Two biological processes were identified as differentially regulated by both methods: up-regulation of glutathione biosynthesis and down-regulation of DNA replication. Metabolomic analysis confirmed that the high producing cell line displayed higher intracellular levels of glutathione. SWATH further identified up-regulation of actin filament processes and intracellular transport and down regulation of several growth-related processes. These processes may be important for conferring high mAb production and as such are promising candidates for targeted engineering of high-expression cell lines.

  1. HYOU1, Regulated by LPLUNC1, Is Up-Regulated in Nasopharyngeal Carcinoma and Associated with Poor Prognosis

    PubMed Central

    Zhou, Yujuan; Liao, Qianjin; Li, Xiayu; Wang, Hui; Wei, Fang; Chen, Jie; Yang, Jing; Zeng, Zhaoyang; Guo, Xiaofang; Chen, Pan; Zhang, Wenling; Tang, Ke; Li, Xiaoling; Xiong, Wei; Li, Guiyuan

    2016-01-01

    Objective: This study aims to investigate the roles and mechanisms of long palate, lung and nasal epithelium clone 1 (LPLUNC1) in nasopharyngeal carcinoma (NPC). Methods: The two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-TOF-MS/MS) was applied to identify differentially expressed proteins after over-expressing LPLUNC1 in NPC cells. The qRT-PCR and Western Blot were used to further validate differentially expression of Hypoxia up-regulated 1 (HYOU1). We also applied immunohistochemistry (IHC) to validate the expression of HYOU1 protein in NPC tissues. Results: Totally 44 differentially expressed proteins were identified, among which 19 proteins were up-regulated and 25 proteins were down-regulated. Function annotation indicated that these proteins were involved in molecular chaperone, cytoskeleton, metabolism and signal transduction. It was shown that the expression of HYOU1 both at mRNA level and protein level was up-regulated significantly in NPC tissues, and HYOU1 protein expression was positively correlated with clinical staging and metastasis of NPC. Kaplan-Meier survival curves showed that high expression of HYOU1 protein in NPC patients had shorter progression-free survival (PFS) and overall survival (OS). COX multivariate regression analysis further indicated that over-expressed HYOU1 was one of the predictors for poor prognosis in NPC patients. Conclusion: Through regulating proteins in different pathways, LPLUNC1 may inhibit the growth of NPC through participating in cell metabolism, proliferation, transcription and signaling transduction. HYOU1 can be regarded as potential molecular biomarker for progression and prognosis of NPC. PMID:26918051

  2. Gene expression analysis of rheumatoid arthritis synovial lining regions by cDNA microarray combined with laser microdissection: up-regulation of inflammation-associated STAT1, IRF1, CXCL9, CXCL10, and CCL5

    PubMed Central

    Yoshida, S; Arakawa, F; Higuchi, F; Ishibashi, Y; Goto, M; Sugita, Y; Nomura, Y; Niino, D; Shimizu, K; Aoki, R; Hashikawa, K; Kimura, Y; Yasuda, K; Tashiro, K; Kuhara, S; Nagata, K; Ohshima, K

    2012-01-01

    Objectives The main histological change in rheumatoid arthritis (RA) is the villous proliferation of synovial lining cells, an important source of cytokines and chemokines, which are associated with inflammation. The aim of this study was to evaluate gene expression in the microdissected synovial lining cells of RA patients, using those of osteoarthritis (OA) patients as the control. Methods Samples were obtained during total joint replacement from 11 RA and five OA patients. Total RNA from the synovial lining cells was derived from selected specimens by laser microdissection (LMD) for subsequent cDNA microarray analysis. In addition, the expression of significant genes was confirmed immunohistochemically. Results The 14 519 genes detected by cDNA microarray were used to compare gene expression levels in synovial lining cells from RA with those from OA patients. Cluster analysis indicated that RA cells, including low- and high-expression subgroups, and OA cells were stored in two main clusters. The molecular activity of RA was statistically consistent with its clinical and histological activity. Expression levels of signal transducer and activator of transcription 1 (STAT1), interferon regulatory factor 1 (IRF1), and the chemokines CXCL9, CXCL10, and CCL5 were statistically significantly higher in the synovium of RA than in that of OA. Immunohistochemically, the lining synovium of RA, but not that of OA, clearly expressed STAT1, IRF1, and chemokines, as was seen in microarray analysis combined with LMD. Conclusions Our findings indicate an important role for lining synovial cells in the inflammatory and proliferative processes of RA. Further understanding of the local signalling in structural components is important in rheumatology. PMID:22401175

  3. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia

    PubMed Central

    Domoto, Hideharu; Iwaya, Keiichi; Ikomi, Fumitaka; Matsuo, Hirotaka; Tadano, Yutaka; Fujii, Shigenori; Tachi, Kazuyoshi; Itoh, Yoshiyuki; Sato, Michiya; Inoue, Kimitoshi; Shinomiya, Nariyoshi

    2016-01-01

    Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD. PMID:27741252

  4. Proteomic analysis of common bean seed with storage protein deficiency reveals up-regulation of sulfur-rich proteins and starch and raffinose metabolic enzymes, and down-regulation of the secretory pathway.

    PubMed

    Marsolais, Frédéric; Pajak, Agnieszka; Yin, Fuqiang; Taylor, Meghan; Gabriel, Michelle; Merino, Diana M; Ma, Vanessa; Kameka, Alexander; Vijayan, Perumal; Pham, Hai; Huang, Shangzhi; Rivoal, Jean; Bett, Kirstin; Hernández-Sebastià, Cinta; Liu, Qiang; Bertrand, Annick; Chapman, Ralph

    2010-06-16

    A deficiency in major seed storage proteins is associated with a nearly two-fold increase in sulfur amino acid content in genetically related lines of common bean (Phaseolus vulgaris). Their mature seed proteome was compared by an approach combining label-free quantification by spectral counting, 2-DE, and analysis of selective extracts. Lack of phaseolin, phytohemagglutinin and arcelin was mainly compensated by increases in legumin, alpha-amylase inhibitors and mannose lectin FRIL. Along with legumin, albumin-2, defensin and albumin-1 were major contributors to the elevated sulfur amino acid content. Coordinate induction of granule-bound starch synthase I, starch synthase II-2 and starch branching enzyme were associated with minor alteration of starch composition, whereas increased levels of UDP-glucose 4-epimerase were correlated with a 30% increase in raffinose content. Induction of cell division cycle protein 48 and ubiquitin suggested enhanced ER-associated degradation. This was not associated with a classical unfolded protein response as the levels of ER HSC70-cognate binding protein were actually reduced in the mutant. Repression of rab1 GTPase was consistent with decreased traffic through the secretory pathway. Collectively, these results have implications for the nutritional quality of common bean, and provide information on the pleiotropic phenotype associated with storage protein deficiency in a dicotyledonous seed.

  5. SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway.

    PubMed

    Li, Shih-Wein; Wang, Ching-Ying; Jou, Yu-Jen; Yang, Tsuey-Ching; Huang, Su-Hua; Wan, Lei; Lin, Ying-Ju; Lin, Cheng-Wen

    2016-05-13

    SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF-β1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF-β1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF-β1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF-β1 promoter plasmids indicated that TGF-β1 promoter region between -175 to -60, the Egr-1 binding site, was responsible for TGF-β1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF-β1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF-β1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF-β1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF-β1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo.

  6. Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells

    PubMed Central

    Moon, Sung-Kyun; Lee, Haa-Yung; Pan, Huiqi; Takeshita, Tamotsu; Park, Raekil; Cha, Kiweon; Andalibi, Ali; Lim, David J

    2006-01-01

    Background We recently showed that beta-defensins have antimicrobial activity against nontypeable Haemophilus influenzae (NTHi) and that interleukin 1 alpha (IL-1 alpha) up-regulates the transcription of beta-defensin 2 (DEFB4 according to new nomenclature of the Human Genome Organization) in human middle ear epithelial cells via a Src-dependent Raf-MEK1/2-ERK signaling pathway. Based on these observations, we investigated if human middle ear epithelial cells could release IL-1 alpha upon exposure to a lysate of NTHi and if this cytokine could have a synergistic effect on beta-defensin 2 up-regulation by the bacterial components. Methods The studies described herein were carried out using epithelial cell lines as well as a murine model of acute otitis media (OM). Human cytokine macroarray analysis was performed to detect the released cytokines in response to NTHi exposure. Real time quantitative PCR was done to compare the induction of IL-1 alpha or beta-defensin 2 mRNAs and to identify the signaling pathways involved. Direct activation of the beta-defensin 2 promoter was monitored using a beta-defensin 2 promoter-Luciferase construct. An IL-1 alpha blocking antibody was used to demonstrate the direct involvement of this cytokine on DEFB4 induction. Results Middle ear epithelial cells released IL-1 alpha when stimulated by NTHi components and this cytokine acted in an autocrine/paracrine synergistic manner with NTHi to up-regulate beta-defensin 2. This synergistic effect of IL-1 alpha on NTHi-induced beta-defensin 2 up-regulation appeared to be mediated by the p38 MAP kinase pathway. Conclusion We demonstrate that IL-1 alpha is secreted by middle ear epithelial cells upon exposure to NTHi components and that it can synergistically act with certain of these molecules to up-regulate beta-defensin 2 via the p38 MAP kinase pathway. PMID:16433908

  7. SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway

    PubMed Central

    Li, Shih-Wein; Wang, Ching-Ying; Jou, Yu-Jen; Yang, Tsuey-Ching; Huang, Su-Hua; Wan, Lei; Lin, Ying-Ju; Lin, Cheng-Wen

    2016-01-01

    SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF-β1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF-β1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF-β1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF-β1 promoter plasmids indicated that TGF-β1 promoter region between −175 to −60, the Egr-1 binding site, was responsible for TGF-β1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF-β1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF-β1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF-β1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF-β1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo. PMID:27173006

  8. Urolithin A causes p21 up-regulation in prostate cancer cells.

    PubMed

    Sánchez-González, Claudia; Ciudad, Carlos J; Izquierdo-Pulido, Maria; Noé, Véronique

    2016-04-01

    Walnuts contain several bioactive compounds, including pedunculagin, a polyphenol metabolized by microbiota to form urolithins, namely urolithin A (UA). The aim of this study was to determine gene expression changes in prostate cancer cells after incubation with UA. We performed a genomic analysis to study the effect of UA on LNCaP prostate cells. Cells were incubated with 40 µM UA for 24 h, and RNA was extracted and hybridized to Affymetrix Human Genome U219 array. Microarray results were analyzed using GeneSpring v13 software. Differentially expressed genes (p < 0.05, fold change > 2) were used to perform biological association networks. Cell cycle was analyzed by flow cytometry and apoptosis measured by the rhodamine method and by caspases 3 and 7 activation. Cell viability was determined by MTT assay. We identified two nodes, FN-1 and CDKN1A, among the differentially expressed genes upon UA treatment. CDKN1A was validated, its mRNA and protein levels were significantly up-regulated, and the promoter activation measured by luciferase. Cell cycle analysis showed an increase in G1-phase, and we also observed an induction of apoptosis and caspases 3 and 7 activation upon UA treatment. Our results indicate a potential role of UA as a chemopreventive agent for prostate cancer.

  9. Hypoxia Induces Autophagy through Translational Up-Regulation of Lysosomal Proteins in Human Colon Cancer Cells

    PubMed Central

    Lai, Ming-Chih; Chang, Chiao-May; Sun, H. Sunny

    2016-01-01

    Hypoxia occurs in a wide variety of physiological and pathological conditions, including tumorigenesis. Tumor cells have to adapt to hypoxia by altering their gene expression and protein synthesis. Here, we showed that hypoxia inhibits translation through activation of PERK and inactivation of mTOR in human colon cancer HCT116 cells. Prolonged hypoxia (1% O2, 16 h) dramatically inhibits general translation in HCT116 cells, yet selected mRNAs remain efficiently translated under such a condition. Using microarray analysis of polysome- associated mRNAs, we identified a large number of hypoxia-regulated genes at the translational level. Efficiently translated mRNAs during hypoxia were validated by polysome profiling and quantitative real-time RT-PCR. Pathway enrichment analysis showed that many of the up-regulated genes are involved in lysosome, glycan and lipid metabolism, antigen presentation, cell adhesion, and remodeling of the extracellular matrix and cytoskeleton. The majority of down-regulated genes are involved in apoptosis, ubiquitin-mediated proteolysis, and oxidative phosphorylation. Further investigation showed that hypoxia induces lysosomal autophagy and mitochondrial dysfunction through translational regulation in HCT116 cells. The abundance of several translation factors and the mTOR kinase activity are involved in hypoxia-induced mitochondrial autophagy in HCT116 cells. Our studies highlight the importance of translational regulation for tumor cell adaptation to hypoxia. PMID:27078027

  10. Genistein Up-Regulates Tumor Suppressor MicroRNA-574-3p in Prostate Cancer

    PubMed Central

    Chiyomaru, Takeshi; Yamamura, Soichiro; Fukuhara, Shinichiro; Hidaka, Hideo; Majid, Shahana; Saini, Sharanjot; Arora, Sumit; Deng, Guoren; Shahryari, Varahram; Chang, Inik; Tanaka, Yuichiro; Tabatabai, Z. Laura; Enokida, Hideki; Seki, Naohiko; Nakagawa, Masayuki; Dahiya, Rajvir

    2013-01-01

    Genistein has been shown to inhibit cancers both in vitro and in vivo, by altering the expression of several microRNAs (miRNAs). In this study, we focused on tumor suppressor miRNAs regulated by genistein and investigated their function in prostate cancer (PCa) and target pathways. Using miRNA microarray analysis and real-time RT-PCR we observed that miR-574-3p was significantly up-regulated in PCa cells treated with genistein compared with vehicle control. The expression of miR-574-3p was significantly lower in PCa cell lines and clinical PCa tissues compared with normal prostate cells (RWPE-1) and adjacent normal tissues. Low expression level of miR-574-3p was correlated with advanced tumor stage and higher Gleason score in PCa specimens. Re-expression of miR-574-3p in PCa cells significantly inhibited cell proliferation, migration and invasion in vitro and in vivo. miR-574-3p restoration induced apoptosis through reducing Bcl-xL and activating caspase-9 and caspase-3. Using GeneCodis software analysis, several pathways affected by miR-574-3p were identified, such as ‘Pathways in cancer’, ‘Jak-STAT signaling pathway’, and ‘Wnt signaling pathway’. Luciferase reporter assays demonstrated that miR-574-3p directly binds to the 3′ UTR of several target genes (such as RAC1, EGFR and EP300) that are components of ‘Pathways in cancer’. Quantitative real-time PCR and Western analysis showed that the mRNA and protein expression levels of the three target genes in PCa cells were markedly down-regulated with miR-574-3p. Loss-of-function studies demonstrated that the three target genes significantly affect cell proliferation, migration and invasion in PCa cell lines. Our results show that genistein up-regulates tumor suppressor miR-574-3p expression targeting several cell signaling pathways. These findings enhance understanding of how genistein regulates with miRNA in PCa. PMID:23554959

  11. Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans.

    PubMed

    Gond, S K; Torres, M S; Bergen, M S; Helsel, Z; White, J F

    2015-04-01

    Bacteria were isolated from surface disinfected seeds of eight modern corn types and an ancestor of corn, 'teosinte' and identified using 16S rDNA sequences. From each of the modern corn types we obtained Bacillus spp. (including, Bacillus amyloliquefaciens and Bacillus subtilis); while from teosinte we obtained only Pantoea agglomerans and Agrobacterium species. Of these bacteria, only P. agglomerans could actively grow under hypersaline conditions and increase salt tolerance of tropical corn seedlings. In laboratory and greenhouse experiments where plants were watered with a 0.2 mol l(-1) NaCl solution, P. agglomerans was found to enhance the capacity of tropical corn to grow compared to uninoculated controls. The total dry biomass was significantly higher in P. agglomerans-treated plants compared to controls under saline water. Gene expression analysis showed the up-regulation of the aquaporin gene family especially plasma membrane integral protein (ZmPIP) genes in P. agglomerans-treated plants. The plasma membrane integral protein type 2 (PIP2-1) gene in tropical corn seedlings was highly up-regulated by P. agglomerans treatment under salt stress conditions. Microscopic examination of P. agglomerans inoculated seedlings revealed that the bacterium colonized root meristems densely, and as roots developed, the bacterium became sparsely located in cell junctions. The enhancement of salt tolerance capacity in tropical corn, an important food crop, has the capacity to increase its cultivation area and yield in saline soils. The application of rhizobacteria to improve salt tolerance of tropical corn is ecofriendly and cost effective. We show that P. agglomerans isolated from teosinte (an ancestor of corn) induces salt tolerance in tropical corn and up-regulation of aquaporin genes. This study shows that microbes that increase salt tolerance may be used to enhance crop growth in saline soils. © 2014 The Society for Applied Microbiology.

  12. Tobacco carcinogen mediated up-regulation of AP-1 dependent pro-angiogenic cytokines in head and neck carcinogenesis.

    PubMed

    Swenson, Wade G; Wuertz, Beverly R K; Ondrey, Frank G

    2011-09-01

    Tobacco is notably genotoxic and associated with head and neck carcinogenesis. Cigarette carcinogens have the capacity to alter early response gene expression in tobacco-related malignancies via genes such as nuclear factor kappa B (NFκB). A number of early response gene activation events are also facilitated by fos/jun activator protein 1 (AP-1) associated pathways. In the present study, we hypothesize that tobacco products may induce microenvironment alterations, promoting angiogenesis and providing a permissive environment for head and neck cancer progression. In an in vitro analysis, we employed immortalized oral keratinocyte (HOK-16B) and laryngeal squamous carcinoma (UM-SCC-11A) cells to investigate interleukin (IL)-8 and vascular endothelial growth factor (VEGF) induction by cigarette smoke condensate (CSC). IL-8 and VEGF expression is based on interactions between NFκB, AP-1, and NF-IL6. We identified at least 1.5-fold dose-dependent induction of AP-1, VEGF, and IL-8 promoter/reporter gene activity after 24 h exposure to CSC. Next, we stably transfected UM-SCC-11A cells with A-Fos, a dominant negative AP-1 protein. Treatment with CSC of the A-Fos cell lines compared to empty vector controls significantly down-regulated AP-1, VEGF, and IL-8 promoter/reporter gene expression. We also performed ELISAs and discovered significant up-regulation of IL-8 and VEGF secretion by UMSCC 11A after treatment with phorbol 12-myristate 13-acetate, tumor necrosis factor alpha, and CSC, which was down-regulated by the A-Fos dominant negative protein. We conclude tobacco carcinogens up-regulate AP-1 activity and AP-1 dependent IL-8 and VEGF gene expression in head and neck cancer. This up-regulation may promote an angiogenic phenotype favoring invasion in both premalignant and squamous cancer cells of the head and neck.

  13. IL-20 is regulated by hypoxia-inducible factor and up-regulated after experimental ischemic stroke.

    PubMed

    Chen, Wei-Yu; Chang, Ming-Shi

    2009-04-15

    IL-20, an IL-10 family member, is involved in various inflammatory diseases, such as psoriasis, rheumatoid arthritis, and atherosclerosis. We investigated whether hypoxia in vitro and an in vivo model of ischemic stroke would up-regulate IL-20 expression. In vitro, IL-20 expression increased in hypoxic HaCaT, HEK293 cells, chondrocytes, monocytes, and glioblastoma cells. Inhibition of hypoxia-inducible factor 1alpha inhibited CoCl(2)-induced IL-20 expression. We identified two putative hypoxia response elements in the human il20 gene promoter. Promoter activity assays showed that CoCl(2) mimicked hypoxia-activated luciferase reporter gene expression. In vivo, experimental ischemic stroke up-regulated IL-20 in the sera and brain tissue of rats. IL-20 stained positively in glia-like cells in peri-infarcted lesions, but not in contralateral tissue. Administration of IL-20 mAb ameliorated ischemia-induced brain infarction of rats after experimental ischemic stroke. In vitro, RT-PCR analysis showed that glioblastoma cells, GBM8901, expressed IL-20 and its receptor subunits IL-20R1, IL-20R2, and IL-22R1. IL-20 induced cell proliferation in GBM8901 cells by activating the JAK2/STAT3 and ERK1/2 pathways. IL-20 also induced production of IL-1beta, IL-8, and MCP-1 in GBM8901 cells. We conclude that IL-20 was responsive to hypoxia in vitro and in the ischemic stroke model and that up-regulation of IL-20 in the ischemic brain may contribute to brain injury.

  14. Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex.

    PubMed

    Miyakawa, Hitoshi; Imai, Maki; Sugimoto, Naoki; Ishikawa, Yuki; Ishikawa, Asano; Ishigaki, Hidehiko; Okada, Yasukazu; Miyazaki, Satoshi; Koshikawa, Shigeyuki; Cornette, Richard; Miura, Toru

    2010-04-30

    Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera) provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera). Previous studies suggest that the timing of the sensitivity to kairomones in D. pulex can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, Hox3, extradenticle and escargot, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, JHAMT and Met, and the insulin signaling pathway genes, InR and IRS-1, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation. It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype.

  15. Identifying marker typing incompatibilities in linkage analysis

    SciTech Connect

    Stringham, H.M.; Boehnke, M.

    1996-10-01

    A common problem encountered in linkage analyses is that execution of the computer program is halted because of genotypes in the data that are inconsistent with Mendelian inheritance. Such inconsistencies may arise because of pedigree errors or errors in typing. In some cases, the source of the inconsistencies is easily identified by examining the pedigree. In others, the error is not obvious, and substantial time and effort are required to identify the responsible genotypes. We have developed two methods for automatically identifying those individuals whose genotypes are most likely the cause of the inconsistencies. First, we calculate the posterior probability of genotyping error for each member of the pedigree, given the marker data on all pedigree members and allowing anyone in the pedigree to have an error. Second, we identify those individuals whose genotypes could be solely responsible for the inconsistency in the pedigree. We illustrate these methods with two examples: one a pedigree error, the second a genotyping error. These methods have been implemented as a module of the pedigree analysis program package MENDEL. 9 refs., 2 figs., 2 tabs.

  16. Selective Up-regulation of Human Selenoproteins in Response to Oxidative Stress*

    PubMed Central

    Touat-Hamici, Zahia; Legrain, Yona; Bulteau, Anne-Laure; Chavatte, Laurent

    2014-01-01

    Selenocysteine is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the selenocysteine insertion sequence element located in the 3′ UTR of selenoprotein mRNAs, selenium bioavailability, and, possibly, exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical up-regulation of selenoproteins, protected HEK293 cells from reactive oxygen species formation. Furthermore, in response to oxidative stress, we identified a selective up-regulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK, and Sps2). Interestingly, the response was more efficient when selenium was limiting. Although a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by up-regulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, selenocysteine-specific elongation factor, and L30 recoding factors from the cytoplasm to the nucleus. PMID:24706762

  17. TGEV infection up-regulates FcRn expression via activation of NF-κB signaling

    PubMed Central

    Guo, Jinyue; Li, Fei; Qian, Shaoju; Bi, Dingren; He, Qigai; Jin, Hui; Luo, Rui; Li, Shaowen; Meng, Xianrong; Li, Zili

    2016-01-01

    It has been well characterized that the neonatal Fc receptor (FcRn) transports maternal IgG to a fetus or newborn and protects IgG from degradation. We previously reported that FcRn is expressed in a model of normal porcine intestinal epithelial cells (IPEC-J2). Transmissible gastroenteritis is an acute enteric disease of swine that is caused by transmissible gastroenteritis virus (TGEV). How porcine FcRn (pFcRn) expression is regulated by pathogenic infection remains unknown. Our research shows that IPEC-J2 cells infected with TGEV had up-regulated pFcRn expression. In addition, the NF-κB signaling pathway was activated in IPEC-J2 cells by TGEV infection. Furthermore, treatment of TGEV-infected IPEC-J2 cells with the NF-κB-specific inhibitor BAY 11-7082 resulted in down-regulation of pFcRn expression. Transient transfection of pFcRn promoter luciferase report plasmids with overexpression of NF-κB p65 transcription factor enhanced the activation of the luciferase report plasmids. We identified four NF-κB transcription factor binding sites in the promoter region of this gene using luciferase reporter system, chromatin immunoprecipitation, electromobility shift assay, and supershift analysis. Together, the data provide the first evidence that TGEV infection up-regulates pFcRn expression via activation of NF-κB signaling. PMID:27555521

  18. Up-regulation of neurohemerythrin expression in the central nervous system of the medicinal leech, Hirudo medicinalis, following septic injury.

    PubMed

    Vergote, David; Sautière, Pierre-Eric; Vandenbulcke, Franck; Vieau, Didier; Mitta, Guillaume; Macagno, Eduardo R; Salzet, Michel

    2004-10-15

    We report here some results of a proteomic analysis of changes in protein expression in the leech Hirudo medicinalis in response to septic injury. Comparison of two-dimensional protein gels revealed several significant differences between normal and experimental tissues. One protein found to be up-regulated after septic shock was identified, through a combination of Edman degradation, mass spectrometry, and molecular cloning, as a novel member of the hemerythrin family, a group of non-heme-iron oxygen transport proteins found in four invertebrate phyla: sipunculids, priapulids, brachiopods, and annelids. We found by in situ hybridization and immunocytochemistry that the new leech protein, which we have called neurohemerythrin, is indeed expressed in the leech central nervous system. Both message and protein were detected in the pair of large glia within the ganglionic neuropile, in the six packet glia that surround neuronal somata in each central ganglion, and in the bilateral pair of glia that separate axonal fascicles in the interganglionic connective nerves. No expression was detected in central neurons or in central nervous system microglia. Expression was also observed in many other, non-neuronal tissues in the body wall. Real-time PCR experiments suggest that neurohemerythrin is up-regulated posttranscriptionaly. We consider potential roles of neurohemerythrin, associated with its ability to bind oxygen and iron, in the innate immune response of the leech nervous system to bacterial invasion.

  19. Identifying related journals through log analysis

    PubMed Central

    Lu, Zhiyong; Xie, Natalie; Wilbur, W. John

    2009-01-01

    Motivation: With the explosion of biomedical literature and the evolution of online and open access, scientists are reading more articles from a wider variety of journals. Thus, the list of core journals relevant to their research may be less obvious and may often change over time. To help researchers quickly identify appropriate journals to read and publish in, we developed a web application for finding related journals based on the analysis of PubMed log data. Availability: http://www.ncbi.nlm.nih.gov/IRET/Journals Contact: luzh@ncbi.nlm.nih.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19734155

  20. Automatic Prosodic Analysis to Identify Mild Dementia

    PubMed Central

    Gonzalez-Moreira, Eduardo; Torres-Boza, Diana; Kairuz, Héctor Arturo; Ferrer, Carlos; Garcia-Zamora, Marlene; Espinoza-Cuadros, Fernando; Hernandez-Gómez, Luis Alfonso

    2015-01-01

    This paper describes an exploratory technique to identify mild dementia by assessing the degree of speech deficits. A total of twenty participants were used for this experiment, ten patients with a diagnosis of mild dementia and ten participants like healthy control. The audio session for each subject was recorded following a methodology developed for the present study. Prosodic features in patients with mild dementia and healthy elderly controls were measured using automatic prosodic analysis on a reading task. A novel method was carried out to gather twelve prosodic features over speech samples. The best classification rate achieved was of 85% accuracy using four prosodic features. The results attained show that the proposed computational speech analysis offers a viable alternative for automatic identification of dementia features in elderly adults. PMID:26558287

  1. NGF up-regulates TRPA1: implications for orofacial pain.

    PubMed

    Diogenes, A; Akopian, A N; Hargreaves, K M

    2007-06-01

    The transient receptor potential ankyrin repeat 1 (TRPA1) channel is believed to be involved in many forms of acute and chronic hyperalgesia. Nerve Growth Factor (NGF) regulates chronic inflammatory hyperalgesia by controlling gene expression in sensory neurons, including genes involved in inflammatory hyperalgesia in the dental pulp. We hypothesized that NGF increases functional activities of the TRPA1 channel in trigeminal ganglion neurons. Here, we show that NGF induced a concentration- and time-dependent up-regulation of TRPA1 mRNA in trigeminal ganglia neurons, as detected by real-time RT-PCR and in situ hybridization. In addition, NGF evoked a time-dependent increase of mustard oil (MO)-evoked TRPA1 activation in trigeminal ganglia neurons. Collectively, these findings demonstrate that NGF participates in the functional up-regulation of TRPA1 in trigeminal ganglia neurons. These enhanced activities of TRPA1 could play an important role in the development of hyperalgesia following nerve injury and inflammation in the orofacial region.

  2. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans

    PubMed Central

    Sadeghinejad, Lida; Cvitkovitch, Dennis G.; Siqueira, Walter L.; Santerre, J. Paul; Finer, Yoav

    2016-01-01

    Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG’s effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the

  3. Calorie restriction up-regulates iron and copper transport genes in Saccharomyces cerevisiae.

    PubMed

    Sharma, Praveen Kumar; Mittal, Nitish; Deswal, Sumit; Roy, Nilanjan

    2011-02-01

    Calorie restriction (CR) is a non genetic intervention, known to confer longevity benefits across the various phyla from unicellular yeast to mammals. CR also invokes homeostatic responses similar to stress, however the sequence of molecular events leading to longevity is still illusive. In this study, we analysed the whole genome gene expression profile in response to CR, mutations mimicking CR, heat shock and H(2)O(2) from a gene ontology perspective. Our analysis revealed that mitochondrion is a common hub in the gene expression programme under these conditions and the electron transport chain (ETC) is a major player. Consequently the genes involved in the metal ion transport were also significantly up-regulated. We confirmed the results of the in silico analysis using quantitative real time PCR which showed up-regulation of genes involved in respiration and transport of iron and copper. The promoter activity of one of the representative genes, FET3, was also found to be higher upon calorie restriction. Altogether, our results indicate that upon calorie restriction the levels of iron and copper fall in cells, which elicits a transcriptional response up-regulating the genes involved in their uptake to maintain cellular homeostasis.

  4. Cystatin C, a cysteine protease inhibitor, is persistently up-regulated in neurons and glia in a rat model for mesial temporal lobe epilepsy.

    PubMed

    Aronica, E; van Vliet, E A; Hendriksen, E; Troost, D; Lopes da Silva, F H; Gorter, J A

    2001-11-01

    Cystatin C (CSTC), a cysteine protease inhibitor, has been implicated in the processes of neuronal degeneration and repair of the nervous system. Using serial analysis of gene expression (SAGE), we recently identified CSTC as one of the genes that are overexpressed after electrically induced status epilepticus (SE). In the present study, Western blot analysis extended the SAGE results, showing increased CSTC protein in the hippocampus and entorhinal cortex. Immunocytochemistry revealed an increase in CSTC expression in glial cells, which was first apparent 24 h after onset of SE, and persisted for at least 3 months. Double immunolabelling confirmed that both reactive astrocytes, and activated microglia were CSTC immunopositive. Within the hippocampus, up-regulation was also observed in neuronal cells within one day after SE. Up-regulation was still present in hippocampal pyramidal cells and surviving interneurons of chronic epileptic rats (3-8 months post-SE). This study demonstrates that status epilepticus leads to a widespread and persistent up-regulation of CSTC in the hippocampus and entorhinal cortex, which may represent an intrinsic neuroprotective mechanism in the course of epileptogenesis that may counteract progression of the disease.

  5. Differential screening of mutated SOD1 transgenic mice reveals early up-regulation of a fast axonal transport component in spinal cord motor neurons.

    PubMed

    Dupuis, L; de Tapia, M; René, F; Lutz-Bucher, B; Gordon, J W; Mercken, L; Pradier, L; Loeffler, J P

    2000-08-01

    In the present study we analyze the molecular mechanisms underlying motor neuron degeneration in familial amyotrophic lateral sclerosis (FALS). For this, we used a transgenic mouse model expressing the Cu/Zn superoxide dismutase (SOD1) gene with a Gly(86) to Arg (G86R) mutation equivalent to that found in a subset of human FALS. Using an optimized suppression subtractive hybridization method, a cDNA specifically up-regulated during the asymptomatic phase in the lumbar spinal cord of G86R mice was identified by sequence analysis as the KIF3-associated protein (KAP3), a regulator of fast axonal transport. RT-PCR analysis revealed that KAP3 induction was an early event arising long before axonal degeneration. Immunohistochemical studies further revealed that KAP3 protein predominantly accumulates in large motor neurons of the ventral spinal cord. We further demonstrated that KAP3 up-regulation occurs independent of any change in the other components of the kinesin II complex. However, since the ubiquitous KIF1A motor is up-regulated, our results show an early and complex rearrangement of the fast axonal transport machinery in the course of FALS pathology.

  6. Up-regulation of DRP-3 long isoform during the induction of neural progenitor cells by glutamate treatment in the ex vivo rat retina

    SciTech Connect

    Tokuda, Kazuhiro; Kuramitsu, Yasuhiro; Byron, Baron; Kitagawa, Takao; Tokuda, Nobuko; Kobayashi, Daiki; Nagayama, Megumi; Araki, Norie; Sonoda, Koh-Hei; Nakamura, Kazuyuki

    2015-08-07

    Glutamate has been shown to induce neural progenitor cells in the adult vertebrate retina. However, protein dynamics during progenitor cell induction by glutamate are not fully understood. To identify specific proteins involved in the process, we employed two-dimensional electrophoresis-based proteomics on glutamate untreated and treated retinal ex vivo sections. Rat retinal tissues were incubated with 1 mM glutamate for 1 h, followed by incubation in glutamate-free media for a total of 24 h. Consistent with prior reports, it was found that mitotic cells appeared in the outer nuclear layer without any histological damage. Immunohistological evaluations and immunoblotting confirmed the emergence of neuronal progenitor cells in the mature retina treated with glutamate. Proteomic analysis revealed the up-regulation of dihydropyrimidinase-related protein 3 (DRP-3), DRP-2 and stress-induced-phosphoprotein 1 (STIP1) during neural progenitor cell induction by glutamate. Moreover, mRNA expression of DRP-3, especially, its long isoform, robustly increased in the treated retina compared to that in the untreated retina. These results may indicate that glutamate induces neural progenitor cells in the mature rat retina by up-regulating the proteins which mediate cell mitosis and neurite growth. - Highlights: • Glutamate induced neuronal progenitor cells in the mature rat retina. • Proteomic analysis revealed the up-regulation of DRP-3, DRP-2 and STIP1. • mRNA expression of DRP-3, especially, its long isoform, robustly increased.

  7. Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation

    NASA Technical Reports Server (NTRS)

    Davies, E.; Vian, A.; Vian, C.; Stankovic, B.

    1997-01-01

    When one leaf of a tomato plant is electrically-stimulated or heat-wounded, proteinase inhibitor genes are rapidly up-regulated in distant leaves. The identity of the systemic wound signal(s) is not yet known, but major candidates include hormones transmitted via the phloem or the xylem, the electrically-stimulated self-propagating electrical signal in the phloem (the action potential, AP), or the heat-wound-induced surge in hydraulic pressure in the xylem evoking a local change in membrane potential in adjacent living cells (the variation potential, VP). In order to discriminate between these signals we have adopted two approaches. The first approach involves applying stimuli that evoke known signals and determining whether these signals have similar effects on the "model" transcripts for proteinase inhibitors (pin) and calmodulin (cal). Here we show that a heat wound almost invariably evokes a VP, while an electrical stimulation occasionally evokes an AP, and both of these signals induce accumulation of transcripts encoding proteinase inhibitors. The second approach involves identifying the array of genes turned on by heat-wounding. To this end, we have constructed a subtractive library for heat-wounded tissue, isolated over 800 putatively up-regulated clones, and shown that all but two of the fifty that we have analyzed by Northern hybridization are, indeed, up-regulated. Here we show the early kinetics of up-regulation of three of these transcripts in the terminal (4th) leaf in response to heat-wounding the 3rd leaf, about 5 cm away. Even though these transcripts show somewhat different time courses of induction, with one peaking at 30 min, another at 15 min, and another at 5 min after flaming of a distant leaf, they all exhibit a similar pattern, i.e., a transient period of transcript accumulation preceding a period of transcript decrease, followed by a second period of transcript accumulation.

  8. Up-regulation and clinical significance of serine protease kallikrein 6 in colon cancer.

    PubMed

    Kim, Jong-Tae; Song, Eun Young; Chung, Kyung-Sook; Kang, Min Ah; Kim, Jae Wha; Kim, Sang Jick; Yeom, Young Il; Kim, Joo Heon; Kim, Kyo Hyun; Lee, Hee Gu

    2011-06-15

    Kallikrein-related peptidase 6 (KLK6) encodes a trypsin-like serine protease that is up-regulated in several cancers, although the putative functions of KLK6 in cancer have not been elucidated. In the current study, overexpression of KLK6 was identified in colon cancer, and the possibility that KLK6 may be a suitable candidate as a tumor marker was examined. Messenger RNA (mRNA) transcript levels and protein up-regulation of KLK6 in colon cancer tissues was examined using reverse transcriptase-polymerase chain reaction, immunohistochemistry, and clinicopathologic analyses. Cell proliferation, invasiveness, and antiapoptotic activity were determined in colon cancer cells that were transfected with small-interfering RNA (siRNA) of KLK6. KLK6 mRNA was up-regulated significantly in tumor tissues compared with nontumor regions. KLK6 protein was strongly expressed in adenocarcinomas but was not expressed in normal mucosa or in premalignant dysplastic lesions. Sera from patients with colon cancer revealed an increase in KLK6 secretion (0.25 μg/mL; P = .031) compared with noncancer cells (0.19 μg/mL). Clinicopathologic and immunohistochemical studies of 143 patients with colon cancer revealed a significant correlation between KLK6 expression and Dukes disease stage (P = .005). High KLK6 expression was associated significantly with shorter overall (P = .001) and recurrence-free survival (P = .001). The rates of proliferation and invasiveness were decreased by 50% in cells that were transfected with KLK6 siRNA. The overexpression of KLK6 led to decreased activity of the E-cadherin promoter. KLK6 was up-regulated significantly in tissues and sera from patients with colon cancer and was associated closely with a poor prognosis, suggesting that KLK6 may be used as a potential biomarker and a therapeutic target for colon cancer. Copyright © 2010 American Cancer Society.

  9. Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation

    NASA Technical Reports Server (NTRS)

    Davies, E.; Vian, A.; Vian, C.; Stankovic, B.

    1997-01-01

    When one leaf of a tomato plant is electrically-stimulated or heat-wounded, proteinase inhibitor genes are rapidly up-regulated in distant leaves. The identity of the systemic wound signal(s) is not yet known, but major candidates include hormones transmitted via the phloem or the xylem, the electrically-stimulated self-propagating electrical signal in the phloem (the action potential, AP), or the heat-wound-induced surge in hydraulic pressure in the xylem evoking a local change in membrane potential in adjacent living cells (the variation potential, VP). In order to discriminate between these signals we have adopted two approaches. The first approach involves applying stimuli that evoke known signals and determining whether these signals have similar effects on the "model" transcripts for proteinase inhibitors (pin) and calmodulin (cal). Here we show that a heat wound almost invariably evokes a VP, while an electrical stimulation occasionally evokes an AP, and both of these signals induce accumulation of transcripts encoding proteinase inhibitors. The second approach involves identifying the array of genes turned on by heat-wounding. To this end, we have constructed a subtractive library for heat-wounded tissue, isolated over 800 putatively up-regulated clones, and shown that all but two of the fifty that we have analyzed by Northern hybridization are, indeed, up-regulated. Here we show the early kinetics of up-regulation of three of these transcripts in the terminal (4th) leaf in response to heat-wounding the 3rd leaf, about 5 cm away. Even though these transcripts show somewhat different time courses of induction, with one peaking at 30 min, another at 15 min, and another at 5 min after flaming of a distant leaf, they all exhibit a similar pattern, i.e., a transient period of transcript accumulation preceding a period of transcript decrease, followed by a second period of transcript accumulation.

  10. Nephronectin Expression Is Up-Regulated by BMP-2.

    PubMed

    Kurosawa, Tamaki; Yamada, Atsushi; Suzuki, Dai; Morimura, Naoko; Sasagane, Yoshiyuki; Itabe, Hiroyuki; Kamijo, Ryutaro

    2016-01-01

    Nephronectin (Npnt), known to be a ligand of integrin α8β1, plays important roles in the development and function of various tissues, including those of the kidneys, liver, bones, and muscles. In previous studies, we showed that the expression of Npnt mRNA was regulated by various cytokines, including transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and oncostatin M (OSM), and that over-expression of Npnt enhanced osteoblast differentiation. In this study, we found that bone morphogenic protein-2 (BMP-2), known as an osteogenesis inducing cytokine, strongly up-regulated the expression of Npnt mRNA in a murine skeletal muscle cell line (C2C12) via the BMP-SMAD signaling pathway.

  11. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.

    PubMed

    Almeida, Tânia; Menéndez, Esther; Capote, Tiago; Ribeiro, Teresa; Santos, Conceição; Gonçalves, Sónia

    2013-01-15

    The molecular processes associated with cork development in Quercus suber L. are poorly understood. A previous molecular approach identified a list of genes potentially important for cork formation and differentiation, providing a new basis for further molecular studies. This report is the first molecular characterization of one of these candidate genes, QsMYB1, coding for an R2R3-MYB transcription factor. The R2R3-MYB gene sub-family has been described as being involved in the phenylpropanoid and lignin pathways, both involved in cork biosynthesis. The results showed that the expression of QsMYB1 is putatively mediated by an alternative splicing (AS) mechanism that originates two different transcripts (QsMYB1.1 and QsMYB1.2), differing only in the 5'-untranslated region, due to retention of the first intron in one of the variants. Moreover, within the retained intron, a simple sequence repeat (SSR) was identified. The upstream regulatory region of QsMYB1 was extended by a genome walking approach, which allowed the identification of the putative gene promoter region. The relative expression pattern of QsMYB1 transcripts determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that both transcripts were up-regulated in cork tissues; the detected expression was several times higher in newly formed cork harvested from trees producing virgin, second or reproduction cork when compared with wood. Moreover, the expression analysis of QsMYB1 in several Q. suber organs showed very low expression in young branches and roots, whereas in leaves, immature acorns or male flowers, no expression was detected. These preliminary results suggest that QsMYB1 may be related to secondary growth and, in particular, with the cork biosynthesis process with a possible alternative splicing mechanism associated with its regulatory function.

  12. SAMe Prevents the Up Regulation of Toll-Like Receptor Signaling in Mallory-Denk Body Forming Hepatocytes

    PubMed Central

    Bardag-Gorce, Fawzia; Oliva, Joan; Lin, Andrew; Li, Jun; French, Barbara A.; French, Samuel W.

    2010-01-01

    Mallory-Denk body (MDB) formation is a component of alcoholic and non alcoholic hepatitis. In the present study, the role of the toll-like receptor (TLR) signaling pathway was investigated in the mechanism of MDB formation in the DDC-fed mouse model. Microarray analysis data mining, performed on the livers of drug primed mice refed DDC, showed that TLR2/4 gene expression was significantly up regulated by DDC refeeding. SAMe supplementation prevented this up regulation and prevented the formation of MDBs. qRT-PCR analysis confirmed these results. TLR2/4 activates the adapter protein MyD88. The levels of MyD88 were increased by DDC refeeding. The increase of MyD88 was also prevented by SAMe supplementation. Results showed that MyD88-independent TLR3/4-TRIF-IRF3 pathway was not up regulated in the liver of DDC refed mice. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is the down stream protein recruited by the MyD88/IRAK protein complex, and is involved in the regulation of innate immune responses. Results showed a significant increase in the levels of TRAF-6. TRAF-6 activation leads to activation of NFkB and the mitogen-activated protein kinase (MAPK) cascade. The TRAF-6 increase was ameliorated by SAMe supplementation. These results suggest that DDC induces MDB formation through the TLR2/4 and MyD88-dependent signaling pathway. In conclusion, SAMe blocked the over-expression of TLR2/4, and their downstream signaling components MyD88 and TRAF-6. SAMe prevented the DDC-induced up regulation of the TLR signaling pathways, probably by preventing the up regulation of INF-γ receptors by DDC feeding. INFγ stimulates the up regulation of TLR2. The ability of SAMe feeding to prevent TLR signaling up regulation has not been previously described. PMID:20206621

  13. G-protein receptor kinase 5 regulates the cannabinoid receptor 2-induced up-regulation of serotonin 2A receptors.

    PubMed

    Franklin, Jade M; Carrasco, Gonzalo A

    2013-05-31

    We have recently reported that cannabinoid agonists can up-regulate and enhance the activity of serotonin 2A (5-HT2A) receptors in the prefrontal cortex (PFCx). Increased expression and activity of cortical 5-HT2A receptors has been associated with neuropsychiatric disorders, such as anxiety and schizophrenia. Here we report that repeated CP55940 exposure selectively up-regulates GRK5 proteins in rat PFCx and in a neuronal cell culture model. We sought to examine the mechanism underlying the regulation of GRK5 and to identify the role of GRK5 in the cannabinoid agonist-induced up-regulation and enhanced activity of 5-HT2A receptors. Interestingly, we found that cannabinoid agonist-induced up-regulation of GRK5 involves CB2 receptors, β-arrestin 2, and ERK1/2 signaling because treatment with CB2 shRNA lentiviral particles, β-arrestin 2 shRNA lentiviral particles, or ERK1/2 inhibitor prevented the cannabinoid agonist-induced up-regulation of GRK5. Most importantly, we found that GRK5 shRNA lentiviral particle treatment prevented the cannabinoid agonist-induced up-regulation and enhanced 5-HT2A receptor-mediated calcium release. Repeated cannabinoid exposure was also associated with enhanced phosphorylation of CB2 receptors and increased interaction between β-arrestin 2 and ERK1/2. These latter phenomena were also significantly inhibited by GRK5 shRNA lentiviral treatment. Our results suggest that sustained activation of CB2 receptors, which up-regulates 5-HT2A receptor signaling, enhances GRK5 expression; the phosphorylation of CB2 receptors; and the β-arrestin 2/ERK interactions. These data could provide a rationale for some of the adverse effects associated with repeated cannabinoid agonist exposure.

  14. NR4A orphan nuclear receptors influence retinoic acid and docosahexaenoic acid signaling via up-regulation of fatty acid binding protein 5

    SciTech Connect

    Volakakis, Nikolaos; Joodmardi, Eliza; Perlmann, Thomas

    2009-12-25

    The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPAR{beta}/{delta} signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4A NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPAR{beta}/{delta} and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.

  15. Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups.

    PubMed

    Sumazin, Pavel; Chen, Yidong; Treviño, Lisa R; Sarabia, Stephen F; Hampton, Oliver A; Patel, Kayuri; Mistretta, Toni-Ann; Zorman, Barry; Thompson, Patrick; Heczey, Andras; Comerford, Sarah; Wheeler, David A; Chintagumpala, Murali; Meyers, Rebecka; Rakheja, Dinesh; Finegold, Milton J; Tomlinson, Gail; Parsons, D Williams; López-Terrada, Dolores

    2017-01-01

    Despite being the most common liver cancer in children, hepatoblastoma (HB) is a rare neoplasm. Consequently, few pretreatment tumors have been molecularly profiled, and there are no validated prognostic or therapeutic biomarkers for HB patients. We report on the first large-scale effort to profile pretreatment HBs at diagnosis. Our analysis of 88 clinically annotated HBs revealed three risk-stratifying molecular subtypes that are characterized by differential activation of hepatic progenitor cell markers and metabolic pathways: high-risk tumors were characterized by up-regulated nuclear factor, erythroid 2-like 2 activity; high lin-28 homolog B, high mobility group AT-hook 2, spalt-like transcription factor 4, and alpha-fetoprotein expression; and high coordinated expression of oncofetal proteins and stem-cell markers, while low-risk tumors had low lin-28 homolog B and lethal-7 expression and high hepatic nuclear factor 1 alpha activity.

  16. Rck1 up-regulates pseudohyphal growth by activating the Ras2 and MAP kinase pathways independently in Saccharomyces cerevisiae.

    PubMed

    Chang, Miwha; Kang, Chang-Min; Park, Yong-Sung; Yun, Cheol-Won

    2014-02-21

    Previously, we reported that Rck1 regulates Hog1 and Slt2 activities and affects MAP kinase activity in Saccharomyces cerevisiae. Recently, we found that Rck1 up-regulates phospho-Kss1 and phospho-Fus3. Kss1 has been known as a component in the pseudohyphal growth pathway, and we attempted to identify the function of Rck1 in pseudohyphal growth. Rck1 up-regulated Ras2 at the protein level, not the transcriptional level. Additionally, FLO11 transcription was up-regulated by RCK1 over-expression. RCK1 expression was up-regulated during growth on SLAD+1% butanol medium. On nitrogen starvation agar plates, RCK1 over-expression induced pseudohyphal growth of colonies, and cells over-expressing RCK1 showed a filamentous morphology when grown in SLAD medium. Furthermore, 1-butanol greatly induced filamentous growth when RCK1 was over-expressed. Moreover, invasive growth was activated in haploid cells when RCK1 was over-expressed. The growth defect of cells observed on 1-butanol medium was recovered when RCK1 was over-expressed. Interestingly, Ras2 and phospho-Kss1 were up-regulated by Rck1 independently. Together, these results suggest that Rck1 promotes pseudohyphal growth by activating Ras2 and Kss1 via independent pathways in S. cerevisiae. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Adrenomedullin is Up-regulated in Patients With Pancreatic Cancer and Causes Insulin Resistance in β Cells and Mice

    PubMed Central

    Aggarwal, Gaurav; Ramachandran, Vijaya; Javeed, Naureen; Arumugam, Thiruvengadam; Dutta, Shamit; Klee, George G.; Klee, Eric W.; Smyrk, Thomas C.; Bamlet, William; Han, Jing Jing; Rumie Vittar, Natalia B.; De Andrade, Mariza; Mukhopadhyay, Debabrata; Petersen, Gloria M.; Fernandez-Zapico, Martin E.; Logsdon, Craig D.; Chari, Suresh T.

    2013-01-01

    Background & Aims New-onset diabetes in patients with pancreatic cancer is likely to be a paraneoplastic phenomenon caused by tumor-secreted products. We aimed to identify the diabetogenic secretory product(s) of pancreatic cancer Methods Using microarray analysis, we identified adrenomedullin as a potential mediator of diabetes in patients with pancreatic cancer. Adrenomedullin was up-regulated in pancreatic cancer cell lines, in which supernatants reduced insulin signaling in beta cell lines. We performed quantitative reverse-transcriptase polymerase chain reaction and immunohistochemistry on human pancreatic cancer and healthy pancreatic tissues (controls) to determine expression of adrenomedullin messenger RNA and protein, respectively. We studied the effects of adrenomedullin on insulin secretion by beta cell lines and whole islets from mice and on glucose tolerance in pancreatic xenografts in mice. We measured plasma levels of adrenomedullin in patients with pancreatic cancer, patients with type 2 diabetes mellitus, and individuals with normal fasting glucose levels (controls) Results Levels of adrenomedullin messenger RNA and protein were increased in human pancreatic cancer samples compared with controls. Adrenomedullin and conditioned media from pancreatic cell lines inhibited glucose-stimulated insulin secretion from beta cell lines and islets isolated from mice; the effects of conditioned media from pancreatic cancer cells were reduced by small hairpin RNA-mediated knockdown of adrenomedullin. Conversely, overexpression of adrenomedullin in mice with pancreatic cancer led to glucose intolerance. Mean plasma levels of adrenomedullin (femtomoles per liter) were higher in patients with pancreatic cancer compared with patients with diabetes or controls. Levels of adrenomedullin were higher in patients with pancreatic cancer who developed diabetes compared those who did not. Conclusions Adrenomedullin is up-regulated in patients with pancreatic cancer and

  18. Lysophosphatidic Acid Up-Regulates Hexokinase II and Glycolysis to Promote Proliferation of Ovarian Cancer Cells.

    PubMed

    Mukherjee, Abir; Ma, Yibao; Yuan, Fang; Gong, Yongling; Fang, Zhenyu; Mohamed, Esraa M; Berrios, Erika; Shao, Huanjie; Fang, Xianjun

    2015-09-01

    Lysophosphatidic acid (LPA), a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2) was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF) elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1) and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl.

    PubMed

    Nwaeburu, Clifford C; Bauer, Natalie; Zhao, Zhefu; Abukiwan, Alia; Gladkich, Jury; Benner, Axel; Herr, Ingrid

    2016-09-06

    Pancreatic Ductal Adenocarcinoma (PDA) is a highly malignant tumor with poor prognosis. MicroRNAs (miRs) may offer novel therapeutic approaches to treatment. The polyphenol quercetin, present in many fruits and vegetables, possesses anti-carcinogenic properties. To unravel the effect of quercetin to miR signaling we performed miR profiling in PDA cells before and after quercetin treatment, followed by biostatistical analysis. miR let-7c was among the top up-regulated candidates after quercetin treatment, as measured by qRT-PCR and confirmed in two established and one primary PDA cell lines. By computational analysis we identified the Notch-inhibitor Numbl as let-7c target gene. This was strengthened by luciferase assays, where lipofected let-7c mimics induced a Numbl 3-UTR wild type construct, but not the mutated counterpart. Let-7c induced Numbl mRNA and protein expression but inhibited Notch just like quercetin. It also inhibited colony formation, wound healing, and protein expression of progression markers. In vivo xenotransplantation of PDA cells and subsequent intravenous injection of let-7c resulted in a significant decrease in tumor mass without obvious toxic effects in the fertilized chick egg model. The delivery rate of the miR mimics to the tumor mass was 80%, whereas minor amounts were present in host tissue. By immunohistochemistry we demonstrated that let-7c inhibited Notch and progression markers but up-regulated Numbl. These findings show that quercetin-induced let-7c decreases tumor growth by posttranscriptional activation of Numbl and indirect inhibition of Notch.

  20. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes.

    PubMed

    Zhao, Tian-Yong; Zou, Shi-Ping; Knapp, Pamela E

    2007-01-22

    The health effects of cell phone radiation exposure are a growing public concern. This study investigated whether expression of genes related to cell death pathways are dysregulated in primary cultured neurons and astrocytes by exposure to a working Global System for Mobile Communication (GSM) cell phone rated at a frequency of 1900MHz. Primary cultures were exposed to cell phone emissions for 2h. We used array analysis and real-time RT-PCR to show up-regulation of caspase-2, caspase-6 and Asc (apoptosis associated speck-like protein containing a card) gene expression in neurons and astrocytes. Up-regulation occurred in both "on" and "stand-by" modes in neurons, but only in "on" mode in astrocytes. Additionally, astrocytes showed up-regulation of the Bax gene. The effects are specific since up-regulation was not seen for other genes associated with apoptosis, such as caspase-9 in either neurons or astrocytes, or Bax in neurons. The results show that even relatively short-term exposure to cell phone radiofrequency emissions can up-regulate elements of apoptotic pathways in cells derived from the brain, and that neurons appear to be more sensitive to this effect than astrocytes.

  1. Histone Hyperacetylation Up-regulates Protein Kinase Cδ in Dopaminergic Neurons to Induce Cell Death

    PubMed Central

    Jin, Huajun; Kanthasamy, Arthi; Harischandra, Dilshan S.; Kondru, Naveen; Ghosh, Anamitra; Panicker, Nikhil; Anantharam, Vellareddy; Rana, Ajay; Kanthasamy, Anumantha G.

    2014-01-01

    The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease. PMID:25342743

  2. Interleukin-18 is up-regulated in infectious pleural effusions.

    PubMed

    Rovina, Nikoletta; Dima, Efrossini; Psallidas, Ioannis; Moschos, Charalampos; Kollintza, Androniki; Kalomenidis, Ioannis

    2013-08-01

    The aim of this study was to investigate the pleural and systemic expression of interleukin-18 (IL-18) in patients with pleural effusions (PEs), and the effects of the cytokine in mouse pleural space. One hundred and sixty patients, 23 with pleural effusions (PEs) due to heart failure, 60 malignant, 25 parapneumonic/empyemas, 15 tuberculous and 37 with exudates of miscellaneous etiologies were included in the study. Pleural fluid (PF) and serum IL-18 content was determined using ELISA. IL-18 was injected intrapleurally in mice and pleural inflammation was assessed using pleural lavage. The highest PF IL-18 levels were observed in parapneumonic PEs and the lowest PF IL-18 levels in patients with exudates of miscellaneous aetiologies and transudates. PF IL-18 levels were significantly higher in patients with empyemas compared to those with uncomplicated (p=0.009) or complicated (p=0.028) parapneumonic effusions, while serum levels did not differ significantly among the three groups. Pleural IL-18 content was higher than that of blood only in patients with empyemas. In patients with pleural exudates of all etiologies and in those with parapneumonic PEs/empyema, PF IL-18 levels were correlated with markers of acute pleural inflammation such as the percentage of PF neutrophils, PF LDH and PF/serum LDH ratio, low PF glucose and PF/serum glucose ratio and low PF pH. In mice, intrapleural IL-18 caused neutrophil-predominant pleural inflammation. In conclusion, IL-18 is linked to the intensity of neutrophilic pleural inflammation in patients with PEs, it is up-regulated in the pleural space of patients with empyema and it stimulates the accumulation of neutrophils in mouse pleura. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Inflammation-related genes up-regulated in schizophrenia brains.

    PubMed

    Saetre, Peter; Emilsson, Lina; Axelsson, Elin; Kreuger, Johan; Lindholm, Eva; Jazin, Elena

    2007-09-06

    Multiple studies have shown that brain gene expression is disturbed in subjects suffering from schizophrenia. However, disentangling disease effects from alterations caused by medication is a challenging task. The main goal of this study is to find transcriptional alterations in schizophrenia that are independent of neuroleptic treatment. We compared the transcriptional profiles in brain autopsy samples from 55 control individuals with that from 55 schizophrenic subjects, subdivided according to the type of antipsychotic medication received. Using global and high-resolution mRNA quantification techniques, we show that genes involved in immune response (GO:0006955) are up regulated in all groups of patients, including those not treated at the time of death. In particular, IFITM2, IFITM3, SERPINA3, and GBP1 showed increased mRNA levels in schizophrenia (p-values from qPCR < or = 0.01). These four genes were co-expressed in both schizophrenic subjects and controls. In-vitro experiments suggest that these genes are expressed in both oligodendrocyte and endothelial cells, where transcription is inducible by the inflammatory cytokines TNF-alpha, IFN-alpha and IFN-gamma. Although the modified genes are not classical indicators of chronic or acute inflammation, our results indicate alterations of inflammation-related pathways in schizophrenia. In addition, the observation in oligodendrocyte cells suggests that alterations in inflammatory-related genes may have consequences for myelination. Our findings encourage future research to explore whether anti-inflammatory agents can be used in combination with traditional antipsychotics for a more efficient treatment of schizophrenia.

  4. Expression of a chitin deacetylase gene, up-regulated in Cryptococcus laurentii strain RY1, under nitrogen limitation.

    PubMed

    Chakraborty, Writachit; Sarkar, Soumyadev; Chakravorty, Somnath; Bhattacharya, Semantee; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-05-01

    This study reports the identification of a chitin deacetylase gene in Cryptococcus laurentii strain RY1 over-expressing under nitrogen limitation by differential display. The up-regulation took place in robustly growing cells rather than in starving quiescent autophagic cells. Quantitative Real Time-PCR, enzyme activity in cell lysate and cell wall analysis corroborated the up-regulation of chitin deacetylase under nitrogen limitation. These results suggest chitin deacetylase might play a significant role in nitrogen limiting growth of Cryptococcus laurentii strain RY1.

  5. LTP but not seizure is associated with up-regulation of AKAP-150.

    PubMed

    Génin, A; French, P; Doyère, V; Davis, S; Errington, M L; Maroun, M; Stean, T; Truchet, B; Webber, M; Wills, T; Richter-Levin, G; Sanger, G; Hunt, S P; Mallet, J; Laroche, S; Bliss, T V P; O'Connor, V

    2003-01-01

    We have used differential display to profile and compare the mRNAs expressed in the hippocampus of freely moving animals after the induction of long-term potentiation (LTP) at the perforant path-dentate gyrus synapse with control rats receiving low-frequency stimulation. We have combined this with in situ hybridization and have identified A-kinase anchoring protein of 150 kDa (AKAP-150) as a gene selectively up-regulated during the maintenance phase of LTP. AKAP-150 mRNA has a biphasic modulation in the dentate gyrus following the induction of LTP. The expression of AKAP-150 was 29% lower than stimulated controls 1 h after the induction of LTP. Its expression was enhanced 3 (50%), 6 (239%) and 12 h (210%) after induction, returning to control levels by 24 h postinduction. The NMDA receptor antagonist CPP blocked the tetanus-induced modulation of AKAP-150 expression. Interestingly, strong generalized stimulation produced by electroconvulsive shock did not increase the expression of AKAP-150. This implies that the AKAP-150 harbours a novel property of selective responsiveness to the stimulation patterns that trigger NMDA-dependent LTP in vivo. Its selective up-regulation during LTP and its identified functions as a scaffold for protein kinase A, protein kinase C, calmodulin, calcineurin and ionotropic glutamate receptors suggest that AKAP-150 encodes is an important effector protein in the expression of late LTP.

  6. Cocaine Up-regulation of the Norepinephrine Transporter Requires Threonine 30 Phosphorylation by p38 Mitogen-activated Protein Kinase*

    PubMed Central

    Mannangatti, Padmanabhan; Arapulisamy, Obulakshmi; Shippenberg, Toni S .; Ramamoorthy, Sammanda; Jayanthi, Lankupalle D.

    2011-01-01

    The norepinephrine (NE) transporter (NET) regulates NE signaling by rapidly clearing synaptic NE. Cocaine binds NET and modulates NE transport. These actions contribute to rewarding effects and abuse liability of cocaine. Activation of mitogen-activated protein kinase (MAPK) cascades is implicated in cocaine-induced neuroadaptations. However, the role of MAPK and the mechanisms involved in cocaine modulation of NET are not clear. Acute intra-peritoneal injections of cocaine (20 mg/kg body weight) to rats resulted in increased NE uptake by prefrontal cortex (PFC) synaptosomes with a parallel increase in the surface expression of endogenous NET. Cocaine also enhanced the immunoreactivity of phospho-p38 MAPK in the PFC synaptosomes without affecting the total p38 MAPK. In vitro cocaine (30–50 μm) treatment of rat PFC synaptosomes increased native NET function, surface expression, and phosphorylation in a manner sensitive to p38 MAPK inhibition by PD169316. We next examined cocaine-elicited effects on wild-type human NET (hNET) expressed heterologously in human placental trophoblast cells to gain more insights into the mechanisms involved. Cocaine treatment of hNET expressing human placental trophoblast cells up-regulated the function, surface expression, and phosphorylation of hNET in a PD169316-sensitive manner. In addition, cocaine inhibited constitutive endocytosis of hNET. Mutational analysis of serine and threonine residues revealed that substitution of threonine 30, located at the amino terminus of hNET with alanine (T30A-hNET), abolished cocaine-induced up-regulation of NET function, surface expression, and phosphorylation. Furthermore, cocaine did not alter T30A-hNET endocytosis. These studies identify a novel molecular mechanism that cocaine-activated p38 MAPK-mediated phosphorylation of NET-T30 dictates surface NET availability, and hence, NE transport. PMID:21498515

  7. Cocaine up-regulation of the norepinephrine transporter requires threonine 30 phosphorylation by p38 mitogen-activated protein kinase.

    PubMed

    Mannangatti, Padmanabhan; Arapulisamy, Obulakshmi; Shippenberg, Toni S; Ramamoorthy, Sammanda; Jayanthi, Lankupalle D

    2011-06-10

    The norepinephrine (NE) transporter (NET) regulates NE signaling by rapidly clearing synaptic NE. Cocaine binds NET and modulates NE transport. These actions contribute to rewarding effects and abuse liability of cocaine. Activation of mitogen-activated protein kinase (MAPK) cascades is implicated in cocaine-induced neuroadaptations. However, the role of MAPK and the mechanisms involved in cocaine modulation of NET are not clear. Acute intra-peritoneal injections of cocaine (20 mg/kg body weight) to rats resulted in increased NE uptake by prefrontal cortex (PFC) synaptosomes with a parallel increase in the surface expression of endogenous NET. Cocaine also enhanced the immunoreactivity of phospho-p38 MAPK in the PFC synaptosomes without affecting the total p38 MAPK. In vitro cocaine (30-50 μM) treatment of rat PFC synaptosomes increased native NET function, surface expression, and phosphorylation in a manner sensitive to p38 MAPK inhibition by PD169316. We next examined cocaine-elicited effects on wild-type human NET (hNET) expressed heterologously in human placental trophoblast cells to gain more insights into the mechanisms involved. Cocaine treatment of hNET expressing human placental trophoblast cells up-regulated the function, surface expression, and phosphorylation of hNET in a PD169316-sensitive manner. In addition, cocaine inhibited constitutive endocytosis of hNET. Mutational analysis of serine and threonine residues revealed that substitution of threonine 30, located at the amino terminus of hNET with alanine (T30A-hNET), abolished cocaine-induced up-regulation of NET function, surface expression, and phosphorylation. Furthermore, cocaine did not alter T30A-hNET endocytosis. These studies identify a novel molecular mechanism that cocaine-activated p38 MAPK-mediated phosphorylation of NET-T30 dictates surface NET availability, and hence, NE transport.

  8. Korean Red Ginseng Up-regulates C21-Steroid Hormone Metabolism via Cyp11a1 Gene in Senescent Rat Testes.

    PubMed

    Kim, In-Hye; Kim, Si-Kwan; Kim, Eun-Hye; Kim, Sung-Won; Sohn, Sang-Hyun; Lee, Soo Cheol; Choi, Sangdun; Pyo, Suhkneung; Rhee, Dong-Kwon

    2011-09-01

    Ginseng (Panax ginseng Meyer) has been shown to have anti-aging effects in animal and clinical studies. However, the molecular mechanisms by which ginseng exerts these effects remain unknown. Here, the anti-aging effect of Korean red ginseng (KRG) in rat testes was examined by system biology analysis. KRG water extract prepared in feed pellets was administered orally into 12 month old rats for 4 months, and gene expression in testes was determined by microarray analysis. Microarray analysis identified 33 genes that significantly changed. Compared to the 2 month old young rats, 13 genes (Rps9, Cyp11a1, RT1-A2, LOC365778, Sv2b, RGD1565959, RGD1304748, etc.) were up-regulated and 20 genes (RT1-Db1, Cldn5, Svs5, Degs1, Vdac3, Hbb, LOC684355, Svs5, Tmem97, Orai1, Insl3, LOC497959, etc.) were down-regulated by KRG in the older rats. Ingenuity Pathway Analysis of untreated aged rats versus aged rats treated with KRG showed that the affected most was Cyp11a1, responsible for C21-steroid hormone metabolism, and the top molecular and cellular functions are organ morphology and reproductive system development and function. When genes in young rat were compared with those in the aged rat, sperm capacitation related genes were down-regulated in the old rat. However, when genes in the old rat were compared with those in the old rat treated with KRG, KRG treatment up-regulated C21-steroid hormone metabolism. Taken together, Cyp11a1 expression is decreased in the aged rat, however, it is up-regulated by KRG suggesting that KRG seems enhance testes function via Cyp11a1.

  9. Myostatin signaling is up-regulated in female patients with advanced heart failure.

    PubMed

    Ishida, Junichi; Konishi, Masaaki; Saitoh, Masakazu; Anker, Markus; Anker, Stefan D; Springer, Jochen

    2017-07-01

    Myostatin, a negative regulator of skeletal muscle mass, is up-regulated in the myocardium of heart failure (HF) and increased myostatin is associated with weight loss in animal models with HF. Although there are disparities in pathophysiology and epidemiology between male and female patients with HF, it remains unclear whether there is gender difference in myostatin expression and whether it is associated with weight loss in HF patients. Heart tissue samples were collected from patients with advanced heart failure (n=31, female n=5) as well as healthy control donors (n=14, female n=6). Expression levels of myostatin and its related proteins in the heart were evaluated by western blotting analysis. Body mass index was significantly lower in female HF patients than in male counterparts (20.0±4.2 in female vs 25.2±3.8 in male, p=0.04). In female HF patients, both mature myostatin and pSmad2 were significantly up-regulated by 1.9 fold (p=0.05) and 2.5 fold (p<0.01) respectively compared to female donors, while expression of pSmad2 was increased by 2.8 times in male HF patients compared to male healthy subjects, but that of myostatin was not. There was no significant difference in protein expression related to myostatin signaling between male and female patients. In this study, myostatin and pSmad2 were significantly up-regulated in the failing heart of female patients, but not male patients, and female patients displayed lower body mass index. Enhanced myostatin signaling in female failing heart may causally contribute to pathogenesis of HF and cardiac cachexia. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Identifying Peer Institutions Using Cluster Analysis

    ERIC Educational Resources Information Center

    Boronico, Jess; Choksi, Shail S.

    2012-01-01

    The New York Institute of Technology's (NYIT) School of Management (SOM) wishes to develop a list of peer institutions for the purpose of benchmarking and monitoring/improving performance against other business schools. The procedure utilizes relevant criteria for the purpose of establishing this peer group by way of a cluster analysis. The…

  11. Identifying nonlinear biomechanical models by multicriteria analysis

    NASA Astrophysics Data System (ADS)

    Srdjevic, Zorica; Cveticanin, Livija

    2012-02-01

    In this study, the methodology developed by Srdjevic and Cveticanin (International Journal of Industrial Ergonomics 34 (2004) 307-318) for the nonbiased (objective) parameter identification of the linear biomechanical model exposed to vertical vibrations is extended to the identification of n-degree of freedom (DOF) nonlinear biomechanical models. The dynamic performance of the n-DOF nonlinear model is described in terms of response functions in the frequency domain, such as the driving-point mechanical impedance and seat-to-head transmissibility function. For randomly generated parameters of the model, nonlinear equations of motion are solved using the Runge-Kutta method. The appropriate data transformation from the time-to-frequency domain is performed by a discrete Fourier transformation. Squared deviations of the response functions from the target values are used as the model performance evaluation criteria, thus shifting the problem into the multicriteria framework. The objective weights of criteria are obtained by applying the Shannon entropy concept. The suggested methodology is programmed in Pascal and tested on a 4-DOF nonlinear lumped parameter biomechanical model. The identification process over the 2000 generated sets of parameters lasts less than 20 s. The model response obtained with the imbedded identified parameters correlates well with the target values, therefore, justifying the use of the underlying concept and the mathematical instruments and numerical tools applied. It should be noted that the identified nonlinear model has an improved accuracy of the biomechanical response compared to the accuracy of a linear model.

  12. Identifying MMORPG Bots: A Traffic Analysis Approach

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Ta; Jiang, Jhih-Wei; Huang, Polly; Chu, Hao-Hua; Lei, Chin-Laung; Chen, Wen-Chin

    2008-12-01

    Massively multiplayer online role playing games (MMORPGs) have become extremely popular among network gamers. Despite their success, one of MMORPG's greatest challenges is the increasing use of game bots, that is, autoplaying game clients. The use of game bots is considered unsportsmanlike and is therefore forbidden. To keep games in order, game police, played by actual human players, often patrol game zones and question suspicious players. This practice, however, is labor-intensive and ineffective. To address this problem, we analyze the traffic generated by human players versus game bots and propose general solutions to identify game bots. Taking Ragnarok Online as our subject, we study the traffic generated by human players and game bots. We find that their traffic is distinguishable by 1) the regularity in the release time of client commands, 2) the trend and magnitude of traffic burstiness in multiple time scales, and 3) the sensitivity to different network conditions. Based on these findings, we propose four strategies and two ensemble schemes to identify bots. Finally, we discuss the robustness of the proposed methods against countermeasures of bot developers, and consider a number of possible ways to manage the increasingly serious bot problem.

  13. Frequent up-regulation of WNT5A mRNA in primary gastric cancer.

    PubMed

    Saitoh, Tetsuroh; Mine, Tetsuya; Katoh, Masaru

    2002-05-01

    WNT signal is transduced to the beta-catenin - TCF pathway, the JNK pathway, or the Ca2+-releasing pathway through seven-transmembrane-type WNT receptors encoded by Frizzled genes (FZD1-FZD10). We have previously cloned and characterized human WNT2B/WNT13, WNT3, WNT3A, WNT5B, WNT6, WNT7B, WNT8A, WNT8B, WNT10A, WNT10B, WNT11, WNT14, and WNT14B/WNT15 by using bioinformatics, cDNA-library screening, and cDNA-PCR. Here, we investigated expression of human WNT5A mRNA in various normal tissues, 66 primary tumors derived from various tissues, and 15 human cancer cell lines. WNT5A mRNA was relatively highly expressed in salivary gland, bladder, uterus, placenta, and fetal kidney. Up-regulation of WNT5A mRNA was detected in 5 out of 8 cases of primary gastric cancer, 5 out of 18 cases of primary colorectal tumors, and in 2 out of 7 cases of primary uterus tumors by using matched tumor/normal expression array analysis. Up-regulation of WNT5A mRNA was also detected in 7 out of 10 other cases of primary gastric cancer by using cDNA-PCR. Although low-level expression of WNT5A mRNA was detected in gastric cancer cell line MKN45, WNT5A mRNA was almost undetectable in gastric cancer cell lines OKAJIMA, TMK1, MKN7, MKN28, MKN74, and KATO-III. Compared with frequent up-regulation of WNT5A mRNA in primary gastric cancer, expression levels of WNT5A mRNA in 7 gastric cancer cell lines were significantly lower than that in normal stomach. Frequent up-regulation of WNT5A mRNA in human primary gastric cancer might be due to cancer-stromal interaction.

  14. Seasonal expressed sequence tags of rainbow smelt (Osmerus mordax) revealed by subtractive hybridization and the identification of two genes up-regulated during winter.

    PubMed

    Richards, Robert C; Achenbach, John C; Short, Connie E; Kimball, Jennifer; Reith, Michael E; Driedzic, William R; Ewart, K Vanya

    2008-11-15

    The rainbow smelt (Osmerus mordax) is freeze-resistant and maintains swimming and feeding activity during winter. In order to identify genes differentially expressed in smelt liver response to winter water temperatures, a large-scale analysis of gene expression using suppression subtractive hybridization was carried out using samples obtained in fall and winter. Forward and reverse subtractions were performed, subtraction-enriched products were cloned, and clones were sequenced from both of the resulting libraries. When 27 of these genes were screened by semi-quantitative RT-PCR to identify candidates for differential expression based generally on 2-fold changes in expression, one encoding FK506-binding protein 5 was classified as up-regulated in response to seasonal change, another encoding the mitochondrial solute carrier 25 member 25 (ATP-Mg/Pi carrier) was similarly classified with seasonal change and low temperature shift, and the one encoding the 78 kDa glucose-regulated protein was provisionally classified as down-regulated with low temperature shift. Analysis of fall (warm) and winter (cold) seasonal samples by quantitative PCR (qPCR) revealed significant up-regulation of genes encoding FK506-binding protein 51 and the mitochondrial solute carrier, whereas the gene encoding the glucose-regulated protein showed no significant change in expression. The mitochondrial solute carrier and FK506-binding protein results may relate to changes in cortisol action, as both are regulated by cortisol in other species.

  15. Identifying sources of uncertainty using covariance analysis

    NASA Astrophysics Data System (ADS)

    Hyslop, N. P.; White, W. H.

    2010-12-01

    Atmospheric aerosol monitoring often includes performing multiple analyses on a collected sample. Some common analyses resolve suites of elements or compounds (e.g., spectrometry, chromatography). Concentrations are determined through multi-step processes involving sample collection, physical or chemical analysis, and data reduction. Uncertainties in the individual steps propagate into uncertainty in the calculated concentration. The assumption in most treatments of measurement uncertainty is that errors in the various species concentrations measured in a sample are random and therefore independent of each other. This assumption is often not valid in speciated aerosol data because some errors can be common to multiple species. For example, an error in the sample volume will introduce a common error into all species concentrations determined in the sample, and these errors will correlate with each other. Measurement programs often use paired (collocated) measurements to characterize the random uncertainty in their measurements. Suites of paired measurements provide an opportunity to go beyond the characterization of measurement uncertainties in individual species to examine correlations amongst the measurement uncertainties in multiple species. This additional information can be exploited to distinguish sources of uncertainty that affect all species from those that only affect certain subsets or individual species. Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) program are used to illustrate these ideas. Nine analytes commonly detected in the IMPROVE network were selected for this analysis. The errors in these analytes can be reasonably modeled as multiplicative, and the natural log of the ratio of concentrations measured on the two samplers provides an approximation of the error. Figure 1 shows the covariation of these log ratios among the different analytes for one site. Covariance is strongest amongst the dust element (Fe, Ca, and

  16. Glutamate Transporter EAAT2 Expression is Up-Regulated in Reactive Astrocytes in Human Periventricular Leukomalacia

    PubMed Central

    DESILVA, TARA M.; BILLIARDS, SARAID S.; BORENSTEIN, NATALIA S.; TRACHTENBERG, FELICIA L.; VOLPE, JOSEPH J.; KINNEY, HANNAH C.; ROSENBERG, PAUL A.

    2010-01-01

    The major neuropathological correlate of cerebral palsy in premature infants is periventricular leukomalacia (PVL), a disorder of the immature cerebral white matter. Cerebral ischemia leading to excitotoxicity is thought to be important in the pathogenesis of this disorder, implying a critical role for glutamate transporters, the major determinants of extracellular glutamate concentration. Previously, we found that EAAT2 expression is limited primarily to premyelinating oligodendrocytes early in development and is rarely observed in astrocytes until >40 weeks. In this study, we analyzed the expression of EAAT2 in cerebral white matter from PVL and control cases. Western blot analysis suggested an up-regulation of EAAT2 in PVL compared with control cases. Single- and double-label immunocytochemistry showed a significantly higher percentage of EAAT2-immunopositive astrocytes in PVL (51.8% ± 5.6%) compared with control white matter (21.4% ± 5.6%; P = 0.004). Macrophages in the necrotic foci in PVL also expressed EAAT2. Premyelinating oligodendrocytes in both PVL and control cases expressed EAAT2, without qualitative difference in expression. The previously unrecognized up-regulation of EAAT2 in reactive astrocytes and its presence in macrophages in PVL reported here may reflect a response to either hypoxic-ischemic injury or inflammation. PMID:18314905

  17. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera

    PubMed Central

    Mao, Wenfu; Schuler, Mary A.; Berenbaum, May R.

    2013-01-01

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses. PMID:23630255

  18. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera.

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2013-05-28

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses.

  19. Hfr-2, a wheat cytolytic toxin-like gene, is up-regulated by virulent Hessian fly larval feedingdouble dagger.

    PubMed

    Puthoff, David P; Sardesai, Nagesh; Subramanyam, Subhashree; Nemacheck, Jill A; Williams, Christie E

    2005-07-01

    SUMMARY Both yield and grain-quality are dramatically decreased when susceptible wheat (Triticum aestivum) plants are infested by Hessian fly (Mayetiola destructor) larvae. Examination of the changes in wheat gene expression during infestation by virulent Hessian fly larvae has identified the up-regulation of a gene, Hessian fly responsive-2 (Hfr-2), which contains regions similar to genes encoding seed-specific agglutinin proteins from Amaranthus. Hfr-2, however, did not accumulate in developing seeds, as do other wheat seed storage proteins. Additionally, a separate region of the HFR-2 predicted amino acid sequence is similar to haemolytic proteins, from both mushroom and bacteria, that are able to form pores in cell membranes of mammalian red blood cells. The involvement of Hfr-2 in interactions with insects was supported by experiments demonstrating its up-regulation by both fall armyworm (Spodoptera frugiperda) and bird cherry-oat aphid (Rhopalosiphum padi) infestations but not by virus infection. Examination of wheat defence response pathways showed Hfr-2 up-regulation following methyl jasmonate treatment and only slight up-regulation in response to salicylic acid, abscisic acid and wounding treatments. Like related proteins, HFR-2 may normally function in defence against certain insects or pathogens. However, we propose that as virulent Hessian fly larvae manipulate the physiology of the susceptible host, the HFR-2 protein inserts in plant cell membranes at the feeding sites and by forming pores provides water, ions and other small nutritive molecules to the developing larvae.

  20. Up-regulation of connective tissue growth factor in endothelial cells by the microtubule-destabilizing agent combretastatin A-4.

    PubMed

    Samarin, Jana; Rehm, Margot; Krueger, Bettina; Waschke, Jens; Goppelt-Struebe, Margarete

    2009-02-01

    Incubation of microvascular endothelial cells with combretastatin A-4 phosphate (CA-4P), a microtubule-destabilizing compound that preferentially targets tumor vessels, altered cell morphology and induced scattering of Golgi stacks. Concomitantly, CA-4P up-regulated connective tissue growth factor (CTGF/CCN2), a pleiotropic factor with antiangiogenic properties. In contrast to the effects of other microtubule-targeting agents such as colchicine or nocodazole, up-regulation of CTGF was only detectable in sparse cells, which were not embedded in a cell monolayer. Furthermore, CA-4P induced CTGF expression in endothelial cells, forming tube-like structures on basement membrane gels. Up-regulation of CTGF by CA-4P was dependent on Rho kinase signaling and was increased when p42/44 mitogen-activated protein kinase was inhibited. Additionally, FoxO transcription factors were identified as potent regulators of CTGF expression in endothelial cells. Activation of FoxO transcription factors by inhibition of phosphatidylinositol 3-kinase/AKT signaling resulted in a synergistic increase in CA-4P-mediated CTGF induction. CA-4P-mediated expression of CTGF was thus potentiated by the inhibition of kinase pathways, which are targets of novel antineoplastic drugs. Up-regulation of CTGF by low concentrations of CA-4P may thus occur in newly formed tumor vessels and contribute to the microvessel destabilization and antiangiogenic effects of CA-4P observed in vivo.

  1. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits.

    PubMed

    Pan, Yu; Bradley, Glyn; Pyke, Kevin; Ball, Graham; Lu, Chungui; Fray, Rupert; Marshall, Alexandra; Jayasuta, Subhalai; Baxter, Charles; van Wijk, Rik; Boyden, Laurie; Cade, Rebecca; Chapman, Natalie H; Fraser, Paul D; Hodgman, Charlie; Seymour, Graham B

    2013-03-01

    Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening.

  2. Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells

    PubMed Central

    Chen, Yu-Ching; Chang, Hsun-Ming; Cheng, Jung-Chien; Tsai, Horng-Der; Wu, Cheng-Hsuan; Leung, Peter C.K.

    2015-01-01

    STUDY QUESTION Does transforming growth factor-β1 (TGF-β1) up-regulate connexin43 (Cx43) to promote cell–cell communication in human granulosa cells? SUMMARY ANSWER TGF-β1 up-regulates Cx43 and increases gap junction intercellular communication activities (GJIC) in human granulosa cells, and this effect occurs via the activin receptor-like kinase (ALK)5-mediated Sma- and Mad-related protein (SMAD)2/3-SMAD4-dependent pathway. WHAT IS KNOWN ALREADY TGF-β1 and its receptors are expressed in human granulosa cells, and follicular fluid contains TGF-β1 protein. In human granulosa cells, Cx43 gap junctions play an important role in the development of follicles and oocytes. STUDY DESIGN, SIZE, DURATION This is an experimental study which was performed over a 1-year period. PARTICIPANTS/MATERIALS, SETTING, METHODS Immortalized human granulosa cells (SVOG cells) and primary human granulosa-lutein cells obtained from women undergoing IVF in an academic research center were used as the study models. Cx43 mRNA and protein expression levels were examined after exposure of SVOG cells to recombinant human TGF-β1. An activin/TGF-β type I receptor inhibitor, SB431542, and small interfering RNAs targeting ALK4, ALK5, SMAD2, SMAD3 and SMAD4 were used to verify the specificity of the effects and to investigate the molecular mechanisms. Real-time-quantitative PCR and western blot analysis were used to detect the specific mRNA and protein levels, respectively. GJIC between SVOG cells were evaluated using a scrape loading and dye transfer assay. Results were analyzed by one-way analysis of variance. MAIN RESULTS AND THE ROLE OF CHANCE TGF-β1 treatment increased phosphorylation of SMAD2/3 (P < 0.0001) and up-regulated Cx43 mRNA and protein levels (P < 0.001) in SVOG cells and these stimulatory effects were abolished by the TGF-β type I receptor inhibitor SB431542. In addition, the up-regulatory effect of TGF-β1 on Cx43 expression (mRNA and protein) was confirmed in primary

  3. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells.

    PubMed

    Frozza, Caroline Olivieri da Silva; Ribeiro, Tanara da Silva; Gambato, Gabriela; Menti, Caroline; Moura, Sidnei; Pinto, Paulo Marcos; Staats, Charley Christian; Padilha, Francine Ferreira; Begnini, Karine Rech; de Leon, Priscila Marques Moura; Borsuk, Sibele; Savegnago, Lucielli; Dellagostin, Odir; Collares, Tiago; Seixas, Fabiana Kömmling; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2014-01-01

    Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Exposure to Cell Phone Radiation Up-Regulates Apoptosis Genes in Primary Cultures of Neurons and Astrocytes

    PubMed Central

    Zhao, Tian-Yong; Zou, Shi-Ping; Knapp, Pamela E.

    2007-01-01

    The health effects of cell phone radiation exposure are a growing public concern. This study investigated whether expression of genes related to cell death pathways are dysregulated in primary cultured neurons and astrocytes by exposure to a working GSM (Global System for Mobile Communication) cell phone rated at a frequency of 1900 MHz. Primary cultures were exposed to cell phone emissions for 2 hrs. We used array analysis and real-time RT-PCR to show up-regulation of caspase-2, caspase-6 and Asc (apoptosis associated speck-like protein containing a card) gene expression in neurons and astrocytes. Upregulation occurred in both “on” and “stand-by” modes in neurons, but only in “on” mode in astrocytes. Additionally, astrocytes showed up-regulation of the Bax gene. The effects are specific since up-regulation was not seen for other genes associated with apoptosis, such as caspase-9 in either neurons and astrocytes, or Bax in neurons. The results show that even relatively short-term exposure to cell phone radiofrequency emissions can up-regulate elements of apoptotic pathways in cells derived from the brain, and that neurons appear to be more sensitive to this effect than astrocytes. PMID:17187929

  5. SLURP-2, a novel member of the human Ly-6 superfamily that is up-regulated in psoriasis vulgaris.

    PubMed

    Tsuji, Hitomi; Okamoto, Koichi; Matsuzaka, Yasunari; Iizuka, Hajime; Tamiya, Gen; Inoko, Hidetoshi

    2003-01-01

    By microarray assay we identified ESTs (expressed sequence tags) whose expression was predominantly increased in the affected skin of patients with psoriasis vulgaris. Among them, a full-length cDNA sequence corresponding to one of those ESTs (AI829641) was isolated by screening of cultured human keratinocyte cDNA libraries. This cDNA encodes a novel member of the Ly-6/uPAR superfamily, designated SLURP-2 (secreted Ly-6/uPAR related protein 2). SLURP-2 has an open reading frame of 97 amino acids containing 10 conserved cysteine residues. SLURP-2 has a single functional copy within the LY6 superfamily gene cluster at chromosome 8q24.3. RT-PCR (reverse transcriptase-polymerase chain reaction) expression analysis revealed that SLURP-2 was expressed in multiple tissues, mainly in the epithelial cells including the skin and keratinocytes, but not in spleen or bone marrow. Comparison of the expression of this gene among the psoriatic lesional and nonlesional skin of patients and the normal skin of healthy individuals detected by quantitative real-time RT-PCR analysis disclosed that SLURP-2 was up-regulated threefold in psoriatic lesional skin. These findings suggest that SLURP-2 may be involved in the pathophysiology of psoriasis through its role in keratinocyte hyperproliferation and/or T cell differentiation/activation.

  6. Molecular identification and characterization of a novel nuclear protein whose expression is up-regulated in insulin-resistant animals.

    PubMed

    Ikeda, Koji; Emoto, Noriaki; Matsuo, Masafumi; Yokoyama, Mitsuhiro

    2003-02-07

    Energy metabolism is the most fundamental capacity for mammals, impairment of which causes a variety of diseases such as type 2 diabetes and insulin resistance. Here, we identified a novel gene, termed diabetes-related ankyrin repeat protein (DARP) that is up-regulated in the heart of KKA(y) mouse, a type 2 diabetes and insulin resistance model animal. DARP contains putative nuclear localization signals and four tandem ankyrin-like repeats. Its expression is restricted in heart, skeletal muscle, and brown adipose. Western blot analysis and immunocytochemistry of DARP-transfected Chinese hamster ovary (CHO) and COS-7 cells reveal that DARP is a nuclear protein. When DARP is expressed in CHO cells, [1-(14)C]palmitate uptake is significantly decreased, whereas the palmitate oxidation does not show significant change. Furthermore, DARP expression is altered by the change of energy supply induced by excess fatty acid treatment of skeletal myotube in vitro and fasting treatment of C57 mouse in vivo. We confirmed that DARP expression is also altered in Zucker fatty rat, another insulin resistance model animal. Taken together, these data suggest that DARP is a novel nuclear protein potentially involved in the energy metabolism. Detailed analysis of DARP may provide new insights in the energy metabolism.

  7. Up-Regulated Expression of AOS-LOXa and Increased Eicosanoid Synthesis in Response to Coral Wounding

    PubMed Central

    Lõhelaid, Helike; Teder, Tarvi; Tõldsepp, Kadri; Ekins, Merrick; Samel, Nigulas

    2014-01-01

    In octocorals, a catalase–like allene oxide synthase (AOS) and an 8R-lipoxygenase (LOX) gene are fused together encoding for a single AOS-LOX fusion protein. Although the AOS-LOX pathway is central to the arachidonate metabolism in corals, its biological function in coral homeostasis is unclear. Using an acute incision wound model in the soft coral Capnella imbricata, we here test whether LOX pathway, similar to its role in plants, can contribute to the coral damage response and regeneration. Analysis of metabolites formed from exogenous arachidonate before and after fixed time intervals following wounding indicated a significant increase in AOS-LOX activity in response to mechanical injury. Two AOS-LOX isoforms, AOS-LOXa and AOS-LOXb, were cloned and expressed in bacterial expression system as active fusion proteins. Transcription levels of corresponding genes were measured in normal and stressed coral by qPCR. After wounding, AOS-LOXa was markedly up-regulated in both, the tissue adjacent to the incision and distal parts of a coral colony (with the maximum reached at 1 h and 6 h post wounding, respectively), while AOS-LOXb was stable. According to mRNA expression analysis, combined with detection of eicosanoid product formation for the first time, the AOS-LOX was identified as an early stress response gene which is induced by mechanical injury in coral. PMID:24551239

  8. Bim, a Proapoptotic Protein, Up-regulated via Transcription Factor E2F1-dependent Mechanism, Functions as a Prosurvival Molecule in Cancer*

    PubMed Central

    Gogada, Raghu; Yadav, Neelu; Liu, Junwei; Tang, Shaohua; Zhang, Dianmu; Schneider, Andrea; Seshadri, Athul; Sun, Leimin; Aldaz, C. Marcelo; Tang, Dean G.; Chandra, Dhyan

    2013-01-01

    Proapoptotic Bcl-2 homology 3-only protein Bim plays an important role in Bax/Bak-mediated cytochrome c release and apoptosis. Here, we provide evidence for a novel prosurvival function of Bim in cancer cells. Bim was constitutively overexpressed in multiple prostate and breast cancer cells as well as in primary tumor cells. Quantitative real time PCR analysis showed that Bim was transcriptionally up-regulated. We have identified eight endogenous E2F1-binding sites on the Bim promoter using in silico analysis. Luciferase assay demonstrated that Bim expression was E2F1-dependent as mutation of the E2F1-binding sites on the Bim promoter inhibited luciferase activities. In support, E2F1 silencing led to the loss of Bim expression in cancer cells. Bim primarily localized to mitochondrial and cytoskeleton-associated fractions. Bim silencing or microinjection of anti-Bim antibodies into the cell cytoplasm resulted in cell rounding, detachment, and subsequent apoptosis. We observed up-regulation of prosurvival proteins Bcl-xL and Mcl-1, which sequester Bim in cancer cells. In addition, a phosphorylated form of Bim was also elevated in cancer cells. These findings suggest that the constitutively overexpressed Bim may function as a prosurvival molecule in epithelial cancer cells, and phosphorylation and association with Bcl-xL/Mcl-1 block its proapoptotic functions. PMID:23152504

  9. Ginsenoside Rg3 up-regulates the expression of vascular endothelial growth factor in human dermal papilla cells and mouse hair follicles.

    PubMed

    Shin, Dae Hyun; Cha, Youn Jeong; Yang, Kyeong Eun; Jang, Ik-Soon; Son, Chang-Gue; Kim, Bo Hyeon; Kim, Jung Min

    2014-07-01

    Crude Panax ginseng has been documented to possess hair growth activity and is widely used to treat alopecia, but the effects of ginsenoside Rg3 on hair growth have not to our knowledge been determined. The aim of the current study was to identify the molecules through which Rg3 stimulates hair growth. The thymidine incorporation for measuring cell proliferation was determined. We used DNA microarray analysis to measure gene expression levels in dermal papilla (DP) cells upon treatment with Rg3. The mRNA and protein expression levels of vascular endothelial growth factor (VEGF) in human DP cells were measured by real-time polymerase chain reaction and immunohistochemistry, respectively. We also used immunohistochemistry assays to detect in vivo changes in VEGF and 3-stemness marker expressions in mouse hair follicles. Reverse transcription polymerase chain reaction showed dose-dependent increases in VEGF mRNA levels on treatment with Rg3. Immunohistochemical analysis showed that expression of VEGF was significantly up-regulated by Rg3 in a dose-dependent manner in human DP cells and in mouse hair follicles. In addition, the CD8 and CD34 were also up-regulated by Rg3 in the mouse hair follicles. It may be concluded that Rg3 might increase hair growth through stimulation of hair follicle stem cells and it has the potential to be used in hair growth products.

  10. Bim, a proapoptotic protein, up-regulated via transcription factor E2F1-dependent mechanism, functions as a prosurvival molecule in cancer.

    PubMed

    Gogada, Raghu; Yadav, Neelu; Liu, Junwei; Tang, Shaohua; Zhang, Dianmu; Schneider, Andrea; Seshadri, Athul; Sun, Leimin; Aldaz, C Marcelo; Tang, Dean G; Chandra, Dhyan

    2013-01-04

    Proapoptotic Bcl-2 homology 3-only protein Bim plays an important role in Bax/Bak-mediated cytochrome c release and apoptosis. Here, we provide evidence for a novel prosurvival function of Bim in cancer cells. Bim was constitutively overexpressed in multiple prostate and breast cancer cells as well as in primary tumor cells. Quantitative real time PCR analysis showed that Bim was transcriptionally up-regulated. We have identified eight endogenous E2F1-binding sites on the Bim promoter using in silico analysis. Luciferase assay demonstrated that Bim expression was E2F1-dependent as mutation of the E2F1-binding sites on the Bim promoter inhibited luciferase activities. In support, E2F1 silencing led to the loss of Bim expression in cancer cells. Bim primarily localized to mitochondrial and cytoskeleton-associated fractions. Bim silencing or microinjection of anti-Bim antibodies into the cell cytoplasm resulted in cell rounding, detachment, and subsequent apoptosis. We observed up-regulation of prosurvival proteins Bcl-xL and Mcl-1, which sequester Bim in cancer cells. In addition, a phosphorylated form of Bim was also elevated in cancer cells. These findings suggest that the constitutively overexpressed Bim may function as a prosurvival molecule in epithelial cancer cells, and phosphorylation and association with Bcl-xL/Mcl-1 block its proapoptotic functions.

  11. Exercise-induced up-regulation of MMP-1 and IL-8 genes in endurance horses

    PubMed Central

    Cappelli, Katia; Felicetti, Michela; Capomaccio, Stefano; Pieramati, Camillo; Silvestrelli, Maurizio; Verini-Supplizi, Andrea

    2009-01-01

    Background The stress response is a critical factor in the training of equine athletes; it is important for performance and for protection of the animal against physio-pathological disorders. In this study, the molecular mechanisms involved in the response to acute and strenuous exercise were investigated using peripheral blood mononuclear cells (PBMCs). Results Quantitative real-time PCR (qRT-PCR) was used to detect modifications in transcription levels of the genes for matrix metalloproteinase-1 (MMP-1) and interleukin 8 (IL-8), which were derived from previous genome-wide expression analysis. Significant up-regulation of these two genes was found in 10 horses that had completed a race of 90–120 km in a time-course experimental design. Conclusion These results suggest that MMP-1 and IL-8 are both involved in the exercise-induced stress response, and this represents a starting point from which to understand the adaptive responses to this phenomenon. PMID:19552796

  12. Low-level laser irradiation stimulates tenocyte migration with up-regulation of dynamin II expression.

    PubMed

    Tsai, Wen-Chung; Hsu, Chih-Chin; Pang, Jong-Hwei S; Lin, Miao-Sui; Chen, Ying-Hsun; Liang, Fang-Chen

    2012-01-01

    Low-level laser therapy (LLLT) is commonly used to treat sports-related tendinopathy or tendon injury. Tendon healing requires tenocyte migration to the repair site, followed by proliferation and synthesis of the extracellular matrix. This study was designed to determine the effect of laser on tenocyte migration. Furthermore, the correlation between this effect and expression of dynamin 2, a positive regulator of cell motility, was also investigated. Tenocytes intrinsic to rat Achilles tendon were treated with low-level laser (660 nm with energy density at 1.0, 1.5, and 2.0 J/cm(2)). Tenocyte migration was evaluated by an in vitro wound healing model and by transwell filter migration assay. The messenger RNA (mRNA) and protein expressions of dynamin 2 were determined by reverse transcription/real-time polymerase chain reaction (real-time PCR) and Western blot analysis respectively. Immunofluorescence staining was used to evaluate the dynamin 2 expression in tenocytes. Tenocytes with or without laser irradiation was treated with dynasore, a dynamin competitor and then underwent transwell filter migration assay. In vitro wound model revealed that more tenocytes with laser irradiation migrated across the wound border to the cell-free zone. Transwell filter migration assay confirmed that tenocyte migration was enhanced dose-dependently by laser. Real-time PCR and Western-blot analysis demonstrated that mRNA and protein expressions of dynamin 2 were up-regulated by laser irradiation dose-dependently. Confocal microscopy showed that laser enhanced the expression of dynamin 2 in cytoplasm of tenocytes. The stimulation effect of laser on tenocytes migration was suppressed by dynasore. In conclusion, low-level laser irradiation stimulates tenocyte migration in a process that is mediated by up-regulation of dynamin 2, which can be suppressed by dynasore.

  13. Up-Regulation and Profibrotic Role of Osteopontin in Human Idiopathic Pulmonary Fibrosis

    PubMed Central

    Pardo, Annie; Gibson, Kevin; Cisneros, José; Richards, Thomas J; Yang, Yinke; Becerril, Carina; Yousem, Samueal; Herrera, Iliana; Ruiz, Victor; Selman, Moisés; Kaminski, Naftali

    2005-01-01

    Background Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disorder characterized by fibroproliferation and excessive accumulation of extracellular matrix in the lung. Methods and Findings Using oligonucleotide arrays, we identified osteopontin as one of the genes that significantly distinguishes IPF from normal lungs. Osteopontin was localized to alveolar epithelial cells in IPF lungs and was also significantly elevated in bronchoalveolar lavage from IPF patients. To study the fibrosis-relevant effects of osteopontin we stimulated primary human lung fibroblasts and alveolar epithelial cells (A549) with recombinant osteopontin. Osteopontin induced a significant increase of migration and proliferation in both fibroblasts and epithelial cells. Epithelial growth was inhibited by the pentapeptide Gly-Arg-Gly-Asp-Ser (GRGDS) and antibody to CD44, while fibroproliferation was inhibited by GRGDS and antibody to αvβ3 integrin. Fibroblast and epithelial cell migration were inhibited by GRGDS, anti-CD44, and anti-αvβ3. In fibroblasts, osteopontin up-regulated tissue inhibitor of metalloprotease-1 and type I collagen, and down-regulated matrix metalloprotease-1 (MMP-1) expression, while in A549 cells it caused up-regulation of MMP-7. In human IPF lungs, osteopontin colocalized with MMP-7 in alveolar epithelial cells, and application of weakest link statistical models to microarray data suggested a significant interaction between osteopontin and MMP-7. Conclusions Our results provide a potential mechanism by which osteopontin secreted from the alveolar epithelium may exert a profibrotic effect in IPF lungs and highlight osteopontin as a potential target for therapeutic intervention in this incurable disease. PMID:16128620

  14. Cinnamon and its Components Suppress Vascular Smooth Muscle Cell Proliferation by Up-Regulating Cyclin-Dependent Kinase Inhibitors.

    PubMed

    Kwon, Hyeeun; Lee, Jung-Jin; Lee, Ji-Hye; Cho, Won-Kyung; Gu, Min Jung; Lee, Kwang Jin; Ma, Jin Yeul

    2015-01-01

    Cinnamomum cassia bark has been used in traditional herbal medicine to treat a variety of cardiovascular diseases. However, the antiproliferative effect of cinnamon extract on vascular smooth muscle cells (VSMCs) and the corresponding restenosis has not been explored. Hence, after examining the effect of cinnamon extract on VSMC proliferation, we investigated the possible involvement of signal transduction pathways associated with early signal and cell cycle analysis, including regulatory proteins. Besides, to identify the active components, we investigated the components of cinnamon extract on VSMC proliferation. Cinnamon extract inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation and suppressed the PDGF-stimulated early signal transduction. In addition, cinnamon extract arrested the cell cycle and inhibited positive regulatory proteins. Correspondingly, the protein levels of p21 and p27 not only were increased in the presence of cinnamon extract, also the expression of proliferating cell nuclear antigen (PCNA) was inhibited by cinnamon extract. Besides, among the components of cinnamon extract, cinnamic acid (CA), eugenol (EG) and cinnamyl alcohol significantly inhibited the VSMC proliferation. Overall, the present study demonstrates that cinnamon extract inhibited the PDGF-BB-induced proliferation of VSMCs through a G0/G1 arrest, which down-regulated the expression of cell cycle positive regulatory proteins by up-regulating p21 and p27 expression.

  15. Genome-wide transcriptome analysis in the ovaries of two goats identifies differentially expressed genes related to fecundity.

    PubMed

    Miao, Xiangyang; Luo, Qingmiao; Qin, Xiaoyu

    2016-05-10

    The goats are widely kept as livestock throughout the world. Two excellent domestic breeds in China, the Laiwu Black and Jining Grey goats, have different fecundities and prolificacies. Although the goat genome sequences have been resolved recently, little is known about the gene regulations at the transcriptional level in goat. To understand the molecular and genetic mechanisms related to the fecundities and prolificacies, we performed genome-wide sequencing of the mRNAs from two breeds of goat using the next-generation RNA-Seq technology and used functional annotation to identify pathways of interest. Digital gene expression analysis showed 338 genes were up-regulated in the Jining Grey goats and 404 were up-regulated in the Laiwu Black goats. Quantitative real-time PCR verified the reliability of the RNA-Seq data. This study suggests that multiple genes responsible for various biological functions and signaling pathways are differentially expressed in the two different goat breeds, and these genes might be involved in the regulation of goat fecundity and prolificacy. Taken together, our study provides insight into the transcriptional regulation in the ovaries of 2 species of goats that might serve as a key resource for understanding goat fecundity, prolificacy and genetic diversity between species.

  16. Rapamycin up-regulates triglycerides in hepatocytes by down-regulating Prox1.

    PubMed

    Kwon, Sora; Jeon, Ji-Sook; Kim, Su Bin; Hong, Young-Kwon; Ahn, Curie; Sung, Jung-Suk; Choi, Inho

    2016-02-27

    Although the prolonged use of rapamycin may cause unwanted side effects such as hyperlipidemia, the underlying mechanism remains unknown. Prox1 is a transcription factor responsible for the development of several tissues including lymphatics and liver. There is growing evidences that Prox1 participates in metabolism in addition to embryogenesis. However, whether Prox1 is directly related to lipid metabolism is currently unknown. HepG2 human hepatoma cells were treated with rapamycin and total lipids were analyzed by thin layer chromatography. The effect of rapamycin on the expression of Prox1 was determined by western blotting. To investigate the role of Prox1 in triglycerides regulation, siRNA and overexpression system were employed. Rapamycin was injected into mice for 2 weeks and total lipids and proteins in liver were measured by thin layer chromatography and western blot analysis, respectively. Rapamycin up-regulated the amount of triglyceride and down-regulated the expression of Prox1 in HepG2 cells by reducing protein half-life but did not affect its transcript. The loss-of-function of Prox1 was coincident with the increase of triglycerides in HepG2 cells treated with rapamycin. The up-regulation of triglycerides by rapamycin in HepG2 cells reverted to normal levels by the compensation of Prox1 using the overexpression system. Rapamycin also down-regulated Prox1 expression but increased triglycerides in mouse liver. This study suggests that rapamycin can increase the amount of triglycerides by down-regulating Prox1 expression in hepatocytes, which means that the mammalian target of rapamycin (mTOR) signaling is important for the regulation of triglycerides by maintaining Prox1 expression.

  17. Up-Regulation of MicroRNA-21 Correlates with Lower Kidney Cancer Survival

    PubMed Central

    Zaman, Mohd Saif; Shahryari, Varahram; Deng, Guoren; Thamminana, Sobha; Saini, Sharonjot; Majid, Shahana; Chang, Inik; Hirata, Hiroshi; Ueno, Koji; Yamamura, Soichiro; Singh, Kamaldeep; Tanaka, Yuichiro; Tabatabai, Z. Laura; Dahiya, Rajvir

    2012-01-01

    Background MicroRNA-21 is up-regulated in a variety of cancers like, breast, colorectal, lung, head and neck etc. However, the regulation of miR-21 in renal cell carcinoma (RCC) has not yet been studied systematically. Methods and Results We measured miR-21 levels in 54 pairs of kidney cancers and their normal matched tissues by real-time PCR. The expression level of miR-21 was correlated with 5 year survival and the pathological stage. Functional studies were done after inhibiting miR-21 in RCC cell lines. We studied in vitro and in vivo effects of the chemo preventive agent genistein on miR-21 expression. In 48 cases (90%), miR-21 was increased. All patients with low miR-21 expression survived 5 years, while with high miR-21 expression, only 50% survived. Higher expression of miR-21 is associated with an increase in the stage of renal cancer. Functional studies after inhibiting miRNA-21 in RCC cell lines show cell cycle arrest, induction of apoptosis and reduced invasive and migratory capabilities. Western blot analysis showed an increase in the expression of p21 and p38 MAP kinase genes and a reduction in cyclin E2. Genistein inhibited the expression of miR-21 in A-498 cells and in the tumors formed after injecting genistein treated A-498 cells in nude mice besides inhibiting tumor formation. Conclusions The current study shows a clear correlation between miR-21 expression and clinical characteristics of renal cancer. Thus we believe that miR-21 can be used as a tumor marker and its inhibition may prove to be useful in controlling cancers with up-regulated miR-21. PMID:22347428

  18. Up-regulation of DRP-3 long isoform during the induction of neural progenitor cells by glutamate treatment in the ex vivo rat retina.

    PubMed

    Tokuda, Kazuhiro; Kuramitsu, Yasuhiro; Byron, Baron; Kitagawa, Takao; Tokuda, Nobuko; Kobayashi, Daiki; Nagayama, Megumi; Araki, Norie; Sonoda, Koh-Hei; Nakamura, Kazuyuki

    2015-08-07

    Glutamate has been shown to induce neural progenitor cells in the adult vertebrate retina. However, protein dynamics during progenitor cell induction by glutamate are not fully understood. To identify specific proteins involved in the process, we employed two-dimensional electrophoresis-based proteomics on glutamate untreated and treated retinal ex vivo sections. Rat retinal tissues were incubated with 1 mM glutamate for 1 h, followed by incubation in glutamate-free media for a total of 24 h. Consistent with prior reports, it was found that mitotic cells appeared in the outer nuclear layer without any histological damage. Immunohistological evaluations and immunoblotting confirmed the emergence of neuronal progenitor cells in the mature retina treated with glutamate. Proteomic analysis revealed the up-regulation of dihydropyrimidinase-related protein 3 (DRP-3), DRP-2 and stress-induced-phosphoprotein 1 (STIP1) during neural progenitor cell induction by glutamate. Moreover, mRNA expression of DRP-3, especially, its long isoform, robustly increased in the treated retina compared to that in the untreated retina. These results may indicate that glutamate induces neural progenitor cells in the mature rat retina by up-regulating the proteins which mediate cell mitosis and neurite growth.

  19. A novel prognostic biomarker SPC24 up-regulated in hepatocellular carcinoma

    PubMed Central

    Liao, Yan; Li, Jun; Yu, Xue-Zhong; Liao, Weijia; He, Songqing

    2015-01-01

    identified SPC24 upregualtion (p = 0.001), PVTT (p = 0.007), size of tumor > 5 cm (p < 0.001) as independent risk factors of DFS after resection, and SPC24 upregualtion (p < 0.001), PVTT (p = 0.029), size of tumor > 5 cm (p = 0.002), recurrence (p < 0.001) as independent prognostic factors for the OS of HCC patients. Additionally, siRNA-mediated silencing of SPC24 dramatically suppressed cell growth, adhesion, invasion and increased apoptosis in HCC cells. In conclusion, these results showed for the first time that SPC24 expression was significantly up-regulated in HCC, which may act as a novel prognostic biomarker for patients suffering from this deadly disease. Additionally, silence of SPC24 inhibiting HCC cell growth indicated that SPC24 may be a promising molecular target for HCC therapy. PMID:26515591

  20. RNA interference of three up-regulated transcripts associated with insecticide resistance in an imidacloprid resistant population of Leptinotarsa decemlineata.

    PubMed

    Clements, Justin; Schoville, Sean; Peterson, Nathan; Huseth, Anders S; Lan, Que; Groves, Russell L

    2017-01-01

    The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a major agricultural pest of potatoes in the Central Sands production region of Wisconsin. Previous studies have shown that populations of L. decemlineata have become resistant to many classes of insecticides, including the neonicotinoid insecticide, imidacloprid. Furthermore, L. decemlineata has multiple mechanisms of resistance to deal with a pesticide insult, including enhanced metabolic detoxification by cytochrome p450s and glutathione S-transferases. With recent advances in the transcriptomic analysis of imidacloprid susceptible and resistant L. decemlineata populations, it is possible to investigate the role of candidate genes involved in imidacloprid resistance. A recently annotated transcriptome analysis of L. decemlineata was obtained from select populations of L. decemlineata collected in the Central Sands potato production region, which revealed a subset of mRNA transcripts constitutively up-regulated in resistant populations. We hypothesize that a portion of the up-regulated transcripts encoding for genes within the resistant populations also encode for pesticide resistance and can be suppressed to re-establish a susceptible phenotype. In this study, a discrete set of three up-regulated targets were selected for RNA interference experiments using a resistant L. decemlineata population. Following the successful suppression of transcripts encoding for a cytochrome p450, a cuticular protein, and a glutathione synthetase protein in a select L. decemlineata population, we observed reductions in measured resistance to imidacloprid that strongly suggest these genes control essential steps in imidacloprid metabolism in these field populations.

  1. Featured Article: Transcriptional landscape analysis identifies differently expressed genes involved in follicle-stimulating hormone induced postmenopausal osteoporosis.

    PubMed

    Maasalu, Katre; Laius, Ott; Zhytnik, Lidiia; Kõks, Sulev; Prans, Ele; Reimann, Ene; Märtson, Aare

    2017-01-01

    Osteoporosis is a disorder associated with bone tissue reorganization, bone mass, and mineral density. Osteoporosis can severely affect postmenopausal women, causing bone fragility and osteoporotic fractures. The aim of the current study was to compare blood mRNA profiles of postmenopausal women with and without osteoporosis, with the aim of finding different gene expressions and thus targets for future osteoporosis biomarker studies. Our study consisted of transcriptome analysis of whole blood serum from 12 elderly female osteoporotic patients and 12 non-osteoporotic elderly female controls. The transcriptome analysis was performed with RNA sequencing technology. For data analysis, the edgeR package of R Bioconductor was used. Two hundred and fourteen genes were expressed differently in osteoporotic compared with non-osteoporotic patients. Statistical analysis revealed 20 differently expressed genes with a false discovery rate of less than 1.47 × 10(-4) among osteoporotic patients. The expression of 10 genes were up-regulated and 10 down-regulated. Further statistical analysis identified a potential osteoporosis mRNA biomarker pattern consisting of six genes: CACNA1G, ALG13, SBK1, GGT7, MBNL3, and RIOK3. Functional ingenuity pathway analysis identified the strongest candidate genes with regard to potential involvement in a follicle-stimulating hormone activated network of increased osteoclast activity and hypogonadal bone loss. The differentially expressed genes identified in this study may contribute to future research of postmenopausal osteoporosis blood biomarkers.

  2. Phototransduction genes are up-regulated in a global gene expression study of Drosophila melanogaster selected for heat resistance

    PubMed Central

    Nielsen, Morten Muhlig; Sørensen, Jesper Givskov; Kruhøffer, Mogens; Justesen, Just; Loeschcke, Volker

    2006-01-01

    The genetic architecture underlying heat resistance remains partly unclear despite the well-documented involvement of heat shock proteins (Hsps). It was previously shown that factors besides Hsps are likely to play an important role for heat resistance. In this study, gene expression arrays were used to make replicate measurements of gene expression before and up to 64 hours after a mild heat stress treatment, in flies selected for heat resistance and unselected control flies, to identify genes differentially expressed in heat resistance–selected flies. We found 108 genes up-regulated and 10 down-regulated using the Affymetrix gene expression platform. Among the up-regulated genes, a substantial number are involved in the phototransduction process. Another group of genes up-regulated in selected flies is characterized by also responding to heat shock treatment several hours after peak induction of known Hsps revert to nonstress levels. These findings suggest phototransduction genes to be critically involved in heat resistance, and support a role for components of the phototransduction process in stress-sensing mechanisms. In addition, the results suggest yet-uncharacterized genes responding to heat stress several hours after treatment to be involved in heat stress resistance. These findings mark an important increase in the understanding of heat resistance. PMID:17278881

  3. Up-regulation of M1 muscarinic receptors expressed in CHOm1 cells by panaxynol via cAMP pathway.

    PubMed

    Hao, Wang; Xing-Jun, Wu; Yong-Yao, Cui; Liang, Zhu; Yang, Lu; Hong-Zhuan, Chen

    Loss of cholinergic neurons along with muscarinic acetylcholine receptors (mAChRs) in cerebral cortex and hippocampus is closely associated with Alzheimer's disease (AD). Recent drug development for AD treatment focuses heavily on identifying M(1) receptor agonists. However, mAChRs undergo down-regulation in response to agonist-induced sustained activation. Therefore, therapeutic effectiveness wanes during continuous use. Thus, another potentially effective approach, which overcomes this drawback is to develop compounds, which instead up-regulate M(1) receptor expression. In the present study, we took this alternative approach and contrasted in Chinese hamster ovary cells transfected with human m(1) subtype gene (CHOm(1) cells) changes of M(1) receptor expression levels caused by muscarinic agonists and upregulators of its expression. The muscarinic agonists carbachol and pilocarpine reduced M(1) receptor number in CHOm(1) cells by 29 and 46%, respectively, at 100muM, whereas panaxynol, a polyacetylene compound isolated from the lipophilic fraction of Panax notoginseng, concentration-dependently up-regulated the M(1) receptor number after pre-incubation with CHOm(1) cells for 48 h, reaching a plateau at 1 microM, and was accompanied by enhanced M(1) mRNA levels. Moreover, the protein kinase A (PKA) inhibitor RP-adenosine-3',5'-cyclic mono-phosphoro-thioate triethylamine salt (RP-cAMPs) 5 microM completely prevented panaxynol-induced up-regulation of M(1) receptors. Panaxynol (1muM) caused a significant and consistent stimulation of cAMP accumulation (27% increase above basal at 40 min). These results suggest that in CHOm(1) cells panaxynol up-regulates M(1) receptor number through cAMP pathway-mediated stimulation of gene transcription.

  4. Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumour cells

    SciTech Connect

    Salmina, Kristine; Jankevics, Eriks; Huna, Anda; Perminov, Dmitry; Radovica, Ilze; Klymenko, Tetyana; Ivanov, Andrey; Jascenko, Elina; Scherthan, Harry; Cragg, Mark; Erenpreisa, Jekaterina

    2010-08-01

    We have previously documented that transient polyploidy is a potential cell survival strategy underlying the clonogenic re-growth of tumour cells after genotoxic treatment. In an attempt to better define this mechanism, we recently documented the key role of meiotic genes in regulating the DNA repair and return of the endopolyploid tumour cells (ETC) to diploidy through reduction divisions after irradiation. Here, we studied the role of the pluripotency and self-renewal stem cell genes NANOG, OCT4 and SOX2 in this polyploidy-dependent survival mechanism. In irradiation-resistant p53-mutated lymphoma cell-lines (Namalwa and WI-L2-NS) but not sensitive p53 wild-type counterparts (TK6), low background expression of OCT4 and NANOG was up-regulated by ionising radiation with protein accumulation evident in ETC as detected by OCT4/DNA flow cytometry and immunofluorescence (IF). IF analysis also showed that the ETC generate PML bodies that appear to concentrate OCT4, NANOG and SOX2 proteins, which extend into complex nuclear networks. These polyploid tumour cells resist apoptosis, overcome cellular senescence and undergo bi- and multi-polar divisions transmitting the up-regulated OCT4, NANOG and SOX2 self-renewal cassette to their descendents. Altogether, our observations indicate that irradiation-induced ETC up-regulate key components of germ-line cells, which potentially facilitate survival and propagation of the tumour cell population.

  5. Histamine up-regulates phosphodiesterase 4 activity and reduces prostaglandin E2-inhibitory effects in human neutrophils.

    PubMed

    Dasí, F J; Ortiz, J L; Cortijo, J; Morcillo, E J

    2000-11-01

    To investigate whether histamine produces up-regulation of phosphodiesterase (PDE) activity with functional consequences in human peripheral blood neutrophils. PDE activity was studied by a radioisotopic method following anion-exchange chromatography. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used for detection of mRNA transcripts of PDE4 subtypes. Cyclic AMP (cAMP) levels were measured by enzyme-immunoassay, and superoxide generation by cytochrome c reduction. Neutrophils were incubated for 4 h with histamine (1 microM). PDE4 was the only isoenzyme activity increased in treated neutrophils. Kinetic analysis showed a approximately 1.5-fold increase in Vmax without alteration of Km values. cAMP content in treated cells was higher than resting values (0.52+/-0.07 vs. 2.75+/-0.31 pmol/10(6) cells). RT-PCR showed increased expression of mRNA transcripts for PDE4B in histamine-treated cells. Functionally, up-regulation of PDE4 reduced the inhibition by prostaglandin E2 of zymosan-induced superoxide generation. Histamine up-regulates PDE4 activity and produces heterologous desensitisation of human neutrophils.

  6. Short-term dietary phosphate restriction up-regulates ileal fibroblast growth factor 15 gene expression in mice

    PubMed Central

    Nakahashi, Otoki; Yamamoto, Hironori; Tanaka, Sarasa; Kozai, Mina; Takei, Yuichiro; Masuda, Masashi; Kaneko, Ichiro; Taketani, Yutaka; Iwano, Masayuki; Miyamoto, Ken-ichi; Takeda, Eiji

    2014-01-01

    Members of the fibroblast growth factor (FGF) 19 subfamily, including FGF23, FGF15/19, and FGF21, have a role as endocrine factors which influence the metabolism of inorganic phosphate (Pi) and vitamin D, bile acid, and energy. It has been reported that dietary Pi regulates circulating FGF23. In this study, the short-term effects of dietary Pi restriction on the expression of FGF19 subfamily members in mice were analyzed. An initial analysis confirmed plasma FGF23 levels positively correlated with the amount of dietary Pi. On the other hand, ileal Fgf15 gene expression, but not hepatic Fgf21 gene expression, was up-regulated by dietary Pi restriction. In addition, we observed the increase of plasma 1,25-dihydroxyvitamin D [1,25(OH)2D] levels by dietary Pi restriction, and the up-regulation of ileal Fgf15 mRNA expression by 1,25(OH)2D3 and vitamin D receptor (VDR). Importantly, dietary Pi restriction-induced Fgf15 gene expression was prevented in VDR-knockout mice. Furthermore, diurnal variations of plasma triglyceride concentrations and hepatic mRNA expression of the bile acid synthesis enzyme Cyp7a1 as one of Fgf15 negative target genes was influenced by dietary Pi restriction. These results suggest that dietary Pi restriction up-regulates ileal Fgf15 gene expression through 1,25(OH)2D3 and VDR, and may affect hepatic bile acid homeostasis. PMID:24688219

  7. Transcriptome Analysis Identifies Key Candidate Genes Mediating Purple Ovary Coloration in Asiatic Hybrid Lilies

    PubMed Central

    Xu, Leifeng; Yang, Panpan; Yuan, Suxia; Feng, Yayan; Xu, Hua; Cao, Yuwei; Ming, Jun

    2016-01-01

    Lily tepals have a short lifespan. Once the tepals senesce, the ornamental value of the flower is lost. Some cultivars have attractive purple ovaries and fruits which greatly enhance the ornamental value of Asiatic hybrid lilies. However, little is known about the molecular mechanisms of anthocyanin biosynthesis in Asiatic hybrid lily ovaries. To investigate the transcriptional network that governs purple ovary coloration in Asiatic hybrid lilies, we obtained transcriptome data from green ovaries (S1) and purple ovaries (S2) of Asiatic “Tiny Padhye”. Comparative transcriptome analysis revealed 4228 differentially expressed genes. Differential expression analysis revealed that ten unigenes including four CHS genes, one CHI gene, one F3H gene, one F3′H gene, one DFR gene, one UFGT gene, and one 3RT gene were significantly up-regulated in purple ovaries. One MYB gene, LhMYB12-Lat, was identified as a key transcription factor determining the distribution of anthocyanins in Asiatic hybrid lily ovaries. Further qPCR results showed unigenes related to anthocyanin biosynthesis were highly expressed in purple ovaries of three purple-ovaried Asiatic hybrid lilies at stages 2 and 3, while they showed an extremely low level of expression in ovaries of three green-ovaried Asiatic hybrid lilies during all developmental stages. In addition, shading treatment significantly decreased pigment accumulation by suppressing the expression of several unigenes related to anthocyanin biosynthesis in ovaries of Asiatic “Tiny Padhye”. Lastly, a total of 15,048 Simple Sequence Repeats (SSRs) were identified in 13,710 sequences, and primer pairs for SSRs were designed. The results could further our understanding of the molecular mechanisms of anthocyanin biosynthesis in Asiatic hybrid lily ovaries. PMID:27879624

  8. Transcriptome Profiling Revealed Stress-Induced and Disease Resistance Genes Up-Regulated in PRSV Resistant Transgenic Papaya

    PubMed Central

    Fang, Jingping; Lin, Aiting; Qiu, Weijing; Cai, Hanyang; Umar, Muhammad; Chen, Rukai; Ming, Ray

    2016-01-01

    Papaya is a productive and nutritious tropical fruit. Papaya Ringspot Virus (PRSV) is the most devastating pathogen threatening papaya production worldwide. Development of transgenic resistant varieties is the most effective strategy to control this disease. However, little is known about the genome-wide functional changes induced by particle bombardment transformation. We conducted transcriptome sequencing of PRSV resistant transgenic papaya SunUp and its PRSV susceptible progenitor Sunset to compare the transcriptional changes in young healthy leaves prior to infection with PRSV. In total, 20,700 transcripts were identified, and 842 differentially expressed genes (DEGs) randomly distributed among papaya chromosomes. Gene ontology (GO) category analysis revealed that microtubule-related categories were highly enriched among these DEGs. Numerous DEGs related to various transcription factors, transporters and hormone biosynthesis showed clear differences between the two cultivars, and most were up-regulated in transgenic papaya. Many known and novel stress-induced and disease-resistance genes were most highly expressed in SunUp, including MYB, WRKY, ERF, NAC, nitrate and zinc transporters, and genes involved in the abscisic acid, salicylic acid, and ethylene signaling pathways. We also identified 67,686 alternative splicing (AS) events in Sunset and 68,455 AS events in SunUp, mapping to 10,994 and 10,995 papaya annotated genes, respectively. GO enrichment for the genes displaying AS events exclusively in Sunset was significantly different from those in SunUp. Transcriptomes in Sunset and transgenic SunUp are very similar with noteworthy differences, which increased PRSV-resistance in transgenic papaya. No detrimental pathways and allergenic or toxic proteins were induced on a genome-wide scale in transgenic SunUp. Our results provide a foundation for unraveling the mechanism of PRSV resistance in transgenic papaya. PMID:27379138

  9. Up- regulation of miR-328-3p sensitizes non-small cell lung cancer to radiotherapy

    PubMed Central

    Ma, Wei; Ma, Chao-nan; Zhou, Nan-nan; Li, Xian-dong; Zhang, Yi-jie

    2016-01-01

    MicroRNAs (miRNAs) are believed to be resistant against radiotherapy in certain types of cancers. The aim of our study was to determine the clinical application of miRNAs in non-small cell lung cancer (NSCLC). Sixty NSCLC tissue samples and adjacent histologically normal tissues were obtained for miRNAs microarray analysis and validated by RT-qPCR. Correlation between miRNA expression level and clinicopathological features was evaluated. Our study examined the influence of changed miRNA expression on the damaged DNA and its associated radio sensitivity. Luciferase assay was performed to determine potential effects on the targeted gene. Our study identified fifteen altered miRNAs in which miR-328-3p was down regulated in NSCLC tumour tissue as compared to normal tissues. Down-expression of miR-328-3p was positively associated with an enhanced lymph node metastasis, advanced clinical stage and a shortened survival rate. miR-328-3p expression was decreased in A549 cells compared to other NSCLC cell lines. Up-regulation of miR-328-3p demonstrated a survival inhibition effect in A549 and restored NSCLC cells’ sensitivity to radio therapy. An increased miR-328-3p expression promoted irradiation-induced DNA damage in cells. γ-H2AX was identified as the direct target of miR-328-3p. Over-expressed miR-328-3p can improve the radiosensitvity of cells by altering the DNA damage/repair signalling pathways in NSCLC. PMID:27530148

  10. Transcriptome Profiling Revealed Stress-Induced and Disease Resistance Genes Up-Regulated in PRSV Resistant Transgenic Papaya.

    PubMed

    Fang, Jingping; Lin, Aiting; Qiu, Weijing; Cai, Hanyang; Umar, Muhammad; Chen, Rukai; Ming, Ray

    2016-01-01

    Papaya is a productive and nutritious tropical fruit. Papaya Ringspot Virus (PRSV) is the most devastating pathogen threatening papaya production worldwide. Development of transgenic resistant varieties is the most effective strategy to control this disease. However, little is known about the genome-wide functional changes induced by particle bombardment transformation. We conducted transcriptome sequencing of PRSV resistant transgenic papaya SunUp and its PRSV susceptible progenitor Sunset to compare the transcriptional changes in young healthy leaves prior to infection with PRSV. In total, 20,700 transcripts were identified, and 842 differentially expressed genes (DEGs) randomly distributed among papaya chromosomes. Gene ontology (GO) category analysis revealed that microtubule-related categories were highly enriched among these DEGs. Numerous DEGs related to various transcription factors, transporters and hormone biosynthesis showed clear differences between the two cultivars, and most were up-regulated in transgenic papaya. Many known and novel stress-induced and disease-resistance genes were most highly expressed in SunUp, including MYB, WRKY, ERF, NAC, nitrate and zinc transporters, and genes involved in the abscisic acid, salicylic acid, and ethylene signaling pathways. We also identified 67,686 alternative splicing (AS) events in Sunset and 68,455 AS events in SunUp, mapping to 10,994 and 10,995 papaya annotated genes, respectively. GO enrichment for the genes displaying AS events exclusively in Sunset was significantly different from those in SunUp. Transcriptomes in Sunset and transgenic SunUp are very similar with noteworthy differences, which increased PRSV-resistance in transgenic papaya. No detrimental pathways and allergenic or toxic proteins were induced on a genome-wide scale in transgenic SunUp. Our results provide a foundation for unraveling the mechanism of PRSV resistance in transgenic papaya.

  11. Up-regulation of heat shock proteins is essential for cold survival during insect diapause

    PubMed Central

    Rinehart, Joseph P.; Li, Aiqing; Yocum, George D.; Robich, Rebecca M.; Hayward, Scott A. L.; Denlinger, David L.

    2007-01-01

    Diapause, the dormancy common to overwintering insects, evokes a unique pattern of gene expression. In the flesh fly, most, but not all, of the fly's heat shock proteins (Hsps) are up-regulated. The diapause up-regulated Hsps include two members of the Hsp70 family, one member of the Hsp60 family (TCP-1), at least four members of the small Hsp family, and a small Hsp pseudogene. Expression of an Hsp70 cognate, Hsc70, is uninfluenced by diapause, and Hsp90 is actually down-regulated during diapause, thus diapause differs from common stress responses that elicit synchronous up-regulation of all Hsps. Up-regulation of the Hsps begins at the onset of diapause, persists throughout the overwintering period, and ceases within hours after the fly receives the signal to reinitiate development. The up-regulation of Hsps appears to be common to diapause in species representing diverse insect orders including Diptera, Lepidoptera, Coleoptera, and Hymenoptera as well as in diapauses that occur in different developmental stages (embryo, larva, pupa, adult). Suppressing expression of Hsp23 and Hsp70 in flies by using RNAi did not alter the decision to enter diapause or the duration of diapause, but it had a profound effect on the pupa's ability to survive low temperatures. We thus propose that up-regulation of Hsps during diapause is a major factor contributing to cold-hardiness of overwintering insects. PMID:17522254

  12. The Aldo-Keto Reductase AKR1B10 Is Up-Regulated in Keloid Epidermis, Implicating Retinoic Acid Pathway Dysregulation in the Pathogenesis of Keloid Disease.

    PubMed

    Jumper, Natalie; Hodgkinson, Tom; Arscott, Guyan; Har-Shai, Yaron; Paus, Ralf; Bayat, Ardeshir

    2016-07-01

    Keloid disease is a recurrent fibroproliferative cutaneous tumor of unknown pathogenesis for which clinical management remains unsatisfactory. To obtain new insights into hitherto underappreciated aspects of keloid pathobiology, we took a laser capture microdissection-based, whole-genome microarray analysis approach to identify distinct keloid disease-associated gene expression patterns within defined keloid regions. Identification of the aldo-keto reductase enzyme AKR1B10 as highly up-regulated in keloid epidermis suggested that an imbalance of retinoic acid metabolism is likely associated with keloid disease. Here, we show that AKR1B10 transfection into normal human keratinocytes reproduced the abnormal retinoic acid pathway expression pattern we had identified in keloid epidermis. Cotransfection of AKR1B10 with a luciferase reporter plasmid showed reduced retinoic acid response element activity, supporting the hypothesis of retinoic acid synthesis deficiency in keloid epidermis. Paracrine signals released by AKR1B10-overexpressing keratinocytes into conditioned medium resulted in up-regulation of transforming growth factor-β1, transforming growth factor-β2, and collagens I and III in both keloid and normal skin fibroblasts, mimicking the typical profibrotic keloid profile. Our study results suggest that insufficient retinoic acid synthesis by keloid epidermal keratinocytes may contribute to the pathogenesis of keloid disease. We refocus attention on the role of injured epithelium in keloid disease and identify AKR1B10 as a potential new target in future management of keloid disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Coupling of LETM1 up-regulation with oxidative phosphorylation and platelet-derived growth factor receptor signaling via YAP1 transactivation

    PubMed Central

    Lee, Jandee; Lee, Woo Kyung; Seol, Mi-Youn; Lee, Seul Gi; Kim, Daham; Kim, Hyunji; Park, Jongsun; Jung, Sang Geun; Chung, Woong Youn; Lee, Eun Jig; Jo, Young Suk

    2016-01-01

    Persistent cellular proliferation and metabolic reprogramming are essential processes in carcinogenesis. Here, we performed Gene Set Enrichment Analysis (GSEA) and found that that LETM1, a mitochondrial calcium transporter, is associated with cellular growth signals such as platelet-derived growth factor (PDGF) receptor signaling and insulin signaling pathways. These results were then verified by qRT-PCR and immnunoblotting. Mechanistically, up-regulation of LETM1 induced YAP1 nuclear accumulation, increasing the expression of PDGFB, PDGFRB and THBS4. Consistent with this, LETM1 silencing caused loss of YAP1 nuclear signal, decreasing the expression of PDGFB, PDGFRB and THBS4. Immunohistochemical staining consistently indicated a positive association between LETM1 up-regulation, YAP1 nuclear localization and high PDGFB expression. In clinical data analysis, LETM1 up-regulation in thyroid cancer was found to be related to aggressive tumor features such as lymphovascular invasion (LVI, P < 0.001) and lymph node metastasis (LNM, P = 0.011). Multivariate analysis demonstrated that LETM1 up-regulation increases the risk of LVI and LNM (OR = 3.455, 95% CI = 1.537–7.766 and OR = 3.043, 95% CI = 1.282–7.225, respectively). Collectively, these data suggest that up-regulation of LETM1 induces sustained activation of proliferative signaling pathways, such as PDGF signal pathway by AKT induced YAP1 transactivation, resulting in aggressive thyroid cancer phenotypes. PMID:27556512

  14. Up-regulation of Tiam1 and Rac1 correlates with poor prognosis in hepatocellular carcinoma.

    PubMed

    Yang, Wanyong; Lv, Shemin; Liu, Xingyan; Liu, Hong; Yang, Wen; Hu, Fu

    2010-11-01

    T-cell lymphoma invasion and metastasis 1 (Tiam1) specifically activates Rho-like GTPases (e.g. Rac1) and Tiam1-Rac1 pathway affects the migration and invasion of many tumors, such as nasopharyngeal carcinoma, breast cancer and retinoblastoma. However, no studies have yet comprehensively examined the involvement of Tiam1-Rac1 pathway in hepatocellular carcinoma. In this study, we examined the relationship of the up-regulation of Tiam1 and Rac1 with clinicopathological features in patients with hepatocellular carcinoma. Expression of Tiam1 and Rac1 was assessed in 242 hepatocellular carcinoma tissues and their adjacent normal hepatic tissues by performing immunohistochemistry and was gauged regarding stage, grade and survival. Immunohistochemistry showed that patients with a high clinical stage hepatocellular carcinoma (III-IV) and α-fetoprotein levels had a higher tendency to express Tiam1 and Rac1 on tumor cells than the patients with low pathologic grade hepatocellular carcinoma (I-II) (P = 0.008 and 0.01, respectively) and low α-fetoprotein levels (P = 0.006 and 0.002, respectively). In addition, Tiam1 and Rac1 up-regulation was also significantly associated with vascular invasion status (both P = 0.02), intrahepatic metastasis status (P = 0.009 and 0.01, respectively) and histological differentiation (P = 0.008 and 0.009, respectively) of patients with hepatocellular carcinoma. Moreover, post-operative survival analysis indicated that hepatocellular carcinoma patients with strong Tiam1 (P = 0.01) and Rac1 (P = 0.02) expression had shorter disease-specific survival than those with weak expression. Multivariate analysis also showed that Tiam1 and Rac1 overexpression could be two predictors of poor prognosis (P = 0.02 and 0.03, respectively). The current study demonstrated for the first time that the Tiam1-Rac1 pathway may play a critical role in tumor progression of hepatocellular carcinoma. The expression of Tiam1 and Rac1 can be considered as the two useful

  15. Arbutin inhibits TCCSUP human bladder cancer cell proliferation via up-regulation of p21.

    PubMed

    Li, Hailan; Jeong, Yun-Mi; Kim, Su Yeon; Kim, Myo-Kyoung; Kim, Dong-Seok

    2011-04-01

    Arbutin is a glycosylated hydroquinone extracted from the bearberry plant (Arctostaphylos species). In the present study, we determined the effects of arbutin on TCCSUP human bladder carcinoma cell proliferation. Arbutin did not exhibit any cytotoxic effects in TCCSUP cells at concentrations of < 500 microg/ml. To determine the effects of arbutin on cell proliferation, TCCSUP cells were treated with arbutin at various concentrations, and the cell proliferation was measured using the MTT assay. Arbutin significantly decreased TCCSUP cell proliferation in a concentration- and time-dependent manner. Furthermore, cell cycle analysis revealed that arbutin strongly disrupted the cell cycle in a time-dependent manner. Western blot analysis demonstrated that arbutin led to the inactivation of extracellular signal-regulated kinase (ERK), which is known to critically regulate cell proliferation. In addition, arbutin markedly increased the expression of p21WAF1/CIP1 (p21), which is known to be highly involved in cell cycle regulation. Therefore, this study suggests that arbutin inhibits TCCSUP cell proliferation via ERK inactivation and p21 up-regulation.

  16. Amyotrophic lateral sclerosis and denervation alter sphingolipids and up-regulate glucosylceramide synthase

    PubMed Central

    Henriques, Alexandre; Croixmarie, Vincent; Priestman, David A.; Rosenbohm, Angela; Dirrig-Grosch, Sylvie; D'Ambra, Eleonora; Huebecker, Mylene; Hussain, Ghulam; Boursier-Neyret, Claire; Echaniz-Laguna, Andoni; Ludolph, Albert C.; Platt, Frances M.; Walther, Bernard; Spedding, Michael; Loeffler, Jean-Philippe; Gonzalez De Aguilar, Jose-Luis

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease characterized by upper and lower motor neuron degeneration, muscle wasting and paralysis. Growing evidence suggests a link between changes in lipid metabolism and ALS. Here, we used UPLC/TOF-MS to survey the lipidome in SOD1(G86R) mice, a model of ALS. Significant changes in lipid expression were evident in spinal cord and skeletal muscle before overt neuropathology. In silico analysis also revealed appreciable changes in sphingolipids including ceramides and glucosylceramides (GlcCer). HPLC analysis showed increased amounts of GlcCer and downstream glycosphingolipids (GSLs) in SOD1(G86R) muscle compared with wild-type littermates. Glucosylceramide synthase (GCS), the enzyme responsible for GlcCer biosynthesis, was up-regulated in muscle of SOD1(G86R) mice and ALS patients, and in muscle of wild-type mice after surgically induced denervation. Conversely, inhibition of GCS in wild-type mice, following transient peripheral nerve injury, reversed the overexpression of genes in muscle involved in oxidative metabolism and delayed motor recovery. GCS inhibition in SOD1(G86R) mice also affected the expression of metabolic genes and induced a loss of muscle strength and morphological deterioration of the motor endplates. These findings suggest that GSLs may play a critical role in ALS muscle pathology and could lead to the identification of new therapeutic targets. PMID:26483191

  17. [PPARγ up-regulates TGFβ/smad signal pathway repressor c-Ski].

    PubMed

    Li, Gong-bo; Li, Jun; Zeng, Yi-jun; Zhong, Dan; Wu, Geng-ze; Fu, Xiao-hong; He, Feng-tian; Dai, Shuang-shuang

    2011-02-25

    TGFβ/smad pathway is recognized as an important signal pathway to promote the pathogenesis of atherosclerosis (AS). Peroxisome proliferator-activated receptor γ (PPARγ) activation is considered to be important in modulating AS. Herein, we investigated the regulation of PPARγ on c-Ski, the repressor of TGFβ/smad pathway, in rat AS model and cultured vascular smooth muscle cells (VSMCs). c-Ski mRNA and protein expression were detected by real-time PCR and Western blot, respectively, in vivo and in vitro with treatment of PPARγ agonist rosiglitazone and antagonist GW9662. The proliferation and collagen secretion of VSMCs after c-Ski transfection were investigated. The underlying mechanism was further investigated by online program NUBIScan and luciferase reporter gene analysis. Results showed that both mRNA and protein expressions of c-Ski in the AS lesions was down-regulated in vivo, while in cultured VSMCs, c-Ski transfection significantly suppressed the proliferation and collagen secretion of rat VSMCs. Rosiglitazone significantly up-regulated mRNA and protein levels of c-Ski in VSMCs, which could be blocked by GW9662. Online NUBIScan analysis suggested possible PPARγ binding sites in the promoter region of c-Ski. In addition, luciferase activity of c-Ski reporter gene was also increased obviously in the presence of rosiglitazone. These results indicate that c-Ski is one of the newly found target genes of PPARγ and thus involved in the anti-AS effect of PPARγ.

  18. VEGF Promotes Glycolysis in Pancreatic Cancer via HIF1α Up-Regulation.

    PubMed

    Shi, S; Xu, J; Zhang, B; Ji, S; Xu, W; Liu, J; Jin, K; Liang, D; Liang, C; Liu, L; Liu, C; Qin, Y; Yu, X

    2016-01-01

    Vascular endothelial growth factor (VEGF) is highly expressed in many types of tumors, including pancreatic cancer. Tumor cellderived VEGF promotes angiogenesis and tumor progression. However, the role of VEGF in glucose metabolism remains unclear. We investigated the role and the underlying mechanism of VEGF in the glucose metabolism of pancreatic cancer cells. Pancreatic cancer cells were stimulated with VEGF165 for 1 or 2 h. The oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) were measured using the Seahorse XF96 Extracellular Flux Analyzer. Glycolytic enzymes were detected by quantitative real-time PCR. Neuropilin 1 (NRP1) was silenced by shRNA in order to investigate its role in VEGF-induced glycolysis. Immunohistochemistry (IHC) was performed to identify the correlation among VEGF, NRP1 and hypoxia inducible factor 1α (HIF1α) in pancreatic cancer tissues. VEGF stimulation led to a metabolic transition from mitochondrial oxidative phosphorylation to glycolysis in pancreatic cancer. HIF1α and NRP1 protein levels were both increased after VEGF stimulation. The down-regulation of NRP1 reduced glycolysis in pancreatic cancer cells. NRP1 and VEGF levels both correlated with HIF1α expression in pancreatic tumor tissues. VEGF enhances glycolysis in pancreatic cancer via HIF1α up-regulation. NRP1 plays a key role in VEGF-induced glycolysis.

  19. Up-regulation of lymphocyte antigen 6 complex expression in side-population cells derived from a human trophoblast cell line HTR-8/SVneo.

    PubMed

    Inagaki, Tetsunori; Kusunoki, Soshi; Tabu, Kouichi; Okabe, Hitomi; Yamada, Izumi; Taga, Tetsuya; Matsumoto, Akemi; Makino, Shintaro; Takeda, Satoru; Kato, Kiyoko

    2016-01-01

    The continual proliferation and differentiation of trophoblasts are critical for the maintenance of pregnancy. It is well known that the tissue stem cells are associated with the development of tissues and pathologies. It has been demonstrated that side-population (SP) cells identified by fluorescence-activated cell sorting (FACS) are enriched with stem cells. The SP cells in HTR-8/SVneo cells derived from human primary trophoblast cells were isolated by FACS. HTR-8/SVneo-SP cell cultures generated both SP and non-SP (NSP) subpopulations. In contrast, NSP cell cultures produced NSP cells and failed to produce SP cells. These SP cells showed self-renewal capability by serial colony-forming assay. Microarray expression analysis using a set of HTR-8/SVneo-SP and -NSP cells revealed that SP cells overexpressed several stemness genes including caudal type homeobox2 (CDX2) and bone morphogenic proteins (BMPs), and lymphocyte antigen 6 complex locus D (LY6D) gene was the most highly up-regulated in HTR-8/SVneo-SP cells. LY6D gene reduced its expression in the course of a 7-day cultivation in differentiation medium. SP cells tended to reduce its fraction by treatment of LY6D siRNA indicating that LY6D had potential to maintain cell proliferation of HTR-8/SVneo-SP cells. On ontology analysis, epithelial-mesenchymal transition (EMT) pathway was involved in the up-regulated genes on microarray analysis. HTR-SVneo-SP cells showed enhanced migration. This is the first report that LY6D was important for the maintenance of HTR-8/SVneo-SP cells. EMT was associated with the phenotype of these SP cells.

  20. Bottom-up regulation of plant community structure in an aridland ecosystem.

    PubMed

    Báez, Selene; Collins, Scott L; Lightfoot, David; Koontz, Terri L

    2006-11-01

    We conducted a long-term rodent exclosure experiment in native grass- and shrub-dominated vegetation to evaluate the importance of top-down and bottom-up controls on plant community structure in a low-productivity aridland ecosystem. Using multiple regressions and analysis of covariance, we assessed how bottom-up precipitation pulses cascade through vegetation to affect rodent populations, how rodent populations affect plant community structure, and how rodents alter rates of plant community change over time. Our findings showed that bottom-up pulses cascade through the system, increasing the abundances of plants and rodents, and that rodents exerted no control on plant community structure and rate of change in grass-dominated vegetation, and only limited control in shrub-dominated vegetation. These results were discussed in the context of top-down effects on plant communities across broad gradients of primary productivity. We conclude that bottom-up regulation maintains this ecosystem in a state of low primary productivity that constrains the abundance of consumers such that they exert limited influence on plant community structure and dynamics.

  1. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    PubMed

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  2. Up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver

    PubMed Central

    Zhang, Shuai; Li, Tao-Sheng; Soyama, Akihiko; Tanaka, Takayuki; Yan, Chen; Sakai, Yusuke; Hidaka, Masaaki; Kinoshita, Ayaka; Natsuda, Koji; Fujii, Mio; Kugiyama, Tota; Baimakhanov, Zhassulan; Kuroki, Tamotsu; Gu, Weili; Eguchi, Susumu

    2016-01-01

    Although the healthy liver is known to have high regenerative potential, poor liver regeneration under pathological conditions remains a substantial problem. We investigated the key molecules that impair the regeneration of cholestatic liver. C57BL/6 mice were randomly subjected to partial hepatectomy and bile duct ligation (PH+BDL group, n = 16), partial hepatectomy only (PH group, n = 16), or sham operation (Sham group, n = 16). The liver sizes and histological findings were similar in the PH and sham groups 14 days after operation. However, compared with those in the sham group, the livers in mice in the PH+BDL group had a smaller size, a lower cell proliferative activity, and more fibrotic tissue 14 days after the operation, suggesting the insufficient regeneration of the cholestatic liver. Pathway-focused array analysis showed that many genes were up- or down-regulated over 1.5-fold in both PH+BDL and PH groups at 1, 3, 7, and 14 days after treatment. Interestingly, more genes that were functionally related to the extracellular matrix and inflammatory chemokines were found in the PH+BDL group than in the PH group at 7 and 14 days after treatment. Our data suggest that up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver. PMID:27226149

  3. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans

    PubMed Central

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-01-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest. PMID:26743903

  4. Centenarians, but not octogenarians, up-regulate the expression of microRNAs.

    PubMed

    Serna, Eva; Gambini, Juan; Borras, Consuelo; Abdelaziz, Kheira M; Mohammed, Kheira; Belenguer, Angel; Sanchis, Paula; Avellana, Juan A; Rodriguez-Mañas, Leocadio; Viña, Jose

    2012-01-01

    Centenarians exhibit extreme longevity and a remarkable compression of morbidity. They have a unique capacity to maintain homeostatic mechanisms. Since small non-coding RNAs (including microRNAs) are implicated in the regulation of gene expression, we hypothesised that longevity of centenarians may reflect alterations in small non-coding RNA expression. We report the first comparison of microRNAs expression profiles in mononuclear cells from centenarians, octogenarians and young individuals resident near Valencia, Spain. Principal Component Analysis of the expression of 15,644 mature microRNAs and, 2,334 snoRNAs and scaRNAs in centenarians revealed a significant overlap with profiles in young individuals but not with octogenarians and a significant up-regulation of 7 small non-coding RNAs in centenarians compared to young persons and notably 102 small non-coding RNAs when compared with octogenarians. We suggest that the small non-coding RNAs signature in centenarians may provide insights into the underlying molecular mechanisms endowing centenarians with extreme longevity.

  5. Withdrawal from chronic cocaine up-regulates 5-HT1B receptors in the rat brain.

    PubMed

    Przegaliński, Edmund; Czepiel, Klaudia; Nowak, Ewa; Dlaboga, Daniel; Filip, Małgorzata

    2003-11-20

    In the present study we examined the effect of prolonged treatment with cocaine (a sensitization and discrimination paradigm) on the expression of serotonin (5-HT)(1B) receptors in rat brain structures using a quantitative autoradiographic analysis. To estimate the distribution of 5-HT(1B) receptors in several brain coronal sections, we used [N-methyl-(3)H]GR 125743, a 5-HT(1B/1D) receptor antagonist, in the presence of ketanserin (a drug used to block 5-HT(1D) receptors). The binding of [N-methyl-(3)H]GR 125743 in the areas containing dopamine cell bodies (the ventral tegmental area, the substantia nigra) and terminals (the nucleus accumbens shell and core, but not in the caudate-putamen) and in the subiculum of the hippocampus was increased after withdrawal from repeated cocaine in both the discrimination and the sensitization paradigms, either being effective as confirmed by behavioral experiments. Neither acute cocaine injection nor the psychostimulant challenge following its repeated administration affected the binding of [N-methyl-(3)H]GR 125743 in the above brain areas. Our results indicate that withdrawal from chronic cocaine induces up-regulation of 5-HT(1B) receptors in a number of rat brain structures.

  6. Celecoxib suppresses hepatoma stemness and progression by up-regulating PTEN

    PubMed Central

    Kuo, Hsiao-Mei; Liu, Li-Fen; Hu, Tsung-Hui; Sun, Cheuk-Kwan; Kung, Mei-Lang; Lin, Shih-Wei; Wang, E-Ming; Ma, Yi-Ling; Cheng, Kwan-Hung; Lai, Kwok Hung; Wen, Zhi-Hong; Hsu, Ping-I; Tai, Ming-Hong

    2014-01-01

    Celecoxib, a COX-2 inhibitor and non-steroidal anti-inflammatory drug, can prevent several types of cancer, including hepatocellular carcinoma (HCC). Here we show that celecoxib suppressed the self-renewal and drug-pumping functions in HCC cells. Besides, celecoxib depleted CD44 + /CD133 + hepatic cancer stem cells (hCSC). Prostaglandin E2 (PGE2) and CD133 overexpression did not reverse the celecoxib-induced depletion of hCSC. Also, celecoxib inhibited progression of rat Novikoff hepatoma. Moreover, a 60-day celecoxib program increased the survival rate of rats with hepatoma. Histological analysis revealed that celecoxib therapy reduced the abundance of CD44 + /CD133 + hCSCs in hepatoma tissues. Besides, the hCSCs depletion was associated with elevated apoptosis and blunted proliferation and angiogenesis in hepatoma. Celecoxib therapy activated peroxisome proliferator-activated receptor γ (PPARγ) and up-regulated PTEN, thereby inhibiting Akt and disrupting hCSC expansion. PTEN gene delivery by adenovirus reduced CD44/CD133 expression in vitro and hepatoma formation in vivo. This study suggests that celecoxib suppresses cancer stemness and progression of HCC via activation of PPARγ/PTEN signaling. PMID:24721996

  7. Centenarians, but not octogenarians, up-regulate the expression of microRNAs

    PubMed Central

    Serna, Eva; Gambini, Juan; Borras, Consuelo; Mohammed, Kheira; Belenguer, Angel; Sanchis, Paula; Avellana, Juan A.; Rodriguez-Mañas, Leocadio; Viña, Jose

    2012-01-01

    Centenarians exhibit extreme longevity and a remarkable compression of morbidity. They have a unique capacity to maintain homeostatic mechanisms. Since small non-coding RNAs (including microRNAs) are implicated in the regulation of gene expression, we hypothesised that longevity of centenarians may reflect alterations in small non-coding RNA expression. We report the first comparison of microRNAs expression profiles in mononuclear cells from centenarians, octogenarians and young individuals resident near Valencia, Spain. Principal Component Analysis of the expression of 15,644 mature microRNAs and, 2,334 snoRNAs and scaRNAs in centenarians revealed a significant overlap with profiles in young individuals but not with octogenarians and a significant up-regulation of 7 small non-coding RNAs in centenarians compared to young persons and notably 102 small non-coding RNAs when compared with octogenarians. We suggest that the small non-coding RNAs signature in centenarians may provide insights into the underlying molecular mechanisms endowing centenarians with extreme longevity. PMID:23233880

  8. Is Activating Transcription Factor 3 Up-Regulated in Patients with Hypospadias?

    PubMed Central

    Demir, Selamettin; Zemheri, Ebru; Canat, Lutfi; Kilic, Mert; Caskurlu, Turhan

    2010-01-01

    Purpose Even though hypospadias is one of the most common congenital anomalies, the cause of hypospadias is largely unknown. With regard to molecular biology and microarray technology, it appears that hypospadias is potentially related to disrupted gene expression. Genomic analysis of hypospadiac tissue indicated a potential role for activating transcription factor 3 (ATF3) in the development of this anomaly. This study prospectively examined the expression of ATF3 in tissues from 20 children with hypospadias compared with 26 normal penile skin tissue samples from elective circumcision. Materials and Methods Prepucial tissue was obtained from children who underwent repair of hypospadias for comparison with tissue samples from children who underwent elective circumcision. Skin specimens were evaluated for the expression of ATF3 protein by immunohistochemical staining. Results Immunohistochemical staining for ATF3 in samples from children who underwent repair of hypospadias was significantly greater than in samples from children who underwent elective circumcision (80% vs. 11%, respectively; p<0.05). Conclusions Our results indicate that ATF3 is up-regulated in the penile skin tissue of boys with hypospadias, which suggests a role for this transcription factor in the development of this abnormality. PMID:20733963

  9. Schisandra polysaccharide increased glucose consumption by up-regulating the expression of GLUT-4.

    PubMed

    Jin, Dun; Zhao, Ting; Feng, Wei-Wei; Mao, Guang-Hua; Zou, Ye; Wang, Wei; Li, Qian; Chen, Yao; Wang, Xin-Tong; Yang, Liu-Qing; Wu, Xiang-Yang

    2016-06-01

    In our previous study, a polysaccharide was extracted from Schisandra Chinensis (Trucz.) Baill and found with anti-diabetic effects. The aim of this study was to investigate the anti-diabetic effects of the low weight molecular polysaccharide (SCPP11) purified from crude Schisandra polysaccharide and illustrate the underlying mechanism in buffalo rat liver cells. The insulin resistance model of BRL cells was established by incubating with insulin solution for 24h. The effects of SCPP11 on regulating related protein and mRNA expression in an insulin and AMPK signal pathway were investigated by western blot and RT-PCR analysis. SCPP11 showed no cytotoxicity to BRL cells and could improve the glucose consumption in BRL cells. SCPP11 increased the protein expression of Akt, p-AMPK and GLUT-4 in BRL cells. Moreover, SCPP11 could enhance the mRNA expression levels of IRS-1, PI3K, Akt, GLUT-4, AMPKα and PPAR-γ in BRL cells at the same time. In conclusion, SCPP11 possessed effects in improving glucose consumption by up-regulating the expression of GLUT-4 which might occur via insulin and AMPK signal pathway and could be a potential functional food to prevent and mitigate the insulin resistance condition.

  10. Zinc chloride for odontogenesis of dental pulp stem cells via metallothionein up-regulation.

    PubMed

    Lin, Chia-Yung; Lin, Hsin-Hua; Tsai, Mong-Hsun; Lin, Shau-Ping; Chen, Min-Huey

    2011-02-01

    Previous studies have shown that zinc chloride (ZnCl(2)) can induce metallthionein (MT) in the liver and kidney to protect tissues against toxicants and shows a better corneal wound healing than conventional drugs do. We hypothesized that ZnCl(2) can promote odontogenesis of dental pulp stem cells (DPSCs) via MT. The purpose of this study was to investigate the effects of ZnCl(2) on human DPSCs and the expression of MT. DPSCs were isolated by flow cytometry with selective surface marker CD146 and STRO-1. After they grew into confluence, DPSCs were induced into odontoblasts with or without ZnCl(2) supplemented in the culture medium for 21 days. The effect of ZnCl(2) on DPSCs differentiation was examined followed by alkaline phosphatase staining/activity and quantitative real-time polymerase chain reaction analysis. By treating DPSCs with ZnCl(2), the duration of mineralization was shortened and expressions of differentiation markers into odontoblasts were more significant than those without ZnCl(2) stimulation. Besides, the MT gene expression was increased with the increasing expressions of odontoblasts' markers after treated with ZnCl(2). This was the first report that ZnCl(2) could promote odontoblastic differentiation of DPSCs through the up-regulation of gene MT. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro

    PubMed Central

    2011-01-01

    Background During the peri-implantation period, the embryo adheres to an adequately prepared or receptive endometrial surface epithelium. Abnormal embryo adhesion to the endometrium results in embryo implantation failure and infertility. Endometrial epithelial cell plasma membrane proteins critical in regulating adhesion may potentially be infertility biomarkers or targets for treating infertility. Interleukin (IL) 11 regulates human endometrial epithelial cells (hEEC) adhesion. Its production is abnormal in women with infertility. The objective of the study was to identify IL11 regulated plasma membrane proteins in hEEC in vitro using a proteomic approach. Methods Using a 2D-differential in-gel electrophoresis (DIGE) electrophoresis combined with LCMS/MS mass spectrometry approach, we identified 20 unique plasma membrane proteins differentially regulated by IL11 in ECC-1 cells, a hEEC derived cell line. Two IL11 regulated proteins with known roles in cell adhesion, annexin A2 (ANXA2) and flotillin-1 (FLOT1), were validated by Western blot and immunocytochemistry in hEEC lines (ECC-1 and an additional cell line, Ishikawa) and primary hEEC. Flotilin-1 was further validated by immunohistochemistry in human endometrium throughout the menstrual cycle (n = 6-8/cycle). Results 2D-DIGE analysis identified 4 spots that were significantly different between control and IL11 treated group. Of these 4 spots, there were 20 proteins that were identified with LCMS/MS. Two proteins; ANXA2 and FLOT1 were chosen for further analyses and have found to be significantly up-regulated following IL11 treatment. Western blot analysis showed a 2-fold and a 2.5-fold increase of ANXA2 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. Similarly, a 1.8-fold and a 2.3/2.4-fold increase was also observed for FLOT1 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. In vitro, IL11 induced stronger ANXA2 expression on cell surface of primary hEEC and ECC-1 whilst

  12. Using Linguistic Analysis to Identify High Performing Teams

    DTIC Science & Technology

    2006-06-01

    linguistic analysis (specifically the Linguistic Inquiry and Word Count, LIWC) in identifying potential high performing teams. In a series of studies...usefulness of one technological tool, the Linguistic Inquiry Word Count (LIWC; Pennebaker, Francis, & Booth, 2001), in identifying productive groups. The...LIWC analyzes text on a word -by- word basis, categorizes each word using 72 linguistic dimensions (e.g., pronoun, present tense, cognitive process), and

  13. Lysophosphatidic Acid Up-Regulates Hexokinase II and Glycolysis to Promote Proliferation of Ovarian Cancer Cells1

    PubMed Central

    Mukherjee, Abir; Ma, Yibao; Yuan, Fang; Gong, Yongling; Fang, Zhenyu; Mohamed, Esraa M.; Berrios, Erika; Shao, Huanjie; Fang, Xianjun

    2015-01-01

    Lysophosphatidic acid (LPA), a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2) was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF) elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1) and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells. PMID:26476080

  14. Identifying heterogeneity among injection drug users: a cluster analysis approach.

    PubMed

    Shaw, Souradet Y; Shah, Lena; Jolly, Ann M; Wylie, John L

    2008-08-01

    We used cluster analysis to subdivide a population of injection drug users and identify previously unknown behavioral heterogeneity within that population. We applied cluster analysis techniques to data collected in a cross-sectional survey of injection drug users in Winnipeg, Manitoba. The clustering variables we used were based on receptive syringe sharing, ethnicity, and types of drugs injected. Seven clusters were identified for both male and female injection drug users. Some relationships previously revealed in our study setting, such as the known relationship between Talwin (pentazocine) and Ritalin (methylphenidate) use, injection in hotels, and hepatitis C virus prevalence, were confirmed through our cluster analysis approach. Also, relationships between drug use and infection risk not previously observed in our study setting were identified, an example being a cluster of female crystal methamphetamine users who exhibited high-risk behaviors but an absence or low prevalence of blood-borne pathogens. Cluster analysis was useful in both confirming relationships previously identified and identifying new ones relevant to public health research and interventions.

  15. Heme oxygenase up-regulation under ultraviolet-B radiation is not epigenetically restricted and involves specific stress-related transcriptions factors.

    PubMed

    Santa-Cruz, Diego; Pacienza, Natalia; Zilli, Carla; Pagano, Eduardo; Balestrasse, Karina; Yannarelli, Gustavo

    2017-08-01

    Heme oxygenase-1 (HO-1) plays a protective role against oxidative stress in plants. The mechanisms regulating its expression, however, remain unclear. Here we studied the methylation state of a GC rich HO-1 promoter region and the expression of several stress-related transcription factors (TFs) in soybean plants subjected to ultraviolet-B (UV-B) radiation. Genomic DNA and total RNA were isolated from leaves of plants irradiated with 7.5 and 15kJm-2 UV-B. A 304bp HO-1 promoter region was amplified by PCR from sodium bisulfite-treated DNA, cloned into pGEMT plasmid vector and evaluated by DNA sequencing. Bisulfite sequencing analysis showed similar HO-1 promoter methylation levels in control and UV-B-treated plants (C: 3.4±1.3%; 7.5: 2.6±0.5%; 15: 3.1±1.1%). Interestingly, HO-1 promoter was strongly unmethylated in control plants. Quantitative RT-PCR analysis of TFs showed that GmMYB177, GmMYBJ6, GmWRKY21, GmNAC11, GmNAC20 and GmGT2A but not GmWRK13 and GmDREB were induced by UV-B radiation. The expression of several TFs was also enhanced by hemin, a potent and specific HO inducer, inferring that they may mediate HO-1 up-regulation. These results suggest that soybean HO-1 gene expression is not epigenetically regulated. Moreover, the low level of HO-1 promoter methylation suggests that this antioxidant enzyme can rapidly respond to environmental stress. Finally, this study has identified some stress-related TFs involved in HO-1 up-regulation under UV-B radiation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. PRC2/EED-EZH2 Complex Is Up-Regulated in Breast Cancer Lymph Node Metastasis Compared to Primary Tumor and Correlates with Tumor Proliferation In Situ

    PubMed Central

    Yu, Hongxiang; Simons, Diana L.; Segall, Ilana; Carcamo-Cavazos, Valeria; Schwartz, Erich J.; Yan, Ning; Zuckerman, Neta S.; Dirbas, Frederick M.; Johnson, Denise L.; Holmes, Susan P.; Lee, Peter P.

    2012-01-01

    Background Lymph node metastasis is a key event in the progression of breast cancer. Therefore it is important to understand the underlying mechanisms which facilitate regional lymph node metastatic progression. Methodology/Principal Findings We performed gene expression profiling of purified tumor cells from human breast tumor and lymph node metastasis. By microarray network analysis, we found an increased expression of polycomb repression complex 2 (PRC2) core subunits EED and EZH2 in lymph node metastatic tumor cells over primary tumor cells which were validated through real-time PCR. Additionally, immunohistochemical (IHC) staining and quantitative image analysis of whole tissue sections showed a significant increase of EZH2 expressing tumor cells in lymph nodes over paired primary breast tumors, which strongly correlated with tumor cell proliferation in situ. We further explored the mechanisms of PRC2 gene up-regulation in metastatic tumor cells and found up-regulation of E2F genes, MYC targets and down-regulation of tumor suppressor gene E-cadherin targets in lymph node metastasis through GSEA analyses. Using IHC, the expression of potential EZH2 target, E-cadherin was examined in paired primary/lymph node samples and was found to be significantly decreased in lymph node metastases over paired primary tumors. Conclusions/Significance This study identified an over expression of the epigenetic silencing complex PRC2/EED-EZH2 in breast cancer lymph node metastasis as compared to primary tumor and its positive association with tumor cell proliferation in situ. Concurrently, PRC2 target protein E-cadherin was significant decreased in lymph node metastases, suggesting PRC2 promotes epithelial mesenchymal transition (EMT) in lymph node metastatic process through repression of E-cadherin. These results indicate that epigenetic regulation mediated by PRC2 proteins may provide additional advantage for the outgrowth of metastatic tumor cells in lymph nodes. This opens

  17. Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein.

    PubMed

    Menges, Craig W; Baglia, Laurel A; Lapoint, Randi; McCance, Dennis J

    2006-06-01

    Human papillomaviruses (HPV) are small DNA tumor viruses causally associated with cervical cancer. The early gene product E7 from high-risk HPV is considered the major transforming protein expressed by the virus. Although many functions have been described for E7 in disrupting normal cellular processes, we describe in this study a new cellular target in primary human foreskin keratinocytes (HFK), the serine/threonine kinase AKT. Expression of HPV type 16 E7 in HFK caused inhibition of differentiation, hyperproliferation, and up-regulation of AKT activity in organotypic raft cultures. The ability of E7 to up-regulate AKT activity is dependent on its ability to bind to and inactivate the retinoblastoma (Rb) gene product family of proteins. Furthermore, we show that knocking down Rb alone, with short hairpin RNAs, was sufficient to up-regulate AKT activity in differentiated keratinocytes. Up-regulation of AKT activity and loss of Rb was also observed in HPV-positive cervical high-grade squamous intraepithelial lesions when compared with normal cervical tissue. Together, these data provide evidence linking inactivation of Rb by E7 in the up-regulation of AKT activity during cervical cancer progression.

  18. Hormonally up-regulated neu-associated kinase: A novel target for breast cancer progression.

    PubMed

    Zambrano, Joelle N; Neely, Benjamin A; Yeh, Elizabeth S

    2017-05-01

    Hormonally up-regulated neu-associated Kinase (Hunk) is a protein kinase that was originally identified in the murine mammary gland and has been shown to be highly expressed in Human Epidermal Growth Factor Receptor 2 positive (HER2(+)/ErbB2(+)) breast cancer cell lines as well as MMTV-neu derived mammary tumor cell lines. However, the physiological role of Hunk has been largely elusive since its identification. Though Hunk is predicted to be a Serine/Threonine (Ser/Thr) protein kinase with homology to the SNF1/AMPK family of protein kinases, there are no known Hunk substrates that have been identified to date. Recent work demonstrates a role for Hunk in HER2(+)/ErbB2(+) breast cancer progression, including drug resistance to HER2/ErbB2 inhibitors, with Hunk potentially acting downstream of HER2/ErbB2 and the PI3K/Akt pathway. These studies have collectively shown that Hunk plays a vital role in promoting mammary tumorigenesis, as Hunk knockdown via shRNA in xenograft tumor models or crossing MMTV-neu or Pten-deficient genetically engineered mouse models into a Hunk knockout (Hunk-/-) background impairs mammary tumor growth in vivo. Because the majority of HER2(+)/ErbB2(+) breast cancer patients acquire drug resistance to HER2/ErbB2 inhibitors, the characterization of novel drug targets like Hunk that have the potential to simultaneously suppress tumorigenesis and potentially enhance efficacy of current therapeutics is an important facet of drug development. Therefore, work aimed at uncovering specific regulatory functions for Hunk that could contribute to this protein kinase's role in both tumorigenesis and drug resistance will be informative. This review focuses on what is currently known about this under-studied protein kinase, and how targeting Hunk may prove to be a potential therapeutic target for the treatment of breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Transcriptomic Analysis Identifies Differentially Expressed Genes (DEGs) Associated with Bolting and Flowering in Radish (Raphanus sativus L.)

    PubMed Central

    Nie, Shanshan; Li, Chao; Wang, Yan; Xu, Liang; Muleke, Everlyne M.; Tang, Mingjia; Sun, Xiaochuan; Liu, Liwang

    2016-01-01

    The transition of vegetative growth to bolting and flowering is an important process in the life cycle of plants, which is determined by numerous genes forming an intricate network of bolting and flowering. However, no comprehensive identification and profiling of bolting and flowering-related genes have been carried out in radish. In this study, RNA-Seq technology was applied to analyze the differential gene expressions during the transition from vegetative stage to reproductive stage in radish. A total of 5922 differentially expressed genes (DEGs) including 779 up-regulated and 5143 down-regulated genes were isolated. Functional enrichment analysis suggested that some DEGs were involved in hormone signaling pathways and the transcriptional regulation of bolting and flowering. KEGG-based analysis identified 37 DEGs being involved in phytohormone signaling pathways. Moreover, 95 DEGs related to bolting and flowering were identified and integrated into various flowering pathways. Several critical genes including FT, CO, SOC1, FLC, and LFY were characterized and profiled by RT-qPCR analysis. Correlation analysis indicated that 24 miRNA-DEG pairs were involved in radish bolting and flowering. Finally, a miRNA-DEG-based schematic model of bolting and flowering regulatory network was proposed in radish. These outcomes provided significant insights into genetic control of radish bolting and flowering, and would facilitate unraveling molecular regulatory mechanism underlying bolting and flowering in root vegetable crops. PMID:27252709

  20. Transcriptomic Analysis Identifies Differentially Expressed Genes (DEGs) Associated with Bolting and Flowering in Radish (Raphanus sativus L.).

    PubMed

    Nie, Shanshan; Li, Chao; Wang, Yan; Xu, Liang; Muleke, Everlyne M; Tang, Mingjia; Sun, Xiaochuan; Liu, Liwang

    2016-01-01

    The transition of vegetative growth to bolting and flowering is an important process in the life cycle of plants, which is determined by numerous genes forming an intricate network of bolting and flowering. However, no comprehensive identification and profiling of bolting and flowering-related genes have been carried out in radish. In this study, RNA-Seq technology was applied to analyze the differential gene expressions during the transition from vegetative stage to reproductive stage in radish. A total of 5922 differentially expressed genes (DEGs) including 779 up-regulated and 5143 down-regulated genes were isolated. Functional enrichment analysis suggested that some DEGs were involved in hormone signaling pathways and the transcriptional regulation of bolting and flowering. KEGG-based analysis identified 37 DEGs being involved in phytohormone signaling pathways. Moreover, 95 DEGs related to bolting and flowering were identified and integrated into various flowering pathways. Several critical genes including FT, CO, SOC1, FLC, and LFY were characterized and profiled by RT-qPCR analysis. Correlation analysis indicated that 24 miRNA-DEG pairs were involved in radish bolting and flowering. Finally, a miRNA-DEG-based schematic model of bolting and flowering regulatory network was proposed in radish. These outcomes provided significant insights into genetic control of radish bolting and flowering, and would facilitate unraveling molecular regulatory mechanism underlying bolting and flowering in root vegetable crops.

  1. Molecular characterization of Ran gene up-regulated in large yellow croaker (Pseudosciaena crocea) immunity.

    PubMed

    Han, Fang; Wang, Xiao-Qing; Yao, Cui-luan; Wang, Zhi-yong

    2010-08-01

    RanGTPase, one family of small G protein superfamily, has been widely demonstrated to be involved in transport system between cytoplasm and nucleus. However the knowledge about the function of RanGTPase in immunity remains limited. In this report, Ran gene (named LycRan) cDNA was cloned from the large yellow croaker, Pseudosciaena crocea, a marine fish. The full-length cDNA of LycRan was of 1033 bp, including a 5'-terminal untranslated region (UTR) of 43 bp, 3'-terminal UTR of 338 bp and an open reading frame (ORF) of 648 bp encoding a polypeptide of 216 amino acids. The deduced protein is highly homologous, it shares 90.74%, 88.89%, 89.35% and 85.20% identities with those of salmon, frog, human and fruit fly respectively. RT-PCR analysis indicated that LycRan gene was constitutively expressed in 9 tissues examined, including kidney, liver, gill, muscle, spleen, skin, heart, intestine and blood. The result of quantitative Real-Time RT-PCR analysis revealed the highest expression in kidney and the weakest expression in skin. Time course analysis showed that LycRan expression was obviously up-regulated in kidney, blood and spleen after immunization with either poly I:C or formalin-inactive Gram-negative bacterium Vibrio parahaemolyticus. It indicated that the highest expression was 2.8 times (at 48 h) as much as that in the control in the kidney (p < 0.05) challenged by poly I:C and 3.2 times (at 24 h) in the blood (p < 0.05) challenged by bacteria. These results suggested that LycRan might play an important role in large yellow croaker defense against the pathogen infection. Our study, therefore, might provide a clue to elucidate the large yellow croaker innate immunity.

  2. Retinoic acids up-regulate functional eosinophil-driving receptor CCR3.

    PubMed

    Ueki, S; Nishikawa, J; Yamauchi, Y; Konno, Y; Tamaki, M; Itoga, M; Kobayashi, Y; Takeda, M; Moritoki, Y; Ito, W; Chihara, J

    2013-07-01

    Eotaxins and their receptor CCR3 have a definitive role for tissue accumulation of eosinophils both under homeostatic and pathologic conditions. However, physiological stimuli that can up-regulate CCR3 in blood-derived human eosinophils have not been recognized. As a prior gene microarray study revealed up-regulation of CCR3 in eosinophils stimulated with retinoic acids (RAs), the expression of functional CCR3 was examined. We found that 9-cis RA and all-trans RA (ATRA) significantly induced surface CCR3 expression regardless of the presence of IL-3 or IL-5. Pharmacological manipulations with receptor-specific agonists and antagonists indicated that retinoic acid receptor-α activation is critical for CCR3 up-regulation. RA-induced CCR3 was associated with its functional capacity, in terms of the calcium mobilization and chemotactic response to eotaxin-1 (CCL11). Our study suggests an important role of vitamin A derivatives in the tissue accumulation of eosinophils.

  3. BIOELECTRICAL IMPEDANCE VECTOR ANALYSIS IDENTIFIES SARCOPENIA IN NURSING HOME RESIDENTS

    USDA-ARS?s Scientific Manuscript database

    Loss of muscle mass and water shifts between body compartments are contributing factors to frailty in the elderly. The body composition changes are especially pronounced in institutionalized elderly. We investigated the ability of single-frequency bioelectrical impedance analysis (BIA) to identify b...

  4. Cigarette Smoke–Induced CXCR3 Receptor Up-Regulation Mediates Endothelial Apoptosis

    PubMed Central

    Green, Linden A.; Petrusca, Daniela; Rajashekhar, Gangaraju; Gianaris, Tom; Schweitzer, Kelly S.; Wang, Liang; Justice, Matthew J.; Petrache, Irina

    2012-01-01

    Endothelial monocyte–activating polypeptide II (EMAP II) and interferon-inducible protein (IP)–10 are proinflammatory mediators, which in addition to their chemokine activities, selectively induce apoptosis in endothelial cells and are up-regulated in the lungs of cigarette smoke–exposed humans. Previously, we showed that EMAP II is an essential mediator of cigarette smoke–induced lung emphysema in mice linking endothelial cell apoptosis with inflammation. Here we addressed the role of the CXCR3 receptor in EMAP II–induced and IP-10–induced apoptosis in endothelial cells and its regulation by cigarette smoke. We found that both neutralizing antibodies and small inhibitory RNA to CXCR3 abrogated EMAP II–induced and IP-10–induced endothelial caspase-3 activation and DNA fragmentation. CXCR3 receptor surface expression in human lung microvascular endothelial cells and in lung tissue endothelium was up-regulated by exposure to cigarette smoke. In tissue culture conditions, EMAP II–induced and IP-10–induced apoptosis was enhanced by preincubation with cigarette smoke extract. Interestingly, serum starvation also induced CXCR3 up-regulation and enhanced EMAP II–induced endothelial apoptosis. Signal transduction via p38 mitogen-activated protein kinase activation was essential for CXCR3-induced cell death, but not for CXCR3 receptor up-regulation by cigarette smoke. In turn, protein nitration was required for CXCR3 receptor up-regulation by cigarette smoke and consequently for subsequent CXCR3-induced cell death. In conclusion, the concerted up-regulation of proinflammatory EMAP II, IP-10, and CXCR3 by cigarette smoke could sustain a cascade of cell death that may promote the alveolar tissue loss noted in human emphysema. PMID:22936405

  5. Mu opioid receptor up-regulation and participation in excitability of hippocampal pyramidal cell electrophysiology

    SciTech Connect

    Moudy, A.M.

    1988-01-01

    Chronic administration of opiate antagonists to rats results in up-regulation of their brain opioid receptors. Using subcellular fractionation techniques, brain opioid receptors were resolved into two membrane populations, one associated with synaptic plasma membranes (SPM) and the other enriched in smooth endoplasmic reticulum and Golgi (microsomes). This study addressed in part the question of whether an antagonist induces up-regulation uniformly in these two populations. Rats were administered naltrexone by subcutaneously implanted osmotic minipumps. Forebrain mu receptor levels were determined by homologous displacement of ({sup 3}H)D-ala{sup 2}-mePhe{sup 4}-gly-ol{sup 5}-enkephalin (DAGO) followed by computer estimation of binding parameters. Receptor levels in crude membranes rose 77% after treatment. Microsomes displayed a 92% increase, a two-fold greater change than in SPMs (51%). These results establish that naltrexone induces up-regulation of both membrane populations; and that microsomal and SPM receptors represent discrete populations of intracellular and cell surface sites, respectively. Binding experiments on isolated hippocampi also demonstrated up-regulation (71%) of mu receptors. To demonstrate up-regulation of opioid receptors electrophysiologically, hippocampal slices were prepared from rats which had been chronically treated with naltrexone. After superfusion with DAGO, these slices showed a 42% greater population spike output than controls in response to the same EPSP input. Hippocampi from animals treated for two weeks showed an additional increase in sensitivity. The results support a disinhibitory role for opioids in pyramidal cell hyper-excitability. More importantly, they demonstrate a significant physiological correlate to opioid receptor up-regulation.

  6. Identifying clinical course patterns in SMS data using cluster analysis.

    PubMed

    Kent, Peter; Kongsted, Alice

    2012-07-02

    Recently, there has been interest in using the short message service (SMS or text messaging), to gather frequent information on the clinical course of individual patients. One possible role for identifying clinical course patterns is to assist in exploring clinically important subgroups in the outcomes of research studies. Two previous studies have investigated detailed clinical course patterns in SMS data obtained from people seeking care for low back pain. One used a visual analysis approach and the other performed a cluster analysis of SMS data that had first been transformed by spline analysis. However, cluster analysis of SMS data in its original untransformed form may be simpler and offer other advantages. Therefore, the aim of this study was to determine whether cluster analysis could be used for identifying clinical course patterns distinct from the pattern of the whole group, by including all SMS time points in their original form. It was a 'proof of concept' study to explore the potential, clinical relevance, strengths and weakness of such an approach. This was a secondary analysis of longitudinal SMS data collected in two randomised controlled trials conducted simultaneously from a single clinical population (n = 322). Fortnightly SMS data collected over a year on 'days of problematic low back pain' and on 'days of sick leave' were analysed using Two-Step (probabilistic) Cluster Analysis. Clinical course patterns were identified that were clinically interpretable and different from those of the whole group. Similar patterns were obtained when the number of SMS time points was reduced to monthly. The advantages and disadvantages of this method were contrasted to that of first transforming SMS data by spline analysis. This study showed that clinical course patterns can be identified by cluster analysis using all SMS time points as cluster variables. This method is simple, intuitive and does not require a high level of statistical skill. However, there

  7. Identifying clinical course patterns in SMS data using cluster analysis

    PubMed Central

    2012-01-01

    Background Recently, there has been interest in using the short message service (SMS or text messaging), to gather frequent information on the clinical course of individual patients. One possible role for identifying clinical course patterns is to assist in exploring clinically important subgroups in the outcomes of research studies. Two previous studies have investigated detailed clinical course patterns in SMS data obtained from people seeking care for low back pain. One used a visual analysis approach and the other performed a cluster analysis of SMS data that had first been transformed by spline analysis. However, cluster analysis of SMS data in its original untransformed form may be simpler and offer other advantages. Therefore, the aim of this study was to determine whether cluster analysis could be used for identifying clinical course patterns distinct from the pattern of the whole group, by including all SMS time points in their original form. It was a ‘proof of concept’ study to explore the potential, clinical relevance, strengths and weakness of such an approach. Methods This was a secondary analysis of longitudinal SMS data collected in two randomised controlled trials conducted simultaneously from a single clinical population (n = 322). Fortnightly SMS data collected over a year on ‘days of problematic low back pain’ and on ‘days of sick leave’ were analysed using Two-Step (probabilistic) Cluster Analysis. Results Clinical course patterns were identified that were clinically interpretable and different from those of the whole group. Similar patterns were obtained when the number of SMS time points was reduced to monthly. The advantages and disadvantages of this method were contrasted to that of first transforming SMS data by spline analysis. Conclusions This study showed that clinical course patterns can be identified by cluster analysis using all SMS time points as cluster variables. This method is simple, intuitive and does not require

  8. Microarray analysis identifies keratin loci as sensitive biomarkers for thyroid hormone disruption in the salamander Ambystoma mexicanum.

    PubMed

    Page, Robert B; Monaghan, James R; Samuels, Amy K; Smith, Jeramiah J; Beachy, Christopher K; Voss, S Randal

    2007-02-01

    Ambystomatid salamanders offer several advantages for endocrine disruption research, including genomic and bioinformatics resources, an accessible laboratory model (Ambystoma mexicanum), and natural lineages that are broadly distributed among North American habitats. We used microarray analysis to measure the relative abundance of transcripts isolated from A. mexicanum epidermis (skin) after exogenous application of thyroid hormone (TH). Only one gene had a >2-fold change in transcript abundance after 2 days of TH treatment. However, hundreds of genes showed significantly different transcript levels at days 12 and 28 in comparison to day 0. A list of 123 TH-responsive genes was identified using statistical, BLAST, and fold level criteria. Cluster analysis identified two groups of genes with similar transcription patterns: up-regulated versus down-regulated. Most notably, several keratins exhibited dramatic (1000 fold) increases or decreases in transcript abundance. Keratin gene expression changes coincided with morphological remodeling of epithelial tissues. This suggests that keratin loci can be developed as sensitive biomarkers to assay temporal disruptions of larval-to-adult gene expression programs. Our study has identified the first collection of loci that are regulated during TH-induced metamorphosis in a salamander, thus setting the stage for future investigations of TH disruption in the Mexican axolotl and other salamanders of the genus Ambystoma.

  9. Pregnancy-induced up-regulation of aquaporin-4 protein in brain and its role in eclampsia.

    PubMed

    Quick, Allison M; Cipolla, Marilyn J

    2005-02-01

    Neurologic complications of eclampsia are thought to be similar to hypertensive encephalopathy in which an acute, excessive elevation in blood pressure causes blood-brain barrier (BBB) disruption and edema formation. Because women who develop eclampsia are in general normotensive and asymptomatic prior to pregnancy, we hypothesized that pregnancy alone predisposes the brain to edema formation by up-regulation of aquaporin 4 (AQP4), a water channel in the brain that has been shown to positively correlate with edema formation. To test this hypothesis, we compared localization (immunohistochemistry), mRNA (RT-PCR), and protein levels (Western analysis) of AQP4 in brains from Sprague Dawley rats that were nonpregnant (NP, proestrous), mid-pregnant (MP, days 9-10), late-pregnant (LP, days 19-20), and postpartum (PP, days 3-4). AQP4 mRNA was detected in the brains of all the animals and was localized primarily around the brain parenchymal blood vessels, strongly implicating its role in BBB function. Western analysis revealed that the major AQP4 band at approximately 32 kDa was significantly elevated in MP, LP, and PP animals compared with NP by 9-, 22-, and 17-fold, respectively. These results suggest that pregnancy and the postpartum state up-regulate AQP4 protein located around the intraparenchymal blood vessels, a consequence that could promote edema formation when blood pressure is acutely and excessively elevated, as during eclampsia.-Quick, A. M., Cipolla, M. J. Pregnancy-induced up-regulation of aquaporin-4 protein in brain and its role in eclampsia.

  10. Cathepsin D is up-regulated in inflammatory bowel disease macrophages

    PubMed Central

    HAUSMANN, M; OBERMEIER, F; SCHREITER, K; SPOTTL, T; FALK, W; SCHÖLMERICH, J; HERFARTH, H; SAFTIG, P; ROGLER, G

    2004-01-01

    Down-regulation of receptors involved in the recognition or transmission of inflammatory signals and a reduced responsiveness support the concept that macrophages are ‘desensitized’ during their differentiation in the intestinal mucosa. During inflammatory bowel disease (IBD) intestinal macrophages (IMACs) change to a reactive or ‘aggressive’ type. After having established a method of isolation and purification of IMACs, message for cathepsin D was one of the mRNAs we found to be up-regulated in a subtractive hybridization of Crohn's disease (CD) macrophages versus IMACs from control mucosa. The expression of cathepsin D in intestinal mucosa was analysed by immunohistochemistry in biopsies from IBD and control patients and in a mouse model of dextran sulphate sodium (DSS)-induced acute and chronic colitis. IMACs were isolated and purified from normal and inflamed mucosa by immunomagnetic beads armed with a CD33 antibody. RT-PCR was performed for cathepsin D mRNA. Results were confirmed by Northern blot and flow cytometrical analysis. Immunohistochemistry revealed a significant increase in the cathepsin D protein expression in inflamed intestinal mucosa from IBD patients compared to non-inflamed mucosa. No cathepsin D polymerase chain reaction (PCR) product could be obtained with mRNA from CD33-positive IMACs from normal mucosa. Reverse transcription (RT)-PCR showed an induction of mRNA for cathepsin D in purified IMACs from IBD patients. Northern blot and flow cytometry analysis confirmed these results. Cathepsin D protein was also found in intestinal mucosa in acute and chronic DSS-colitis but was absent in normal mucosa. This study shows that expression of cathepsin D is induced in inflammation-associated IMACs. The presence of cathepsin D might contribute to the mucosal damage in IBD. PMID:15030527

  11. Cathepsin D is up-regulated in inflammatory bowel disease macrophages.

    PubMed

    Hausmann, M; Obermeier, F; Schreiter, K; Spottl, T; Falk, W; Schölmerich, J; Herfarth, H; Saftig, P; Rogler, G

    2004-04-01

    Down-regulation of receptors involved in the recognition or transmission of inflammatory signals and a reduced responsiveness support the concept that macrophages are 'desensitized' during their differentiation in the intestinal mucosa. During inflammatory bowel disease (IBD) intestinal macrophages (IMACs) change to a reactive or 'aggressive' type. After having established a method of isolation and purification of IMACs, message for cathepsin D was one of the mRNAs we found to be up-regulated in a subtractive hybridization of Crohn's disease (CD) macrophages versus IMACs from control mucosa. The expression of cathepsin D in intestinal mucosa was analysed by immunohistochemistry in biopsies from IBD and control patients and in a mouse model of dextran sulphate sodium (DSS)-induced acute and chronic colitis. IMACs were isolated and purified from normal and inflamed mucosa by immunomagnetic beads armed with a CD33 antibody. RT-PCR was performed for cathepsin D mRNA. Results were confirmed by Northern blot and flow cytometrical analysis. Immunohistochemistry revealed a significant increase in the cathepsin D protein expression in inflamed intestinal mucosa from IBD patients compared to non-inflamed mucosa. No cathepsin D polymerase chain reaction (PCR) product could be obtained with mRNA from CD33-positive IMACs from normal mucosa. Reverse transcription (RT)-PCR showed an induction of mRNA for cathepsin D in purified IMACs from IBD patients. Northern blot and flow cytometry analysis confirmed these results. Cathepsin D protein was also found in intestinal mucosa in acute and chronic DSS-colitis but was absent in normal mucosa. This study shows that expression of cathepsin D is induced in inflammation-associated IMACs. The presence of cathepsin D might contribute to the mucosal damage in IBD.

  12. Up-Regulated Expression of SPRY4-IT1 Predicts Poor Prognosis in Colorectal Cancer

    PubMed Central

    Tan, Wenlong; Song, Zi-zheng; Xu, Qunfang; Qu, Xinyan; Li, Zhen; Wang, Yu; Yu, Qun; Wang, Shengqi

    2017-01-01

    Background Long non-coding RNA SPRY4 intronic transcript 1 (lncRNA SPRY4-IT1) has been reported to be associated with the progression of several cancers, but its expression level in colorectal cancer (CRC) has rarely been reported. The purpose of this study was to estimate the clinical significance of SPRY4-IT1 in CRC. Material/Methods The relative expression levels of SPRY4-IT1 were detected by quantitative real-time polymerase chain reaction (qRT-PCR) in diseased tissues and the adjacent normal tissues of 106 CRC patients. Chi-square method was used to evaluate the association between SPRY4-IT1 expression and the clinical features. Additionally, we assessed the overall survival at different expression levels of SPRY4-IT1 using Kaplan-Meier method. The prognostic significance of SPRY4-IT1 was estimated by Cox regression analysis. Results Up-regulated level of SPRY4-IT1 was detected in pathologic tissues of CRC patients compared with adjacent normal tissues (P=0.000). The relative expression of SPRY4-IT1 was associated with the tumor size, the depth of invasion, lymph node invasion, distant invasion, and tumor stage (P<0.05). Patients with high expression of SPRY4-IT1 had poor overall survival compared with those with high level (39.3 vs. 49.3 months, log-rank test, P=0.016). Cox regression analysis showed that SPRY4-IT1 could act as an independent prognostic factor in CRC (HR=2.341, 95% CI=1.136–4.826, P=0.021). Conclusions SPRY4-IT1 might be associated with tumorigenesis and progression of CRC, and it may be a promising biomarker for prognosis in patients with CRC. PMID:28099409

  13. Argonaute 2 is up-regulated in tissues of urothelial carcinoma of bladder

    PubMed Central

    Yang, Feng-Qiang; Huang, Jian-Hua; Liu, Min; Yang, Feng-Ping; Li, Wei; Wang, Guang-Chun; Che, Jian-Ping; Zheng, Jun-Hua

    2014-01-01

    Argonaute 2 proteins (Ago2) have been demonstrated to be widely expressed and involved in post-transcriptional gene silencing and play key roles in carcinogenesis. However, its expression profile and prognostic value in urothelial carcinoma of the bladder (UCB) have not been investigated. Methods: Real-time quantitative PCR (qRT-PCR) and Western blot were used to explore Ago2 expression in UCBs and normal bladder tissues. Moreover immunohistochemistry (ICH) was used to detect the expression of Ago2 in UCBs. Spearman’s rank correlation, Kaplan-Meier plots and Cox proportional hazards regression model were used to analyze the data. Results: Up-regulated expression of Ago2 mRNA and protein was observed in the majority of UCBs by qRT-PCR and Western blot when compared with their paired normal bladder tissues. Clinic pathological analysis was showed a significant correlation existed between the higher expression of Ago2 protein with the Histological grade, lymph node metastasis and Distant metastasis (P<0.05); Survival analysis by Kaplan-Meier survival curve and log-rank test demonstrated that elevated Ago2 expression in cancer tissue predicted poorer overall survival (OS) compared with group in lower expression (62.2% VS 86.3%, P<0.05). Notably, multivariate analyses by Cox’s proportional hazard model revealed that expression of Ago2 was an independent prognostic factor in UCB. Conclusions: These results suggest that the aberrant expression of Ago2 in human UCB is possibly involved with tumorigenesis and development, and the Ago2 protein could act as a potential biomarker for prognosis assessment of bladder cancer. Further studies on the cellular functions of Ago2 need to address these issues. PMID:24427355

  14. Optimization of Rutaecarpine as ABCA1 Up-Regulator for Treating Atherosclerosis

    PubMed Central

    2014-01-01

    ATP-binding cassette transporter A1 (ABCA1) is a key transporter and receptor in promoting cholesterol efflux, and increasing the expression level of ABCA1 is antiatherogenic. In our previous study, rutaecarpine (RUT) was found to protect ApoE–/– mice from developing atherosclerosis through preferentially up-regulating ABCA1 expression. In the present work, a series of RUT derivatives were synthesized and examined as ABCA1 expression up-regulators. Compounds CD1, CD6, and BCD1–2 were found to possess the most potential activity as antiatherosclerotic agents among all compounds tested. PMID:25147608

  15. Practical identifiability analysis of a minimal cardiovascular system model.

    PubMed

    Pironet, Antoine; Docherty, Paul D; Dauby, Pierre C; Chase, J Geoffrey; Desaive, Thomas

    2017-01-17

    Parameters of mathematical models of the cardiovascular system can be used to monitor cardiovascular state, such as total stressed blood volume status, vessel elastance and resistance. To do so, the model parameters have to be estimated from data collected at the patient's bedside. This work considers a seven-parameter model of the cardiovascular system and investigates whether these parameters can be uniquely determined using indices derived from measurements of arterial and venous pressures, and stroke volume. An error vector defined the residuals between the simulated and reference values of the seven clinically available haemodynamic indices. The sensitivity of this error vector to each model parameter was analysed, as well as the collinearity between parameters. To assess practical identifiability of the model parameters, profile-likelihood curves were constructed for each parameter. Four of the seven model parameters were found to be practically identifiable from the selected data. The remaining three parameters were practically non-identifiable. Among these non-identifiable parameters, one could be decreased as much as possible. The other two non-identifiable parameters were inversely correlated, which prevented their precise estimation. This work presented the practical identifiability analysis of a seven-parameter cardiovascular system model, from limited clinical data. The analysis showed that three of the seven parameters were practically non-identifiable, thus limiting the use of the model as a monitoring tool. Slight changes in the time-varying function modeling cardiac contraction and use of larger values for the reference range of venous pressure made the model fully practically identifiable. Copyright © 2017. Published by Elsevier B.V.

  16. Uncoupling Protein-2 is an Antioxidant that is Up-Regulated in the Enamel Organ of Fluoride-Treated Rats*

    PubMed Central

    Suzuki, Maiko; Sierant, Megan L.; Antone, Jerry V.; Everett, Eric T.; Whitford, Gary M.; Bartlett, John D.

    2014-01-01

    Dental fluorosis is characterized by subsurface hypomineralization and retention of enamel matrix proteins. Fluoride (F−) exposure generates reactive oxygen species (ROS) that can cause ER-stress. We therefore screened oxidative stress arrays to identify genes regulated by F− exposure. Vitamin E is an antioxidant so we asked if a diet high in vitamin E would attenuate dental fluorosis. Maturation stage incisor enamel organs (EO) were harvested from F− treated rats and mice were assessed to determine if vitamin E ameliorates dental fluorosis. Uncoupling protein-2 (Ucp2) was significantly up-regulated by F− (~1.5 & 2.0 fold for the 50 or 100 ppm F− treatment groups respectively). Immunohistochemical results on maturation stage rat incisors demonstrated that UCP2 protein levels increased with F− treatment. UCP2 down-regulates mitochondrial production of ROS, which decreases ATP production. Thus, in addition to reduced protein translation caused by ER-stress, a reduction in ATP production by UCP2 may contribute to the inability of ameloblasts to remove protein from the hardening enamel. Fluoride treated mouse enamel had significantly higher quantitative fluorescence (QF) than the untreated controls. No significant QF difference was observed between control and vitamin E enriched diets within a given F− treatment group. Therefore, a diet rich in vitamin E did not attenuate dental fluorosis. We have identified a novel oxidative stress response gene that is up-regulated in vivo by F− and activation of this gene may adversely affect ameloblast function. PMID:25158175

  17. IL-9 promotes IL-13-dependent paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa.

    PubMed

    Steenwinckel, Valérie; Louahed, Jamila; Lemaire, Muriel M; Sommereyns, Caroline; Warnier, Guy; McKenzie, Andrew; Brombacher, Frank; Van Snick, Jacques; Renauld, Jean-Christophe

    2009-04-15

    IL-9 contributes to lung inflammatory processes such as asthma, by promoting mast cell differentiation, B cell activation, eosinophilia, and mucus production by lung epithelial cells. The observation that IL-9 overexpressing mice show increased mast cell numbers in the intestinal mucosa suggests that this cytokine might also play a role in intestinal inflammation. In colons from IL-9 transgenic mice, the expression of Muc2, a major intestinal mucin gene, was up-regulated, together with that of CLCA3 chloride channel and resistin like alpha, which are goblet cell-associated genes. Additional IL-9 up-regulated genes were identified and included innate immunity genes such as angiogenin 4 and the PLA2g2a phospholipase A(2), which are typical Paneth cell markers. Histochemical staining of Paneth cells by phloxine/tartrazine showed that IL-9 induces Paneth cell hyperplasia in Lieberkühn glands of the small intestine, and in the colonic mucosa, where this cell type is normally absent. Expression of Paneth cell markers, including angiogenin 4, PLA2g2a, and cryptdins, was induced in the colon of wild-type mice after two to four daily administrations of IL-9. By crossing IL-9 transgenic mice with IL-13(-/-) mice, or by injecting IL-9 into IL-4R(-/-) mice, we showed that IL-13 was required for the up-regulation of these Paneth cell-specific genes by IL-9. Taken together, our data indicate that Paneth cell hyperplasia and expression of their various antimicrobial products contribute to the immune response driven by TH2 cytokines, such as IL-9 and IL-13 in the intestinal mucosa.

  18. Wheat VIN3-like PHD finger genes are up-regulated by vernalization.

    PubMed

    Fu, Daolin; Dunbar, Mignon; Dubcovsky, Jorge

    2007-03-01

    The term 'vernalization' describes the acceleration of the transition between the vegetative and reproductive stages after exposing plants to an extended period of low temperature. In Arabidopsis, vernalization promotes flowering by silencing the flowering repressor gene FLOWERING LOCUS C (FLC). Mitotically stable repression of FLC is the result of chromatin modifications mediated by the Vernalization-INsensitive 3 (VIN3) and VIN3-Like (VIL) proteins. In this study, we identified and characterized three VIL genes in diploid wheat (Triticum monococcum L.), named TmVIL1, TmVIL2, and TmVIL3. Similar to Arabidopsis VIN3, all three wheat VIL proteins carry three conserved domains including a plant homeodomain finger motif (PHD), a fibronectin type III domain (FNIII), and a VIN3 interacting domain (VID). Genetic mapping placed TmVIL1, TmVIL2, and TmVIL3 loci in the centromeric regions of chromosome 5, 6, and 1, respectively. The chromosome location of TmVIL1 is close to that of the vernalization gene VRN-D5, but more precise mapping information is required to validate this relationship. Transcription of the wheat VIL genes was up-regulated by vernalization, with a peak after 4-6 weeks of cold treatment. When transferred back to warm conditions, transcript levels of the wheat VIL genes returned to pre-vernalization levels. In addition, the transcript levels of wheat VIL genes are affected by photoperiod. This study indicates that wheat VIL genes have retained a similar structure and transcriptional regulation as their Arabidopsis VIN3/VIL homologues, suggesting that they might have retained some of their functions.

  19. Thrombospondin-1 up-regulates expression of cell adhesion molecules and promotes monocyte binding to endothelium

    PubMed Central

    Narizhneva, Natalya V.; Razorenova, Olga V.; Podrez, Eugene A.; Chen, Juhua; Chandrasekharan, Unni M.; DiCorleto, Paul E.; Plow, Edward F.; Topol, Eric J.; Byzova, Tatiana V.

    2006-01-01

    Expression of cell adhesion molecules (CAM) responsible for leukocyte-endothelium interactions plays a crucial role in inflammation and atherogenesis. Up-regulation of vascular CAM-1 (VCAM-1), intracellular CAM-1 (ICAM-1), and E-selectin expression promotes monocyte recruitment to sites of injury and is considered to be a critical step in atherosclerotic plaque development. Factors that trigger this initial response are not well understood. As platelet activation not only promotes thrombosis but also early stages of atherogenesis, we considered the role of thrombospondin-1 (TSP-1), a matricellular protein released in abundance from activated platelets and accumulated in sites of vascular injury, as a regulator of CAM expression. TSP-1 induced expression of VCAM-1 and ICAM-1 on endothelium of various origins, which in turn, resulted in a significant increase of monocyte attachment. This effect could be mimicked by a peptide derived from the C-terminal domain of TSP-1 and known to interact with CD47 on the cell surface. The essential role of CD47 in the cellular responses to TSP-1 was demonstrated further using inhibitory antibodies and knockdown of CD47 with small interfering RNA. Furthermore, we demonstrated that secretion of endogenous TSP-1 and its interaction with CD47 on the cell surface mediates endothelial response to the major proinflammatory agent, tumor necrosis factor α (TNF-α). Taken together, this study identifies a novel mechanism regulating CAM expression and subsequent monocyte binding to endothelium, which might influence the development of anti-atherosclerosis therapeutic strategies. PMID:15833768

  20. α1-Acid Glycoprotein Up-regulates CD163 via TLR4/CD14 Protein Pathway

    PubMed Central

    Komori, Hisakazu; Watanabe, Hiroshi; Shuto, Tsuyoshi; Kodama, Azusa; Maeda, Hitoshi; Watanabe, Kenji; Kai, Hirofumi; Otagiri, Masaki; Maruyama, Toru

    2012-01-01

    CD163, a scavenger receptor that is expressed at high levels in the monocyte-macrophage system, is a critical factor for the efficient extracellular hemoglobin (Hb) clearance during hemolysis. Because of the enormous detrimental effect of liberated Hb on our body by its ability to induce pro-inflammatory signals and tissue damage, an understanding of the molecular mechanisms associated with CD163 expression during the acute phase response is a central issue. We report here that α1-acid glycoprotein (AGP), an acute phase protein, the serum concentration of which is elevated under various inflammatory conditions, including hemolysis, up-regulates CD163 expression in both macrophage-like differentiated THP-1 (dTHP-1) cells and peripheral blood mononuclear cells in a time- and concentration-dependent manner. Moreover, the subsequent induction of Hb uptake was also observed in AGP-treated dTHP-1 cells. Among representative acute phase proteins such as AGP, α1-antitrypsin, C-reactive protein, and haptoglobin, only AGP increased CD163 expression, suggesting that AGP plays a specific role in the regulation of CD163. Consistently, the physiological concentrations of AGP induced CD163, and the subsequent induction of Hb uptake as well as the reduction of oxidative stress in plasma were observed in phenylhydrazine-induced hemolytic model mice, confirming the in vivo role of AGP. Finally, AGP signaling through the toll-like receptor-4 (TLR4) and CD14, the common innate immune receptor complex that normally recognizes bacterial components, was identified as a crucial stimulus that induces the autocrine regulatory loops of IL-6 and/or IL-10 via NF-κB, p38, and JNK pathways, which leads to an enhancement in CD163 expression. These findings provide possible insights into how AGP exerts anti-inflammatory properties against hemolysis-induced oxidative stress. PMID:22807450

  1. Protein Kinase Kinase 4–Mediated Inhibition of SKOV3ip.1 Ovarian Cancer Metastasis Involves Growth Arrest and p21 Up-regulation

    PubMed Central

    Lotan, Tamara; Hickson, Jonathan; Souris, Jeffrey; Huo, Dezheng; Taylor, Jennifer; Li, Terry; Otto, Kristen; Yamada, Seiko Diane; Macleod, Kay; Rinker-Schaeffer, Carrie W.

    2012-01-01

    In many patients without clinical metastases, cancer cells have already escaped from the primary tumor and entered a distant organ. A long-standing question in metastasis research is why some disseminated cancer cells fail to complete steps of metastatic colonization for extended periods of time. Our laboratory identified c-Jun NH2-terminal kinase activating kinase 1/mitogen-activated protein kinase kinase 4 (JNKK1/ MKK4) as a metastasis suppressor protein in a mouse xenograft model of experimental i.p. ovarian cancer metastasis. In this model, expression of JNKK1/MKK4 via activation of p38 delays formation of ≥1-mm implants and prolongs animal survival. Here, we elucidate the time course of this delay as well as the biological mechanisms underpinning it. Using the Gompertz function to model the net accumulation of experimental omental metastases, we show that MKK4-expressing implants arise, on average, 30 days later than controls. Quantitative real-time PCR shows that MKK4 expression does not have a substantial effect on the number of cancer cells initially adhering to the omentum, and terminal deoxyribonucleotidyl transferase–mediated dUTP nick end labeling analysis shows that there is no increase in apoptosis in these cells. Instead, immunohistochemical quantitation of cell cycle proteins reveals that MKK4-expressing cells fail to proliferate once they reach the omentum and up-regulate p21, a cell cycle inhibitor. Consistent with the time course data, in vitro kinase assays and in vivo passaging of cell lines derived from macroscopic metastases show that the eventual outgrowth of MKK4-expressing cells is not due to a discrete selection event. Rather, the population of MKK4-expressing cells eventually uniformly adapts to the consequences of up-regulated MKK4 signaling. PMID:18381422

  2. Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371.

    PubMed

    Bork, Simone; Horn, Patrick; Castoldi, Mirco; Hellwig, Isabelle; Ho, Anthony D; Wagner, Wolfgang

    2011-09-01

    Long-term culture of human mesenchymal stromal cells (MSC) has implications on their proliferation and differentiation potential and we have demonstrated that this is associated with up-regulation of the five microRNAs miR-29c, miR-369-5p, miR-371, miR-499, and let-7f. In this study, we examined the role of these senescence-associated microRNAs for cellular aging and differentiation of MSC. Proliferation was reduced upon transfection with miR-369-5p, miR-371, and miR-499. Adipogenic differentiation was impaired by miR-369-5p whereas it was highly increased by miR-371. This was accompanied by respective gene expression changes of some adipogenic key molecules (adiponectin and fatty acid-binding protein 4 [FABP4]). Furthermore luciferase reporter assay indicated that FABP4 is a direct target of miR-369-5p. Microarray analysis upon adipogenic or osteogenic differentiation revealed down-regulation of several microRNAs albeit miR-369-5p and miR-371 were not affected. Expression of the de novo DNA methyltransferases DNMT3A and DNMT3B was up-regulated by transfection of miR-371 whereas expression of DNMT3A was down-regulated by miR-369-5p. In summary, we identified miR-369-5p and miR-371 as antagonistic up-stream regulators of adipogenic differentiation and this might be indirectly mediated by epigenetic modifications.

  3. Early Hemostatic Responses to Trauma Identified Using Hierarchical Clustering Analysis

    PubMed Central

    White, N.J.; Contaifer, D.; Martin, E.J.; Newton, J.C.; Mohammed, B.M.; Bostic, J.L.; Brophy, G.M.; Spiess, B.D.; Pusateri, A.E.; Ward, K.R.; Brophy, D.F.

    2015-01-01

    Background Trauma-induced coagulopathy is a complex multifactorial hemostatic response that is poorly understood. Objectives Identify distinct hemostatic responses to trauma and identify key components of the hemostatic system that vary between responses. Patients/Methods Cross-sectional observational study of adult trauma patients at an urban Level I trauma center Emergency Department. Hierarchical clustering analysis was used to identify distinct clusters of similar subjects using vital signs, injury/shock severity, and by comprehensive assessment of coagulation, clot formation, platelet function, and thrombin generation. Results Of 84 total trauma patients included in the model, three distinct trauma clusters were identified. Cluster 1 (N=57) displayed platelet activation, preserved peak thrombin generation, plasma coagulation dysfunction, moderately decreased fibrinogen concentration, and normal clot formation relative to healthy controls. Cluster 2 (N=18) displayed platelet activation, preserved peak thrombin generation, and preserved fibrinogen concentration with normal clot formation. Cluster 3 (N=9) was the most severely injured and shocked and displayed a strong inflammatory and bleeding phenotype. Platelet dysfunction, thrombin inhibition, plasma coagulation dysfunction, and decreased fibrinogen concentration were present in this cluster. Fibrinolytic activation was present in all clusters, but increased more so in Cluster 3. Trauma clusters were different most noticeably in their relative fibrinogen concentration, peak thrombin generation, and platelet-induced clot contraction. Conclusions Hierarchical clustering analysis identified 3 distinct hemostatic responses to trauma. Further insight into the underlying hemostatic mechanisms responsible for these responses is needed. PMID:25816845

  4. Ciprofloxacin up-regulates tendon cells to express matrix metalloproteinase-2 with degradation of type I collagen.

    PubMed

    Tsai, Wen-Chung; Hsu, Chih-Chin; Chen, Carl P C; Chang, Hsiang-Ning; Wong, Alice M K; Lin, Miao-Sui; Pang, Jong-Hwei S

    2011-01-01

    Ciprofloxacin-induced tendinopathy and tendon rupture have been previously described, principally affecting the Achilles tendon. This study was designed to investigate the effect of ciprofloxacin on expressions of matrix metalloproteinases (MMP)-2 and -9, tissue inhibitors of metalloproteinase (TIMP)-1 and -2 as well as type I collagen in tendon cells. Tendon cells intrinsic to rat Achilles tendon were treated with ciprofloxacin and then underwent MTT (tetrazolium) assay. Real-time reverse-transcription polymerase chain reaction (RT-PCR) and Western blot analysis were used, respectively, to evaluate the gene and protein expressions of type I collagen, and MMP-2. Gelatin zymography was used to evaluate the enzymatic activities of MMP-2 and -9. Reverse zymography was used to evaluate TIMP-1 and -2. Immunohistochemical staining for MMP-2 in ciprofloxacin-treated tendon explants was performed. Collagen degradation was evaluated by incubation of conditioned medium with collagen. The results revealed that ciprofloxacin up-regulated the expression of MMP-2 in tendon cells at the mRNA and protein levels. Immunohistochemistry also confirmed the increased expressions of MMP-2 in ciprofloxacin-treated tendon explants. The enzymatic activity of MMP-2 was up-regulated whereas that of MMP-9, TIMP-1 or TIMP-2 was unchanged. The amount of secreted type I collagen in the conditioned medium decreased and type I collagen was degraded after ciprofloxacin treatment. In conclusion, ciprofloxacin up-regulates the expressions of MMP-2 in tendon cells and thus degraded type I collagen. These findings suggest a possible mechanism of ciprofloxacin-associated tendinopathy. Copyright © 2010 Orthopaedic Research Society.

  5. Up-regulation of heme oxygenase-1 contributes to the amelioration of aluminum-induced oxidative stress in Medicago sativa.

    PubMed

    Cui, Weiti; Zhang, Jing; Xuan, Wei; Xie, Yanjie

    2013-10-15

    In this report, pharmacological, histochemical and molecular approaches were used to investigate the effect of heme oxygenase-1 (HO-1) up-regulation on the alleviation of aluminum (Al)-induced oxidative stress in Medicago sativa. Exposure of alfalfa to AlCl3 (0-100 μM) resulted in a dose-dependent inhibition of root elongation as well as the enhancement of thiobarbituric acid reactive substances (TBARS) content. 1 and 10 μM (in particular) Al(3+) increased alfalfa HO-1 transcript or its protein level, and HO activity in comparison with the decreased changes in 100 μM Al-treated samples. After recuperation, however, TBARS levels in 1 and 10 μM Al-treated alfalfa roots returned to control values, which were accompanied with the higher levels of HO activity. Subsequently, exogenous CO, a byproduct of HO-1, could substitute for the cytoprotective effects of the up-regulation of HO-1 in alfalfa plants upon Al stress, which was confirmed by the alleviation of TBARS and Al accumulation, as well as the histochemical analysis of lipid peroxidation and loss of plasma membrane integrity. Theses results indicated that endogenous CO generated via heme degradation by HO-1 could contribute in a critical manner to its protective effects. Additionally, the pretreatments of butylated hydroxytoluene (BHT) and hemin, an inducer of HO-1, exhibited the similar cytoprotective roles in the alleviation of oxidative stress, both of which were impaired by the potent inhibitor of HO-1, zinc protoporphyrin IX (ZnPP). However, the Al-induced inhibition of root elongation was not influenced by CO, BHT and hemin, respectively. Together, the present results showed up-regulation of HO-1 expression could act as a mechanism of cell protection against oxidative stress induced by Al treatment.

  6. Linc-ROR and its spliced variants 2 and 4 are significantly up-regulated in esophageal squamous cell carcinoma

    PubMed Central

    Sahebi, Reza; Malakootian, Mahshid; Balalaee, Baharak; Shahryari, Alireza; Khoshnia, Masoud; Abbaszadegan, Mohammad Reza; Moradi, Abdolvahab; Javad Mowla, Seyed

    2016-01-01

    Objective(s): Similar characteristics of molecular pathways between cellular reprogramming events and tumorigenesis have been accentuated in recent years. Reprogramming-related transcription factors, also known as Yamanaka factors (OCT4, SOX2, KLF4, and c-MYC), are also well-known oncogenes promoting cancer initiation, progression, and cellular transformation into cancer stem cells. Long non-coding RNAs (lncRNAs) are a major class of RNA molecules with emerging roles in stem cell pluripotency, cellular reprogramming, cellular transformation, and tumorigenesis. The long intergenic non-coding RNA ROR (lincRNA-ROR, linc-ROR) acts as a regulator of cellular reprograming through sponging miR-145 that normally negatively regulates the expression of the stemness factors NANOG, OCT4, and SOX2. Materials and Methods: Here, we employed a real-time PCR approach to determine the expression patterns of linc-ROR and its two novel spliced variants (variants 2 and 4) in esophageal squamous cell carcinoma (ESCC). Results: The quantitative real-time RT-PCR results revealed a significant up-regulation of linc-ROR (P=0.0098) and its variants 2 (P=0.0250) and 4 (P=0.0002) in tumor samples of ESCC, compared to their matched non-tumor tissues obtained from the margin of same tumors. Our data also demonstrated a significant up-regulation of variant 4 in high-grade tumor samples, in comparison to the low-grade ones (P=0.04). Moreover, the ROC curve analysis demonstrated that the variant 4 of ROR has a potential to discriminate between tumor and non-tumor samples (AUC=0.66, P<0.05). Conclusion: Our data suggest a significant up-regulation of linc-ROR and its variants 2 and 4 in ESCC tissue samples. PMID:27872710

  7. Induction of delta opioid receptor function by up-regulation of membrane receptors in mouse primary afferent neurons.

    PubMed

    Walwyn, Wendy; Maidment, Nigel T; Sanders, Matthew; Evans, Christopher J; Kieffer, Brigitte L; Hales, Tim G

    2005-12-01

    It is not clear whether primary afferent neurons express functional cell-surface opioid receptors. We examined delta receptor coupling to Ca2+ channels in mouse dorsal root ganglion neurons under basal conditions and after receptor up-regulation. [D-Ala2,Phe4,Gly5-ol]-enkephalin (DAMGO), [D-Ala2,D-Leu5]-enkephalin (DADLE), trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]cyclohexyl) benzene-acetamide methanesulfonate (U-50,488H; 1 microM), and baclofen (50 microM) inhibited Ca2+ currents, whereas the -selective ligands [D-Pen2,Pen5]-enkephalin (DPDPE) and deltorphin II (1 microM) did not. The effect of DADLE (1 microM) was blocked by the mu-antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 300 nM) but not by the -antagonist Tyr-1,2,3,4-tetrahydroisoquinoline-Phe-Phe-OH (300 nM), implicating mu receptors. Despite a lack of functional delta receptors, flow cytometry revealed cell-surface receptors. We used this approach to identify conditions that up-regulate receptors, including mu receptor gene deletion in dorsal root ganglion neurons of mu-/- mice and 18-h incubation of mu+/+ neurons with CTAP followed by brief (10-min) DPDPE exposure. Under these conditions, the expression of cell-surface delta receptors was up-regulated to 149 +/- 9 and 139 +/- 5%, respectively; furthermore, DPDPE and deltorphin II (1 microM) inhibited Ca2+ currents in both cases. Viral replacement of mu receptors in mu-/- neurons reduced delta receptor expression to mu+/+ levels, restored the inhibition of Ca2+ currents by DAMGO, and abolished receptor coupling. Our observations suggest that receptor-Ca2+ channel coupling in primary afferent fibers may have little functional significance under basal conditions in which mu receptors predominate. However, up-regulation of cell-surface delta receptors induces their coupling to Ca2+ channels. Pharmacological approaches that increase functional delta receptor expression may reveal a novel target for analgesic therapy.

  8. Dietary pectin up-regulates monocaboxylate transporter 1 in the rat gastrointestinal tract.

    PubMed

    Kirat, Doaa; Kondo, Koji; Shimada, Ritsu; Kato, Seiyu

    2009-04-01

    This work was undertaken to study the effect of pectin feeding on the expression level, cellular localization and functional activity of monocarboxylate transporter 1 (MCT1) in the gastrointestinal tract of rats. The results indicated that MCT1 protein level was significantly increased along the entire length of the gastrointestinal tract of pectin-fed rats in comparison with control animals. Immunohistochemical analysis revealed an increase in MCT1 in the stratified squamous epithelia of the forestomach as well as in the basolateral membranes of the cells lining the gastric pit of the glandular stomach of pectin-fed rats when compared with control animals. The parietal cells, which showed barely any or no detectable MCT1 in the control group, exhibited a strong intensity of MCT1 on the basolateral membranes in pectin-fed rats. In the small intestine of pectin-fed rats, strong immunopositivity for MCT1 was detected in the brush border and basolateral membranes of the absorptive enterocytes lining the entire villi, while in control rats, weak reactivity was detected on the brush border membrane in a few absorptive enterocytes in the villus tip. In the large intestine of control animals, MCT1 was detected on the basolateral membranes of the epithelia lining the caecum and colon. This staining intensity was markedly increased in pectin-fed rats, along with the appearance of strong reactivity for MCT1 on the apical membranes of the surface and crypt epithelia of caecum and colon. Our results also showed that MCT1 co-localizes with its chaperone, basigin (CD147), in the rat gastrointestinal tract, and that the pectin feeding increased the expression of CD147. In vivo functional studies revealed an enhanced acetate absorption in the colon of pectin-fed in comparison with control animals. We conclude that MCT1 is up-regulated along the gastrointestinal tract of pectin-fed rats, which might represent an adaptive response to the increased availability of its substrates.

  9. Gallium arsenide selectively up-regulates inflammatory cytokine expression at exposure site.

    PubMed

    Becker, Stephen M; McCoy, Kathleen L

    2003-12-01

    Gallium arsenide (GaAs), a technologically and economically important semiconductor, is widely utilized in both military and commercial applications. This chemical is a potential health hazard as a carcinogen and immunotoxicant. We previously reported that macrophages at the exposure site exhibit characteristics of activation. In vitro culture of macrophages with GaAs fails to recapitulate the in vivo phenotype, suggesting that complete GaAs-mediated activation in vivo may require other cells or components found in the body's microenvironment. Our present study examined the role of cytokines upon GaAs-mediated macrophage activation. Intraperitoneal administration of GaAs elicited rapid specific recruitment of blood monocytes to the exposure site. This recruitment occurred concomitant with up-regulation of 17 chemokine and inflammatory cytokine mRNAs, while transcripts of three inhibitory cytokines diminished. Administration of latex beads caused less cytokine induction than GaAs, indicating that changes in mRNA levels could not be attributed to phagocytosis. Four representative chemokines and cytokines were selected for further analysis. Increased cytokine mRNA expression was paralleled by similar increases in cytokine protein levels, and secreted protein products were detected in peritoneal fluid. Cytokine protein expression was constrained to myeloid cells, and to a lesser extent to B cells. Alterations in patterns of cytokine gene expression elucidate mechanisms for increased cellular activation and antigen processing, and modulation of the inflammatory response. Our findings indicate that in vivo GaAs exposure alters cytokine gene expression, which may lead to an inflammatory reaction and contribute to pathological tissue damage.

  10. Apigenin suppresses the growth of colorectal cancer xenografts via phosphorylation and up-regulated FADD expression.

    PubMed

    Wang, Qi Rui; Yao, Xue Qing; Wen, Ge; Fan, Qin; Li, Ying-Jia; Fu, Xiu Qiong; Li, Chang Ke; Sun, Xue Gang

    2011-01-01

    Apigenin is a flavonoid belonging to the flavone structural class. It has been implicated as a chemopreventive agent against prostate and breast cancers. However, to the best of our knowledge, no published data are available regarding apigenin in colorectal cancer (CRC). The effects and mechanisms of apigenin on CRC may vary significantly. This study aimed to analyze the effects of apigenin on the growth of CRC xenografts in nude mice derived from SW480, as well as to investigate the underlying mechanisms. Whole-body fluorescence imaging is an inexpensive optical system used to visualize gene expression in small mammals using reporter genes, such as eGFP as a reporter. In our study, the expression of eGFP may reflect the size of the tumor. A terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay showed that apigenin promoted the apoptosis of CRC cells. Furthermore, the expression of five genes related to the proliferation and apoptosis of CRC, i.e., cyclin D1, BAG-1, Bcl-2, yrdC and Fas-associated protein with death domain (FADD), was detected by real-time quantitative RT-PCR. Among these genes, the up-regulated expression of FADD was noted in CRC xenograft tumors treated with apigenin. Immunohistochemistry and Western blotting confirmed the results at the protein level. Furthermore, Western blot analysis showed that apigenin induced the phosphorylation of FADD. Our findings suggest that apigenin enhances the expression of FADD and induces its phosphorylation, which may cause apoptosis of CRC cells and inhibition of tumor growth.

  11. Didymin Induces Apoptosis by Inhibiting N-Myc and up regulating RKIP in Neuroblastoma

    PubMed Central

    Singhal, Jyotsana; Nagaprashantha, Lokesh Dalasanur; Vatsyayan, Rit; Singhal, Ashutosh; Awasthi, Sanjay; Singhal, Sharad S

    2011-01-01

    Neuroblastomas arise from the neural crest cells and represent the most common solid tumors outside the nervous system in children. The amplification of N-Myc plays a primary role in the pathogenesis of neuroblastomas whereas acquired mutations of p53 lead to refractory and relapsed cases of neuroblastomas. In this regard, dietary compounds which can target N-Myc and exert anti-cancer effects independent of p53 status acquire significance in the management of neuroblastomas. Hence, we investigated the anti-cancer properties of the flavonoid didymin in neuroblastomas. Didymin effectively inhibited proliferation and induced apoptosis irrespective of p53 status in neuroblastomas. Didymin down regulated PI3K, pAkt, Akt, vimentin and up regulated RKIP levels. Didymin induced G2/M arrest along with decreasing the levels of cyclin D1, CDK4 and cyclin B1. Importantly, didymin inhibited NMyc as confirmed at protein, mRNA and transcriptional level by promoter-reporter assays. HPLC analysis of didymin (2 mg/kg b.w.) treated mice serum revealed effective oral absorption with free didymin concentration of 2.1 μM. Further in vivo mice xenograft studies revealed that didymin (2 mg/kg b.w.) treated animals had significant reductions in tumors size compared to controls. Didymin strongly inhibited the proliferation (Ki67) and angiogenesis (CD31) markers as well as N-Myc expression as revealed by the histopathological examination of paraffin embedded section of resected tumors. Collectively, our in vitro and in vivo studies elucidated the anti-cancer properties and mechanisms of action of a novel, orally active and palatable flavonoid didymin which makes it a potential new approach for neuroblastoma therapy (NANT) to target pediatric neuroblastomas. PMID:22174364

  12. Modified AS1411 Aptamer Suppresses Hepatocellular Carcinoma by Up-Regulating Galectin-14

    PubMed Central

    Lee, Jeong-Hoon; Lee, Dong Hyeon; Cho, Eun Ju; Yu, Su Jong; Kim, Yoon Jun; Kim, Jong In; Im, Jong Hun; Lee, Jung Hwan; Oh, Eun Ju; Yoon, Jung-Hwan

    2016-01-01

    Aptamers are small synthetic oligonucleotides that bind to target proteins with high specificity and affinity. AS1411 is an aptamer that binds to nucleolin, which is overexpressed in the cytoplasm and occurs on the surface of cancer cells. We investigated the therapeutic potential of aptamers in hepatocellular carcinoma (HCC) by evaluating anti-tumor effects and confirming the affinity and specificity of AS1411- and modified AS1411-aptamers in HCC cells. Cell growth was assessed using the MTS assay, and cell death signaling was explored by immunoblot analysis. Fluorescence-activated cell sorting was performed to evaluate the affinity and specificity of AS1411-aptamers in SNU-761 HCC cells. We investigated the in vivo effects of the AS1411-aptamer using BALB/c nude mice in a subcutaneous xenograft model with SNU-761 cells. Treatment with a modified AS1411-aptamer significantly decreased in vitro (under normoxic [P = 0.035] and hypoxic [P = 0.018] conditions) and in vivo (under normoxic conditions, P = 0.041) HCC cell proliferation compared to control aptamers. AS1411- and control aptamers failed to control HCC cell proliferation. However, AS1411- and the modified AS1411-aptamer did not induce caspase activation. Decrease in cell growth by AS1411 or modified AS1411 was not prevented by caspase or necrosis inhibitors. In a microarray, AS1411 significantly enhanced galectin-14 expression. Suppression of HCC cell proliferation by the modified AS1411-aptamer was attenuated by galectin-14 siRNA transfection. Modified AS1411-aptamer suppressed HCC cell growth in vitro and in vivo by up-regulating galectin-14 expressions. Modified AS1411-aptamers may have therapeutic potential as a novel targeted therapy for HCC. PMID:27494117

  13. Analysis of gene expression profiles between apical papilla tissues, stem cells from apical papilla and cell sheet to identify the key modulators in MSCs niche.

    PubMed

    Diao, Shu; Lin, Xiao; Wang, Liping; Dong, Rui; Du, Juan; Yang, Dongmei; Fan, Zhipeng

    2017-06-01

    The microenvironmental niche plays the key role for maintaining the cell functions. The stem cells from apical papilla (SCAPs) are important for tooth development and regeneration. However, there is limited knowledge about the key factors in niche for maintaining the function of SCAPs. In this study, we analyse the gene expression profiles between apical papilla tissues, SCAPs and SCAPs cell sheet to identify the key genes in SCAPs niche. Microarray assays and bioinformatic analysis were performed to screen the differential genes between apical papilla tissues and SCAPs, and SCAPs and SCAPs cell sheet. Recombinant human BMP6 protein was used in SCAPs. Then CCK-8 assay, CFSE assay, alkaline phosphatase activity, alizarin red staining, quantitative calcium analysis and real-time reverse transcriptase-polymerase chain reaction were performed to investigate the cell proliferation and differentiation potentials of SCAPs. Microarray analysis found that 846 genes were up-regulated and 1203 genes were down-regulated in SCAPs compared with apical papilla tissues. While 240 genes were up-regulated and 50 genes were down-regulated in SCAPs compared to in SCAPs cell sheet. Moreover, only 31 gene expressions in apical papilla tissues were recovered in cell sheet compared with SCAPs. Bioinformatic analysis identified that TGF-β, WNT and MAPK signalling pathways may play an important role in SCAPs niche. Based on the analysis, we identified one key growth factor in niche, BMP6, which could enhance the cell proliferation, the osteo/dentinogenic, neurogenic and angiogenic differentiation potentials of SCAPs. Our results provided insight into the mechanisms of the microenvironmental niche which regulate the function of SCAPs, and identified the key candidate genes in niche to promote mesenchymal stem cells-mediated dental tissue regeneration. © 2017 John Wiley & Sons Ltd.

  14. Bordetella pertussis infection of human respiratory epithelial cells up-regulates intercellular adhesion molecule-1 expression: role of filamentous hemagglutinin and pertussis toxin.

    PubMed

    Ishibashi, Yoshio; Nishikawa, Akemi

    2002-09-01

    Adhesion molecules on respiratory epithelial cells play a critical role in inflammatory cell recruitment and accumulation at sites of inflammation. Bordetella pertussis colonizes the human respiratory tract by infecting epithelial cells, leading to an inflammatory response. In this study, the role of bacterial factors in the expression of intercellular adhesion molecule-1 (ICAM-1) on human respiratory epithelial cells was investigated in response to B. pertussis. Flow cytometry and real time RT-PCR analysis showed that BEAS-2B human bronchial epithelial cells expressed increased levels of ICAM-1 mRNA and surface protein in response to B. pertussis infection. Filamentous hemagglutinin (FHA) played a role in this response because of the impaired capability of a FHA-deficient isogenic strain. A mutant strain in which an Arg-Gly-Asp (RGD) site of FHA had been changed to Arg-Ala-Asp had diminished ability to up-regulate ICAM-1 expression. RGD sequence-associated up-regulation of ICAM-1 expression was also observed in primary normal human bronchial epithelial cells. Pretreatment of cells with integrin antagonists such as RGD-containing peptide and antibody against very late antigen-5 (VLA-5) inhibited the up-regulation of ICAM-1 expression, suggesting the participation of VLA-5 integrin in this response. Pertussis toxin (PT) prevented the up-regulation of ICAM-1 expression because a PT-deficient mutant strain induced higher levels of ICAM-1 mRNA and surface protein than the parental strain. Consistent with this, purified PT suppressed the up-regulation of epithelial ICAM-1 expression. These findings demonstrate that B. pertussis FHA up-regulates ICAM-1 expression on respiratory epithelial cells through interaction of its RGD site with host cell VLA-5 integrin, and that PT impairs this response.

  15. MDP up-regulates the gene expression of type I interferons in human aortic endothelial cells.

    PubMed

    Lv, Qingshan; Yang, Mei; Liu, Xueting; Zhou, Lina; Xiao, Zhilin; Chen, Xiaobin; Chen, Meifang; Xie, Xiumei; Hu, Jinyue

    2012-03-23

    Muramyldipeptide (MDP), the minimum essential structure responsible for the immuno-adjuvant activity of peptidoglycan, is recognized by intracellular nuclear-binding oligomerization domain 2 (NOD2). Here, we obtained evidence that the treatment of human aortic endothelial cells (HAECs) with MDP up-regulated the gene expression of type I interferons in a dose- and time-dependent manner. MDP also up-regulated the expression of the receptor NOD2, suggesting that MDP may induce a positive feedback response. The up-regulation of interferons was not dependent on the TNFa signaling, as HAECs did not express TNFa with the stimulation of MDP, and TNFa neutralizing antibody did not decrease the induction of IFNs induced by MDP. RT-PCR results showed that HAECs expressed the gene transcripts of interferon regulatory factor (IRF) 1, 2, 3, 9. The western blot results showed that MDP induced the phosphorylation of IRF3. These results suggested that MDP induced the up-regulation of gene transcript of interferons through the activation of IRF3 signaling pathway. Meanwhile, MDP induced the gene expression of pro-inflammatory cytokines, including IL-1ß, IL-8, and MCP-1. Taken together, these results suggested that HAECs may play roles in the anti-infection immune response and in the induction of innate immunity.

  16. Up-regulated miR-145 Expression Inhibits Porcine Preadipocytes Differentiation by Targeting IRS1

    PubMed Central

    Guo, Yunxue; Chen, Yaosheng; Zhang, Yun; Zhang, Yue; Chen, Luxi; Mo, Delin

    2012-01-01

    Generally, most miRNAs that were up-regulated during differentiation promoted adipogenesis, but our research indicated that up-regulation of miR-145 in porcine preadipocytes did not promote but inhibit adipogenesis. In this study, miR-145 was significantly up-regulated during porcine dedifferentiated fat (DFAT) cells differentiation. In miR-145 overexpressed DFAT cells, adipogenesis was inhibited and triglycerides accumulation was decreased after hormone stimulation (P<0.05). Furthermore, up-regulation of miR-145 expression repressed induction of mRNA levels of adipogenic markers, such as CCAAT/enhancer-binding protein α (C/EBPα), and peroxisome proliferator-activated receptor γ2 (PPARγ2). These effects caused by miR-145 overexpression were mediated by Insulin receptor substrate 1 (IRS1) as a mechanism. These data suggested that induced miR-145 expression during differentiation could inhibit adipogenesis by targeting IRS1, and miR-145 may be novel agent for adipose tissue engineering. PMID:23197937

  17. Up-regulated miR-145 expression inhibits porcine preadipocytes differentiation by targeting IRS1.

    PubMed

    Guo, Yunxue; Chen, Yaosheng; Zhang, Yun; Zhang, Yue; Chen, Luxi; Mo, Delin

    2012-01-01

    Generally, most miRNAs that were up-regulated during differentiation promoted adipogenesis, but our research indicated that up-regulation of miR-145 in porcine preadipocytes did not promote but inhibit adipogenesis. In this study, miR-145 was significantly up-regulated during porcine dedifferentiated fat (DFAT) cells differentiation. In miR-145 overexpressed DFAT cells, adipogenesis was inhibited and triglycerides accumulation was decreased after hormone stimulation (P<0.05). Furthermore, up-regulation of miR-145 expression repressed induction of mRNA levels of adipogenic markers, such as CCAAT/enhancer-binding protein α (C/EBPα), and peroxisome proliferator-activated receptor γ2 (PPARγ2). These effects caused by miR-145 overexpression were mediated by Insulin receptor substrate 1 (IRS1) as a mechanism. These data suggested that induced miR-145 expression during differentiation could inhibit adipogenesis by targeting IRS1, and miR-145 may be novel agent for adipose tissue engineering.

  18. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma

    PubMed Central

    Shahrabi-Farahani, Shokoufeh; Gallottini, Marina; Martins, Fabiana; Li, Erik; Mudge, Dayna R.; Nakayama, Hironao; Hida, Kyoko; Panigrahy, Dipak; D'Amore, Patricia A.; Bielenberg, Diane R.

    2017-01-01

    Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells. PMID:26877262

  19. Cotton Benzoquinone Reductase: Up-regulation During Early Cotton Fiber Developement

    USDA-ARS?s Scientific Manuscript database

    Benzoquinone reductase (BR; EC 1.6.5.7) is an enzyme that catalyzes the bivalent redox reactions of quinones without the production of free radical intermediates. Using 2-D PAGE comparisons, two proteins were found to be up-regulated in wild-type cotton ovules during the fiber initiation stage but ...

  20. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma.

    PubMed

    Shahrabi-Farahani, Shokoufeh; Gallottini, Marina; Martins, Fabiana; Li, Erik; Mudge, Dayna R; Nakayama, Hironao; Hida, Kyoko; Panigrahy, Dipak; D'Amore, Patricia A; Bielenberg, Diane R

    2016-04-01

    Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells.

  1. Executive functions and the down-regulation and up-regulation of emotion

    PubMed Central

    Gyurak, Anett; Goodkind, Madeleine S.; Kramer, Joel H.; Miller, Bruce L.; Levenson, Robert W.

    2011-01-01

    This study examined the relationship between individual differences in executive functions (EF; assessed by measures of working memory, Stroop, trail making, and verbal fluency) and ability to down-regulate and up-regulate responses to emotionally evocative film clips. To ensure a wide range of EF, 48 participants with diverse neurodegenerative disorders and 21 older neurologically normal aging participants were included. Participants were exposed to three different movie clips that were designed to elicit a mix of disgust and amusement. While watching the films they were either instructed to watch, down-regulate, and up-regulate their visible emotional responses. Heart-rate and facial behaviors were monitored throughout. Emotion regulatory ability was operationalized as changes in heart-rate and facial behavior in the down- and up-regulation conditions, controlling for responses in the watch condition. Results indicated that higher verbal fluency scores were related to greater ability to regulate emotion in both the down-regulation and up-regulation conditions. This finding remained significant even after controlling for age and general cognitive functioning. No relationships were found between emotion regulation and the other EF measures. We believe these results derive from differences among EF measures, with verbal fluency performance best capturing the complex sequence of controlled planning, activation, and monitoring required for successful emotion regulation. These findings contribute to our understanding of emotion-cognition interaction, suggesting a link between emotion-regulatory abilities and individual differences in complex executive functions. PMID:21432634

  2. Using factor analysis to identify neuromuscular synergies during treadmill walking

    NASA Technical Reports Server (NTRS)

    Merkle, L. A.; Layne, C. S.; Bloomberg, J. J.; Zhang, J. J.

    1998-01-01

    Neuroscientists are often interested in grouping variables to facilitate understanding of a particular phenomenon. Factor analysis is a powerful statistical technique that groups variables into conceptually meaningful clusters, but remains underutilized by neuroscience researchers presumably due to its complicated concepts and procedures. This paper illustrates an application of factor analysis to identify coordinated patterns of whole-body muscle activation during treadmill walking. Ten male subjects walked on a treadmill (6.4 km/h) for 20 s during which surface electromyographic (EMG) activity was obtained from the left side sternocleidomastoid, neck extensors, erector spinae, and right side biceps femoris, rectus femoris, tibialis anterior, and medial gastrocnemius. Factor analysis revealed 65% of the variance of seven muscles sampled aligned with two orthogonal factors, labeled 'transition control' and 'loading'. These two factors describe coordinated patterns of muscular activity across body segments that would not be evident by evaluating individual muscle patterns. The results show that factor analysis can be effectively used to explore relationships among muscle patterns across all body segments to increase understanding of the complex coordination necessary for smooth and efficient locomotion. We encourage neuroscientists to consider using factor analysis to identify coordinated patterns of neuromuscular activation that would be obscured using more traditional EMG analyses.

  3. Using factor analysis to identify neuromuscular synergies during treadmill walking

    NASA Technical Reports Server (NTRS)

    Merkle, L. A.; Layne, C. S.; Bloomberg, J. J.; Zhang, J. J.

    1998-01-01

    Neuroscientists are often interested in grouping variables to facilitate understanding of a particular phenomenon. Factor analysis is a powerful statistical technique that groups variables into conceptually meaningful clusters, but remains underutilized by neuroscience researchers presumably due to its complicated concepts and procedures. This paper illustrates an application of factor analysis to identify coordinated patterns of whole-body muscle activation during treadmill walking. Ten male subjects walked on a treadmill (6.4 km/h) for 20 s during which surface electromyographic (EMG) activity was obtained from the left side sternocleidomastoid, neck extensors, erector spinae, and right side biceps femoris, rectus femoris, tibialis anterior, and medial gastrocnemius. Factor analysis revealed 65% of the variance of seven muscles sampled aligned with two orthogonal factors, labeled 'transition control' and 'loading'. These two factors describe coordinated patterns of muscular activity across body segments that would not be evident by evaluating individual muscle patterns. The results show that factor analysis can be effectively used to explore relationships among muscle patterns across all body segments to increase understanding of the complex coordination necessary for smooth and efficient locomotion. We encourage neuroscientists to consider using factor analysis to identify coordinated patterns of neuromuscular activation that would be obscured using more traditional EMG analyses.

  4. Network Inference Analysis Identifies an APRR2-Like Gene Linked to Pigment Accumulation in Tomato and Pepper Fruits1[W][OA

    PubMed Central

    Pan, Yu; Bradley, Glyn; Pyke, Kevin; Ball, Graham; Lu, Chungui; Fray, Rupert; Marshall, Alexandra; Jayasuta, Subhalai; Baxter, Charles; van Wijk, Rik; Boyden, Laurie; Cade, Rebecca; Chapman, Natalie H.; Fraser, Paul D.; Hodgman, Charlie; Seymour, Graham B.

    2013-01-01

    Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening. PMID:23292788

  5. Identifying influential factors of business process performance using dependency analysis

    NASA Astrophysics Data System (ADS)

    Wetzstein, Branimir; Leitner, Philipp; Rosenberg, Florian; Dustdar, Schahram; Leymann, Frank

    2011-02-01

    We present a comprehensive framework for identifying influential factors of business process performance. In particular, our approach combines monitoring of process events and Quality of Service (QoS) measurements with dependency analysis to effectively identify influential factors. The framework uses data mining techniques to construct tree structures to represent dependencies of a key performance indicator (KPI) on process and QoS metrics. These dependency trees allow business analysts to determine how process KPIs depend on lower-level process metrics and QoS characteristics of the IT infrastructure. The structure of the dependencies enables a drill-down analysis of single factors of influence to gain a deeper knowledge why certain KPI targets are not met.

  6. Extensive polymorphism in Cryptosporidium parvum identified by multilocus microsatellite analysis.

    PubMed

    Feng, X; Rich, S M; Akiyoshi, D; Tumwine, J K; Kekitiinwa, A; Nabukeera, N; Tzipori, S; Widmer, G

    2000-08-01

    Restriction fragment length polymorphism and DNA sequence analysis discern two main types of Cryptosporidium parvum. We present a survey of length polymorphism at several microsatellite loci for type 1 and type 2 isolates. A total of 14 microsatellite loci were identified from C. parvum DNA sequences deposited in public databases. All repeats were mono-, di-, and trinucleotide repeats of A, AT, and AAT, reflecting the high AT content of the C. parvum genome. Several of these loci showed significant length polymorphism, with as many as seven alleles identified for a single locus. Differences between alleles ranged from 1 to 27 bp. Karyotype analysis using probes flanking three microsatellites localized each marker to an individual chromosomal band, suggesting that these markers are single copy. In a sample of 19 isolates for which at least three microsatellites were typed, a majority of isolates displayed a unique multilocus fingerprint. Microsatellite analysis of isolates passaged between different host species identified genotypic changes consistent with changes in parasite populations.

  7. Sucrose prevents up-regulation of senescence-associated genes in carnation petals.

    PubMed

    Hoeberichts, Frank A; van Doorn, Wouter G; Vorst, Oscar; Hall, Robert D; van Wordragen, Monique F

    2007-01-01

    cDNA microarrays were used to characterize senescence-associated gene expression in petals of cut carnation (Dianthus caryophyllus) flowers, sampled from anthesis to the first senescence symptoms. The population of PCR fragments spotted on these microarrays was enriched for flower-specific and senescence-specific genes, using subtractive hybridization. About 90% of the transcripts showed a large increase in quantity, approximately 25% transiently, and about 65% throughout the 7 d experiment. Treatment with silver thiosulphate (STS), which blocks the ethylene receptor and prevented the normal senescence symptoms, prevented the up-regulation of almost all of these genes. Sucrose treatment also considerably delayed visible senescence. Its effect on gene expression was very similar to that of STS, suggesting that soluble sugars act as a repressor of ethylene signal transduction. Two fragments that encoded a carnation EIN3-like (EIL) protein were isolated, some of which are key transcription factors that control ethylene response genes. One of these (Dc-EIL3) was up-regulated during senescence. Its up-regulation was delayed by STS and prevented by sucrose. Sucrose, therefore, seems to repress ethylene signalling, in part, by preventing up-regulation of Dc-EIL3. Some other transcription factors displayed an early increase in transcript abundance: a MYB-like DNA binding protein, a MYC protein, a MADS-box factor, and a zinc finger protein. Genes suggesting a role in senescence of hormones other than ethylene encoded an Aux/IAA protein, which regulate transcription of auxin-induced genes, and a cytokinin oxidase/dehydrogenase, which degrades cytokinin. Taken together, the results suggest a master switch during senescence, controlling the co-ordinated up-regulation of numerous ethylene response genes. Dc-EIL3 might be (part of) this master switch.

  8. The emerging role of m-TOR up-regulation in brain Astrocytoma.

    PubMed

    Ryskalin, Larisa; Limanaqi, Fiona; Biagioni, Francesca; Frati, Alessandro; Esposito, Vincenzo; Calierno, Maria Teresa; Lenzi, Paola; Fornai, Francesco

    2017-05-01

    The present manuscript is an overview of various effects of mTOR up-regulation in astrocytoma with an emphasis on its deleterious effects on the proliferation of Glioblastoma Multiforme. The manuscript reports consistent evidence indicating the occurrence of mTOR up-regulation both in experimental and human astrocytoma. The grading of human astrocytoma is discussed in relationship with mTOR up-regulation. In the second part of the manuscript, the biochemical pathways under the influence of mTOR are translated to cell phenotypes which are generated by mTOR up-regulation and reverted by its inhibition. A special section is dedicated to the prominent role of autophagy in mediating the effects of mTOR in glioblastoma. In detail, autophagy inhibition produced by mTOR up-regulation determines the fate of cancer stem cells. On the other hand, biochemical findings disclose the remarkable effects of autophagy activators as powerful inducers of cell differentiation with a strong prevalence towards neuronal phenotypes. Thus, mTOR modulation acts on the neurobiology of glioblastoma just like it operates in vivo at the level of brain stem cell niches by altering autophagy-dependent cell differentiation. In the light of such a critical role of autophagy we analyzed the ubiquitin proteasome system. The merging between autophagy and proteasome generates a novel organelle, named autophagoproteasome which is strongly induced by mTOR inhibitors in glioblastoma cells. Remarkably, when mTOR is maximally inhibited the proteasome component selectively moves within autophagy vacuoles, thus making the proteasome activity dependent on the entry within autophagy compartment.

  9. Up-regulation of Fas (CD95) expression in tumour cells in vivo

    PubMed Central

    Peshes-Yaloz, Naama; Rosen, Dalia; Sondel, Paul M; Krammer, Peter H; Berke, Gideon

    2007-01-01

    Both the function and regulation of Fas expression in tumours is poorly understood. Our laboratory has reported that cultured, low Fas-expressing tumours undergo massive, yet reversible, up-regulation of cell surface Fas expression when injected into mice. The present study was aimed at determining what causes this enhanced Fas expression and whether the newly expressed Fas functions as a death receptor. Newly expressed Fas is indeed capable of inducing apoptosis. Based on our observation that Fas induction is reduced when tumour cells are injected into immune-deficient mice, we propose that Fas up-regulation in vivo involves the host's immune system. Accordingly, Fas up-regulation occurs in vitro when low Fas-expressing tumour cells are cocultured with lymphoid cells. Furthermore ascitic fluid extracted from tumour-bearing mice trigger Fas up-regulation in low Fas expressing tumours. This last finding suggests that a soluble factor(s) mediates induction of Fas expression. The best candidate for this soluble factor is nitric oxide (NO) based on the following observations: the factor in the ascites is unstable; Fas expression is induced to a lesser degree after injection into inducible NO synthase (NOS)-deficient (iNOS–/–) mice when compared to control mice; similarly, coculture with iNOS–/– splenocytes induces Fas less effectively than coculture with control splenocytes; and finally, the NO donor SNAP induces considerable Fas up-regulation in tumours in vitro. Our model is that host lymphoid cells in response to a tumour increase NO synthesis, which in turn causes enhanced Fas expression in the tumour. PMID:17343612

  10. Differentially expressed immune-related genes in hemocytes of the pearl oyster Pinctada fucata against allograft identified by transcriptome analysis.

    PubMed

    Wei, Jinfen; Liu, Baosuo; Fan, Sigang; Li, Haimei; Chen, Mingqiang; Zhang, Bo; Su, Jiaqi; Meng, Zihao; Yu, Dahui

    2017-03-01

    The pearl oyster Pinctada fucata is commonly cultured for marine pearls in China. To culture pearls, a mantle piece from a donor pearl oyster is grafted with a nucleus into a receptor. This transplanted mantle piece may be rejected by the immune system of the recipient oyster, thus reducing the success of transplantation. However, there have been limited studies about the oyster's immune defense against allograft. In this study, hemocyte transcriptome analysis was performed to detect the immune responses to allograft in P. fucata at 0 h and 48 h after a transplant. The sequencing reaction produced 92.5 million reads that were mapped against the reference genome sequences of P. fucata. The Gene Ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to identify all immune-related differentially expressed genes (DEGs). Compared with patterns at 0 h, a total of 798 DEGs were identified, including 410 up-regulated and 388 down-regulated genes at 48 h. The expression levels of interleukin receptor and toll-like receptor in hemocytes were increased significantly 48 h post-transplant, indicating that the oyster immune response was induced. Finally, altered levels of 18 randomly selected immune-related DEGs were confirmed by quantitative real-time PCR (qRT-PCR). Our results provide the basis for further analysis of the immune rejection of allotransplantation.

  11. Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes.

    PubMed

    Jones, Ashley R; Troakes, Claire; King, Andrew; Sahni, Vibhu; De Jong, Simone; Bossers, Koen; Papouli, Efterpi; Mirza, Muddassar; Al-Sarraj, Safa; Shaw, Christopher E; Shaw, Pamela J; Kirby, Janine; Veldink, Jan H; Macklis, Jeffrey D; Powell, John F; Al-Chalabi, Ammar

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons resulting in progressive paralysis. Gene expression studies of ALS only rarely identify the same gene pathways as gene association studies. We hypothesized that analyzing tissues by matching on degree of disease severity would identify different patterns of gene expression from a traditional case-control comparison. We analyzed gene expression changes in 4 postmortem central nervous system regions, stratified by severity of motor neuron loss. An overall comparison of cases (n = 6) and controls (n = 3) identified known ALS gene, SOX5, as showing differential expression (log2 fold change = 0.09, p = 5.5 × 10(-5)). Analyses stratified by disease severity identified expression changes in C9orf72 (p = 2.77 × 10(-3)), MATR3 (p = 3.46 × 10(-3)), and VEGFA (p = 8.21 × 10(-4)), all implicated in ALS through genetic studies, and changes in other genes in pathways involving RNA processing and immune response. These findings suggest that analysis of gene expression stratified by disease severity can identify major ALS genes and may be more efficient than traditional case-control comparison. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Analysis of gene expression profile identifies potential biomarkers for atherosclerosis

    PubMed Central

    Liu, Luran; Liu, Yan; Liu, Chang; Zhang, Zhuobo; Du, Yaojun; Zhao, Hao

    2016-01-01

    The present study aimed to identify potential biomarkers for atherosclerosis via analysis of gene expression profiles. The microarray dataset no. GSE20129 was downloaded from the Gene Expression Omnibus database. A total of 118 samples from the peripheral blood of female patients was used, including 47 atherosclerotic and 71 non-atherosclerotic patients. The differentially expressed genes (DEGs) in the atherosclerosis samples were identified using the Limma package. Gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses for DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery tool. The recursive feature elimination (RFE) algorithm was applied for feature selection via iterative classification, and support vector machine classifier was used for the validation of prediction accuracy. A total of 430 DEGs in the atherosclerosis samples were identified, including 149 up- and 281 downregulated genes. Subsequently, the RFE algorithm was used to identify 11 biomarkers, whose receiver operating characteristic curves had an area under curve of 0.92, indicating that the identified 11 biomarkers were representative. The present study indicated that APH1B, JAM3, FBLN2, CSAD and PSTPIP2 may have important roles in the progression of atherosclerosis in females and may be potential biomarkers for early diagnosis and prognosis as well as treatment targets for this disease. PMID:27573188

  13. Up-regulated A20 promotes proliferation, regulates cell cycle progression and induces chemotherapy resistance of acute lymphoblastic leukemia cells.

    PubMed

    Chen, Shuying; Xing, Haiyan; Li, Shouyun; Yu, Jing; Li, Huan; Liu, Shuang; Tian, Zheng; Tang, Kejing; Rao, Qing; Wang, Min; Wang, Jianxiang

    2015-09-01

    A20, also known as tumor necrosis factor-α (TNFα)-induced protein 3 (TNFAIP3), has been identified as a key regulator of cell survival in many solid tumors. However, little is known about the protein expression level and function of A20 in acute lymphoblastic leukemia (ALL). In this study, we found that A20 is up-regulated in ALL patients and several cell lines. Knockdown of A20 in Jurkat, Nalm-6, and Reh cells resulted in reduced cell proliferation, which was associated with cell cycle arrest. Phospho-ERK (p-ERK) was also down-regulated, while p53 and p21 were up-regulated in A20 knockdown cells. In addition, A20 knockdown induced apoptosis in Jurkat and Reh cells and enhanced the sensitivity of these cell lines to chemotherapeutic drugs. These results indicate that A20 may stimulate cell proliferation by regulating cell cycle progression. A20 inhibited apoptosis in some types of ALL cells, thereby enhancing their resistance to chemotherapy. This effect was abolished through A20 silencing. These findings suggest that A20 may contribute to the pathogenesis of ALL and that it may be used as a new therapeutic target for ALL treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Up-regulation of photoprotection and PSII-repair gene expression by irradiance in the unicellular green alga Dunaliella salina.

    PubMed

    Park, Seunghye; Polle, Juergen E W; Melis, Anastasios; Lee, Taek Kyun; Jin, Eonseon

    2006-01-01

    The unicellular green alga Dunaliella salina is an attractive model organism for studying photoacclimation responses and the photosystem II (PSII) damage and repair process in the photosynthetic apparatus. Irradiance during cell growth defines both the photoacclimation and the PSII repair status of the cells. To identify genes specific to these processes, a cDNA library was created from irradiance-stressed D. salina. From the cDNA library, 1112 randomly selected expressed sequence tags (ESTs) were analyzed. Because ESTs constitute the expressed part of the genome, the strategy of randomly sequencing cDNA clones at their 5'-ends allowed us to obtain information about the transcript level of numerous genes in light-stressed D. salina. The results of a BLASTX search performed on the obtained total set of ESTs showed that approximately 1% of the ESTs could be assigned to genes coding for proteins that are known to be up-regulated in response to high-light stress. Specifically, after 48 h of high-light exposure of the cells, an increase in the expression level of antioxidant genes, such as Fe-SOD and APX, was observed, as well as elevated levels of the Cbr transcript, a light-harvesting Chl-protein homolog. Further, the ATP-dependent Clp protease gene was also up-regulated in D. salina cells after 48 h of exposure to high light. The results provide initial insight into the global gene regulation process in response to irradiance.

  15. TWIST1 induces MMP3 expression through up-regulating DNA hydroxymethylation and promotes catabolic responses in human chondrocytes

    PubMed Central

    Hasei, Joe; Teramura, Takeshi; Takehara, Toshiyuki; Onodera, Yuta; Horii, Takuro; Olmer, Merissa; Hatada, Izuho; Fukuda, Kanji; Ozaki, Toshifumi; Lotz, Martin K.; Asahara, Hiroshi

    2017-01-01

    The objective was to investigate the levels of TWIST1 in normal and OA cartilage and examine its role in regulating gene expression in chondrocytes. Human cartilage tissues and chondrocytes were obtained at autopsy from normal knee joints and from OA-affected joints at the time of total knee arthroplasty. TWIST1 expression was increased in human OA knee cartilage compared to normal knee cartilage. TWIST1 induced matrix metalloproteinase 3 (MMP3) expression without direct binding to MMP3 promoter and increased the 5-hydroxymethylcytosine (5hmC) level at the MMP3 promoter. The effect of TWIST1 on expression of TET family (TET1, 2 and 3) was measured in stable TWIST1 transfected TC28 cells, and TET1 expression was up-regulated. TWIST1 dependent upregulation of Mmp3 expression was suppressed in Tet triple KO fibroblast derived from mouse ES cells. Increased TWIST1 expression is a feature of OA-affected cartilage. We identified a novel mechanism of catabolic reaction where TWIST1 up-regulates MMP3 expression by enriching 5hmC levels at the MMP3 promoter via TET1 induction. These findings implicate TWIST1 as an important factor regulating OA related gene expression. Clarifying epigenetic mechanisms of 5hmC induced by TWIST1 is a critical molecule to understanding OA pathogenesis. PMID:28220902

  16. FOXO1 promotes wound healing through the up-regulation of TGF-β1 and prevention of oxidative stress

    PubMed Central

    Ponugoti, Bhaskar; Xu, Fanxing; Zhang, Chenying; Tian, Chen; Pacios, Sandra

    2013-01-01

    Keratinocyte mobilization is a critical aspect of wound re-epithelialization, but the mechanisms that control its precise regulation remain poorly understood. We set out to test the hypothesis that forkhead box O1 (FOXO1) has a negative effect on healing because of its capacity to inhibit proliferation and promote apoptosis. Contrary to expectations, FOXO1 is required for keratinocyte transition to a wound-healing phenotype that involves increased migration and up-regulation of transforming growth factor β1 (TGF-β1) and its downstream targets, integrin-α3 and -β6 and MMP-3 and -9. Furthermore, we show that FOXO1 functions in keratinocytes to reduce oxidative stress, which is necessary to maintain cell migration and prevent cell death in a TGF-β1–independent manner. Thus, our studies identify a novel function for FOXO1 in coordinating the response of keratinocytes to wounding through up-regulation of TGF-β1 and other factors needed for keratinocyte migration and protection against oxidative stress, which together promote migration and decrease apoptosis. PMID:24145170

  17. Inhibition of SULT4A1 Expression Induces Up-Regulation of Phototransduction Gene Expression in 72-Hour Postfertilization Zebrafish Larvae

    PubMed Central

    Crittenden, Frank; Thomas, Holly; Ethen, Cheryl M.; Wu, Zhengliang L.; Chen, Dongquan; Kraft, Timothy W.; Parant, John M.

    2014-01-01

    Sulfotransferase (SULT) 4A1 is an orphan enzyme that shares distinct structure and sequence similarities with other cytosolic SULTs. SULT4A1 is primarily expressed in neuronal tissue and is also the most conserved SULT, having been identified in every vertebrate investigated to date. Certain haplotypes of the SULT4A1 gene are correlated with higher baseline psychopathology in schizophrenic patients, but no substrate or function for SULT4A1 has yet been identified despite its high level of sequence conservation. In this study, deep RNA sequencing was used to search for alterations in gene expression in 72-hour postfertilization zebrafish larvae following transient SULT4A1 knockdown (KD) utilizing splice blocking morpholino oligonucleotides. This study demonstrates that transient inhibition of SULT4A1 expression in developing zebrafish larvae results in the up-regulation of several genes involved in phototransduction. SULT4A1 KD was verified by immunoblot analysis and quantitative real-time polymerase chain reaction (qPCR). Gene regulation changes identified by deep RNA sequencing were validated by qPCR. This study is the first identification of a cellular process whose regulation appears to be associated with SULT4A1 expression. PMID:24553382

  18. miRNA expression is modulated over time after focal ischaemia: up-regulation of miR-347 promotes neuronal apoptosis.

    PubMed

    Gubern, Carme; Camós, Susanna; Ballesteros, Iván; Rodríguez, Rocío; Romera, Víctor G; Cañadas, Roberto; Lizasoain, Ignacio; Moro, María A; Serena, Joaquín; Mallolas, Judith; Castellanos, Mar

    2013-12-01

    Despite the large number of molecules reported as being over-expressed after ischaemia, little is known regarding their regulation. miRNAs are potent post-transcriptional regulators of gene expression, and reports have shown differentially miRNA expression in response to focal cerebral ischaemia. The present study analysed miRNA expression from acute to late phases of ischaemia to identify specific ischaemia-related miRNAs, elucidate their role, and identify potential targets involved in stroke pathophysiology. Of 112 miRNAs, 32 showed significant changes and different expression profiles. In addition to the previously reported differentially expressed miRNAs, new ischaemia-regulated miRNAs have been found, including miR-347. Forty-seven genes involved in brain functions or related to ischaemia are predicted to be potential targets of the differentially expressed miRNAs after middle cerebral artery occlusion. Analysis of four of these targets (Acsl4, Arf3, Btg2 and Dpysl5) showed them to be differentially regulated by ischaemia at the transcriptional or post-transcriptional level. Acsl4, Bnip3l and Phyhip, potential targets of miR-347, were up-regulated after miR-347 over-expression, inducing neuronal apoptotic death. Our findings suggest that miR-347 plays an important role in regulating neuronal cell death, identify Acsl4 as a new protein requiring study in ischaemia, and provide an important resource for future functional studies of miRNAs after ischaemia.

  19. Inhibition of SULT4A1 expression induces up-regulation of phototransduction gene expression in 72-hour postfertilization zebrafish larvae.

    PubMed

    Crittenden, Frank; Thomas, Holly; Ethen, Cheryl M; Wu, Zhengliang L; Chen, Dongquan; Kraft, Timothy W; Parant, John M; Falany, Charles N

    2014-05-01

    Sulfotransferase (SULT) 4A1 is an orphan enzyme that shares distinct structure and sequence similarities with other cytosolic SULTs. SULT4A1 is primarily expressed in neuronal tissue and is also the most conserved SULT, having been identified in every vertebrate investigated to date. Certain haplotypes of the SULT4A1 gene are correlated with higher baseline psychopathology in schizophrenic patients, but no substrate or function for SULT4A1 has yet been identified despite its high level of sequence conservation. In this study, deep RNA sequencing was used to search for alterations in gene expression in 72-hour postfertilization zebrafish larvae following transient SULT4A1 knockdown (KD) utilizing splice blocking morpholino oligonucleotides. This study demonstrates that transient inhibition of SULT4A1 expression in developing zebrafish larvae results in the up-regulation of several genes involved in phototransduction. SULT4A1 KD was verified by immunoblot analysis and quantitative real-time polymerase chain reaction (qPCR). Gene regulation changes identified by deep RNA sequencing were validated by qPCR. This study is the first identification of a cellular process whose regulation appears to be associated with SULT4A1 expression.

  20. Identification of a new cartilage-specific S100-like protein up-regulated during endo/perichondral mineralization in gilthead seabream.

    PubMed

    Fonseca, Vera G; Rosa, Joana; Laizé, Vincent; Gavaia, Paulo J; Cancela, M Leonor

    2011-10-01

    Calcium ions and calcium-binding proteins play a major role in many cellular processes, in particular skeletogenesis and bone formation. We report here the discovery of a novel S100 protein in fish and the analysis of its gene expression patterns. A 648-bp full-length cDNA encoding an 86-amino acid S100-like calcium-binding protein was identified through the subtractive hybridization of a gilthead seabream (Sparus aurata) cDNA library constructed to identify genes associated with in vitro mineralization. Deduced protein lacks an identifiable signal peptide and exhibits two EF-hand motifs characteristic of S100 proteins. Phylogenetic and bioinformatic analyses of S100 sequences suggested that gilthead seabream protein represents a novel and fish-specific member of the S100 protein family. Expression of S100-like gene was up-regulated during the in vitro mineralization of bone-derived cell lines and during seabream development, from larvae throughout adulthood, reflecting skeletogenesis. Restriction of S100-like gene expression to chondrocytes of cartilaginous tissues undergoing endo/perichondral mineralization in juvenile fish further confirmed the mineralogenic role of the protein in fish and emphasized the potential of S100-like as a marker of mineralizing cartilage in developing fish.

  1. Up-Regulation of MiR-300 Promotes Proliferation and Invasion of Osteosarcoma by Targeting BRD7.

    PubMed

    Xue, Zhen; Zhao, Jindong; Niu, Liyuan; An, Gang; Guo, Yashan; Ni, Linying

    2015-01-01

    Increasing reports suggest that deregulated microRNAs (miRNAs) might provide novel therapeutic targets for cancers. However, the expression and function of miR-300 in osteosarcoma is still unknown. In our study, we found that the expression of miR-300 was up-regulated in osteosarcoma tissues and cells compared with paired adjacent non-tumor bone tissues and osteoblastic cells using RT-qPCR. The enforced expression of miR-300 could promote cell proliferation, invasion and epithelial-mesenchymal transition (EMT). Moreover, we identified that bromodomain-containing protein 7 (BRD7), a new tumor suppressor gene, was a direct target of miR-300. Ectopic expression of BRD7 could significantly inhibit miR-300-promoted proliferation, invasion and EMT. Therefore, our results identify an important role for miR-300 in osteosarcoma through regulating BRD7 expression.

  2. Dicarbonyl/L-xylulose reductase: a potential biomarker identified by laser-capture microdissection-micro serial analysis of gene expression of human prostate adenocarcinoma.

    PubMed

    Cho-Vega, Jeong Hee; Tsavachidis, Spiridon; Do, Kim-Anh; Nakagawa, Junichi; Medeiros, L Jeffrey; McDonnell, Timothy J

    2007-12-01

    To identify genes involved in prostate carcinogenesis, we used laser-capture microdissection-micro serial analysis of gene expression to construct libraries of paired cancer and normal cells from human tissue samples. After computational comparison of the two libraries, we identified dicarbonyl/l-xylulose reductase (DCXR), an enzyme that catalyzes alpha-dicarbonyl and l-xylulose, as being significantly up-regulated in prostate cancer cells. The specificity of DCXR up-regulation for prostate cancer tissues was confirmed by quantitative real-time reverse transcriptase-PCR, virtual Northern blot, and Western blot analyses. Furthermore, DCXR expression at the protein level was assessed using fresh-frozen tissues and a tissue microarray consisting of 46 cases of organ-confined early-stage prostate cancer and 29 cases of chemohormonally treated prostate cancer. In most normal prostate epithelial cells, DCXR was expressed at low levels and was localized predominantly in the cytoplasmic membrane. In contrast, in virtually all grades of early-stage prostate cancer and in all chemohormonally treated cases, DCXR was strikingly overexpressed and was localized predominantly in the cytoplasm and nucleus. In all samples, the stromal cells were completely devoid of DCXR expression. Based on these findings, we suggest that DCXR overexpression has the potential to be an additional useful biomarker for prostate cancer.

  3. Nicotine Induced Murine Spermatozoa Apoptosis via Up-Regulation of Deubiquitinated RIP1 by Trim27 Promoter Hypomethylation.

    PubMed

    Nie, Dongsheng; Zhang, Dong; Dai, Jingbo; Zhang, Meixing; Zhao, Xianglong; Xu, Wangjie; Chen, Zhong; Wang, Lianyun; Wang, Zhaoxia; Qiao, Zhongdong

    2016-02-01

    Nicotine significantly promoted apoptosis in stages I, VII, VIII, and XI spermatogonia, stages I, VII, VIII, X, and XI spermatocytes, and stages I-V, VII, and VIII elongating spermatids. To explore the underlying molecular mechanisms, sperm mRNA next-generation sequencing of nicotine-treated mice was conducted. Out of the 86 genes related to apoptosis, Tnf (tumor necrosis factor alpha) was screened to be the most significant varied transcript, and the Onto-pathway analysis indicated that the TNF apoptotic pathway was especially activated by nicotine exposure. The TNF pathway was further studied at the gene and protein levels. The results showed that RIP1, the key component in the TNF apoptotic pathway, was up-expressed in its deubiquitinated form in nicotine-treated mice testis. TRIM27, an E3 ubiquitin ligase that activated TNF apoptotic pathway through up-regulating deubiquitinated RIP1, was also overexpressed in nicotine-treated spermatocytes; moreover, four consecutive CpG sites near the Trim27 transcription start site were less frequently methylated. Finally, in vitro experiments of Trim27 overexpression and RNA interference in GC-1 spermatogonial cells confirmed that the RIP1 deubiquitination and TRIM27 hyopmethylation were both positively correlated with spermatocyte apoptosis. In summary, our study suggests that nicotine may induce murine spermatozoal apoptosis via the TNF apoptotic pathway through up-regulation of deubiquitinated RIP1 by Trim27 promoter hypomethylation.

  4. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis

    PubMed Central

    Powell, Nicole D.; Sloan, Erica K.; Bailey, Michael T.; Arevalo, Jesusa M. G.; Miller, Gregory E.; Chen, Edith; Kobor, Michael S.; Reader, Brenda F.; Sheridan, John F.; Cole, Steven W.

    2013-01-01

    Across a variety of adverse life circumstances, such as social isolation and low socioeconomic status, mammalian immune cells have been found to show a conserved transcriptional response to adversity (CTRA) involving increased expression of proinflammatory genes. The present study examines whether such effects might stem in part from the selective up-regulation of a subpopulation of immature proinflammatory monocytes (Ly-6chigh in mice, CD16− in humans) within the circulating leukocyte pool. Transcriptome representation analyses showed relative expansion of the immature proinflammatory monocyte transcriptome in peripheral blood mononuclear cells from people subject to chronic social stress (low socioeconomic status) and mice subject to repeated social defeat. Cellular dissection of the mouse peripheral blood mononuclear cell transcriptome confirmed these results, and promoter-based bioinformatic analyses indicated increased activity of transcription factors involved in early myeloid lineage differentiation and proinflammatory effector function (PU.1, NF-κB, EGR1, MZF1, NRF2). Analysis of bone marrow hematopoiesis confirmed increased myelopoietic output of Ly-6chigh monocytes and Ly-6cintermediate granulocytes in mice subject to repeated social defeat, and these effects were blocked by pharmacologic antagonists of β-adrenoreceptors and the myelopoietic growth factor GM-CSF. These results suggest that sympathetic nervous system-induced up-regulation of myelopoiesis mediates the proinflammatory component of the leukocyte CTRA dynamic and may contribute to the increased risk of inflammation-related disease associated with adverse social conditions. PMID:24062448

  5. Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection.

    PubMed

    Samuelian, Suren; Kleine, Michael; Ruyter-Spira, Carolien P; Klein-Lankhorst, René M; Jung, Christian

    2004-01-01

    The cDNA-AFLP technique was used to isolate sugar beet genes up-regulated upon infection with the beet cyst nematode Heterodera schachtii. Hairy root cultures were obtained from resistant plants carrying a Beta procumbens translocation as well as from a non-resistant control. mRNA was isolated from hairy root clones and sugar beet plants infected or not with the beet cyst nematode and 8000 transcript-derived fragments (TDFs) were analysed. One TDF was found to be differentially expressed in both materials and was further investigated. Real-time PCR confirmed that this TDF is specifically up-regulated in resistant sugar beet upon nematode infection and its full-length cDNA was isolated. Sequence analysis suggests that the gene encodes a 317 amino acid polypeptide of unknown function. No homology to any sequence present in the public databases could be detected. To further elucidate its function in resistance to the beet cyst nematode, the cDNA was transformed into hairy roots of susceptible sugar beet under the control of the 35S promoter and hairy root clones were inoculated with nematodes. The number of developing females was significantly reduced in 12 out of 15 clones resulting from independent transgenic events suggesting that the gene can be used for inducing cyst nematode resistance in plants.

  6. NEDD8-activating enzyme inhibitor, MLN4924 (Pevonedistat) induces NOXA-dependent apoptosis through up-regulation of ATF-4.

    PubMed

    Liu, Xiaojun; Jiang, Yanan; Wu, Jianfu; Zhang, Wenjuan; Liang, Yupei; Jia, Lijun; Yu, Jinha; Jeong, L S; Li, Lihui

    2017-06-17

    It has been reported that MLN4924 can inhibit cell growth and metastasis in various kinds of cancer. We have reported that MLN4924 is able to inhibit angiogenesis through the induction of cell apoptosis both in vitro and in vivo models. Moreover, Neddylation inhibition using MLN4924 triggered the accumulation of pro-apoptotic protein NOXA in Human umbilical vein endothelial cells (HUVECs). However, the mechanism of MLN4924-induced NOXA up-regulation has not been addressed in HUVECs yet. In this study, we investigated how MLN4924 induced NOXA expression and cellular apoptosis in HUVECs treated with MLN4924 at indicated concentrations. MLN4924-induced apoptosis was evaluated by Annexin V-FITC/PI analysis and expression of genes associated with apoptosis was assessed by Quantitative RT-PCR and western blotting. As a result, MLN4924 triggered NOXA-dependent apoptosis in a dose-dependent manner in HUVECs. Mechanistically, inactivation of Neddylation pathway caused up-regulation of activating transcription factor 4 (ATF-4), a substrate of Cullin-Ring E3 ubiquitin ligases (CRL). NOXA was subsequently transactivated by ATF-4 and further induced apoptosis. More importantly, knockdown of ATF-4 by siRNA significantly decreased NOXA expression and apoptotic induction in HUVECs. In summary, our study reveals a new mechanism underlying MLN4924-induced NOXA accumulation in HUVECs, which may help extend further study of MLN4924 for angiogenesis inhibition treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Sesamin induces melanogenesis by microphthalmia-associated transcription factor and tyrosinase up-regulation via cAMP signaling pathway.

    PubMed

    Jiang, Zequn; Li, Shasha; Liu, Yunyi; Deng, Pengyi; Huang, Jianguo; He, Guangyuan

    2011-10-01

    In this study, we confirmed that sesamin, an active lignan isolated from sesame seed and oil, is a novel skin-tanning compound. The melanin content and tyrosinase activity were increased by sesamin in a dose-dependent manner in B16 melanoma cells. The mRNA and protein levels of tyrosinase were also enhanced after the treatment with sesamin. Western blot analysis revealed that sesamin induced and sustained up-regulation of microphthalmia-associated transcription factor (MITF). Sesamin could activate cAMP response element (CRE) binding protein (CREB), but it had no effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK) or Akt. Moreover, sesamin activated protein kinase A (PKA) via a cAMP-dependent pathway. Consistent with these results, sesamin-mediated increase of melanin synthesis was reduced significantly by H-89, a PKA inhibitor, but not by SB203580, a p38 MAPK inhibitor or by LY294002, a phosphatidylinositol-3-kinase (PI3K) inhibitor. Sesamin-mediated phosphorylation of CREB and induction of MITF and tyrosinase expression were also inhibited by H-89. These findings indicated that sesamin could stimulate melanogenesis in B16 cells via the up-regulation of MITF and tyrosinase, which was, in turn, due to the activation of cAMP signaling.

  8. beta-Adrenoceptor stimulation up-regulates phosphodiesterase 4 activity and reduces prostaglandin E2-inhibitory effects in human neutrophils.

    PubMed

    Ortiz, J L; Dasí, F J; Cortijo, J; Morcillo, E J

    2000-04-01

    Human neutrophils were treated for 4 h with a combination of salbutamol (1 microM), a beta2-adrenoceptor agonist, and rolipram (30 microM), a selective phosphodiesterase 4 inhibitor, to investigate whether this treatment produces up-regulation of phosphodiesterase activity with functional consequences. Anion-exchange chromatography coupled with the use of selective activators and inhibitors demonstrated that a phosphodiesterase activity with characteristics of the isoenzyme type 4 was increased in drug-treated cells. Kinetic analysis showed a approximately 1.5-fold increase in Vmax without alteration of Km values. The augmented phosphodiesterase activity in drug-treated cells was abolished by actinomycin D. Cyclic AMP content in drug-treated cells was higher than resting values (27.28+/-2.79 pmol/10(6) cells vs. 0.34+/-0.03 pmol/10(6) cells). Reverse transcriptase-polymerase chain reaction showed increased expression of mRNA transcripts for PDE4B and PDE4A in drug-treated cells. Functionally, up-regulation of phosphodiesterase 4 reduced the inhibition by prostaglandin E2 of zymosan-induced superoxide generation.

  9. Up-regulation of heme oxygenase-1 by isoflurane preconditioning during tolerance against neuronal injury induced by oxygen glucose deprivation.

    PubMed

    Li, Qifang; Zhu, Yesen; Jiang, Hong; Xu, Hui; Liu, Heping

    2008-09-01

    Heme oxygenase (HO) is the rate-limiting enzyme in the degradation of heme to produce bile pigments and carbon monoxide. The HO-1 isozyme is induced by a variety of factors such as heat, heme, ischemia, and hydrogen peroxide. In recent years, mounting findings have suggested that HO-1 has a neuroprotective activity against ischemic injury. The neuroprotective role of isoflurane, a commonly used anesthetic, has been well documented, but little is known about the underlying mechanisms involved. Recently, isoflurane has been shown to up-regulate HO-1 in the liver. In this study, we show that isoflurane preconditioning promotes the survival of cultured ischemic hippocampal neurons by increasing the number of surviving neurons and their viability. Further study by reverse transcription-polymerase chain reaction and Western blot analysis showed that isoflurane preconditioning significantly increases HO-1 expression in oxygen glucose deprivation (OGD)-induced neuronal injury. Furthermore, inhibition of HO activity by tin protoporphyrin partially abolishes isoflurane preconditioning's protective effect as measured by lactate dehydrogenase release in OGD neurons. These findings indicated that the neuroprotective role of isoflurane preconditioning against OGD-induced injury might be associated with its role in up-regulating HO-1 in ischemic neurons.

  10. Up-Regulation of RFC3 Promotes Triple Negative Breast Cancer Metastasis and is Associated With Poor Prognosis Via EMT.

    PubMed

    He, Zhen-Yu; Wu, San-Gang; Peng, Fang; Zhang, Qun; Luo, Ying; Chen, Ming; Bao, Yong

    2017-02-01

    Triple-negative breast cancer (TNBC) was regarded as the most aggressive and mortal subtype of breast cancer (BC) since the molecular subtype system has been established. Abundant studies have revealed that epithelial-mesenchymal transition (EMT) played a pivotal role during breast cancer metastasis and progression, especially in TNBC. Herein, we showed that inhibition the expression of replication factor C subunit 3 (RFC3) significantly attenuated TNBC metastasis and progression, which was associated with EMT signal pathway. In TNBC cells, knockdown of RFC3 can down-regulate mesenchymal markers and up-regulate epithelial markers, significantly attenuated cell proliferation, migration and invasion. Additionally, silencing RFC3 expression can decrease nude mice tumor volume, weight and relieve lung metastasis in vivo. Furthermore, we also demonstrated that overexpression of RFC3 in TNBC showed increased metastasis, progression and poor prognosis. We confirmed all of these results by immunohistochemistry analysis in 127 human TNBC tissues and found that RFC3 expression was significantly associated with poor prognosis in TNBC. Taken all these findings into consideration, we can conclude that up-regulation of RFC3 promotes TNBC progression through EMT signal pathway. Therefore, RFC3 could be an independent prognostic factor and therapeutic target for TNBC.

  11. Identifying regulatory mechanisms underlying tumorigenesis using locus expression signature analysis.

    PubMed

    Lee, Eunjee; de Ridder, Jeroen; Kool, Jaap; Wessels, Lodewyk F A; Bussemaker, Harmen J

    2014-04-15

    Retroviral insertional mutagenesis is a powerful tool for identifying putative cancer genes in mice. To uncover the regulatory mechanisms by which common insertion loci affect downstream processes, we supplemented genotyping data with genome-wide mRNA expression profiling data for 97 tumors induced by retroviral insertional mutagenesis. We developed locus expression signature analysis, an algorithm to construct and interpret the differential gene expression signature associated with each common insertion locus. Comparing locus expression signatures to promoter affinity profiles allowed us to build a detailed map of transcription factors whose protein-level regulatory activity is modulated by a particular locus. We also predicted a large set of drugs that might mitigate the effect of the insertion on tumorigenesis. Taken together, our results demonstrate the potential of a locus-specific signature approach for identifying mammalian regulatory mechanisms in a cancer context.

  12. Comparison of approaches for parameter identifiability analysis of biological systems.

    PubMed

    Raue, Andreas; Karlsson, Johan; Saccomani, Maria Pia; Jirstrand, Mats; Timmer, Jens

    2014-05-15

    Modeling of dynamical systems using ordinary differential equations is a popular approach in the field of Systems Biology. The amount of experimental data that are used to build and calibrate these models is often limited. In this setting, the model parameters may not be uniquely determinable. Structural or a priori identifiability is a property of the system equations that indicates whether, in principle, the unknown model parameters can be determined from the available data. We performed a case study using three current approaches for structural identifiability analysis for an application from cell biology. The approaches are conceptually different and are developed independently. The results of the three approaches are in agreement. We discuss strength and weaknesses of each of them and illustrate how they can be applied to real world problems. For application of the approaches to further applications, code representations (DAISY, Mathematica and MATLAB) for benchmark model and data are provided on the authors webpage. andreas.raue@fdm.uni-freiburg.de.

  13. Towards a Methodology for Identifying Program Constraints During Requirements Analysis

    NASA Technical Reports Server (NTRS)

    Romo, Lilly; Gates, Ann Q.; Della-Piana, Connie Kubo

    1997-01-01

    Requirements analysis is the activity that involves determining the needs of the customer, identifying the services that the software system should provide and understanding the constraints on the solution. The result of this activity is a natural language document, typically referred to as the requirements definition document. Some of the problems that exist in defining requirements in large scale software projects includes synthesizing knowledge from various domain experts and communicating this information across multiple levels of personnel. One approach that addresses part of this problem is called context monitoring and involves identifying the properties of and relationships between objects that the system will manipulate. This paper examines several software development methodologies, discusses the support that each provide for eliciting such information from experts and specifying the information, and suggests refinements to these methodologies.

  14. Lidar point density analysis: implications for identifying water bodies

    USGS Publications Warehouse

    Worstell, Bruce B.; Poppenga, Sandra; Evans, Gayla A.; Prince, Sandra

    2014-01-01

    Most airborne topographic light detection and ranging (lidar) systems operate within the near-infrared spectrum. Laser pulses from these systems frequently are absorbed by water and therefore do not generate reflected returns on water bodies in the resulting void regions within the lidar point cloud. Thus, an analysis of lidar voids has implications for identifying water bodies. Data analysis techniques to detect reduced lidar return densities were evaluated for test sites in Blackhawk County, Iowa, and Beltrami County, Minnesota, to delineate contiguous areas that have few or no lidar returns. Results from this study indicated a 5-meter radius moving window with fewer than 23 returns (28 percent of the moving window) was sufficient for delineating void regions. Techniques to provide elevation values for void regions to flatten water features and to force channel flow in the downstream direction also are presented.

  15. Up-regulation of cyclooxygenase-2 by product-prostaglandin E2

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Hughes-Fulford, M.

    1997-01-01

    The development of prostate cancer has been linked to high level of dietary fat intake. Our laboratory investigates the connection between cancer cell growth and fatty acid products. Studying human prostatic carcinoma PC-3 cells, we found that prostaglandin E2 (PGE2) increased cell growth and up-regulated the gene expression of its own synthesizing enzyme, cyclooxygenase-2 (COX-2). PGE2 increased COX-2 mRNA expression dose-dependently with the highest levels of stimulation seen at the 3-hour period following PGE2 addition. The NSAID flurbiprofen (5 microM), in the presence of exogenous PGE2, inhibited the up-regulation of COX-2 mRNA and cell growth. These data suggest that the levels of local intracellular PGE2 play a major role in the growth of prostate cancer cells through an activation of COX-2 gene expression.

  16. Up-regulation of calcyon results in locomotor hyperactivity and reduced anxiety in mice.

    PubMed

    Trantham-Davidson, Heather; Vazdarjanova, Almira; Dai, Rujuan; Terry, Alvin; Bergson, Clare

    2008-06-03

    Gene linkage and association studies have implicated the region of chromosome 10q containing the calcyon locus with attention deficit hyperactivity disorder (ADHD), bipolar disorder, and schizophrenia susceptibility. In addition, levels of calcyon protein and transcripts are also significantly increased in postmortem tissue from schizophrenic brains. But whether altered calcyon expression might be part of the disease etiology or merely a patho-physiological side effect is not known. To begin to address this issue, we generated a transgenic mouse line (Cal(OE)) using the human calcyon cDNA in which calcyon expression is up-regulated in a number of forebrain structures including the hippocampus, prefrontal cortex (PFC), striatum, and amygdala. Compared to control littermates, the Cal(OE) mice display a range of abnormal behaviors including spontaneous hyperactivity, reduced anxiety, and/or impaired restraint (harm avoidance) that would indicate that calcyon up-regulation leads to deficits in control over behavioral output.

  17. Transcriptome Analysis of Neisseria meningitidis in Human Whole Blood and Mutagenesis Studies Identify Virulence Factors Involved in Blood Survival

    PubMed Central

    Del Tordello, Elena; Seib, Kate L.; Francois, Patrice; Rappuoli, Rino; Pizza, Mariagrazia; Serruto, Davide

    2011-01-01

    During infection Neisseria meningitidis (Nm) encounters multiple environments within the host, which makes rapid adaptation a crucial factor for meningococcal survival. Despite the importance of invasion into the bloodstream in the meningococcal disease process, little is known about how Nm adapts to permit survival and growth in blood. To address this, we performed a time-course transcriptome analysis using an ex vivo model of human whole blood infection. We observed that Nm alters the expression of ≈30% of ORFs of the genome and major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. In particular, we found that the gene encoding the regulator Fur, as well as all genes encoding iron uptake systems, were significantly up-regulated. Analysis of regulated genes encoding for surface-exposed proteins involved in Nm pathogenesis allowed us to better understand mechanisms used to circumvent host defenses. During blood infection, Nm activates genes encoding for the factor H binding proteins, fHbp and NspA, genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as several less characterized surface-exposed proteins that might have a role in blood survival. Through mutagenesis studies of a subset of up-regulated genes we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. Nm mutant strains lacking the genes encoding the hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate permease LctP were sensitive to killing by human blood. This increased knowledge of how Nm responds to adaptation in blood could also be helpful to develop diagnostic and therapeutic strategies to control the devastating disease cause by

  18. Identifying radiotherapy target volumes in brain cancer by image analysis.

    PubMed

    Cheng, Kun; Montgomery, Dean; Feng, Yang; Steel, Robin; Liao, Hanqing; McLaren, Duncan B; Erridge, Sara C; McLaughlin, Stephen; Nailon, William H

    2015-10-01

    To establish the optimal radiotherapy fields for treating brain cancer patients, the tumour volume is often outlined on magnetic resonance (MR) images, where the tumour is clearly visible, and mapped onto computerised tomography images used for radiotherapy planning. This process requires considerable clinical experience and is time consuming, which will continue to increase as more complex image sequences are used in this process. Here, the potential of image analysis techniques for automatically identifying the radiation target volume on MR images, and thereby assisting clinicians with this difficult task, was investigated. A gradient-based level set approach was applied on the MR images of five patients with grades II, III and IV malignant cerebral glioma. The relationship between the target volumes produced by image analysis and those produced by a radiation oncologist was also investigated. The contours produced by image analysis were compared with the contours produced by an oncologist and used for treatment. In 93% of cases, the Dice similarity coefficient was found to be between 60 and 80%. This feasibility study demonstrates that image analysis has the potential for automatic outlining in the management of brain cancer patients, however, more testing and validation on a much larger patient cohort is required.

  19. Identifying radiotherapy target volumes in brain cancer by image analysis

    PubMed Central

    Cheng, Kun; Montgomery, Dean; Feng, Yang; Steel, Robin; Liao, Hanqing; McLaren, Duncan B.; Erridge, Sara C.; McLaughlin, Stephen

    2015-01-01

    To establish the optimal radiotherapy fields for treating brain cancer patients, the tumour volume is often outlined on magnetic resonance (MR) images, where the tumour is clearly visible, and mapped onto computerised tomography images used for radiotherapy planning. This process requires considerable clinical experience and is time consuming, which will continue to increase as more complex image sequences are used in this process. Here, the potential of image analysis techniques for automatically identifying the radiation target volume on MR images, and thereby assisting clinicians with this difficult task, was investigated. A gradient-based level set approach was applied on the MR images of five patients with grades II, III and IV malignant cerebral glioma. The relationship between the target volumes produced by image analysis and those produced by a radiation oncologist was also investigated. The contours produced by image analysis were compared with the contours produced by an oncologist and used for treatment. In 93% of cases, the Dice similarity coefficient was found to be between 60 and 80%. This feasibility study demonstrates that image analysis has the potential for automatic outlining in the management of brain cancer patients, however, more testing and validation on a much larger patient cohort is required. PMID:26609418

  20. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts.

    PubMed

    Anderson, Jonathan P; Hane, James K; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J; Singh, Karam B

    2016-04-01

    Rhizoctonia solaniis an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about howR. solanicauses disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility toR. solaniwhen expressed inNicotiana benthamiana In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806.

  1. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts*

    PubMed Central

    Anderson, Jonathan P.; Hane, James K.; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L.; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  2. Phage cluster relationships identified through single gene analysis

    PubMed Central

    2013-01-01

    Background Phylogenetic comparison of bacteriophages requires whole genome approaches such as dotplot analysis, genome pairwise maps, and gene content analysis. Currently mycobacteriophages, a highly studied phage group, are categorized into related clusters based on the comparative analysis of whole genome sequences. With the recent explosion of phage isolation, a simple method for phage cluster prediction would facilitate analysis of crude or complex samples without whole genome isolation and sequencing. The hypothesis of this study was that mycobacteriophage-cluster prediction is possible using comparison of a single, ubiquitous, semi-conserved gene. Tape Measure Protein (TMP) was selected to test the hypothesis because it is typically the longest gene in mycobacteriophage genomes and because regions within the TMP gene are conserved. Results A single gene, TMP, identified the known Mycobacteriophage clusters and subclusters using a Gepard dotplot comparison or a phylogenetic tree constructed from global alignment and maximum likelihood comparisons. Gepard analysis of 247 mycobacteriophage TMP sequences appropriately recovered 98.8% of the subcluster assignments that were made by whole-genome comparison. Subcluster-specific primers within TMP allow for PCR determination of the mycobacteriophage subcluster from DNA samples. Using the single-gene comparison approach for siphovirus coliphages, phage groupings by TMP comparison reflected relationships observed in a whole genome dotplot comparison and confirm the potential utility of this approach to another widely studied group of phages. Conclusions TMP sequence comparison and PCR results support the hypothesis that a single gene can be used for distinguishing phage cluster and subcluster assignments. TMP single-gene analysis can quickly and accurately aid in mycobacteriophage classification. PMID:23777341

  3. Synergistic Action of Genistein and Calcitriol in Immature Osteosarcoma MG-63 Cells by SGPL1 Up-Regulation

    PubMed Central

    Engel, Nadja; Adamus, Anna; Schauer, Nicolas; Kühn, Juliane; Nebe, Barbara; Seitz, Guido; Kraft, Karin

    2017-01-01

    Background Phytoestrogens such as genistein, the most prominent isoflavone from soy, show concentration-dependent anti-estrogenic or estrogenic effects. High genistein concentrations (>10 μM) also promote proliferation of bone cancer cells in vitro. On the other hand, the most active component of the vitamin D family, calcitriol, has been shown to be tumor protective in vitro and in vivo. The purpose of this study was to examine a putative synergism of genistein and calcitriol in two osteosarcoma cell lines MG-63 (early osteoblast), Saos-2 (mature osteoblast) and primary osteoblasts. Methods Thus, an initial screening based on cell cycle phase alterations, estrogen (ER) and vitamin D receptor (VDR) expression, live cell metabolic monitoring, and metabolomics were performed. Results Exposure to the combination of 100 μM genistein and 10 nM calcitriol reduced the number of proliferative cells to control levels, increased ERß and VDR expression, and reduced extracellular acidification (40%) as well as respiratory activity (70%), primarily in MG-63 cells. In order to identify the underlying cellular mechanisms in the MG-63 cell line, metabolic profiling via GC/MS technology was conducted. Combined treatment significantly influenced lipids and amino acids preferably, whereas metabolites of the energy metabolism were not altered. The comparative analysis of the log2-ratios revealed that after combined treatment only the metabolite ethanolamine was highly up-regulated. This is the result: a strong overexpression (350%) of the enzyme sphingosine-1-phosphate lyase (SGPL1), which irreversibly degrades sphingosine-1-phosphate (S1P), thereby, generating ethanolamine. S1P production and secretion is associated with an increased capability of migration and invasion of cancer cells. Conclusion From these results can be concluded that the tumor promoting effect of high concentrations of genistein in immature osteosarcoma cells is reduced by the co-administration of calcitriol

  4. Eurycomanone induce apoptosis in HepG2 cells via up-regulation of p53

    PubMed Central

    Zakaria, Yusmazura; Rahmat, Asmah; Pihie, Azimahtol Hawariah Lope; Abdullah, Noor Rain; Houghton, Peter J

    2009-01-01

    Background Eurycomanone is a cytotoxic compound found in Eurycoma longifolia Jack. Previous studies had noted the cytotoxic effect against various cancer cell lines. The aim of this study is to investigate the cytotoxicity against human hepato carcinoma cell in vitro and the mode of action. The cytotoxicity of eurycomanone was evaluated using MTT assay and the mode of cell death was detected by Hoechst 33258 nuclear staining and flow cytometry with Annexin-V/propidium iodide double staining. The protein expression Bax, Bcl-2, p53 and cytochrome C were studied by flow cytometry using a spesific antibody conjugated fluorescent dye to confirm the up-regulation of p53 and Bax in cancer cells. Results The findings suggested that eurycomanone was cytotoxic on cancerous liver cell, HepG2 and less toxic on normal cells Chang's liver and WLR-68. Furthermore, various methods proved that apoptosis was the mode of death in eurycomanone-treated HepG2 cells. The characteristics of apoptosis including chromatin condensation, DNA fragmentation and apoptotic bodies were found following eurycomanone treatment. This study also found that apoptotic process triggered by eurycomanone involved the up-regulation of p53 tumor suppressor protein. The up-regulation of p53 was followed by the increasing of pro-apoptotic Bax and decreasing of anti-apoptotic Bcl-2. The increased of cytochrome C levels in cytosol also results in induction of apoptosis. Conclusion The data suggest that eurycomanone was cytotoxic on HepG2 cells by inducing apoptosis through the up-regulation of p53 and Bax, and down-regulation of Bcl-2. PMID:19508737

  5. Catalase activity prevents exercise-induced up-regulation of vasoprotective proteins in venous tissue.

    PubMed

    Dao, Vu Thao-Vi; Floeren, Melanie; Kumpf, Stephanie; Both, Charlotte; Peter, Bärbel; Balz, Vera; Suvorava, Tatsiana; Kojda, Georg

    2011-11-01

    Physical activity induces favourable changes of arterial gene expression and protein activity, although little is known about its effect in venous tissue. Although our understanding of the initiating molecular signals is still incomplete, increased expression of endothelial nitric oxide synthase (eNOS) is considered a key event. This study sought to investigate the effects of two different training protocols on the expression of eNOS and extracellular superoxide dismutase (ecSOD) in venous and lung tissue and to evaluate the underlying molecular mechanisms. C57Bl/6 mice underwent voluntary exercise or forced physical activity. Changes of vascular mRNA and protein levels and activity of eNOS, ecSOD and catalase were determined in aorta, heart, lung and vena cava. Both training protocols similarly increased relative heart weight and resulted in up-regulation of aortic and myocardial eNOS. In striking contrast, eNOS expression in vena cava and lung remained unchanged. Likewise, exercise up-regulated ecSOD in the aorta and in left ventricular tissue but remained unchanged in lung tissue. Catalase expression in lung tissue and vena cava of exercised mice exceeded that in aorta by 6.9- and 10-fold, respectively, suggesting a lack of stimulatory effects of hydrogen peroxide. In accordance, treatment of mice with the catalase inhibitor aminotriazole for 6 weeks resulted in significant up-regulation of eNOS and ecSOD in vena cava. These data suggest that physiological venous catalase activity prevents exercise-induced up-regulation of eNOS and ecSOD. Furthermore, therapeutic inhibition of vascular catalase might improve pulmonary rehabilitation. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  6. Catalase activity prevents exercise-induced up-regulation of vasoprotective proteins in venous tissue

    PubMed Central

    Dao, Vu Thao-Vi; Floeren, Melanie; Kumpf, Stephanie; Both, Charlotte; Peter, Bärbel; Balz, Vera; Suvorava, Tatsiana; Kojda, Georg

    2011-01-01

    Abstract Physical activity induces favourable changes of arterial gene expression and protein activity, although little is known about its effect in venous tissue. Although our understanding of the initiating molecular signals is still incomplete, increased expression of endothelial nitric oxide synthase (eNOS) is considered a key event. This study sought to investigate the effects of two different training protocols on the expression of eNOS and extracellular superoxide dismutase (ecSOD) in venous and lung tissue and to evaluate the underlying molecular mechanisms. C57Bl/6 mice underwent voluntary exercise or forced physical activity. Changes of vascular mRNA and protein levels and activity of eNOS, ecSOD and catalase were determined in aorta, heart, lung and vena cava. Both training protocols similarly increased relative heart weight and resulted in up-regulation of aortic and myocardial eNOS. In striking contrast, eNOS expression in vena cava and lung remained unchanged. Likewise, exercise up-regulated ecSOD in the aorta and in left ventricular tissue but remained unchanged in lung tissue. Catalase expression in lung tissue and vena cava of exercised mice exceeded that in aorta by 6.9- and 10-fold, respectively, suggesting a lack of stimulatory effects of hydrogen peroxide. In accordance, treatment of mice with the catalase inhibitor aminotriazole for 6 weeks resulted in significant up-regulation of eNOS and ecSOD in vena cava. These data suggest that physiological venous catalase activity prevents exercise-induced up-regulation of eNOS and ecSOD. Furthermore, therapeutic inhibition of vascular catalase might improve pulmonary rehabilitation. PMID:21129156

  7. Avian leukosis virus subgroup J induces its receptor--chNHE1 up-regulation.

    PubMed

    Feng, Weiguo; Meng, Wei; Cai, Liming; Cui, Xiyao; Pan, Zhifang; Wang, Guihua; Cheng, Ziqiang

    2016-04-02

    Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus which causes immunosuppression and neoplasia in meat-type and egg-type chickens. ALV-J infects host cells via specific interaction between the viral Env and the cell surface receptor -chicken sodium hydrogen exchanger type 1 (chNHE1). NHE1 involved in altering the cellular pH and playing a critical role in tumorigenesis. However, little is known about the other relationship between ALV-J and chNHE1. In ALV-J infected DF-1 cells, the mRNA level of chNHE1 was up-regulated with time-dependent manner tested by real time PCR, and accordingly, intracellular pH was increased tested by spectrofluorometer. In vivo, the mRNA level of chNHE1 was determined by real time PCR in ALV-J infected experimental chickens and field cases. The result showed that the mRNA level of chNHE1 was up-regulated after virus shedding, especially in continuous viremic shedders (CS group). However, no significant difference was found between non-shedding group (NS group) and control group. In field cases, mRNA level of chNHE1 was positively correlated with increasing ALV-J load in tumor bearing and immune tolerance chickens. Furthermore, immunohistochemistry results showed that the protein expression of chNHE1 was up-regulated in different organs of both experimental chickens and tumor bearing chickens compared with the control. Taken together, we conclude that ALV-J induces chNHE1 up-regulation in viremia and neoplasia chickens.

  8. Longitudinal Metagenomic Analysis of Hospital Air Identifies Clinically Relevant Microbes

    PubMed Central

    King, Paula; Pham, Long K.; Waltz, Shannon; Sphar, Dan; Yamamoto, Robert T.; Conrad, Douglas; Taplitz, Randy; Torriani, Francesca

    2016-01-01

    We describe the sampling of sixty-three uncultured hospital air samples collected over a six-month period and analysis using shotgun metagenomic sequencing. Our primary goals were to determine the longitudinal metagenomic variability of this environment, identify and characterize genomes of potential pathogens and determine whether they are atypical to the hospital airborne metagenome. Air samples were collected from eight locations which included patient wards, the main lobby and outside. The resulting DNA libraries produced 972 million sequences representing 51 gigabases. Hierarchical clustering of samples by the most abundant 50 microbial orders generated three major nodes which primarily clustered by type of location. Because the indoor locations were longitudinally consistent, episodic relative increases in microbial genomic signatures related to the opportunistic pathogens Aspergillus, Penicillium and Stenotrophomonas were identified as outliers at specific locations. Further analysis of microbial reads specific for Stenotrophomonas maltophilia indicated homology to a sequenced multi-drug resistant clinical strain and we observed broad sequence coverage of resistance genes. We demonstrate that a shotgun metagenomic sequencing approach can be used to characterize the resistance determinants of pathogen genomes that are uncharacteristic for an otherwise consistent hospital air microbial metagenomic profile. PMID:27482891

  9. Longitudinal Metagenomic Analysis of Hospital Air Identifies Clinically Relevant Microbes.

    PubMed

    King, Paula; Pham, Long K; Waltz, Shannon; Sphar, Dan; Yamamoto, Robert T; Conrad, Douglas; Taplitz, Randy; Torriani, Francesca; Forsyth, R Allyn

    2016-01-01

    We describe the sampling of sixty-three uncultured hospital air samples collected over a six-month period and analysis using shotgun metagenomic sequencing. Our primary goals were to determine the longitudinal metagenomic variability of this environment, identify and characterize genomes of potential pathogens and determine whether they are atypical to the hospital airborne metagenome. Air samples were collected from eight locations which included patient wards, the main lobby and outside. The resulting DNA libraries produced 972 million sequences representing 51 gigabases. Hierarchical clustering of samples by the most abundant 50 microbial orders generated three major nodes which primarily clustered by type of location. Because the indoor locations were longitudinally consistent, episodic relative increases in microbial genomic signatures related to the opportunistic pathogens Aspergillus, Penicillium and Stenotrophomonas were identified as outliers at specific locations. Further analysis of microbial reads specific for Stenotrophomonas maltophilia indicated homology to a sequenced multi-drug resistant clinical strain and we observed broad sequence coverage of resistance genes. We demonstrate that a shotgun metagenomic sequencing approach can be used to characterize the resistance determinants of pathogen genomes that are uncharacteristic for an otherwise consistent hospital air microbial metagenomic profile.

  10. Comparative Genomics Analysis in Prunoideae to Identify Biologically Relevant Polymorphisms

    PubMed Central

    Koepke, Tyson; Schaeffer, Scott; Harper, Artemus; Dicenta, Federico; Edwards, Mark; Henry, Robert J.; Møller, Birger Lindberg; Meisel, Lee; Oraguzie, Nnadozie; Silva, Herman; Sánchez-Pérez, Raquel; Dhingra, Amit

    2013-01-01

    Prunus is an economically important genus with a wide range of physiological and biological variability. Using the peach genome as a reference, sequencing reads from four almond accessions and one sweet cherry cultivar were used for comparative analysis of these three Prunus species. Reference mapping enabled the identification of many biological relevant polymorphisms within the individuals. Examining the depth of the polymorphisms and the overall scaffold coverage, we identified many potentially interesting regions including hundreds of small scaffolds with no coverage from any individual. Nonsense mutations account for about 70,000 of the 13 million identified single nucleotide polymorphisms (SNPs). Blast2GO analyses on these nonsense SNPs revealed several interesting results. First, nonsense SNPs were not evenly distributed across all gene ontology terms. Specifically, in comparison to peach, sweet cherry is found to have nonsense SNPs in two 1-aminocyclopropane-1-carboxylate synthase (ACS) genes and two 1-aminocyclopropane-1-carboxylate oxidase (ACO) genes. These polymorphisms may be at the root of the non-climacteric ripening of sweet cherry. A set of candidate genes associated with bitterness in almond were identified by comparing sweet and bitter almond sequences. To the best of our knowledge, this is the first report in plants of nonsense SNP abundance in a genus being linked to specific GO terms. PMID:23763653

  11. Comparative genomics analysis in Prunoideae to identify biologically relevant polymorphisms.

    PubMed

    Koepke, Tyson; Schaeffer, Scott; Harper, Artemus; Dicenta, Federico; Edwards, Mark; Henry, Robert J; Møller, Birger L; Meisel, Lee; Oraguzie, Nnadozie; Silva, Herman; Sánchez-Pérez, Raquel; Dhingra, Amit

    2013-09-01

    Prunus is an economically important genus with a wide range of physiological and biological variability. Using the peach genome as a reference, sequencing reads from four almond accessions and one sweet cherry cultivar were used for comparative analysis of these three Prunus species. Reference mapping enabled the identification of many biological relevant polymorphisms within the individuals. Examining the depth of the polymorphisms and the overall scaffold coverage, we identified many potentially interesting regions including hundreds of small scaffolds with no coverage from any individual. Non-sense mutations account for about 70 000 of the 13 million identified single nucleotide polymorphisms (SNPs). Blast2GO analyses on these non-sense SNPs revealed several interesting results. First, non-sense SNPs were not evenly distributed across all gene ontology terms. Specifically, in comparison with peach, sweet cherry is found to have non-sense SNPs in two 1-aminocyclopropane-1-carboxylate synthase (ACS) genes and two 1-aminocyclopropane-1-carboxylate oxidase (ACO) genes. These polymorphisms may be at the root of the nonclimacteric ripening of sweet cherry. A set of candidate genes associated with bitterness in almond were identified by comparing sweet and bitter almond sequences. To the best of our knowledge, this is the first report in plants of non-sense SNP abundance in a genus being linked to specific GO terms.

  12. General up regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor.

    PubMed

    Brioschi, Daniela; Nadalini, Larissa D; Bengtson, Mario H; Sogayar, Mari Cleide; Moura, Daniel S; Silva-Filho, Marcio C

    2007-12-01

    The existence of a diverse serine proteinase gene family in lepidopteran insects suggests they play a significant role in the insect adaptation to plant proteinase inhibitors. These proteinases have been shown to be involved in the process of proteolytic digestion in insect larvae. We carried out a selective transcriptome study of midguts from Spodoptera frugiperda larvae fed on a diet supplemented with soybean proteinase inhibitor (SPI). Using subtracted cDNA libraries made of gut-expressed transcripts, a total of 2100 partial sequences were obtained, of those 38% were related to digestive process. Two large and diverse groups of chymotrypsins and trypsins were obtained, and some of these proteinase-encoding genes were further characterized by quantitative RT-PCR. The transcription analyses revealed two groups: one group of genes constitutively expressed in the control larvae that is up regulated by introducing SPI to the diet, and a second group that is absent in the control but is induced by the SPI-rich diet. This observation suggests that adaptation of S. frugiperda to SPI involves de novo synthesis and also up regulation of existing enzymes. Proteases from intestines of larvae reared on a diet with SPI showed insensitivity to the inhibitor. The proteases were also insensitive to a broad-spectrum potato proteinase inhibitor preparation. We propose that adaptation of S. frugiperda to SPI follows a "shotgun" approach, based on a general up regulation of a large set of endoproteinases.

  13. Chronic Administration of KB-R7943 Induces Up-regulation of Cardiac NCX1*

    PubMed Central

    Xu, Lin; Kappler, Christiana S.; Mani, Santhosh K.; Shepherd, Neal R.; Renaud, Ludivine; Snider, Paige; Conway, Simon J.; Menick, Donald R.

    2009-01-01

    The NCX1 (sodium-calcium exchanger) is up-regulated in human heart failure and in many animal models of heart failure. The potential benefits and risks of therapeutically blocking NCX1 in heart failure and during ischemia-reperfusion are being actively investigated. In this study, we demonstrate that prolonged administration of the NCX1 inhibitor KB-R7943 resulted in the up-regulation of Ncx1 gene expression in both isolated adult cardiomyocytes and intact mouse hearts. Ncx1 up-regulation is mediated by the activation of p38. Importantly, p38 is not activated by KB-R7943 treatment in heart tubes from Ncx1−/− mice at 9.5 days postcoitum but is activated in heart tubes from Ncx1+/+ mice. p38 activation does not appear to be in response to changes in cytosolic calcium concentration, [Ca2+]i. Interestingly, chronic KB-R7943 treatment in mice leads to the formation of an NCX1-p38 complex. Our study demonstrates for the first time that the electrogenic sarcolemma membrane cardiac NCX1 can act as a regulator of “activity-dependent signal transduction” leading to changes in gene expression. PMID:19661061

  14. Chronic administration of KB-R7943 induces up-regulation of cardiac NCX1.

    PubMed

    Xu, Lin; Kappler, Christiana S; Mani, Santhosh K; Shepherd, Neal R; Renaud, Ludivine; Snider, Paige; Conway, Simon J; Menick, Donald R

    2009-10-02

    The NCX1 (sodium-calcium exchanger) is up-regulated in human heart failure and in many animal models of heart failure. The potential benefits and risks of therapeutically blocking NCX1 in heart failure and during ischemia-reperfusion are being actively investigated. In this study, we demonstrate that prolonged administration of the NCX1 inhibitor KB-R7943 resulted in the up-regulation of Ncx1 gene expression in both isolated adult cardiomyocytes and intact mouse hearts. Ncx1 up-regulation is mediated by the activation of p38. Importantly, p38 is not activated by KB-R7943 treatment in heart tubes from Ncx1(-/-) mice at 9.5 days postcoitum but is activated in heart tubes from Ncx1(+/+) mice. p38 activation does not appear to be in response to changes in cytosolic calcium concentration, [Ca(2+)](i). Interestingly, chronic KB-R7943 treatment in mice leads to the formation of an NCX1-p38 complex. Our study demonstrates for the first time that the electrogenic sarcolemma membrane cardiac NCX1 can act as a regulator of "activity-dependent signal transduction" leading to changes in gene expression.

  15. GRK2 Up-Regulation Creates a Positive Feedback Loop for Catecholamine Production in Chromaffin Cells.

    PubMed

    Jafferjee, Malika; Reyes Valero, Thairy; Marrero, Christine; McCrink, Katie A; Brill, Ava; Lymperopoulos, Anastasios

    2016-03-01

    Elevated sympathetic nervous system (SNS) activity aggravates several diseases, including heart failure. The molecular cause(s) underlying this SNS hyperactivity are not known. We have previously uncovered a neurohormonal mechanism, operating in adrenomedullary chromaffin cells, by which circulating catecholamine (CA) levels increase in heart failure: severe dysfunction of the adrenal α2-adrenergic receptors (ARs) due to the up-regulation of G protein-coupled receptor-kinase (GRK)-2, the kinase that desensitizes them. Herein we looked at the potential signaling mechanisms that bring about this GRK2 elevation in chromaffin cells. We found that chronic CA treatment of either PC12 or rat primary chromaffin cells can in itself result in GRK2 transcriptional up-regulation through α2ARs-Gi/o proteins-Src-ERK1/2. The resultant GRK2 increase severely enhances the α2AR desensitization/down-regulation elevating not only CA release but also CA biosynthesis, as evidenced by tyrosine hydroxylase up-regulation. Finally, GRK2 knockdown leads to enhanced apoptosis of PC12 cells, indicating an essential role for GRK2 in chromaffin cell homeostasis/survival. In conclusion, chromaffin cell GRK2 mediates a positive feedback loop that feeds into CA secretion, thereby enabling the adrenomedullary component of the SNS to turn itself on.

  16. TLR4 signaling induces TLR3 up-regulation in alveolar macrophages during acute lung injury

    PubMed Central

    Ding, Xibing; Jin, Shuqing; Tong, Yao; Jiang, Xi; Chen, Zhixia; Mei, Shuya; Zhang, Liming; Billiar, Timothy R.; Li, Quan

    2017-01-01

    Acute lung injury is a life-threatening inflammatory response caused by severe infection. Toll-like receptors in alveolar macrophages (AMΦ) recognize the molecular constituents of pathogens and activate the host’s innate immune responses. Numerous studies have documented the importance of TLR-TLR cross talk, but few studies have specifically addressed the relationship between TLR4 and TLR3. We explored a novel mechanism of TLR3 up-regulation that is induced by LPS-TLR4 signaling in a dose- and time-dependent manner in AMΦ from C57BL/6 mice, while the LPS-induced TLR3 expression was significantly reduced in TLR4−/− and Myd88−/− mice and following pretreatment with a NF-κB inhibitor. The enhanced TLR3 up-regulation in AMΦ augmented the expression of cytokines and chemokines in response to sequential challenges with LPS and Poly I:C, a TLR3 ligand, which was physiologically associated with amplified AMΦ-induced PMN migration into lung alveoli. Our study demonstrates that the synergistic effect between TLR4 and TLR3 in macrophages is an important determinant in acute lung injury and, more importantly, that TLR3 up-regulation is dependent on TLR4-MyD88-NF-κB signaling. These results raise the possibility that bacterial infections can induce sensitivity to viral infections, which may have important implications for the therapeutic manipulation of the innate immune system. PMID:28198368

  17. Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression

    PubMed Central

    Paradisi, Andrea; Maisse, Carine; Coissieux, Marie-May; Gadot, Nicolas; Lépinasse, Florian; Delloye-Bourgeois, Céline; Delcros, Jean-Guy; Svrcek, Magali; Neufert, Clemens; Fléjou, Jean-François; Scoazec, Jean-Yves; Mehlen, Patrick

    2009-01-01

    Chronic inflammation and cancer are intimately associated. This is particularly true for inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, which show a major increased risk for colorectal cancer. While the understanding of the molecular pathogenesis of IBD has recently improved, the mechanisms that link these chronic inflammatory states to colorectal cancer development are in large part unknown. One of these mechanisms is NF-κB pathway activation which in turn may contribute to tumor formation by providing anti-apoptotic survival signals to the epithelial cells. Based on the observation that netrin-1, the anti-apoptotic ligand for the dependence receptors DCC and UNC5H is up-regulated in colonic crypts in response to NF-κB, we show here that colorectal cancers from inflammatory bowel diseases patients have selected up-regulation of netrin-1. Moreover, we demonstrate that this inflammation-driven netrin-1 up-regulation is causal for colorectal cancer development as interference with netrin-1 autocrine loop in a mouse model for ulcerative colitis-associated colorectal cancer, while showing no effect on inflammation, inhibits colorectal cancer progression. PMID:19721007

  18. Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression.

    PubMed

    Paradisi, Andrea; Maisse, Carine; Coissieux, Marie-May; Gadot, Nicolas; Lépinasse, Florian; Delloye-Bourgeois, Céline; Delcros, Jean-Guy; Svrcek, Magali; Neufert, Clemens; Fléjou, Jean-François; Scoazec, Jean-Yves; Mehlen, Patrick

    2009-10-06

    Chronic inflammation and cancer are intimately associated. This is particularly true for inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, which show a major increased risk for colorectal cancer. While the understanding of the molecular pathogenesis of IBD has recently improved, the mechanisms that link these chronic inflammatory states to colorectal cancer development are in large part unknown. One of these mechanisms is NF-kappaB pathway activation which in turn may contribute to tumor formation by providing anti-apoptotic survival signals to the epithelial cells. Based on the observation that netrin-1, the anti-apoptotic ligand for the dependence receptors DCC and UNC5H is up-regulated in colonic crypts in response to NF-kappaB, we show here that colorectal cancers from inflammatory bowel diseases patients have selected up-regulation of netrin-1. Moreover, we demonstrate that this inflammation-driven netrin-1 up-regulation is causal for colorectal cancer development as interference with netrin-1 autocrine loop in a mouse model for ulcerative colitis-associated colorectal cancer, while showing no effect on inflammation, inhibits colorectal cancer progression.

  19. Proteomic Analysis of the Soybean Symbiosome Identifies New Symbiotic Proteins*

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Gavrin, Aleksandr; Chen, Chi; Brear, Ella M.; Day, David A.; Smith, Penelope M.C.

    2015-01-01

    Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis. PMID

  20. Glucose metabolism activation by SHIP2 inhibitors via up-regulation of GLUT1 gene in L6 myotubes.

    PubMed

    Suwa, Akira; Kurama, Takeshi; Yamamoto, Tadashi; Sawada, Akihiko; Shimokawa, Teruhiko; Aramori, Ichiro

    2010-09-10

    Lipid phosphatase SH2 domain-containing inositol 5'-phosphatase 2 (SHIP2) plays an important role in the regulation of insulin signaling. In this report, we identified AS1938909, a novel small-molecule SHIP2 inhibitor. AS1938909 showed potent inhibition of SHIP2 (Ki=0.44 microuM) and significant selectivity over other related phosphatases. Further, AS1938909 increased Akt phosphorylation, glucose consumption, and glucose uptake in L6 myotubes. Treatment of L6 myotubes with SHIP2 inhibitors for 48 h significantly induced expression of GLUT1 mRNA, but not that of GLUT4. These results suggest that pharmacological inhibition of SHIP2 activates glucose metabolism due, at least in part, to up-regulation of GLUT1 gene expression.

  1. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4

    PubMed Central

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M.; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L.; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A.; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L.; Burgdorf, Sven

    2016-01-01

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8+ T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte–associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality. PMID:27601670

  2. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    SciTech Connect

    Gwak, Jungsug; Song, Taeyun; Song, Jie-Young; Yun, Yeon-Sook; Choi, Il-Whan; Jeong, Yongsu; Shin, Jae-Gook; Oh, Sangtaek

    2009-09-25

    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cell proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.

  3. Metabolomic analysis identifies altered metabolic pathways in Multiple Sclerosis.

    PubMed

    Poddighe, Simone; Murgia, Federica; Lorefice, Lorena; Liggi, Sonia; Cocco, Eleonora; Marrosu, Maria Giovanna; Atzori, Luigi

    2017-07-16

    Multiple sclerosis (MS) is a chronic, demyelinating disease that affects the central nervous system and is characterized by a complex pathogenesis and difficult management. The identification of new biomarkers would be clinically useful for more accurate diagnoses and disease monitoring. Metabolomics, the identification of small endogenous molecules, offers an instantaneous molecular snapshot of the MS phenotype. Here the metabolomic profiles (utilizing plasma from patients with MS) were characterized with a Gas cromatography-mass spectrometry-based platform followed by a multivariate statistical analysis and comparison with a healthy control (HC) population. The obtained partial least square discriminant analysis (PLS-DA) model identified and validated significant metabolic differences between individuals with MS and HC (R2X=0.223, R2Y=0.82, Q2=0.562; p<0.001). Among discriminant metabolites phosphate, fructose, myo-inositol, pyroglutamate, threonate, l-leucine, l-asparagine, l-ornithine, l-glutamine, and l-glutamate were correctly identified, and some resulted as unknown. A receiver operating characteristic (ROC) curve with AUC 0.84 (p=0.01; CI: 0.75-1) generated with the concentrations of the discriminant metabolites, supported the strength of the model. Pathway analysis indicated asparagine and citrulline biosynthesis as the main canonical pathways involved in MS. Changes in the citrulline biosynthesis pathway suggests the involvement of oxidative stress during neuronal damage. The results confirmed metabolomics as a useful approach to better understand the pathogenesis of MS and to provide new biomarkers for the disease to be used together with clinical data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. P2Y2 receptor up-regulation induced by guanosine or UTP in rat brain cultured astrocytes.

    PubMed

    Ballerini, P; Di Iorio, P; Caciagli, F; Rathbone, M P; Jiang, S; Nargi, E; Buccella, S; Giuliani, P; D'Alimonte, I; Fischione, G; Masciulli, A; Romano, S; Ciccarelli, R

    2006-01-01

    Among P2 metabotropic ATP receptors, P2Y2 subtype seems to be peculiar as its upregulation triggers important biological events in different cells types. In non-stimulated cells including astrocytes, P2Y2 receptors are usually expressed at levels lower than P2Y1 sites, however the promoter region of the P2Y2 receptors has not yet been studied and little is known about the mechanisms underlying the regulation of the expression of this ATP receptor. We showed that not only UTP and ATP are the most potent and naturally occurring agonist for P2Y2 sites, but also guanosine induced an up-regulation of astrocyte P2Y2 receptor mRNA evaluated by Northern blot analysis. We also focused our attention on this nucleoside since in our previous studies it was reported to be released by cultured astrocytes and to exert different neuroprotective effects. UTP and guanosine-evoked P2Y2 receptor up-regulation in rat brain cultured astrocytes was linked to an increased P2Y2-mediated intracellular calcium response, thus suggesting an increased P2Y2 activity. Actinomycin D, a RNA polymerase inhibitor, abrogated both UTP and guanosine-mediated P2Y2 up-regulation, thus indicating that de novo transcription was required. The effect of UTP and guanosine was also evaluated in astrocytes pretreated with different inhibitors of signal transduction pathways including ERK, PKC and PKA reported to be involved in the regulation of other cell surface receptor mRNAs. The results show that ERK1-2/MAPK pathway play a key role in the P2Y2 receptor up-regulation mediated by either UTP or guanosine. Moreover, our data suggest that PKA is also involved in guanosine-induced transcriptional activation of P2Y2 mRNA and that increased intracellular calcium levels and PKC activation may also mediate P2Y2 receptor up-regulation triggered by UTP. The extracellular release of ATP under physiological and pathological conditions has been widely studied. On the contrary, little is known about the release of

  5. Phosphoproteomic Analysis Identifies Focal Adhesion Kinase 2 (FAK2) as a Potential Therapeutic Target for Tamoxifen Resistance in Breast Cancer.

    PubMed

    Wu, Xinyan; Zahari, Muhammad Saddiq; Renuse, Santosh; Nirujogi, Raja Sekhar; Kim, Min-Sik; Manda, Srikanth S; Stearns, Vered; Gabrielson, Edward; Sukumar, Saraswati; Pandey, Akhilesh

    2015-11-01

    Tamoxifen, an estrogen receptor-α (ER) antagonist, is an important agent for the treatment of breast cancer. However, this therapy is complicated by the fact that a substantial number of patients exhibit either de novo or acquired resistance. To characterize the signaling mechanisms underlying this resistance, we treated the MCF7 breast cancer cell line with tamoxifen for over six months and showed that this cell line acquired resistance to tamoxifen in vitro and in vivo. We performed SILAC-based quantitative phosphoproteomic profiling on the tamoxifen resistant and vehicle-treated sensitive cell lines to quantify the phosphorylation alterations associated with tamoxifen resistance. From >5600 unique phosphopeptides identified, 1529 peptides exhibited hyperphosphorylation and 409 peptides showed hypophosphorylation in the tamoxifen resistant cells. Gene set enrichment analysis revealed that focal adhesion pathway was one of the most enriched signaling pathways activated in tamoxifen resistant cells. Significantly, we showed that the focal adhesion kinase FAK2 was not only hyperphosphorylated but also transcriptionally up-regulated in tamoxifen resistant cells. FAK2 suppression by specific siRNA knockdown or a small molecule inhibitor repressed cellular proliferation in vitro and tumor formation in vivo. More importantly, our survival analysis revealed that high expression of FAK2 is significantly associated with shorter metastasis-free survival in estrogen receptor-positive breast cancer patients treated with tamoxifen. Our studies suggest that FAK2 is a potential therapeutic target for the management of hormone-refractory breast cancers.

  6. Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes

    PubMed Central

    Tafolla-Arellano, Julio C.; Zheng, Yi; Sun, Honghe; Jiao, Chen; Ruiz-May, Eliel; Hernández-Oñate, Miguel A.; González-León, Alberto; Báez-Sañudo, Reginaldo; Fei, Zhangjun; Domozych, David; Rose, Jocelyn K. C.; Tiznado-Hernández, Martín E.

    2017-01-01

    Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative cuticle-associated genes, we analyzed the transcriptomes of peels from ripe and overripe mango fruit using RNA-Seq. Approximately 400 million reads were generated and de novo assembled into 107,744 unigenes, with a mean length of 1,717 bp and with this information an online Mango RNA-Seq Database (http://bioinfo.bti.cornell.edu/cgi-bin/mango/index.cgi) which is a valuable genomic resource for molecular research into the biology of mango fruit was created. RNA-Seq analysis suggested that the pathway leading to biosynthesis of the cuticle component, cutin, is up-regulated during overripening. This data was supported by analysis of the expression of several putative cuticle-associated genes and by gravimetric and microscopic studies of cuticle deposition, revealing a complex continuous pattern of cuticle deposition during fruit development and involving substantial accumulation during ripening/overripening. PMID:28425468

  7. Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes.

    PubMed

    Tafolla-Arellano, Julio C; Zheng, Yi; Sun, Honghe; Jiao, Chen; Ruiz-May, Eliel; Hernández-Oñate, Miguel A; González-León, Alberto; Báez-Sañudo, Reginaldo; Fei, Zhangjun; Domozych, David; Rose, Jocelyn K C; Tiznado-Hernández, Martín E

    2017-04-20

    Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative cuticle-associated genes, we analyzed the transcriptomes of peels from ripe and overripe mango fruit using RNA-Seq. Approximately 400 million reads were generated and de novo assembled into 107,744 unigenes, with a mean length of 1,717 bp and with this information an online Mango RNA-Seq Database (http://bioinfo.bti.cornell.edu/cgi-bin/mango/index.cgi) which is a valuable genomic resource for molecular research into the biology of mango fruit was created. RNA-Seq analysis suggested that the pathway leading to biosynthesis of the cuticle component, cutin, is up-regulated during overripening. This data was supported by analysis of the expression of several putative cuticle-associated genes and by gravimetric and microscopic studies of cuticle deposition, revealing a complex continuous pattern of cuticle deposition during fruit development and involving substantial accumulation during ripening/overripening.

  8. Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes

    NASA Astrophysics Data System (ADS)

    Tafolla-Arellano, Julio C.; Zheng, Yi; Sun, Honghe; Jiao, Chen; Ruiz-May, Eliel; Hernández-Oñate, Miguel A.; González-León, Alberto; Báez-Sañudo, Reginaldo; Fei, Zhangjun; Domozych, David; Rose, Jocelyn K. C.; Tiznado-Hernández, Martín E.

    2017-04-01

    Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative cuticle-associated genes, we analyzed the transcriptomes of peels from ripe and overripe mango fruit using RNA-Seq. Approximately 400 million reads were generated and de novo assembled into 107,744 unigenes, with a mean length of 1,717 bp and with this information an online Mango RNA-Seq Database (http://bioinfo.bti.cornell.edu/cgi-bin/mango/index.cgi) which is a valuable genomic resource for molecular research into the biology of mango fruit was created. RNA-Seq analysis suggested that the pathway leading to biosynthesis of the cuticle component, cutin, is up-regulated during overripening. This data was supported by analysis of the expression of several putative cuticle-associated genes and by gravimetric and microscopic studies of cuticle deposition, revealing a complex continuous pattern of cuticle deposition during fruit development and involving substantial accumulation during ripening/overripening.

  9. Phosphoproteomic Analysis Identifies Focal Adhesion Kinase 2 (FAK2) as a Potential Therapeutic Target for Tamoxifen Resistance in Breast Cancer*

    PubMed Central

    Wu, Xinyan; Zahari, Muhammad Saddiq; Renuse, Santosh; Nirujogi, Raja Sekhar; Kim, Min-Sik; Manda, Srikanth S.; Stearns, Vered; Gabrielson, Edward; Sukumar, Saraswati; Pandey, Akhilesh

    2015-01-01

    Tamoxifen, an estrogen receptor-α (ER) antagonist, is an important agent for the treatment of breast cancer. However, this therapy is complicated by the fact that a substantial number of patients exhibit either de novo or acquired resistance. To characterize the signaling mechanisms underlying this resistance, we treated the MCF7 breast cancer cell line with tamoxifen for over six months and showed that this cell line acquired resistance to tamoxifen in vitro and in vivo. We performed SILAC-based quantitative phosphoproteomic profiling on the tamoxifen resistant and vehicle-treated sensitive cell lines to quantify the phosphorylation alterations associated with tamoxifen resistance. From >5600 unique phosphopeptides identified, 1529 peptides exhibited hyperphosphorylation and 409 peptides showed hypophosphorylation in the tamoxifen resistant cells. Gene set enrichment analysis revealed that focal adhesion pathway was one of the most enriched signaling pathways activated in tamoxifen resistant cells. Significantly, we showed that the focal adhesion kinase FAK2 was not only hyperphosphorylated but also transcriptionally up-regulated in tamoxifen resistant cells. FAK2 suppression by specific siRNA knockdown or a small molecule inhibitor repressed cellular proliferation in vitro and tumor formation in vivo. More importantly, our survival analysis revealed that high expression of FAK2 is significantly associated with shorter metastasis-free survival in estrogen receptor-positive breast cancer patients treated with tamoxifen. Our studies suggest that FAK2 is a potential therapeutic target for the management of hormone-refractory breast cancers. PMID:26330541

  10. Cluster Analysis to Identify Possible Subgroups in Tinnitus Patients.

    PubMed

    van den Berge, Minke J C; Free, Rolien H; Arnold, Rosemarie; de Kleine, Emile; Hofman, Rutger; van Dijk, J Marc C; van Dijk, Pim

    2017-01-01

    In tinnitus treatment, there is a tendency to shift from a "one size fits all" to a more individual, patient-tailored approach. Insight in the heterogeneity of the tinnitus spectrum might improve the management of tinnitus patients in terms of choice of treatment and identification of patients with severe mental distress. The goal of this study was to identify subgroups in a large group of tinnitus patients. Data were collected from patients with severe tinnitus complaints visiting our tertiary referral tinnitus care group at the University Medical Center Groningen. Patient-reported and physician-reported variables were collected during their visit to our clinic. Cluster analyses were used to characterize subgroups. For the selection of the right variables to enter in the cluster analysis, two approaches were used: (1) variable reduction with principle component analysis and (2) variable selection based on expert opinion. Various variables of 1,783 tinnitus patients were included in the analyses. Cluster analysis (1) included 976 patients and resulted in a four-cluster solution. The effect of external influences was the most discriminative between the groups, or clusters, of patients. The "silhouette measure" of the cluster outcome was low (0.2), indicating a "no substantial" cluster structure. Cluster analysis (2) included 761 patients and resulted in a three-cluster solution, comparable to the first analysis. Again, a "no substantial" cluster structure was found (0.2). Two cluster analyses on a large database of tinnitus patients revealed that clusters of patients are mostly formed by a different response of external influences on their disease. However, both cluster outcomes based on this dataset showed a poor stability, suggesting that our tinnitus population comprises a continuum rather than a number of clearly defined subgroups.

  11. Comparative transcriptome analysis of Gastrodia elata (Orchidaceae) in response to fungus symbiosis to identify gastrodin biosynthesis-related genes.

    PubMed

    Tsai, Chi-Chu; Wu, Keh-Ming; Chiang, Tzen-Yuh; Huang, Chun-Yen; Chou, Chang-Hung; Li, Shu-Ju; Chiang, Yu-Chung

    2016-03-09

    Gastrodia elata Blume (Orchidaceae) is an important Chinese medicine with several functional components. In the life cycle of G. elata, the orchid develops a symbiotic relationship with two compatible mycorrhizal fungi Mycena spp. and Armillaria mellea during seed germination to form vegetative propagation corm and vegetative growth to develop tubers, respectively. Gastrodin (p-hydroxymethylphenol-beta-D-glucoside) is the most important functional component in G. elata, and gastrodin significantly increases from vegetative propagation corms to tubers. To address the gene regulation mechanism in gastrodin biosynthesis in G. elata, a comparative analysis of de novo transcriptome sequencing among the vegetative propagation corms and tubers of G. elata and A. mellea was conducted using deep sequencing. Transcriptome comparison between the vegetative propagation corms and juvenile tubers of G. elata revealed 703 differentially expressed unigenes, of which 298 and 405 unigenes were, respectively up-regulated (fold-change ≥ 2, q-value < 0.05, the trimmed mean of M-values (TMM)-normalized fragments per kilobase of transcript per Million mapped reads (FPKM) > 10) and down-regulated (fold-change ≤ 0.5, q-value <0.05, TMM-normalized FPKM > 10) in juvenile tubers. After Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, 112 up-regulated unigenes with KEGG Ortholog identifiers (KOids) or enzyme commission (EC) numbers were assigned to 159 isogroups involved in seventy-eight different pathways, and 132 down-regulated unigenes with KOids or EC numbers were assigned to 168 isogroups, involved in eighty different pathways. The analysis of the isogroup genes from all pathways revealed that the two unigenes TRINITY_DN54282_c0_g1 (putative monooxygenases) and TRINITY_DN50323_c0_g1 (putative glycosyltransferases) might participate in hydroxylation and glucosylation in the gastrodin biosynthetic pathway. The gene

  12. Characteristics of genes up-regulated and down-regulated after 24 h starvation in the head of Drosophila.

    PubMed

    Fujikawa, Kazuyo; Takahashi, Aya; Nishimura, Azusa; Itoh, Masanobu; Takano-Shimizu, Toshiyuki; Ozaki, Mamiko

    2009-10-01

    Starvation is a common experience under fluctuating food conditions in nature, and response to it is vital for many organisms. Many studies have investigated the response at physiological and behavioral level, whereas the studies on starvation-induced transcriptional changes in the brain and the surrounding tissues are still limited. We here investigated global changes in transcript abundance in the head after 24 h starvation by microarray expression profiling of 2 wild-derived inbred strains of Drosophila melanogaster, and identified a core set of 65 up-regulated and 48 down-regulated genes upon starvation. Among these up-regulated genes, 22 genes were circadian oscillating genes previously identified in the head of Drosophila. Interestingly, most (86%) of these circadian genes show their expression peak in a narrow time range of ZT7.0-12.0, when flies are relatively restless and less feeding in the normal condition. Among the down-regulated genes, 2 genes with highest fold-differences, fit and CG8147, are known to have female-biased expression in the head, and 1 gene, Obp99b, is known to be male-biased. Together with the realtime qPCR experiments on female and male transcripts, our data suggest that these sex-specific genes are candidate genes mediating a possible trade-off between starvation resistance and reproduction. Eleven down-regulated genes are known to be involved in the immune response. These changes in head transcriptome upon starvation reflect modulation of expression in some normally oscillating rhythmic genes and reduction in the resource allocation toward sexual activity and immunity.

  13. Identifying genes of gene regulatory networks using formal concept analysis.

    PubMed

    Gebert, Jutta; Motameny, Susanne; Faigle, Ulrich; Forst, Christian V; Schrader, Rainer

    2008-03-01

    In order to understand the behavior of a gene regulatory network, it is essential to know the genes that belong to it. Identifying the correct members (e.g., in order to build a model) is a difficult task even for small subnetworks. Usually only few members of a network are known and one needs to guess the missing members based on experience or informed speculation. It is beneficial if one can additionally rely on experimental data to support this guess. In this work we present a new method based on formal concept analysis to detect unknown members of a gene regulatory network from gene expression time series data. We show that formal concept analysis is able to find a list of candidate genes for inclusion into a partially known basic network. This list can then be reduced by a statistical analysis so that the resulting genes interact strongly with the basic network and therefore should be included when modeling the network. The method has been applied to the DNA repair system of Mycobacterium tuberculosis. In this application, our method produces comparable results to an already existing method of component selection while it is applicable to a broader range of problems.

  14. Lens culinaris Medik. seed proteome: analysis to identify landrace markers.

    PubMed

    Ialicicco, Manuela; Viscosi, Vincenzo; Arena, Simona; Scaloni, Andrea; Trupiano, Dalila; Rocco, Mariapina; Chiatante, Donato; Scippa, Gabriella S

    2012-12-01

    Unlike modern cultivars selected for their growth performances in specific environmental conditions, local landraces have a high genetic variability that is an important resource for plant breeding. Consequent to their high adaptation to different environmental conditions, these landraces may have evolved adaptive gene complexes To promote the survival of endangered lentil landraces, we previously investigated the genetic relationship between two ancient landraces cultivated in the Molise region (Capracotta and Conca Casale, south-central Italy) and widely spread commercial varieties using an integrated approach consisting of morphological, DNA and protein characterization. In the present study, we used a proteomic approach to compare the mature seed proteomes of the Capracotta and Conca Casale lentil landraces. Multivariate analysis of 145 differentially expressed protein spots demonstrated that 52 proteins are required to discriminate among the two landraces. Therefore, these 52 proteins can be considered "landrace markers". The results of this study show that the combination of proteomics and multivariate analysis can be used to identify physiological and/or environmental markers, and is thus a powerful tool that complements the analysis of biodiversity in plant ecotypes.

  15. Increase in gene-transcript levels as indicators of up-regulation of the unfolded protein response in spontaneous canine tumors.

    PubMed

    Elliot, Kirsten; MacDonald-Dickinson, Valerie; Linn, Kathleen; Simko, Elemir; Misra, Vikram

    2014-07-01

    The unfolded protein response (UPR), a conserved cellular response to stressors such as hypoxia and nutrient deprivation, is associated with angiogenesis and metastasis in tumor cells. This article discusses a pilot study conducted to determine whether components of the UPR could be identified in spontaneous canine tumors and whether they were up-regulated within tumor tissue compared with adjacent normal tissue. Tissue samples of various spontaneous canine neoplasms were taken from 13 dogs shortly after surgical excision or euthanasia; control samples were taken from adjacent normal tissue. RNA purification and real-time quantitative reverse-transcription polymerase chain reaction were done to measure the expression of 4 genes associated with the UPR (HERP, CHOP, GRP78, and XBP1s). The results indicated that UPR gene expression can be identified in spontaneous canine tumors and that the UPR is up-regulated, as indicated by significantly increased expression of CHOP and GRP78 within the tumor.

  16. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner

    PubMed Central

    Seo, Young-Su; Rojas, Maria R.; Lee, Jung-Youn; Lee, Sang-Won; Jeon, Jong-Seong; Ronald, Pamela; Lucas, William J.; Gilbertson, Robert L.

    2006-01-01

    Genes involved in a viral resistance response in common bean (Phaseolus vulgaris cv. Othello) were identified by inoculating a geminivirus reporter (Bean dwarf mosaic virus expressing the green fluorescent protein), extracting RNA from tissue undergoing the defense response, and amplifying sequences with degenerate R gene primers. One such gene (a TIR-NBS-LRR gene, RT4-4) was selected for functional analysis in which transgenic Nicotiana benthamiana were generated and screened for resistance to a range of viruses. This analysis revealed that RT4-4 did not confer resistance to the reporter geminivirus; however, it did activate a resistance-related response (systemic necrosis) to seven strains of Cucumber mosaic virus (CMV) from pepper or tomato, but not to a CMV strain from common bean. Of these eight CMV strains, only the strain from common bean systemically infected common bean cv. Othello. Additional evidence that RT4-4 is a CMV R gene came from the detection of resistance response markers in CMV-challenged leaves of RT4-4 transgenic plants, and the identification of the CMV 2a gene product as the elicitor of the necrosis response. These findings indicate that RT4-4 functions across two plant families and is up-regulated in a non-virus-specific manner. This experimental approach holds promise for providing insights into the mechanisms by which plants activate resistance responses against pathogens. PMID:16880399

  17. A Critical Analysis of Anesthesiology Podcasts: Identifying Determinants of Success

    PubMed Central

    Singh, Devin; Matava, Clyde

    2016-01-01

    Background Audio and video podcasts have gained popularity in recent years. Increasingly, podcasts are being used in the field of medicine as a tool to disseminate information. This format has multiple advantages including highly accessible creation tools, low distribution costs, and portability for the user. However, despite its ongoing use in medical education, there are no data describing factors associated with the success or quality of podcasts. Objective The goal of the study was to assess the landscape of anesthesia podcasts in Canada and develop a methodology for evaluating the quality of the podcast. To achieve our objective, we identified the scope of podcasts in anesthesia specifically, constructed an algorithmic model for measuring success, and identified factors linked to both successful podcasts and a peer-review process. Methods Independent reviewers performed a systematic search of anesthesia-related podcasts on iTunes Canada. Data and metrics recorded for each podcast included podcast’s authorship, number posted, podcast series duration, target audience, topics, and social media presence. Descriptive statistics summarized mined data, and univariate analysis was used to identify factors associated with podcast success and a peer-review process. Results Twenty-two podcasts related to anesthesia were included in the final analysis. Less than a third (6/22=27%) were still active. The median longevity of the podcasts’ series was just 13 months (interquartile range: 1-39 months). Anesthesiologists were the target audience for 77% of podcast series with clinical topics being most commonly addressed. We defined a novel algorithm for measuring success: Podcast Success Index. Factors associated with a high Podcast Success Index included podcasts targeting fellows (Spearman R=0.434; P=.04), inclusion of professional topics (Spearman R=0.456-0.603; P=.01-.03), and the use of Twitter as a means of social media (Spearman R=0.453;P=.03). In addition, more

  18. A Critical Analysis of Anesthesiology Podcasts: Identifying Determinants of Success.

    PubMed

    Singh, Devin; Alam, Fahad; Matava, Clyde

    2016-08-17

    Audio and video podcasts have gained popularity in recent years. Increasingly, podcasts are being used in the field of medicine as a tool to disseminate information. This format has multiple advantages including highly accessible creation tools, low distribution costs, and portability for the user. However, despite its ongoing use in medical education, there are no data describing factors associated with the success or quality of podcasts. The goal of the study was to assess the landscape of anesthesia podcasts in Canada and develop a methodology for evaluating the quality of the podcast. To achieve our objective, we identified the scope of podcasts in anesthesia specifically, constructed an algorithmic model for measuring success, and identified factors linked to both successful podcasts and a peer-review process. Independent reviewers performed a systematic search of anesthesia-related podcasts on iTunes Canada. Data and metrics recorded for each podcast included podcast's authorship, number posted, podcast series duration, target audience, topics, and social media presence. Descriptive statistics summarized mined data, and univariate analysis was used to identify factors associated with podcast success and a peer-review process. Twenty-two podcasts related to anesthesia were included in the final analysis. Less than a third (6/22=27%) were still active. The median longevity of the podcasts' series was just 13 months (interquartile range: 1-39 months). Anesthesiologists were the target audience for 77% of podcast series with clinical topics being most commonly addressed. We defined a novel algorithm for measuring success: Podcast Success Index. Factors associated with a high Podcast Success Index included podcasts targeting fellows (Spearman R=0.434; P=.04), inclusion of professional topics (Spearman R=0.456-0.603; P=.01-.03), and the use of Twitter as a means of social media (Spearman R=0.453;P=.03). In addition, more than two-thirds (16/22=73%) of podcasts

  19. Evolution of Bacillus subtilis to enhanced growth at low pressure: up-regulated transcription of des-desKR, encoding the fatty acid desaturase system.

    PubMed

    Fajardo-Cavazos, Patricia; Waters, Samantha M; Schuerger, Andrew C; George, Sheeja; Marois, James J; Nicholson, Wayne L

    2012-03-01

    The atmospheric pressure on Mars ranges from 1-10 mbar, about 1% of Earth pressure (∼1013 mbar). Low pressure is a growth-inhibitory factor for terrestrial microorganisms on Mars, and a putative low-pressure barrier for growth of Earth bacteria of ∼25 mbar has been postulated. In a previous communication, we described the isolation of a strain of Bacillus subtilis that had evolved enhanced growth ability at the near-inhibitory low pressure of 50 mbar. To explore mechanisms that enabled growth of the low-pressure-adapted strain, numerous genes differentially transcribed between the ancestor strain WN624 and low-pressure-evolved strain WN1106 at 50 mbar were identified by microarray analysis. Among these was a cluster of three candidate genes (des, desK, and desR), whose mRNA levels in WN1106 were higher than the ancestor on the microarrays. Up-regulation of these genes was confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. The des, desK, and desR genes encode the Des membrane fatty acid (FA) desaturase, the DesK sensor kinase, and the DesR response regulator, respectively, which function to maintain membrane fluidity in acute response to temperature downshift. Pressure downshift caused an up-regulation of des mRNA levels only in WN1106, but expression of a des-lacZ transcriptional fusion was unaffected, which suggests that des regulation was different in response to temperature versus pressure downshift. Competition experiments showed that inactivation of the des gene caused a slight, but statistically significant, loss of fitness of strain WN1106 at 50 mbar. Further, analysis of membrane FA composition of cells grown at 1013 versus 50 mbar revealed a decrease in the ratio of unsaturated to saturated FAs but an increase in the ratio of anteiso- to iso-FAs. The present study represents a first step toward identification of molecular mechanisms by which B. subtilis could sense and respond to the novel environmental stress

  20. Fulvestrant up regulates UGT1A4 and MRPs through ERα and c-Myb pathways: a possible primary drug disposition mechanism.

    PubMed

    Edavana, Vineetha K; Penney, Rosalind B; Yao-Borengasser, Aiwei; Williams, Suzanne; Rogers, Lora; Dhakal, Ishwori B; Kadlubar, Susan

    2013-01-01

    Fulvestrant (Faslodex™) is a pure antiestrogen that is effective in treating estrogen receptor-(ER) positive breast cancer tumors that are resistant to selective estrogen receptor modulators such as tamoxifen. Clinical trials investigating the utility of adding fulvestrant to other therapeutics have not been shown to affect cytochrome P450-mediated metabolism. Effects on phase II metabolism and drug resistance have not been explored. This study demonstrates that fulvestrant up regulates the expression of UDP glucuronosyltransferase 1A4 (UGT1A4) >2.5- and >3.5-fold in MCF7 and HepG2 cells, respectively. Up regulation occurred in a time- and concentration-dependent manner, and was inhibited by siRNA silencing of ERα. Fulvestrant also up regulates multidrug resistance-associated proteins (MRPs). There was an up regulation of MRP2 (1.5- and 3.5-fold), and MRP3 (5.5- and 4.5-fold) in MCF7 and HepG2 cell lines, respectively, and an up regulation of MRP1 (4-fold) in MCF7 cells. UGT1A4 mRNA up regulation was significantly correlated with UGT1A4 protein expression, anastrozole glucuronidation, ERα mRNA expression and MRP mRNA expression, but not with ERα protein expression. Genetic variants in the UGT1A4 promoter (-163A, -217G and -219T) reduced the basal activity of UGT1A4 by 40-60%. In silico analysis indicated that transcription factor c-Myb binding capacity may be affected by these variations. Luciferase activity assays demonstrate that silencing c-Myb abolished UGT1A4 up regulation by fulvestrant in promoters with the common genotype (-163G, -217 T and -219C) in MCF7 cells. These data indicate that fulvestrant can influence the disposition of other UGT1A4 substrates. These findings suggest a clinically significant role for UGT1A4 and MRPs in drug efficacy.

  1. Genomewide meta-analysis identifies novel multiple sclerosis susceptibility loci

    PubMed Central

    Patsopoulos, Nikolaos A.; de Bakker, Paul I.W.

    2011-01-01

    Objective To perform a one-stage meta-analysis of genome-wide association studies (GWAS) of multiple sclerosis (MS) susceptibility and explore functional consequences of new susceptibility loci. Methods We synthesized 7 MS GWAS. Each dataset was imputed using HapMap phase II and a per-SNP meta-analysis was performed across the 7 datasets. We explored RNA expression data using a quantitative trait analysis in peripheral blood mononuclear cells (PBMCs) of 228 subjects with demyelinating disease. Results We meta-analyzed 2,529,394 unique SNPs in 5,545 cases and 12,153 controls. We identified three novel susceptibility alleles: rs170934T at 3p24.1 (OR=1.17, P = 1.6 × 10−8) near EOMES, rs2150702G in the second intron of MLANA on chromosome 9p24.1 (OR = 1.16, P = 3.3 × 10−8), and rs6718520A in an intergenic region on chromosome 2p21, with THADA as the nearest flanking gene (OR = 1.17, P = 3.4 × 10−8). The three new loci do not have a strong “cis” effect on RNA expression in PBMCs. Ten other susceptibility loci had a suggestive P<1×10−6, some of which have evidence of association in other inflammatory diseases, i.e. IL12B, TAGAP, PLEK, and ZMIZ1. Interpretation We have performed a meta-analysis of GWAS in MS that more than doubles the size of previous gene discovery efforts and highlights three novel MS susceptibility loci. These and additional loci with suggestive evidence of association are excellent candidates for further investigations to refine and validate their role in the genetic architecture of MS. PMID:22190364

  2. Multiple cis-acting elements involved in up-regulation of a cytochrome P450 gene conferring resistance to deltamethrin in smal brown planthopper, Laodelphax striatellus (Fallén).

    PubMed

    Pu, Jian; Sun, Haina; Wang, Jinda; Wu, Min; Wang, Kangxu; Denholm, Ian; Han, Zhaojun

    2016-11-01

    As well as arising from single point mutations in binding sites or detoxifying enzymes, it is likely that insecticide resistance mechanisms are frequently controlled by multiple genetic factors, resulting in resistance being inherited as a quantitative trait. However, empirical evidence for this is still rare. Here we analyse the causes of up-regulation of CYP6FU1, a monoxygenase implicated in resistance to deltamethrin in the rice pest Laodelphax striatellus. The 5'-flanking region of this gene was cloned and sequenced from individuals of a susceptible and a resistant strain. A luminescent reporter assay was used to evaluate different 5'-flanking regions and their fragments for promoter activity. Mutations enhancing promoter activity in various fragments were characterized, singly and in combination, by site mutation recovery. Nucleotide diversity in flanking sequences was greatly reduced in deltamethrin-resistant insects compared to susceptible ones. Phylogenetic sequence analysis found that CYP6FU1 had five different types of 5'-flanking region. All five types were present in a susceptible strain but only a single type showing the highest promoter activity was present in a resistant strain. Four cis-acting elements were identified whose influence on up-regulation was much more pronounced in combination than when present singly. Of these, two were new transcription factor (TF) binding sites produced by mutations, another one was also a new TF binding site alternated from an existing one, and the fourth was a unique transcription start site. These results demonstrate that multiple cis-acting elements are involved in up-regulating CYP6FU1 to generate a resistance phenotype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. S-adenosylmethionine prevents the up regulation of Toll-like receptor (TLR) signaling caused by chronic ethanol feeding in rats.

    PubMed

    Oliva, Joan; Bardag-Gorce, Fawzia; Li, Jun; French, Barbara A; French, Samuel W

    2011-06-01

    Toll-like receptors (TLR) play a role in mediating the proinflammatory response, fibrogenesis and carcinogenesis in chronic liver diseases such as alcoholic liver disease, non-alcoholic liver disease, hepatitis C and hepatocellular carcinoma. This is true in experimental models of these diseases. For this reason, we investigated the TLR proinflammatory response in the chronic intragastric tube feeding rat model of alcohol liver disease. The methyl donor S-adenosylmethionine was also fed to prevent the gene expression changes induced by ethanol. Ethanol feeding tended to increase the up regulation of the gene expression of TLR2 and TLR4. SAMe feeding prevented this. TLR4 and MyD88 protein levels were significantly increased by ethanol and this was prevented by SAMe. This is the first report where ethanol feeding induced TLR2 and SAMe prevented the induction by ethanol. CD34, FOS, interferon responsive factor 1 (IRF-1), Jun, TLR 1,2,3,4,6 and 7 and Traf-6 were found to be up regulated as seen by microarray analysis where rats were sacrificed at high blood alcohol levels compared to pair fed controls. Il-6, IL-10 and IFNγ were also up regulated by high blood levels of ethanol. The gene expression of CD14, MyD88 and TNFR1SF1 were not up regulated by ethanol but were down regulated by SAMe. The gene expression of IL-1R1 and IRF1 tended to be up regulated by ethanol and this was prevented by feeding SAMe. The results suggest that SAMe, fed chronically prevents the activation of TLR pathways caused by ethanol. In this way the proinflammatory response, fibrogenesis, cirrhosis and hepatocellular carcinoma formation due to alcohol liver disease could be prevented by SAMe.

  4. S-ADENOSYLMETHIONINE PREVENTS THE UP REGULATION OF TOLL-LIKE RECEPTOR (TLR) SIGNALING CAUSED BY CHRONIC ETHANOL FEEDING IN RATS

    PubMed Central

    Oliva, Joan; Bardag-Gorce, Fawzia; Li, Jun; French, Barbara A; French, Samuel W

    2011-01-01

    Toll-like receptors (TLR) play a role in mediating the proinflammatory response, fibrogenesis and carcinogenesis in chronic liver diseases such as alcoholic liver disease, non-alcoholic liver disease, hepatitis C and hepatocellular carcinoma. This is true in experimental models of these diseases. For this reason, we investigated the TLR proinflammatory response in the chronic intragastric tube feeding rat model of alcohol liver disease. The methyl donor S-adenosylmethionine was also fed to prevent the gene expression changes induced by ethanol. Ethanol feeding tended to increase the up regulation of the gene expression of TLR2 and TLR4. SAMe feeding prevented this. TLR4 and MyD88 protein levels were significantly increased by ethanol and this was prevented by SAMe. This is the first report where ethanol feeding induced TLR2 and SAMe prevented the induction by ethanol. CD34, FOS, interferon responsive factor 1 (IRF-1), Jun, TLR 1,2,3,4,6 and 7 and Traf-6 were found to be up regulated as seen by microarray analysis where rats were sacrified at high blood alcohol levels compared to pair fed controls. Il-6, IL-10 and IFNγ were also up regulated by high blood levels of ethanol. The gene expression of CD14, MyD88 and TNFR1SF1 were not up regulated by ethanol but were down regulated by SAMe. The gene expression of IL-1R1 and IRF1 tended to be up regulated by ethanol and this was prevented by feeding SAMe. The results suggest that SAMe, fed chronically prevents activation of TLR pathways caused by ethanol. In this way the proinflammatory response, fibrogenesis, cirrhosis and hepatocellular carcinoma formation due to alcohol liver disease could be prevented by SAMe. PMID:21276439

  5. Bloodstream form-specific up-regulation of silent vsg expression sites and procyclin in Trypanosoma brucei after inhibition of DNA synthesis or DNA damage.

    PubMed

    Sheader, Karen; te Vruchte, Daniëlle; Rudenko, Gloria

    2004-04-02

    The African trypanosome Trypanosoma brucei transcribes the active variant surface glycoprotein (VSG) gene from one of about 20 VSG expression sites (ESs). In order to study ES control, we made reporter lines with a green fluorescent protein gene inserted behind the promoter of different ESs. We attempted to disrupt the silencing machinery, and we used fluorescence-activated cell sorter analysis for the rapid and sensitive detection of ES up-regulation. We find that a range of treatments that either block nuclear DNA synthesis, like aphidicolin, or modify DNA-like cisplatin and 1-methyl-3-nitro-1-nitrosoguanidine results in up-regulation of silent ESs. Aphidicolin treatment was the most effective, with almost 80% of the cells expressing green fluorescent protein from a silent ES. All of these treatments blocked the cells in S phase. In contrast, a range of toxic chemicals had little or no effect on expression. These included berenil and pentamidine, which selectively cleave the mitochondrial kinetoplast DNA, the metabolic inhibitors suramin and difluoromethylornithine, and the mitotic inhibitor rhizoxin. Up-regulation also affected other RNA polymerase I (pol I) transcription units, as procyclin genes were also up-regulated after cells were treated with either aphidicolin or DNA-modifying agents. Strikingly, this up-regulation of silent pol I transcription units was bloodstream form-specific and was not observed in insect form T. brucei. We postulate that the redistribution of a limiting bloodstream form-specific factor involved in both silencing and DNA repair results in the derepression of normally silenced pol I transcription units after DNA damage.

  6. Archetypal TRMM Radar Profiles Identified Through Cluster Analysis

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.

    2003-01-01

    It is widely held that identifiable 'convective regimes' exist in nature, although precise definitions of these are elusive. Examples include land / Ocean distinctions, break / monsoon beahvior, seasonal differences in the Amazon (SON vs DJF), etc. These regimes are often described by differences in the realized local convective spectra, and measured by various metrics of convective intensity, depth, areal coverage and rainfall amount. Objective regime identification may be valuable in several ways: regimes may serve as natural 'branch points' in satellite retrieval algorithms or data assimilation efforts; one example might be objective identification of regions that 'should' share a similar 2-R relationship. Similarly, objectively defined regimes may provide guidance on optimal siting of ground validation efforts. Objectively defined regimes could also serve as natural (rather than arbitrary geographic) domain 'controls' in studies of convective response to environmental forcing. Quantification of convective vertical structure has traditionally involved parametric study of prescribed quantities thought to be important to convective dynamics: maximum radar reflectivity, cloud top height, 30-35 dBZ echo top height, rain rate, etc. Individually, these parameters are somewhat deficient as their interpretation is often nonunique (the same metric value may signify different physics in different storm realizations). Individual metrics also fail to capture the coherence and interrelationships between vertical levels available in full 3-D radar datasets. An alternative approach is discovery of natural partitions of vertical structure in a globally representative dataset, or 'archetypal' reflectivity profiles. In this study, this is accomplished through cluster analysis of a very large sample (0[107) of TRMM-PR reflectivity columns. Once achieved, the rainconditional and unconditional 'mix' of archetypal profile types in a given location and/or season provides a description

  7. Archetypal TRMM Radar Profiles Identified Through Cluster Analysis

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.

    2003-01-01

    It is widely held that identifiable 'convective regimes' exist in nature, although precise definitions of these are elusive. Examples include land / Ocean distinctions, break / monsoon beahvior, seasonal differences in the Amazon (SON vs DJF), etc. These regimes are often described by differences in the realized local convective spectra, and measured by various metrics of convective intensity, depth, areal coverage and rainfall amount. Objective regime identification may be valuable in several ways: regimes may serve as natural 'branch points' in satellite retrieval algorithms or data assimilation efforts; one example might be objective identification of regions that 'should' share a similar 2-R relationship. Similarly, objectively defined regimes may provide guidance on optimal siting of ground validation efforts. Objectively defined regimes could also serve as natural (rather than arbitrary geographic) domain 'controls' in studies of convective response to environmental forcing. Quantification of convective vertical structure has traditionally involved parametric study of prescribed quantities thought to be important to convective dynamics: maximum radar reflectivity, cloud top height, 30-35 dBZ echo top height, rain rate, etc. Individually, these parameters are somewhat deficient as their interpretation is often nonunique (the same metric value may signify different physics in different storm realizations). Individual metrics also fail to capture the coherence and interrelationships between vertical levels available in full 3-D radar datasets. An alternative approach is discovery of natural partitions of vertical structure in a globally representative dataset, or 'archetypal' reflectivity profiles. In this study, this is accomplished through cluster analysis of a very large sample (0[107) of TRMM-PR reflectivity columns. Once achieved, the rainconditional and unconditional 'mix' of archetypal profile types in a given location and/or season provides a description

  8. Cluster Analysis of Clinical Data Identifies Fibromyalgia Subgroups

    PubMed Central

    Docampo, Elisa; Collado, Antonio; Escaramís, Geòrgia; Carbonell, Jordi; Rivera, Javier; Vidal, Javier; Alegre, José

    2013-01-01

    Introduction Fibromyalgia (FM) is mainly characterized by widespread pain and multiple accompanying symptoms, which hinder FM assessment and management. In order to reduce FM heterogeneity we classified clinical data into simplified dimensions that were used to define FM subgroups. Material and Methods 48 variables were evaluated in 1,446 Spanish FM cases fulfilling 1990 ACR FM criteria. A partitioning analysis was performed to find groups of variables similar to each other. Similarities between variables were identified and the variables were grouped into dimensions. This was performed in a subset of 559 patients, and cross-validated in the remaining 887 patients. For each sample and dimension, a composite index was obtained based on the weights of the variables included in the dimension. Finally, a clustering procedure was applied to the indexes, resulting in FM subgroups. Results Variables clustered into three independent dimensions: “symptomatology”, “comorbidities” and “clinical scales”. Only the two first dimensions were considered for the construction of FM subgroups. Resulting scores classified FM samples into three subgroups: low symptomatology and comorbidities (Cluster 1), high symptomatology and comorbidities (Cluster 2), and high symptomatology but low comorbidities (Cluster 3), showing differences in measures of disease severity. Conclusions We have identified three subgroups of FM samples in a large cohort of FM by clustering clinical data. Our analysis stresses the importance of family and personal history of FM comorbidities. Also, the resulting patient clusters could indicate different forms of the disease, relevant to future research, and might have an impact on clinical assessment. PMID:24098674

  9. Identifying avian sources of faecal contamination using sterol analysis.

    PubMed

    Devane, Megan L; Wood, David; Chappell, Andrew; Robson, Beth; Webster-Brown, Jenny; Gilpin, Brent J

    2015-10-01

    Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol + 24-ethylcoprostanol + 24-ethylepicoprostanol) is ≥0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol + coprostanol + epicoprostanol) is ≥0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66% concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed.

  10. Automated Network Analysis Identifies Core Pathways in Glioblastoma

    PubMed Central

    Cerami, Ethan; Demir, Emek; Schultz, Nikolaus; Taylor, Barry S.; Sander, Chris

    2010-01-01

    Background Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor in humans and the first cancer with comprehensive genomic profiles mapped by The Cancer Genome Atlas (TCGA) project. A central challenge in large-scale genome projects, such as the TCGA GBM project, is the ability to distinguish cancer-causing “driver” mutations from passively selected “passenger” mutations. Principal Findings In contrast to a purely frequency based approach to identifying driver mutations in cancer, we propose an automated network-based approach for identifying candidate oncogenic processes and driver genes. The approach is based on the hypothesis that cellular networks contain functional modules, and that tumors target specific modules critical to their growth. Key elements in the approach include combined analysis of sequence mutations and DNA copy number alterations; use of a unified molecular interaction network consisting of both protein-protein interactions and signaling pathways; and identification and statistical assessment of network modules, i.e. cohesive groups of genes of interest with a higher density of interactions within groups than between groups. Conclusions We confirm and extend the observation that GBM alterations tend to occur within specific functional modules, in spite of considerable patient-to-patient variation, and that two of the largest modules involve signaling via p53, Rb, PI3K and receptor protein kinases. We also identify new candidate drivers in GBM, including AGAP2/CENTG1, a putative oncogene and an activator of the PI3K pathway; and, three additional significantly altered modules, including one involved in microtubule organization. To facilitate the application of our network-based approach to additional cancer types, we make the method freely available as part of a software tool called NetBox. PMID:20169195

  11. Social network analysis in identifying influential webloggers: A preliminary study

    NASA Astrophysics Data System (ADS)

    Hasmuni, Noraini; Sulaiman, Nor Intan Saniah; Zaibidi, Nerda Zura

    2014-12-01

    In recent years, second generation of internet-based services such as weblog has become an effective communication tool to publish information on the Web. Weblogs have unique characteristics that deserve users' attention. Some of webloggers have seen weblogs as appropriate medium to initiate and expand business. These webloggers or also known as direct profit-oriented webloggers (DPOWs) communicate and share knowledge with each other through social interaction. However, survivability is the main issue among DPOW. Frequent communication with influential webloggers is one of the way to keep survive as DPOW. This paper aims to understand the network structure and identify influential webloggers within the network. Proper understanding of the network structure can assist us in knowing how the information is exchanged among members and enhance survivability among DPOW. 30 DPOW were involved in this study. Degree centrality and betweenness centrality measurement in Social Network Analysis (SNA) were used to examine the strength relation and identify influential webloggers within the network. Thus, webloggers with the highest value of these measurements are considered as the most influential webloggers in the network.

  12. Network Analysis Identifies Disease-Specific Pathways for Parkinson's Disease.

    PubMed

    Monti, Chiara; Colugnat, Ilaria; Lopiano, Leonardo; Chiò, Adriano; Alberio, Tiziana

    2016-12-21

    Neurodegenerative diseases are characterized by the progressive loss of specific neurons in selected regions of the central nervous system. The main clinical manifestation (movement disorders, cognitive impairment, and/or psychiatric disturbances) depends on the neuron population being primarily affected. Parkinson's disease is a common movement disorder, whose etiology remains mostly unknown. Progressive loss of dopaminergic neurons in the substantia nigra causes an impairment of the motor control. Some of the pathogenetic mechanisms causing the progressive deterioration of these neurons are not specific for Parkinson's disease but are shared by other neurodegenerative diseases, like Alzheimer's disease and amyotrophic lateral sclerosis. Here, we performed a meta-analysis of the literature of all the quantitative proteomic investigations of neuronal alterations in different models of Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis to distinguish between general and Parkinson's disease-specific pattern of neurodegeneration. Then, we merged proteomics data with genetics information from the DisGeNET database. The comparison of gene and protein information allowed us to identify 25 proteins involved uniquely in Parkinson's disease and we verified the alteration of one of them, i.e., transaldolase 1 (TALDO1), in the substantia nigra of 5 patients. By using open-source bioinformatics tools, we identified the biological processes specifically affected in Parkinson's disease, i.e., proteolysis, mitochondrion organization, and mitophagy. Eventually, we highlighted four cellular component complexes mostly involved in the pathogenesis: the proteasome complex, the protein phosphatase 2A, the chaperonins CCT complex, and the complex III of the respiratory chain.

  13. Identifying genes related with rheumatoid arthritis via system biology analysis.

    PubMed

    Liu, Tao; Lin, Xinmei; Yu, Hongjian

    2015-10-15

    Rheumatoid arthritis (RA) is a chronic, inflammatory joint disease that mainly attacks synovial joints. However, the underlying systematic relationship among different genes and biological processes involved in the pathogenesis are still unclear. By analyzing and comparing the transcriptional profiles from RA, OA (osteoarthritis) patients as well as ND (normal donors) with bioinformatics methods, we tend to uncover the potential molecular networks and critical genes which play important roles in RA and OA development. Initially, hierarchical clustering was performed to classify the overall transcriptional profiles. Differentially expressed genes (DEGs) between ND and RA and OA patients were identified. Furthermore, PPI networks were constructed, functional modules were extracted, and functional annotation was also applied. Our functional analysis identifies 22 biological processes and 2 KEGG pathways enriched in the commonly-regulated gene set. However, we found that number of set of genes differentially expressed genes only between RA and ND reaches up to 244, indicating this gene set may specifically accounts for processing to disease of RA. Additionally, 142 biological processes and 19 KEGG pathways are over-represented by these 244 genes. Meanwhile, although another 21 genes were differentially expressed only in OA and ND, no biological process nor pathway is over-represented by them.

  14. Obesogenic Family Types Identified through Latent Profile Analysis

    PubMed Central

    VazquezBenitez, Gabriela; Patnode, Carrie D.; Hearst, Mary O.; Sherwood, Nancy E.; Parker, Emily D.; Sirard, John; Pasch, Keryn E.; Lytle, Leslie

    2011-01-01

    Background Obesity may cluster in families due to shared physical and social environments. Purpose This study aims to identify family typologies of obesity risk based on family environments. Methods Using 2007–2008 data from 706 parent/youth dyads in Minnesota, we applied latent profile analysis and general linear models to evaluate associations between family typologies and body mass index (BMI) of youth and parents. Results Three typologies described most families with 18.8% “Unenriched/Obesogenic,” 16.9% “Risky Consumer,” and 64.3% “Healthy Consumer/Salutogenic.” After adjustment for demographic and socioeconomic factors, parent BMI and youth BMI Z-scores were higher in unenriched/obesogenic families (BMI difference=2.7, p<0.01 and BMI Z-score difference=0.51, p<0.01, respectively) relative to the healthy consumer/salutogenic typology. In contrast, parent BMI and youth BMI Z-scores were similar in the risky consumer families relative to those in healthy consumer/salutogenic type. Conclusions We can identify family types differing in obesity risks with implications for public health interventions. PMID:21638195

  15. Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth

    PubMed Central

    Ma, Wenjuan; Wu, Jie; Zhang, Xiuyan; Hu, Xiaohui; Eaves, Connie J.; Wu, Depei; Zhao, Yun

    2014-01-01

    Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML), the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2) regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34+ progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form of GAS2 (GAS2DN) to target GAS2, which resulted in calpain activity enhancement and growth inhibition of both K562 and MEG-01 cells. Targeting GAS2 also sensitized K562 cells to Imatinib mesylate (IM). GAS2DN suppressed the tumorigenic ability of MEG-01 cells and impaired the tumour growth as well. Moreover, the CD34+ cells from CML patients and healthy donors were transduced with control and GAS2DN lentiviral vectors, and the CD34+ transduced (YFP+) progeny cells (CD34+YFP+) were plated for colony-forming cell (CFC) assay. The results showed that GAS2DN inhibited the CFC production of CML cells by 57±3% (n = 3), while affected those of normal hematopoietic cells by 31±1% (n = 2). Next, we found the inhibition of CML cells by GAS2DN was dependent on calpain activity but not the degradation of beta-catenin. Lastly, we generated microarray data to identify the differentially expressed genes upon GAS2DN and validated that the expression of HNRPDL, PTK7 and UCHL5 was suppressed by GAS2DN. These 3 genes were up-regulated in CML cells compared to normal control cells and the growth of K562 cells was inhibited upon HNRPDL silence. Taken together, we have demonstrated that GAS2 is up-regulated in CML cells and the inhibition of GAS2 impairs the growth of CML cells, which indicates GAS2 is a novel regulator of CML cells and a potential therapeutic target of this disease. PMID:24465953

  16. Up-Regulated Expression of LAMP2 and Autophagy Activity during Neuroendocrine Differentiation of Prostate Cancer LNCaP Cells

    PubMed Central

    Vara-Ciruelos, Diana; Ramos-Torres, Ágata; Altamirano-Dimas, Manuel; Díaz-Laviada, Inés; Rodríguez-Henche, Nieves

    2016-01-01

    Neuroendocrine (NE) prostate cancer (PCa) is a highly aggressive subtype of prostate cancer associated with resistance to androgen ablation therapy. In this study, we used LNCaP prostate cancer cells cultured in a serum-free medium for 6 days as a NE model of prostate cancer. Serum deprivation increased the expression of NE markers such as neuron-specific enolase (NSE) and βIII tubulin (βIII tub) and decreased the expression of the androgen receptor protein in LNCaP cells. Using cDNA microarrays, we compared gene expression profiles of NE cells and non-differentiated LNCaP cells. We identified up-regulation of 155 genes, among them LAMP2, a lysosomal membrane protein involved in lysosomal stability and autophagy. We then confirmed up-regulation of LAMP2 in NE cells by qRT-PCR, Western blot and confocal microscopy assays, showing that mRNA up-regulation correlated with increased levels of LAMP2 protein. Subsequently, we determined autophagy activity in NE cells by assessing the protein levels of SQSTM/p62 and LC3 by Western blot and LC3 and Atg5 mRNAs content by qRT-PCR. The decreased levels of SQSTM/p62 was accompanied by an enhanced expression of LC3 and ATG5, suggesting activation of autophagy in NE cells. Blockage of autophagy with 1μM AKT inhibitor IV, or by silencing Beclin 1 and Atg5, prevented NE cell differentiation, as revealed by decreased levels of the NE markers. In addition, AKT inhibitor IV as well as Beclin1 and Atg5 kwockdown attenuated LAMP2 expression in NE cells. On the other hand, LAMP2 knockdown by siRNA led to a marked blockage of autophagy, prevention of NE differentiation and decrease of cell survival. Taken together, these results suggest that LAMP2 overexpression assists NE differentiation of LNCaP cells induced by serum deprivation and facilitates autophagy activity in order to attain the NE phenotype and cell survival. LAMP2 could thus be a potential biomarker and potential target for NE prostate cancer. PMID:27627761

  17. Proto-oncogene ACTR/AIB1 promotes cancer cell invasion by up-regulating specific matrix metalloproteinase expression.

    PubMed

    Li, Li B; Louie, Maggie C; Chen, H-W; Zou, June X

    2008-03-08

    Overexpression of ACTR/AIB1 is frequently found in different cancers with distant metastasis. To address its possible involvement in tumor metastasis, we performed invasion assays to examine the effect of ACTR alteration on the invasiveness of breast cancer cells (MDA-MB-231 or T-47D) and found that high levels of ACTR are required for their strong invasiveness. Molecular analysis indicates that ACTR functions as a coactivator of AP-1 to up-regulate the expression of matrix metalloproteinases such as MMP-7 and MMP-10 and reduce cell adhesion to specific extracellular matrix proteins. These novel findings provide a mechanistic link between ACTR and MMPs, and suggest that ACTR may also play an important role in cancer progression by facilitating tumor invasion.

  18. Differential expression of Prx I and II in mouse testis and their up-regulation by radiation.

    PubMed

    Lee, Keesook; Park, Ji-Sun; Kim, Yun-Jeong; Soo Lee, Yong Soo; Sook Hwang, Tae Sook; Kim, Dae-Joong; Park, Eun-Mi; Park, Young-Mee

    2002-08-16

    Testis is one of the most sensitive organs to ionizing radiation. The present study was designed to unravel the possible role of antioxidant proteins, peroxiredoxin I and II (Prx I and II) in the testis. Our results show that Prx I and II are constitutively expressed in the testis and their expression levels are decreased to some extent as the testis develops. Interestingly, immunohistochemical analysis revealed a preferential expression of Prx I and II in Leydig and Sertoli cells, respectively. Neither Prx I nor Prx II expression was obvious in the testicular germ cells including spermatogonia and spermatocytes. Ionizing radiation exerted oxidative stress on the testis and induced apoptosis primarily in the germ cells. When the irradiated testis was examined, the Prx system was found to be transiently up-regulated. Taken together, we suggest that the relative radiation-resistance of Leydig and Sertoli cells could be attributed in part to the antioxidant function of the Prx system in these cells.

  19. Transcriptome Analysis in Prenatal IGF1-Deficient Mice Identifies Molecular Pathways and Target Genes Involved in Distal Lung Differentiation

    PubMed Central

    Hernández-Porras, Isabel; López, Icíar Paula; De Las Rivas, Javier; Pichel, José García

    2013-01-01

    Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1−/− mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1−/− E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1−/− lungs. IGF1 addition to Igf1−/− embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung

  20. Curcumin attenuates EGF-induced AQP3 up-regulation and cell migration in human ovarian cancer cells.

    PubMed

    Ji, Chao; Cao, Cong; Lu, Shan; Kivlin, Rebecca; Amaral, Ashley; Kouttab, Nicola; Yang, Hui; Chu, Wenming; Bi, Zhigang; Di, Wen; Wan, Yinsheng

    2008-10-01

    Aquaporin (AQP) water channels are expressed in high-grade tumor cells of different tissue origins. Based on the involvement of AQPs in angiogenesis and cell migration as well as our previous studies which show that AQP3 is involved in human skin fibroblasts cell migration, in this study, we investigated whether AQP3 is expressed in cultured human ovarian cancer cell line CaOV3 cells, and whether AQP3 expression in these cells enhances cell migration and metastatic potential. Cultured CaOV3 cells were treated with EGF and/or various reagents and subjected to cell migration assay by phagokinetic track mobility assay or biochemical analysis for expression or activation of proteins by SDS-PAGE/Western blot analysis. In this study, we demonstrate that AQP3 is expressed in CaOV3 cells. EGF induces CaOV3 migration and up-regulates AQP3 expression. EGF-induced cell migration is inhibited by specific AQP3 siRNA knockdown or AQP3 water transport inhibitor CuSO4 and NiCl2. We also find that curcumin, a well known anti-ovarian cancer drug, down-regulates AQP3 expression and reduces cell migration in CaOV3, and the effects of curcumin are mediated, at least in part, by its inhibitory effects on EGFR and downstream AKT/ERK activation. Collectively, our results provide evidence for AQP3-facilitated ovarian cancer cell migration, suggesting a novel function for AQP3 expression in high-grade tumors. The results that curcumin inhibits EGF-induced up-regulation of AQP3 and cell migration, provide a new explanation for the anticancer potential of curcumin.

  1. Celastrol protects ischaemic myocardium through a heat shock response with up-regulation of haeme oxygenase-1

    PubMed Central

    Der Sarkissian, S; Cailhier, J-F; Borie, M; Stevens, L-M; Gaboury, L; Mansour, S; Hamet, P; Noiseux, N

    2014-01-01

    Background and Purpose Celastrol, a triterpene from plants, has been used in traditional oriental medicine to treat various diseases. Here, we investigated the cardioprotective effects of celastrol against ischaemia. Experimental Approach Protective pathways induced by celastrol were investigated in hypoxic cultures of H9c2 rat cardiomyoblasts and in a rat model of myocardial infarction, assessed with echocardiographic and histological analysis. Key Results In H9c2 cells, celastrol triggered reactive oxygen species (ROS) formation within minutes, induced nuclear translocation of the transcription factor heat shock factor 1 (HSF1) resulting in a heat shock response (HSR) leading to increased expression of heat shock proteins (HSPs). ROS scavenger N-acetylcysteine reduced expression of HSP70 and HSP32 (haeme oxygenase-1, HO-1). Celastrol improved H9c2 survival under hypoxic stress, and functional analysis revealed HSF1 and HO-1 as key effectors of the HSR, induced by celastrol, in promoting cytoprotection. In the rat ischaemic myocardium, celastrol treatment improved cardiac function and reduced adverse left ventricular remodelling at 14 days. Celastrol triggered expression of cardioprotective HO-1 and inhibited fibrosis and infarct size. In the peri-infarct area, celastrol reduced myofibroblast and macrophage infiltration, while attenuating up-regulation of TGF-β and collagen genes. Conclusions and Implications Celastrol treatment induced an HSR through activation of HSF1 with up-regulation of HO-1 as the key effector, promoting cardiomyocyte survival, reduction of injury and adverse remodelling with preservation of cardiac function. Celastrol may represent a novel potent pharmacological cardioprotective agent mimicking ischaemic conditioning that could have a valuable impact in the treatment of myocardial infarction. PMID:25041185

  2. N-acetylcysteine inhibits the up-regulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically

    USDA-ARS?s Scientific Manuscript database

    Background: Chronic ethanol (EtOH) administration to experimental animals induces hepatic oxidative stress and up-regulates mitochondrial biogenesis. The mechanisms by which chronic EtOH up-regulates mitochondrial biogenesis have not been fully explored. In this work, we hypothesized that oxidative ...

  3. Exposure to diesel exhaust up-regulates iNOS expression in ApoE knockout mice

    SciTech Connect

    Bai Ni; Kido, Takashi; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; Breemen, Cornelis van; Eeden, Stephan F. van

    2011-09-01

    Traffic related particulate matter air pollution is a risk factor for cardiovascular events; however, the biological mechanisms are unclear. We hypothesize that diesel exhaust (DE) inhalation induces up-regulation of inducible nitric oxide synthase (iNOS), which is known to contribute to vascular dysfunction, progression of atherosclerosis and ultimately cardiovascular morbidity and mortality. Methods: ApoE knockout mice (30-week) were exposed to DE (at 200 {mu}g/m{sup 3} of particulate matter) or filtered-air (control) for 7 weeks (6 h/day, 5 days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400 W). NF-{kappa}B (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-{kappa}B (p65) was determined by real-time PCR. Results: DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by {approx} 20%, which was partly reversed by 1400 W. The mRNA expression of iNOS and NF-{kappa}B was significantly augmented after DE exposure. NF-{kappa}B activity was enhanced 2-fold after DE inhalation, and the augmented NF-{kappa}B activity was positively correlated with iNOS expression (R{sup 2} = 0.5998). Conclusions: We show that exposure to DE increases iNOS expression and activity possibly via NF-{kappa}B-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality. - Highlights: > Exposed ApoE knockout mice (30-week) to diesel exhaust (DE) for 7 weeks. > Examine iNOS expression and activity in the

  4. Failure to up-regulate transcription of genes necessary for muscle adaptation underlies limb girdle muscular dystrophy 2A (calpainopathy).

    PubMed

    Kramerova, Irina; Ermolova, Natalia; Eskin, Ascia; Hevener, Andrea; Quehenberger, Oswald; Armando, Aaron M; Haller, Ronald; Romain, Nadine; Nelson, Stanley F; Spencer, Melissa J

    2016-06-01

    Limb girdle muscular dystrophy 2A is due to loss-of-function mutations in the Calpain 3 (CAPN3) gene. Our previous data suggest that CAPN3 helps to maintain the integrity of the triad complex in skeletal muscle. In Capn3 knock-out mice (C3KO), Ca(2+) release and Ca(2+)/calmodulin kinase II (CaMKII) signaling are attenuated. We hypothesized that calpainopathy may result from a failure to transmit loading-induced Ca(2+)-mediated signals, necessary to up-regulate expression of muscle adaptation genes. To test this hypothesis, we compared transcriptomes of muscles from wild type (WT) and C3KO mice subjected to endurance exercise. In WT mice, exercise induces a gene signature that includes myofibrillar, mitochondrial and oxidative lipid metabolism genes, necessary for muscle adaptation. C3KO muscles fail to activate the same gene signature. Furthermore, in agreement with the aberrant transcriptional profile, we observe a commensurate functional defect in lipid metabolism whereby C3KO muscles fail to release fatty acids from stored triacylglycerol. In conjunction with the defects in oxidative metabolism, C3KO mice demonstrate reduced exercise endurance. Failure to up-regulate genes in C3KO muscles is due, in part, to decreased levels of PGC1α, a transcriptional co-regulator that orchestrates the muscle adaptation response. Destabilization of PGC1α is attributable to decreased p38 MAPK activation via diminished CaMKII signaling. Thus, we elucidate a pathway downstream of Ca(2+)-mediated CaMKII activation that is dysfunctional in C3KO mice, leading to reduced transcription of genes involved in muscle adaptation. These studies identify a novel mechanism of muscular dystrophy: a blunted transcriptional response to muscle loading resulting in chronic failure to adapt and remodel. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Failure to up-regulate transcription of genes necessary for muscle adaptation underlies limb girdle muscular dystrophy 2A (calpainopathy)

    PubMed Central

    Kramerova, Irina; Ermolova, Natalia; Eskin, Ascia; Hevener, Andrea; Quehenberger, Oswald; Armando, Aaron M.; Haller, Ronald; Romain, Nadine; Nelson, Stanley F.; Spencer, Melissa J.

    2016-01-01

    Limb girdle muscular dystrophy 2A is due to loss-of-function mutations in the Calpain 3 (CAPN3) gene. Our previous data suggest that CAPN3 helps to maintain the integrity of the triad complex in skeletal muscle. In Capn3 knock-out mice (C3KO), Ca2+ release and Ca2+/calmodulin kinase II (CaMKII) signaling are attenuated. We hypothesized that calpainopathy may result from a failure to transmit loading-induced Ca2+-mediated signals, necessary to up-regulate expression of muscle adaptation genes. To test this hypothesis, we compared transcriptomes of muscles from wild type (WT) and C3KO mice subjected to endurance exercise. In WT mice, exercise induces a gene signature that includes myofibrillar, mitochondrial and oxidative lipid metabolism genes, necessary for muscle adaptation. C3KO muscles fail to activate the same gene signature. Furthermore, in agreement with the aberrant transcriptional profile, we observe a commensurate functional defect in lipid metabolism whereby C3KO muscles fail to release fatty acids from stored triacylglycerol. In conjunction with the defects in oxidative metabolism, C3KO mice demonstrate reduced exercise endurance. Failure to up-regulate genes in C3KO muscles is due, in part, to decreased levels of PGC1α, a transcriptional co-regulator that orchestrates the muscle adaptation response. Destabilization of PGC1α is attributable to decreased p38 MAPK activation via diminished CaMKII signaling. Thus, we elucidate a pathway downstream of Ca2+-mediated CaMKII activation that is dysfunctional in C3KO mice, leading to reduced transcription of genes involved in muscle adaptation. These studies identify a novel mechanism of muscular dystrophy: a blunted transcriptional response to muscle loading resulting in chronic failure to adapt and remodel. PMID:27005420

  6. Immunomodulatory drugs act as inhibitors of DNA methyltransferases and induce PU.1 up-regulation in myeloma cells.

    PubMed

    Endo, Shinya; Amano, Masayuki; Nishimura, Nao; Ueno, Niina; Ueno, Shikiko; Yuki, Hiromichi; Fujiwara, Shiho; Wada, Naoko; Hirata, Shinya; Hata, Hiroyuki; Mitsuya, Hiroaki; Okuno, Yutaka

    2016-01-08

    Immunomodulatory drugs (IMiDs) such as thalidomide, lenalidomide, and pomalidomide are efficacious in the treatment of multiple myeloma and significantly prolong their survival. However, the mechanisms of such effects of IMiDs have not been fully elucidated. Recently, cereblon has been identified as a target binding protein of thalidomide. Lenalidomide-resistant myeloma cell lines often lose the expression of cereblon, suggesting that IMiDs act as an anti-myeloma agent through interacting with cereblon. Cereblon binds to damaged DNA-binding protein and functions as a ubiquitin ligase, inducing degradation of IKZF1 and IKZF3 that are essential transcription factors for B and T cell development. Degradation of both IKZF1 and IKZF3 reportedly suppresses myeloma cell growth. Here, we found that IMiDs act as inhibitors of DNA methyltransferases (DMNTs). We previously reported that PU.1, which is an ETS family transcription factor and essential for myeloid and lymphoid development, functions as a tumor suppressor in myeloma cells. PU.1 induces growth arrest and apoptosis of myeloma cell lines. In this study, we found that low-dose lenalidomide and pomalidomide up-regulate PU.1 expression through inducing demethylation of the PU.1 promoter. In addition, IMiDs inhibited DNMT1, DNMT3a, and DNMT3b activities in vitro. Furthermore, lenalidomide and pomalidomide decreased the methylation status of the whole genome in myeloma cells. Collectively, IMiDs exert demethylation activity through inhibiting DNMT1, 3a, and 3b, and up-regulating PU.1 expression, which may be one of the mechanisms of the anti-myeloma activity of IMiDs.

  7. Comparative transcription analysis of different Antirrhinum phyllotaxy nodes identifies major signal networks involved in vegetative-reproductive transition.

    PubMed

    Wang, Dongliang; Cao, Geyang; Fang, Peng; Xia, Lin; Cheng, Beijiu

    2017-01-01

    Vegetative-reproductive phase change is an indispensable event which guarantees several aspects of successful meristem behaviour and organ development. Antirrhinum majus undergoes drastic changes of shoot architecture during the phase change, including phyllotactic change and leaf type alteration from opposite decussate to spiral. However, the regulation mechanism in both of phyllotactic morphology changes is still unclear. Here, the Solexa/Illumina RNA-seq high-throughput sequencing was used to evaluate the global changes of transcriptome levels among four node regions during phyllotactic development. More than 86,315,782 high quality reads were sequenced and assembled into 58,509 unigenes. These differentially expressed genes (DEGs) were classified into 118 pathways described in the KEGG database. Based on the heat-map analysis, a large number of DEGs were overwhelmingly distributed in the hormone signal pathway as well as the carbohydrate biosynthesis and metabolism. The quantitative real time (qRT)-PCR results indicated that most of DEGs were highly up-regulated in the swapping regions of phyllotactic morphology. Moreover, transcriptions factors (TFs) with high transcripts were also identified, controlling the phyllotactic morphology by the regulation of hormone and sugar-metabolism signal pathways. A number of DEGs did not align with any databases and might be novel genes involved in the phyllotactic development. These genes will serve as an invaluable genetic resource for understanding the molecular mechanism of the phyllotactic development.

  8. Microarray analysis identifies IL-1 receptor type 2 as a novel candidate biomarker in patients with acute respiratory distress syndrome.

    PubMed

    Kovach, Melissa A; Stringer, Kathleen A; Bunting, Rachel; Wu, Xiaoying; San Mateo, Lani; Newstead, Michael W; Paine, Robert; Standiford, Theodore J

    2015-02-21

    Acute respiratory distress syndrome (ARDS) is a disease associated with a high mortality rate. The initial phase is characterized by induction of inflammatory cytokines and chemokines and influx of circulating inflammatory cells, including macrophages which play a pivotal role in the innate and adaptive immune responses to injury. Growing evidence points to phenotypic heterogeneity and plasticity between various macrophage activation states. In this study, gene expression in alveolar macrophages and circulating leukocytes from healthy control subjects and patients with ARDS was assessed by mRNA microarray analysis. Both alveolar macrophages and circulating leukocytes demonstrated up-regulation of genes encoding chemotactic factors, antimicrobial peptides, chemokine receptors, and matrix metalloproteinases. Two genes, the pro-inflammatory S100A12 and the anti-inflammatory IL-1 decoy receptor IL-1R2 were significantly induced in both cell populations in ARDS patients, which was confirmed by protein quantification. Although S100A12 levels did not correlate with disease severity, there was a significant association between early plasma levels of IL-1R2 and APACHE III scores at presentation. Moreover, higher levels of IL-1R2 in plasma were observed in non-survivors as compared to survivors at later stages of ARDS. These results suggest a hybrid state of alveolar macrophage activation in ARDS, with features of both alternative activation and immune tolerance/deactivation.. Furthermore, we have identified a novel plasma biomarker candidate in ARDS that correlates with the severity of systemic illness and mortality.

  9. Genome-scale analysis identifies GJB2 and ERO1LB as prognosis markers in patients with pancreatic cancer.

    PubMed

    Zhu, Tao; Gao, Yuan-Feng; Chen, Yi-Xin; Wang, Zhi-Bin; Yin, Ji-Ye; Mao, Xiao-Yuan; Li, Xi; Zhang, Wei; Zhou, Hong-Hao; Liu, Zhao-Qian

    2017-02-03

    Pancreatic cancer is a complex and heterogeneous disease with the etiology largely unknown. The deadly nature of pancreatic cancer, with an extremely low 5-year survival rate, renders urgent a better understanding of the molecular events underlying it. The aim of this study is to investigate the gene expression module of pancreatic adenocarcinoma and to identify differentially expressed genes (DEGs) with prognostic potentials. Transcriptome microarray data of five GEO datasets (GSE15471, GSE16515, GSE18670, GSE32676, GSE71989), including 117 primary tumor samples and 73 normal pancreatic tissue samples, were utilized to identify DEGs. The five sets of DEGs had an overlapping subset consisting of 98 genes (90 up-regulated and 8 down-regulated), which were probably common to pancreatic cancer. Gene ontology (GO) analysis of the 98 DEGs showed that cell cycle and cell adhesion were the major enriched processes, and extracellular matrix (ECM)-receptor interaction and p53 signaling pathway were the most enriched pathways according to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Elevated expression of gap junction protein beta 2 (GJB2) and reduced endoplasmic reticulum oxidoreductase 1-like beta (ERO1LB) expression were validated in an independent cohort. Kaplan-Meier survival analysis revealed that GJB2 and ERO1LB levels were significantly associated with the overall survival of pancreatic cancer patients. GJB2 and ERO1LB are implicated in pancreatic cancer progression and can be used to predict patient survival. Therapeutic strategies targeting GJB2 and facilitating ERO1LB expression may deserve evaluation to improve prognosis of pancreatic cancer patients.

  10. Urban air pollution produces up-regulation of myocardial inflammatory genes and dark chocolate provides cardioprotection.

    PubMed

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2012-05-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM(2.5)) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: southwest (SW) and northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real-time polymerase chain reaction. Also explored were target NFκB (nuclear factor κB), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures.

  11. The Peptidyl-prolyl Isomerase Pin1 Up-regulation and Proapoptotic Function in Dopaminergic Neurons

    PubMed Central

    Ghosh, Anamitra; Saminathan, Hariharan; Kanthasamy, Arthi; Anantharam, Vellareddy; Jin, Huajun; Sondarva, Gautam; Harischandra, Dilshan S.; Qian, Ziqing; Rana, Ajay; Kanthasamy, Anumantha G.

    2013-01-01

    Parkinson disease (PD) is a chronic neurodegenerative disease characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra. The pathophysiological mechanisms underlying PD remain unclear. Pin1, a major peptidyl-prolyl isomerase, has recently been associated with certain diseases. Notably, Ryo et al. (Ryo, A., Togo, T., Nakai, T., Hirai, A., Nishi, M., Yamaguchi, A., Suzuki, K., Hirayasu, Y., Kobayashi, H., Perrem, K., Liou, Y. C., and Aoki, I. (2006) J. Biol. Chem. 281, 4117–4125) implicated Pin1 in PD pathology. Therefore, we sought to systematically characterize the role of Pin1 in PD using cell culture and animal models. To our surprise we observed a dramatic up-regulation of Pin1 mRNA and protein levels in dopaminergic MN9D neuronal cells treated with the parkinsonian toxicant 1-methyl-4-phenylpyridinium (MPP+) as well as in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Notably, a marked expression of Pin1 was also observed in the substantia nigra of human PD brains along with a high co-localization of Pin1 within dopaminergic neurons. In functional studies, siRNA-mediated knockdown of Pin1 almost completely prevented MPP+-induced caspase-3 activation and DNA fragmentation, indicating that Pin1 plays a proapoptotic role. Interestingly, multiple pharmacological Pin1 inhibitors, including juglone, attenuated MPP+-induced Pin1 up-regulation, α-synuclein aggregation, caspase-3 activation, and cell death. Furthermore, juglone treatment in the MPTP mouse model of PD suppressed Pin1 levels and improved locomotor deficits, dopamine depletion, and nigral dopaminergic neuronal loss. Collectively, our findings demonstrate for the first time that Pin1 is up-regulated in PD and has a pathophysiological role in the nigrostriatal dopaminergic system and suggest that modulation of Pin1 levels may be a useful translational therapeutic strategy in PD. PMID:23754278

  12. The Natural Antimicrobial Enzyme Lysozyme is Up-Regulated in Gastrointestinal Inflammatory Conditions

    PubMed Central

    Rubio, Carlos A.

    2014-01-01

    The cells that line the mucosa of the human gastrointestinal tract (GI, that is, oral cavity, oesophagus, stomach, small intestine, large intestine, and rectum) are constantly challenged by adverse micro-environmental factors, such as different pH, enzymes, and bacterial flora. With exception of the oral cavity, these microenvironments also contain remnant cocktails of secreted enzymes and bacteria from upper organs along the tract. The density of the GI bacteria varies, from 103/mL near the gastric outlet, to 1010/mL at the ileocecal valve, to 1011 to 1012/mL in the colon. The total microbial population (ca. 1014) exceeds the total number of cells in the tract. It is, therefore, remarkable that despite the prima facie inauspicious mixture of harmful secretions and bacteria, the normal GI mucosa retains a healthy state of cell renewal. To counteract the hostile microenvironment, the GI epithelia react by speeding cell exfoliation (the GI mucosa has a turnover time of two to three days), by increasing peristalsis, by eliminating bacteria through secretion of plasma cell-immunoglobulins and by increasing production of natural antibacterial compounds, such as defensin-5 and lysozyme. Only recently, lysozyme was found up-regulated in Barrett’s oesophagitis, chronic gastritis, gluten-induced atrophic duodenitis (coeliac disease), collagenous colitis, lymphocytic colitis, and Crohn’s colitis. This up-regulation is a response directed to the special types of bacteria recently detected in these diseases. The aim of lysozyme up-regulation is to protect individual mucosal segments to chronic inflammation. The molecular mechanisms connected to the crosstalk between the intraluminal bacterial flora and the production of lysozyme released by the GI mucosae, are discussed. Bacterial resistance continues to exhaust our supply of commercial antibiotics. The potential use of lysozyme to treat infectious diseases is receiving much attention. PMID:25437608

  13. Monocyte/macrophage-derived microparticles up-regulate inflammatory mediator synthesis by human airway epithelial cells.

    PubMed

    Cerri, Chiara; Chimenti, Daniele; Conti, Ilaria; Neri, Tommaso; Paggiaro, Pierluigi; Celi, Alessandro

    2006-08-01

    Cell-derived microparticles (MP) are membrane fragments shed by virtually all eukaryotic cells upon activation or during apoptosis that play a significant role in physiologically relevant processes, including coagulation and inflammation. We investigated whether MP derived from monocytes/macrophages have the potential to modulate human airway epithelial cell activation. Monocytes/macrophages were isolated from the buffy coats of blood donors by Ficoll gradient centrifugation, followed by overnight culture of the mononuclear cell fraction. Adherent cells were washed and incubated with the calcium ionophore, A23187, or with histamine. The MP-containing supernatant was incubated with cells of the human bronchial epithelial line BEAS-2B and of the human alveolar line A549. IL-8, MCP-1, and ICAM-1 production was assessed by ELISA and by RT-PCR. In some experiments, monocytes/macrophages were stained with the fluorescent lipid intercalating dye PKH67, and the supernatant was analyzed by FACS. Stimulation of monocytes/macrophages with A23187 caused the release of particles that retain their fluorescent lipid intercalating label, indicating that they are derived from cell membranes. Incubation with A549 and BEAS-2B cells up-regulate IL-8 synthesis. Ultrafiltration and ultracentrifugation of the material abolished the effect, indicating that particulate matter, rather than soluble molecules, is responsible for it. Up-regulation of MCP-1 and ICAM-1 was also demonstrated in A549 cells. Similar results were obtained with histamine. Our data show that human monocytes/macrophages release MP that have the potential to sustain the innate immunity of the airway epithelium, as well as to contribute to the pathogenesis of inflammatory diseases of the lungs through up-regulation of proinflammatory mediators.

  14. Up-regulation of the chemokine CCL21 in the skin of subjects exposed to irritants

    PubMed Central

    Eberhard, Yanina; Ortiz, Susana; Ruiz Lascano, Alejandro; Kuznitzky, Raquel; Serra, Horacio Marcelo

    2004-01-01

    Background Expression of murine CCL21 by dermal lymphatic endothelial cells (LEC) has been demonstrated to be one of the most important steps in Langerhans cell emigration from skin. Previously, our group and others have found that this chemokine is up-regulated in different human inflammatory skin diseases mediated by diverse specific immune responses. This study was carried out to investigate the involvement of CCL21 in human skin after challenge with irritant agents responsible for inducing Irritant Contact Dermatitis (ICD). Results Eleven normal individuals were challenged with different chemical or physical irritants. Two patients with Allergic Contact Dermatitis (ACD) were also challenged with the relevant antigen in order to have a positive control for CCL21 expression. Macroscopic as well as microscopic responses were evaluated. We observed typical ICD responses with mostly mononuclear cells in perivascular areas, but a predominance of polymorphonuclear cells away from the inflamed blood vessels and in the epidermis at 24 hours. Immunohistochemical studies showed up-regulation of CCL21 by lymphatic endothelial cells in all the biopsies taken from ICD and ACD lesions compared to normal skin. Kinetic study at 10, 48, 96 and 168 hours after contact with a classical irritant (sodium lauryl sulphate) showed that the expression of CCL21 was increased in lymphatic vessels at 10 hours, peaked at 48 hours, and then gradually declined. There was a strong correlation between CCL21 expression and the macroscopic response (r = 0.69; p = 0.0008), but not between CCL21 and the number of infiltrating cells in the lesions. Conclusions These results provide new evidence for the role of CCL21 in inflammatory processes. Since the up-regulation of this chemokine was observed in ICD and ACD, it is tempting to speculate that this mechanism operates independently of the type of dermal insult, facilitating the emigration of CCR7+ cells. PMID:15109401

  15. Urban Air Pollution Produces Up-Regulation of Myocardial Inflammatory Genes and Dark Chocolate Provides Cardioprotection

    PubMed Central

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2010-01-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM2.5) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: Southwest (SW) and Northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real time polymerase chain reaction. Also explored were target NFκB (Nuclear Factor κ B), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures. PMID:20932730

  16. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    PubMed

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness. © 2014 Wiley Periodicals, Inc.

  17. Barnyard grass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice.

    PubMed

    He, Haibin; Wang, Haibin; Fang, Changxun; Wu, Hanwen; Guo, Xukui; Liu, Changhui; Lin, Zhihua; Lin, Wenxiong

    2012-11-15

    Allelopathic rice cultivar PI312777 (PI) and non-allelopathic rice cultivar Lemont (Le) were mixed with barnyard grass (Echinochloa crus-galli L., BYG) at various ratios (rice:weed ratios of 4:1, 2:1, and 1:1) in hydroponic cultures. The expression of four genes, i.e. phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), ferulic acid 5-hydroxylase (F5H), and caffeic acid O-methyltransferases (COMT), which are involved in the biosynthesis of the phenolic compounds in rice, were evaluated by a quantitative real-time polymerase chain reaction (qRT-PCR). The contents of phenolic compounds in leaves, roots, and culture solutions of the two rice cultivars were determined using high performance liquid chromatography (HPLC). The results showed that all of the four genes were up-regulated in leaves and roots of the allelopathic rice PI at all rice:weed ratios. However, three of the four genes, C4H, F5H, and COMT, were down-regulated in the leaves and roots of the non-allelopathic rice Le. The degree to which PAL was up-regulated in leaves and roots was much higher in PI than in Le. The contents of phenolic compounds in PI leaves, roots, and culture solutions were higher than that in Le leaves, roots, and culture solutions. The higher expression of the genes involved in the phenylpropanoid metabolism and the higher contents of phenolic compounds in PI are consistent with the higher inhibitory rates of PI on BYG. These results indicate that the PAL gene in PI is more sensitive to BYG stress than in Le, and barnyard grass up regulates the biosynthesis of phenolic compound in allelopathic rice. Copyright © 2012 Elsevier GmbH. All rights reserved.

  18. Gene and functional up-regulation of the BCRP/ABCG2 transporter in hepatocellular carcinoma

    PubMed Central

    2012-01-01

    Background The Breast Cancer Resistance Protein (BCRP/ABCG2) is one member of ABC transporters proteins super family responsible of drug resistance. Since data on ABCG2 expression in liver malignances are scanty, here we report the expression of ABCG2 in adult human hepatocellular carcinoma (HCC) in both in vivo and in vitro models with different degree of malignancy. Methods In cell lines derived from human hepatocellular carcinoma, ABCG2 gene expression was assessed by reverse transcription quantitative real time PCR and function by Hoechst 33342 efflux assay; protein content was assessed by SDS-PAGE Western blot. Results ABCG2 expression was found to be highest in the most undifferentiated cell lines, and this was related with a higher functional activity. ABCG2 expression was sensitive to antineoplastic drugs since exposure to 5 μM doxorubicin for 24 hours resulted in significant up-regulations of ABCG2 in all cell lines, particularly in those lines with low basal ABCG2 expression (p<0.01). The gene expression was also investigated in 51 adult liver tissues with HCC and related cirrhosis; normal liver tissue was used as control. ABCG2 gene expression was higher in HCC than both cirrhotic paired tissue and normal tissue. This up-regulation was greater (p<0.05) in pathological poorly differentiated grade G3/G4 than in well-differentiated G1/G2 HCC. Conclusions Our results suggest a correlation of ABCG2 gene expression and differentiation stage both in human and HCC derived cell lines. The rapid up-regulation of ABCG2 to exposure to doxorubicin emphasizes the importance of this transporter in accounting for drug resistance in liver tumors. PMID:23153066

  19. Up-regulation of the hyaluronate receptor CD44 in canine distemper demyelinated plaques.

    PubMed

    Alldinger, S; Fonfara, S; Kremmer, E; Baumgärtner, W

    2000-02-01

    CD44 antigen (CD44), the principle cell surface receptor for hyaluronate, is up-regulated in the human demyelinating disease multiple sclerosis on fibrous astrocytes. As astrocytes are the main target cell of canine distemper virus (CDV), the consequences of a CDV infection on the CD44 expression and distribution in brains with spontaneous demyelinating canine distemper encephalitis (CDE) were of interest. Thirteen acute, 35 subacute, and 11 chronic plaques of nine dogs with immunohistologically confirmed CDE and brains of control dogs were included in the study. For light microscopy, 5-micron-thick serial sections were stained with H&E and incubated with monoclonal antibodies (mAbs) against CD44 and canine distemper virus nucleoprotein and polyclonal antibodies (pAbs) against glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP). For immunoelectron microscopy, 90-nm-thick sections were double stained with anti-GFAP and anti-CD44 mAbs to specify CD44-expressing structures. In controls, CD44 was diffusely distributed in the white matter and single meningeal cells exhibited a marginal expression of the antigen. In acute and more prominently in subacute demyelinating encephalitis, there was a plaque-associated up-regulation of CD44 which paralleled GFAP. In chronic demyelinating lesions, a reduction of CD44 associated with a loss of GFAP-positive astrocytes was noted. Additionally, in chronic plaques, CD44 was expressed on the cell membrane of perivascular mononuclear cells. Immunoelectron microscopically, in controls, CD44 was rarely demonstrated on astrocytic cell processes. In contrast, in brains with CDE CD44 was found on the cell membrane of broadened astrocytic cell processes. In summary, CD44 is up-regulated on astrocytes in the early phase of CDE and seems to represent a marker for the activation of immune cells in the late phase of the infection.

  20. An Integrative Transcriptomic Analysis for Identifying Novel Target Genes Corresponding to Severity Spectrum in Spinal Muscular Atrophy

    PubMed Central

    Yang, Chung-Wei; Chen, Chien-Lin; Chou, Wei-Chun; Lin, Ho-Chen; Jong, Yuh-Jyh; Tsai, Li-Kai; Chuang, Chun-Yu

    2016-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disease resulting from a recessive mutation in the SMN1 gene. This disease affects multiple organ systems with varying degrees of severity. Exploration of the molecular pathological changes occurring in different cell types in SMA is crucial for developing new therapies. This study collected 39 human microarray datasets from ArrayExpress and GEO databases to build an integrative transcriptomic analysis for recognizing novel SMA targets. The transcriptomic analysis was conducted through combining weighted correlation network analysis (WGCNA) for gene module detection, gene set enrichment analysis (GSEA) for functional categorization and filtration, and Cytoscape (visual interaction gene network analysis) for target gene identification. Seven novel target genes (Bmp4, Serpine1, Gata6, Ptgs2, Bcl2, IL6 and Cntn1) of SMA were revealed, and are all known in the regulation of TNFα for controlling neural, cardiac and bone development. Sequentially, the differentially expressed patterns of these 7 target genes in mouse tissues (e.g., spinal cord, heart, muscles and bone) were validated in SMA mice of different severities (pre-symptomatic, mildly symptomatic, and severely symptomatic). In severely symptomatic SMA mice, TNFα was up-regulated with attenuation of Bmp4 and increase of Serpine1 and Gata6 (a pathway in neural and cardiac development), but not in pre-symptomatic and mildly symptomatic SMA mice. The severely symptomatic SMA mice also had the elevated levels of Ptgs2 and Bcl2 (a pathway in skeletal development) as well as IL6 and Cntn1 (a pathway in nervous system development). Thus, the 7 genes identified in this study might serve as potential target genes for future investigations of disease pathogenesis and SMA therapy. PMID:27331400

  1. Mung bean decreases plasma cholesterol by up-regulation of CYP7A1.

    PubMed

    Yao, Yang; Hao, Liu; Shi, Zhenxing; Wang, Lixia; Cheng, Xuzhen; Wang, Suhua; Ren, Guixing

    2014-06-01

    Our results affirmed that supplementation of 1 or 2% mung bean could decrease plasma total cholesterol and triacylglycerol level. Mung bean increased mRNA 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. Most importantly, mung bean increased not only the protein level of cholesterol-7α-hydroxylase (CYP7A1) but also mRNA CYP7A1. It was concluded that the hypocholesterolemic activity of mung bean was most probable mediated by enhancement of bile acid excretion and up-regulation of CYP7A1.

  2. Performance Analysis: Work Control Events Identified January - August 2010

    SciTech Connect

    De Grange, C E; Freeman, J W; Kerr, C E; Holman, G; Marsh, K; Beach, R

    2011-01-14

    This performance analysis evaluated 24 events that occurred at LLNL from January through August 2010. The analysis identified areas of potential work control process and/or implementation weaknesses and several common underlying causes. Human performance improvement and safety culture factors were part of the causal analysis of each event and were analyzed. The collective significance of all events in 2010, as measured by the occurrence reporting significance category and by the proportion of events that have been reported to the DOE ORPS under the ''management concerns'' reporting criteria, does not appear to have increased in 2010. The frequency of reporting in each of the significance categories has not changed in 2010 compared to the previous four years. There is no change indicating a trend in the significance category and there has been no increase in the proportion of occurrences reported in the higher significance category. Also, the frequency of events, 42 events reported through August 2010, is not greater than in previous years and is below the average of 63 occurrences per year at LLNL since 2006. Over the previous four years, an average of 43% of the LLNL's reported occurrences have been reported as either ''management concerns'' or ''near misses.'' In 2010, 29% of the occurrences have been reported as ''management concerns'' or ''near misses.'' This rate indicates that LLNL is now reporting fewer ''management concern'' and ''near miss'' occurrences compared to the previous four years. From 2008 to the present, LLNL senior management has undertaken a series of initiatives to strengthen the work planning and control system with the primary objective to improve worker safety. In 2008, the LLNL Deputy Director established the Work Control Integrated Project Team to develop the core requirements and graded elements of an institutional work planning and control system. By the end of that year this system was documented and implementation had begun. In 2009

  3. The Aspergillus fumigatus StuA Protein Governs the Up-Regulation of a Discrete Transcriptional Program during the Acquisition of Developmental CompetenceD⃞

    PubMed Central

    Sheppard, Donald C.; Doedt, Thomas; Chiang, Lisa Y.; Kim, H. Stanley; Chen, Dan; Nierman, William C.; Filler, Scott G.

    2005-01-01

    Members of the Asm1p, Phd1p, Sok2p, Efg1p, and StuAp (APSES) family of fungal proteins regulate morphogenesis and virulence in ascomycetes. We cloned the Aspergillus fumigatus APSES gene encoding StuAp and demonstrated that stuA transcription is markedly up-regulated after the acquisition of developmental competence. A. fumigatus ΔstuA mutants were impaired in their ability to undergo asexual reproduction. Conidiophore morphology was markedly abnormal, and only small numbers of dysmorphic conidia were produced, which exhibited precocious germination. Whole genome transcriptional analysis during the onset of developmental competence was performed and identified a subset of developmentally regulated genes that were stuA dependent, including a cluster of putative secondary metabolite biosynthesis genes, genes encoding proteins implicated in the regulation of morphogenesis, and genes encoding allergens and other antigenic proteins. Additionally, hyphae of the ΔstuA mutant displayed reduced expression of the catalase gene CAT1 and were hypersusceptible to hydrogen peroxide. PMID:16207816

  4. The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant-pathogenic fungus Colletotrichum graminicola.

    PubMed

    Fang, G-C; Hanau, R M; Vaillancourt, L J

    2002-07-01

    The SOD2 gene, encoding a manganese-type superoxide dismutase (MnSOD), was identified from Colletotrichum graminicola among a collection of cDNAs representing genes that are up-regulated during conidiogenesis. The SOD2 gene consists of a 797-bp open reading frame that is interrupted by three introns and is predicted to encode a polypeptide of 208 amino acids. All conserved residues of the MnSOD protein family, including four consensus metal binding domains, are present in the predicted SOD2 protein. However, the predicted protein does not appear to contain a signal peptide that would target it to the mitochondria. Northern hybridizations revealed that expression of the approximately 900-bp SOD2 transcript is closely associated with differentiation of both oval and falcate conidia. Southern analysis indicated that there is only a single copy of the gene. SOD2 disruption strains were morphologically and pathogenically indistinguishable from wild-type strains. The dispensability of the MnSOD enzyme may be due to the activities of two other SOD enzymes, a highly expressed iron-type superoxide dismutase and a much less abundant copper/zinc type, that were also detected in C. graminicola.

  5. Cancer–Osteoblast Interaction Reduces Sost Expression in Osteoblasts and Up-Regulates lncRNA MALAT1 in Prostate Cancer

    PubMed Central

    Sebastian, Aimy; Hum, Nicholas R.; Hudson, Bryan D.; Loots, Gabriela G.

    2015-01-01

    Dynamic interaction between prostate cancer and the bone microenvironment is a major contributor to metastasis of prostate cancer to bone. In this study, we utilized an in vitro co-culture model of PC3 prostate cancer cells and osteoblasts followed by microarray based gene expression profiling to identify previously unrecognized prostate cancer–bone microenvironment interactions. Factors secreted by PC3 cells resulted in the up-regulation of many genes in osteoblasts associated with bone metabolism and cancer metastasis, including Mmp13, Il-6 and Tgfb2, and down-regulation of Wnt inhibitor Sost. To determine whether altered Sost expression in the bone microenvironment has an effect on prostate cancer metastasis, we co-cultured PC3 cells with Sost knockout (SostKO) osteoblasts and wildtype (WT) osteoblasts and identified several genes differentially regulated between PC3-SostKO osteoblast co-cultures and PC3-WT osteoblast co-cultures. Co-culturing PC3 cells with WT osteoblasts up-regulated cancer-associated long noncoding RNA (lncRNA) MALAT1 in PC3 cells. MALAT1 expression was further enhanced when PC3 cells were co-cultured with SostKO osteoblasts and treatment with recombinant Sost down-regulated MALAT1 expression in these cells. Our results suggest that reduced Sost expression in the tumor microenvironment may promote bone metastasis by up-regulating MALAT1 in prostate cancer. PMID:27600237

  6. MicroRNA miR-1 is up-regulated in remote myocardium in patients with myocardial infarction.

    PubMed

    Bostjancic, E; Zidar, N; Stajner, D; Glavac, D

    2010-01-01

    MicroRNAs are small regulatory RNA molecules that mediate regulation of gene expression, thus affecting a variety of physiological, developmental and pathological conditions. They are believed to be new promising therapeutic targets. In recent studies two muscle-specific microRNAs were discovered to contribute to heart diseases and development: miR-1 and miR-133, but there is little data on their expression patterns in human myocardial infarction. We performed simultaneous expression analysis of miR-1, miR-133a, miR-133b in samples of infarcted tissue and remote myocardium from twenty- four patients with acute myocardial infarction. MicroRNA expression was analysed using quantitative real-time PCR and compared to the expression patterns in myocardium of eight healthy adults who died in accidents. We found ~3.8-fold miR-1 up-regulation in remote myocardium when compared to infarcted tissue or healthy adult hearts. As miR-1 has been shown in animal models and clinical studies to contribute to arrhythmogenesis by regulating pacemaker channel genes, our finding of miR-1 up-regulation in patients with myocardial infarction indicates that it might be responsible for the higher risk for arrhythmias in these patients. In addition, miR-133a/b down-regulation in infarcted tissue and remote myocardium was observed, indicating miR-133a/b involvement in the heart response to myocardial infarction. We conclude that miR-1 and miR-133 seem to be important regulators of heart adaptation after ischaemic stress.

  7. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    35S-Labeled calmodulin (CaM) was used to screen a tobacco anther cDNA library. A positive clone (NtER1) with high homology to an early ethylene-up-regulated gene (ER66) in tomato, and an Arabidopsis homolog was isolated and characterized. Based on the helical wheel projection, a 25-mer peptide corresponding to the predicted CaM-binding region of NtER1 (amino acids 796-820) was synthesized. The gel-mobility shift assay showed that the peptide formed a stable complex with CaM only in the presence of Ca(2+). CaM binds to NtER1 with high affinity (K(d) approximately 12 nm) in a calcium-dependent manner. Tobacco flowers at different stages of development were treated with ethylene or with 1-methylcyclopropene for 2 h before treating with ethylene. Northern analysis showed that the NtER1 was rapidly induced after 15 min of exposure to ethylene. However, the 2-h 1-methylcyclopropene treatment totally blocked NtER1 expression in flowers at all stages of development, suggesting that NtER1 is an early ethylene-up-regulated gene. The senescing leaves and petals had significantly increased NtER1 induction as compared with young leaves and petals, implying that NtER1 is developmentally regulated and acts as a trigger for senescence and death. This is the first documented evidence for the involvement of Ca(2+)/CaM-mediated signaling in ethylene action.

  8. Up regulation of Bax and down regulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells.

    PubMed

    Naseri, Mohammad Hassan; Mahdavi, Majid; Davoodi, Jamshid; Tackallou, Saeed Hesami; Goudarzvand, Mahdi; Neishabouri, Shima Hallaj

    2015-01-01

    Recently, we have reported the induction of apoptosis by 2-amino-4-(3-nitrophenyl)-3-cyano-7-(dimethylamino)-4H-chromene (3-NC) in HepG2, T47D and HCT116 cells with low nano molar IC50 values. In this study, anti-proliferative effects of modified 4-aryle-4H-chromenes derivatives; 2-amino-4-(3-bromophenyl)-3-cyano-7-(dimethylamino)-4H-chromene (3-BC), 2-amino-4-(3-trifluoromethylphenyl)-3-cyano-7-(dimethylamino)-4H-chromene (3-TFC) and 2-amino-4-(4,5-methylenedioxyphenyl)-3-cyano-7-(dimethylamino)-4H-chromene (4, 5-MC) were investigated in three human cancer cell lines. Compared to 3-NC none of the compounds displayed better anti-proliferative effect, although 3-BC appeared somewhat similar. Therefore 3-NC was selected for further studies. Treatment of HepG2, T47D and HCT116 cells with this compound induced apoptosis as visualized by fluorescence microscopic study of Hoechst 33258 stained cells. Induction of apoptosis was quantified by Annexin V/PI staining using flow cytometry. Western blot analysis also revealed that 3-NC down-regulated the expression of anti-apoptotic protein Bcl2 and up-regulated pro-apoptotic protein Bax, in all of the cell lines. Nonetheless, HepG2 cell line was the most responsive to 3-NC as Bax and Bcl2 showed the most dramatic up and down regulation. Our previous finding that 3-NC down regulates Inhibitor of Apoptosis Proteins (IAPs) and the present observation that Bax is upregulated and Bcl2 is down regulated upon 3-NC treatment, this chromene derivative has the potential to overcome chemotherapy resistance caused by up regulation of these proteins.

  9. Exposure to Diesel Exhaust Up-regulates iNOS Expression in ApoE Knockout Mice

    PubMed Central

    Bai, Ni; Kido, Takashi; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; van Breemen, Cornelis; van Eeden, Stephan F.

    2012-01-01

    Traffic related particulate matter air pollution is a risk factor for cardiovascular events; however, the biological mechanisms are unclear. We hypothesize that diesel exhaust (DE) inhalation induces up-regulation of inducible nitric oxide synthase (iNOS), which is known to contribute to vascular dysfunction, progression of atherosclerosis and ultimately cardiovascular morbidity and mortality. Methods ApoE knockout mice (30-week) were exposed to DE (at 200µg/m3 of particulate matter) or filtered-air (control) for 7 weeks (6h/day, 5days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400W). NF-κB (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-κB (p65) was determined by real-time PCR. Results DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by ~20%, which was partly reversed by 1400W. The mRNA expression of iNOS and NF-κB was significantly augmented after DE exposure. NF-κB activity was enhanced 2-fold after DE inhalation, and the augmented NF-κB activity was positively correlated with iNOS expression (R2= 0.5998). Conclusions We show that exposure to DE increases iNOS expression and activity possibly via NF-κB-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality. PMID:21722660

  10. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    35S-Labeled calmodulin (CaM) was used to screen a tobacco anther cDNA library. A positive clone (NtER1) with high homology to an early ethylene-up-regulated gene (ER66) in tomato, and an Arabidopsis homolog was isolated and characterized. Based on the helical wheel projection, a 25-mer peptide corresponding to the predicted CaM-binding region of NtER1 (amino acids 796-820) was synthesized. The gel-mobility shift assay showed that the peptide formed a stable complex with CaM only in the presence of Ca(2+). CaM binds to NtER1 with high affinity (K(d) approximately 12 nm) in a calcium-dependent manner. Tobacco flowers at different stages of development were treated with ethylene or with 1-methylcyclopropene for 2 h before treating with ethylene. Northern analysis showed that the NtER1 was rapidly induced after 15 min of exposure to ethylene. However, the 2-h 1-methylcyclopropene treatment totally blocked NtER1 expression in flowers at all stages of development, suggesting that NtER1 is an early ethylene-up-regulated gene. The senescing leaves and petals had significantly increased NtER1 induction as compared with young leaves and petals, implying that NtER1 is developmentally regulated and acts as a trigger for senescence and death. This is the first documented evidence for the involvement of Ca(2+)/CaM-mediated signaling in ethylene action.

  11. Uterine Expression of NDRG4 Is Induced by Estrogen and Up-Regulated during Embryo Implantation Process in Mice

    PubMed Central

    Zhang, Xuan; Wang, Jian-Mei; He, Ya-Ping; Shi, Yan; Sun, Zhao-Gui; Shi, Hui-Juan; Wang, Jian

    2016-01-01

    Embryo implantation is an essential step for the establishment of pregnancy and dynamically regulated by estrogen and progesterone. NDRG4 (N-myc down-regulated gene 4) is a tumor suppressor that participates in cell survival, tumor invasion and angiogenesis. The objective of this study was to preliminarily explore the role of NDRG4 in embryo implantation. By immunohistochemistry (IHC) and quantitive RT-PCR (qRT-PCR), we found that uterine expression of NDRG4 was increased along with puberal development, and its expression in adult females reached the peak at the estrus stage during the estrus cycle. Furthermore, uterine NDRG4 expression was significantly induced by the treatment of estradiol (E2) both in pre-puberty females and ovariectomized adult females. Uterine expression pattern of NDRG4 during the peri-implantation period in mice was determined by IHC, qRT-PCR and Western blot. It was observed that NDRG4 expression was up-regulated during the implantation process, and its expression level at the implantation sites was significantly higher than that at the inter-implantation sites. Meanwhile, an increased expression in NDRG4 was associated with artificial decidualization as well as the activation of delayed implantation. By qRT-PCR and Western blot, we found that the in vitro decidualization of endometrial stromal cells (ESCs) was accompanied by up-regulation of NDRG4 expression, whereas knockdown of its expression in these cells by siRNA inhibited the decidualization process. In addition, Western blot analysis showed that NDRG4 protein expression was decreased in human villus tissues of recurrent miscarriage (RM) patients compared to normal pregnant women. Collectively, these data suggested that uterine NDRG4 expression could be induced by estrogen, and NDRG4 might play an important role during early pregnancy. PMID:27175791

  12. Induced Sézary syndrome PBMCs poorly express immune response genes up-regulated in stimulated memory T cells.

    PubMed

    Chong, Benjamin F; Dantzer, Patrick; Germeroth, Thomas; Hafner, Mikehl; Wilson, Adam J; Xiao, Guanghua; Wong, Henry K

    2010-10-01

    Dysfunctions in memory T cells contribute to various inflammatory autoimmune diseases and neoplasms. We hypothesize that investigating the differences of genetic profiles between resting and activated naïve and memory T cells may provide insight into the characterization of abnormal memory T cells in diseases, such as Sézary syndrome (SS), a neoplasm composed of CD4(+) CD45RO(+) cells. We determined genes distinctively expressed between resting and activated naive and memory cells. Levels of up-regulated genes in resting and activated memory cells were measured in SS PBMCs, which were largely comprised of CD4(+) CD45RO(+) cells, to quantitatively assess how different Sézary cells were from memory cells. We compared gene expression profiles using high-density oligo-microarrays between resting and activated naïve and memory CD4(+) T cells. Differentially expressed genes were confirmed by qRT-PCR and immunoblotting. Levels of genes up-regulated in activated and resting memory T cells were determined in SS PBMCs by qRT-PCR. Activated memory cells expressed greater numbers of immune-mediated genes involved in effector function compared to naïve cells in our microarray analysis and qRT-PCR. Nine out of 14 genes with enhanced levels in activated memory cells had reduced levels in SS PBMCs (p<0.05). Activation of memory and naïve CD4(+) T cells revealed a diverging gap in gene expression between these subsets, with memory cells expressing immune-related genes important for effector function. Many of these genes were markedly depressed in SS patients, implying Sézary cells are markedly impaired in mounting immune responses compared to memory cells. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Identifying redundancy and exposing provenance in crowdsourced data analysis.

    PubMed

    Willett, Wesley; Ginosar, Shiry; Steinitz, Avital; Hartmann, Björn; Agrawala, Maneesh

    2013-12-01

    We present a system that lets analysts use paid crowd workers to explore data sets and helps analysts interactively examine and build upon workers' insights. We take advantage of the fact that, for many types of data, independent crowd workers can readily perform basic analysis tasks like examining views and generating explanations for trends and patterns. However, workers operating in parallel can often generate redundant explanations. Moreover, because workers have different competencies and domain knowledge, some responses are likely to be more plausible than others. To efficiently utilize the crowd's work, analysts must be able to quickly identify and consolidate redundant responses and determine which explanations are the most plausible. In this paper, we demonstrate several crowd-assisted techniques to help analysts make better use of crowdsourced explanations: (1) We explore crowd-assisted strategies that utilize multiple workers to detect redundant explanations. We introduce color clustering with representative selection--a strategy in which multiple workers cluster explanations and we automatically select the most-representative result--and show that it generates clusterings that are as good as those produced by experts. (2) We capture explanation provenance by introducing highlighting tasks and capturing workers' browsing behavior via an embedded web browser, and refine that provenance information via source-review tasks. We expose this information in an explanation-management interface that allows analysts to interactively filter and sort responses, select the most plausible explanations, and decide which to explore further.

  14. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization

    PubMed Central

    Adkins, Daniel E.; McClay, Joseph L.; Vunck, Sarah A.; Batman, Angela M.; Vann, Robert E.; Clark, Shaunna L.; Souza, Renan P.; Crowley, James J.; Sullivan, Patrick F.; van den Oord, Edwin J.C.G.; Beardsley, Patrick M.

    2014-01-01

    Behavioral sensitization has been widely studied in animal models and is theorized to reflect neural modifications associated with human psychostimulant addiction. While the mesolimbic dopaminergic pathway is known to play a role, the neurochemical mechanisms underlying behavioral sensitization remain incompletely understood. In the present study, we conducted the first metabolomics analysis to globally characterize neurochemical differences associated with behavioral sensitization. Methamphetamine-induced sensitization measures were generated by statistically modeling longitudinal activity data for eight inbred strains of mice. Subsequent to behavioral testing, nontargeted liquid and gas chromatography-mass spectrometry profiling was performed on 48 brain samples, yielding 301 metabolite levels per sample after quality control. Association testing between metabolite levels and three primary dimensions of behavioral sensitization (total distance, stereotypy and margin time) showed four robust, significant associations at a stringent metabolome-wide significance threshold (false discovery rate < 0.05). Results implicated homocarnosine, a dipeptide of GABA and histidine, in total distance sensitization, GABA metabolite 4-guanidinobutanoate and pantothenate in stereotypy sensitization, and myo-inositol in margin time sensitization. Secondary analyses indicated that these associations were independent of concurrent methamphetamine levels and, with the exception of the myo-inositol association, suggest a mechanism whereby strain-based genetic variation produces specific baseline neurochemical differences that substantially influence the magnitude of MA-induced sensitization. These findings demonstrate the utility of mouse metabolomics for identifying novel biomarkers, and developing more comprehensive neurochemical models, of psychostimulant sensitization. PMID:24034544

  15. Global secretome analysis identifies novel mediators of bone metastasis

    PubMed Central

    Blanco, Mario Andres; LeRoy, Gary; Khan, Zia; Alečković, Maša; Zee, Barry M; Garcia, Benjamin A; Kang, Yibin

    2012-01-01

    Bone is the one of the most common sites of distant metastasis of solid tumors. Secreted proteins are known to influence pathological interactions between metastatic cancer cells and the bone stroma. To comprehensively profile secreted proteins associated with bone metastasis, we used quantitative and non-quantitative mass spectrometry to globally analyze the secretomes of nine cell lines of varying bone metastatic ability from multiple species and cancer types. By comparing the secretomes of parental cells and their bone metastatic derivatives, we identified the secreted proteins that were uniquely associated with bone metastasis in these cell lines. We then incorporated bioinformatic analyses of large clinical metastasis datasets to obtain a list of candidate novel bone metastasis proteins of several functional classes that were strongly associated with both clinical and experimental bone metastasis. Functional validation of selected proteins indicated that in vivo bone metastasis can be promoted by high expression of (1) the salivary cystatins CST1, CST2, and CST4; (2) the plasminogen activators PLAT and PLAU; or (3) the collagen functionality proteins PLOD2 and COL6A1. Overall, our study has uncovered several new secreted mediators of bone metastasis and therefore demonstrated that secretome analysis is a powerful method for identification of novel biomarkers and candidate therapeutic targets. PMID:22688892

  16. Identifying covariates of population health using extreme bound analysis.

    PubMed

    Carmignani, Fabrizio; Shankar, Sriram; Tan, Eng Joo; Tang, Kam Ki

    2014-06-01

    The literature is full of lively discussion on the determinants of population health outcomes. However, different papers focus on small and different sets of variables according to their research agenda. Because many of these variables are measures of different aspects of development and are thus correlated, the results for one variable can be sensitive to the inclusion/exclusion of others. We tested for the robustness of potential predictors of population health using the extreme bounds analysis. Population health was measured by life expectancy at birth and infant mortality rate. We found that only about half a dozen variables are robust predictors for life expectancy and infant mortality rate. Among them, adolescent fertility rate, improved water sources, and gender equality are the most robust. All institutional variables and environment variables are systematically non-robust predictors of population health. The results highlight the importance of robustness tests in identifying predictors or potential determinants of population health, and cast doubts on the findings of previous studies that fail to do so.

  17. Identifying aquifer type in fractured rock aquifers using harmonic analysis.

    PubMed

    Rahi, Khayyun A; Halihan, Todd

    2013-01-01

    Determining aquifer type, unconfined, semi-confined, or confined, by drilling or performing pumping tests has inherent problems (i.e., cost and complex field issues) while sometimes yielding inconclusive results. An improved method to cost-effectively determine aquifer type would be beneficial for hydraulic mapping of complex aquifer systems like fractured rock aquifers. Earth tides are known to influence water levels in wells penetrating confined aquifers or unconfined thick, low-porosity aquifers. Water-level fluctuations in wells tapping confined and unconfined aquifers are also influenced by changes in barometric pressure. Harmonic analyses of water-level fluctuations of a thick (~1000 m) carbonate aquifer located in south-central Oklahoma (Arbuckle-Simpson aquifer) were utilized in nine wells to identify aquifer type by evaluating the influence of earth tides and barometric-pressure variations using signal identification. On the basis of the results, portions of the aquifer responded hydraulically as each type of aquifer even though there was no significant variation in lithostratigraphy. The aquifer type was depth dependent with confined conditions becoming more prevalent with depth. The results demonstrate that harmonic analysis is an accurate and low-cost method to determine aquifer type.

  18. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization.

    PubMed

    Adkins, D E; McClay, J L; Vunck, S A; Batman, A M; Vann, R E; Clark, S L; Souza, R P; Crowley, J J; Sullivan, P F; van den Oord, E J C G; Beardsley, P M

    2013-11-01

    Behavioral sensitization has been widely studied in animal models and is theorized to reflect neural modifications associated with human psychostimulant addiction. While the mesolimbic dopaminergic pathway is known to play a role, the neurochemical mechanisms underlying behavioral sensitization remain incompletely understood. In this study, we conducted the first metabolomics analysis to globally characterize neurochemical differences associated with behavioral sensitization. Methamphetamine (MA)-induced sensitization measures were generated by statistically modeling longitudinal activity data for eight inbred strains of mice. Subsequent to behavioral testing, nontargeted liquid and gas chromatography-mass spectrometry profiling was performed on 48 brain samples, yielding 301 metabolite levels per sample after quality control. Association testing between metabolite levels and three primary dimensions of behavioral sensitization (total distance, stereotypy and margin time) showed four robust, significant associations at a stringent metabolome-wide significance threshold (false discovery rate, FDR <0.05). Results implicated homocarnosine, a dipeptide of GABA and histidine, in total distance sensitization, GABA metabolite 4-guanidinobutanoate and pantothenate in stereotypy sensitization, and myo-inositol in margin time sensitization. Secondary analyses indicated that these associations were independent of concurrent MA levels and, with the exception of the myo-inositol association, suggest a mechanism whereby strain-based genetic variation produces specific baseline neurochemical differences that substantially influence the magnitude of MA-induced sensitization. These findings demonstrate the utility of mouse metabolomics for identifying novel biomarkers, and developing more comprehensive neurochemical models, of psychostimulant sensitization. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  19. Transcriptional up-regulation of the human androgen receptor by androgen in bone cells.

    PubMed

    Wiren, K M; Zhang, X; Chang, C; Keenan, E; Orwoll, E S

    1997-06-01

    Androgen regulation of androgen receptor (AR) expression has been observed in a variety of tissues, generally as inhibition, and is thought to attenuate cellular responses to androgen. AR is expressed in osteoblasts, the bone-forming cell, suggesting direct actions of androgens on bone. Here we characterized the effect of androgen exposure on AR gene expression in human osteoblastic SaOS-2 and U-2 OS cells. Treatment of osteoblastic cells with the nonaromatizable androgen 5alpha-dihydrotestosterone increased AR steady state messenger RNA levels in a time- and dose-dependent fashion. Reporter assays with 2.3 kilobases of the proximal 5'-flanking region of the human AR promoter linked to the chloramphenicol acetyltransferase gene in transfected cultures showed that up-regulation of AR promoter activity by androgen was time and dose dependent. Treatment with other steroid hormones, including progesterone, 17beta-estradiol, and dexamethasone, was without effect. The antiandrogen hydroxyflutamide completely antagonized androgen up-regulation. Thus, in contrast to many other androgen target tissues, androgen exposure increases steady state AR messenger RNA levels in osteoblasts. This regulation occurs at least partially at the level of transcription, is mediated by the 5'-promoter region of the AR gene, and is dependent on functional AR. These results suggest that physiological concentrations of androgens have significant effects on AR expression in skeletal tissue.

  20. Up-regulation of SLAP in FLI-1-transformed erythroblasts interferes with EpoR signaling.

    PubMed

    Lebigot, Ingrid; Gardellin, Paola; Lefebvre, Laurent; Beug, Hartmut; Ghysdael, Jacques; Quang, Christine Tran

    2003-12-15

    Rearrangement of the FLI-1 locus and ensuing overexpression of FLI-1 protein is an early event in Friend murine leukemia virus (F-MuLV)-induced erythroleukemia. When overexpressed in primary erythroblasts, FLI-1 converts erythropoietin (Epo)-induced terminal differentiation into a proliferative response. We found that SLAP, a gene encoding a recently described negative regulator of T-cell antigen receptor function during thymocyte development, is up-regulated both at the RNA and protein levels in FLI-1-transformed erythroblasts. Src-like adaptor protein (SLAP) was found in a specific complex with erythropoietin receptor (EpoR), a cytokine receptor essential to erythroid differentiation. Constitutive expression of SLAP severely impairs hemoglobinization and late survival during Epo-induced terminal differentiation of erythroblasts. This impairment is associated with the specific inhibition of several critical Epo-dependent signaling events, including signal transducer and activator of transcription 5 (STAT5) activation and up-regulation of the expression of the antiapoptotic BCL-X gene. Our data support a model by which FLI-1 inhibits normal erythroid differentiation through the deregulation of genes encoding adaptors/effectors that modify the signaling output of cytokine receptors normally required for terminal differentiation.

  1. Midazolam inhibits the hypoxia-induced up-regulation of erythropoietin in the central nervous system.

    PubMed

    Matsuyama, Tomonori; Tanaka, Tomoharu; Tatsumi, Kenichiro; Daijo, Hiroki; Kai, Shinichi; Harada, Hiroshi; Fukuda, Kazuhiko

    2015-08-15

    Erythropoietin (EPO), a regulator of red blood cell production, is endogenously expressed in the central nervous system. It is mainly produced by astrocytes under hypoxic conditions and has proven to have neuroprotective and neurotrophic effects. In the present study, we investigated the effect of midazolam on EPO expression in primary cultured astrocytes and the mouse brain. Midazolam was administered to 6-week-old BALB/c male mice under hypoxic conditions and pregnant C57BL/6N mice under normoxic conditions. Primary cultured astrocytes were also treated with midazolam under hypoxic conditions. The expression of EPO mRNA in mice brains and cultured astrocytes was studied. In addition, the expression of hypoxia-inducible factor (HIF), known as the main regulator of EPO, was evaluated. Midazolam significantly reduced the hypoxia-induced up-regulation of EPO in BALB/c mice brains and primary cultured astrocytes and suppressed EPO expression in the fetal brain. Midazolam did not affect the total amount of HIF proteins but significantly inhibited the nuclear expression of HIF-1α and HIF-2α proteins. These results demonstrated the suppressive effects of midazolam on the hypoxia-induced up-regulation of EPO both in vivo and in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats

    PubMed Central

    Hoffman, Gloria E.; Koban, Michael

    2016-01-01

    A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC), would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD) because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness. PMID:27997552

  3. Utrophin Up-Regulation by an Artificial Transcription Factor in Transgenic Mice

    PubMed Central

    Mattei, Elisabetta; Corbi, Nicoletta; Di Certo, Maria Grazia; Strimpakos, Georgios; Severini, Cinzia; Onori, Annalisa; Desantis, Agata; Libri, Valentina; Buontempo, Serena; Floridi, Aristide; Fanciulli, Maurizio; Baban, Dilair; Davies, Kay E.; Passananti, Claudio

    2007-01-01

    Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter “A”. Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics. PMID:17712422

  4. Apis mellifera ultraspiracle: cDNA sequence and rapid up-regulation by juvenile hormone.

    PubMed

    Barchuk, A R; Maleszka, R; Simões, Z L P

    2004-10-01

    Two hormones, 20-hydroxyecdysone (20E) and juvenile hormone (JH) are key regulators of insect development including the differentiation of the alternative caste phenotypes of social insects. In addition, JH plays a different role in adult honey bees, acting as a 'behavioural pacemaker'. The functional receptor for 20E is a heterodimer consisting of the ecdysone receptor and ultraspiracle (USP) whereas the identity of the JH receptor remains unknown. We have cloned and sequenced a cDNA encoding Apis mellifera ultraspiracle (AMUSP) and examined its responses to JH. A rapid, but transient up-regulation of the AMUSP messenger is observed in the fat bodies of both queens and workers. AMusp appears to be a single copy gene that produces two transcripts ( approximately 4 and approximately 5 kb) that are differentially expressed in the animal's body. The predicted AMUSP protein shows greater sequence similarity to its orthologues from the vertebrate-crab-tick-locust group than to the dipteran-lepidopteran group. These characteristics and the rapid up-regulation by JH suggest that some of the USP functions in the honey bee may depend on ligand binding.

  5. Artemisia Extract Improves Insulin Sensitivity in Women With Gestational Diabetes Mellitus by Up-Regulating Adiponectin.

    PubMed

    Sun, Xia; Sun, Hong; Zhang, Jing; Ji, Xianghong

    2016-12-01

    Gestational diabetes mellitus (GDM) has affected a great number of pregnant women worldwide. Artemisia extracts have been found to exhibit a potent antidiabetic effect in the treatment of type 2 diabetes mellitus. We aimed to examine the effects of Artemisia extract on insulin resistance and lipid profiles in pregnant GDM patients. Patients in their second trimester were randomly assigned to the Artemisia extract group (AE) or to a placebo group (PO). They were instructed to consume either AE or PO daily for a period of 10 weeks. Glucose and insulin profiles and adiponectin level were assessed at baseline (week 0) and after the treatment (week 10). Compared to the PO group, fasting plasma glucose, serum insulin levels, homeostasis model of assessment of insulin resistance (HOMA-IR), and β-cell function (HOMA-B) were significantly reduced in the AE group participants. Moreover, levels of circulating adiponectin were also significantly up-regulated in the AE group, which also positively contributed to improved insulin sensitivity. Daily administration of Artemisia extract improves insulin sensitivity by up-regulating adiponectin in women with gestational diabetes mellitus. © 2016, The American College of Clinical Pharmacology.

  6. Identification of genes up-regulated during somatic embryogenesis of cucumber.

    PubMed

    Wiśniewska, Anita; Grabowska, Agnieszka; Pietraszewska-Bogiel, Anna; Tagashira, Norikazu; Zuzga, Sabina; Wóycicki, Rafał; Przybecki, Zbigniew; Malepszy, Stefan; Filipecki, Marcin

    2012-01-01

    Somatic embryogenesis is a method of plant regeneration, but it can also be used as a model to study plant development. A normalized library of cDNA fragments representing genes up-regulated after the induction of somatic embryogenesis in cucumber suspension cultures was constructed using the suppression subtractive hybridization technique. Candidate cDNA fragments (119) were classified according to their similarity to genes encoding known proteins and the presence of potential functional domains. Of the translation products with homology to known proteins, about 23% were possibly involved in metabolism, 13% represented proteins with a probable role in cellular communication and signal transduction, about 12% were likely to participate in protein synthesis, while around 10% were potential transcription factors. The genes corresponding to four of the cDNAs were subsequently analyzed in more detail: CsSEF2, CsSEM1 and CsSESTK1 encoding putative transcription factors or co-activators, and CsSECAD1 encoding cinnamyl alcohol dehydrogenase. Full-length cDNAs were isolated and analyzed. RT-PCR confirmed the up-regulation of these genes after the induction of somatic embryogenesis and showed the presence of their transcripts in other tissues. The in situ localization of transcripts of the CsSEF2 and CsSEM1 genes demonstrated that signalling in somatic embryo tissues involving these factors is concentrated in the cotyledon primordia and roots. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  7. Endothelial interleukin-21 receptor up-regulation in peripheral artery disease

    PubMed Central

    Wang, Tao; Cunningham, Alexis; Houston, Kevin; Sharma, Aditya M; Chen, Lingdan; Dokun, Ayotunde O; Lye, R John; Spolski, Rosanne; Leonard, Warren J; Annex, Brian H

    2016-01-01

    In most patients with symptomatic peripheral artery disease (PAD), severe stenosis in or occlusion of the major blood vessels that supply the legs make the amount of distal blood flow dependent on the capacity to induce angiogenesis and collateral vessel formation. Currently, there are no medications that improve perfusion to the ischemic limb, and thus directly treat the primary problem of PAD. A recent report from our group in a pre-clinical mouse PAD model showed that interleukin-21 receptor (IL-21R) is up-regulated in the endothelial cells from ischemic hindlimb muscle. We further showed that loss of IL-21R resulted in impaired perfusion recovery in this model. In our study, we sought to determine whether IL-21R is present in the endothelium from ischemic muscle of patients with PAD. Using human gastrocnemius muscle biopsies, we found increased levels of IL-21R in the skeletal muscle endothelial cells of patients with PAD compared to control individuals. Interestingly, PAD patients had approximately 1.7-fold higher levels of circulating IL-21. These data provide direct evidence that the IL-21R pathway is indeed up-regulated in patients with PAD. This pathway may serve as a therapeutic target for modulation. PMID:26705256

  8. Salvianolic acid B inhibits mitochondrial dysfunction by up-regulating mortalin

    PubMed Central

    Liu, Yunxia; Hu, Yingying; E, Qiukai; Zuo, Ji; Yang, Ling; Liu, Wen

    2017-01-01

    Salvianolic acid B is an antioxidative ingredient derived from Radix Salviae miltiorrhizae that has been widely used to treat liver diseases. However, the therapeutic mechanism underlying Salvianolic acid B has remained largely unknown. Our studies verified that Salvianolic acid B efficiently blocked mitochondrial deformation and dysfunction induced by H2O2 in the human hepatocyte cell line HL7702. Mortalin, a mitochondrial molecular chaperone, maintains mitochondrial morphology stabilization and function integrity. Previous results showed that mortalin overexpression has been observed in hematoma carcinoma cells and that mortalin maintains mitochondrial homeostasis and antagonizes oxidative stress damage. We found that Salvianolic acid B significantly up-regulated mortalin protein expression levels. In addition, Salvianolic acid B lost the function of preventing mitochondrial deformation and dysfunction induced by oxidative stress under mortalin knockdown conditions. We further found that mortalin overexpression increases the mRNA expression of mitofusin-related factor Mfn1 and mitofission-related factor hFis1. In conclusion, Salvianolic acid B maintains the mitochondrial structure stabilization and functional integrity by up-regulating mortalin, which may be associated with increased mitofusin factor Mfn1 and reduced mitofission factor hFis1. PMID:28251987

  9. Laughter up-regulates the genes related to NK cell activity in diabetes.

    PubMed

    Hayashi, Takashi; Tsujii, Satoru; Iburi, Tadao; Tamanaha, Tamiko; Yamagami, Keiko; Ishibashi, Rieko; Hori, Miyo; Sakamoto, Shigeko; Ishii, Hitoshi; Murakami, Kazuo

    2007-12-01

    To elucidate the sustainable effects of laughter on gene expression, we recruited type 2 diabetic patients who were in-patient for receiving self-management education and examined time-dependent regulation for gene expression by laughter. Two-day experiment was performed. On one day, the patients watched comic video and laughed together with hospital staffs. On the other day, they participated in an inpatient diabetes educational program. Blood samples were collected before and 1.5, 4 h after watching comic video or spending lecture time, and changes in gene expression were comprehensively analyzed by microarray technique. Of the 41,000 genes analyzed, the laughter relatively up-regulated 39 genes, among which, 27 genes were relatively increased in the expression for all the observation period after watching comic video. By functional classification of these genes, 14 genes were found to be related to natural killer cell activity. No genes were included that are directly involved in blood glucose regulation, though successive suppression of postprandial blood glucose levels was observed. These results suggest that the laughter influences the expression of many genes classified into immune responses, and may contribute to amelioration of postprandial blood glucose elevation through a modulation of NK cell activity caused by up-regulation of relating genes.

  10. Up-regulation of intelectin in sheep after infection with Teladorsagia circumcincta.

    PubMed

    French, Anne T; Knight, Pamela A; Smith, W David; Brown, Jeremy K; Craig, Nicola M; Pate, Judith A; Miller, Hugh R P; Pemberton, Alan D

    2008-03-01

    A novel intelectin molecule designated sheep intelectin 2 (sITLN2) was detected in sheep abomasal mucosa. The full sequence shared 76-83% homology with other mammalian intelectins. Intelectins are mucus-associated proteins that have been shown to be up-regulated in gastrointestinal nematode infections in rodents and in human asthma. Expression of sheep abomasal ITLN2 mRNA was significantly up-regulated on day 10 post-challenge of worm-free sheep with Teladorsagia circumcincta and at day 2 in previously infected, immune sheep. Increased expression of ITLN protein following challenge was confirmed by Western blot and was immunolocalised to the mucous neck cells of the abomasal mucosa. Infection with T. circumcincta was also associated with increased levels of abomasal transcripts encoding sheep mast cell protease-1, ovine galectin-14 and IL4, which collectively suggested a Th2 type response. Intelectin may play an important role in the mucosal response to gastrointestinal nematode infections in ruminants.

  11. Salvianolic acid B inhibits mitochondrial dysfunction by up-regulating mortalin.

    PubMed

    Liu, Yunxia; Hu, Yingying; E, Qiukai; Zuo, Ji; Yang, Ling; Liu, Wen

    2017-03-02

    Salvianolic acid B is an antioxidative ingredient derived from Radix Salviae miltiorrhizae that has been widely used to treat liver diseases. However, the therapeutic mechanism underlying Salvianolic acid B has remained largely unknown. Our studies verified that Salvianolic acid B efficiently blocked mitochondrial deformation and dysfunction induced by H2O2 in the human hepatocyte cell line HL7702. Mortalin, a mitochondrial molecular chaperone, maintains mitochondrial morphology stabilization and function integrity. Previous results showed that mortalin overexpression has been observed in hematoma carcinoma cells and that mortalin maintains mitochondrial homeostasis and antagonizes oxidative stress damage. We found that Salvianolic acid B significantly up-regulated mortalin protein expression levels. In addition, Salvianolic acid B lost the function of preventing mitochondrial deformation and dysfunction induced by oxidative stress under mortalin knockdown conditions. We further found that mortalin overexpression increases the mRNA expression of mitofusin-related factor Mfn1 and mitofission-related factor hFis1. In conclusion, Salvianolic acid B maintains the mitochondrial structure stabilization and functional integrity by up-regulating mortalin, which may be associated with increased mitofusin factor Mfn1 and reduced mitofission factor hFis1.

  12. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    PubMed

    Mattei, Elisabetta; Corbi, Nicoletta; Di Certo, Maria Grazia; Strimpakos, Georgios; Severini, Cinzia; Onori, Annalisa; Desantis, Agata; Libri, Valentina; Buontempo, Serena; Floridi, Aristide; Fanciulli, Maurizio; Baban, Dilair; Davies, Kay E; Passananti, Claudio

    2007-08-22

    Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  13. Tetramethylpyrazine blocks TFAM degradation and up-regulates mitochondrial DNA copy number by interacting with TFAM

    PubMed Central

    Lan, Linhua; Guo, Miaomiao; Ai, Yong; Chen, Fuhong; Zhang, Ya; Xia, Lei; Huang, Dawei; Niu, Lili; Zheng, Ying; Suzuki, Carolyn K.

    2017-01-01

    The natural small molecule compound: 2,3,5,6-tetramethylpyrazine (TMP), is a major component of the Chinese medicine Chuanxiong, which has wide clinical applications in dilating blood vessels, inhibiting platelet aggregation and treating thrombosis. Recent work suggests that TMP is also an antitumour agent. Despite its chemotherapeutic potential, the mechanism(s) underlying TMP action are unknown. Herein, we demonstrate that TMP binds to mitochondrial transcription factor A (TFAM) and blocks its degradation by the mitochondrial Lon protease. TFAM is a key regulator of mtDNA replication, transcription and transmission. Our previous work showed that when TFAM is not bound to DNA, it is rapidly degraded by the ATP-dependent Lon protease, which is essential for mitochondrial proteostasis. In cultured cells, TMP specifically blocks Lon-mediated degradation of TFAM, leading to TFAM accumulation and subsequent up-regulation of mtDNA content in cells with substantially low levels of mtDNA. In vitro protease assays show that TMP does not directly inhibit mitochondrial Lon, rather interacts with TFAM and blocks degradation. Pull-down assays show that biotinylated TMP interacts with TFAM. These findings suggest a novel mechanism whereby TMP stabilizes TFAM and confers resistance to Lon-mediated degradation, thereby promoting mtDNA up-regulation in cells with low mtDNA content. PMID:28465355

  14. E2F transcription factors associated with up-regulated genes in glioblastoma.

    PubMed

    Donaires, Flávia S; Godoy, Paulo R D V; Leandro, Giovana S; Puthier, Denis; Sakamoto-Hojo, Elza T

    2017-01-01

    Glioblastoma is considered to the most common and malignant brain tumor in adults. Patients have a median survival of approximately one year from diagnosis due to poor response to therapy. We applied bioinformatics approaches to predict transcription factors (TF) that are deregulated in glioblastoma in an attempt to point out molecular targets for therapy. Up-regulated genes in glioblastoma selected from public microarray data were submitted to two TF association analyses. Thereafter, the expression levels of TF obtained in the overlap of analyses were assessed by RT-qPCR carried out in seven glioblastoma cell lines (T98, U251, U138, U87, U343, M059J, and M059K). E2F1 and E2F4 were highlighted in both TF analyses. However, only E2F1 was confirmed as significantly up-regulated in all glioblastoma cell lines in vitro. E2F1 is a potential common regulator of differentially expressed genes in glioblastoma, despite the genetic heterogeneity of tumor cells.

  15. Up-regulation of glycolytic metabolism is required for HIF1α-driven bone formation.

    PubMed

    Regan, Jenna N; Lim, Joohyun; Shi, Yu; Joeng, Kyu Sang; Arbeit, Jeffrey M; Shohet, Ralph V; Long, Fanxin

    2014-06-10

    The bone marrow environment is among the most hypoxic in the body, but how hypoxia affects bone formation is not known. Because low oxygen tension stabilizes hypoxia-inducible factor alpha (HIFα) proteins, we have investigated the effect of expressing a stabilized form of HIF1α in osteoblast precursors. Brief stabilization of HIF1α in SP7-positive cells in postnatal mice dramatically stimulated cancellous bone formation via marked expansion of the osteoblast population. Remarkably, concomitant deletion of vascular endothelial growth factor A (VEGFA) in the mouse did not diminish bone accrual caused by HIF1α stabilization. Thus, HIF1α-driven bone formation is independent of VEGFA up-regulation and increased angiogenesis. On the other hand, HIF1α stabilization stimulated glycolysis in bone through up-regulation of key glycolytic enzymes including pyruvate dehydrogenase kinase 1 (PDK1). Pharmacological inhibition of PDK1 completely reversed HIF1α-driven bone formation in vivo. Thus, HIF1α stimulates osteoblast formation through direct activation of glycolysis, and alterations in cellular metabolism may be a broadly applicable mechanism for regulating cell differentiation.

  16. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats.

    PubMed

    Hoffman, Gloria E; Koban, Michael

    2016-01-01

    A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC), would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD) because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness.

  17. Metabolomics analysis identifies different metabotypes of asthma severity.

    PubMed

    Reinke, Stacey N; Gallart-Ayala, Héctor; Gómez, Cristina; Checa, Antonio; Fauland, Alexander; Naz, Shama; Kamleh, Muhammad Anas; Djukanović, Ratko; Hinks, Timothy S C; Wheelock, Craig E

    2017-03-01

    In this study, we sought to determine whether asthma has a metabolic profile and whether this profile is related to disease severity.We characterised the serum from 22 healthy individuals and 54 asthmatics (12 mild, 20 moderate, 22 severe) using liquid chromatography-high-resolution mass spectrometry-based metabolomics. Selected metabolites were confirmed by targeted mass spectrometry assays of eicosanoids, sphingolipids and free fatty acids.We conclusively identified 66 metabolites; 15 were significantly altered with asthma (p≤0.05). Levels of dehydroepiandrosterone sulfate, cortisone, cortisol, prolylhydroxyproline, pipecolate and N-palmitoyltaurine correlated significantly (p<0.05) with inhaled corticosteroid dose, and were further shifted in individuals treated with oral corticosteroids. Oleoylethanolamide increased with asthma severity independently of steroid treatment (p<0.001). Multivariate analysis revealed two patterns: 1) a mean difference between controls and patients with mild asthma (p=0.025), and 2) a mean difference between patients with severe asthma and all other groups (p=1.7×10(-4)). Metabolic shifts in mild asthma, relative to controls, were associated with exogenous metabolites (e.g. dietary lipids), while those in moderate and severe asthma (e.g. oleoylethanolamide, sphingosine-1-phosphate, N-palmitoyltaurine) were postulated to be involved in activating the transient receptor potential vanilloid type 1 (TRPV1) receptor, driving TRPV1-dependent pathogenesis in asthma.Our findings suggest that asthma is characterised by a modest systemic metabolic shift in a disease severity-dependent manner, and that steroid treatment significantly affects metabolism.

  18. Identifying Phytoplankton Classes In California Reservoirs Using HPLC Pigment Analysis

    NASA Astrophysics Data System (ADS)

    Siddiqui, S.; Peacock, M. B.; Kudela, R. M.; Negrey, K.

    2014-12-01

    Few bodies of water are routinely monitored for phytoplankton composition due to monetary and time constraints, especially the less accessible bodies of water in central and southern California. These lakes and estuaries are important for economic reasons such as tourism and fishing. This project investigated the composition of phytoplankton present using pigment analysis to identify dominant phytoplankton groups. A total of 28 different sites with a wide range of salinity (0 - 60) in central and southern California were examined. These included 13 different bodies of water in central California: 6 in the Sierras, 7 in the San Francisco Bay Estuary, and 15 from southern California. The samples were analyzed using high-performance liquid-chromatography (HPLC) to quantify the pigments present (using retention time and the spectral thumbprint). Diagnostic pigments were used to indicate the phytoplankton class composition, focusing on diatoms, dinoflagellates, cryptophytes, and cyanobacteria - all key phytoplankton groups indicative of the health of the sampled reservoir. Our results indicated that cyanobacteria dominated four of the seven bodies of central California water (Mono Lake, Bridgeport Reservoir, Steamboat Slough, and Pinto Lake); cryptophytes and nannoflagellates dominated two of the central California bodies of water (Mare Island Strait and Topaz Lake); and diatoms and dinoflagellates dominated one central California body of water, Oakland Inner Harbor, comprising more than 70% of the phytoplankton present. We expect the bodies of water from Southern California to be as disparate. Though this data is only a snapshot, it has significant implications in comparing different ecosystems across California, and it has the potential to provide valuable insight into the composition of phytoplankton communities.

  19. Nitric Oxide Contributes to Cadmium Toxicity in Arabidopsis by Promoting Cadmium Accumulation in Roots and by Up-Regulating Genes Related to Iron Uptake1[W

    PubMed Central

    Besson-Bard, Angélique; Gravot, Antoine; Richaud, Pierre; Auroy, Pascaline; Duc, Céline; Gaymard, Frédéric; Taconnat, Ludivine; Renou, Jean-Pierre; Pugin, Alain; Wendehenne, David

    2009-01-01

    Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd2+), a nonessential and toxic metal. We demonstrate that Cd2+ induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd2+. By analyzing the incidence of NO scavenging or inhibition of its synthesis during Cd2+ treatment, we demonstrated that NO contributes to Cd2+-triggered inhibition of root growth. To understand the mechanisms underlying this process, a microarray analysis was performed in order to identify NO-modulated root genes up- and down-regulated during Cd2+ treatment. Forty-three genes were identified encoding proteins related to iron homeostasis, proteolysis, nitrogen assimilation/metabolism, and root growth. These genes include IRT1. Investigation of the metal and ion contents in Cd2+-treated roots in which NO synthesis was impaired indicates that IRT1 up-regulation by NO was consistently correlated to NO's ability to promote Cd2+ accumulation in roots. This analysis also highlights that NO is responsible for Cd2+-induced inhibition of root Ca2+ accumulation. Taken together, our results suggest that NO contributes to Cd2+ toxicity by favoring Cd2+ versus Ca2+ uptake and by initiating a cellular pathway resembling those activated upon iron deprivation. PMID:19168643

  20. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake.

    PubMed

    Besson-Bard, Angélique; Gravot, Antoine; Richaud, Pierre; Auroy, Pascaline; Duc, Céline; Gaymard, Frédéric; Taconnat, Ludivine; Renou, Jean-Pierre; Pugin, Alain; Wendehenne, David

    2009-03-01

    Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd(2+)), a nonessential and toxic metal. We demonstrate that Cd(2+) induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd(2+). By analyzing the incidence of NO scavenging or inhibition of its synthesis during Cd(2+) treatment, we demonstrated that NO contributes to Cd(2+)-triggered inhibition of root growth. To understand the mechanisms underlying this process, a microarray analysis was performed in order to identify NO-modulated root genes up- and down-regulated during Cd(2+) treatment. Forty-three genes were identified encoding proteins related to iron homeostasis, proteolysis, nitrogen assimilation/metabolism, and root growth. These genes include IRT1. Investigation of the metal and ion contents in Cd(2+)-treated roots in which NO synthesis was impaired indicates that IRT1 up-regulation by NO was consistently correlated to NO's ability to promote Cd(2+) accumulation in roots. This analysis also highlights that NO is responsible for Cd(2+)-induced inhibition of root Ca(2+) accumulation. Taken together, our results suggest that NO contributes to Cd(2+) toxicity by favoring Cd(2+) versus Ca(2+) uptake and by initiating a cellular pathway resembling those activated upon iron deprivation.

  1. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis.

    PubMed

    García, María J; Lucena, Carlos; Romera, Francisco J; Alcántara, Esteban; Pérez-Vicente, Rafael

    2010-09-01

    In a previous work it was shown that ethylene participates in the up-regulation of several Fe acquisition genes of Arabidopsis, such as AtFIT, AtFRO2, and AtIRT1. In this work the relationship between ethylene and Fe-related genes in Arabidopsis has been looked at in more depth. Genes induced by Fe deficiency regulated by ethylene were searched for. For this, studies were conducted, using microarray analysis and reverse transcription-PCR (RT-PCR), to determine which of the genes up-regulated by Fe deficiency are simultaneously suppressed by two different ethylene inhibitors (cobalt and silver thiosulphate), assessing their regulation by ethylene in additional experiments. In a complementary experiment, it was determined that the Fe-related genes up-regulated by ethylene were also responsive to nitric oxide (NO). Further studies were performed to analyse whether Fe deficiency up-regulates the expression of genes involved in ethylene biosynthesis [S-adenosylmethionine synthetase, 1-aminocyclopropane-1-carboxylate (ACC) synthase, and ACC oxidase genes] and signalling (AtETR1, AtCTR1, AtEIN2, AtEIN3, AtEIL1, and AtEIL3). The results obtained show that both ethylene and NO are involved in the up-regulation of many important Fe-regulated genes of Arabidopsis, such as AtFIT, AtbHLH38, AtbHLH39, AtFRO2, AtIRT1, AtNAS1, AtNAS2, AtFRD3, AtMYB72, and others. In addition, the results show that Fe deficiency up-regulates genes involved in both ethylene synthesis (AtSAM1, AtSAM2, AtACS4, AtACS6, AtACS9, AtACO1, and AtACO2) and signalling (AtETR1, AtCTR1, AtEIN2, AtEIN3, AtEIL1, and AtEIL3) in the roots.

  2. Method of identifying hairpin DNA probes by partial fold analysis

    DOEpatents

    Miller, Benjamin L.; Strohsahl, Christopher M.

    2008-10-28

    Methods of identifying molecular beacons in which a secondary structure prediction algorithm is employed to identify oligonucleotide sequences within a target gene having the requisite hairpin structure. Isolated oligonucleotides, molecular beacons prepared from those oligonucleotides, and their use are also disclosed.

  3. Method of identifying hairpin DNA probes by partial fold analysis

    DOEpatents

    Miller, Benjamin L.; Strohsahl, Christopher M.

    2009-10-06

    Method of identifying molecular beacons in which a secondary structure prediction algorithm is employed to identify oligonucleotide sequences within a target gene having the requisite hairpin structure. Isolated oligonucleotides, molecular beacons prepared from those oligonucleotides, and their use are also disclosed.

  4. Novel targets of sulforaphane in primary cardiomyocytes identified by proteomic analysis.

    PubMed

    Angeloni, Cristina; Turroni, Silvia; Bianchi, Laura; Fabbri, Daniele; Motori, Elisa; Malaguti, Marco; Leoncini, Emanuela; Maraldi, Tullia; Bini, Luca; Brigidi, Patrizia; Hrelia, Silvana

    2013-01-01

    Cardiovascular diseases represent the main cause of mortality in the industrialized world and the identification of effective preventive strategies is of fundamental importance. Sulforaphane, an isothiocyanate from cruciferous vegetables, has been shown to up-regulate phase II enzymes in cardiomyocytes and counteract oxidative stress-induced apoptosis. Aim of the present study was the identification and characterization of novel sulforaphane targets in cardiomyocytes applying a proteomic approach. Two-dimensional gel electrophoresis and mass spectrometry were used to generate protein profiles of primary neonatal rat cardiomyocytes treated and untreated with 5 µM sulforaphane for 1-48 h. According to image analysis, 64 protein spots were found as differentially expressed and their functional correlations were investigated using the MetaCore program. We mainly focused on 3 proteins: macrophage migration inhibitory factor (MIF), CLP36 or Elfin, and glyoxalase 1, due to their possible involvement in cardioprotection. Validation of the time-dependent differential expression of these proteins was performed by western blotting. In particular, to gain insight into the cardioprotective role of the modulation of glyoxalase 1 by sulforaphane, further experiments were performed using methylglyoxal to mimic glycative stress. Sulforaphane was able to counteract methylglyoxal-induced apoptosis, ROS production, and glycative stress, likely through glyoxalase 1 up-regulation. In this study, we reported for the first time new molecular targets of sulforaphane, such as MIF, CLP36 and glyoxalase 1. In particular, we gave new insights into the anti-glycative role of sulforaphane in cardiomyocytes, confirming its pleiotropic behavior in counteracting cardiovascular diseases.

  5. Novel Targets of Sulforaphane in Primary Cardiomyocytes Identified by Proteomic Analysis

    PubMed Central

    Angeloni, Cristina; Turroni, Silvia; Bianchi, Laura; Fabbri, Daniele; Motori, Elisa; Malaguti, Marco; Leoncini, Emanuela; Maraldi, Tullia; Bini, Luca; Brigidi, Patrizia; Hrelia, Silvana

    2013-01-01

    Cardiovascular diseases represent the main cause of mortality in the industrialized world and the identification of effective preventive strategies is of fundamental importance. Sulforaphane, an isothiocyanate from cruciferous vegetables, has been shown to up-regulate phase II enzymes in cardiomyocytes and counteract oxidative stress-induced apoptosis. Aim of the present study was the identification and characterization of novel sulforaphane targets in cardiomyocytes applying a proteomic approach. Two-dimensional gel electrophoresis and mass spectrometry were used to generate protein profiles of primary neonatal rat cardiomyocytes treated and untreated with 5 µM sulforaphane for 1-48 h. According to image analysis, 64 protein spots were found as differentially expressed and their functional correlations were investigated using the MetaCore program. We mainly focused on 3 proteins: macrophage migration inhibitory factor (MIF), CLP36 or Elfin, and glyoxalase 1, due to their possible involvement in cardioprotection. Validation of the time-dependent differential expression of these proteins was performed by western blotting. In particular, to gain insight into the cardioprotective role of the modulation of glyoxalase 1 by sulforaphane, further experiments were performed using methylglyoxal to mimic glycative stress. Sulforaphane was able to counteract methylglyoxal-induced apoptosis, ROS production, and glycative stress, likely through glyoxalase 1 up-regulation. In this study, we reported for the first time new molecular targets of sulforaphane, such as MIF, CLP36 and glyoxalase 1. In particular, we gave new insights into the anti-glycative role of sulforaphane in cardiomyocytes, confirming its pleiotropic behavior in counteracting cardiovascular diseases. PMID:24349480

  6. Involvement of up-regulated Necl-5/Tage4/PVR/CD155 in the loss of contact inhibition in transformed NIH3T3 cells

    SciTech Connect

    Minami, Yukiko . E-mail: ytakai@molbio.med.osaka-u.ac.jp

    2007-01-26

    Normal cells show contact inhibition of cell movement and proliferation, but this is lost following transformation. We found that Necl-5, originally identified as a poliovirus receptor and up-regulated in many cancer cells, enhances growth factor-induced cell movement and proliferation. We showed that when cells contact other cells, Necl-5 interacts in trans with nectin-3 and is removed by endocytosis from the cell surface, resulting in a reduction of cell movement and proliferation. We show here that up-regulation of the gene encoding Necl-5 by the oncogene V12-Ki-Ras causes enhanced cell movement and proliferation. Upon cell-cell contact, de novo synthesis of Necl-5 exceeds the rate of Necl-5 endocytosis, eventually resulting in a net increase in the amount of Necl-5 at the cell surface. In addition, expression of the gene encoding nectin-3 is markedly reduced in transformed cells. Thus, up-regulation of Necl-5 following transformation contributes to the loss of contact inhibition in transformed cells.

  7. Up-regulation of JAM-1 in AR42J cells treated with activin A and betacellulin and the diabetic regenerating islets.

    PubMed

    Yoshikumi, Yukako; Ohno, Hideki; Suzuki, Junko; Isshiki, Masashi; Morishita, Yasuyuki; Ohnishi, Hirohide; Yasuda, Hiroshi; Omata, Masao; Fujita, Toshiro; Mashima, Hirosato

    2008-08-01

    Pancreatic AR42J cells demonstrate the pluripotency in precursor cells of the gut endoderm and also provide an excellent model system to study the differentiation of the pancreas. Using the mRNA differential display technique, we identified junctional adhesion molecule-1 (JAM-1), a component of the tight junction, was highly up-regulated during the differentiation of AR42J cells, although junctions were not formed. The expression level of JAM-1 showed an up-regulation in the mRNA level after 3 hours and in the protein level after 24 hours in [activin A + betacellulin]-treated AR42J cells. The expressions of its signaling molecules, PAR-3 and atypical PKC lambda, also increased after the addition of activin A + betacellulin. When JAM-1 was over-expressed in [activin A + betacellulin]-treated AR42J cells, tagged-JAM-1 was observed in cytoplasm as vesicular structures and JAM-1 was colocalized with Rab3B and Rab13, members of the Rab family expressed at tight junctions. In streptozotocin-induced regenerating islets, the expression of JAM-1 was also up-regulated in the mRNA level and the protein level. JAM-1 might therefore play an important role in the differentiation of AR42J cells and the regeneration of pancreatic islets.

  8. Identifying Ecosystem Services of Rivers and Streams Through Content Analysis

    EPA Science Inventory

    While much ecosystem services research focuses on analysis such as mapping and/or valuation, fewer research efforts are directed toward in-depth understanding of the specific ecological quantities people value. Ecosystem service monitoring and analysis efforts and communications ...

  9. Identifying Ecosystem Services of Rivers and Streams Through Content Analysis

    EPA Science Inventory

    While much ecosystem services research focuses on analysis such as mapping and/or valuation, fewer research efforts are directed toward in-depth understanding of the specific ecological quantities people value. Ecosystem service monitoring and analysis efforts and communications ...

  10. Up-regulation and functional effect of cardiac β3-adrenoreceptors in alcoholic monkeys.

    PubMed

    Cheng, Heng-Jie; Grant, Kathleen A; Han, Qing-Hua; Daunais, James B; Friedman, David P; Masutani, Satoshi; Little, William C; Cheng, Che-Ping

    2010-07-01

    Recent studies link altered cardiac beta-adrenergic receptor (AR) signaling to the pathology of alcoholic cardiomyopathy (ACM). However, the alteration and functional effect of beta(3)-AR activation in ACM are unknown. We tested the hypothesis that chronic alcohol intake causes an up-regulation of cardiac beta(3)-AR, which exacerbates myocyte dysfunction and impairs calcium regulation, thereby directly contributing to the progression of ACM. We compared myocyte beta(3)- and beta(1)-AR expression and myocyte contractile ([Ca(2+)](i)), transient ([Ca(2+)](iT)), and Ca(2+) current (I(Ca,L)) responses to beta- and beta(3)-AR stimulation in myocytes obtained from left ventricle (LV) tissue samples obtained from 10 normal control (C) and 16 monkeys with self-administered alcohol for 12 months prior to necropsy: 6 moderate (M) and 10 heavy (H) drinkers with group average alcohol intakes of 1.5 +/- 0.2 and 3.3 +/- 0.2 g/kg/d, respectively. Compared with control myocytes (C), in alcoholic cardiomyocytes, basal cell contraction (dL/dt(max), -39%, H: 69.8 vs. C: 114.6 microm/s), relaxation (dR/dt(max), -37%, 58.2 vs. 92.9 microm/s), [Ca(2+)](iT) (-34%, 0.23 vs. 0.35), and I(Ca,L) (-25%, 4.8 vs. 6.4pA/pF) were all significantly reduced. Compared with controls, in moderate and heavy drinkers, beta(1)-AR protein levels decreased by 23% and 42%, but beta(3)-AR protein increased by 46% and 85%, respectively. These changes were associated with altered myocyte functional responses to beta-AR agonist, isoproterenol (ISO), and beta(3)-AR agonist, BRL-37344 (BRL). Compared with controls, in alcoholic myocytes, ISO (10(-8) M) produced significantly smaller increases in dL/dt(max) (H: 40% vs. C: 71%), dR/dt(max) (37% vs. 52%), [Ca(2+)](iT) (17% vs. 37%), and I(Ca,L) (17% vs. 27%), but BRL (10(-8) M) produced a significantly greater decrease in dL/dt(max) (H: -23% vs. C: -11%), [Ca(2+)](iT) (-30% vs. -11%), and I(Ca,L) (-28% vs. -17%). Chronic alcohol consumption down-regulates cardiac

  11. Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity

    PubMed Central

    Ferry, Gilles; Tellier, Edwige; Try, Anne; Grés, Sandra; Naime, Isabelle; Simon, Marie Françoise; Rodriguez, Marianne; Boucher, Jérémie; Tack, Ivan; Gesta, Stéphane; Chomarat, Pascale; Dieu, Marc; Raes, Martine; Galizzi, Jean Pierre; Valet, Philippe; Boutin, Jean A.; Saulnier-Blache, Jean Sébastien

    2003-01-01

    Our group has recently demonstrated (Gesta et al. J. Lipid. Res, 2002, 43:904–910) the presence, in adipocyte conditioned-medium, of a soluble lysophospholipase D-activity (LPLDact) involved in synthesis of the bioactive phospholipid, lysophosphatidic acid (LPA). In the present report, LPLDact was purified from 3T3F442A-adipocyte conditioned-medium and identified as the type II ecto-nucleotide pyrophosphatase phosphodiesterase: autotaxin (ATX). A unique ATX cDNA was cloned from 3T3F442A-adipocytes, and its recombinant expression in COS-7 cells led to extracellular release of LPLDact. ATX mRNA expression was highly up-regulated during adipocyte differentiation of 3T3F442A-preadipocytes. This up-regulation was paralleled by the ability of newly differentiated adipocytes to release LPLDact and LPA. Differentiation-dependent up-regulation of ATX expression was also observed in primary culture of mouse preadipocytes. Treatment of 3T3F442A-preadipocytes with concentrated conditioned medium from ATX expressing-COS-7 cells led to an increase in cell number as compared with concentrated conditioned medium from ATX non-expressing-COS-7 cells. The specific effect of ATX on preadipocyte proliferation was completely suppressed by co-treatment with a LPA-hydrolyzing phospholipase, phospholipase B. Finally, ATX expression was found in mature adipocytes isolated from mouse adipose tissue, and was substantially increased in genetically obese-diabetic db/db mice when compared to their lean siblings. In conclusion, the present work shows that ATX is responsible for the LPLDact released by adipocytes, and exerts a paracrine control on preadipocyte growth via an LPA-dependent mechanism. Up-regulations of ATX expression with adipocyte differentiation and genetic obesity suggest a possible involvement of this released protein in the development of adipose tissue and obesity-associated pathologies. PMID:12642576

  12. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    SciTech Connect

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei; Lu, Su; Tang, Huamei; Peng, Zhihai

    2014-06-27

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation.

  13. Expression and up-regulation of interleukin-6 in oesophageal carcinoma cells by n-sodium butyrate

    PubMed Central

    Wang, L-S; Chow, K-C; Wu, C-W

    1999-01-01

    Recently, the serum level of interleukin (IL)-6 has been shown to correlate with disease progression and prognosis of cancer patients. However, the available information about the source and the pathophysiological regulation of IL-6 in cancer cells is limited. Thus, in this study, we tried to identify the source and the clinical roles of serum IL-6 in patients with oesophageal squamous cell carcinoma (ESCC), and then further to characterize the biological regulation of IL-6 in ESCC cell lines. Sera and tissue specimens from 80 consecutive patients with ESCC were collected between 1993 and 1997. Additionally, three ESCC cell lines were used for in vitro study. The concentration of serum IL-6 was measured by enzyme-linked immunosorbent assay (ELISA), and correlated the survival time with measured IL-6 level. Expressions of IL-6, IL-6Rα (IL-6 receptor alpha) and gp130 in pathological sections and cell lines were characterized by immunological staining. Detection of IL-6 mRNA was determined by in situ hybridization (ISH) and reverse transcription-polymerase chain reaction (RT-PCR). Up-regulation of IL-6 by n-sodium butyrate (n-BT) was studied in ESCC cell lines. The levels of serum IL-6 in patients with ESCC were significantly higher than those in the healthy controls. Serum levels of IL-6 were also shown to correlate with disease progression and survival. However, sCD8 levels and lymphocyte counts in the peripheral blood were not parallel to the changed pattern of serum IL-6. In pathological sections and ESCC cell lines, message of IL-6 was identified by ISH in cancer cells. Expression of IL-6 mRNA was further confirmed with RT-PCR in ESCC cell lines. Although IL-6 was detected in some ESCC cell lines, IL-6 gene expression and protein production could be induced or enhanced by n-BT treatment in all three cell lines. The serum levels of IL-6 are frequently elevated at diagnosis of ESCC, and are associated with poor prognosis. IL-6 that could be produced by cancer

  14. Fetal nicotine exposure produces postnatal up-regulation of adenylate cyclase activity in peripheral tissues

    SciTech Connect

    Slotkin, T.A.; Navarro, H.A.; McCook, E.C.; Seidler, F.J. )

    1990-01-01

    Gestational exposure to nicotine has been shown to affect development of noradrenergic activity in both the central and peripheral nervous systems. In the current study, pregnant rats received nicotine infusions of 6 mg/kg/day throughout gestation, administered by osmotic minipump implants. After birth, offspring of the nicotine-infused dams exhibited marked increases in basal adenylate cyclase activity in membranes prepared from kidney and heart, as well as supersensitivity to stimulation by either a {beta}-adrenergic agonist, isoproterenol, or by forskolin. The altered responses were not accompanied by up-regulation of {beta}-adrenergic receptors: in fact, ({sup 125}I)pindolol binding was significantly decreased in the nicotine group. These results indicate that fetal nicotine exposure affects enzymes involved in membrane receptor signal transduction, leading to altered responsiveness independently of changes at the receptor level.

  15. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber.

    PubMed

    Tuohy, Kieran M; Conterno, Lorenza; Gasperotti, Mattia; Viola, Roberto

    2012-09-12

    Whole plant foods, including fruit, vegetables, and whole grain cereals, protect against chronic human diseases such as heart disease and cancer, with fiber and polyphenols thought to contribute significantly. These bioactive food components interact with the gut microbiota, with gut bacteria modifying polyphenol bioavailability and activity, and with fiber, constituting the main energy source for colonic fermentation. This paper discusses the consequences of increasing the consumption of whole plant foods on the gut microbiota and subsequent implications for human health. In humans, whole grain cereals can modify fecal bacterial profiles, increasing relative numbers of bifidobacteria and lactobacilli. Polyphenol-rich chocolate and certain fruits have also been shown to increase fecal bifidobacteria. The recent FLAVURS study provides novel information on the impact of high fruit and vegetable diets on the gut microbiota. Increasing whole plant food consumption appears to up-regulate beneficial commensal bacteria and may contribute toward the health effects of these foods.

  16. Neuronal changes resulting in up-regulation of alpha-1 adrenoceptors after peripheral nerve injury.

    PubMed

    Drummond, Peter D

    2014-07-15

    Under normal conditions, the sympathetic neurotransmitter noradrenaline inhibits the production and release of pro-inflammatory cytokines. However, after peripheral nerve and tissue injury, pro-inflammatory cytokines appear to induce the expression of the alpha1A-adrenoceptor subtype on immune cells and perhaps also on other cells in the injured tissue. In turn, noradrenaline may act on up-regulated alpha1-adrenoceptors to increase the production of the pro-inflammatory cytokine interleukin-6. In addition, the release of inflammatory mediators and nerve growth factor from keratinocytes and other cells may augment the expression of alpha1-adrenoceptors on peripheral nerve fibers. Consequently, nociceptive afferents acquire an abnormal excitability to adrenergic agents, and inflammatory processes build. These mechanisms could contribute to the development of sympathetically maintained pain in conditions such as post-herpetic neuralgia, cutaneous neuromas, amputation stump pain and complex regional pain syndrome.

  17. Water deprivation up-regulates urine osmolality and renal aquaporin 2 in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, Meng-Meng; Wang, De-Hua

    2016-04-01

    To better understand how desert rodents adapt to water scarcity, we examined urine osmolality, renal distribution and expression of aquaporins (AQPs) in Mongolian gerbils (Meriones unguiculatus) during 7 days of water deprivation (WD). Urine osmolality of the gerbils during WD averaged 7503 mOsm kg(-1). Renal distributions of AQP1, AQP2, and AQP3 were similar to that described in other rodents. After the 7 day WD, renal AQP2 was up-regulated, while resting metabolic rate and total evaporative water loss decreased by 43% and 36%, respectively. Our data demonstrated that Mongolian gerbils showed high urine concentration, renal AQPs expression and body water conservation to cope with limited water availability, which may be critical for their survival during dry seasons in cold deserts.

  18. FRZB up-regulation is correlated with hepatic metastasis and poor prognosis in colon carcinoma patients with hepatic metastasis.

    PubMed

    Shen, Yanping; Zhang, Fang; Lan, Huanrong; Chen, Ke; Zhang, Qi; Xie, Guoming; Teng, Lisong; Jin, Ketao

    2015-01-01

    Frizzled-related protein (FRZB) was up-regulated in hepatic metastasis samples compared with primary colon cancer samples in our previous work. However, the clinical relevance of FRZB in colon cancer hepatic metastasis remains uncertain. The aim of this study was to assess the prognostic value of FRZB in patients with colon carcinoma hepatic metastasis after hepatic resection. FRZB expression was evaluated by immunohistochemistry in formalin-fixed paraffin embedded (FFPE) primary colon carcinoma and paired hepatic metastasis tissues from 136 patients with liver metastasis from colon carcinoma that underwent hepatic resection. The relation between FRZB expression and clinicopathologic factors and long-term prognosis in these 136 patients was retrospectively examined. The prognostic significance of negative or positive FRZB expression in colon carcinoma hepatic metastasis was assessed using Kaplan-Meier survival analysis and log-rank tests. Positive expression of FRZB was correlated with liver metastasis of colon cancer. Univariate analysis indicated significantly worse overall survival (OS) for patients with a positive FRZB expression in colon carcinoma hepatic metastasis than for patients with a negative FRZB expression. Multivariate analysis showed positive-FRZB in colon carcinoma hepatic metastasis to be an independent prognostic factor for OS after hepatic resection (P = 0.001). Positive expression of FRZB was statistically significantly associated with poor prognosis of patients with colon carcinoma hepatic metastasis. FRZB could be a novel predictor for poor prognosis of patients with colon carcinoma hepatic metastasis after hepatic resection.

  19. Up-regulation of tryptophan hydroxylase expression and serotonin synthesis by sertraline.

    PubMed

    Kim, Seong Who; Park, So Yeon; Hwang, Onyou

    2002-04-01

    The neurotransmitter serotonin is involved in a variety of brain functions, and abnormal changes in serotonin neurotransmission are associated with an array of psychiatric disorders, including depression. Sertraline is a selective serotonin reuptake inhibitor (SSRI) and an effective antidepressant. Sertraline increases the serotonin concentration in the synaptic cleft by a short-term action; however, clinical improvement is observed only after several weeks, suggesting that the therapeutic effect may be caused by long-term alterations in serotonin transmission. We determined the effects of sertraline on serotonin synthesis in vivo and in vitro. Long-term treatment of rats with sertraline up-regulated mRNA and protein levels of the serotonin-synthesizing enzyme tryptophan hydroxylase (TPH), as determined by in situ hybridization and immunocytochemistry, respectively. In vitro studies using RBL-2H3 cells also showed an increase in mRNA and protein levels of TPH by sertraline, as determined by Northern blot and immunoblot analyses, respectively. This was accompanied by increases in the levels of TPH enzymatic activity and total serotonin. These data demonstrate that in addition to the known short-term action as an uptake blocker, sertraline also exerts a long-term effect on the serotonin neurotransmission by enhancing serotonin synthesis. A similar effect was observed with another SSRI, fluoxetine, but not with the non-SSRI chlorpromazine. The up-regulation of TPH gene expression by sertraline was attenuated by the protein kinase A (PKA) inhibitor N-[2-(p-bromocinnamylamine)-ethyl]-5-isoquinolinesulfonamine, suggesting that a mechanism involving the PKA signaling pathway might at least in part mediate the long-term therapeutic action.

  20. Up-regulation of GLT-1 severely impairs LTD at mossy fibre–CA3 synapses

    PubMed Central

    Omrani, Azar; Melone, Marcello; Bellesi, Michele; Safiulina, Victoria; Aida, Tomomi; Tanaka, Kohishi; Cherubini, Enrico; Conti, Fiorenzo

    2009-01-01

    Glutamate transporters are responsible for clearing synaptically released glutamate from the extracellular space. By this action, they maintain low levels of ambient glutamate, thus preventing excitotoxic damage, and contribute to shaping synaptic currents. We show that up-regulation of the glutamate transporter GLT-1 by ceftriaxone severely impaired mGluR-dependent long-term depression (LTD), induced at rat mossy fibre (MF)–CA3 synapses by repetitive stimulation of afferent fibres. This effect involved GLT-1, since LTD was rescued by the selective GLT-1 antagonist dihydrokainate (DHK). DHK per se produced a modest decrease in fEPSP amplitude that rapidly regained control levels after DHK wash out. Moreover, the degree of fEPSP inhibition induced by the low-affinity glutamate receptor antagonist γ-DGG was similar during basal synaptic transmission but not during LTD, indicating that in ceftriaxone-treated rats LTD induction did not alter synaptic glutamate transient concentration. Furthermore, ceftriaxone-induced GLT-1 up-regulation significantly reduced the magnitude of LTP at MF–CA3 synapses but not at Schaffer collateral–CA1 synapses. Postembedding immunogold studies in rats showed an increased density of gold particles coding for GLT-1a in astrocytic processes and in mossy fibre terminals; in the latter, gold particles were located near and within the active zones. In both CEF-treated and untreated GLT-1 KO mice used for verifying the specificity of immunostaining, the density of gold particles in MF terminals was comparable to background levels. The enhanced expression of GLT-1 at release sites may prevent activation of presynaptic receptors, thus revealing a novel mechanism by which GLT-1 regulates synaptic plasticity in the hippocampus. PMID:19651762

  1. NOD1 receptor is up-regulated in diabetic human and murine myocardium.

    PubMed

    Prieto, Patricia; Vallejo-Cremades, María Teresa; Benito, Gemma; González-Peramato, Pilar; Francés, Daniel; Agra, Noelia; Terrón, Verónica; Gónzalez-Ramos, Silvia; Delgado, Carmen; Ruiz-Gayo, Mariano; Pacheco, Ivette; Velasco-Martín, Juan P; Regadera, Javier; Martín-Sanz, Paloma; López-Collazo, Eduardo; Boscá, Lisardo; Fernández-Velasco, María

    2014-12-01

    Type 2 diabetes has a complex pathology that involves a chronic inflammatory state. Emerging evidence suggests a link between the innate immune system receptor NOD1 (nucleotide-binding and oligomerization domain 1) and the pathogenesis of diabetes, in monocytes and hepatic and adipose tissues. The aim of the present study was to assess the role of NOD1 in the progression of diabetic cardiomyopathy. We have measured NOD1 protein in cardiac tissue from Type 2 diabetic (db) mice. Heart and isolated cardiomyocytes from db mice revealed a significant increase in NOD1, together with an up-regulation of nuclear factor κB (NF-κB) and increased apoptosis. Heart tissue also exhibited an enhanced expression of pro-inflammatory cytokines. Selective NOD1 activation with C12-γ-D-glutamyl-m-diaminopimelic acid (iEDAP) resulted in an increased NF-κB activation and apoptosis, demonstrating the involvement of NOD1 both in wild-type and db mice. Moreover, HL-1 cardiomyocytes exposed to elevated concentrations of glucose plus palmitate displayed an enhanced NF-κB activity and apoptotic profile, which was prevented by silencing of NOD1 expression. To address this issue in human pathology, NOD1 expression was evaluated in myocardium obtained from patients with Type 2 diabetes (T2DMH) and from normoglycaemic individuals without cardiovascular histories (NH). We have found that NOD1 was expressed in both NH and T2DMH; however, NOD1 expression was significantly pronounced in T2DMH. Furthermore, both the pro-inflammatory cytokine tumour necrosis factor α (TNF-α) and the apoptosis mediator caspase-3 were up-regulated in T2DMH samples. Taken together, our results define an active role for NOD1 in the heightened inflammatory environment associated with both experimental and human diabetic cardiac disease.

  2. Propofol up-regulates Mas receptor expression in dorsal root ganglion neurons.

    PubMed

    Cao, Lijun; Xun, Junmei; Jiang, Xinghua; Tan, Rong

    2013-08-01

    Mas is a functional binding site for angiotensin (Ang)-(1-7), a critical component of the renin-angiotensin system that is involved in processing nociceptive information. A recent study reported the localization of Mas in rat dorsal root ganglia (DRG) and demonstrated that Ang-(1-7) produced a dose-dependent peripheral antinociceptive effect in rats through the Mas receptor by an opioid-independent mechanism. In the present study, we for the first time examined the effect of propofol on Mas expression in cultured DRG neurons. We treated rat DRG neurons with propofol at different concentrations (0.1, 0.5, 1, 5 or 10 microM) for different length of time (0.5, 1, 2, 4 or 6 h) with or without transcription inhibitor actinomycin D or different kinase inhibitors. Propofol increased the Mas receptormRNA level in a statistically significant dose- and time-dependent manner within 4 h, which led to dose-dependent up-regulation of the Mas receptor protein level as well as Ang-(1-7) binding on the cell membrane. Actinomycin D (1 mg/ml) and p38 mitogen-activated protein kinase inhibitor PD169316 (25 microM) completely abolished the effect of propofol on Mas receptor expression in DRG neurons. In conclusion, we demonstrate that propofol markedly up-regulates Mas receptor expression at the transcription level in DRG neurons by a p38 MAPK-dependent mechanism. This study provides new insights into the mechanisms of action of propofol in peripheral antinociception, and suggests a new regulatory mechanism on the Ang-(1-7)/Mas axis in the peripheral nervous system.

  3. Up-regulation of GLT-1 severely impairs LTD at mossy fibre--CA3 synapses.

    PubMed

    Omrani, Azar; Melone, Marcello; Bellesi, Michele; Safiulina, Victoria; Aida, Tomomi; Tanaka, Kohishi; Cherubini, Enrico; Conti, Fiorenzo

    2009-10-01

    Glutamate transporters are responsible for clearing synaptically released glutamate from the extracellular space. By this action, they maintain low levels of ambient glutamate, thus preventing excitotoxic damage, and contribute to shaping synaptic currents. We show that up-regulation of the glutamate transporter GLT-1 by ceftriaxone severely impaired mGluR-dependent long-term depression (LTD), induced at rat mossy fibre (MF)-CA3 synapses by repetitive stimulation of afferent fibres. This effect involved GLT-1, since LTD was rescued by the selective GLT-1 antagonist dihydrokainate (DHK). DHK per se produced a modest decrease in fEPSP amplitude that rapidly regained control levels after DHK wash out. Moreover, the degree of fEPSP inhibition induced by the low-affinity glutamate receptor antagonist gamma-DGG was similar during basal synaptic transmission but not during LTD, indicating that in ceftriaxone-treated rats LTD induction did not alter synaptic glutamate transient concentration. Furthermore, ceftriaxone-induced GLT-1 up-regulation significantly reduced the magnitude of LTP at MF-CA3 synapses but not at Schaffer collateral-CA1 synapses. Postembedding immunogold studies in rats showed an increased density of gold particles coding for GLT-1a in astrocytic processes and in mossy fibre terminals; in the latter, gold particles were located near and within the active zones. In both CEF-treated and untreated GLT-1 KO mice used for verifying the specificity of immunostaining, the density of gold particles in MF terminals was comparable to background levels. The enhanced expression of GLT-1 at release sites may prevent activation of presynaptic receptors, thus revealing a novel mechanism by which GLT-1 regulates synaptic plasticity in the hippocampus.

  4. δ-Opioid receptors up-regulate excitatory amino acid transporters in mouse astrocytes

    PubMed Central

    Liang, Jianfeng; Chao, Dongman; Sandhu, Harleen K; Yu, Yanbing; Zhang, Li; Balboni, Gianfranco; Kim, Dong H; Xia, Ying

    2014-01-01

    Background and Purpose Astrocytic excitatory amino acid transporters (EAATs) regulate extracellular glutamate concentrations and play a role in preventing neuroexcitotoxicity. As the δ-opioid receptor (DOP receptor) is neuroprotective against excitotoxic injury, we determined whether DOP receptor activation up-regulates EAAT expression and function. Experimental Approach We measured mRNA and protein expression of EAAT1, EAAT2 and EAAT3 in cultured mouse astrocytes exposed to a specific DOP receptor agonist (UFP-512) with or without a DOP receptor antagonist, DOP receptor siRNA or inhibitors of PKC, PKA, PI3K, p38, MAPK, MEK and ERK, and evaluated the function of EAATs by measuring glutamate uptake. Key Results Astrocytic DOP receptor mRNA and protein were suppressed by DOP receptor siRNA knockdown. DOP receptor activation increased mRNA and protein expression of EAAT1 and EAAT2, but not EAAT3, thereby enhancing glutamate uptake of astrocytes. DOP receptor-induced EAAT1 and EAAT2 expression was largely reversed by DOP receptor antagonist naltrindole or by DOP receptor siRNA knockdown, and suppressed by inhibitors of MEK, ERK and p38. DOP receptor-accelerated glutamate uptake was inhibited by EAAT blockers, DOP receptor siRNA knockdown or inhibitors of MEK, ERK or p38. In contrast, inhibitors of PKA, PKC or PI3K had no significant effect on DOP receptor-induced EAAT expression. Conclusions and Implications DOP receptor activation up-regulates astrocytic EAATs via MEK-ERK-p38 signalling, suggesting a critical role for DOP receptors in the regulation of astrocytic EAATs and protection against neuroexcitotoxicity. As decreased EAAT expression contributes to pathophysiology in many neurological diseases, including amyotrophic lateral sclerosis, our findings present a new platform for potential treatments of these diseases. PMID:25052197

  5. Up-regulation of TDAG51 is a dependent factor of LPS-induced RAW264.7 macrophages proliferation and cell cycle progression.

    PubMed

    Jiao, Han-Wei; Jia, Xiao-Xiao; Zhao, Tian-Jing; Rong, Hui; Zhang, Jia-Ning; Cheng, Ying; Zhu, Hua-Pei; Xu, Kai-Lian; Guo, Shi-Yu; Shi, Qiao-Yun; Zhang, Hui; Wang, Feng-Yang; Chen, Chuang-Fu; Du, Li

    2016-01-01

    As a component of the outer membrane in Gram-negative bacteria, lipopolysaccharide (LPS)-induced proliferation and cell cycle progression of monocytes/macrophages. It has been suggested that the proapoptotic T-cell death-associated gene 51 (TDAG51) might be associated with cell proliferation and cell cycle progression; however, its role in the interaction between LPS and macrophages remains unclear. We attempted to elucidate the role(s) of TDAG51 played in the interaction between LPS and macrophages. We investigated TDAG51 expression in RAW264.7 cells stimulated with LPS and examined the effects of RNA interference-mediated TDAG51 down-regulation. We used CCK-8 assay and flow cytometry analysis to evaluate the interaction between TDAG51 and LPS-induced proliferation and cell cycle progression in RAW264.7 cells. Our findings indicate that TDAG51 is up-regulated in LPS-stimulated RAW264.7 cells, the TDAG51 siRNA effectively reduced TDAG51 protein up-regulation following LPS stimulation in RAW264.7 cells, the significant changes of the proliferation and cell cycle progression of RAW264.7 cells in TDAG51 Knockdown RAW264.7 cells treated with LPS were observed. These findings suggested that TDAG51 up-regulation is a dependent event during LPS-mediated proliferation and cell cycle progression, and which increase our understanding of the interaction mechanism between LPS and macrophages.

  6. The oncoprotein HBXIP up-regulates FGF4 through activating transcriptional factor Sp1 to promote the migration of breast cancer cells.

    PubMed

    Shi, Hui; Li, Yinghui; Feng, Guoxing; Li, Leilei; Fang, Runping; Wang, Zhen; Qu, Jie; Ding, Peijian; Zhang, Xiaodong; Ye, Lihong

    2016-02-26

    We have reported that the oncoprotein hepatitis B X-interacting protein (HBXIP) is able to promote migration of breast cancer cells. Fibroblast growth factor 4 (FGF4) is a multipotent growth factor and is highly expressed in various human cancers. However, the regulatory mechanism of FGF4 in breast cancer remains poorly understood. In the present study, we report that HBXIP is able to up-regulate FGF4 to enhance the migration of breast cancer cells. Immunohistochemistry staining showed that HBXIP and FGF4 were highly expressed in clinical metastatic lymph nodes of breast tumor. The expression levels of HBXIP were positively related to those of FGF4 in clinical breast cancer tissues. Then, we validated that HBXIP up-regulated the expression of FGF4 at the levels of promoter, mRNA and protein by luciferase reporter gene assays, reverse transcription-polymerase chain reaction and Western blot analysis. Moreover, we found that HBXIP was able to activate FGF4 promoter through transcriptional factor Sp1 by luciferase reporter gene assays. Chromatin immunoprecipitation assays confirmed that HBXIP coactivated Sp1 to stimulate FGF4 promoter. In function, we showed that HBXIP promoted breast cancer cell migration through FGF4 by wound healing and transwell cell migration assays. Thus, we conclude that the oncoprotein HBXIP up-regulates FGF4 through activating transcriptional factor Sp1 to promote the migration of breast cancer cells. Therapeutically, HBXIP may serve as a novel target in breast cancer.

  7. Acute morphine activates satellite glial cells and up-regulates IL-1β in dorsal root ganglia in mice via matrix metalloprotease-9

    PubMed Central

    2012-01-01

    Background Activation of spinal cord glial cells such as microglia and astrocytes has been shown to regulate chronic opioid-induced antinociceptive tolerance and hyperalgesia, due to spinal up-regulation of the proinflammatory cytokines such as interleukin-1 beta (IL-1β). Matrix metalloprotease-9 (MMP-9) has been implicated in IL-1β activation in neuropathic pain. However, it is unclear whether acute opioid treatment can activate glial cells in the peripheral nervous system. We examined acute morphine-induced activation of satellite glial cells (SGCs) and up-regulation of IL-1β in dorsal root ganglia (DRGs), and further investigated the involvement of MMP-9 in these opioid-induced peripheral changes. Results Subcutaneous morphine injection (10 mg/kg) induced robust peripheral glial responses, as evidenced by increased GFAP expression in DRGs but not in spinal cords. The acute morphine-induced GFAP expression is transient, peaking at 2 h and declining after 3 h. Acute morphine treatment also increased IL-1β immunoreactivity in SGCs and IL-1β activation in DRGs. MMP-9 and GFAP are expressed in DRG neurons and SGCs, respectively. Confocal analysis revealed a close proximity of MMP-9 and GFAP immunostaining. Importantly, morphine-induced DRG up-regulation of GFAP expression and IL-1β activation was abolished after Mmp9 deletion or naloxone pre-treatment. Finally, intrathecal injections of IL-1β-selective siRNA not only reduced DRG IL-1β expression but also prolonged acute morphine-induced analgesia. Conclusions Acute morphine induces opioid receptors- and MMP-9-dependent up-regulation of GFAP expression and IL-1β activation in SGCs of DRGs. MMP-9 could mask and shorten morphine analgesia via peripheral neuron-glial interactions. Targeting peripheral glial activation might prolong acute opioid analgesia. PMID:22439811

  8. Coordinate up-regulation of low-density lipoprotein receptor and cyclo-oxygenase-2 gene expression in human colorectal cells and in colorectal adenocarcinoma biopsies

    NASA Technical Reports Server (NTRS)

    Lum, D. F.; McQuaid, K. R.; Gilbertson, V. L.; Hughes-Fulford, M.

    1999-01-01

    Many colorectal cancers have high levels of cyclo-oxygenase 2 (COX-2), an enzyme that metabolizes the essential fatty acids into prostaglandins. Since the low-density lipoprotein receptor (LDLr) is involved in the uptake of essential fatty acids, we studied the effect of LDL on growth and gene regulation in colorectal cancer cells. DiFi cells grown in lipoprotein-deficient sera (LPDS) grew more slowly than cells with LDL. LDLr antibody caused significant inhibition of tumor cell growth but did not affect controls. In addition, LDL uptake did not change in the presence of excess LDL, suggesting that ldlr mRNA lacks normal feedback regulation in some colorectal cancers. Analysis of the ldlr mRNA showed that excess LDL in the medium did not cause down-regulation of the message even after 24 hr. The second portion of the study examined the mRNA expression of ldlr and its co-regulation with cox-2 in normal and tumor specimens from patients with colorectal adenocarcinomas. The ratio of tumor:paired normal mucosa of mRNA expression of ldlr and of cox-2 was measured in specimens taken during colonoscopy. ldlr and cox-2 transcripts were apparent in 11 of 11 carcinomas. There was significant coordinate up-regulation both of ldlr and of cox-2 in 6 of 11 (55%) tumors compared with normal colonic mucosa. There was no up-regulation of cox-2 without concomitant up-regulation of ldlr. These data suggest that the LDLr is abnormally regulated in some colorectal tumors and may play a role in the up-regulation of cox-2. Copyright 1999 Wiley-Liss, Inc.

  9. Adenosine triphosphate-binding cassette transporter genes up-regulation in untreated hepatocellular carcinoma is mediated by cellular microRNAs.

    PubMed

    Borel, Florie; Han, Ruiqi; Visser, Allerdien; Petry, Harald; van Deventer, Sander J H; Jansen, Peter L M; Konstantinova, Pavlina

    2012-03-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are drug efflux pumps responsible for the multidrug resistance phenotype causing hepatocellular carcinoma (HCC) treatment failure. Here we studied the expression of 15 ABC transporters relevant for multidrug resistance in 19 paired HCC patient samples (16 untreated, 3 treated by chemotherapeutics). Twelve ABC transporters showed up-regulation in HCC compared with adjacent healthy liver. These include ABCA2, ABCB1, ABCB6, ABCC1, ABCC2, ABCC3, ABCC4, ABCC5, ABCC10, ABCC11, ABCC12, and ABCE1. The expression profile and function of some of these transporters have not been associated with HCC thus far. Because cellular microRNAs (miRNAs) are involved in posttranscriptional gene silencing, we hypothesized that regulation of ABC expression in HCC might be mediated by miRNAs. To study this, miRNAs were profiled and dysregulation of 90 miRNAs was shown in HCC compared with healthy liver, including up-regulation of 11 and down-regulation of 79. miRNA target sites in ABC genes were bioinformatically predicted and experimentally verified in vitro using luciferase reporter assays. In total, 13 cellular miRNAs were confirmed that target ABCA1, ABCC1, ABCC5, ABCC10, and ABCE1 genes and mediate changes in gene expression. Correlation analysis between ABC and miRNA expression in individual patients revealed an inverse relationship, providing an indication for miRNA regulation of ABC genes in HCC. Up-regulation of ABC transporters in HCC occurs prior to chemotherapeutic treatment and is associated with miRNA down-regulation. Up-regulation of five ABC genes appears to be mediated by 13 cellular miRNAs in HCC patient samples. miRNA-based gene therapy may be a novel and promising way to affect the ABC profile and overcome clinical multidrug resistance. Copyright © 2011 American Association for the Study of Liver Diseases.

  10. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat.

    PubMed

    Xue, Gang-Ping; Way, Heather M; Richardson, Terese; Drenth, Janneke; Joyce, Priya A; McIntyre, C Lynne

    2011-07-01

    NAC proteins are plant-specific transcription factors and enriched with members involved in plant response to drought stress. In this study, we analyzed the expression profiles of TaNAC69 in bread wheat using Affymetrix Wheat Genome Array datasets and quantitative RT-PCR. TaNAC69 expression was positively associated with wheat responses to both abiotic and biotic stresses and was closely correlated with a number of stress up-regulated genes. The functional analyses of TaNAC69 in transgenic wheat showed that TaNAC69 driven by a barley drought-inducible HvDhn4s promoter led to marked drought-inducible overexpression of TaNAC69 in the leaves and roots of transgenic lines. The HvDhn4s:TaNAC69 transgenic lines produced more shoot biomass under combined mild salt stress and water-limitation conditions, had longer root and more root biomass under polyethylene glycol-induced dehydration. Analysis of transgenic lines with constitutive overexpression of TaNAC69 showed the enhanced expression levels of several stress up-regulated genes. DNA-binding assays revealed that TaNAC69 and its rice homolog (ONAC131) were capable of binding to the promoter elements of three rice genes (chitinase, ZIM, and glyoxalase I) and an Arabidopsis glyoxalase I family gene, which are homologs of TaNAC69 up-regulated stress genes. These data suggest that TaNAC69 is involved in regulating stress up-regulated genes and wheat adaptation to drought stress.

  11. Structural identifiability analysis of a cardiovascular system model.

    PubMed

    Pironet, Antoine; Dauby, Pierre C; Chase, J Geoffrey; Docherty, Paul D; Revie, James A; Desaive, Thomas

    2016-05-01

    The six-chamber cardiovascular system model of Burkhoff and Tyberg has been used in several theoretical and experimental studies. However, this cardiovascular system model (and others derived from it) are not identifiable from any output set. In this work, two such cases of structural non-identifiability are first presented. These cases occur when the model output set only contains a single type of information (pressure or volume). A specific output set is thus chosen, mixing pressure and volume information and containing only a limited number of clinically available measurements. Then, by manipulating the model equations involving these outputs, it is demonstrated that the six-chamber cardiovascular system model is structurally globally identifiable. A further simplification is made, assuming known cardiac valve resistances. Because of the poor practical identifiability of these four parameters, this assumption is usual. Under this hypothesis, the six-chamber cardiovascular system model is structurally identifiable from an even smaller dataset. As a consequence, parameter values computed from limited but well-chosen datasets are theoretically unique. This means that the parameter identification procedure can safely be performed on the model from such a well-chosen dataset. Thus, the model may be considered suitable for use in diagnosis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Uncoupling protein-2 up-regulation and enhanced cyanide toxicity are mediated by PPAR{alpha} activation and oxidative stress

    SciTech Connect

    Zhang, X.; Li, L.; Prabhakaran, K.; Zhang, L.; Leavesley, H.B.; Borowitz, J.L.; Isom, G.E.

    2007-08-15

    Uncoupling protein 2 (UCP-2) is an inner mitochondrial membrane proton carrier that modulates mitochondrial membrane potential ({delta}{psi}{sub m}) and uncouples oxidative phosphorylation. We have shown that up-regulation of UCP-2 by Wy14,643, a selective peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) agonist, enhances cyanide cytotoxicity. The pathway by which Wy14,643 up-regulates UCP-2 was determined in a dopaminergic cell line (N27 cells). Since dopaminergic mesencephalic cells are a primary brain target of cyanide, the N27 immortalized mesencephalic cell was used in this study. Wy14,643 produced a concentration- and time-dependent up-regulation of UCP-2 that was linked to enhanced cyanide-induced cell death. MK886 (PPAR{alpha} antagonist) or PPAR{alpha} knock-down by RNA interference (RNAi) inhibited PPAR{alpha} activity as shown by the peroxisome proliferator response element-luciferase reporter assay, but only partially decreased up-regulation of UCP-2. The role of oxidative stress as an alternative pathway to UCP-2 up-regulation was determined. Wy14,643 induced a rapid surge of ROS generation and loading cells with glutathione ethyl ester (GSH-EE) or pre-treatment with vitamin E attenuated up-regulation of UCP-2. On the other hand, RNAi knockdown of PPAR{alpha} did not alter ROS generation, suggesting a PPAR{alpha}-independent component to the response. Co-treatment with PPAR{alpha}-RNAi and GSH-EE blocked both the up-regulation of UCP-2 by Wy14,643 and the cyanide-induced cell death. It was concluded that a PPAR{alpha}-mediated pathway and an oxidative stress pathway independent of PPAR{alpha} mediate the up-regulation of UCP-2 and subsequent increased vulnerability to cyanide-induced cytotoxicity.

  13. Uncoupling protein-2 up-regulation and enhanced cyanide toxicity are mediated by PPARalpha activation and oxidative stress.

    PubMed

    Zhang, X; Li, L; Prabhakaran, K; Zhang, L; Leavesley, H B; Borowitz, J L; Isom, G E

    2007-08-15

    Uncoupling protein 2 (UCP-2) is an inner mitochondrial membrane proton carrier that modulates mitochondrial membrane potential (DeltaPsi(m)) and uncouples oxidative phosphorylation. We have shown that up-regulation of UCP-2 by Wy14,643, a selective peroxisome proliferator-activated receptor-alpha (PPARalpha) agonist, enhances cyanide cytotoxicity. The pathway by which Wy14,643 up-regulates UCP-2 was determined in a dopaminergic cell line (N27 cells). Since dopaminergic mesencephalic cells are a primary brain target of cyanide, the N27 immortalized mesencephalic cell was used in this study. Wy14,643 produced a concentration- and time-dependent up-regulation of UCP-2 that was linked to enhanced cyanide-induced cell death. MK886 (PPARalpha antagonist) or PPARalpha knock-down by RNA interference (RNAi) inhibited PPARalpha activity as shown by the peroxisome proliferator response element-luciferase reporter assay, but only partially decreased up-regulation of UCP-2. The role of oxidative stress as an alternative pathway to UCP-2 up-regulation was determined. Wy14,643 induced a rapid surge of ROS generation and loading cells with glutathione ethyl ester (GSH-EE) or pre-treatment with vitamin E attenuated up-regulation of UCP-2. On the other hand, RNAi knockdown of PPARalpha did not alter ROS generation, suggesting a PPARalpha-independent component to the response. Co-treatment with PPARalpha-RNAi and GSH-EE blocked both the up-regulation of UCP-2 by Wy14,643 and the cyanide-induced cell death. It was concluded that a PPARalpha-mediated pathway and an oxidative stress pathway independent of PPARalpha mediate the up-regulation of UCP-2 and subsequent increased vulnerability to cyanide-induced cytotoxicity.

  14. Insecticide-Mediated Up-Regulation of Cytochrome P450 Genes in the Red Flour Beetle (Tribolium castaneum)

    PubMed Central

    Liang, Xiao; Xiao, Da; He, Yanping; Yao, Jianxiu; Zhu, Guonian; Zhu, Kun Yan

    2015-01-01

    Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification. PMID:25607733

  15. Insecticide-mediated up-regulation of cytochrome P450 genes in the red flour beetle (Tribolium castaneum).

    PubMed

    Liang, Xiao; Xiao, Da; He, Yanping; Yao, Jianxiu; Zhu, Guonian; Zhu, Kun Yan

    2015-01-19

    Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification.

  16. Proteomic Analysis of Urine to Identify Breast Cancer Biomarker Candidates Using a Label-Free LC-MS/MS Approach

    PubMed Central

    Beretov, Julia; Wasinger, Valerie C.; Millar, Ewan K. A.; Schwartz, Peter; Graham, Peter H.; Li, Yong

    2015-01-01

    Introduction Breast cancer is a complex heterogeneous disease and is a leading cause of death in women. Early diagnosis and monitoring progression of breast cancer are important for improving prognosis. The aim of this study was to identify protein biomarkers in urine for early screening detection and monitoring invasive breast cancer progression. Method We performed a comparative proteomic analysis using ion count relative quantification label free LC-MS/MS analysis of urine from breast cancer patients (n = 20) and healthy control women (n = 20). Results Unbiased label free LC-MS/MS-based proteomics was used to provide a profile of abundant proteins in the biological system of breast cancer patients. Data analysis revealed 59 urinary proteins that were significantly different in breast cancer patients compared to the normal control subjects (p<0.05, fold change >3). Thirty-six urinary proteins were exclusively found in specific breast cancer stages, with 24 increasing and 12 decreasing in their abundance. Amongst the 59 significant urinary proteins identified, a list of 13 novel up-regulated proteins were revealed that may be used to detect breast cancer. These include stage specific markers associated with pre-invasive breast cancer in the ductal carcinoma in-situ (DCIS) samples (Leucine LRC36, MAST4 and Uncharacterized protein CI131), early invasive breast cancer (DYH8, HBA, PEPA, uncharacterized protein C4orf14 (CD014), filaggrin and MMRN2) and metastatic breast cancer (AGRIN, NEGR1, FIBA and Keratin KIC10). Preliminary validation of 3 potential markers (ECM1, MAST4 and filaggrin) identified was performed in breast cancer cell lines by Western blotting. One potential marker MAST4 was further validated in human breast cancer tissues as well as individual human breast cancer urine samples with immunohistochemistry and Western blotting, respectively. Conclusions Our results indicate that urine is a useful non-invasive source of biomarkers and the profile patterns

  17. Up-regulation of NG2 proteoglycan and interferon induced transmembrane proteins 1 and 3 in mouse astrocytoma: A membrane proteomics approach

    PubMed Central

    Seyfried, Nicholas T.; Huysentruyt, Leanne C.; Atwood, James A.; Xia, Qiangwei; Seyfried, Thomas N.; Orlando, Ron

    2009-01-01

    Although brain tumors are classified as if their lineage were well understood, the relationship between the molecular events that specify neural cell lineage and brain tumors remains enigmatic. Traditionally, cell surface membrane antigens have served as biomarkers that distinguish brain tumor origin and malignancy. In this study, membrane proteins were identified from a terminally differentiated mouse astrocyte (AC) and CT-2A astrocytoma (CT-2A) cell line using liquid-chromatography coupled with tandem mass spectrometry (LC-MS/MS). A total of 321 and 297 protein groups with at least one unique peptide were identified in the AC and CT-2A cells. Using a label-free quantitative MS approach, 25 plasma membrane proteins in CT-2A were found significantly up- or down-regulated compared with those in AC. Three of the up-regulated proteins, chondroitin sulfate proteoglycan-4 (Cspg4), interferon induced transmembrane protein-2 (IFITM2) and -3 (IFITM3) were further validated by semi-quantitative RT-PCR analysis. In addition, a third member of the IFITM family, interferon induced transmembrane protein-1 (IFITM1) was also analyzed. Expression of Cspg4, IFITM1 and IFITM3 was significantly greater in the CT-2A cells than that in the AC cells. Interestingly, Cspg4, also known as neuronal/glial 2 (NG2) proteoglycan in human, is an oligodendrocyte progenitor marker. Therefore, our data suggests that the CT-2A tumor may be derived from NG2 glia rather than fully differentiated astrocytes. Moreover, the CT-2A cells also express a series of interferon-induced signature proteins that may be specific to this tumor. These data highlight the utility of LC-MS/MS for the identification of brain tumor membrane biomarkers. PMID:18281150

  18. Up-regulation of NG2 proteoglycan and interferon-induced transmembrane proteins 1 and 3 in mouse astrocytoma: a membrane proteomics approach.

    PubMed

    Seyfried, Nicholas T; Huysentruyt, Leanne C; Atwood, James A; Xia, Qiangwei; Seyfried, Thomas N; Orlando, Ron

    2008-05-18

    Although brain tumors are classified as if their lineage were well understood, the relationship between the molecular events that specify neural cell lineage and brain tumors remains enigmatic. Traditionally, cell surface membrane antigens have served as biomarkers that distinguish brain tumor origin and malignancy. In this study, membrane proteins were identified from a terminally differentiated mouse astrocyte (AC) and CT-2A astrocytoma (CT-2A) cell line using liquid-chromatography coupled with tandem mass spectrometry (LC-MS/MS). A total of 321 and 297 protein groups with at least one unique peptide were identified in the AC and CT-2A cells. Using a label-free quantitative MS approach, 25 plasma membrane proteins in CT-2A were found significantly up- or down-regulated compared with those in AC. Three of the up-regulated proteins, chondroitin sulfate proteoglycan-4 (Cspg4), interferon-induced transmembrane protein-2 (IFITM2) and -3 (IFITM3) were further validated by semi-quantitative RT-PCR analysis. In addition, a third member of the IFITM family, interferon-induced transmembrane protein-1 (IFITM1) was also analyzed. Expression of Cspg4, IFITM1 and IFITM3 was significantly greater in the CT-2A cells than that in the AC cells. Interestingly, Cspg4, also known as neuronal/glial 2 (NG2) proteoglycan in human, is an oligodendrocyte progenitor marker. Therefore, our data suggest that the CT-2A tumor may be derived from NG2 glia rather than from fully differentiated astrocytes. Moreover, the CT-2A cells also express a series of interferon-induced signature proteins that may be specific to this tumor. These data highlight the utility of LC-MS/MS for the identification of brain tumor membrane biomarkers.

  19. Proteomic analysis of breast cancer tissues to identify biomarker candidates by gel-assisted digestion and label-free quantification methods using LC-MS/MS.

    PubMed

    Song, Mi-Na; Moon, Pyong-Gon; Lee, Jeong-Eun; Na, MinKyun; Kang, Wonku; Chae, Yee Soo; Park, Ji-Young; Park, Hoyong; Baek, Moon-Chang

    2012-10-01

    This study presents a proteomic method that differentiates between matched normal and breast tumor tissues from ductal carcinoma in situ (DCIS) and invasive carcinoma from Korean women, to identify biomarker candidates and to understand pathogenesis of breast cancer in protein level. Proteins from tissues obtained by biopsy were extracted by RIPA buffer, digested by the gel-assisted method, and analyzed by nano-UPLC-MS/MS. From proteomic analysis based on label-free quantitation strategy, a non-redundant list of 298 proteins was identified from the normal and tumor tissues, and 244 proteins were quantified using IDEAL-Q software. Hierarchical clustering analysis showed two patterns classified as two groups, invasive carcinoma and DCIS, suggesting a difference between two carcinoma at the protein expression level as expected. Differentially expressed proteins in tumor tissues compared to the corresponding normal tissues were related to three biological pathways: antigen-processing and presentation, glycolysis/gluconeogenesis, and complement and coagulation cascades. Among them, the up-regulation of calreticulin (CRT) and protein disulfide isomerase A3 (PDIA3) was confirmed by Western blot analysis. In conclusion, this study showed the possibility of identifying biomarker candidates for breast cancer using tissues and might help to understand the pathophysiology of this cancer at the protein level.

  20. Similarity transformation approach to identifiability analysis of nonlinear compartmental models.

    PubMed

    Vajda, S; Godfrey, K R; Rabitz, H

    1989-04-01

    Through use of the local state isomorphism theorem instead of the algebraic equivalence theorem of linear systems theory, the similarity transformation approach is extended to nonlinear models, resulting in finitely verifiable sufficient and necessary conditions for global and local identifiability. The approach requires testing of certain controllability and observability conditions, but in many practical examples these conditions prove very easy to verify. In principle the method also involves nonlinear state variable transformations, but in all of the examples presented in the paper the transformations turn out to be linear. The method is applied to an unidentifiable nonlinear model and a locally identifiable nonlinear model, and these are the first nonlinear models other than bilinear models where the reason for lack of global identifiability is nontrivial. The method is also applied to two models with Michaelis-Menten elimination kinetics, both of considerable importance in pharmacokinetics, and for both of which the complicated nature of the algebraic equations arising from the Taylor series approach has hitherto defeated attempts to establish identifiability results for specific input functions.

  1. Long non-coding RNA CCAT2 is up-regulated in gastric cancer and associated with poor prognosis

    PubMed Central

    Wang, Chen-Yu; Hua, Long; Yao, Kun-Hou; Chen, Jiang-Tao; Zhang, Jun-Jie; Hu, Jun-Hong

    2015-01-01

    Introduction: Dysregulation of long non-coding RNAs (lncRNAs) play important roles in tumor progression. The aim of our study was to explore the clinicopathologic and prognostic significance of lncRNA CCAT2 expression in human gastric cancer. Methods: Expression levels of lncRNA CCAT2 in 85 pairs of gastric cancer and adjacent non-tumor tissues were detected by quantitative real-time PCR (qRT-PCR). In order to determine its prognostic value, overall survival and progression-free survival were evaluated using the Kaplan-Meier method, and multivariate analysis was performed using the Cox proportional hazard analysis. Results: Expression levels of lncRNA CCAT2 in gastric cancer tissues were significantly higher than those in adjacent non-tumor tissues. By statistical analyses, high lncRNA CCAT2 expression was observed to be closely correlated with higher incidence of lymph node metastasis and distance metastasis. Moreover, patients with high lncRNA CCAT2 expression had shorter overall survival and progression-free survival compared with the low lncRNA CCAT2 group. Multivariate analyses indicated that high lncRNA CCAT2 expression was an independent poor prognostic factor for gastric cancer patients. Conclusions: Our results suggested that up-regulation of lncRNA CCAT2 was correlated with gastric cancer progression, and lncRNA CCAT2 might be a potential molecular biomarker for predicting the prognosis of patients. PMID:25755774

  2. Chronic thoracic spinal cord injury impairs CD8+ T-cell function by up-regulating programmed cell death-1 expression

    PubMed Central

    2014-01-01

    Background Chronic spinal cord injury (SCI) induces immune depression in patients, which contributes to their higher risk of developing infections. While defects in humoral immunity have been reported, complications in T-cell immunity during the chronic phase of SCI have not yet been explored. Methods To assess the impact of chronic SCI on peripheral T-cell number and function we used a mouse model of severe spinal cord contusion at thoracic level T9 and performed flow cytometry analysis on the spleen for T-cell markers along with intracellular cytokine staining. Furthermore we identified alterations in sympathetic activity in the spleen of chronic SCI mice by measuring splenic levels of tyrosine hydroxylase (TH) and norepinephrine (NE). To gain insight into the neurogenic mechanism leading to T-cell dysfunction we performed in vitro NE stimulation of T-cells followed by flow cytometry analysis for T-cell exhaustion marker. Results Chronic SCI impaired both CD4+ and CD8+ T-cell cytokine production. The observed T-cell dysfunction correlated with increased expression of programmed cell death 1 (PD-1) exhaustion marker on these cells. Blocking PD-1 signaling in vitro restored the CD8+ T-cell functional defect. In addition, we showed that chronic SCI mice had higher levels of splenic NE, which contributed to the T-cell exhaustion phenotype, as PD-1 expression on both CD4+ and CD8+ T-cells was up-regulated following sustained exposure to NE in vitro. Conclusions These studies indicate that alteration of sympathetic activity following chronic SCI induces CD8+ T-cell exhaustion, which in turn impairs T-cell function and contributes to immune depression. Inhibition of the exhaustion pathway should be considered as a new therapeutic strategy for chronic SCI-induced immune depression. PMID:24690491

  3. Microarray hybridization analysis of light-dependent gene expression in Penicillium chrysogenum identifies bZIP transcription factor PcAtfA.

    PubMed

    Wolfers, Simon; Kamerewerd, Jens; Nowrousian, Minou; Sigl, Claudia; Zadra, Ivo; Kürnsteiner, Hubert; Kück, Ulrich; Bloemendal, Sandra

    2015-04-01

    The fungal velvet complex is a light-dependent master regulator of secondary metabolism and development in the major penicillin producer, Penicillium chrysogenum. However, the light-dependent mechanism is unclear. To identify velvet-dependent transcriptional regulators that show light-regulated expression, we performed microarray hybridizations with RNA isolated from P. chrysogenum ΔPcku70 cultures grown under 13 different long-term, light-dependent growth conditions. We compared these expression data to data from two velvet complex deletion mutants; one lacked a subunit of the velvet complex (ΔPcvelA), and the other lacked a velvet-associated protein (ΔPclaeA). We sought to identify genes that were up-regulated in light, but down-regulated in ΔPcvelA and ΔPclaeA. We identified 148 co-regulated genes that displayed this regulatory pattern. In silico analyses of the co-regulated genes identified six proteins with fungal-specific transcription factor domains. Among these, we selected the bZIP transcription factor, PcAtfA, for functional characterization in deletion and complementation strains. Our data clearly indicates that PcAtfA governs spore germination. This comparative analysis of different microarray hybridization data sets provided results that may be useful for identifying genes for future functional analyses.

  4. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.

    PubMed

    Stangeland, Biljana; Mughal, Awais A; Grieg, Zanina; Sandberg, Cecilie Jonsgar; Joel, Mrinal; Nygård, Ståle; Meling, Torstein; Murrell, Wayne; Vik Mo, Einar O; Langmoen, Iver A

    2015-09-22

    Glioblastoma (GBM) is both the most common and the most lethal primary brain tumor. It is thought that GBM stem cells (GSCs) are critically important in resistance to therapy. Therefore, there is a strong rationale to target these cells in order to develop new molecular therapies.To identify molecular targets in GSCs, we compared gene expression in GSCs to that in neural stem cells (NSCs) from the adult human brain, using microarrays. Bioinformatic filtering identified 20 genes (PBK/TOPK, CENPA, KIF15, DEPDC1, CDC6, DLG7/DLGAP5/HURP, KIF18A, EZH2, HMMR/RHAMM/CD168, NOL4, MPP6, MDM1, RAPGEF4, RHBDD1, FNDC3B, FILIP1L, MCC, ATXN7L4/ATXN7L1, P2RY5/LPAR6 and FAM118A) that were consistently expressed in GSC cultures and consistently not expressed in NSC cultures. The expression of these genes was confirmed in clinical samples (TCGA and REMBRANDT). The first nine genes were highly co-expressed in all GBM subtypes and were part of the same protein-protein interaction network. Furthermore, their combined up-regulation correlated negatively with patient survival in the mesenchymal GBM subtype. Using targeted proteomics and the COGNOSCENTE database we linked these genes to GBM signalling pathways.Nine genes: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, KIF18A, EZH2 and HMMR should be further explored as targets for treatment of GBM.

  5. Peroxisome proliferator-activated receptor γ enhances adiponectin secretion via up-regulating DsbA-L expression.

    PubMed

    Jin, Dan; Sun, Jun; Huang, Jing; Yu, Xiaoling; Yu, An; He, Yiduo; Li, Qiang; Yang, Zaiqing

    2015-08-15

    Disulfide-bond A oxidoreductase like-protein (DsbA-L) was identified as a molecular chaperone facilitating the assembly and secretion of adiponectin, an adipokine with multiple beneficial effects. In obesity the level of DsbA-L is reduced with a concomitant decrease of the circulating adiponectin level, especially of the high molecular weight form (HMW). Both rodent and human studies have shown that the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-γ agonists increase adiponectin levels in serum by activating PPARγ, which up-regulates critical endoplasmic reticulum (ER) chaperones thus facilitating protein folding. As shown in the present study, overexpression of PPARγ in human embryonic kidney (HEK) 293 cells elicited the cellular release of HMW adiponectin. PPARγ enhanced expression of DsbA-L by binding directly to peroxisome proliferator response element (PPRE) site within the DsbA-L promoter. Conversely, in differentiated 3T3-L1 cells, PPARγ knockdown resulted in decreased expression of Adiponectin, DsbA-L and ERp44. DsbA-L expression increased after PPARγ agonist treatment and decreased upon treatment with PPARγ antagonist in 3T3-L1 adipocytes. DsbA-L deficiency in differentiated 3T3-L1 cells impaired the secretion of adiponectin. We therefore propose that DsbA-L plays an important role in facilitating HMW adiponectin formation and release from cells under the regulation of PPARγ. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Farnesoid X receptor up-regulates expression of Lipid transfer inhibitor protein in liver cells and mice

    SciTech Connect

    Li, Liangpeng; Liu, Hong; Peng, Jiahe; Wang, Yongchao; Zhang, Yan; Dong, Jinyu; Liu, Xiaohua; Guo, Dongmei; Jiang, Yu

    2013-11-29

    Highlights: •FXR up-regulates apoF. •It binds to ER1 element. •It activates apoF gene promoter. -- Abstract: Apolipoprotein F is a component protein mainly secreted by liver and resides on several lipoprotein classes. It can inhibit lipids transfer between different lipoproteins. FXR is a member of the nuclear receptor superfamily which is also highly expressed in the liver. It modulates bile acids synthesis and lipids metabolism by transcriptional regulation. We aimed to determine whether apoF can be regulated by FXR. The FXR agonist Chenodeoxycholic acid (CDCA) and GW4064 both can activate the expression of apoF in liver cell lines and in C57/BL6 mouse liver. This is dependent on the binding of FXR to the FXR element ER1 (−2904 to −2892 bp) in the apoF gene promoter. Taken together, we have identified apoF as likely another target gene of FXR.

  7. Calcium-dependent N-cadherin up-regulation mediates reactive astrogliosis and neuroprotection after brain injury.

    PubMed

    Kanemaru, Kazunori; Kubota, Jun; Sekiya, Hiroshi; Hirose, Kenzo; Okubo, Yohei; Iino, Masamitsu

    2013-07-09

    Brain injury induces phenotypic changes in astrocytes, known as reactive astrogliosis, which may influence neuronal survival. Here we show that brain injury induces inositol 1,4,5-trisphosphate (IP3)-dependent Ca(2+) signaling in astrocytes, and that the Ca(2+) signaling is required for astrogliosis. We found that type 2 IP3 receptor knockout (IP3R2KO) mice deficient in astrocytic Ca(2+) signaling have impaired reactive astrogliosis and increased injury-associated neuronal death. We identified N-cadherin and pumilio 2 (Pum2) as downstream signaling molecules, and found that brain injury induces up-regulation of N-cadherin around the injured site. This effect is mediated by Ca(2+)-dependent down-regulation of Pum2, which in turn attenuates Pum2-dependent translational repression of N-cadherin. Furthermore, we show that astrocyte-specific knockout of N-cadherin results in impairment of astrogliosis and neuroprotection. Thus, astrocytic Ca(2+) signaling and the downstream function of N-cadherin play indispensable roles in the cellular responses to brain injury. These findings define a previously unreported signaling axis required for reactive astrogliosis and neuroprotection following brain injury.

  8. Calcium-dependent N-cadherin up-regulation mediates reactive astrogliosis and neuroprotection after brain injury

    PubMed Central

    Kanemaru, Kazunori; Kubota, Jun; Sekiya, Hiroshi; Hirose, Kenzo; Okubo, Yohei; Iino, Masamitsu

    2013-01-01

    Brain injury induces phenotypic changes in astrocytes, known as reactive astrogliosis, which may influence neuronal survival. Here we show that brain injury induces inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling in astrocytes, and that the Ca2+ signaling is required for astrogliosis. We found that type 2 IP3 receptor knockout (IP3R2KO) mice deficient in astrocytic Ca2+ signaling have impaired reactive astrogliosis and increased injury-associated neuronal death. We identified N-cadherin and pumilio 2 (Pum2) as downstream signaling molecules, and found that brain injury induces up-regulation of N-cadherin around the injured site. This effect is mediated by Ca2+-dependent down-regulation of Pum2, which in turn attenuates Pum2-dependent translational repression of N-cadherin. Furthermore, we show that astrocyte-specific knockout of N-cadherin results in impairment of astrogliosis and neuroprotection. Thus, astrocytic Ca2+ signaling and the downstream function of N-cadherin play indispensable roles in the cellular responses to brain injury. These findings define a previously unreported signaling axis required for reactive astrogliosis and neuroprotection following brain injury. PMID:23798419

  9. Up-Regulation of Pressure-activated Ca2+-permeable Cation Channel in Intact Vascular Endothelium of Hypertensive Rats

    NASA Astrophysics Data System (ADS)

    Hoyer, J.; Kohler, R.; Haase, W.; Distler, A.

    1996-10-01

    In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal cell surface with the patch pipette and inactivated at negative pipette pressure. Channel permeability ratio for K+, Na+, and Ca2+ ions was 1:0.98:0.23. Ca2+ influx through the channel was sufficient to activate a neighboring Ca2+-dependent K+ channel. Hemodynamic forces are chronically disturbed in arterial hypertension. Endothelial cell dysfunction has been implicated in the pathogenesis of arterial hypertension. In two comparative studies, density of the pressure-activated channel was found to be significantly higher in spontaneously hypertensive rats and renovascular hypertensive rats compared with their respective normotensive controls. Channel activity presumably leads to mechanosensitive Ca2+ influx and induces cell hyperpolarization by K+ channel activity. Both Ca2+ influx and hyperpolarization are known to induce a vasodilatory endothelial response by stimulating endothelial nitric oxide (NO) production. Up-regulation of channel density in hypertension could, therefore, represent a counterregulatory mechanism of vascular endothelium.

  10. Endurance exercise and conjugated linoleic acid (CLA) supplementation up-regulate CYP17A1 and stimulate testosterone biosynthesis.

    PubMed

    Barone, Rosario; Macaluso, Filippo; Catanese, Patrizia; Marino Gammazza, Antonella; Rizzuto, Luigi; Marozzi, Paola; Lo Giudice, Giuseppe; Stampone, Tomaso; Cappello, Francesco; Morici, Giuseppe; Zummo, Giovanni; Farina, Felicia; Di Felice, Valentina

    2013-01-01

    A new role for fat supplements, in particular conjugated linoleic acid (CLA), has been delineated in steroidogenesis, although the underlying molecular mechanisms have not yet been elucidated. The aims of the present study were to identify the pathway stimulated by CLA supplementation using a cell culture model and to determine whether this same pathway is also stimulated in vivo by CLA supplementation associated with exercise. In vitro, Leydig tumour rat cells (R2C) supplemented with different concentrations of CLA exhibited increasing testosterone biosynthesis accompanied by increasing levels of CYP17A1 mRNA and protein. In vivo, trained mice showed an increase in free plasma testosterone and an up-regulation of CYP17A1 mRNA and protein. The effect of training on CYP17A1 expression and testosterone biosynthesis was significantly higher in the trained mice supplemented with CLA compared to the placebo. The results of the present study demonstrated that CLA stimulates testosterone biosynthesis via CYP17A1, and endurance training led to the synthesis of testosterone in vivo by inducing the overexpression of CYP17A1 mRNA and protein in the Leydig cells of the testis. This effect was enhanced by CLA supplementation. Therefore, CLA-associated physical activity may be used for its steroidogenic property in different fields, such as alimentary industry, human reproductive medicine, sport science, and anti-muscle wasting.

  11. Endurance Exercise and Conjugated Linoleic Acid (CLA) Supplementation Up-Regulate CYP17A1 and Stimulate Testosterone Biosynthesis

    PubMed Central

    Catanese, Patrizia; Marino Gammazza, Antonella; Rizzuto, Luigi; Marozzi, Paola; Lo Giudice, Giuseppe; Stampone, Tomaso; Cappello, Francesco; Morici, Giuseppe; Zummo, Giovanni; Farina, Felicia; Di Felice, Valentina

    2013-01-01

    A new role for fat supplements, in particular conjugated linoleic acid (CLA), has been delineated in steroidogenesis, although the underlying molecular mechanisms have not yet been elucidated. The aims of the present study were to identify the pathway stimulated by CLA supplementation using a cell culture model and to determine whether this same pathway is also stimulated in vivo by CLA supplementation associated with exercise. In vitro, Leydig tumour rat cells (R2C) supplemented with different concentrations of CLA exhibited increasing testosterone biosynthesis accompanied by increasing levels of CYP17A1 mRNA and protein. In vivo, trained mice showed an increase in free plasma testosterone and an up-regulation of CYP17A1 mRNA and protein. The effect of training on CYP17A1 expression and testosterone biosynthesis was significantly higher in the trained mice supplemented with CLA compared to the placebo. The results of the present study demonstrated that CLA stimulates testosterone biosynthesis via CYP17A1, and endurance training led to the synthesis of testosterone in vivo by inducing the overexpression of CYP17A1 mRNA and protein in the Leydig cells of the testis. This effect was enhanced by CLA supplementation. Therefore, CLA-associated physical activity may be used for its steroidogenic property in different fields, such as alimentary industry, human reproductive medicine, sport science, and anti-muscle wasting. PMID:24223995

  12. Up-regulation of microtubule-associated protein 2 accompanying the filial imprinting of domestic chicks (Gallus gallus domesticus).

    PubMed

    Yamaguchi, Shinji; Fujii-Taira, Ikuko; Murakami, Akio; Hirose, Naoki; Aoki, Naoya; Izawa, Ei-Ichi; Fujimoto, Yasuyuki; Takano, Tatsuya; Matsushima, Toshiya; Homma, Koichi J

    2008-06-15

    Using cDNA microarrays, we have identified elsewhere the genes of microtubule-associated proteins as a group up-regulated in newly hatched chick brains after filial imprinting training. Here we show by in situ hybridization that the mRNA for the microtubule-associated protein 2 (MAP2) gene was enriched in the mesopallium and the hippocampus in the trained chick brain. The regionally specific enrichments of MAP2 mRNA were not observed in the brain of dark-reared or light-exposed chick as controls, implying an association between the degree of expression and the strength of the learned preference. In agreement with the gene expression, MAP2 protein was accumulated in the mesopallium of the trained chick brain, but not in the brains of the controls. The accumulation of MAP2 was found in the cytosol of neurons and co-localized with beta-tubulin, suggesting a change in microtubule assembly. Our results suggest a postnatal reorganization of cytoskeleton following filial imprinting.

  13. The Expression of Porcine Prdx6 Gene Is Up-Regulated by C/EBPβ and CREB.

    PubMed

    Wu, Xinyu; Ji, Panlong; Zhang, Liang; Bu, Guowei; Gu, Hao; Wang, Xiaojing; Xiong, Yuanzhu; Zuo, Bo

    2015-01-01

    Peroxiredoxin6 (Prdx6) is one of the peroxiredoxin (Prdxs) family members that play an important role in maintaining cell homeostasis. Our previous studies demonstrated that Prdx6 was significantly associated with pig meat quality, especially meat tenderness. However, the transcriptional regulation of porcine Prdx6 remains unclear. In this study, we determined the transcription start site (TSS) of porcine Prdx6 gene by 5' rapid-amplification of cDNA ends (5' RACE). Several regulatory elements including CCAAT/enhancer-binding proteinβ (C/EBPβ), Myogenic Differentiation (MyoD), cAMP response element binding protein (CREB), stimulating protein1 (Sp1) and heat shock factor (HSF) binding sites were found by computational analyses together with luciferase reporter system. Overexpression and RNA interference experiments showed that C/EBPβ or CREB could up-regulate the expression of porcine Prdx6 gene at both mRNA and protein level. Electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation assays (ChIP) confirmed that C/EBPβ and CREB could interact with Prdx6 promoter. Immuoprecipitation results also showed that C/EBPβ could interact with Prdx6 in vivo. Taken together, our findings identified C/EBPβ and CREB as the important regulators of porcine Prdx6 gene expression, and offered clues for further investigation of Prdx6 gene function.

  14. Laminar shear stress up-regulates peroxiredoxins (PRX) in endothelial cells: PRX 1 as a mechanosensitive antioxidant.

    PubMed

    Mowbray, Amy L; Kang, Dong-Hoon; Rhee, Sue Goo; Kang, Sang Won; Jo, Hanjoong

    2008-01-18

    Shear stress plays a significant role in endothelial cell biology and atherosclerosis development. Previous work by our group has shown that fluid flow stimulates important functional changes in cells through protein expression regulation. Peroxiredoxins (PRX) are a family of antioxidant enzymes but have yet to be investigated in response to shear stress. Studies have shown that oscillatory shear stress (OS) increases reactive oxygen species (ROS) levels in endothelial cells, whereas laminar shear stress (LS) blocks this response. We hypothesized that PRX are responsible for the anti-oxidative effect of LS. To test this hypothesis, bovine aortic endothelial cells (BAEC) were subjected to LS (15 dyn/cm(2)), OS (+/-5 dyn/cm(2), 1 Hz), or static conditions for 24 h. Using Western blot and immunofluorescence staining, all six isoforms of PRX were identified in BAEC. When compared with OS and static, exposure to chronic LS up-regulated PRX 1 levels intracellularly. LS also increased expression of PRX 5 relative to static controls, but not OS. PRX exhibited broad subcellular localization, with distribution in the cytoplasm, Golgi, mitochondria, and intermediate filaments. In addition, PRX 1 knock down, using specific small interference RNA, attenuated LS-dependent reactive oxygen species reduction in BAEC. However, PRX 5 depletion did not. Together, these results suggest that PRX 1 is a novel mechanosensitive antioxidant, playing an important role in shear-dependent regulation of endothelial biology and atherosclerosis.

  15. Chromatin remodelling and antisense-mediated up-regulation of the developmental switch gene eud-1 control predatory feeding plasticity

    PubMed Central

    Serobyan, Vahan; Xiao, Hua; Namdeo, Suryesh; Rödelsperger, Christian; Sieriebriennikov, Bogdan; Witte, Hanh; Röseler, Waltraud; Sommer, Ralf J.

    2016-01-01

    Phenotypic plasticity has been suggested to act through developmental switches, but little is known about associated molecular mechanisms. In the nematode Pristionchus pacificus, the sulfatase eud-1 was identified as part of a developmental switch controlling mouth-form plasticity governing a predatory versus bacteriovorous mouth-form decision. Here we show that mutations in the conserved histone-acetyltransferase Ppa-lsy-12 and the methyl-binding-protein Ppa-mbd-2 mimic the eud-1 phenotype, resulting in the absence of one mouth-form. Mutations in both genes cause histone modification defects and reduced eud-1 expression. Surprisingly, Ppa-lsy-12 mutants also result in the down-regulation of an antisense-eud-1 RNA. eud-1 and antisense-eud-1 are co-expressed and further experiments suggest that antisense-eud-1 acts through eud-1 itself. Indeed, overexpression of the antisense-eud-1 RNA increases the eud-1-sensitive mouth-form and extends eud-1 expression. In contrast, this effect is absent in eud-1 mutants indicating that antisense-eud-1 positively regulates eud-1. Thus, chromatin remodelling and antisense-mediated up-regulation of eud-1 control feeding plasticity in Pristionchus. PMID:27487725

  16. CYP2J3 gene delivery up-regulated adiponectin expression via reduced endoplasmic reticulum stress in adipocytes.

    PubMed

    Xu, Xizhen; Tu, Ling; Feng, Wenjing; Ma, Ben; Li, Rui; Zheng, Changlong; Li, Geng; Wang, Dao Wen

    2013-05-01

    Ample evidences demonstrate that cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play crucial and diverse roles in cardiovascular homeostasis. We and others have identified that EETs exert a beneficial role on insulin resistance and diabetes. This study investigated the effects of CYP2J3 epoxygenase gene delivery on adiponectin expression in rats treated with high-fat (HF) diet. CYP2J3 gene delivery in vivo increased EET generation, enhanced adiponectin expression and secretion and accompanied by activation of adiponectin downstream signaling, and decreased insulin resistance as determined by plasma insulin levels, insulin resistance index and glucose tolerance test, as well as phosphorylation of protein kinase B in both liver and muscle. Furthermore, CYP2J3 overexpression prevented HF diet-induced endoplasmic reticulum (ER) stress in adipose tissue of rats. Also, CYP2J3 gene transfection and exogenous administration of EETs inhibited thapsigargin-induced ER stress with increased adiponectin expression and secretion in differentiated 3T3-L1 adipocytes. Thus, CYP2J3 gene delivery up-regulated adiponectin expression and excretion in adipose tissue of rats treated with HF diet through inhibition of ER stress, which can decrease adiponectin expression. These results further highlight the beneficial roles of the CYP epoxygenase 2J3 and its metabolites EETs on adiponectin expression and secretion.

  17. Genotype analysis identifies the cause of the "royal disease".

    PubMed

    Rogaev, Evgeny I; Grigorenko, Anastasia P; Faskhutdinova, Gulnaz; Kittler, Ellen L W; Moliaka, Yuri K

    2009-11-06

    The "royal disease," a blood disorder transmitted from Queen Victoria to European royal families, is a striking example of X-linked recessive inheritance. Although the disease is widely recognized to be a form of the blood clotting disorder hemophilia, its molecular basis has never been identified, and the royal disease is now likely extinct. We identified the likely disease-causing mutation by applying genomic methodologies (multiplex target amplification and massively parallel sequencing) to historical specimens from the Romanov branch of the royal family. The mutation occurs in F9, a gene on the X chromosome that encodes blood coagulation factor IX, and is predicted to alter RNA splicing and to lead to production of a truncated form of factor IX. Thus, the royal disease is the severe form of hemophilia, also known as hemophilia B or Christmas disease.

  18. Integrated Analysis Identifies Interaction Patterns between Small Molecules and Pathways

    PubMed Central

    Li, Yan; Li, Weiguo; Chen, Xin; Sun, Jiatong; Chen, Huan; Lv, Sali

    2014-01-01

    Previous studies have indicated that the downstream proteins in a key pathway can be potential drug targets and that the pathway can play an important role in the action of drugs. So pathways could be considered as targets of small molecules. A link map between small molecules and pathways was constructed using gene expression profile, pathways, and gene expression of cancer cell line intervened by small molecules and then we analysed the topological characteristics of the link map. Three link patterns were identified based on different drug discovery implications for breast, liver, and lung cancer. Furthermore, molecules that significantly targeted the same pathways tended to treat the same diseases. These results can provide a valuable reference for identifying drug candidates and targets in molecularly targeted therapy. PMID:25114931

  19. Indistinguishability and identifiability analysis of linear compartmental models.

    PubMed

    Zhang, L Q; Collins, J C; King, P H

    1991-02-01

    Two compartmental model structures are said to be indistinguishable if they have the same input-output properties. In cases in which available a priori information is not sufficient to specify a unique compartmental model structure, indistinguishable model structures may have to be generated and their attributes examined for relevance. An algorithm is developed that, for a given compartmental model, investigates the complete set of models with the same number of compartments and the same input-output structure as the original model, applies geometrical rules necessary for indistinguishable models, and test models meeting the geometrical criteria for equality of transfer functions. Identifiability is also checked in the algorithm. The software consists of three programs. Program 1 determines the number of locally identifiable parameters. Program 2 applies several geometrical rules that eliminate many (generally most) of the candidate models. Program 3 checks the equality between system transfer functions of the original model and models being tested. Ranks of Jacobian matrices and submatrices and other criteria are used to check patterns of moment invariants and local identifiability. Structural controllability and structural observability are checked throughout the programs. The approach was successfully used to corroborate results from examples investigated by others.

  20. Identifiability analysis of the CSTR river water quality model.

    PubMed

    Chen, J; Deng, Y

    2006-01-01

    Conceptual river water quality models are widely known to lack identifiability. The causes for that can be due to model structure errors, observational errors and less frequent samplings. Although significant efforts have been directed towards better identification of river water quality models, it is not clear whether a given model is structurally identifiable. Information is also limited regarding the contribution of different unidentifiability sources. Taking the widely applied CSTR river water quality model as an example, this paper presents a theoretical proof that the CSTR model is indeed structurally identifiable. Its uncertainty is thus dominantly from observational errors and less frequent samplings. Given the current monitoring accuracy and sampling frequency, the unidentifiability from sampling frequency is found to be more significant than that from observational errors. It is also noted that there is a crucial sampling frequency between 0.1 and 1 day, over which the simulated river system could be represented by different illusions and the model application could be far less reliable.

  1. Identifying common values among seven health professions: An interprofessional analysis.

    PubMed

    Grace, Sandra; Innes, Ev; Joffe, Beverly; East, Leah; Coutts, Rosanne; Nancarrow, Susan

    2017-05-01

    This article reviews the competency frameworks of seven Australian health professions to explore relationships among health professions of similar status as reflected in their competency frameworks and to identify common themes and values across the professions. Frameworks were compared using a constructivist grounded theory approach to identify key themes, against which individual competencies for each profession were mapped and compared. The themes were examined for underlying values and a higher order theoretical framework was developed. In contrast to classical theories of professionalism that foreground differentiation of professions, our study suggests that the professions embrace a common structure and understanding, based on shared underpinning values. We propose a model of two core values that encompass all identified themes: the rights of the client and the capacity of a particular profession to serve the healthcare needs of clients. Interprofessional practice represents the intersection of the rights of the client to receive the best available healthcare and the recognition of the individual contribution of each profession. Recognising that all health professions adhere to a common value base, and exploring professional similarities and differences from that value base, challenges a paradigm that distinguishes professions solely on scope of practice.

  2. Up-Regulation and Functional Effect of Cardiac β3-Adrenoreceptors In Alcoholic Monkeys

    PubMed Central

    Cheng, Heng-Jie; Grant, Kathleen A.; Han, Qing-Hua; Daunais, James B.; Friedman, David P.; Masutani, Satoshi; Little, William C.; Cheng, Che-Ping

    2011-01-01

    Background Recent studies link altered cardiac β-adrenergic receptor (AR) signaling to the pathology of alcoholic cardiomyopathy (ACM). However, the alteration and functional effect of β3-AR activation in ACM is unknown. We tested the hypothesis that chronic alcohol intake causes an up-regulation of cardiac β3-AR, which exacerbates myocyte dysfunction and impairs calcium regulation, thereby directly contributing to the progression of ACM. Methods We compared myocyte β3- and β1-AR expression and myocyte contractile, [Ca2+]i transient ([Ca2+]iT), and Ca2+ current (ICa,L) responses to β- and β3-AR stimulation in myocytes obtained from left ventricle (LV) tissue samples obtained from 10 normal control (C) and 16 monkeys with self-administered alcohol for 12 months prior to necropsy: 6 moderate (M) and 10 heavy (H) drinkers with group average alcohol intakes of 1.5 ± 0.2 and 3.3 ± 0.2 g/kg/day, respectively. Results Compared with control myocytes (C), in alcoholic cardiomyocytes, basal cell contraction (dL/dtmax, −39%, H: 69.8 vs C: 114.6 µm/s), relaxation (dR/dtmax, −37%, 58.2 vs 92.9 µm/s), [Ca2+]iT (−34%, 0.23 vs 0.35) and ICa,L (−25%, 4.8 vs 6.4pA/pF) were all significantly reduced. Compared with controls, in moderate and heavy drinkers, β1-AR protein levels decreased by 23% and 42%, but β3-AR protein increased by 46% and 85%, respectively. These changes were associated with altered myocyte functional responses to β-AR agonist, isoproterenol (ISO), and β3-AR agonist, BRL-37344 (BRL). Compared with controls, in alcoholic myocytes, ISO (10−8 M) produced significantly smaller increases in dL/dtmax (H: 40% vs C: 71%), dR/dtmax (37% vs 52%), [Ca2+]iT (17% vs 37%), and ICa,L (17% vs 27%), but BRL (10−8 M) produced a significantly greater decrease in dL/dtmax (H: −23% vs C: −11%), [Ca2+]iT (−30% vs −11%), and ICa,L (−28% vs −17%). Conclusions Chronic alcohol consumption down-regulates cardiac β1- and up-regulates β3-ARs

  3. Gene expression array of HTLV type 1-infected T cells: Up-regulation of transcription factors and cell cycle genes.

    PubMed

    de La Fuente, C; Deng, L; Santiago, F; Arce, L; Wang, L; Kashanchi, F

    2000-11-01

    By utilizing a human cDNA expression array blot (588 genes), we have observed overexpression of various transcription factors, cell cycle regulated kinases, and DNA repair genes in HTLV-1-infected T cells. One of the genes of interest, and focus in this study, is the cyclin-dependent kinase inhibitor, p21/waf1. The p21/waf1 transcription and protein is overexpressed in all HTLV-1-infected cell lines tested as well as ATL and HAM/TSP patient samples. While p21/waf1 has been shown to display a selectivity for G(1)/S cyclin/cdk complexes, we have observed p21/waf1 to be complexed with cyclin A/cdk2. Functionally, the association of p21/cyclin A/cdk2 decreased the histone H1 phosphorylation in vitro, as observed in immunoprecipitations followed by kinase assays, as well as affecting other substrates such as the C-terminus of Rb protein involved in c-Abl and HDAC1 regulation. Wild-type, but not a mutant form (M47) of Tax, was found to be able to transactivate the p21/waf1 promoter in a p53-independent manner. We found that the minimal p21/waf1 promoter (-49 to +49 sequence) was activated by Tax and the minimal promoter contained two E2A transcription factor binding sites located between the TATA box and the initiation site. E2A proteins, E12 and E47, as well as a related helix-loop-helix protein, HEB, are all up-regulated in HTLV-1-infected T cells. When using band shift analysis, we found that only the E1 site (overlapping the transcription start site) was a functional DNA binding site. By using a chromatin immunoprecipitation (ChIP) assay, we observed that histone H4, and not histone H3, was acetylated from the endogenous p21/waf1 promoter in vivo, implying that CBP/p300, and not the SAGA complex, was critical in complexing with E2A in up-regulation of p21/waf1 in HTLV-1-infected cells.

  4. Evaluation of energy system analysis techniques for identifying underground facilities

    SciTech Connect

    VanKuiken, J.C.; Kavicky, J.A.; Portante, E.C.

    1996-03-01

    This report describes the results of a study to determine the feasibility and potential usefulness of applying energy system analysis techniques to help detect and characterize underground facilities that could be used for clandestine activities. Four off-the-shelf energy system modeling tools were considered: (1) ENPEP (Energy and Power Evaluation Program) - a total energy system supply/demand model, (2) ICARUS (Investigation of Costs and Reliability in Utility Systems) - an electric utility system dispatching (or production cost and reliability) model, (3) SMN (Spot Market Network) - an aggregate electric power transmission network model, and (4) PECO/LF (Philadelphia Electric Company/Load Flow) - a detailed electricity load flow model. For the purposes of most of this work, underground facilities were assumed to consume about 500 kW to 3 MW of electricity. For some of the work, facilities as large as 10-20 MW were considered. The analysis of each model was conducted in three stages: data evaluation, base-case analysis, and comparative case analysis. For ENPEP and ICARUS, open source data from Pakistan were used for the evaluations. For SMN and PECO/LF, the country data were not readily available, so data for the state of Arizona were used to test the general concept.

  5. Identifying Effective Psychological Treatments of Insomnia: A Meta-Analysis.

    ERIC Educational Resources Information Center

    Murtagh, Douglas R. R.; Greenwood, Kenneth M.

    1995-01-01

    Clarified efficacy of psychological treatments for insomnia through a meta-analysis of 66 outcome studies representing 139 treatment groups. Psychological treatments produced considerable enhancement of both sleep patterns and the subjective experience of sleep. Participants who were clinically referred and who did not regularly use sedatives…

  6. Using Rasch Analysis to Identify Uncharacteristic Responses to Undergraduate Assessments

    ERIC Educational Resources Information Center

    Edwards, Antony; Alcock, Lara

    2010-01-01

    Rasch Analysis is a statistical technique that is commonly used to analyse both test data and Likert survey data, to construct and evaluate question item banks, and to evaluate change in longitudinal studies. In this article, we introduce the dichotomous Rasch model, briefly discussing its assumptions. Then, using data collected in an…

  7. DRIS Analysis Identifies a Common Potassium Imbalance in Sweetgum Plantations

    Treesearch

    Mark D. Coleman; S.X. Chang; D.J. Robison

    2003-01-01

    DRIS (Diagnosis and Recommendation Integrated System) analysis was applied to fast-growing sweetgum (Liquidambar styraciflua L.) plantations in the southeast United States as a tool for nutrient diagnosis and fertilizer recommendations. First, standard foliar nutrient ratios for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and...

  8. Identifying Effective Psychological Treatments of Insomnia: A Meta-Analysis.

    ERIC Educational Resources Information Center

    Murtagh, Douglas R. R.; Greenwood, Kenneth M.

    1995-01-01

    Clarified efficacy of psychological treatments for insomnia through a meta-analysis of 66 outcome studies representing 139 treatment groups. Psychological treatments produced considerable enhancement of both sleep patterns and the subjective experience of sleep. Participants who were clinically referred and who did not regularly use sedatives…

  9. Hydrogen sulfide inhibits development of atherosclerosis through up-regulating protein S-nitrosylation.

    PubMed

    Lin, Yan; Chen, Yulong; Zhu, Ninghong; Zhao, Sihai; Fan, Jianglin; Liu, Enqi

    2016-10-01

    Hydrogen sulfide (H2S) is an important gaseous signaling molecule that serves many important regulatory roles in physiological and pathophysiological conditions. H2S exerts an anti-atherosclerotic effect through mediating the biological functions of nitric oxide (NO). However, its mechanism of action is unclear. The purpose of this study is to explore the effect mechanism of H2S on the development of atherosclerosis with regard to protein S-nitrosylation. A total of 45 male apoE(-/-) mice were randomly divided into three groups. Atherosclerosis was induced by Western diet (21% fat and 0.15% cholesterol) with/without administration of a H2S donor (NaHS) or an endogenous cystathionine γ-lyase inhibitor (d, l-propargylglycine) for 12 weeks. After 12 weeks, plasma lipid and plasma NO levels were measured. Aortic gross lesion area and histopathological features of aortic lesion were determined. Additionally, the level of S-nitrosylated proteins in vascular smooth muscle cells (VSMCs) was detected using immunofluorescence in aorta. Rat VSMCs were performed in an in vitro experiment. Inducible nitric oxide synthase (iNOS) protein expression, NO generation, protein S-nitrosylation, and cell proliferation and migration were measured. We found that H2S significantly reduced the aortic atherosclerotic lesion area (P=0.006) and inhibited lipid and macrophage accumulation (P=0.004, P=0.002) and VSMC proliferation (P=0.019) in apoE(-/-) mice. H2S could up-regulate levels of plasma NO and protein S-nitrosylation in aorta VSMCs. However, d, l- propargylglycine had the opposite effect, increasing the lesion area and the content of lipids and macrophages in the lesions of apoE(-/-) mice and down-regulating plasma NO levels and protein S-nitrosylation in aorta VSMCs. In vitro experiments, H2S could significantly reverse the reduction of iNOS expression and NO generation induced by oxidized low-density lipoprotein in VSMCs. Moreover, H2S could increase the protein S

  10. Identifying Colluvial Slopes by Airborne LiDAR Analysis

    NASA Astrophysics Data System (ADS)

    Kasai, M.; Mar