Science.gov

Sample records for analysis method sam

  1. Integration of sample analysis method (SAM) for polychlorinated biphenyls

    SciTech Connect

    Monagle, M.; Johnson, R.C.

    1996-05-01

    A completely integrated Sample Analysis Method (SAM) has been tested as part of the Contaminant Analysis Automation program. The SAM system was tested for polychlorinated biphenyl samples using five Standard Laboratory Modules{trademark}: two Soxtec{trademark} modules, a high volume concentrator module, a generic materials handling module, and the gas chromatographic module. With over 300 samples completed within the first phase of the validation, recovery and precision data were comparable to manual methods. Based on experience derived from the first evaluation of the automated system, efforts are underway to improve sample recoveries and integrate a sample cleanup procedure. In addition, initial work in automating the extraction of semivolatile samples using this system will also be discussed.

  2. Quality Control Guidelines for SAM Pathogen Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the biotoxin methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  3. Quality Control Guidelines for SAM Biotoxin Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the pathogen methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  4. Quality Control Guidelines for SAM Radiochemical Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the radiochemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  5. Quality Control Guidelines for SAM Chemical Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the chemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  6. SAM Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target chemical, radiochemical, pathogens, and biotoxin analytes in environmental samples can use this online query tool to identify analytical methods included in EPA's Selected Analytical Methods for Environmental Remediation

  7. SAM Chemical Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target chemical, radiochemical, pathogens, and biotoxin analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery

  8. SAM Pathogen Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target pathogen analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select pathogens.

  9. SAM Biotoxin Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target biotoxin analytes in environmental samples can use this online query tool to identify analytical methods included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select biotoxins.

  10. SAM Radiochemical Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target radiochemical analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select radiochemical analytes.

  11. General Quality Control (QC) Guidelines for SAM Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  12. A Standard Analysis Method (SAM) for the automated analysis of polychlorinated biphenyls (PCBs) in soils using the chemical analysis automation (CAA) paradigm: Validation and performance

    SciTech Connect

    Rzeszutko, C.; Johnson, C.R.; Monagle, M.; Klatt, L.N.

    1997-11-01

    The Chemical Analysis Automation (CAA) program is developing a standardized modular automation strategy for chemical analysis. In this automation concept, analytical chemistry is performed with modular building blocks that correspond to individual elements of the steps in the analytical process. With a standardized set of behaviors and interactions, these blocks can be assembled in a plug-and-play manner into a complete analysis system. These building blocks, which are referred to as Standard laboratory Modules (SLM), interface to a host control system that orchestrates the entire analytical process, from sample preparation through data interpretation. The integrated system is called a Standard Analysis Method (SAM). A SAM for the automated determination of polychlorinated biphenyls (PCBs) in soils, assembled in a mobile laboratory, is undergoing extensive testing and validation. The SAM consists of the following SLMs: a four-channel Soxhlet extractor, a high-volume concentration, a column clean-up, a gas chromatography, a PCB data-interpretation module, a robot, and a human-computer interface. The SAM is configured to meet the requirements specified in the US Environmental Protection Agency`s (EPA) SW-846 methods 3541/3620A/8082 for the analysis of PCBs in soils. The PCB SAM will be described along with the developmental test plan. Performance data obtained during developmental testing will also be discussed.

  13. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation.

    PubMed

    Joost, S; Bonin, A; Bruford, M W; Després, L; Conord, C; Erhardt, G; Taberlet, P

    2007-09-01

    The detection of adaptive loci in the genome is essential as it gives the possibility of understanding what proportion of a genome or which genes are being shaped by natural selection. Several statistical methods have been developed which make use of molecular data to reveal genomic regions under selection. In this paper, we propose an approach to address this issue from the environmental angle, in order to complement results obtained by population genetics. We introduce a new method to detect signatures of natural selection based on the application of spatial analysis, with the contribution of geographical information systems (GIS), environmental variables and molecular data. Multiple univariate logistic regressions were carried out to test for association between allelic frequencies at marker loci and environmental variables. This spatial analysis method (SAM) is similar to current population genomics approaches since it is designed to scan hundreds of markers to assess a putative association with hundreds of environmental variables. Here, by application to studies of pine weevils and breeds of sheep we demonstrate a strong correspondence between SAM results and those obtained using population genetics approaches. Statistical signals were found that associate loci with environmental parameters, and these loci behave atypically in comparison with the theoretical distribution for neutral loci. The contribution of this new tool is not only to permit the identification of loci under selection but also to establish hypotheses about ecological factors that could exert the selection pressure responsible. In the future, such an approach may accelerate the process of hunting for functional genes at the population level.

  14. Sensitivity Analysis for Multidisciplinary Systems (SAMS)

    DTIC Science & Technology

    2016-12-01

    AFRL-RQ-WP-TM-2017-0017 SENSITIVITY ANALYSIS FOR MULTIDISCIPLINARY SYSTEMS (SAMS) Richard D. Snyder Design & Analysis Branch Aerospace Vehicles...February 2017 4. TITLE AND SUBTITLE SENSITIVITY ANALYSIS FOR MULTIDISCIPLINARY SYSTEMS (SAMS) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER N/A 5c...comprising an interim briefing for this work effort. PA Case Number 88ABW-2016-6159; Clearance Date: 30 Nov 2016. 14. ABSTRACT The Sensitivity Analysis

  15. Selected Analytical Methods for Environmental Remediation and Recovery (SAM) - Home

    EPA Pesticide Factsheets

    The SAM Home page provides access to all information provided in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM), and includes a query function allowing users to search methods by analyte, sample type and instrumentation.

  16. Social Activity Method (SAM): A Fractal Language for Mathematics

    ERIC Educational Resources Information Center

    Dowling, Paul

    2013-01-01

    In this paper I shall present and develop my organisational language, "social activity method" (SAM), and illustrate some of its applications. I shall introduce a new scheme for "modes of recontextualisation" that enables the analysis of the ways in which one activity--which might be school mathematics or social research or any…

  17. Social Activity Method (SAM): A Fractal Language for Mathematics

    ERIC Educational Resources Information Center

    Dowling, Paul

    2013-01-01

    In this paper I shall present and develop my organisational language, "social activity method" (SAM), and illustrate some of its applications. I shall introduce a new scheme for "modes of recontextualisation" that enables the analysis of the ways in which one activity--which might be school mathematics or social research or any…

  18. Single-case study in rehabilitation with SaM method (Sense and Mind): a proposal and analysis.

    PubMed

    Risoli, Annalisa; Bortolotti, Adriana; Capettini, Manuela; Giacobbi, Giulia; Ramella, Marina

    2015-09-01

    The aim of the present case report is to describe a new rehabilitation approach for traumatic brain injury (TBI). TBI is a heterogeneous disorder that could be associated with cognitive and behavioral impairments. The clinical complexity of TBI patients requires a specialized and integrated approach that involves several rehabilitation experts (Mazzucchi in La riabilitazione neuropsicologica, Elsevier-Masson, Milan, 2012). SaM method (SaMM) (Risoli in La riabilitazione spaziale, Carocci Faber, Rome, 2013) is a new rehabilitation approach based on "embodied cognition" theory (Gallese and Lakoff in Cogn Neuropsychol 22(3):455-479, 2005) and has the aim to improve spatial abilities through structured body exercises. The patient was a 35-year-old male who had TBI 9 months before. The patient was evaluated, before and after the treatment, with neuropsychological tests (Rey Test copy and reproduction, Elithorn Test, Trail Making Test, Rey Auditory Verbal Learning Test), Lawton Index for IADL, level of cognitive functioning, and a qualitative process-oriented assessment with SaMM exercises. The patient was treated with SaMM for 4 months, three times a week. Several of the executed assessments showed an improvement after SaMM treatment. The patient also reported amelioration in some daily activities such as swimming and using phone and money. Further investigations are necessary, but the SaMM appeared to be a useful complementary restitutive approach for TBI patients.

  19. Safety and Waste Management for SAM Pathogen Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the pathogens included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  20. Safety and Waste Management for SAM Chemistry Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the chemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  1. Safety and Waste Management for SAM Radiochemical Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the radiochemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  2. Radical SAM, A Novel Protein Superfamily Linking Unresolved Steps in Familiar Biosynthetic Pathways with Radical Mechanisms: Functional Characterization Using New Analysis and Information Visualization Methods

    SciTech Connect

    Sofia, Heidi J.; Chen, Guang; Hetzler, Elizabeth G.; Reyes Spindola, Jorge F.; Miller, Nancy E.

    2001-03-01

    A large protein superfamily with over 500 members has been discovered and analyzed using powerful new bioinformatics and information visualization methods. Evidence exists that these proteins generate a 5?-deoxyadenosyl radical by reductive cleavage of S-adenosylmethionine (SAM) through an unusual Fe-S center. Radical SAM superfamily proteins function in DNA precursor, vitamin, cofactor, antibiotic, and herbicide biosynthesis in a collection of basic and familiar pathways. One of the members is interferon-inducible and is considered a candidate drug target for osteoporosis. The identification of this superfamily suggests that radical-based catalysis is important in a number of previously well-studied but unresolved biochemical pathways.

  3. Spatial Analysis and Modeling Systems (SAMS)

    NASA Technical Reports Server (NTRS)

    Vermillion, Charles; Chan, Paul; Hill, John; Jaske, Robert; Rochon, Gilbert; Stetina, Fran

    1991-01-01

    The objective is to develop a uniform environmental data gathering and distribution system to support (1) emergency management for environmental disasters, and (2) the calibration and validation of remotely sensed data. Initial activities will be to select a data test site and to demonstrate multi-discipline applications using simulated or satellite data in a non real-time mode. Rainfall and flooding are chosen as the testbeds for the SAMS concept because of the abundance of data and the availability of models. The capability to display and process GOES data and analyze GOES generated rain-rate maps will be integrated into SAMS.

  4. Schematic of Sample Analysis at Mars SAM Instrument

    NASA Image and Video Library

    2011-01-18

    This schematic illustration for NASA Mars Science Laboratory Sample Analysis at Mars SAM instrument shows major components of the microwave-oven-size instrument, which will examine samples of Martian rocks, soil and atmosphere.

  5. Social activity method (SAM): A fractal language for mathematics

    NASA Astrophysics Data System (ADS)

    Dowling, Paul

    2013-09-01

    In this paper I shall present and develop my organisational language, social activity method (SAM), and illustrate some of its applications. I shall introduce a new scheme for modes of recontextualisation that enables the analysis of the ways in which one activity - which might be school mathematics or social research or any empirically observed regularity of practice - recontextualises the practice of another and I shall also present, deploy, and develop an existing scheme - domains of action - in an analysis of school mathematics examination papers and in the structuring of what I refer to as the esoteric domain. This domain is here conceived as a hybrid domain of, first, linguistic and extralinguistic resources that are unambiguously mathematical in terms of both expression and content and, second, pedagogic theory - often tacit - that enables the mathematical gaze onto other practices and so recontextualises them. A second and more general theme that runs through the paper is the claim that there is nothing that is beyond semiosis, that there is nothing to which we have direct access, unmediated by interpretation. This state of affairs has implications for mathematics education. Specifically, insofar as an individual's mathematical semiotic system is under continuous development - the curriculum never being graspable all at once - understanding - as a stable semiotic moment - of any aspect or object of mathematics is always localised to the individual and is at best transient, and the sequencing of such moments may well also be more individualised than consistent in some correspondence with the sequencing of the curriculum. This being the case, a concentration on understanding as a goal may well serve to inhibit the pragmatic acquisition and deployment of mathematical technologies, which should be the principal aim of mathematics teaching and learning. The paper is primarily concerned with mathematics education. SAM, however, is a language that is available for

  6. STANDARDIZED ASSESSMENT METHOD (SAM) FOR RIVERINE MACROINVERTEBRATES

    EPA Science Inventory

    During the summer of 2001, twelve sites were sampled for macroinvertebrates, six each on the Great Miami and Kentucky Rivers. Sites were chosen in each river from those sampled in the 1999 methods comparison study to reflect a disturbance gradient. At each site, a total distanc...

  7. Updates to Selected Analytical Methods for Environmental Remediation and Recovery (SAM)

    EPA Pesticide Factsheets

    View information on the latest updates to methods included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM), including the newest recommended methods and publications.

  8. Sample Analysis at Mars Organic Contaminants Library (SAM-OCL)

    NASA Astrophysics Data System (ADS)

    Garcia-Sanchez, Raul; Misra, Prabhakar; Canham, John; Mahaffy, Paul

    2013-04-01

    The Sample Analysis at Mars Organic Contaminants Library (SAM-OCL) was developed as one of several components for the Mars rover mission's Contamination Control Protocol. The purpose of SAM-OCL is to determine the Gas Chromatography-Mass Spectroscopy (GCMS) signals of different materials composing the Mars Science Laboratory rover. In turn, this allows us to determine which GCMS signals originate from terrestrial contamination or rover material outgassing. The GCMS spectral library has several supplemental components, of which its descriptor spreadsheets are the most important, aimed to make SAM-OCL easily and readily accessible to users in and out of the Mars rover mission. One spreadsheet describes the contaminants that can be found in each file, while the other describes the information regarding each file. The library, along with its supplemental materials, is useful from an organizational and practical sense. Through them we are able to organize large volumes of GCMS data while breaking down the components that each material sample is made off. This allows us easy and fast access to information that will be critical when doing analysis in the data that the SAM instrumentation will obtain.

  9. A standard analysis method (SAM) for the automated analysis of polychlorinated biphenyls (PCBs) in soils using the chemical analysis automation (CAA) paradigm: validation and performance

    SciTech Connect

    Rzeszutko, C.; Johnson, C.R.; Monagle, M.; Klatt, L.N.

    1997-10-01

    The Chemical Analysis Automation (CAA) program is developing a standardized modular automation strategy for chemical analysis. In this automation concept, analytical chemistry is performed with modular building blocks that correspond to individual elements of the steps in the analytical process. With a standardized set of behaviors and interactions, these blocks can be assembled in a `plug and play` manner into a complete analysis system. These building blocks, which are referred to as Standard Laboratory Modules (SLM), interface to a host control system that orchestrates the entire analytical process, from sample preparation through data interpretation. The integrated system is called a Standard Analysis Method (SAME). A SAME for the automated determination of Polychlorinated Biphenyls (PCB) in soils, assembled in a mobile laboratory, is undergoing extensive testing and validation. The SAME consists of the following SLMs: a four channel Soxhlet extractor, a High Volume Concentrator, column clean up, a gas chromatograph, a PCB data interpretation module, a robot, and a human- computer interface. The SAME is configured to meet the requirements specified in U.S. Environmental Protection Agency`s (EPA) SW-846 Methods 3541/3620A/8082 for the analysis of pcbs in soils. The PCB SAME will be described along with the developmental test plan. Performance data obtained during developmental testing will also be discussed.

  10. Local sphere-based co-registration for SAM group analysis in subjects without individual MRI.

    PubMed

    Steinstraeter, O; Teismann, Inga K; Wollbrink, A; Suntrup, S; Stoeckigt, K; Dziewas, R; Pantev, C

    2009-03-01

    Synthetic aperture magnetometry (SAM) is a powerful MEG source localization method to analyze evoked as well as induced brain activity. To gain structural information of the underlying sources, especially in group studies, individual magnetic resonance images (MRI) are required for co-registration. During the last few years, the relevance of MEG measurements on understanding the pathophysiology of different diseases has noticeable increased. Unfortunately, especially in patients and small children, structural MRI scans cannot always be performed. Therefore, we developed a new method for group analysis of SAM results without requiring structural MRI data that derives its geometrical information from the individual volume conductor model constructed for the SAM analysis. The normalization procedure is fast, easy to implement and integrates seamlessly into an existing landmark based MEG-MRI co-registration procedure. This new method was evaluated on different simulated points as well as on a pneumatic index finger stimulation paradigm analyzed with SAM. Compared with an established MRI-based normalization procedure (SPM2) the new method shows only minor errors in single subject results as well as in group analysis. The mean difference between the two methods was about 4 mm for the simulated as well as for finger stimulation data. The variation between individual subjects was generally higher than the error induced by the missing MRIs. The method presented here is therefore sufficient for most MEG group studies. It allows accomplishing MEG studies with subject groups where MRI measurements cannot be performed.

  11. Improving gene set analysis of microarray data by SAM-GS

    PubMed Central

    Dinu, Irina; Potter, John D; Mueller, Thomas; Liu, Qi; Adewale, Adeniyi J; Jhangri, Gian S; Einecke, Gunilla; Famulski, Konrad S; Halloran, Philip; Yasui, Yutaka

    2007-01-01

    Background Gene-set analysis evaluates the expression of biological pathways, or a priori defined gene sets, rather than that of individual genes, in association with a binary phenotype, and is of great biologic interest in many DNA microarray studies. Gene Set Enrichment Analysis (GSEA) has been applied widely as a tool for gene-set analyses. We describe here some critical problems with GSEA and propose an alternative method by extending the individual-gene analysis method, Significance Analysis of Microarray (SAM), to gene-set analyses (SAM-GS). Results Using a mouse microarray dataset with simulated gene sets, we illustrate that GSEA gives statistical significance to gene sets that have no gene associated with the phenotype (null gene sets), and has very low power to detect gene sets in which half the genes are moderately or strongly associated with the phenotype (truly-associated gene sets). SAM-GS, on the other hand, performs very well. The two methods are also compared in the analyses of three real microarray datasets and relevant pathways, the diverging results of which clearly show advantages of SAM-GS over GSEA, both statistically and biologically. In a microarray study for identifying biological pathways whose gene expressions are associated with p53 mutation in cancer cell lines, we found biologically relevant performance differences between the two methods. Specifically, there are 31 additional pathways identified as significant by SAM-GS over GSEA, that are associated with the presence vs. absence of p53. Of the 31 gene sets, 11 actually involve p53 directly as a member. A further 6 gene sets directly involve the extrinsic and intrinsic apoptosis pathways, 3 involve the cell-cycle machinery, and 3 involve cytokines and/or JAK/STAT signaling. Each of these 12 gene sets, then, is in a direct, well-established relationship with aspects of p53 signaling. Of the remaining 8 gene sets, 6 have plausible, if less well established, links with p53. Conclusion We

  12. Economic Analysis Case Studies of Battery Energy Storage with SAM

    SciTech Connect

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven

    2015-11-01

    Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.

  13. Peptide Fragments of Odin-Sam1: Conformational Analysis and Interaction Studies with EphA2-Sam.

    PubMed

    Mercurio, Flavia A; Di Natale, Concetta; Pirone, Luciano; Scognamiglio, Pasqualina L; Marasco, Daniela; Pedone, Emilia M; Saviano, Michele; Leone, Marilisa

    2015-07-27

    Odin is a protein belonging to the ANKS family, and has two tandem Sam domains. The first, Odin-Sam1, binds to the Sam domain of the EphA2 receptor (EphA2-Sam); this interaction could be crucial for the regulation of receptor endocytosis and might have an impact on cancer. Odin-Sam1 associates with EphA2-Sam by adopting a "mid-loop/end-helix" model. In this study three peptide sequences, encompassing the mid-loop interacting portion of Odin-Sam1 and its C-terminal α5 helix, were designed. Their conformational properties were analyzed by CD and NMR. In addition, their abilities to interact with EphA2-Sam were investigated by SPR studies. The peptides adopt a predominantly disordered state in aqueous buffer, but a higher helical content is evident in the presence of the cosolvent trifluoroethanol. Dissociation constants towards EphA2-Sam were in the high micromolar range. The structural findings suggest further routes for the design of potential anti-cancer therapeutics as inhibitors of EphA2-Sam heterotypic interactions.

  14. Structural analysis of a putative SAM-dependent methyltransferase, YtqB, from Bacillus subtilis.

    PubMed

    Park, Sun Cheol; Song, Wan Seok; Yoon, Sung-il

    2014-04-18

    S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTases) methylate diverse biological molecules using a SAM cofactor. The ytqB gene of Bacillus subtilis encodes a putative MTase and its biological function has never been characterized. To reveal the structural features and the cofactor binding mode of YtqB, we have determined the crystal structures of YtqB alone and in complex with its cofactor, SAM, at 1.9 Å and 2.2 Å resolutions, respectively. YtqB folds into a β-sheet sandwiched by two α-helical layers, and assembles into a dimeric form. Each YtqB monomer contains one SAM binding site, which shapes SAM into a slightly curved conformation and exposes the reactive methyl group of SAM potentially to a substrate. Our comparative structural analysis of YtqB and its homologues indicates that YtqB is a SAM-dependent class I MTase, and provides insights into the substrate binding site of YtqB. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The SAM Suite

    NASA Image and Video Library

    2013-04-08

    This illustration shows the instruments and subsystems of the Sample Analysis at Mars SAM suite on the Curiosity Rover of NASA Mars Science Laboratory Project. SAM analyzes the gases in the Martian atmosphere.

  16. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J. L.; Graham, H. V.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; Leshin, L. A.; Mahaffy, P. R.; McAdam, A. C.; Ming, D. W.; Navvaro-Gonzales, R.; Niles, P. B.; Steele, A.

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precise measurements of the abundance and carbon isotopic composition (delta(sup 13)C) of the evolved CO2 and hydrogen isotopic composition (deltaD) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx.550 C and above approx.550 C. The combustion experiment on SAM, if properly designed and executed, has the potential to answer multiple questions regarding the origins of volatiles seen thus far in SAM evolved gas analysis (EGA) on Mars. Constraints imposed by SAM and MSL time and power resources, as well as SAM consumables (oxygen gas), will limit the number of SAM combustion experiments, so it is imperative to design an experiment targeting the most pressing science questions. Low temperature combustion experiments will primarily target the quantification of carbon (and nitrogen) contributed by SAM wet chemistry reagants MTBSTFA (N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide) and DMF (Dimethylformamide), which have been identified in the background of blank and sample runs and may adsorb to the sample while the cup is in the Sample Manipulation System (SMS). In addition, differences between the sample and "blank" may yield information regarding abundance and delta(sup 13)C of bulk (both organic and inorganic) martian carbon. High temperature combustion experiments primarily aim to detect refractory organic matter, if present in Cumberland fines, as well as address the question of quantification and deltaD value of water evolution associated with hydroxyl hydrogen in clay minerals.

  17. ParaSAM: a parallelized version of the significance analysis of microarrays algorithm

    PubMed Central

    Sharma, Ashok; Zhao, Jieping; Podolsky, Robert; McIndoe, Richard A.

    2010-01-01

    Motivation: Significance analysis of microarrays (SAM) is a widely used permutation-based approach to identifying differentially expressed genes in microarray datasets. While SAM is freely available as an Excel plug-in and as an R-package, analyses are often limited for large datasets due to very high memory requirements. Summary: We have developed a parallelized version of the SAM algorithm called ParaSAM to overcome the memory limitations. This high performance multithreaded application provides the scientific community with an easy and manageable client-server Windows application with graphical user interface and does not require programming experience to run. The parallel nature of the application comes from the use of web services to perform the permutations. Our results indicate that ParaSAM is not only faster than the serial version, but also can analyze extremely large datasets that cannot be performed using existing implementations. Availability:A web version open to the public is available at http://bioanalysis.genomics.mcg.edu/parasam. For local installations, both the windows and web implementations of ParaSAM are available for free at http://www.amdcc.org/bioinformatics/software/parasam.aspx Contact: rmcindoe@mail.mcg.edu Supplementary information: Supplementary Data is available at Bioinformatics online. PMID:20400455

  18. ParaSAM: a parallelized version of the significance analysis of microarrays algorithm.

    PubMed

    Sharma, Ashok; Zhao, Jieping; Podolsky, Robert; McIndoe, Richard A

    2010-06-01

    Significance analysis of microarrays (SAM) is a widely used permutation-based approach to identifying differentially expressed genes in microarray datasets. While SAM is freely available as an Excel plug-in and as an R-package, analyses are often limited for large datasets due to very high memory requirements. We have developed a parallelized version of the SAM algorithm called ParaSAM to overcome the memory limitations. This high performance multithreaded application provides the scientific community with an easy and manageable client-server Windows application with graphical user interface and does not require programming experience to run. The parallel nature of the application comes from the use of web services to perform the permutations. Our results indicate that ParaSAM is not only faster than the serial version, but also can analyze extremely large datasets that cannot be performed using existing implementations. A web version open to the public is available at http://bioanalysis.genomics.mcg.edu/parasam. For local installations, both the windows and web implementations of ParaSAM are available for free at http://www.amdcc.org/bioinformatics/software/parasam.aspx.

  19. A STANDARDIZED ASSESSMENT METHOD (SAM) FOR RIVERINE MACROINVERTEBRATES

    EPA Science Inventory

    A macroinvertebrate sampling method for large rivers based on desirable characteristics of existing nonwadeable methods was developed and tested. Six sites each were sampled on the Great Miami and Kentucky Rivers, reflecting a human disturbance gradient. Samples were collected ...

  20. Laser Measurement of SAM Bulk and Surface Wave Amplitudes for Material Microstructure Analysis

    SciTech Connect

    Ken L. Telschow; Chiaki Miyasaka; David L. Cottle

    2005-07-01

    Scanning Acoustic Microscopy (SAM) at ultra high frequencies has proven to be a useful tool for investigating materials on the scale of individual grains. This technique is normally performed in a reflection mode from one side of a sample surface. Information about the generation and transmission of bulk acoustic waves into the material is inferred from the reflection signal amplitude. We present an adaptation to the SAM method whereby the acoustic bulk waves are directly visualized through laser acoustic detection. Ultrasonic waves were emitted from a nominal 200 MHz point focus acoustic lens into a thin silicon plate (thickness 75ìm) coupled with distilled water. A scanned laser beam detected the bulk and surface acoustic waves at the opposite surface of the thin silicon plate. Distinct amplitude patterns exhibiting the expected symmetry for Silicon were observed that alter in predictable ways as the acoustic focal point was moved throughout the plate. Predictions of the acoustic wave fields generated by the acoustic lens within and at the surface of the Silicon are being investigated through the angular spectrum of plane waves approach. Results shall be presented for plates with (100) and (111) orientations followed by discussion of applications of the technique for material microstructure analysis.

  1. Detection and Quantification of Nitrogen Compounds in Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, Paul Douglas; Buch, Arnaud; Eigenbrode, Jennifer L.; Franz, Heather; Glavin, Daniel Patrick; Ming, Douglas W/; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials from three sites at Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-Nmethyl-acetamide). On Earth, nitrogen is a crucial bio-element, and nitrogen availability controls productivity in many environments. Nitrogen has also recently been detected in the form of CN in inclusions in the Martian meteorite Tissint, and isotopically heavy nitrogen (delta N-15 approx +100per mille) has been measured during stepped combustion experiments in several SNC meteorites. The detection of nitrogen-bearing compounds in Martian regolith would have important implications for the habitability of ancient Mars. However, confirmation of indigenous Martian nitrogen bearing compounds will require ruling out their formation from the terrestrial derivatization reagents (e.g. N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. The nitrogen species we detect in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples. However, this does not preclude a Martian origin for some of these compounds, which are present in nanomolar concentrations in SAM evolved gas analyses. Analysis of SAM data and laboratory breadboard tests are underway to determine whether nitrogen species are present at higher concentrations than can be accounted for by maximum estimates of nitrogen contribution from MTBSTFA and DMF. In addition, methods are currently being developed to use GC Column 6, (functionally similar to a commercial Q-Bond column), to separate and identify

  2. Detection and Quantification of Nitrogen Compounds in Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Navarro-Gonzalez, R.; Freissinet, C.; McKay, C. P.; Archer, P. D.; Buch, A.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; Ming, D. W.; Steele, A.; Szopa, C.; Wray, J. J.; Conrad, P. G.; Mahaffy, P. R.; Team, M.

    2013-12-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials from three sites at Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). On Earth, nitrogen is a crucial bio-element, and nitrogen availability controls productivity in many environments. Nitrogen has also recently been detected in the form of CN in inclusions in the Martian meteorite Tissint, and isotopically heavy nitrogen (δ15N ~ +100‰) has been measured during stepped combustion experiments in several SNC meteorites. The detection of nitrogen-bearing compounds in Martian regolith would have important implications for the habitability of ancient Mars. However, confirmation of indigenous Martian nitrogen-bearing compounds will require ruling out their formation from the terrestrial derivatization reagents (e.g. N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. The nitrogen species we detect in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples. However, this does not preclude a Martian origin for some of these compounds, which are present in nanomolar concentrations in SAM evolved gas analyses. Analysis of SAM data and laboratory breadboard tests are underway to determine whether nitrogen species are present at higher concentrations than can be accounted for by maximum estimates of nitrogen contribution from MTBSTFA and DMF. In addition, methods are currently being developed to use GC Column 6, (functionally similar to a commercial Q-Bond column), to separate and identify unretained compounds

  3. A Spatial Analysis and Modeling System (SAMS) for environment management

    NASA Technical Reports Server (NTRS)

    Vermillion, Charles H.; Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert

    1992-01-01

    This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FE MA's Integrated Emergency Management Information Systems and the Department of Defense's Air Land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.

  4. A Spatial Analysis and Modeling System (SAMS) for environment management

    NASA Technical Reports Server (NTRS)

    Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert

    1993-01-01

    This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FEMA's Integrated Emergency Management Information Systems and the Department of Defense's Air land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS (Earth Observing System) timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.

  5. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J.; Graham, H. V.; Archer, P. D.; Brunner, A.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; Mahaffy, P. R.; McAdam, A. C.; Ming, D. W.; Niles, P. B.; Steele, A.

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precision measurements of the abundance and carbon isotopic composition (delta C-13) of the evolved CO2 and hydrogen isotopic composition (delta D) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx. 550 C and above approx. 550 C.

  6. Construct Validation of the Louisiana School Analysis Model (SAM) Instructional Staff Questionnaire

    ERIC Educational Resources Information Center

    Bray-Clark, Nikki; Bates, Reid

    2005-01-01

    The purpose of this study was to validate the Louisiana SAM Instructional Staff Questionnaire, a key component of the Louisiana School Analysis Model. The model was designed as a comprehensive evaluation tool for schools. Principle axis factoring with oblique rotation was used to uncover the underlying structure of the SISQ. (Contains 1 table.)

  7. SAM Companion Documents and Sample Collection Procedures

    EPA Pesticide Factsheets

    SAM Companion Documents and Sample Collection Procedures provide information intended to complement the analytical methods listed in Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  8. Evolved Gas Analyses of Sedimentary Materials in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument from Yellowknife Bay to the Stimson Formation

    NASA Technical Reports Server (NTRS)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 10 samples from Gale Crater. All SAM evolved gas analyses have yielded a multitude of volatiles (e.g, H2O, SO2, H2S, CO2, CO, NO, O2, HC1). The objectives of this work are to 1) Characterize the evolved H2O, SO2, CO2, and O2 gas traces of sediments analyzed by SAM through sol 1178, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results releative to understanding the geochemical history of Gale Crater.

  9. Molecular cloning, characterization and expression analysis of the SAMS gene during adventitious root development in IBA-induced tetraploid black locust.

    PubMed

    Quan, Jine; Zhang, Sheng; Zhang, Chunxia; Meng, Sen; Zhao, Zhong; Xu, Xuexuan

    2014-01-01

    S-Adenosylmethionine synthetase (SAMS) catalyzes the synthesis of S-adenosylmethionine (SAM), a precursor for ethylene and polyamine biosynthesis. Here, we report the isolation of the 1498 bp full-length cDNA sequence encoding tetraploid black locust (Robinia pseudoacacia L.) SAMS (TrbSAMS), which contains an open reading frame of 1179 bp encoding 392 amino acids. The amino acid sequence of TrbSAMS has more than 94% sequence identity to SAMSs from other plants, with a closer phylogenetic relationship to SAMSs from legumes than to SAMS from other plants. The TrbSAMS monomer consists of N-terminal, central, and C-terminal domains. Subcellular localization analysis revealed that the TrbSAMS protein localizes mainly to in the cell membrane and cytoplasm of onion epidermal cells and Arabidopsis mesophyll cell protoplasts. Indole-3-butyric acid (IBA)-treated cuttings showed higher levels of TrbSAMS transcript than untreated control cuttings during root primordium and adventitious root formation. TrbSAMS and its downstream genes showed differential expression in shoots, leaves, bark, and roots, with the highest expression observed in bark. IBA-treated cuttings also showed higher SAMS activity than control cuttings during root primordium and adventitious root formation. These results indicate that TrbSAMS might play an important role in the regulation of IBA-induced adventitious root development in tetraploid black locust cuttings.

  10. Molecular Cloning, Characterization and Expression Analysis of the SAMS Gene during Adventitious Root Development in IBA-Induced Tetraploid Black Locust

    PubMed Central

    Quan, Jine; Zhang, Sheng; Zhang, Chunxia; Meng, Sen; Zhao, Zhong; Xu, Xuexuan

    2014-01-01

    S-Adenosylmethionine synthetase (SAMS) catalyzes the synthesis of S-adenosylmethionine (SAM), a precursor for ethylene and polyamine biosynthesis. Here, we report the isolation of the 1498 bp full-length cDNA sequence encoding tetraploid black locust (Robinia pseudoacacia L.) SAMS (TrbSAMS), which contains an open reading frame of 1179 bp encoding 392 amino acids. The amino acid sequence of TrbSAMS has more than 94% sequence identity to SAMSs from other plants, with a closer phylogenetic relationship to SAMSs from legumes than to SAMS from other plants. The TrbSAMS monomer consists of N-terminal, central, and C-terminal domains. Subcellular localization analysis revealed that the TrbSAMS protein localizes mainly to in the cell membrane and cytoplasm of onion epidermal cells and Arabidopsis mesophyll cell protoplasts. Indole-3-butyric acid (IBA)-treated cuttings showed higher levels of TrbSAMS transcript than untreated control cuttings during root primordium and adventitious root formation. TrbSAMS and its downstream genes showed differential expression in shoots, leaves, bark, and roots, with the highest expression observed in bark. IBA-treated cuttings also showed higher SAMS activity than control cuttings during root primordium and adventitious root formation. These results indicate that TrbSAMS might play an important role in the regulation of IBA-induced adventitious root development in tetraploid black locust cuttings. PMID:25285660

  11. Synthia Tonn, SAM Engineer

    NASA Image and Video Library

    The Sample Analysis at Mars (SAM) is a suite of instruments developed for use on the Mars Science Laboratory, designed to help find out whether or not Mars ever supported life. This video profiles ...

  12. Possible Detection of Perchlorates by the Sample Analysis at Mars (SAM) Instrument: Comparison with Previous Missions

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalex, Rafael; Sutter, Brad; Archer, Doug; Ming, Doug; Eigenbrode, Jennifer; Franz, Heather; Glavin, Daniel; McAdam, Amy; Stern, Jennifer; McKay, Christopher; Coll, Patrice; Cabane, Michel; Mahaffy, Paul; Conrad, Pamela; Martin-Torres, Francisco; Zorzano-Mier, Maria; Grotzinger, John

    2013-01-01

    The first chemical analysis of soluble salts in the soil was carried out by the Phoenix Lander in the Martian Arctic [1]. Surprisingly, chlorine was present as magnesium or calcium perchlorate at 0.4 to 0.6 percent. Additional support for the identification of perchlorate came from the evolved gas analysis which detected the release of molecular oxygen at 350-550C [1]. When Mars-like soils from the Atacama Desert were spiked with magnesium perchlorate (1 percent) and heated using the Viking GC-MS protocol, nearly all the organics were combusted but a small amount was chlorinated, forming chloromethane and dichloromethane [2]. These chlorohydrocarbons were detected by the Viking GC-MS experiments when the Martian soil was analyzed but they were considered to be terrestrial contaminants [3]. Reinterpretation of the Viking results suggests <0.1 percent perchlorate and ppm levels of organic carbon at landing site 1 and 2 [2]. The suggestion of perchlorate in the Viking sites [2] has been challenged on the grounds that the detected compounds (CH3Cl and CH2Cl2) were carried from Earth [4]. Recently the Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory (MSL) ran four samples from an aeolian bedform named Rocknest. The samples analyzed were portioned from the fifth scoop at this location. The samples were heated to 835C at 35C/min with a He flow. The SAM QMS detected a major oxygen release (300-500C) [5], coupled with the release of chlorinated hydrocarbons (chloromethane, dichloromethane, trichloromethane, and chloromethylpropene) detected both by SAM QMS and GC-MS derived from known Earth organic contaminants in the instrument [6]. Calcium perchlorate appears to be the best candidate for evolved O2 in the Rocknest samples at this time but other Cl species (e.g., chlorates) are possible and must be evaluated. The potential detection of perchlorates in Rocknest material adds weight to the argument that both Viking Landers measured signatures of

  13. In situ analysis of Mars soil and rocks samples with the SAM experiment: laboratory measurements supporting treatment and interpretation of the detection of organics

    NASA Astrophysics Data System (ADS)

    Millan, M.; Szopa, C.; Buch, A.; Glavin, D.; Freissinet, C.; Coll, P.; Cabane, M.; Mahaffy, P.

    2015-10-01

    The Sample Analysis at Mars (SAM) experiment onboard the Curiosity rover detected numerous organic compounds when analyzing the solid samples collected on the way to Mount Sharp. But MTBSTFA, the chemical reactant for the chemical treatment of the refractory molecules present in the solid samples and present in cups of SAM,was shown to be unfortunately present in the Sample Manipulation System(SMS). During the sample analysis, this chemical species reacts with the organic and inorganic molecules present in the samples. This reaction leads to the production and subsequent detection of numerous MTBSTFA derivatives which makes the treatment and the interpretation of the SAM data complex. Moreover, for the first time on Mars, the wet chemistry method was used on a Cumberland sample to help the GC separation and the MS identification of non volatile compounds. To ensure the identification of the organic molecules and try to discriminate organics generated internally to SAM from those present in the samples analyzed, it is mandatory to perform laboratory experimental calibrations under martian operating conditions.

  14. MetaSAMS--a novel software platform for taxonomic classification, functional annotation and comparative analysis of metagenome datasets.

    PubMed

    Zakrzewski, Martha; Bekel, Thomas; Ander, Christina; Pühler, Alfred; Rupp, Oliver; Stoye, Jens; Schlüter, Andreas; Goesmann, Alexander

    2013-08-20

    Metagenomics aims at exploring microbial communities concerning their composition and functioning. Application of high-throughput sequencing technologies for the analysis of environmental DNA-preparations can generate large sets of metagenome sequence data which have to be analyzed by means of bioinformatics tools to unveil the taxonomic composition of the analyzed community as well as the repertoire of genes and gene functions. A bioinformatics software platform is required that allows the automated taxonomic and functional analysis and interpretation of metagenome datasets without manual effort. To address current demands in metagenome data analyses, the novel platform MetaSAMS was developed. MetaSAMS automatically accomplishes the tasks necessary for analyzing the composition and functional repertoire of a given microbial community from metagenome sequence data by implementing two software pipelines: (i) the first pipeline consists of three different classifiers performing the taxonomic profiling of metagenome sequences and (ii) the second functional pipeline accomplishes region predictions on assembled contigs and assigns functional information to predicted coding sequences. Moreover, MetaSAMS provides tools for statistical and comparative analyses based on the taxonomic and functional annotations. The capabilities of MetaSAMS are demonstrated for two metagenome datasets obtained from a biogas-producing microbial community of a production-scale biogas plant. The MetaSAMS web interface is available at https://metasams.cebitec.uni-bielefeld.de. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Other Resources Related to SAM

    EPA Pesticide Factsheets

    Learn more about websites and information related to EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM), including key EPA collaborators, laboratories, and research centers.

  16. Evolved Gas Analyses of the Murray Formation in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Thompson, L. M.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 13 samples from Gale Crater. All SAM-evolved gas analyses have yielded a multitude of volatiles (e.g., H2O, SO2, H2S, CO2, CO, NO, O2, HCl) [1- 6]. The objectives of this work are to 1) Characterize recent evolved SO2, CO2, O2, and NO gas traces of the Murray formation mudstone, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results relative to understanding the geological history of Gale Crater.

  17. Investigating the Origin of Chlorohydrocarbons Detected by the Sample Analysis at Mars (SAM) Instrument at Rocknest

    NASA Technical Reports Server (NTRS)

    Glavin, D.; Archer, D.; Brunner, A.; Buch, A.; Cabane, M.; Coll, P.; Conrad, P.; Coscia, D.; Dworkin J.; Eigenbrode, J.; Freissinet, C.; Mahaffy, P.; Martin, M.; McKay, C.; Miller, K.; Ming, D.; Navarro-Gonzalez, R.; Steele, A.; Summons, R. E.; Sutter, B.; Szopa, C.; Teinturier, S.

    2013-01-01

    The search for organic compounds on Mars, including molecules of either abiotic or biological origin is one of the key goals of the Mars Science Laboratory (MSL) mission. Previously the Viking and Phoenix Lander missions searched for organic compounds, but did not find any definitive evidence of martian organic material in the soils. The Viking pyrolysis gas chromatography mass spectrometry (GCMS) instruments did not detect any organic compounds of martian or exogenous origin above a level of a few parts-per-billion (ppb) in the near surface regolith at either landing site [1]. Viking did detect chloromethane and dichloromethane at pmol levels (up to 40 ppb) after heating the soil samples up to 500 C (Table 1), although it was originally argued that the chlorohydrocarbons were derived from cleaning solvents used on the instrument hardware, and not from the soil samples themselves [1]. More recently, it was suggested that the chlorohydrocarbons detected by Viking may have been formed by oxidation of indigenous organic matter during pyrolysis of the soil in the presence of perchlorates [2]. Although it is unknown if the Viking soils contained perchlorates, Phoenix did reveal relatively high concentrations (0.6 wt%) of perchlorate salt in the icy regolith [3], therefore, it is possible that the chlorohydrocarbons detected by Viking were produced, at least partially, during the experiments [2,4]. The Sample Analysis at Mars (SAM) instrument suite on MSL analyzed the organic composition of the soil at Rocknest in Gale Crater using a combination of pyrolysis evolved gas analysis (EGA) and GCMS. One empty cup procedural blank followed by multiple EGA-GCMS analyses of the Rocknest soil were carried out. Here we will discuss the results from these SAM measurements at Rocknest and the steps taken to determine the source of the chlorohydrocarbons.

  18. Detection of Organic Constituents Including Chloromethylpropene in the Analyses of the ROCKNEST Drift by Sample Analysis at Mars (SAM)

    NASA Technical Reports Server (NTRS)

    Eigenbrode, J. L.; Glavin, D.; Coll, P.; Summons, R. E.; Mahaffy, P.; Archer, D.; Brunner, A.; Conrad, P.; Freissinet, C.; Martin, M.; hide

    2013-01-01

    key challenge in assessing the habitability of martian environments is the detection of organic matter - a requirement of all life as we know it. The Curiosity rover, which landed on August 6, 2012 in Gale Crater of Mars, includes the Sample Analysis at Mars (SAM) instrument suite capable of in situ analysis of gaseous organic components thermally evolved from sediment samples collected, sieved, and delivered by the MSL rover. On Sol 94, SAM received its first solid sample: scooped sediment from Rocknest that was sieved to <150 m particle size. Multiple 10-40 mg portions of the scoop #5 sample were delivered to SAM for analyses. Prior to their introduction, a blank (empty cup) analysis was performed. This blank served 1) to clean the analytical instrument of SAMinternal materials that accumulated in the gas processing system since integration into the rover, and 2) to characterize the background signatures of SAM. Both the blank and the Rocknest samples showed the presence of hydrocarbon components.

  19. \\tLaboratory Environmental Sample Disposal Information Document - Companion to Standardized Analytical Methods for Environmental Restoration Following Homeland Security Events (SAM) – Revision 5.0

    EPA Pesticide Factsheets

    Document is intended to provide general guidelines for use byEPA and EPA-contracted laboratories when disposing of samples and associated analytical waste following use of the analytical methods listed in SAM.

  20. Carbon and Sulfur Isotopic Composition of Yellowknife Bay Sediments: Measurements by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; Mahaffy, P. R.; Stern, J. C.; Eigenbrode, J. L.; Steele, A.; Ming, D. W.; McAdam, A. C.; Freissinet, C.; Glavin, D. P.; Archer, P. D.; Brunner, A. E.; Grotzinger,J. P.; Jones, J. H.; Leshin, L. A.; Miller, K.; Morris, R. V.; Navarro-Gonzalez, R.; Niles, P. B.; Owen, T. C.; Summons, R. E.; Sutter, B.; Webster, C. R.

    2014-01-01

    Since landing at Gale Crater in Au-gust 2012, the Sample Analysis at Mars (SAM) instru-ment suite on the Mars Science Laboratory (MSL) “Curiosity” rover has analyzed solid samples from the martian regolith in three locations, beginning with a scoop of aeolian deposits from the Rocknest (RN) sand shadow. Curiosity subsequently traveled to Yellowknife Bay, where SAM analyzed samples from two separate holes drilled into the Sheepbed Mudstone, designated John Klein (JK) and Cumberland (CB). Evolved gas analysis (EGA) of all samples revealed the presence of H2O as well as O-, C- and S-bearing phas-es, in most cases at abundances below the detection limit of the CheMin instrument. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases through examination of tem-peratures at which gases are evolved from solid sam-ples. In addition, the isotopic composition of these gas-es may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from the JK and CB mudstone samples as measured with SAM’s quadrupole mass spectrometer (QMS) and draw com-parisons to RN.

  1. SAM 2.1—A computer program for plotting and formatting surveying data for estimating peak discharges by the slope-area method

    USGS Publications Warehouse

    Hortness, J.E.

    2004-01-01

    The U.S. Geological Survey (USGS) measures discharge in streams using several methods. However, measurement of peak discharges is often impossible or impractical due to difficult access, inherent danger of making measurements during flood events, and timing often associated with flood events. Thus, many peak discharge values often are calculated after the fact by use of indirect methods. The most common indirect method for estimating peak dis- charges in streams is the slope-area method. This, like other indirect methods, requires measuring the flood profile through detailed surveys. Processing the survey data for efficient entry into computer streamflow models can be time demanding; SAM 2.1 is a program designed to expedite that process. The SAM 2.1 computer program is designed to be run in the field on a portable computer. The program processes digital surveying data obtained from an electronic surveying instrument during slope- area measurements. After all measurements have been completed, the program generates files to be input into the SAC (Slope-Area Computation program; Fulford, 1994) or HEC-RAS (Hydrologic Engineering Center-River Analysis System; Brunner, 2001) computer streamflow models so that an estimate of the peak discharge can be calculated.

  2. Structural analysis of loci involved in pSAM2 site-specific integration in Streptomyces.

    PubMed

    Boccard, F; Smokvina, T; Pernodet, J L; Friedmann, A; Guérineau, M

    1989-01-01

    pSAM2 is an 11-kb plasmid integrated in the Streptomyces ambofaciens ATCC23877 and ATCC15154 genomes and found additionally as a free replicon in an uv derivative. After transfer into S. ambofaciens DSM40697 (devoid of pSAM2) or into Streptomyces lividans, specific integration of pSAM2 occurred very efficiently. A 58-bp sequence (att) present in both pSAM2 (attP) and S. ambofaciens strain DSM40697 (attB) attachment regions is found at the boundaries (attL and attR) of integrated pSAM2 in S. ambofaciens strain ATCC23877. The S. lividans chromosomal integration zone contained an imperfectly conserved att sequence (attB), and the integration event of pSAM2 was located within a 49-bp sequence of attB. Only one primary functional attB sequence was present in the S. lividans or S. ambofaciens DSM40697 total DNA. The integration zone of S. lividans hybridized with the integration zone of S. ambofaciens DSM40697. The two integration zones were homologous only to the right side of the att sequence. The conserved region contained an open reading frame (ORF A) with a stop codon located 99 bp from the attB sequence in both strains. S. ambofaciens DSM40697 contained DNA sequences related to pSAM2 on the left side of the att site. The att sequence was included in a region conserved in Streptomyces antibioticus, Streptomyces actuosus, Streptomyces bikiniensis, Streptomyces coelicolor, Streptomyces glaucescens, and Streptomyces parvulus. Site-specific integration of a pSAM2 derivative was characterized in another unrelated strain, Streptomyces griseofuscus. This strain contained an imperfectly conserved 58-bp attB sequence, and the integration event took place within a 45-bp sequence of attB. Site-specific integration of pSAM2 in three nonrelated Streptomyces strains suggests the wide host range of pSAM2 integration in Streptomyces.

  3. The Search for Nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, Rafael; Stern, Jennifer C.; Freissinet, Caroline; McKay, Chirstopher P.; Sutter, Brad; Archer, P. Douglas, Jr.; McAdam, Amy; Franz, Heather; Coll, Partice J.; Glavin, Daniel Patrick; Eigenbrode, Jennifer L.; Wong, Mike; Atreya, Sushiil K.; Wray, James J.; Steele, Andrew; Prats, Benito D.; Szopa, Cyril; Coscia, David; Teinturier, Samuel; Buch, Arnaud; Leshin, Laurie A.; Ming, Douglas W.; Conrad, Pamela Gales; Cabane, Michel; Mahaffy, Paul R.; Grotzinger, John P.

    2013-01-01

    Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as N2 but it was lost by sputtering and photochemical loss to space, impact erosion, and chemical oxidation to nitrates. A nitrogen cycle may exist on Mars where nitrates, produced early in Mars' history, may have been later decomposed back into N2 by the current impact flux. Nitrates are a fundamental source of nitrogen for terrestrial microorganisms, and they have evolved metabolic pathways to perform both oxidation and reduction to drive a complete biological nitrogen cycle. Therefore, the characterization of nitrogen in Martian soils is important to assess habitability of the Martian environment, particularly with respect to the presence of nitrates. The only previous mission that was designed to search for soil nitrates was the Phoenix mission but N-containing species were not detected by TEGA or the MECA WCL. Nitrates have been tentatively identified in Nakhla meteorites, and if nitrogen was oxidized on Mars, this has important implications for the habitability potential of Mars. Here we report the results from the Sample Analysis at Mars (SAM) instrument suite aboard the Curiosity rover during the first year of surface operations in Gale Crater. Samples from the Rocknest aeolian deposit and sedimentary rocks (John Klein) were heated to approx 835degC under helium flow and the evolved gases were analyzed by MS and GC-MS. Two and possibly three peaks may be associated with the release of m/z 30 at temperatures ranging from 180degC to 500degC. M/z 30 has been tentatively identified as NO; other plausible contributions include CH2O and an isotopologue of CO, 12C18O. NO, CH2O, and CO may be reaction products of reagents (MTBSTFA/DMF) carried from Earth for the wet chemical derivatization experiments with SAM and/or derived from indigenous soil nitrogenated organics. Laboratory analyses indicate that it is also possible that <550degC evolved NO is produced via reaction of HCl with

  4. Sulphur-bearing Compounds Detected by MSL SAM Evolved Gas Analysis of Materials from Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Franz, H. B.; Archer, P. D. Jr.; Sutter, B.; Eigenbrode, J. L.; Freissinet, C.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Brunner, A.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of sample fines (<150 µm) from three sites in Yellowknife Bay, an aeolian bedform termed Rocknest (hereafter "RN") and two samples drilled from the Sheepbed mudstone at sites named John Klein ("JK") and Cumberland ("CB"). SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, OCS, CS2 and other trace gases. The identity of evolved gases and temperature (T) of evolution can support mineral detection by CheMin and place constraints on trace volatile-bearing phases present below the CheMin detection limit or difficult to characterize with XRD (e.g., X-ray amorphous phases). Here, we focus on potential constraints on phases that evolved SO2, H2S, OCS, and CS2 during thermal analysis.

  5. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, P. Douglas, Jr.; Buch, Arnaud; Coll, Patrice; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.; hide

    2014-01-01

    The Sampl;e Analysis at Mars (sam) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen bearing compounds during the pyrolysis of surface materials from the three sites at Gale Crater. Preliminary detections of nitrogen species include No, HCN, ClCN, and TFMA ((trifluoro-N-methyl-acetamide), Confirmation of indigenous Martian nitrogen-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate a compound that has also been identified by SAM in Mars solid samples.

  6. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Navarro-Gonzales, R.; Freissinet, C.; McKay, C. P.; Archer, P. D., Jr.; Buch, A.; Brunner, A. E.; Coll, P.; Eigenbrode, J. L.; Franz, H. B.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials at Yellowknife Bay in Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). Confirmation of indigenous Martian N-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents (e.g. N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples.

  7. Distributed processing and analysis of physics data in the D0 SAM system at Fermilab

    SciTech Connect

    Igor V. Terekhov

    2001-08-30

    SAM (Sequential Access through Meta-data) is the data access system for the D0 high energy physics (HEP) experiment at Fermilab. The system is being developed and used to handle the Petabyte-scale experiment data. The D0 applications, like virtually all HEP applications, are data-intensive, which poses special problems for the data management and job control facilities in the distributed environment. The fundamental problem is to bring the user applications and the data together, and SAM attacks the problems from both sides. First, we describe how the system moves the data through the distributed disk cache. Second, we describe how SAM interacts with the batch system to synchronize parallel user jobs with the data availability. All the design solutions herein have been implemented in a real system that handles the mission-critical data of the D0 experiment; thus, we present our work from the standpoint of real experience.

  8. Detection of Reduced Nitrogen Compounds at Rocknest Using the Sample Analysis At Mars (SAM) Instrument on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.; Mahaffy, P. R.; McAdam, A. C.; McKay, C.; Wray, J.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.

  9. Thermal and Evolved Gas Analysis of Calcite Under Reduced Operating Pressures: Implications for the 2011 MSL Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Lauer, H. V. Jr.; Ming, D. W.; Sutter, B.; Mahaffy, P. R.

    2010-01-01

    The Mars Science Laboratory (MSL) is scheduled for launch in 2011. The science objectives for MSL are to assess the past or present biological potential, to characterize the geology, and to investigate other planetary processes that influence habitability at the landing site. The Sample Analysis at Mars (SAM) is a key instrument on the MSL payload that will explore the potential habitability at the landing site [1]. In addition to searching for organic compounds, SAM will have the capability to characterized evolved gases as a function of increasing temperature and provide information on the mineralogy of volatile-bearing phases such as carbonates, sulfates, phyllosilicates, and Fe-oxyhydroxides. The operating conditions in SAM ovens will be maintained at 30 mb pressure with a He carrier gas flowing at 1 sccm. We have previously characterized the thermal and evolved gas behaviors of volatile-bearing species under reduced pressure conditions that simulated operating conditions of the Thermal and Evolved Gas Analyzer (TEGA) that was onboard the 2007 Mars Phoenix Scout Mission [e.g., 2-8]. TEGA ovens operated at 12 mb pressure with a N2 carrier gas flowing at 0.04 sccm. Another key difference between SAM and TEGA is that TEGA was able to perform differential scanning calorimetry whereas SAM only has a pyrolysis oven. The operating conditions for TEGA and SAM have several key parameter differences including operating pressure (12 vs 30 mb), carrier gas (N2 vs. He), and carrier gas flow rate (0.04 vs 1 sccm). The objectives of this study are to characterize the thermal and evolved gas analysis of calcite under SAM operating conditions and then compare it to calcite thermal and evolved gas analysis under TEGA operating conditions.

  10. In situ Analysis of Organic Matter in Martian Soil: Laboratory Measurements Under Martian Operating Conditions Supporting Treatment and Interpretation of SAM GC-MS Data

    NASA Astrophysics Data System (ADS)

    Millan, M.; Szopa, C.; Coll, P.; Buch, A.; Cabane, M.; Coscia, D.; Glavin, D. P.; Freissinet, C.

    2014-07-01

    This work presents laboratory measurements under martian operating conditions in comparison with the SAM GC-MS data provided by the Curiosity rover. Their treatment and interpretation supports the in situ analysis of organic matter on Mars.

  11. Gas-chromatographic analysis of Mars soil samples at Rocknest site with the SAM instrument onboard Curiosity

    NASA Astrophysics Data System (ADS)

    Cabane, Michel; Coll, Patrice; Szopa, Cyril; Coscia, David; Buch, Aranaud; Teinturier, Samuel; Navarro-gonzalez, Rafael; Gaboriaud, Alain; Mahaffy, Paul; MSL science Team

    2013-04-01

    Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal/chemical treatment of any soil sample collected by the Curiosity rover. The first soil samples analyzed with SAM were composed of sand collected at the Rocknest site. For their analysis, these samples were submitted to a pyrolysis at temperatures reaching about 900°C. For SAM-GC and GCMS analyses, different fractions of pyrolysates were collected at different temperature in the ambient-900°C range in order to discriminate potential different volatile fractions present in the solid sample. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was used as it was designed for the separation of a wide range of volatile organic molecules. This channel is also equipped with a thermal conductivity detector (TCD) capable to detect the most abundant species (with abundances down to approximately 10-10 mol). It is thus complementary to the mass spectrometer detection for quantification of such species as this last instrument has not a linear response in this domain of high abundance, whereas it is significantly more sensitive than the TCD. The results obtained with this instrument for the analysis of Rocknest soil first show that the performances of SAM-GC are representative of those obtained during calibrations of the instrument in laboratory, as well as they are repeatable. Hence, the instrument performs nominally, making it the first GCMS running successfully on Mars since the Viking missions. Moreover, the complementarity of GC towards MS is also shown, either by allowing the quantification of the major species detected (as water), or by providing a chromatographic signal well resolved temporally which can be used to improve the QMS signal treatment. In the frame of research of organics, the SAM

  12. Sam's progress with learning mathematics.

    PubMed

    Haslam, Lynne

    2007-07-01

    Sam is 18 years old and has Down syndrome. He achieved a grade in the standard assessment of mathematics (GCSE) at 16 years of age. This paper describes the part played in his success in school by the Kumon method of teaching mathematics, identifies the benefits of the small steps and lots of practice built in to the method and illustrates the way Sam applied his Kumon learning in school.

  13. Development of SAMS: A sensitivity analysis module for the SCALE code system using KENO V.a in the CSAS25 sequence

    NASA Astrophysics Data System (ADS)

    Rearden, Bradley Thomas

    The SAMS module has been developed to calculate the relative change in the value of keff due to a change in a constituent component or cross section. The SAMS module works in conjunction with a modified version of the CSAS25 sequence of SCALE that employs an enhanced version of KENO V.a, which is capable of calculating the spherical harmonics components of the flux moments. The SAMS module performs sensitivity calculations using linear perturbation theory as implemented in the FORSS system and requires the calculation of the forward and adjoint flux moments with the enhanced version of KENO V.a. SAMS automatically selects all of the sensitivity parameters that can be calculated for each nuclide in each region of the system based on available cross section data. Sensitivity parameters for a given nuclide may be generated for a number of parameters, including total, scatter, capture, and fission cross sections, as well as n¯ and c . The sensitivities for any nuclide-reaction pair calculated with SAMS can be output on three bases: group-wise region dependent, energy integrated region dependent, and energy and region integrated. This gives the user the ability to interpret the sensitivities with varying levels of detail. SAMS produces sensitivities in a number of convenient formats for further analysis. The SAMSPLOT program was specifically developed to visually display plots of energy dependent sensitivities including their associated Monte Carlo uncertainties. The sensitivities generated with SAMS have been verified through comparisons with those generated with the SEN1 and SEN2 sensitivity sequences in SCALE as well as through comparisons to direct calculations. SAMS is capable of producing accurate sensitivities provided the KENO V.a regions have been appropriately subdivided to allow for sufficient resolution of the flux moments throughout the problem geometry.

  14. The Investigation of Perchlorate/Iron Phase Mixtures as A Possible Source of Oxygen Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Heil, E.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Freissinet C.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P.; Martin-Torres, F. Javier; Navarro-Gonzalez, R.; Paz-Zorzano, Maria; Stern, J. C.; McKay, C. P.

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory suggested perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of pure perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Analog laboratory analysis of iron mineralogy detected in Gale materials that was physically mixed with Ca- and Mg-perchlorate has been shown to catalyze lower O2 release temperatures and approach some SAM O2 release data. Instead of physical mixtures used in previous work, the work presented here utilized perchlorate solutions added to Fe phases. This technique allowed for perchlorate to come in closer contact with the Fe-phase and may more closely mimic Mars conditions where humidity can increase enough to cause deliquescence of the highly hygroscopic perchlorate phases. The objective of this work is to: 1) Utilize a laboratory SAM analog instrument to evaluate the O2 release temperatures from Mg- and Ca-perchlorates solutions applied to Fephases detetected in Gale Crate; and 2) Determine if perchlorate solutions can provide improved matches with the SAM O2 temperature release profiles.

  15. Structure of the chromosomal insertion site for pSAM2: functional analysis in Escherichia coli.

    PubMed

    Raynal, A; Tuphile, K; Gerbaud, C; Luther, T; Guérineau, M; Pernodet, J L

    1998-04-01

    The element pSAM2 from Streptomyces ambofaciens integrates into the chromosome through site-specific recombination between the element (attP) and the chromosomal (attB) sites. These regions share an identity segment of 58bp extending from the anti-codon loop through the 3' end of a tRNA(Pro) gene. To facilitate the study of the attB site, the int and xis genes, expressed from an inducible promoter, and attP from pSAM2 were cloned on plasmids in Escherichia coil. Compatible plasmids carrying the different attB regions to be tested were introduced in these E. coli strains. Under these conditions, Int alone could promote site-specific integration; Int and Xis were both required for site-specific excision. This experimental system was used to study the sequences required in attB for efficient site-specific recombination. A 26 bp sequence, centred on the anti-codon loop region and not completely included in the identity segment, retained all the functionality of attB; shorter sequences allowed integration with lower efficiencies. By comparing the 26-bp-long attB with attP, according to the Lambda model, we propose that B and B', C and C' core-type Int binding sites consist of 9 bp imperfect inverted repeats separated by a 5 bp overlap region.

  16. Isotopic Composition of Carbon Dioxide Released from Confidence Hills Sediment as Measured by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; Mahaffy, P. R.; Stern, J.; Archer, P., Jr.; Conrad, P.; Eigenbrode, J.; Freissinet, C.; Glavin, D.; Grotzinger, J. P.; Jones, J.; hide

    2015-01-01

    In October 2014, the Mars Science Laboratory (MSL) "Curiosity" rover drilled into the sediment at the base of Mount Sharp in a location namsed Cionfidence Hills (CH). CH marked the fifth sample pocessed by the Sample Analysis at Mars (SAM) instrument suite since Curiosity arrived in Gale Crater, with previous analyses performed at Rocknest (RN), John Klein (JK), Cumberland (CB), and Windjana (WJ). Evolved gas analysis (EGA) of all samples has indicated H2O as well as O-, C- and S-bearing phases in the samples, often at abundances that would be below the detection limit of the CheMin instrument. By examining the temperatures at which gases are evolved from samples, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases when their identities are unclear to CheMin. SAM may also detect gases evolved from amorphous material in solid samples, which is not suitable for analysis by CheMin. Finally, the isotopic composition of these gases may suggest possible formation scenarios and relationships between phases. We will discuss C isotope ratios of CO2 evolved from the CH sample as measured with SAM's quadrupole mass spectrometer (QMS) and draw comparisons to samples previously analyzed by SAM.

  17. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM) Like Instrument Protocols

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-01-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from approx 10(exp 2) to 10(exp 7) cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500 C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20 C followed by trap heating and analysis by GC/Ms. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The distribution of pyrolysis products extracted from the

  18. The Detection of Evolved Oxygen from the Rocknest Eolian Bedform Material by the Sample Analysis at Mars(SAM) instrument at the Mars Curiosity Landing Site

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D.; Ming, D.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A.; Mahaffy, P.; Stern, J.; Navarro-Gonzalex, R.; McKay, C.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected an O2 gas release from the Rocknest eolain bedform (Fig. 1). The detection of perchlorate (ClO4-) by the Mars Phoenix Lander s Wet Chemistry Laboratory (WCL) [1] suggests that perchlorate is a possible candidate for evolved O2 release detected by SAM. The perchlorate would also serve as a source of chlorine in the chlorinated hydrocarbons detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [2,3]. Chlorates (ClO3-) [4,5] and/or superoxides [6] may also be sources of evolved O2 from the Rocknest materials. The work objectives are to 1) evaluate the O2 release temperatures from Rocknest materials, 2) compare these O2 release temperatures with a series of perchlorates and chlorates, and 3) evaluate superoxide O2- sources and possible perchlorate interactions with other Rocknest phases during QMS analysis.

  19. Basic Information for EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM)

    EPA Pesticide Factsheets

    Contains basic information on the role and origins of the Selected Analytical Methods including the formation of the Homeland Security Laboratory Capacity Work Group and the Environmental Evaluation Analytical Process Roadmap for Homeland Security Events

  20. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM)-like Instrument Protocols

    NASA Astrophysics Data System (ADS)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-12-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB [Popa et al. 2012]. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry [Mahaffy et al. 2012]. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from ~102 to 107 cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500°C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20°C followed by trap heating and analysis by GC/MS. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis [Stalport et al. 2012]. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The

  1. Mesospheric effects of solar ultraviolet variations - Further analysis of SME IR ozone and Nimbus 7 SAMS temperature data

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Huang, Z.; Bougher, S. W.

    1991-01-01

    In order to improve the constraints on models of the mesospheric response to solar UV variations, an analysis is conducted of the Solar Mesosphere Explorer (SME) IR ozone data and Nimbus 7 stratosphere and mesosphere sounder (SAMS) temperature data. Maximum low-altitude ozone and temperature-response amplitudes occur at about the same altitude, where a strong coupling between photochemical and thermal components of the mesospheric response is suggested by the simultaneous positive temperature and negative ozone response maxima. Increased Lyman-alpha dissociation of water vapor and temperature feedback are theorized to account for the negative ozone response. HO(x) chemical heating can increase as ozone destruction increases, and can therefore account for the positive temperature response.

  2. Mesospheric effects of solar ultraviolet variations - Further analysis of SME IR ozone and Nimbus 7 SAMS temperature data

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Huang, Z.; Bougher, S. W.

    1991-01-01

    In order to improve the constraints on models of the mesospheric response to solar UV variations, an analysis is conducted of the Solar Mesosphere Explorer (SME) IR ozone data and Nimbus 7 stratosphere and mesosphere sounder (SAMS) temperature data. Maximum low-altitude ozone and temperature-response amplitudes occur at about the same altitude, where a strong coupling between photochemical and thermal components of the mesospheric response is suggested by the simultaneous positive temperature and negative ozone response maxima. Increased Lyman-alpha dissociation of water vapor and temperature feedback are theorized to account for the negative ozone response. HO(x) chemical heating can increase as ozone destruction increases, and can therefore account for the positive temperature response.

  3. Possible Detection of Nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Stern, J.; Sutter, B.; Archer, D.; McAdam, A.; Franz, H. B.; McKay, C. P.; Coll, P.; Cabane, M.; Ming, D. W.; Brunner, A. E.; Glavin, D.; Eigenbrode, J. L.; Jones, J. H.; Freissinet, C.; Leshin, L.; Wong, M.; Atreya, S.; Wray, J. J.; Steele, A.; Buch, A.; Prats, B. D.; Szopa, C.; Conrad, P.; Mahaffy, P.

    2013-01-01

    Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as dinitrogen (N2). However, it has been lost by sputtering and photochemical loss to space [1, 2], impact erosion [3], and chemical oxidation to nitrates [4]. Nitrates, produced early in Mars history, are later decomposed back into N2 by the current impact flux [5], making possible a nitrogen cycle on Mars. It is estimated that a layer of about 3 m of pure NaNO3 should be distributed globally on Mars [5]. Nitrates are a fundamental source for nitrogen to terrestrial microorganisms. Therefore, the detection of soil nitrates is important to assess habitability in the Martian environment. The only previous mission that was designed to search for soil nitrates was the Phoenix mission but was unable to detect evolved N-containing species by TEGA and the MECA WCL [6]. Nitrates have been tentatively identified in the Nakhla meteorite [7]. The purpose of this work is to determine if nitrates were detected in first solid sample (Rocknest) in Gale Crater examined by the SAM instrument.

  4. Analysis of the interactions between host factor Sam68 and viral elements during foot-and-mouth disease virus infection

    USDA-ARS?s Scientific Manuscript database

    The nuclear protein Src-associated protein of 68 kDa in mitosis (Sam68) is known to bind RNA and be involved in cellular processes triggered in response to environmental stresses, including virus infection. Interestingly, Sam68, is a multi-functional protein implicated in the life cycle of retroviru...

  5. Sam's Progress with Learning Mathematics

    ERIC Educational Resources Information Center

    Haslam, Lynne

    2007-01-01

    Sam is 18 years old and has Down syndrome. He achieved a grade in the standard assessment of mathematics (GCSE) at 16 years of age. This paper describes the part played in his success in school by the Kumon method of teaching mathematics, identifies the benefits of the small steps and lots of practice built in to the method and illustrates the…

  6. SAM-like Evolved Gas Analysis of Mars Analog Samples from the Arctic Mars Analog Svalbard Expedition: Implications for Analyses by the Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Stern, J. C.; Mahaffy, P. R.; Blake, D. F.; Morris, R. V.; Ming, D. W.; Bristow, T.; Steele, A.; Amundsen, H.

    2012-12-01

    The Arctic Mars Analog Svalbard Expeditions (AMASE) have investigated a range of geologic settings on Svalbard, using methodologies and techniques being developed for Mars missions, such as the Mars Science Laboratory (MSL). The Sample Analysis at Mars (SAM) instrument suite on MSL consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS), which analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-QMS) system represented the EGA-QMS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during AMASE. Here we discuss the SAM-like EGA-QMS analyses of a selected subset of samples acquired during several field seasons, together with AMASE CheMin team results. The results enable insight into organic content, organic-mineral associations, and mineralogy. Organic materials evolved from all samples over a range of temperatures. In general, this can indicate that the organics have a range of thermal maturity and/or are bound in different ways to their matrix. Most often, organics that were outside of mineral grains were the dominant pool of organic material inferable from the EGA-QMS, but organics encapsulated within mineral grains, including possibly methane, were also inferred. Organic-mineral associations can influence organic preservation potential and detection. Constraints on these associations, and overall sample organic chemistry, enabled by our SAM-like EGA-QMS analog analyses demonstrate the potential to understand the organic chemical characteristics in materials sampled by MSL, even when utilizing EGA-QMS, the simplest type of solid sample experiment SAM will perform. Any organic chemical information inferred from EGA-QMS analysis could then also be followed by detailed SAM EGA

  7. Microbial Habitability in Gale Crater: Sample Analysis at Mars (SAM) Instrument Detection of Microbial Essential Carbon and Nitrogen

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Eigenbrode, J. E.; Steele, A.; Stern, J. C.; Gonzalez, R. N.; McAdam, A. C.; Mahaffy, P. R.

    2016-01-01

    Chemical analyses of Mars soils and sediments from previous landed missions have demonstrated that Mars surface materials possessed major (e.g., P, K, Ca, Mg, S) and minor (e.g., Fe, Mn, Zn, Ni, Cl) elements essential to support microbial life. However, the detection of microbial essential organic-carbon (C) and nitrate have been more elusive until the Mars Science Laboratory (MSL) rover mission. Nitrate and organic-C in Gale Crater, Mars have been detected by the Sample Analysis at Mars (SAM) instrument onboard the MSL Curiosity rover. Eolian fines and drilled sedimentary rock samples were heated in the SAM oven from approximately 30 to 860 degrees Centigrade where evolved gases (e.g., nitrous oxide (NO) and CO2) were released and analyzed by SAM’s quadrupole mass spectrometer (MS). The temperatures of evolved NO was assigned to nitrate while evolved CO2 was assigned to organic-C and carbonate. The CO2 releases in several samples occurred below 450 degrees Centigrade suggesting organic-C dominated in those samples. As much as 7 micromoles NO3-N per gram and 200 micromoles CO2-C per gram have been detected in the Gale Crater materials. These N and C levels coupled with assumed microbial biomass (9 x 10 (sup -7) micrograms per cell) C (0.5 micrograms C per micrograms cell) and N (0.14 micrograms N per micrograms cell) requirements, suggests that less than 1 percent and less than 10 percent of Gale Crater C and N, respectively, would be required if available, to accommodate biomass requirements of 1 by 10 (sup 5) cells per gram sediment. While nitrogen is the limiting nutrient, the potential exists that sufficient N and organic-C were present to support limited heterotrophic microbial populations that may have existed on ancient Mars.

  8. A nano-patterned self assembled monolayer (SAM) rutile titania cancer chip for rapid, low cost, highly sensitive, direct cancer analysis in MALDI-MS.

    PubMed

    Manikandan, M; Gopal, Judy; Hasan, Nazim; Wu, Hui-Fen

    2014-12-01

    We developed a cancer chip by nano-patterning a highly sensitive SAM titanium surface capable of capturing and sensing concentrations as low as 10 cancer cells/mL from the environment by Matrix Assisted Laser Desorption and Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS). The current approach evades any form of pretreatment and sample preparation processes; it is time saving and does not require the (expensive) conventional MALDI target plate. The home made aluminium (Al) target holder cost, on which we loaded the cancer chips for MALDI-TOF MS analysis, is about 60 USD. While the conventional stainless steel MALDI target plate is more than 700 USD. The SAM surface was an effective platform leading to on-chip direct MALDI-MS detection of cancer cells. We compared the functionality of this chip with the unmodified titanium surfaces and thermally oxidized (TO) titanium surfaces. The lowest detectable concentration of the TO chip was 10(3) cells/mL, while the lowest detectable concentration of the control or unmodified titanium chips was 10(6) cells/mL. Compared to the control surface, the SAM cancer chip showed 100,000 times of enhanced sensitivity and compared with the TO chip, 1000 times of increased sensitivity. The high sensitivity of the SAM surfaces is attributed to the presence of the rutile SAM, surface roughness and surface wettability as confirmed by AFM, XRD, contact angle microscope and FE-SEM. This study opens a new avenue for the potent application of the SAM cancer chip for direct cancer diagnosis by MALDI-TOF MS in the near future. Copyright © 2014. Published by Elsevier B.V.

  9. Multiple polymer architectures of human Polyhomeotic homolog 3 (PHC3) SAM

    PubMed Central

    Nanyes, David R.; Junco, Sarah E.; Taylor, Alexander B.; Robinson, Angela K.; Patterson, Nicolle L.; Shivarajpur, Ambika; Halloran, Jonathan; Hale, Seth M.; Kaur, Yogeet; Hart, P. John; Kim, Chongwoo A.

    2014-01-01

    The self-association of sterile alpha motifs (SAMs) into a helical polymer architecture is a critical functional component of many different and diverse array of proteins. For the Drosophila Polycomb group (PcG) protein Polyhomeotic (Ph), its SAM polymerization serves as the structural foundation to cluster multiple PcG complexes, helping to maintain a silenced chromatin state. Ph SAM shares 64% sequence identity with its human ortholog, PHC3 SAM, and both SAMs polymerize. However, in the context of their larger protein regions, PHC3 SAM forms longer polymers compared to Ph SAM. Motivated to establish the precise structural basis for the differences, if any, between Ph and PHC3 SAM, we determined the crystal structure of the PHC3 SAM polymer. PHC3 SAM utilizes the same SAM-SAM interaction as the Ph SAM six-fold repeat polymer. Yet, PHC3 SAM polymerizes utilizing just five SAMs per turn of the helical polymer rather than the typical six per turn observed for all SAM polymers reported to date. Structural analysis suggested that malleability of the PHC3 SAM would allow formation of not just the five-fold repeat structure but possibly others. Indeed, a second PHC3 SAM polymer in a different crystal form forms a six-fold repeat polymer. These results suggest that the polymers formed by PHC3 SAM, and likely others, are quite dynamic. The functional consequence of the variable PHC3 SAM polymers may be to create different chromatin architectures. PMID:25044168

  10. Curiosity's Sample Analysis at Mars (SAM) Investigation: Overview of Results from the First 120 Sols on Mars

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.; Archer, P. D.; Atreya, S. K.; Benna, M.; Brinckerhoff, W. B.; Brunner, A. E.; Buch, A.; Coll, P.; hide

    2013-01-01

    During the first 120 sols of Curiosity s landed mission on Mars (8/6/2012 to 12/7/2012) SAM sampled the atmosphere 9 times and an eolian bedform named Rocknest 4 times. The atmospheric experiments utilized SAM s quadrupole mass spectrometer (QMS) and tunable laser spectrometer (TLS) while the solid sample experiments also utilized the gas chromatograph (GC). Although a number of core experiments were pre-programmed and stored in EEProm, a high level SAM scripting language enabled the team to optimize experiments based on prior runs.

  11. Structural basis for diversity in the SAM clan of riboswitches.

    PubMed

    Trausch, Jeremiah J; Xu, Zhenjiang; Edwards, Andrea L; Reyes, Francis E; Ross, Phillip E; Knight, Rob; Batey, Robert T

    2014-05-06

    In bacteria, sulfur metabolism is regulated in part by seven known families of riboswitches that bind S-adenosyl-l-methionine (SAM). Direct binding of SAM to these mRNA regulatory elements governs a downstream secondary structural switch that communicates with the transcriptional and/or translational expression machinery. The most widely distributed SAM-binding riboswitches belong to the SAM clan, comprising three families that share a common SAM-binding core but differ radically in their peripheral architecture. Although the structure of the SAM-I member of this clan has been extensively studied, how the alternative peripheral architecture of the other families supports the common SAM-binding core remains unknown. We have therefore solved the X-ray structure of a member of the SAM-I/IV family containing the alternative "PK-2" subdomain shared with the SAM-IV family. This structure reveals that this subdomain forms extensive interactions with the helix housing the SAM-binding pocket, including a highly unusual mode of helix packing in which two helices pack in a perpendicular fashion. Biochemical and genetic analysis of this RNA reveals that SAM binding induces many of these interactions, including stabilization of a pseudoknot that is part of the regulatory switch. Despite strong structural similarity between the cores of SAM-I and SAM-I/IV members, a phylogenetic analysis of sequences does not indicate that they derive from a common ancestor.

  12. Structural basis for diversity in the SAM clan of riboswitches

    PubMed Central

    Trausch, Jeremiah J.; Xu, Zhenjiang; Edwards, Andrea L.; Reyes, Francis E.; Ross, Phillip E.; Knight, Rob; Batey, Robert T.

    2014-01-01

    In bacteria, sulfur metabolism is regulated in part by seven known families of riboswitches that bind S-adenosyl-l-methionine (SAM). Direct binding of SAM to these mRNA regulatory elements governs a downstream secondary structural switch that communicates with the transcriptional and/or translational expression machinery. The most widely distributed SAM-binding riboswitches belong to the SAM clan, comprising three families that share a common SAM-binding core but differ radically in their peripheral architecture. Although the structure of the SAM-I member of this clan has been extensively studied, how the alternative peripheral architecture of the other families supports the common SAM-binding core remains unknown. We have therefore solved the X-ray structure of a member of the SAM-I/IV family containing the alternative “PK-2” subdomain shared with the SAM-IV family. This structure reveals that this subdomain forms extensive interactions with the helix housing the SAM-binding pocket, including a highly unusual mode of helix packing in which two helices pack in a perpendicular fashion. Biochemical and genetic analysis of this RNA reveals that SAM binding induces many of these interactions, including stabilization of a pseudoknot that is part of the regulatory switch. Despite strong structural similarity between the cores of SAM-I and SAM-I/IV members, a phylogenetic analysis of sequences does not indicate that they derive from a common ancestor. PMID:24753586

  13. The Investigation of Chlorates as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D. P.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P; Stern, J. C.; Navarro-Gonzalez, R.; McKay, C. .P.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detect-ed O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander’s Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Iron mineralogy found in the Rocknest materials when mixed with Ca-perchlorate does cause O2 release temperatures to be closer match to the SAM O2 release data but more work is required in evaluating the catalytic effects of Fe mineralogy on perchlorate decomposition. Chlorates (ClO3-) are relevant Mars materials and potential O2 and Cl sources. The objective of this work is to evaluate the thermal decomposition of select chlorate (ClO3-) salts as possible sources of the O2 and HCl releases in the Gale Crater materials.

  14. Search for nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    NASA Astrophysics Data System (ADS)

    Navarro-Gonzalez, Rafael

    One of the main goals of the Mars Science Laboratory is to determine whether the planet ever had environmental conditions capable of supporting microbial life. Nitrogen is a fundamental element for life, and is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) bio-molecules. Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as dinitrogen (N _{2}). However, a fraction of N _{2} has been lost to space by sputtering and photochemical processes [1, 2], impact erosion [3], and chemical oxidation to nitrates [4, 5]. Nitrates produced early in Mars’ history by photochemistry may later decompose back into N _{2} by the current impact flux [6]. It is estimated that the Martian surface could contain soil nitrates at levels of 0.3 wt.% N, if mixed homogenously [6], or a layer of pure NaNO _{3} of about 3 m thickness [5] distributed globally. Nitrates are a fundamental source for nitrogen for terrestrial microorganisms. Therefore, the detection of soil nitrates is important to assess habitability in the Martian environment. The only previous attempt to search for soil nitrates was by TEGA and the MECA WCL on the Phoenix mission but no evolved N-containing species were detected [7]. Nitrates have been tentatively identified in two Martian meteorites: Nakhla [8] and EETA79001 [9]. SAM is capable of detecting nitrates by their thermal decomposition into nitric oxide, NO. SAM analyzed samples from Rocknest soil and two drill holes located at John Klein (JK) and Cumberland (CB) mudstones in the Sheepbed member of the Yellowknife Bay formation in Gale Crater. There appear to be several peaks associated with the release of m/z 30 in the temperature range from 150(°) °C to 600(°) °C. M/z 30 can be attributed to nitric oxide; however, other possible chemical interferences may be present, such as ethane (C _{2}H _{6}), formaldehyde (HCHO), diazene (N

  15. Search for nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    NASA Astrophysics Data System (ADS)

    Navarro-Gonzalez, Rafael; Stern, Jennifer; Freissinet, Caroline; Franz, Heather; McKay, Christopher; Coll, Patrice; Sutter, Brad; Archer, Doug; McAdam, Amy; Cabane, Michel; Ming, Douglas; Glavin, Daniel; Eigenbrode, Jennifer; Leshin, Laurie; Wong, Michael; Atreya, Sushil; Wray, James; Steele, Andrew; Buch, Arnaud; Prats, Benito

    2014-05-01

    One of the main goals of the Mars Science Laboratory is to determine whether the planet ever had environmental conditions capable of supporting microbial life. Nitrogen is a fundamental element for life, and is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) bio-molecules. Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as dinitrogen (N2). However, a fraction of N2 has been lost to space by sputtering and photochemical processes [1, 2], impact erosion [3], and chemical oxidation to nitrates [4, 5]. Nitrates produced early in Mars' history by photochemistry may later decompose back into N2 by the current impact flux [6]. It is estimated that the Martian surface could contain soil nitrates at levels of 0.3 wt.% N, if mixed homogenously [6], or a layer of pure NaNO3 of about 3 m thickness [5] distributed globally. Nitrates are a fundamental source for nitrogen for terrestrial microorganisms. Therefore, the detection of soil nitrates is important to assess habitability in the Martian environment. The only previous attempt to search for soil nitrates was by TEGA and the MECA WCL on the Phoenix mission but no evolved N-containing species were detected [7]. Nitrates have been tentatively identified in two Martian meteorites: Nakhla [8] and EETA79001 [9]. SAM is capable of detecting nitrates by their thermal decomposition into nitric oxide, NO. SAM analyzed samples from Rocknest soil and two drill holes located at John Klein (JK) and Cumberland (CB) mudstones in the Sheepbed member of the Yellowknife Bay formation in Gale Crater. There appear to be several peaks associated with the release of m/z 30 in the temperature range from 150° C to 600° C. m/z 30 can be attributed to nitric oxide; however, other possible chemical interferences may be present and are assessed. The origin of nitric oxide is discussed and its thermal evolution is

  16. SAM in a Nutshell.

    ERIC Educational Resources Information Center

    Givens, Larry R.

    2000-01-01

    Explains what the Association of Higher Education Facilities Officers' Strategic Assessment Model (SAM) is and how to use it to achieve organizational excellence through continuous improvement. Showing features of both the Malcolm Baldrige programs and the Balanced Scorecard, the SAM components are described along with an explanation of the four…

  17. Surface Analysis of Gold Nanoparticles Functionalized with Thiol-Modified Glucose SAMs for Biosensor Applications

    PubMed Central

    Spampinato, Valentina; Parracino, Maria Antonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo

    2016-01-01

    In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behavior of the glucose-modified particles in the presence of the maltose binding protein. PMID:26973830

  18. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications.

    NASA Astrophysics Data System (ADS)

    Spampinato, Valentina; Parracino, Mariaantonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo

    2016-02-01

    In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.

  19. Heterotypic Sam-Sam association between Odin-Sam1 and Arap3-Sam: binding affinity and structural insights.

    PubMed

    Mercurio, Flavia A; Marasco, Daniela; Pirone, Luciano; Scognamiglio, Pasqualina L; Pedone, Emilia M; Pellecchia, Maurizio; Leone, Marilisa

    2013-01-02

    Arap3 is a phosphatidylinositol 3 kinase effector protein that plays a role as GTPase activator (GAP) for Arf6 and RhoA. Arap3 contains a sterile alpha motif (Sam) domain that has high sequence homology with the Sam domain of the EphA2-receptor (EphA2-Sam). Both Arap3-Sam and EphA2-Sam are able to associate with the Sam domain of the lipid phosphatase Ship2 (Ship2-Sam). Recently, we reported a novel interaction between the first Sam domain of Odin (Odin-Sam1), a protein belonging to the ANKS (ANKyrin repeat and Sam domain containing) family, and EphA2-Sam. In our latest work, we applied NMR spectroscopy, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) to characterize the association between Arap3-Sam and Odin-Sam1. We show that these two Sam domains interact with low micromolar affinity. Moreover, by means of molecular docking techniques, supported by NMR data, we demonstrate that Odin-Sam1 and Arap3-Sam might bind with a topology that is common to several Sam-Sam complexes. The revealed structural details form the basis for the design of potential peptide antagonists that could be used as chemical tools to investigate functional aspects related to heterotypic Arap3-Sam associations.

  20. Heterotypic Sam-Sam association between Odin-Sam1 and Arap3-Sam: binding affinity and structural insights

    PubMed Central

    Mercurio, Flavia A.; Marasco, Daniela; Pirone, Luciano; Scognamiglio, Pasqualina L.; Pedone, Emilia M.; Pellecchia, Maurizio

    2013-01-01

    Arap3 is a phosphatidylinositol 3 kinase effector protein that plays a role as GTP-ase activator (GAP) for Arf6 and RhoA. Arap3 contains a sterile alpha motif (Sam) domain that presents high sequence homology with the Sam domain of the EphA2-receptor (EphA2-Sam); both Arap3-Sam and EphA2-Sam are able to associate with the Sam domain of the lipid phosphatase Ship2 (Ship2-Sam). Recently, we have reported on a novel interaction between the first Sam domain of Odin (Odin-Sam1), a protein belonging to the ANKS (ANKyrin repeat and Sam domain containing) family, and EphA2-Sam. In the current work we apply Nuclear Magnetic Resonance (NMR) spectroscopy, Surface Plasmon Resonance (SPR) and Isothermal Titration Calorimetry (ITC) to characterize the association between Arap3-Sam and Odin-Sam1. We show that these two Sam domains interact with low micromolar affinity. Moreover, by means of molecular docking techniques, supported by NMR data, we demonstrate that Odin-Sam1 and Arap3-Sam may bind with a topology that is common to several Sam-Sam complexes. The unveiled structural details form the basis for the design of potential peptide-antagonists, that could be used as chemical tools to investigate functional aspects related to heterotypic Arap3-Sam associations. PMID:23239578

  1. Reduced response of Cystathionine Beta-Synthase (CBS) to S-Adenosylmethionine (SAM): Identification and functional analysis of CBS gene mutations in Homocystinuria patients.

    PubMed

    Mendes, Marisa I S; Colaço, Henrique G; Smith, Desirée E C; Ramos, Rúben J J F; Pop, Ana; van Dooren, Silvy J M; Tavares de Almeida, Isabel; Kluijtmans, Leo A J; Janssen, Mirian C H; Rivera, Isabel; Salomons, Gajja S; Leandro, Paula; Blom, Henk J

    2014-03-01

    A reduced response of cystathionine beta-synthase (CBS) to its allosteric activator S-adenosylmethionine (SAM) has been reported to be a cause of CBS dysfunction in homocystinuria patients. In this work we performed a retrospective analysis of fibroblast data from 62 homocystinuria patients and found that 13 of them presented a disturbed SAM activation. Their genotypic background was identified and the corresponding CBS mutant proteins were produced in E. coli. Nine distinct mutations were detected in 22 independent alleles: the novel mutations p.K269del, p.P427L, p.S500L and p.L540Q; and the previously described mutations p.P49L, p.C165Rfs*2, p.I278T, p.R336H and p.D444N. Expression levels and residual enzyme activities, determined in the soluble fraction of E. coli lysates, strongly correlated with the localization of the affected amino acid residue. C-terminal mutations lead to activities in the range of the wild-type CBS and to oligomeric forms migrating faster than tetramers, suggesting an abnormal conformation that might be responsible for the lack of SAM activation. Mutations in the catalytic core were associated with low protein expression levels, decreased enzyme activities and a higher content of high molecular mass forms. Furthermore, the absence of SAM activation found in the patients' fibroblasts was confirmed for all but one of the characterized recombinant proteins (p.P49L). Our study experimentally supports a deficient regulation of CBS by SAM as a frequently found mechanism in CBS deficiency, which should be considered not only as a valuable diagnostic tool but also as a potential target for the development of new therapeutic approaches in classical homocystinuria.

  2. Identification of Genes Discriminating Multiple Sclerosis Patients from Controls by Adapting a Pathway Analysis Method

    PubMed Central

    Zhang, Lei; Wang, Linlin; Tian, Pu

    2016-01-01

    The focus of analyzing data from microarray experiments has shifted from the identification of associated individual genes to that of associated biological pathways or gene sets. In bioinformatics, a feature selection algorithm is usually used to cope with the high dimensionality of microarray data. In addition to those algorithms that use the biological information contained within a gene set as a priori to facilitate the process of feature selection, various gene set analysis methods can be applied directly or modified readily for the purpose of feature selection. Significance analysis of microarray to gene-set reduction analysis (SAM-GSR) algorithm, a novel direction of gene set analysis, is one of such methods. Here, we explore the feature selection property of SAM-GSR and provide a modification to better achieve the goal of feature selection. In a multiple sclerosis (MS) microarray data application, both SAM-GSR and our modification of SAM-GSR perform well. Our results show that SAM-GSR can carry out feature selection indeed, and modified SAM-GSR outperforms SAM-GSR. Given pathway information is far from completeness, a statistical method capable of constructing biologically meaningful gene networks is of interest. Consequently, both SAM-GSR algorithms will be continuously revaluated in our future work, and thus better characterized. PMID:27846233

  3. The Influence of Mineralogy on Recovering Organic Acids from Mars Analogue Materials Using the One-Pot Derivatization Experiment on the Sample Analysis at Mars(SAM) Instrument Suite

    NASA Technical Reports Server (NTRS)

    Stalport, Fabien; Glavin, Daniel P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; hide

    2012-01-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids, will require a chemical extraction and a derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed a ''one-pot'' extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment instrument suite on NASA's the Mars Science Laboratory (MSL) mission. The temperature and duration of the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 1C for several minutes of a variety of terrestrial Mars analog materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analog materials that contained high abundances of hydrated minerals, and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA. The combination of pyrolysis and two different wet-chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars.

  4. The influence of mineralogy on recovering organic acids from Mars analogue materials using the “one-pot” derivatization experiment on the Sample Analysis at Mars (SAM) instrument suite

    NASA Astrophysics Data System (ADS)

    Stalport, F.; Glavin, D. P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; Mahaffy, P. R.

    2012-07-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids, will require a chemical extraction and a derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed a "one-pot" extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment instrument suite on NASA's the Mars Science Laboratory (MSL) mission. The temperature and duration of the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 °C for several minutes of a variety of terrestrial Mars analog materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analog materials that contained high abundances of hydrated minerals, and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA. The combination of pyrolysis and two different wet-chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars.

  5. Installing SAM Instrument into Curiosity Mars Rover

    NASA Image and Video Library

    2011-01-18

    In this photograph, technicians and engineers inside a clean room at NASA Jet Propulsion Laboratory, Pasadena, Calif., position NASA Sample Analysis at Mars SAM above the mission Mars rover, Curiosity, for installing the instrument.

  6. Lowering SAM Instrument into Curiosity Mars Rover

    NASA Image and Video Library

    2011-01-18

    In this photograph, technicians and engineers inside a clean room at NASA Jet Propulsion Laboratory, Pasadena, Calif., position NASA Sample Analysis at Mars SAM above the mission Mars rover, Curiosity, for installing the instrument.

  7. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    NASA Technical Reports Server (NTRS)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; hide

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  8. Did life exist on Mars? Search for organic and inorganic signatures: one of the goals for SAM (Sample Analysis at Mars)

    NASA Astrophysics Data System (ADS)

    Cabane, M.

    Future exploration of Mars will be, in part, devoted to investigations linked to extinct or extant traces of life, or prebiotic chemistry that could have existed. Unlike Viking, which sampled mainly in surface, the 2009 Smart Lander drilling system could attain depths of 1, possibly 10m, which would permit to sample zones where organic remnants may have been preserved from oxidation, even leading to a stratigraphy. In order to search for such signatures, we develop new solutions in the experiment that we will present in the frame of a US/French proposal, SAM (Sample Analysis at Mars), devoted to in-situ atmospheric, ground, and underground.chemical and isotopic analysis. The mineralogical composition of the samples may give crucial information on the past Martian atmosphere, and the possible apparition of life. Samples will be heated from the ambient to high temperatures (1000°C) to observe gases adsorbed in the soil, and to assert the presence of inorganic relevant species (carbonates, salts, clays, etc.) : the release, by these minerals, of their structural gases (CO2 , H2 O, SO2 , etc.) at defined temperatures, which will help for their identification. Some of the potential preserved organic molecules (amino acids, carboxylic acids, etc.) may be too refractory to be pyrolyzed and analyzed by classical methods (T=500°C on Viking), and, as in the case of minerals, this will need high pyrolysis temperatures. In parallel with this technique, and to identify the most refractory molecules, occurring after oxidation processes, we intend to use the derivatization technique that -preserving the structural information- transforms such molecules into analyzable ones ( this technique will also permit to observe fragile molecules). Gases produced at the end of heating, pyrolysis and derivatization processes, will be analyzed, using the coupling of Gas Chromatography (GC) and Mass Spectrometry (MS), both techniques that we have developed in our laboratories, in the frame of

  9. Identification of Phyllosilicates in Mudstone Samples Using Water Releases Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Hogancamp, J. V. (Clark); Ming, D. W.; McAdam, A. C.; Archer, P. D.; Morris, R. V.; Bristow, T. F.; Rampe, E. B.; Mahaffy, P. R.; Gellert, R.

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected high temperature water releases from mud-stones in the areas of Yellowknife Bay, Pahrump Hills, Naukluft Plateau, and Murray Buttes in Gale crater. Dehydroxylation of phyllosilicates may have caused the high temperature water releases observed in these samples. Because each type of phyllosilicate undergoes dehydroxylation at distinct temperatures, these water releases can be used to help constrain the type of phyllosilicate present in each sample.

  10. The Search for Organic Compounds of Martian Origin in Gale Crater by the Sample Analysis at Mars (SAM) Instrument on Curiosity

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel; Freissinet, Caroline; Mahaffy, Paul; Miller, Kristen; Eigenbrode, Jennifer; Summons, Roger; Archer, Douglas, Jr.; Brunner, Anna; Martin, Mildred; Buch, Arrnaud; Cabane, Michel; Coll, Patrice; Conrad, Pamela; Dworkin, Jason; Grotzinger, John; Ming, Douglas; Navarro-Gonzales, Rafael; Steele, Andrew; Szopa, Cyril

    2014-01-01

    One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of 20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013

  11. SAM Photovoltaic Model Technical Reference

    SciTech Connect

    Gilman, P.

    2015-05-27

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM). The U.S. Department of Energy’s National Renewable Energy Laboratory maintains and distributes SAM, which is available as a free download from https://sam.nrel.gov. These descriptions are based on SAM 2015.1.30 (SSC 41).

  12. Possible detection of perchlorates by the Sample Analysis at Mars (SAM) Instrument: Comparison with previous missions

    NASA Astrophysics Data System (ADS)

    Navarro-Gonzalez, Rafael; Sutter, Brad; Archer, Doug; Ming, Doug; Eigenbrode, Jennifer; Franz, Heather; Glavin, Daniel; McAdam, Amy; Stern, Jennifer; McKay, Christopher; Coll, Patrice; Cabane, Michel; Conrad, Pamela; Mahaffy, Paul; Martín-Torres, Francisco; Zorzano-Mier, Maria; Grotzinger, John; MSL Science Team

    2013-04-01

    The first chemical analysis of soluble salts in the soil was carried out by the Phoenix Lander in the Martian Arctic [1]. Surprisingly, chlorine was present as magnesium or calcium perchlorate at 0.4 to 0.6 percent. Additional support for the identification of perchlorate came from the evolved gas analysis which detected the release of molecular oxygen at 350-550C [1]. When Mars-like soils from the Atacama Desert were spiked with magnesium perchlorate (1 precent) and heated using the Viking GC-MS protocol, nearly all the organics were combusted but a small amount was chlorinated, forming chloromethane and dichloromethane [2]. These chlorohydrocarbons were detected by the Viking GC-MS experiments when the Martian soil was analyzed but they were considered to be terrestrial contaminants [3]. Reinterpretation of the Viking results suggests

  13. Carbon and Sulfur Isotopic Composition of Rocknest Soil as Determined with the Sample Analysis at Mars(SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; McAdam, C.; Stern, J. C.; Archer, P. D., Jr.; Sutter, B.; Grotzinger, J. P.; Jones, J. H.; Leshin, L. A.; Mahaffy, P. R.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Owen, T. C.; Raaen, E.; Steele, A.; Webster, C. R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover got its first taste of solid Mars in the form of loose, unconsolidated materials (soil) acquired from an aeolian bedform designated Rocknest. Evolved gas analysis (EGA) revealed the presence of H2O as well as O-, C- and S-bearing phases in these samples. CheMin did not detect crystalline phases containing these gaseous species but did detect the presence of X-ray amorphous materials. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can provide clues to the nature and/or mineralogy of volatile-bearing phases through examination of temperatures at which gases are evolved from solid samples. In addition, the isotopic composition of these gases, particularly when multiple sources contribute to a given EGA curve, may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from Rocknest soil samples as measured with SAM's quadrupole mass spectrometer (QMS).

  14. An analytical approach to air defense: cost, effectiveness and SWOT analysis of employing fighter aircraft and modern SAM systems

    NASA Astrophysics Data System (ADS)

    Kus, Orcun; Kocaman, Ibrahim; Topcu, Yucel; Karaca, Volkan

    2012-05-01

    The problem of defending a specific airspace is among the main issues a military commander to solve. Proper protection of own airspace is crucial for mission success at the battlefield. The military doctrines of most world armed forces involve two main options of defending the airspace. One of them is utilizing formations of fighter aircraft, which is a flexible choice. The second option is deploying modern SAM (Surface to Air Missile) systems, which is more expansive. On the other hand the decision makers are to cope with miscellaneous restrictions such as the budgeting problems. This study defines air defense concept according to modern air warfare doctrine. It considers an air defense scenario over an arbitrary airspace and compares the performance and cost-effectiveness of employing fighter aircraft and SAM systems. It also presents SWOT (Strenghts - Weakness - Opportunities - Threats) analyses of air defense by fighter aircraft and by modern SAMs and tries to point out whichever option is better. We conclude that deploying SAMs has important advantages over using fighter aircraft by means of interception capacity within a given time period and is cost-effective.

  15. CSAM: Compressed SAM format.

    PubMed

    Cánovas, Rodrigo; Moffat, Alistair; Turpin, Andrew

    2016-12-15

    Next generation sequencing machines produce vast amounts of genomic data. For the data to be useful, it is essential that it can be stored and manipulated efficiently. This work responds to the combined challenge of compressing genomic data, while providing fast access to regions of interest, without necessitating decompression of whole files. We describe CSAM (Compressed SAM format), a compression approach offering lossless and lossy compression for SAM files. The structures and techniques proposed are suitable for representing SAM files, as well as supporting fast access to the compressed information. They generate more compact lossless representations than BAM, which is currently the preferred lossless compressed SAM-equivalent format; and are self-contained, that is, they do not depend on any external resources to compress or decompress SAM files. An implementation is available at https://github.com/rcanovas/libCSAM CONTACT: canovas-ba@lirmm.frSupplementary Information: Supplementary data is available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. In situ analysis of martian regolith with the SAM experiment during the first mars year of the MSL mission: Identification of organic molecules by gas chromatography from laboratory measurements

    NASA Astrophysics Data System (ADS)

    Millan, M.; Szopa, C.; Buch, A.; Coll, P.; Glavin, D. P.; Freissinet, C.; Navarro-Gonzalez, R.; François, P.; Coscia, D.; Bonnet, J. Y.; Teinturier, S.; Cabane, M.; Mahaffy, P. R.

    2016-09-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover, is specifically designed for in situ molecular and isotopic analyses of martian surface materials and atmosphere. It contributes to the Mars Science Laboratory (MSL) missions primary scientific goal to characterize the potential past, present or future habitability of Mars. In all of the analyses of solid samples delivered to SAM so far, chlorinated organic compounds have been detected above instrument background levels and identified by gas chromatography coupled to mass spectrometry (GC-MS) (Freissinet et al., 2015; Glavin et al., 2013). While some of these may originate from reactions between oxychlorines and terrestrial organic carbon present in the instrument background (Glavin et al., 2013), others have been demonstrated to originate from indigenous organic carbon present in samples (Freissinet et al., 2015). We present here laboratory calibrations that focused on the analyses performed with the MXT-CLP GC column (SAM GC-5 channel) used for nearly all of the GC-MS analyses of the martian soil samples carried out with SAM to date. Complementary to the mass spectrometric data, gas chromatography allows us to separate and identify the species analyzable in a nominal SAM-GC run time of about 21 min. To characterize the analytical capabilities of this channel within the SAM Flight Model (FM) operating conditions on Mars, and their implications on the detection of organic matter, it is required to perform laboratory experimental tests and calibrations on spare model components. This work assesses the SAM flight GC-5 column efficiency, confirms the identification of the molecules based on their retention time, and enables a better understanding of the behavior of the SAM injection trap (IT) and its release of organic molecules. This work will enable further optimization of the SAM-GC runs for additional samples to be analyzed during the MSL mission.

  17. In Situ Analysis of Martian Regolith with the SAM Experiment During the First Mars Year of the MSL Mission: Identification of Organic Molecules by Gas Chromatography from Laboratory Measurements

    NASA Technical Reports Server (NTRS)

    Millan, M.; Szopa, C.; Buch, A.; Coll, P.; Glavin, D. P.; Freissinet, C.; Navarro-Gonzalez, R.; Francois, P.; Coscia, D.; Bonnet, J. Y.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover, is specifically designed for in situ molecular and isotopic analyses of martian surface materials and atmosphere. It contributes to the Mars Science Laboratory (MSL) missions primary scientific goal to characterize the potential past, present or future habitability of Mars. In all of the analyses of solid samples delivered to SAM so far, chlorinated organic compounds have been detected above instrument background levels and identified by gas chromatography coupled to mass spectrometry (GC-MS) (Freissinet et al., 2015; Glavin et al., 2013). While some of these may originate from reactions between oxychlorines and terrestrial organic carbon present in the instrument background (Glavin et al., 2013), others have been demonstrated to originate from indigenous organic carbon present in samples (Freissinet et al., 2015). We present here laboratory calibrations that focused on the analyses performed with the MXT-CLP GC column (SAM GC-5 channel) used for nearly all of the GC-MS analyses of the martian soil samples carried out with SAM to date. Complementary to the mass spectrometric data, gas chromatography allows us to separate and identify the species analyzable in a nominal SAM-GC run time of about 21 min. To characterize the analytical capabilities of this channel within the SAM Flight Model (FM) operating conditions on Mars, and their implications on the detection of organic matter, it is required to perform laboratory experimental tests and calibrations on spare model components. This work assesses the SAM flight GC-5 column efficiency, confirms the identification of the molecules based on their retention time, and enables a better understanding of the behavior of the SAM injection trap (IT) and its release of organic molecules. This work will enable further optimization of the SAM-GC runs for additional samples to be analyzed during the MSL mission.

  18. Detection of Nitric Oxide by the Sample Analysis at Mars (SAM) Instrument Implications for the Presence of Nitrates

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Stern, J.; Freissinet, C.; Franz, H. B.; Eigenbrode, J. L..; McKay, C. P.; Coll, P.; Sutter, B.; Archer, D.; McAdam, A.; hide

    2014-01-01

    One of the main goals of the Mars Science Laboratory is to determine whether the planet ever had environmental conditions able to support microbial life. Nitrogen is a fundamental element for life, and is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) biomolecules. Planetary models suggest that molecular nitrogen was abundant in the early Martian atmosphere, but was rapidly lost to space by photochemistry, sputtering impact erosion, and oxidized and deposited to the surface as nitrate. Nitrates are a fundamental source for nitrogen to terrestrial microorganisms. Therefore, the detection of nitrates in soils and rocks is important to assess the habitability of a Martian environment. SAM is capable of detecting nitrates by their thermal decomposition into nitric oxide, NO. Here we analyze the release of NO from soils and rocks examined by the SAM instrument at Gale crater, and discuss its origin.

  19. Adapting SAM for CDF

    SciTech Connect

    D. Bonham et al.

    2003-10-13

    The CDF and D0 experiments probe the high-energy frontier and as they do so have accumulated hundreds of Terabytes of data on the way to petabytes of data over the next two years. The experiments have made a commitment to use the developing Grid based on the SAM system to handle these data. The D0 SAM has been extended for use in CDF as common patterns of design emerged to meet the similar requirements of these experiments. The process by which the merger was achieved is explained with particular emphasis on lessons learned concerning the database design patterns plus realization of the use cases.

  20. System Advisor Model, SAM 2014.1.14: General Description

    SciTech Connect

    Blair, N.; Dobos, A. P.; Freeman, J.; Neises, T.; Wagner, M.; Ferguson, T.; Gilman, P.; Janzou, S.

    2014-02-01

    This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2013.9.20, released on September 9, 2013. SAM is a computer model that calculates performance and financial metrics of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of photovoltaic, concentrating solar power, solar water heating, wind, geothermal, biomass, and conventional power systems. The financial model can represent financial structures for projects that either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). SAM's advanced simulation options facilitate parametric and sensitivity analyses, and statistical analysis capabilities are available for Monte Carlo simulation and weather variability (P50/P90) studies. SAM can also read input variables from Microsoft Excel worksheets. For software developers, the SAM software development kit (SDK) makes it possible to use SAM simulation modules in their applications written in C/C++, C#, Java, Python, and MATLAB. NREL provides both SAM and the SDK as free downloads at http://sam.nrel.gov. Technical support and more information about the software are available on the website.

  1. Detection of Evolved Carbon Dioxide in the Rocknest Eolian Bedform by the Sample Analysis at Mars(SAM) Instrument at the Mars Curiosity Landing Site

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D.; McAdam, A.; Franz, H.; Ming, D. W.; Eigenbrode, J. L.; Glavin, D. P.; Mahaffy, P.; Stern, J.; Navarro-Gonzalez, R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument detected four releases of carbon dioxide (CO2) that ranged from 100 to 700 C from the Rocknest eolian bedform material (Fig. 1). Candidate sources of CO2 include adsorbed CO2, carbonate(s), combusted organics that are either derived from terrestrial contamination and/or of martian origin, occluded or trapped CO2, and other sources that have yet to be determined. The Phoenix Lander s Thermal Evolved Gas Analyzer (TEGA) detected two CO2 releases (400-600, 700-840 C) [1,2]. The low temperature release was attributed to Fe- and/or Mg carbonates [1,2], per-chlorate interactions with carbonates [3], nanophase carbonates [4] and/or combusted organics [1]. The high temperature CO2 release was attributed to a calcium bearing carbonate [1,2]. No evidence of a high temperature CO2 release similar to the Phoenix material was detected in the Rocknest materials by SAM. The objectives of this work are to evaluate the temperature and total contribution of each Rocknest CO2 release and their possible sources. Four CO2 releases from the Rocknest material were detected by SAM. Potential sources of CO2 are adsorbed CO2, (peak 1) and Fe/Mg carbonates (peak 4). Only a fraction of peaks 2 and 3 (0.01 C wt.%) may be partially attributed to combustion of organic contamination. Meteoritic organics mixed in the Rocknest bedform could be present, but the peak 2 and 3 C concentration (approx.0.21 C wt. %) is likely too high to be attributed solely to meteoritic organic C. Other inorganic sources of C such as interactions of perchlorates and carbonates and sources yet to be identified will be evaluated to account for CO2 released from the thermal decomposition of Rocknest material.

  2. Common themes and differences in SAM recognition among SAM riboswitches

    PubMed Central

    Price, Ian R.; Grigg, Jason C.; Ke, Ailong

    2014-01-01

    The recent discovery of short cis-acting RNA elements termed riboswitches has caused a paradigm shift in our understanding of genetic regulatory mechanisms. The three distinct superfamilies of S-adenosyl-L-methionine (SAM) riboswitches are the most commonly found riboswitch classes in nature. These RNAs represent three independent evolutionary solutions to achieve specific SAM recognition. This review summarizes research on 1) modes of gene regulatory mechanisms, 2) common themes and differences in ligand recognition, and 3) ligand-induced conformational dynamics among SAM riboswitch families. The body of work on the SAM riboswitch families constitutes a useful primer to the topic of gene regulatory RNAs as a whole. PMID:24863160

  3. Validation of SAM 2 and SAGE satellite

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Wang, P.-H.; Farrukh, U. O.; Yue, G. K.

    1987-01-01

    Presented are the results of a validation study of data obtained by the Stratospheric Aerosol and Gas Experiment I (SAGE I) and Stratospheric Aerosol Measurement II (SAM II) satellite experiments. The study includes the entire SAGE I data set (February 1979 - November 1981) and the first four and one-half years of SAM II data (October 1978 - February 1983). These data sets have been validated by their use in the analysis of dynamical, physical and chemical processes in the stratosphere. They have been compared with other existing data sets and the SAGE I and SAM II data sets intercompared where possible. The study has shown the data to be of great value in the study of the climatological behavior of stratospheric aerosols and ozone. Several scientific publications and user-oriented data summaries have appeared as a result of the work carried out under this contract.

  4. Influence of the sample mineralogy on the nature of the organic compounds detected by the SAM experiment analysis condition at Gale Crater.

    NASA Astrophysics Data System (ADS)

    Belmahdi, I.; Buch, A.; François, P.; Szopa, C.; Eigenbrode, J.; Coll, P.; Dequaire, T.; Millan, M.; Tenturier, S.; Bonnet, J. Y.; Mahaffy, P.; Cabane, M.

    2015-10-01

    Sample Analysis at Mars (SAM) is one of the instruments of the MSL mission. It is devoted to analyze the composition in volatile species contained in solid samples collected by the Curiosity rover. To do it, it is composed of 3 complementary analyzers : the Tunable Laser Spectrometer (TLS), the Gas Chromatography (GC) and the Mass Spectrometer (MS)(Mahaffy et al., 2012).Solid samples can be treated by different ways to extract the volatile compounds and inject them in the analyzers :(a)a pyrolysis system, (b)wet chemistry:MTBSTFA and TMAH (c)the hydrocarbon trap (silica beads, Tenax® TA and Carbosieve G)and the injector trap (Tenax® GR) (Mahaffy et al., 2012).

  5. Mineral classification map using MF and SAM techniques: A case study in the Nohwa Island, Korea

    SciTech Connect

    Son, Young-Sun; Yoon, Wang-Jung

    2015-03-10

    The purpose of this study is to map pyprophyllite distribution at surface of the Nohwa deposit, Korea by using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) data. For this, combined Spectral Angle Mapper (SAM), and Matched Filtering (MF) technique based on mathematical algorithm was applied. The regional distribution of high-grade and low-grade pyrophyllite in the Nohwa deposit area could be differentiated by this method. The results of this study show that ASTER data analysis using combination of SAM and MF techniques will assist in exploration of pyrophyllite at the exposed surface.

  6. SAM II Data and Information

    Atmospheric Science Data Center

    2016-07-06

    SAM II Data and Information Data obtained from the Stratospheric Aerosol Measurement (SAM) II instrument, which flew on board the Nimbus-7 satellite, are used to ... Guide Readme Files:  Data Set (Text file) Read Software Files :  C Code ...

  7. Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch.

    PubMed

    Doshi, Urmi; Kelley, Jennifer M; Hamelberg, Donald

    2012-02-01

    Although S-adenosylhomocysteine (SAH), a metabolic by-product of S-adenosylmethionine (SAM), differs from SAM only by a single methyl group and an overall positive charge, SAH binds the SAM-II riboswitch with more than 1000-fold less affinity than SAM. Using atomistic molecular dynamics simulations, we investigated the molecular basis of such high selectivity in ligand recognition by SAM-II riboswitch. The biosynthesis of SAM exclusively generates the (S,S) stereoisomer, and (S,S)-SAM can spontaneously convert to the (R,S) form. We, therefore, also examined the effects of (R,S)-SAM binding to SAM-II and its potential biological function. We find that the unfavorable loss in entropy in SAM-II binding is greater for (S,S)- and (R,S)-SAM than SAH, which is compensated by stabilizing electrostatic interactions with the riboswitch. The positively charged sulfonium moiety on SAM acts as the crucial anchor point responsible for the formation of key ionic interactions as it fits favorably in the negatively charged binding pocket. In contrast, SAH, with its lone pair of electrons on the sulfur, experiences repulsion in the binding pocket of SAM-II and is enthalpically destabilized. In the presence of SAH, similar to the unbound riboswitch, the pseudoknot structure of SAM-II is not completely formed, thus exposing the Shine-Dalgarno sequence. Unlike SAM, this may further facilitate ribosomal assembly and translation initiation. Our analysis of the conformational ensemble sampled by SAM-II in the absence of ligands and when bound to SAM or SAH reveals that ligand binding follows a combination of conformational selection and induced-fit mechanisms.

  8. Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch

    PubMed Central

    Doshi, Urmi; Kelley, Jennifer M.; Hamelberg, Donald

    2012-01-01

    Although S-adenosylhomocysteine (SAH), a metabolic by-product of S-adenosylmethionine (SAM), differs from SAM only by a single methyl group and an overall positive charge, SAH binds the SAM-II riboswitch with more than 1000-fold less affinity than SAM. Using atomistic molecular dynamics simulations, we investigated the molecular basis of such high selectivity in ligand recognition by SAM-II riboswitch. The biosynthesis of SAM exclusively generates the (S,S) stereoisomer, and (S,S)-SAM can spontaneously convert to the (R,S) form. We, therefore, also examined the effects of (R,S)-SAM binding to SAM-II and its potential biological function. We find that the unfavorable loss in entropy in SAM-II binding is greater for (S,S)- and (R,S)-SAM than SAH, which is compensated by stabilizing electrostatic interactions with the riboswitch. The positively charged sulfonium moiety on SAM acts as the crucial anchor point responsible for the formation of key ionic interactions as it fits favorably in the negatively charged binding pocket. In contrast, SAH, with its lone pair of electrons on the sulfur, experiences repulsion in the binding pocket of SAM-II and is enthalpically destabilized. In the presence of SAH, similar to the unbound riboswitch, the pseudoknot structure of SAM-II is not completely formed, thus exposing the Shine-Dalgarno sequence. Unlike SAM, this may further facilitate ribosomal assembly and translation initiation. Our analysis of the conformational ensemble sampled by SAM-II in the absence of ligands and when bound to SAM or SAH reveals that ligand binding follows a combination of conformational selection and induced-fit mechanisms. PMID:22194311

  9. Common themes and differences in SAM recognition among SAM riboswitches.

    PubMed

    Price, Ian R; Grigg, Jason C; Ke, Ailong

    2014-10-01

    The recent discovery of short cis-acting RNA elements termed riboswitches has caused a paradigm shift in our understanding of genetic regulatory mechanisms. The three distinct superfamilies of S-adenosyl-l-methionine (SAM) riboswitches are the most commonly found riboswitch classes in nature. These RNAs represent three independent evolutionary solutions to achieve specific SAM recognition. This review summarizes research on 1) modes of gene regulatory mechanisms, 2) common themes and differences in ligand recognition, and 3) ligand-induced conformational dynamics among SAM riboswitch families. The body of work on the SAM riboswitch families constitutes a useful primer to the topic of gene regulatory RNAs as a whole. This article is part of a Special Issue entitled: Riboswitches. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Possible Origin of Chlorobenzene Detected by SAM Instrument at Gale Crater, Mars: Synergy of Iron Oxides and Perchlorate and Consequences for Organic Matter Analysis

    NASA Astrophysics Data System (ADS)

    Francois, P.; Coll, P.; Szopa, C.; Georgelin, T.; Buch, A.; Freissinet, C.; Belmahdi, I.; McAdam, A.; Eigenbrode, J.; Glavin, D.; Kashyap, S.; Navarro-Gonzalez, A. R.; Mahaffy, P.; Cabane, M.

    2014-07-01

    Chlorobenzene, potentially of martian origin, has been detected by the SAM experiment onboard Curiosity rover. We explore its potential formation by a synergy between oxychlorine phases and iron oxides in the presence of a carbon source.

  11. Lifting SAM Instrument for Installation into Mars Rover

    NASA Image and Video Library

    2011-01-18

    NASA Sample Analysis at Mars SAM instrument, largest of the 10 science instruments for NASA Mars Science Laboratory mission, will examine samples of Martian rocks, soil and atmosphere for information about chemicals that are important to life.

  12. Curiosity Shakes, Bakes, and Tastes Mars with SAM

    NASA Image and Video Library

    NASA's Curiosity rover analyzed its first solid sample of Mars with a variety of instruments, including the Sample Analysis at Mars (SAM) instrument suite. Developed at NASA's Goddard Space Flight ...

  13. Iron-Rich Carbonates as the Potential Source of Evolved CO2 Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Heil, E.; Rampe, E. B.; Morris, R. V.; Ming, D. W.; Archer, P. D.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A. C.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument detected at least 4 distinct CO2 release during the pyrolysis of a sample scooped from the Rocknest (RN) eolian deposit. The highest peak CO2 release temperature (478-502 C) has been attributed to either a Fe-rich carbonate or nano-phase Mg-carbonate. The objective of this experimental study was to evaluate the thermal evolved gas analysis (T/EGA) characteristics of a series of terrestrial Fe-rich carbonates under analog SAM operating conditions to compare with the RN CO2 releases. Natural Fe-rich carbonates (<53 microns) with varying Fe amounts (Fe(0.66)X(0.34)- to Fe(0.99)X(0.01)-CO3, where X refers to Mg and/or Mn) were selected for T/EGA. The carbonates were heated from 25 to 715 C (35 C/min) and evolved CO2 was measured as a function of temperature. The highest Fe containing carbonates (e.g., Fe(0.99)X(0.01)-CO3) yielded CO2 peak temperatures between 466-487 C, which is consistent with the high temperature RN CO2 release. The lower Fe-bearing carbonates (e.g., Fe(0.66)X(0.34)CO3) did not have peak CO2 release temperatures that matched the RN peak CO2 temperatures; however, their entire CO2 releases did occur within RN temperature range of the high temperature CO2 release. Results from this laboratory analog analysis demonstrate that the high temperature RN CO2 release is consistent with Fe-rich carbonate (approx.0.7 to 1 wt.% FeCO3). The similar RN geochemistry with other materials in Gale Crater and elsewhere on Mars (e.g., Gusev Crater, Meridiani) suggests that up to 1 wt. % Fe-rich carbonate may occur throughout the Gale Crater region and could be widespread on Mars. The Rocknest Fe-carbonate may have formed from the interaction of reduced Fe phases (e.g., Fe2+ bearing olivine) with atmospheric CO2 and transient water. Alternatively, the Rocknest Fe-carbonate could be derived by eolian processes that have eroded distally exposed deep crustal material that possesses Fe-carbonate that may have formed through

  14. Iron-rich Carbonates as the Potential Source of Evolved CO2 Detected by the Sample Analysis at Mars (SAM) instrument in Gale Crater.

    NASA Astrophysics Data System (ADS)

    Sutter, B.; Heil, E.; Rampe, E. B.; Morris, R. V.; Ming, D. W.; Archer, P. D., Jr.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A.; Navarro-Gonzalez, R.; Mahaffy, P. R.; Stern, J. C.; Mertzman, S. A.

    2015-12-01

    The Sample Analysis at Mars (SAM) instrument detected at least 4 distinct CO2 release during the pyrolysis of a sample scooped from the Rocknest (RN) eolian deposit. The highest peak CO2 release temperature (478-502°C) has been attributed to either a Fe-rich carbonate or nano-phase Mg-carbonate. The objective of this experimental study was to evaluate the thermal evolved gas analysis (T/EGA) characteristics of a series of terrestrial Fe-rich carbonates under analog SAM operating conditions to compare with the RN CO2 releases. Natural Fe-rich carbonates (<53μm) with varying Fe amounts (Fe0.66X0.34- to Fe0.99X0.01-CO3, where X refers to Mg and/or Mn) were selected for T/EGA. The carbonates were heated from 25 to 715°C (35°C min-1) and evolved CO2 was measured as a function of temperature. The highest Fe containing carbonates (e.g., Fe0.99X0.01-CO3) yielded CO2 peak temperatures between 466-487°C, which is consistent with the high temperature RN CO2 release. The lower Fe-bearing carbonates (e.g., Fe0.66X0.34CO3) did not have peak CO2 release temperatures that matched the RN peak CO2 temperatures; however, their entire CO2 releases did occur within RN temperature range of the high temperature CO2 release. Results from this laboratory analog analysis demonstrate that the high temperature RN CO2 release is consistent with Fe-rich carbonate (~0.7 to 1 wt.% FeCO3). The similar RN geochemistry with other materials in Gale Crater and elsewhere on Mars (e.g., Gusev Crater, Meridiani) suggests that up to 1 wt. % Fe-rich carbonate may occur throughout the Gale Crater region and could be widespread on Mars. The Rocknest Fe-carbonate may have formed from the interaction of reduced Fe phases (e.g., Fe2+ bearing olivine) with atmospheric CO2 and transient water. Alternatively, the Rocknest Fe-carbonate could be derived by eolian processes that have eroded distally exposed deep crustal material that possesses Fe-carbonate that may have formed through metamorphic and

  15. DNA adenine methylation of sams1 gene in symbiont-bearing Amoeba proteus.

    PubMed

    Jeon, Taeck J

    2008-10-01

    The expression of amoeba sams genes is switched from sams1 to sams2 when amoebae are infected with Legionella jeonii. To elucidate the mechanism for the inactivation of host sams1 gene by endosymbiotic bacteria, methylation states of the sams1 gene of D and xD amoebae was compared in this study. The sams1 gene of amoebae was methylated at an internal adenine residue of GATC site in symbiont-bearing xD amoebae but not in symbiont-free D amoebae, suggesting that the modification might have caused the inactivation of sams1 in xD amoebae. The sams1 gene of xD amoebae was inactivated at the transcriptional level. Analysis of DNA showed that adenine residues in L. jeonii sams were also methylated, implying that L. jeonii bacteria belong to a Dam methylase-positive strain. In addition, both SAM and Met appeared to act as negative regulators for the expression of sams1 whereas the expression of sams2 was not affected in amoebae.

  16. Faces of Marshall: Sam Ortega

    NASA Image and Video Library

    Several Marshall employees were interviewed as part of Marshall's 50th Anniversary activities. Engineer Sam Ortega tells his story of how he came to work as an engineer at Marshall and how sewing a...

  17. General Safety and Waste Management Related to SAM

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for chemicals, radiochemicals, pathogens, and biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  18. In-Orbit Calibration of a SAMS Triaxial Sensor Head

    NASA Technical Reports Server (NTRS)

    Chestney, Louis S.; Sicker, Ronald J.

    1996-01-01

    This report describes the results of in orbit calibration data collected for a Space Acceleration Measurement System (SAMS) Triaxial Sensor Head (TS H) and the methods used to process the data for bias and gravity levels.

  19. SAM 2 and SAGE data management and processing

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Trepte, C. R.

    1987-01-01

    The data management and processing supplied by ST Systems Corporation (STX) for the Stratospheric Aerosol Measurement 2 (SAM 2) and Stratospheric Aerosol and Gas Experiment (SAGE) experiments for the years 1983 to 1986 are described. Included are discussions of data validation, documentation, and scientific analysis, as well as the archival schedule met by the operational reduction of SAM 2 and SAGE data. Work under this contract resulted in the archiving of the first seven years of SAM 2 data and all three years of SAGE data. A list of publications and presentations supported was also included.

  20. Rapid Radiochemical Method for Radium-226 in Building ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Radium-226 in building materials Method Selected for: SAM lists this method for qualitative analysis of radium-226 in concrete or brick building materials Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  1. Rapid Radiochemical Method for Total Radiostrontium (Sr-90) ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Beta counting Method Developed for: Strontium-89 and strontium-90 in building materials Method Selected for: SAM lists this method for qualitative analysis of strontium-89 and strontium-90 in concrete or brick building materials Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  2. Rapid Radiochemical Method for Americium-241 in Building ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241 in building materials Method Selected for: SAM lists this method for qualitative analysis of americium-241 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  3. System Advisor Model, SAM 2011.12.2: General Description

    SciTech Connect

    Gilman, P.; Dobos, A.

    2012-02-01

    This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2011.12.2, released on December 2, 2011. SAM is software that models the cost and performance of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of solar, wind, geothermal, biomass, and conventional power systems. The financial model can represent financing structures for projects that either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). Advanced analysis options facilitate parametric, sensitivity, and statistical analyses, and allow for interfacing SAM with Microsoft Excel or with other computer programs. SAM is available as a free download at http://sam.nrel.gov. Technical support and more information about the software are available on the website.

  4. Structural insights into SAM domain-mediated tankyrase oligomerization.

    PubMed

    DaRosa, Paul A; Ovchinnikov, Sergey; Xu, Wenqing; Klevit, Rachel E

    2016-09-01

    Tankyrase 1 (TNKS1; a.k.a. ARTD5) and tankyrase 2 (TNKS2; a.k.a ARTD6) are highly homologous poly(ADP-ribose) polymerases (PARPs) that function in a wide variety of cellular processes including Wnt signaling, Src signaling, Akt signaling, Glut4 vesicle translocation, telomere length regulation, and centriole and spindle pole maturation. Tankyrase proteins include a sterile alpha motif (SAM) domain that undergoes oligomerization in vitro and in vivo. However, the SAM domains of TNKS1 and TNKS2 have not been structurally characterized and the mode of oligomerization is not yet defined. Here we model the SAM domain-mediated oligomerization of tankyrase. The structural model, supported by mutagenesis and NMR analysis, demonstrates a helical, homotypic head-to-tail polymer that facilitates TNKS self-association. Furthermore, we show that TNKS1 and TNKS2 can form (TNKS1 SAM-TNKS2 SAM) hetero-oligomeric structures mediated by their SAM domains. Though wild-type tankyrase proteins have very low solubility, model-based mutations of the SAM oligomerization interface residues allowed us to obtain soluble TNKS proteins. These structural insights will be invaluable for the functional and biophysical characterization of TNKS1/2, including the role of TNKS oligomerization in protein poly(ADP-ribosyl)ation (PARylation) and PARylation-dependent ubiquitylation. © 2016 The Protein Society.

  5. SAM Gcms Chromatography Performed at Mars : Elements of Interpretation

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Coll, P. J.; Buch, A.; François, P.; Cabane, M.; Coscia, D.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Mahaffy, P. R.

    2013-12-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Interpretation of the data collected after SAM pyrolysis evolved gas analysis (EGA) and gas chromatography mass spectrometry (GC-MS) experiments on the first soil samples collected by MSL at the Rocknest Aeolian Deposit in Gale Crater has been challenging due to the concomitant presence in the ovens of an oxychlorine phase present in the samples, and a derivatization agent coming from the SAM wet chemistry experiment (Glavin et al., 2013). Moreover, accurate identification and quantification, in the SAM EGA mode, of volatiles released from the heated sample, or generated by reactions occurring in the SAM pyrolysis oven, is also difficult for a few compounds due to evolution over similar temperature ranges and overlap of their MS signatures. Hence, the GC analyses, coupled with MS, enabled the separation and identification and quantification of most of the volatile compounds detected. These results can have been obtained through tests and calibration done with GC individual spare components and with the SAM testbed. This paper will present a view of the interpretation of the chromatograms obtained when analyzing the Rocknest and John Klein solid samples delivered to SAM, on sols 96 and 199 respectively, supported by laboratory calibrations.

  6. Data handling with SAM and art at the NOνA experiment

    NASA Astrophysics Data System (ADS)

    Aurisano, A.; Backhouse, C.; Davies, G. S.; Illingworth, R.; Mayer, N.; Mengel, M.; Norman, A.; Rocco, D.; Zirnstein, J.

    2015-12-01

    During operations, NOvA produces between 5,000 and 7,000 raw files per day with peaks in excess of 12,000. These files must be processed in several stages to produce fully calibrated and reconstructed analysis files. In addition, many simulated neutrino interactions must be produced and processed through the same stages as data. To accommodate the large volume of data and Monte Carlo, production must be possible both on the Fermilab grid and on off-site farms, such as the ones accessible through the Open Science Grid. To handle the challenge of cataloging these files and to facilitate their off-line processing, we have adopted the SAM system developed at Fermilab. SAM indexes files according to metadata, keeps track of each file's physical locations, provides dataset management facilities, and facilitates data transfer to off-site grids. To integrate SAM with Fermilab's art software framework and the NOvA production workflow, we have developed methods to embed metadata into our configuration files, art files, and standalone ROOT files. A module in the art framework propagates the embedded information from configuration files into art files, and from input art files to output art files, allowing us to maintain a complete processing history within our files. Embedding metadata in configuration files also allows configuration files indexed in SAM to be used as inputs to Monte Carlo production jobs. Further, SAM keeps track of the input files used to create each output file. Parentage information enables the construction of self-draining datasets which have become the primary production paradigm used at NOvA. In this paper we will present an overview of SAM at NOvA and how it has transformed the file production framework used by the experiment.

  7. Data handling with SAM and art at the NOvA experiment

    DOE PAGES

    Aurisano, A.; Backhouse, C.; Davies, G. S.; ...

    2015-12-23

    During operations, NOvA produces between 5,000 and 7,000 raw files per day with peaks in excess of 12,000. These files must be processed in several stages to produce fully calibrated and reconstructed analysis files. In addition, many simulated neutrino interactions must be produced and processed through the same stages as data. To accommodate the large volume of data and Monte Carlo, production must be possible both on the Fermilab grid and on off-site farms, such as the ones accessible through the Open Science Grid. To handle the challenge of cataloging these files and to facilitate their off-line processing, we havemore » adopted the SAM system developed at Fermilab. SAM indexes files according to metadata, keeps track of each file's physical locations, provides dataset management facilities, and facilitates data transfer to off-site grids. To integrate SAM with Fermilab's art software framework and the NOvA production workflow, we have developed methods to embed metadata into our configuration files, art files, and standalone ROOT files. A module in the art framework propagates the embedded information from configuration files into art files, and from input art files to output art files, allowing us to maintain a complete processing history within our files. Embedding metadata in configuration files also allows configuration files indexed in SAM to be used as inputs to Monte Carlo production jobs. Further, SAM keeps track of the input files used to create each output file. Parentage information enables the construction of self-draining datasets which have become the primary production paradigm used at NOvA. In this study we will present an overview of SAM at NOvA and how it has transformed the file production framework used by the experiment.« less

  8. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1993-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the flrst Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered 18 gigabytes of data representing 68 days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and.the Microgravity Measurement and Analysis Project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  9. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1994-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the First Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered eighteen gigabytes of data representing sixty-eight days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  10. Technical Manual for the SAM Physical Trough Model

    SciTech Connect

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

  11. Redox Behavior of the S-Adenosylmethionine (SAM)-Binding Fe-S Cluster in Methylthiotransferase RimO, toward Understanding Dual SAM Activity.

    PubMed

    Molle, Thibaut; Moreau, Yohann; Clemancey, Martin; Forouhar, Farhad; Ravanat, Jean-Luc; Duraffourg, Nicolas; Fourmond, Vincent; Latour, Jean-Marc; Gambarelli, Serge; Mulliez, Etienne; Atta, Mohamed

    2016-10-18

    RimO, a radical-S-adenosylmethionine (SAM) enzyme, catalyzes the specific C3 methylthiolation of the D89 residue in the ribosomal S12 protein. Two intact iron-sulfur clusters and two SAM cofactors both are required for catalysis. By using electron paramagnetic resonance, Mössbauer spectroscopies, and site-directed mutagenesis, we show how two SAM molecules sequentially bind to the unique iron site of the radical-SAM cluster for two distinct chemical reactions in RimO. Our data establish that the two SAM molecules bind the radical-SAM cluster to the unique iron site, and spectroscopic evidence obtained under strongly reducing conditions supports a mechanism in which the first molecule of SAM causes the reoxidation of the reduced radical-SAM cluster, impeding reductive cleavage of SAM to occur and allowing SAM to methylate a HS(-) ligand bound to the additional cluster. Furthermore, by using density functional theory-based methods, we provide a description of the reaction mechanism that predicts the attack of the carbon radical substrate on the methylthio group attached to the additional [4Fe-4S] cluster.

  12. Rapid Radiochemical Method for Plutonium-238 and ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Technique: Alpha spectrometry Method Developed for: Plutonium-238 and plutonium-239 in building materials Method Selected for: SAM lists this method for qualitative analysis of plutonium-238 and -239 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  13. Functional Analysis of CP2-Like Domain and SAM-Like Domain in TFCP2L1, Novel Pluripotency Factor of Embryonic Stem Cells.

    PubMed

    Kim, Chang Min; Jang, Tae-Ho; Park, Hyun Ho

    2016-06-01

    TFCP2L1 is a transcription factor that facilitates establishment and maintenance of pluripotency in embryonic stem cells by forming a complex transcriptional network with other transcription factors (OCT4, SOX2, and NANOG). TFCP2L1 contains two distinct domains, the CP2-like domain at the N-terminus and the SAM-like domain at the C-terminus. In this study, we found that TFCP2L1 is hexamerized in solution via the C-terminal SAM-like domain. We also found that homo-oligomerization of SAM-like domain is dependent on the concentration of the proteins. Finally, we found that TFCP2L1 binds directly to DNA via the N-terminal CP2-like domain.

  14. Sam68 Regulates a Set of Alternatively Spliced Exons during Neurogenesis▿ †

    PubMed Central

    Chawla, Geetanjali; Lin, Chia-Ho; Han, Areum; Shiue, Lily; Ares, Manuel; Black, Douglas L.

    2009-01-01

    Sam68 (Src-associated in mitosis, 68 kDa) is a KH domain RNA binding protein implicated in a variety of cellular processes, including alternative pre-mRNA splicing, but its functions are not well understood. Using RNA interference knockdown of Sam68 expression and splicing-sensitive microarrays, we identified a set of alternative exons whose splicing depends on Sam68. Detailed analysis of one newly identified target exon in epsilon sarcoglycan (Sgce) showed that both RNA elements distributed across the adjacent introns and the RNA binding activity of Sam68 are necessary to repress the Sgce exon. Sam68 protein is upregulated upon neuronal differentiation of P19 cells, and many Sam68 RNA targets change in expression and splicing during this process. When Sam68 is knocked down by short hairpin RNAs, many Sam68-dependent splicing changes do not occur and P19 cells fail to differentiate. We also found that the differentiation of primary neuronal progenitor cells from embryonic mouse neocortex is suppressed by Sam68 depletion and promoted by Sam68 overexpression. Thus, Sam68 controls neurogenesis through its effects on a specific set of RNA targets. PMID:18936165

  15. The Investigation of Magnesium Perchlorate/Iron Phase-mineral Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Heil, E.; Archer, P. D.; Ming, D. W.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P. R.; Niles, P. B.; Stern, J. C.; Navarro-Gonzalez, R.; McKay, C. P.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detect-ed O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumber-land (CB) drill hole materials in Gale Crater (Fig. 1) [1,2]. Chlorinated hydrocarbons have also been detect-ed by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [1,2,3,4]. These detections along with the detection of perchlorate (ClO4(-)) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) [5] suggesting perchlo-rate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal tempera-ture match to the SAM O2 and HCl release data [1,2]. Catalytic reactions of Fe phases in the Gale Crater ma-terial with perchlorates can potentially reduce the de-composition temperatures of these otherwise pure per-chlorate/chlorate phases [e.g., 6,7]. Iron mineralogy found in the Rocknest materials when mixed with Ca-perchlorate was found to cause O2 release temperatures to be closer match to the SAM O2 release data and enhance HCl gas releases. Exact matches to the SAM data has unfortnunately not been achieved with Ca-perchlorate-Fe-phase mixtures [8]. The effects of Fe-phases on magnesium perchlorate thermal decomposi-tion release of O2 and HCl have not been evaluated and may provide improved matches to the SAM O2 and HCl release data. This work will evaluate the thermal decomposition of magnesium perchlorate mixed with fayalite/magnetite phase and a Mauna Kea palagonite (HWMK 919). The objectives are to 1) summarize O2 and HCl releases from the Gale Crater materials, and 2) evaluate the O2 and HCl releases from the Mg-perchlorate + Fe phase mixtures to determine if Mg-perchlorate mixed with Fe-phases can explain the Gale Crater O2 and HCl releases.

  16. In situ analysis of Mars soil sample with the sam gcms instrumentation onboard Curiosity : interpretation and comparison of measurements done at Rocknest and Yelloknife bay sites

    NASA Astrophysics Data System (ADS)

    Szopa, Cyril; Coll, Patrice; Cabane, Michel; Coscia, David; Buch, Arnaud; Francois, Pascaline; Millan, Maeva; Teinturier, Sammy; Navarro-Gonzales, Rafael; Glavin, Daniel; Freissinet, Caro; Steele, Andrew; Eigenbrode, Jen; Mahaffy, Paul

    2014-05-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was chosen to achieve all the measurements done up today, as it was designed for the separation of a wide range of volatile organic molecules. Three solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, and two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Ming D. et al. (2013), Science, 32, 64

  17. Mutational analysis of residues in human arsenic (III) methyltransferase (hAS3MT) belonging to 5 Å around S-adenosylmethionine (SAM).

    PubMed

    Li, Xiangli; Geng, Zhirong; Chang, Jiayin; Song, Xiaoli; Wang, Zhilin

    2014-12-01

    The functions of residues 57-RY-58, G60, L77, 80-GSGR-83, I101, T104, 134-GY-135, N155, V157 and 160-LV-161 in human arsenic (III) methyltransferase (hAS3MT) 5 Å around S-adenosylmethionine (SAM) have not been studied. Herein, sixteen mutants were designed by substituting these residues with Ala. Mutants G60A, G80A, I101A, N155A and L160A were completely inactive. Only MMA was detected when mutants R57A, Y58A, G82A and T104A were used as the enzymes, which suggested that their catalytic activities were seriously impaired compared with that of wild type (WT). The catalytic capacities of other mutants were also lower than that of WT-hAS3MT. The KM(SAM) values of mutants were 1.9–8.7 times that of WT, suggesting their affinities to SAM were weakened. As evidenced by the experimental data herein, earlier literature and the model of hAS3MT-SAM, 57-RYYG-60, G78, G80, G82 and 155-NCV-157 interacted with the methionine of SAM, and 101-IDMT-104 and 135-YIE-137 were associated with the nucleotide adenosine of SAM. Since C156 and L160 were the common residues between 5 Å around SAM and 5 Å around As, and C156S and L160A were inactive, we proposed that C156 and L160 functioned in the methyl transfer process. G78, G80 and G82 belonging to the consensus GxGxG were located in a loop connecting the first β-strand and α-helix in the Rossmann fold core. Y59, N155, C156 and L160 oriented S(+)-CH(3) during its approach to the arsenic lone pair, and further activated methyl transfer. G78, D102, M103, T104, I136 and N155 formed hydrogen bonds with SAM.

  18. Substation alarm multiplexing system (SAMS)

    SciTech Connect

    ElBadaly, H.; Gaughan, J.; Ward, G.; Amengual, S.

    1996-03-01

    This paper describes an on going R&D project to develop, design, install, and assess the field performance of an advanced substation alarm system. SAMS provides a highly fault-tolerant system for the reporting of equipment alarms. SAMS separates and identifies each of the multiple alarm contacts, transmits an alarm condition over existing substation two-wire system, and displays the alarm source, and its associated technical information, on a touch-screen monitor inside the substation control room, and a remote central location and on a hand held terminal which may be carried anywhere within the substation. SAMS is currently installed at the Sherman Creek substation in the Bronx for the purpose of a three month field evaluation.

  19. The Investigation of Chlorate/Iron-Phase Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Clark, J.; Sutter, B.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P.; Mahaffy, P.; Navarro-Gonzalez, R.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected oxygen and HCl gas releases from all analyzed Gale Crater sediments. The presence of perchlorate ClO4(sup-) and/or chlorates ClO3(sup-) are potential sources of the aforementioned O2 releases. The detections of O2 and HCl gas releases and chlorinated hydrocarbons by SAM coupled with the detection of perchlorates by Phoenix Lander's 2008 Wet Chemistry Laboratory all suggest that perchlorates, and possibly chorates, may be present in the Gale Crater sediments. Previous laboratory studies have attempted to replicate these O2 releases by heating perchlorates and chlorates in instruments operated similarly to those in the SAM instrument. Early studies found that pure perchlorates release O2 at temperatures higher than those observed in SAM data. Subsequently, studies were done to test the effects of mixing iron-phase minerals, analogous to those detected on Mars by ChemMin, with perchlorates. The iron in these minerals acts as a catalyst and causes O2 to be released from the perchlorate at a lower temperature. These studies found that perchlorate solutions mixed with either Hawaii palagonite or ferrihydrite produce O2 releases at temperatures similar to the Rocknest (RN) windblown deposit and the John Klein (JK) drill sample from the Sheepbed mudstone. The study also determined that perchlorate mixtures with magnetite, hematite, fayalite-magnetite, ilmentite, and pyrrhotite produce O2 releases at temperatures similar to the Confidence Hills (CH) drill sample from the Murray mudstone. Oxygen re-leases from pure chlorates were recently compared with the SAM data. Laboratory analyses determined that Ca-chlorate produces O2 and HCl peaks that are similar to those detected in RN and JK materials. Currently, no perchlorate/chlorate mixture with iron-phase minerals can explain the O2 releases from either the Cumberland (CB) drill sample from the Sheepbed mudstone or Windjana (WJ) drill

  20. SAM 2 data user's guide

    NASA Technical Reports Server (NTRS)

    Chu, W. P.; Osborn, M. T.; Mcmaster, L. R.

    1988-01-01

    This document is intended to serve as a guide to the use of the data products from the Stratospheric Aerosol Measurement (SAM) 2 experiment for scientific investigations of polar stratospheric aerosols. Included is a detailed description of the Beta and Aerosol Number Density Archive Tape (BANAT), which is the SAM 2 data product containing the aerosol extinction data available for these investigations. Also included are brief descriptions of the instrument operation, data collection, processing and validation, and some of the scientific analyses conducted to date.

  1. Auxiliary iron-sulfur cofactors in radical SAM enzymes.

    PubMed

    Lanz, Nicholas D; Booker, Squire J

    2015-06-01

    A vast number of enzymes are now known to belong to a superfamily known as radical SAM, which all contain a [4Fe-4S] cluster ligated by three cysteine residues. The remaining, unligated, iron ion of the cluster binds in contact with the α-amino and α-carboxylate groups of S-adenosyl-l-methionine (SAM). This binding mode facilitates inner-sphere electron transfer from the reduced form of the cluster into the sulfur atom of SAM, resulting in a reductive cleavage of SAM to methionine and a 5'-deoxyadenosyl radical. The 5'-deoxyadenosyl radical then abstracts a target substrate hydrogen atom, initiating a wide variety of radical-based transformations. A subset of radical SAM enzymes contains one or more additional iron-sulfur clusters that are required for the reactions they catalyze. However, outside of a subset of sulfur insertion reactions, very little is known about the roles of these additional clusters. This review will highlight the most recent advances in the identification and characterization of radical SAM enzymes that harbor auxiliary iron-sulfur clusters. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. [German translation and validation of the Stress Appraisal Measure (SAM)].

    PubMed

    Delahaye, M; Stieglitz, R D; Graf, M; Keppler, C; Maes, J; Pflueger, M

    2015-05-01

    In the present study, the German-language version of the Stress Appraisal Measure (SAM) by Peacock and Wong was validated in a student population. SAM is a relatively short questionnaire (28 items) that evaluates a current, stress-triggering event. The theoretical background is provided by the stress model of Lazarus and Folkman. 85 students (age: 23; 59 female, 26 male) were exposed to two stress scenarios in order to test whether they were suited to provoke stress. A factor analysis was performed and the internal consistency of the seven SAM scales was determined. In addition, the convergent validity of SAM with State and Trait Anxiety Inventory (STAI), Coping Inventory for Stressful Situations (CISS) and specific emotion scales was investigated via Pearson's product-moment correlation. The two stress scenarios were suited to evoke stress. The factor structure and the internal consistency of the individual scales, as well as the convergent validity of SAM were replicated with minor limitations in the present German version. Some items (especially from the fifth factor) were only replicated partially. SAM can also be employed in the German language version. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Structural insights into SAM domain‐mediated tankyrase oligomerization

    PubMed Central

    DaRosa, Paul A.; Ovchinnikov, Sergey

    2016-01-01

    Abstract Tankyrase 1 (TNKS1; a.k.a. ARTD5) and tankyrase 2 (TNKS2; a.k.a ARTD6) are highly homologous poly(ADP‐ribose) polymerases (PARPs) that function in a wide variety of cellular processes including Wnt signaling, Src signaling, Akt signaling, Glut4 vesicle translocation, telomere length regulation, and centriole and spindle pole maturation. Tankyrase proteins include a sterile alpha motif (SAM) domain that undergoes oligomerization in vitro and in vivo. However, the SAM domains of TNKS1 and TNKS2 have not been structurally characterized and the mode of oligomerization is not yet defined. Here we model the SAM domain‐mediated oligomerization of tankyrase. The structural model, supported by mutagenesis and NMR analysis, demonstrates a helical, homotypic head‐to‐tail polymer that facilitates TNKS self‐association. Furthermore, we show that TNKS1 and TNKS2 can form (TNKS1 SAM‐TNKS2 SAM) hetero‐oligomeric structures mediated by their SAM domains. Though wild‐type tankyrase proteins have very low solubility, model‐based mutations of the SAM oligomerization interface residues allowed us to obtain soluble TNKS proteins. These structural insights will be invaluable for the functional and biophysical characterization of TNKS1/2, including the role of TNKS oligomerization in protein poly(ADP‐ribosyl)ation (PARylation) and PARylation‐dependent ubiquitylation. PMID:27328430

  4. SAM Overview: The Habitability of Mars

    NASA Image and Video Library

    Featuring an interview with Paul Mahaffy, SAM's Principal Investigator, this video gives a general overview of SAM's mission aboard the Mars Science Laboratory, otherwise known as the Curiosity rover.

  5. High expression level and nuclear localization of Sam68 are associated with progression and poor prognosis in colorectal cancer

    PubMed Central

    2013-01-01

    Background Src-associated in mitosis (Sam68; 68 kDa) has been implicated in the oncogenesis and progression of several human cancers. The aim of this study was to investigate the clinicopathologic significance of Sam68 expression and its subcellular localization in colorectal cancer (CRC). Methods Sam68 expression was examined in CRC cell lines, nine matched CRC tissues and adjacent noncancerous tissues using reverse transcription (RT)-PCR, quantitative RT-PCR and Western blotting. Sam68 protein expression and localization were determined in 224 paraffin-embedded archived CRC samples using immunohistochemistry. Statistical analyses were applied to evaluate the clinicopathologic significance. Results Sam68 was upregulated in CRC cell lines and CRC, as compared with normal tissues; high Sam68 expression was detected in 120/224 (53.6%) of the CRC tissues. High Sam68 expression correlated significantly with poor differentiation (P = 0.033), advanced T stage (P < 0.001), N stage (P = 0.023) and distant metastasis (P = 0.033). Sam68 nuclear localization correlated significantly with poor differentiation (P = 0.002) and T stage (P =0.021). Patients with high Sam68 expression or Sam68 nuclear localization had poorer overall survival than patients with low Sam68 expression or Sam68 cytoplasmic localization. Patients with high Sam68 expression had a higher risk of recurrence than those with low Sam68 expression. Conclusions Overexpression of Sam68 correlated highly with cancer progression and poor differentiation in CRC. High Sam68 expression and Sam68 nuclear localization were associated with poorer overall survival. PMID:23937454

  6. SAM Technical Contacts

    EPA Pesticide Factsheets

    These technical contacts are available to help with questions regarding method deviations, modifications, sample problems or interferences, quality control requirements, the use of alternative methods, or the need to address analytes or sample types.

  7. Probing the nature and resistance of the molecule-electrode contact in SAM-based junctions.

    PubMed

    Sangeeth, C S Suchand; Wan, Albert; Nijhuis, Christian A

    2015-07-28

    It is challenging to quantify the contact resistance and to determine the nature of the molecule-electrode contacts in molecular two-terminal junctions. Here we show that potentiodynamic and temperature dependent impedance measurements give insights into the nature of the SAM-electrode interface and other bottlenecks of charge transport (the capacitance of the SAM (C(SAM)) and the resistance of the SAM (R(SAM))), unlike DC methods, independently of each other. We found that the resistance of the top-electrode-SAM contact for junctions with the form of Ag(TS)-SC(n)//GaO(x)/EGaIn with n = 10, 12, 14, 16 or 18 is bias and temperature independent and hence Ohmic (non-rectifying) in nature, and is orders of magnitude smaller than R(SAM). The C(SAM) and R(SAM) are independent of the temperature, indicating that the mechanism of charge transport in these SAM-based junctions is coherent tunneling and the charge carrier trapping at the interfaces is negligible.

  8. The Investigation of Chlorate and Perchlorate/Saponite Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater

    NASA Technical Reports Server (NTRS)

    Clark, J.; Sutter, B.; Min, D. W.; Mahaffy, P.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected O2 and HCl gas releases from all analyzed Gale Crater sediments, which are attributed to the presence of perchlorates and/or chlorates in martian sediment. Previous SAM analog laboratory analyses found that most pure perchlorates and chlorates release O2 and HCl at different temperatures than those observed in the SAM data. Subsequent studies examined the effects of perchlorate and chlorate mixtures with Gale Crater analog iron phases, which are known to catalyze oxychlorine decomposition. Several mixtures produced O2 releases at similar temperatures as Gale Crater materials, but most of these mixtures did not produce significant HCl releases comparable to those detected by the SAM instrument. In order to better explain the Gale Crater HCl releases, perchlorates and chlorates were mixed with Gale Crater analog saponite, which is found at abundances from 8 to 20 wt % in the John Klein and Cumberland drill samples. Mixtures of chlorates or perchlorates with calcium-saponite or ferrian-saponite were heated to 1000 deg C in a Labsys EVO differential scanning calorimeter/mass spectrometer configured to operate similarly to the SAM oven/quadrupole mass spectrometer system. Our results demonstrate that all chlorate and perchlorate mixtures produce significant HCl releases below 1000 deg C as well as depressed oxygen peak release temperatures when mixed with saponite. The type of saponite (calcium or ferrian saponite) did not affect the evolved gas results significantly. Saponite/Mg-perchlorate mixtures produced two HCl releases similar to the Cumberland drilled sample. Mg-chlorate mixed with saponite produced HCl releases similar to the Big Sky drilled sample in an eolian sandstone. A mixture of Ca-perchlorate and saponite produced HCl and oxygen releases similar to the Buckskin mudstone drilled sample and the Gobabeb 2 eolian dune material. Ca-chlorate mixed with saponite produced both

  9. SAMS Acceleration Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Finkelstein, Robert; Reckart, Timothy

    1997-01-01

    During NASA Increment 3 (September 1996 to January 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 11 optical disks and were returned to Earth on STS-81. During this time, SAMS data were collected in the Priroda module to support the following experiments: the Mir Structural Dynamics Experiment (MiSDE) and Binary Colloidal Alloy Tests (BCAT). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-81 operations, a Progress engine burn, attitude control thruster operation, and crew exercise. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  10. Data handling with SAM and art at the NOvA experiment

    SciTech Connect

    Aurisano, A.; Backhouse, C.; Davies, G. S.; Illingworth, R.; Mayer, N.; Mengel, M.; Norman, A.; Rocco, D.; Zirnstein, J.

    2015-12-23

    During operations, NOvA produces between 5,000 and 7,000 raw files per day with peaks in excess of 12,000. These files must be processed in several stages to produce fully calibrated and reconstructed analysis files. In addition, many simulated neutrino interactions must be produced and processed through the same stages as data. To accommodate the large volume of data and Monte Carlo, production must be possible both on the Fermilab grid and on off-site farms, such as the ones accessible through the Open Science Grid. To handle the challenge of cataloging these files and to facilitate their off-line processing, we have adopted the SAM system developed at Fermilab. SAM indexes files according to metadata, keeps track of each file's physical locations, provides dataset management facilities, and facilitates data transfer to off-site grids. To integrate SAM with Fermilab's art software framework and the NOvA production workflow, we have developed methods to embed metadata into our configuration files, art files, and standalone ROOT files. A module in the art framework propagates the embedded information from configuration files into art files, and from input art files to output art files, allowing us to maintain a complete processing history within our files. Embedding metadata in configuration files also allows configuration files indexed in SAM to be used as inputs to Monte Carlo production jobs. Further, SAM keeps track of the input files used to create each output file. Parentage information enables the construction of self-draining datasets which have become the primary production paradigm used at NOvA. In this study we will present an overview of SAM at NOvA and how it has transformed the file production framework used by the experiment.

  11. Sam.

    ERIC Educational Resources Information Center

    Wilson, James C.

    1988-01-01

    A father writes about his six-year-old son born with hydrocephalus. He describes such day-to-day experiences as going to a baseball game and the grocery store, reactions of friends and strangers to his son's social interactions, and a special day at preschool. The boy's medical treatment, including surgeries, are also described. (VW)

  12. Sam.

    ERIC Educational Resources Information Center

    Wilson, James C.

    1988-01-01

    A father writes about his six-year-old son born with hydrocephalus. He describes such day-to-day experiences as going to a baseball game and the grocery store, reactions of friends and strangers to his son's social interactions, and a special day at preschool. The boy's medical treatment, including surgeries, are also described. (VW)

  13. Statin-associated muscle symptoms (SAMS) in primary prevention for cardiovascular disease in older adults: a protocol for a systematic review and meta-analysis of randomised controlled trials.

    PubMed

    Zhou, Zhen; Albarqouni, Loai; Breslin, Monique; Curtis, Andrea J; Nelson, Mark

    2017-09-27

    Although statins are commonly used for prevention of cardiovascular disease, there is limited evidence about statin-related adverse effects in older people. Statin-related adverse events (AEs), especially the statin-associated muscle symptoms (SAMS), are the most common reasons for their discontinuation. Therefore, it is important to determine the risk of SAMS in the older population. We will undertake a systematic review and meta-analysis primarily focusing on the risk of SAMS and secondarily targeting myopathy, rhabdomyolysis, AEs and serious AEs, dropouts due to SAMS in run-in period, related permanent discontinuation rate of statins and creatine kinase level, among older people who received statins for primary prevention. This study has been developed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols statement. We will include randomised controlled trials in which statin was compared with placebo with at least 1 year follow-up among older adults aged ≥65. This review is an update of a Cochrane systematic review that included the articles published before 2012. Cochrane Central Register of Controlled Trials, Medline OvidSP and Embase electronic database searches will be performed to identify relevant articles, limiting the publication date from 1 January 2012 to 13 February 2017. There will be no language limitation. Two independent reviewers will screen titles and abstracts and full text in duplicate. Risk of bias and evidence quality will be assessed using the Cochrane Collaboration's tool and the Grading of Recommendations Assessment, Development and Evaluation approach, respectively. A meta-analysis using pooled data will be undertaken, if appropriate. We will also perform metaregression and subgroup analyses to identify sources of heterogeneity. This study is exempt from ethics approval due to the anonymous and aggregated data used. The outcomes will be disseminated by conference presentations and published in

  14. Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis.

    PubMed

    Wenz, Lena-Sophie; Ellenrieder, Lars; Qiu, Jian; Bohnert, Maria; Zufall, Nicole; van der Laan, Martin; Pfanner, Nikolaus; Wiedemann, Nils; Becker, Thomas

    2015-09-28

    Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM-SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of β-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane. © 2015 Wenz et al.

  15. Sam37 is crucial for formation of the mitochondrial TOM–SAM supercomplex, thereby promoting β-barrel biogenesis

    PubMed Central

    Wenz, Lena-Sophie; Ellenrieder, Lars; Qiu, Jian; Bohnert, Maria; Zufall, Nicole; van der Laan, Martin; Becker, Thomas

    2015-01-01

    Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM–SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of β-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane. PMID:26416958

  16. SAM 2 balloon test (stratospheric aerosol measurement)

    NASA Technical Reports Server (NTRS)

    Pepin, T. J.

    1976-01-01

    As a parallel effort to the LACATE balloon experiment a small optical system was constructed to enable a balloon test of a diode filter system similar to the type planned for the Nimbus-G SAM II experiment. The system was called the SAM II Balloon Test. Results of the balloon flight are summarized.

  17. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    SciTech Connect

    Blair, N.; Dobos, A.; Ferguson, T.; Freeman, J.; Gilman, P.; Whitmore, J.

    2014-05-01

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysis and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.

  18. K-sam, an amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes

    SciTech Connect

    Hattori, Yutaka; Odagiri, Hiroki; Nakatani, Hiroshi; Miyagawa, Kiyoshi; Naito, Kenichiro; Sakamoto, Hiromi; Katoh, Osamu; Yoshida, Teruhiko; Sugimura, Takashi; Terada, Masaaki )

    1990-08-01

    DNA fragments amplified in a stomach cancer-derived cell line, KATO-III, were previously identified by the in-gel DNA renaturation method, and a 0.2-kilobase-pair fragment of the amplified sequence was subsequently cloned. By genomic walking, a portion of the exon of the gene flanking this 0.2-kilobase-pair fragment was cloned, and the gene was designated as K-sam ({und K}ATO-III cell-derived {und s}tomach cancer {und am}plified gene). The K-sam cDNAs, corresponding to the 3.5-kilobase K-sam mRNA, were cloned from the KATO-III cells. Sequence analysis revealed that this gene coded for 682 amino acid residues that satisfied the characteristics of the receptor tyrosine kinase. The K-sam gene had significant homologies with bek, FLG, and chicken basic fibroblast growth factor receptor gene. The K-sam gene was amplified in KATO-III cells with the major transcript of 3.5-kilobases in size. This gene was also expressed in some other stomach cancer cells, a small cell lung cancer, and germ cell tumors.

  19. K-sam, an amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes.

    PubMed Central

    Hattori, Y; Odagiri, H; Nakatani, H; Miyagawa, K; Naito, K; Sakamoto, H; Katoh, O; Yoshida, T; Sugimura, T; Terada, M

    1990-01-01

    DNA fragments amplified in a stomach cancer-derived cell line, KATO-III, were previously identified by the in-gel DNA renaturation method, and a 0.2-kilobase-pair fragment of the amplified sequence was subsequently cloned. By genomic walking, a portion of the exon of the gene flanking this 0.2-kilobase-pair fragment was cloned, and the gene was designated as K-sam (KATO-III cell-derived stomach cancer amplified gene). The K-sam cDNAs, corresponding to the 3.5-kilobase K-sam mRNA, were cloned from the KATO-III cells. Sequence analysis revealed that this gene coded for 682 amino acid residues that satisfied the characteristics of the receptor tyrosine kinase. The K-sam gene had significant homologies with bek, FLG, and chicken basic fibroblast growth factor receptor gene. The K-sam gene was amplified in KATO-III cells with the major transcript of 3.5-kilobases in size. This gene was also expressed in some other stomach cancer cells, a small cell lung cancer, and germ cell tumors. Images PMID:2377625

  20. SAMS-II Requirements and Operations

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.

    1998-01-01

    The Space Acceleration Measurements System (SAMS) II is the primary instrument for the measurement, storage, and communication of the microgravity environment aboard the International Space Station (ISS). SAMS-II is being developed by the NASA Lewis Research Center Microgravity Science Division to primarily support the Office of Life and Microgravity Science and Applications (OLMSA) Microgravity Science and Applications Division (MSAD) payloads aboard the ISS. The SAMS-II is currently in the test and verification phase at NASA LeRC, prior to its first hardware delivery scheduled for July 1998. This paper will provide an overview of the SAMS-II instrument, including the system requirements and topology, physical and electrical characteristics, and the Concept of Operations for SAMS-II aboard the ISS.

  1. Sam68 is Overexpressed in Epithelial Ovarian Cancer and Promotes Tumor Cell Proliferation

    PubMed Central

    Dong, Lijuan; Che, Hailuo; Li, Mingmei; Li, Xuepeng

    2016-01-01

    Background Epithelial ovarian cancer (EOC) is the deadliest gynecological malignancy, and evidence is accumulating on how molecular markers may be associated with the origin and process of EOC. Sam68 (Src-associated in mitosis, of 68 kD), is a K homology domain RNA-binding protein that has been investigated as a risk factor in multiple types of tumors. The aim of the present study was to investigate the contribution of the Sam68 gene in the pathogenesis of EOC. Material/Methods Western blot assay and real-time quantitative PCR methods were performed to examine Sam68 expression in EOC tissue specimens. The association of Sam68 expression with clinic-pathologic variables of EOC was evaluated. Then gain-of-function and loss-of-function strategies were adopted to examine the regulation of Sam68 on the proliferation of EOC OVCAR-3 cells using CCK-8 and colony forming assays. Results Sam68 was overexpressed in both mRNA and protein levels in EOC tumor tissue (n=152) in an association with malignant factors of EOC such as International Federation of Gynecology and Obstetrics (FIGO) stage, residual tumor size (cm), histological grade, and lymph node metastasis. In vitro results demonstrated that Sam68 overexpression was upregulated while Sam68 knockdown downregulated the proliferation of EOC OVCAR-3 cells via regulation of cell growth and colony formation. Conclusions Sam68 was overexpressed in EOC tissue in association with such cancer malignant factors of FIGO stage, histological grade, and lymph node metastasis, and also positively regulated the proliferation of EOC cells. Our research suggests that Sam68 might accelerate cell cycle progression, and present as a prognostic marker for EOC. PMID:27623016

  2. The Discovery of Polar Stratospheric Clouds by SAM II

    NASA Astrophysics Data System (ADS)

    Poole, L. R.; McCormick, M. P.

    2005-12-01

    Until the advent of spaceborne observations, clouds were thought to occur very rarely in the extremely dry stratosphere. This view changed dramatically following the launch of the Stratospheric Aerosol Measurement (SAM) II instrument on the Nimbus 7 spacecraft in October 1978. SAM II was a single channel solar photometer designed to measure stratospheric aerosol extinction profiles at a wavelength of 1.0 micron at latitudes from 64-80 degrees in both hemispheres. An analysis of SAM II data from the Arctic for January 1979 revealed a number of profiles in which the extinction was 1-2 orders of magnitude larger than expected. Careful study showed that these large extinction values were not artifacts, but were indeed due to dramatic reductions in the amount of solar radiance reaching the instrument. Further analyses showed that these so-called polar stratospheric clouds (PSCs) were observed only when the local stratospheric temperature was very low (185-200 K). The interest in PSCs was primarily academic until the discovery of the Antarctic ozone hole in 1985, which was quickly followed by studies associating this ozone depletion with the release of active chlorine through heterogeneous chemical reactions catalyzed by PSC particles. A large body of research over the ensuing two decades has firmly established this link. In this paper, we will recount the serendipitous discovery of PSCs in SAM II data more than 25 years ago and highlight other advances in our understanding of PSCs that have stemmed from spaceborne observations.

  3. samExploreR: exploring reproducibility and robustness of RNA-seq results based on SAM files.

    PubMed

    Stupnikov, Alexey; Tripathi, Shailesh; de Matos Simoes, Ricardo; McArt, Darragh; Salto-Tellez, Manuel; Glazko, Galina; Dehmer, Matthias; Emmert-Streib, Frank

    2016-11-01

    Data from RNA-seq experiments provide us with many new possibilities to gain insights into biological and disease mechanisms of cellular functioning. However, the reproducibility and robustness of RNA-seq data analysis results is often unclear. This is in part attributed to the two counter acting goals of (i) a cost efficient and (ii) an optimal experimental design leading to a compromise, e.g. in the sequencing depth of experiments. We introduce an R package called samExploreR that allows the subsampling (m out of n bootstraping) of short-reads based on SAM files facilitating the investigation of sequencing depth related questions for the experimental design. Overall, this provides a systematic way for exploring the reproducibility and robustness of general RNA-seq studies. We exemplify the usage of samExploreR by studying the influence of the sequencing depth and the annotation on the identification of differentially expressed genes. samExploreR is available as an R package from Bioconductor. v@bio-complexity.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Patterning NHS-terminated SAMs on germanium.

    PubMed

    Morris, Carleen J; Shestopalov, Alexander A; Gold, Brian H; Clark, Robert L; Toone, Eric J

    2011-05-17

    Here we report a simple, robust approach to patterning functional SAMs on germanium. The protocol relies on catalytic soft-lithographic pattern transfer from an elastomeric stamp bearing pendant immobilized sulfonic acid moieties to an NHS-functionalized bilayer molecular system comprising a primary ordered alkyl monolayer and a reactive ester secondary overlayer. The catalytic polyurethane-acrylate stamp was used to form micrometer-scale features of chemically distinct SAMs on germanium. The methodology represents the first example of patterned SAMs on germanium, a semiconductor material.

  5. Rapid Radiochemical Method for Isotopic Uranium in Building ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Uranium-234, uranium-235, and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of uranium-234, uranium-235, and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  6. STS-134 Crew Talks With Sam Ting

    NASA Image and Video Library

    The STS-134 crew talks with Sam Ting, principal investigator for the Alpha Magnetic Spectrometer, following the installation of the particle physics detector on the International Space Station duri...

  7. NES Live Video Chat: Engineer Sam Ortega

    NASA Image and Video Library

    The NES project invited all K-12 students to participate in a one-hour-long NASA video webchat on April 19, 2011 with NASA engineer Sam Ortega. Ortega answered questions about building and testing ...

  8. Identification of trans-acting factors regulating SamDC expression in Oryza sativa

    SciTech Connect

    Basu, Supratim; Roychoudhury, Aryadeep; Sengupta, Dibyendu N.

    2014-03-07

    Highlights: • Identification of cis elements responsible for SamDC expression by in silico analysis. • qPCR analysis of SamDC expression to abiotic and biotic stress treatments. • Detection of SamDC regulators using identified cis-elements as probe by EMSA. • Southwestern Blot analysis to predict the size of the trans-acting factors. - Abstract: Abiotic stress affects the growth and productivity of crop plants; to cope with the adverse environmental conditions, plants have developed efficient defense machinery comprising of antioxidants like phenolics and flavonoids, and osmolytes like polyamines. SamDC is a key enzyme in the polyamine biosynthesis pathway in plants. In our present communication we have done in silico analysis of the promoter region of SamDC to look for the presence of different cis-regulatory elements contributing to its expression. Based on the presence of different cis-regulatory elements we completed comparative analysis of SamDC gene expression in rice lamina of IR-29 and Nonabokra by qPCR in response to the abiotic stress treatments of salinity, drought, cold and the biotic stress treatments of ABA and light. Additionally, to explore the role of the cis-regulatory elements in regulating the expression of SamDC gene in plants we comparatively analyzed the binding of rice nuclear proteins prepared from IR-29 and Nonabokra undergoing various stress treatments. The intensity of the complex formed was low and inducible in IR-29 in contrast to Nonabokra. Southwestern blot analysis helped in predicting the size of the trans-acting factors binding to these cis-elements. To our knowledge this is the first report on the comprehensive analysis of SamDC gene expression in rice and identification of the trans-acting factors regulating its expression.

  9. First use of SAM onboard calibration gas cell

    NASA Astrophysics Data System (ADS)

    Malespin, C.; Trainer, M. G.; Manning, H. L.; Franz, H. B.; Conrad, P. G.; Raaen, E.; Webster, C. R.; Flesch, G.; Eigenbrode, J. L.; Wong, M. H.; Mahaffy, P. R.

    2015-12-01

    The Sample Analysis at Mars (SAM) instrument (Mahaffy et al 2012) suite on Curiosity completed its first measurement of the onboard calibration gas cell on MSL Mission Sol 1042. The cell consists of a gas mixture of four primary gases, along with trace fluorinated hydrocarbon high mass calibrants. The mix is comprised of approximately 25% CO2, N2, Xe and Ar, where the 129Xe has been given a three times enrichment relative to terrestrial xenon in order to distinguish it isotopically from Martian atmospheric Xe. Analysis of the calibration cell is intended to identify changes in instrument performance between pre-launch calibrations and operations on Mars, for any of the three main subsystems in SAM: the Quadrupole Mass Spectrometer (QMS), Tunable Laser Spectrometer (TLS), and Gas Chromatograph (GC). Here we present the experimental approach, results, and implications for instrument performance after almost three years of measurements on Mars.

  10. Effect of the Presence of Chlorates and Perchlorates on the Pyrolysis of Organic Compounds: Implications for Measurements Done with the SAM Experiment Onboard the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.; Mahaffy, P.

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.

  11. Characterization of pra, a gene for replication control in pSAM2, the integrating element of Streptomyces ambofaciens.

    PubMed

    Sezonov, G; Hagège, J; Pernodet, J L; Friedmann, A; Guérineau, M

    1995-08-01

    pSAM2 is a genetic element found integrated in Streptomyces ambofaciens (B2) and additionally in a replicating form in two mutants B3 and B4. The presence of the pSAM2 replicating form in these mutants was the result of mutations located on pSAM2 in the pra locus, named pra3 and pra4, respectively. The pra gene is not directly involved in replication, but its inactivation led to the disappearance of the pSAM2 free form; therefore, it was considered as a replication regulator. The pra3 and pra4 mutations were located in the pra promoter and were shown to be point substitutions that increase the promoter strength. The replication regulator role of pra was demonstrated by the fact that its constitutive expression in cells harbouring pSAM2B2, which is normally only integrated, led to the appearance of the pSAM2 replicating form. Northern analysis showed that the pra gene transcript can be detected only for the replicating mutants B3 and B4 and that the three adjacent genes korSA, pra and traSA were transcribed separately. As replication of pSAM2 is not needed for its maintenance but is an indispensable stage of its transfer, the pra gene, described formally as an activator of pSAM2 replication, is patently involved in pSAM2 transfer.

  12. Rapid Method for Sodium Hydroxide Fusion of Asphalt ...

    EPA Pesticide Factsheets

    Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 The method will be used for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in asphalt matrices samples.

  13. Frequency response and design consideration of GaN SAM avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Xie, Feng; Yang, Guofeng; Zhou, Dong; Lu, Hai; Wang, Guosheng

    2016-11-01

    In this work, a method is developed for estimating the frequency response characteristics of GaN avalanche photodiodes (APDs) with separated absorption and multiplication regions (SAM). The method calculates the total diode current with varying frequency by solving transport equations analytically and uses a commercial device simulator as a supplement for determining the exact electrical field profile within the device. Due to the high carrier saturation velocity of GaN, a high-gain-bandwidth product over THz is found achievable for GaN SAM-APDs. The potential performances of GaN SAM-APDs with different structural designs are further compared through numerical studies. It is found that a close-to-reach-through design is attractive for simultaneously achieving both relatively low operation voltage and high working frequency. In addition, transit-time limit and RC-delay limit for the frequency response of GaN SAM-APDs are also discussed.

  14. Data processing method applying principal component analysis and spectral angle mapper for imaging spectroscopic sensors

    NASA Astrophysics Data System (ADS)

    García-Allende, P. B.; Conde, O. M.; Mirapeix, J.; Cubillas, A. M.; López-Higuera, J. M.

    2007-07-01

    A data processing method for hyperspectral images is presented. Each image contains the whole diffuse reflectance spectra of the analyzed material for all the spatial positions along a specific line of vision. This data processing method is composed of two blocks: data compression and classification unit. Data compression is performed by means of Principal Component Analysis (PCA) and the spectral interpretation algorithm for classification is the Spectral Angle Mapper (SAM). This strategy of classification applying PCA and SAM has been successfully tested on the raw material on-line characterization in the tobacco industry. In this application case the desired raw material (tobacco leaves) should be discriminated from other unwanted spurious materials, such as plastic, cardboard, leather, candy paper, etc. Hyperspectral images are recorded by a spectroscopic sensor consisting of a monochromatic camera and a passive Prism- Grating-Prism device. Performance results are compared with a spectral interpretation algorithm based on Artificial Neural Networks (ANN).

  15. SAM Chlorine Observations at Gale Crater

    NASA Astrophysics Data System (ADS)

    Conrad, P. G.; Farley, K. A.; Vasconcelos, P. M.; Malespin, C.; Franz, H.; McAdam, A.; Sutter, B.; Stern, J. C.; Clark, B. C.; Atreya, S. K.; Mahaffy, P. R.; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    The Sample Analysis at Mars investigation has detected Cl-bearing phases of various oxidation states in its thermally evolved gas measurements of both a wind drift deposit of fines and three different rock samples delivered as sieved drill powders to the instrument suite. In addition to HCl (Leshin et al, 2013; Ming et al, 2013) and chlorinated hydrocarbon detections (Glavin et al, 2013; Freissinet et al, in review), oxygen releases consistent with the decomposition of perchlorate salts are also observed. We have also measured chlorine isotope ratios of the four different solid samples, which yielded variable and more negative δ37Cl than typically observed in SNC meteorite analyses. We summarize our chlorine observations in the context of other gases observed in the SAM solid sample analyses, including water, sulfur- and nitrogen-bearing compounds, and REMS observations of Relative Humidity and Temperature, and compare with knowledge of martian chlorine obtained from the SNC meteorites. Finally, we examine the implications of surface/atmosphere Cl interactions and isotopic ratios for the rise and decline of habitable surface environments on Mars. This research was supported by the National Aeronautics and Space Administration (NASA) Mars Science Laboratory mission.

  16. SAM/SAH Analogs as Versatile Tools for SAM-Dependent Methyltransferases.

    PubMed

    Zhang, Jing; Zheng, Yujun George

    2016-03-18

    S-Adenosyl-L-methionine (SAM) is a sulfonium molecule with a structural hybrid of methionine and adenosine. As the second largest cofactor in the human body, its major function is to serve as methyl donor for SAM-dependent methyltransferases (MTases). The resultant transmethylation of biomolecules constitutes a significant biochemical mechanism in epigenetic regulation, cellular signaling, and metabolite degradation. Recently, numerous SAM analogs have been developed as synthetic cofactors to transfer the activated groups on MTase substrates for downstream ligation and identification. Meanwhile, new compounds built upon or derived from the SAM scaffold have been designed and tested as selective inhibitors for important MTase targets. Here, we summarized the recent development and application of SAM analogs as chemical biology tools for MTases.

  17. Surface adhesion and confinement variation of Bacillus subtilis on SAM surfaces

    NASA Astrophysics Data System (ADS)

    Swiger, Lauren; Pasquale, Rose; Calabrese, Joseph; Senevirathne, Indrajith

    2012-02-01

    Controlled surface adhesion of non - pathogenic gram positive strain, Bacillus subtilis is interesting as a model system due to possible development of respective biosensors for prevention and detection of the pathogenic variants B. anthracis and B. cereus. Further as a study for bio-machine interfacing systems. Self Assembled Monolayers (SAM) with engineered surfaces of linear thiols on Au(111) were used as the substrate. Sub cultured B. subtilis were used for the analysis. The SAM layered surfaces were dipped in 2 -- 5 Log/ml B. subtilis solution. Subsequent surface adhesion at different bacterial dilutions on surfaces will be discussed, and correlated with quantitative and qualitative adhesion properties of bacteria on the engineered SAM surfaces. The bacteria adhered SAM surfaces were investigated using intermittent contact, noncontact, lateral force and contact modes of Atomic Force Microscopy (AFM).

  18. Surface adhesion and confinement variation of Staphylococcus aurius on SAM surfaces

    NASA Astrophysics Data System (ADS)

    Amroski, Alicia; Olsen, Morgan; Calabrese, Joseph; Senevirathne, Reshani; Senevirathne, Indrajith

    2012-02-01

    Controlled surface adhesion of non - pathogenic gram positive strain, Staphylococcus aureus is interesting as a model system due to possible development of respective biosensors for prevention and detection of the pathogenic strain methicillin resistant Staphylococcus aureus (MRSA) and further as a study for bio-machine interfacing. Self Assembled Monolayers (SAM) with engineered surfaces of linear thiols on Au(111) were used as the substrate. Sub cultured S. aureus were used for the analysis. The SAM layered surfaces were dipped in 2 -- 4 Log/ml S. aureus solution. Subsequent surface adhesion at different bacterial dilutions on surfaces will be discussed, and correlated with quantitative and qualitative adhesion properties of bacteria on the engineered SAM surfaces. The bacteria adhered SAM surfaces were investigated using intermittent contact, noncontact, lateral force and contact modes of Atomic Force Microscopy (AFM).

  19. Obituary: Sam Roweis (1972-2010)

    NASA Astrophysics Data System (ADS)

    Hogg, David

    2011-12-01

    Computer scientist and statistical astronomer Sam Roweis took his own life in New York City on 2010 January 12. He was a brilliant and accomplished researcher in the field of machine learning, and a strong advocate for the use of computational statistics for automating discovery and scientific data analysis. He made several important contributions to astronomy and was working on adaptive astronomical data analysis at the time of his death. Roweis obtained his PhD in 1999 from the California Institute of Technology, where he worked on a remarkable range of subjects, including DNA computing, modeling of dynamical systems, signal processing, and speech recognition. During this time he unified and clarified some of the most important data analysis techniques, including Principal Component Analysis, Hidden Markov Models, and Expectation Maximization. His work was aimed at making data analysis and modeling faster, but also better justified scientifically. The last years of his PhD were spent in Princeton NJ, where he came in contact with a young generation of cosmologists thinking about microwave background and large-scale structure data. In a postdoc at University College London, Roweis co-created the Locally Linear Embedding (LLE) algorithm; a simple but flexible technique for mapping a large data set onto a low-dimensional manifold. The LLE paper obtained more than 2700 citations in 9 years, launched a new sub-field of machine learning known as "manifold learning," and inspired work in data visualization, search, and applied mathematics. In 2001, Roweis took a faculty job at the University of Toronto Computer Science Department. He continued working on data analysis methods that have probabilistic interpretation and therefore scientific applicability, but at the same time have good performance on large data sets. He was awarded a Sloan Fellowship, a Canada Research Chair, and a fellowship of the Canadian Institute for Advanced Research, among other honors and awards

  20. EPA Method 300.1, Revision 1.0: Determination of Inorganic Anions in Drinking Water by Ion Chromatography

    EPA Pesticide Factsheets

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples for fluoride. This method can be adapted for analysis of solid and air samples when appropriate sample preparation techniques have been applied.

  1. Sam, Brookhaven, and the Physical Review

    NASA Astrophysics Data System (ADS)

    Blume, Martin

    2010-03-01

    Sam Goudsmit came to Brookhaven National Laboratory in 1948, just after the first year of operation of the new institution, and after a year of his postwar appointment as Professor of Physics at Northwestern University. He was named an associate editor of the Physical Review at that time, under the then Managing Editor John T. Tate of the University of Minnesota. Tate had been Editor since 1926, and had presided over the growth of Physical Review to leadership of publication in the world of physics. Tate died in 1950, and after a search under an interim Editor Sam was, in 1951, named Managing Editor. In 1952 he became Chair of the Brookhaven Physics Department, founded Physical Review Letters, and served as department chair until 1960, when he stepped down but remained an Associate Chair. I will discuss my own interactions with Sam during this later period, when I learned of his many faceted talents and accomplishments.

  2. Basis for ligand discrimination between ON and OFF state riboswitch conformations: the case of the SAM-I riboswitch.

    PubMed

    Boyapati, Vamsi Krishna; Huang, Wei; Spedale, Jessica; Aboul-Ela, Fareed

    2012-06-01

    Riboswitches are RNA elements that bind to effector ligands and control gene expression. Most consist of two domains. S-Adenosyl Methionine (SAM) binds the aptamer domain of the SAM-I riboswitch and induces conformational changes in the expression domain to form an intrinsic terminator (transcription OFF state). Without SAM the riboswitch forms the transcription ON state, allowing read-through transcription. The mechanistic link between the SAM/aptamer recognition event and subsequent secondary structure rearrangement by the riboswitch is unclear. We probed for those structural features of the Bacillus subtilis yitJ SAM-I riboswitch responsible for discrimination between the ON and OFF states by SAM. We designed SAM-I riboswitch RNA segments forming "hybrid" structures of the ON and OFF states. The choice of segment constrains the formation of a partial P1 helix, characteristic of the OFF state, together with a partial antiterminator (AT) helix, characteristic of the ON state. For most choices of P1 vs. AT helix lengths, SAM binds with micromolar affinity according to equilibrium dialysis. Mutational analysis and in-line probing confirm that the mode of SAM binding by hybrid structures is similar to that of the aptamer. Altogether, binding measurements and in-line probing are consistent with the hypothesis that when SAM is present, stacking interactions with the AT helix stabilize a partially formed P1 helix in the hybrids. Molecular modeling indicates that continuous stacking between the P1 and the AT helices is plausible with SAM bound. Our findings raise the possibility that conformational intermediates may play a role in ligand-induced aptamer folding.

  3. Basis for ligand discrimination between ON and OFF state riboswitch conformations: The case of the SAM-I riboswitch

    PubMed Central

    Boyapati, Vamsi Krishna; Huang, Wei; Spedale, Jessica; Aboul-ela, Fareed

    2012-01-01

    Riboswitches are RNA elements that bind to effector ligands and control gene expression. Most consist of two domains. S-Adenosyl Methionine (SAM) binds the aptamer domain of the SAM-I riboswitch and induces conformational changes in the expression domain to form an intrinsic terminator (transcription OFF state). Without SAM the riboswitch forms the transcription ON state, allowing read-through transcription. The mechanistic link between the SAM/aptamer recognition event and subsequent secondary structure rearrangement by the riboswitch is unclear. We probed for those structural features of the Bacillus subtilis yitJ SAM-I riboswitch responsible for discrimination between the ON and OFF states by SAM. We designed SAM-I riboswitch RNA segments forming “hybrid” structures of the ON and OFF states. The choice of segment constrains the formation of a partial P1 helix, characteristic of the OFF state, together with a partial antiterminator (AT) helix, characteristic of the ON state. For most choices of P1 vs. AT helix lengths, SAM binds with micromolar affinity according to equilibrium dialysis. Mutational analysis and in-line probing confirm that the mode of SAM binding by hybrid structures is similar to that of the aptamer. Altogether, binding measurements and in-line probing are consistent with the hypothesis that when SAM is present, stacking interactions with the AT helix stabilize a partially formed P1 helix in the hybrids. Molecular modeling indicates that continuous stacking between the P1 and the AT helices is plausible with SAM bound. Our findings raise the possibility that conformational intermediates may play a role in ligand-induced aptamer folding. PMID:22543867

  4. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Atreya, S. K.; Manning, H. L.; Cabane, M.; Webster, C. R.; Sam Team

    2010-12-01

    Introduction: An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers. SAM Instrument Suite: SAM’s instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). SAM can identify organic compounds in Mars rocks to sub-ppb sensitivity and secure precise isotope ratios for C, H, and O in carbon dioxide and water and measure trace levels of methane and its carbon 13 isotope. The SAM gas processing system consists of valves, heaters, pressure sensors, gas scrubbers and getters, traps, and gas tanks used for calibration or combustion experiments [2]. A variety of calibrant compounds interior and exterior to SAM will allow the science and engineering teams to assess SAM’s performance. SAM has been calibrated and tested in a Mars-like environment. Keeping Educators and the Public Informed: The Education and Public Outreach (EPO) goals of the SAM team are to make this complex chemical laboratory and its data widely available to educators, students, and the public. Formal education activities include developing templates for professional development workshops for educators to teach them about SAM and Curiosity, incorporating data into Mars Student Data Teams, and writing articles

  5. The SAMS: Smartphone Addiction Management System and verification.

    PubMed

    Lee, Heyoung; Ahn, Heejune; Choi, Samwook; Choi, Wanbok

    2014-01-01

    While the popularity of smartphones has given enormous convenience to our lives, their pathological use has created a new mental health concern among the community. Hence, intensive research is being conducted on the etiology and treatment of the condition. However, the traditional clinical approach based surveys and interviews has serious limitations: health professionals cannot perform continual assessment and intervention for the affected group and the subjectivity of assessment is questionable. To cope with these limitations, a comprehensive ICT (Information and Communications Technology) system called SAMS (Smartphone Addiction Management System) is developed for objective assessment and intervention. The SAMS system consists of an Android smartphone application and a web application server. The SAMS client monitors the user's application usage together with GPS location and Internet access location, and transmits the data to the SAMS server. The SAMS server stores the usage data and performs key statistical data analysis and usage intervention according to the clinicians' decision. To verify the reliability and efficacy of the developed system, a comparison study with survey-based screening with the K-SAS (Korean Smartphone Addiction Scale) as well as self-field trials is performed. The comparison study is done using usage data from 14 users who are 19 to 50 year old adults that left at least 1 week usage logs and completed the survey questionnaires. The field trial fully verified the accuracy of the time, location, and Internet access information in the usage measurement and the reliability of the system operation over more than 2 weeks. The comparison study showed that daily use count has a strong correlation with K-SAS scores, whereas daily use times do not strongly correlate for potentially addicted users. The correlation coefficients of count and times with total K-SAS score are CC = 0.62 and CC =0.07, respectively, and the t-test analysis for the

  6. Human polyhomeotic homolog 3 (PHC3) sterile alpha motif (SAM) linker allows open-ended polymerization of PHC3 SAM.

    PubMed

    Robinson, Angela K; Leal, Belinda Z; Nanyes, David R; Kaur, Yogeet; Ilangovan, Udayar; Schirf, Virgil; Hinck, Andrew P; Demeler, Borries; Kim, Chongwoo A

    2012-07-10

    Sterile alpha motifs (SAMs) are frequently found in eukaryotic genomes. An intriguing property of many SAMs is their ability to self-associate, forming an open-ended polymer structure whose formation has been shown to be essential for the function of the protein. What remains largely unresolved is how polymerization is controlled. Previously, we had determined that the stretch of unstructured residues N-terminal to the SAM of a Drosophila protein called polyhomeotic (Ph), a member of the polycomb group (PcG) of gene silencers, plays a key role in controlling Ph SAM polymerization. Ph SAM with its native linker created shorter polymers compared to Ph SAM attached to either a random linker or no linker. Here, we show that the SAM linker for the human Ph ortholog, polyhomeotic homolog 3 (PHC3), also controls PHC3 SAM polymerization but does so in the opposite fashion. PHC3 SAM with its native linker allows longer polymers to form compared to when attached to a random linker. Attaching the PHC3 SAM linker to Ph SAM also resulted in extending Ph SAM polymerization. Moreover, in the context of full-length Ph protein, replacing the SAM linker with PHC3 SAM linker, intended to create longer polymers, resulted in greater repressive ability for the chimera compared to wild-type Ph. These findings show that polymeric SAM linkers evolved to modulate a wide dynamic range of SAM polymerization abilities and suggest that rationally manipulating the function of SAM containing proteins through controlling their SAM polymerization may be possible.

  7. Comprehensive rotorcraft analysis methods

    NASA Technical Reports Server (NTRS)

    Stephens, Wendell B.; Austin, Edward E.

    1988-01-01

    The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS).

  8. [Research on identification of cabbages and weeds combining spectral imaging technology and SAM taxonomy].

    PubMed

    Zu, Qin; Zhang, Shui-fa; Cao, Yang; Zhao, Hui-yi; Dang, Chang-qing

    2015-02-01

    Weeds automatic identification is the key technique and also the bottleneck for implementation of variable spraying and precision pesticide. Therefore, accurate, rapid and non-destructive automatic identification of weeds has become a very important research direction for precision agriculture. Hyperspectral imaging system was used to capture the hyperspectral images of cabbage seedlings and five kinds of weeds such as pigweed, barnyard grass, goosegrass, crabgrass and setaria with the wavelength ranging from 1000 to 2500 nm. In ENVI, by utilizing the MNF rotation to implement the noise reduction and de-correlation of hyperspectral data and reduce the band dimensions from 256 to 11, and extracting the region of interest to get the spectral library as standard spectra, finally, using the SAM taxonomy to identify cabbages and weeds, the classification effect was good when the spectral angle threshold was set as 0. 1 radians. In HSI Analyzer, after selecting the training pixels to obtain the standard spectrum, the SAM taxonomy was used to distinguish weeds from cabbages. Furthermore, in order to measure the recognition accuracy of weeds quantificationally, the statistical data of the weeds and non-weeds were obtained by comparing the SAM classification image with the best classification effects to the manual classification image. The experimental results demonstrated that, when the parameters were set as 5-point smoothing, 0-order derivative and 7-degree spectral angle, the best classification result was acquired and the recognition rate of weeds, non-weeds and overall samples was 80%, 97.3% and 96.8% respectively. The method that combined the spectral imaging technology and the SAM taxonomy together took full advantage of fusion information of spectrum and image. By applying the spatial classification algorithms to establishing training sets for spectral identification, checking the similarity among spectral vectors in the pixel level, integrating the advantages of

  9. Contribution of sams-1 and pmt-1 to lipid homoeostasis in adult Caenorhabditis elegans.

    PubMed

    Li, Yingxiu; Na, Keun; Lee, Hyoung-Joo; Lee, Eun-Young; Paik, Young-Ki

    2011-05-01

    Accumulation of lipids inside the cell is primarily caused by disorders of lipid metabolism. S-adenosylmethionine synthetase (SAMS) produces SAM, an important methyl donor in various phospholipid methyltransferase reactions catalysed by phosphoethanolamine N-methyltransferase (PMT-1). A gel-based, quantitative proteomic analysis of the RNA interference (RNAi)-mediated inactivation of the pod-2 gene, which encodes acetyl-CoA carboxylase, showed a substantial down-regulation of SAMS-1. Consequently, RNAi of either sams-1 or pmt-1 caused a significant increase in lipid droplet size in the intestine of Caenorhabditis elegans. Lipid droplets exhibited increased triacylglycerol (TG) and decreased phosphatidylcholine (PC) levels, suggesting a reciprocal relationship between TG and PC regulation. These lipid-associated phenotypes were rescued by choline feeding. Among the five fat metabolism-related genes examined, two genes were highly induced by inactivation of sams-1 or pmt-1: pod-2 and stearoyl-CoA desaturase (fat-7). Thus, both SAMS-1 and PMT-1 were shown to contribute to the homoeostasis of TG and PC levels in C. elegans, which would provide an important survival strategy under harsh environmental conditions.

  10. A new mode of SAM domain mediated oligomerization observed in the CASKIN2 neuronal scaffolding protein.

    PubMed

    Smirnova, Ekaterina; Kwan, Jamie J; Siu, Ryan; Gao, Xin; Zoidl, Georg; Demeler, Borries; Saridakis, Vivian; Donaldson, Logan W

    2016-08-22

    CASKIN2 is a homolog of CASKIN1, a scaffolding protein that participates in a signaling network with CASK (calcium/calmodulin-dependent serine kinase). Despite a high level of homology between CASKIN2 and CASKIN1, CASKIN2 cannot bind CASK due to the absence of a CASK Interaction Domain and consequently, may have evolved undiscovered structural and functional distinctions. We demonstrate that the crystal structure of the Sterile Alpha Motif (SAM) domain tandem (SAM1-SAM2) oligomer from CASKIN2 is different than CASKIN1, with the minimal repeating unit being a dimer, rather than a monomer. Analytical ultracentrifugation sedimentation velocity methods revealed differences in monomer/dimer equilibria across a range of concentrations and ionic strengths for the wild type CASKIN2 SAM tandem and a structure-directed double mutant that could not oligomerize. Further distinguishing CASKIN2 from CASKIN1, EGFP-tagged SAM tandem proteins expressed in Neuro2a cells produced punctae that were distinct both in shape and size. This study illustrates a new way in which neuronal SAM domains can assemble into large macromolecular assemblies that might concentrate and amplify synaptic responses.

  11. Robust gene selection methods using weighting schemes for microarray data analysis.

    PubMed

    Kang, Suyeon; Song, Jongwoo

    2017-09-02

    A common task in microarray data analysis is to identify informative genes that are differentially expressed between two different states. Owing to the high-dimensional nature of microarray data, identification of significant genes has been essential in analyzing the data. However, the performances of many gene selection techniques are highly dependent on the experimental conditions, such as the presence of measurement error or a limited number of sample replicates. We have proposed new filter-based gene selection techniques, by applying a simple modification to significance analysis of microarrays (SAM). To prove the effectiveness of the proposed method, we considered a series of synthetic datasets with different noise levels and sample sizes along with two real datasets. The following findings were made. First, our proposed methods outperform conventional methods for all simulation set-ups. In particular, our methods are much better when the given data are noisy and sample size is small. They showed relatively robust performance regardless of noise level and sample size, whereas the performance of SAM became significantly worse as the noise level became high or sample size decreased. When sufficient sample replicates were available, SAM and our methods showed similar performance. Finally, our proposed methods are competitive with traditional methods in classification tasks for microarrays. The results of simulation study and real data analysis have demonstrated that our proposed methods are effective for detecting significant genes and classification tasks, especially when the given data are noisy or have few sample replicates. By employing weighting schemes, we can obtain robust and reliable results for microarray data analysis.

  12. Sam's Journey to "Reach for the Stars"

    ERIC Educational Resources Information Center

    Mayer, Sue

    2007-01-01

    In this article, the author shares her experiences as a parent of a child with Down syndrome. Although her son Sam's first years were filled with numerous hospitalizations and visits to pediatricians, which she feared would further delay his development, she soon discovered an organization known as the National Association of Child Development…

  13. Essay: Physical Review Letters; Sam Goudsmit's Vision.

    PubMed

    Adair, Robert K

    2008-01-18

    Sam Goudsmit implemented his vision of converting the Letters section of Physical Review into a distinct journal fifty years ago. Physical Review Letters was designed to publish "only papers that really deserve rapid communication." The new journal became so successful with physicists throughout the world that Physical Review Letters now publishes 3500 Letters per year.

  14. Sam's Journey to "Reach for the Stars"

    ERIC Educational Resources Information Center

    Mayer, Sue

    2007-01-01

    In this article, the author shares her experiences as a parent of a child with Down syndrome. Although her son Sam's first years were filled with numerous hospitalizations and visits to pediatricians, which she feared would further delay his development, she soon discovered an organization known as the National Association of Child Development…

  15. Structural Basis for Methyl Transfer by a Radical SAM Enzyme

    SciTech Connect

    Boal, Amie K.; Grove, Tyler L.; McLaughlin, Monica I.; Yennawar, Neela H.; Booker, Squire J.; Rosenzweig, Amy C.

    2014-10-02

    The radical S-adenosyl-l-methionine (SAM) enzymes RlmN and Cfr methylate 23S ribosomal RNA, modifying the C2 or C8 position of adenosine 2503. The methyl groups are installed by a two-step sequence involving initial methylation of a conserved Cys residue (RlmN Cys{sup 355}) by SAM. Methyl transfer to the substrate requires reductive cleavage of a second equivalent of SAM. Crystal structures of RlmN and RlmN with SAM show that a single molecule of SAM coordinates the [4Fe-4S] cluster. Residue Cys{sup 355} is S-methylated and located proximal to the SAM methyl group, suggesting the SAM that is involved in the initial methyl transfer binds at the same site. Thus, RlmN accomplishes its complex reaction with structural economy, harnessing the two most important reactivities of SAM within a single site.

  16. Characterization of flourocarbon SAM coated MEMS tribogauge

    NASA Astrophysics Data System (ADS)

    Vijayasai, Ashwin; Ramachandran, Gautham; Sivakumar, Ganapathy; Anderson, Charlie; Gale, Richard; Dallas, Tim

    2012-03-01

    A MEMS tribogauge was used for on-chip and in-situ characterization of nano-tribological phenomena (stiction, friction, and wear of coated polysilicon surfaces). The device was fabricated using the SUMMiT-V process. Measurements were made on sidewall surfaces on the polysilicon-3 layer. The device consists of two orthogonally positioned comb-drive assemblies that are used for both actuation and sensing. One assembly is used to apply a normal load (Fn) to contacting surface, while the other induces a tangential load (FT). Precise position control is tracked by employing a LabVIEW controlled AD7747 capacitance sense mechanism. The resolution of the characterization apparatus is +/-10nm. Three MEMS tribogauge devices are tested; two of them have a chemisorbed layer of self-assembled monolayer (SAM) coatings and one with no SAM coating. The two types of SAM coatings are FOTS and 'Sandia vapor-SAM' (SVSAM). The tribogauge with no FSAM coating is either UV-Ozone or 'air plasma' treated to remove organic contaminants leaving behind -OH bonds on top of the MEMS surface (native oxide, SiO2). Characterization using the tribogauge for each coating type includes: measurement of baseline stiction force [see manuscript], static and dynamic coefficient of friction [see manuscript], induced stiction force calculated after specific load cycles [see manuscript]. Experiments showed that the induced stiction force increases in proportion to the increase in the number of load cycles, indicating degradation of the FSAM coating and topographical changes to the interacting surfaces. The UV-Ozone /air plasma treated pristine tribogauge was used to measure the stiction force of the device with no SAM coating [see manuscript].

  17. EPA Method 245.1: Determination of Mercury in Water by Cold Vapor Atomic Absorption Spectrometry

    EPA Pesticide Factsheets

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine mercuric chloride and methoxyethylmercuric acetate as total mercury using cold vapor atomic absorption spectrometry.

  18. In Situ Analysis of Mars Soil and Rocks Sample with the Sam Gcms Instrumentation Onboard Curiosity : Interpretation and Comparison of Measurements Done during the First Martian Year of Curiosity on Mars

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Coll, P. J.; Cabane, M.; Buch, A.; Coscia, D.; Millan, M.; Francois, P.; Belmahadi, I.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Steele, A.; Eigenbrode, J. L.; Mahaffy, P. R.

    2014-12-01

    The characterisation of the chemical and mineralogical composition of solid surface samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, SAM-GC analytical channels composed of thermal-desorption injector, and a MXT-CLP or a MXT-Q chromatographic column was chosen to achieve all the measurements done up today, with the aim to separate of a wide range of volatile inorganic and organic molecules. Four solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller, and one rock sample collected at the Kimberly site. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013

  19. Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues.

    PubMed

    Ji, Xinjian; Li, Yongzhen; Xie, Liqi; Lu, Haojie; Ding, Wei; Zhang, Qi

    2016-09-19

    Radical S-adenosyl-l-methionine (SAM) enzymes utilize a [4Fe-4S] cluster to bind SAM and reductively cleave its carbon-sulfur bond to produce a highly reactive 5'-deoxyadenosyl (dAdo) radical. In almost all cases, the dAdo radical abstracts a hydrogen atom from the substrates or from enzymes, thereby initiating a highly diverse array of reactions. Herein, we report a change of the dAdo radical-based chemistry from hydrogen abstraction to radical addition in the reaction of the radical SAM enzyme NosL. This change was achieved by using a substrate analogue containing an olefin moiety. We also showed that two SAM analogues containing different nucleoside functionalities initiate the radical-based reactions with high efficiencies. The radical adduct with the olefin produced in the reaction was found to undergo two divergent reactions, and the mechanistic insights into this process were investigated in detail. Our study demonstrates a promising strategy in expanding radical SAM chemistry, providing an effective way to access nucleoside-containing compounds by using radical SAM-dependent reactions.

  20. Probing the nature and resistance of the molecule-electrode contact in SAM-based junctions

    NASA Astrophysics Data System (ADS)

    Suchand Sangeeth, C. S.; Wan, Albert; Nijhuis, Christian A.

    2015-07-01

    It is challenging to quantify the contact resistance and to determine the nature of the molecule-electrode contacts in molecular two-terminal junctions. Here we show that potentiodynamic and temperature dependent impedance measurements give insights into the nature of the SAM-electrode interface and other bottlenecks of charge transport (the capacitance of the SAM (CSAM) and the resistance of the SAM (RSAM)), unlike DC methods, independently of each other. We found that the resistance of the top-electrode-SAM contact for junctions with the form of AgTS-SCn//GaOx/EGaIn with n = 10, 12, 14, 16 or 18 is bias and temperature independent and hence Ohmic (non-rectifying) in nature, and is orders of magnitude smaller than RSAM. The CSAM and RSAM are independent of the temperature, indicating that the mechanism of charge transport in these SAM-based junctions is coherent tunneling and the charge carrier trapping at the interfaces is negligible.It is challenging to quantify the contact resistance and to determine the nature of the molecule-electrode contacts in molecular two-terminal junctions. Here we show that potentiodynamic and temperature dependent impedance measurements give insights into the nature of the SAM-electrode interface and other bottlenecks of charge transport (the capacitance of the SAM (CSAM) and the resistance of the SAM (RSAM)), unlike DC methods, independently of each other. We found that the resistance of the top-electrode-SAM contact for junctions with the form of AgTS-SCn//GaOx/EGaIn with n = 10, 12, 14, 16 or 18 is bias and temperature independent and hence Ohmic (non-rectifying) in nature, and is orders of magnitude smaller than RSAM. The CSAM and RSAM are independent of the temperature, indicating that the mechanism of charge transport in these SAM-based junctions is coherent tunneling and the charge carrier trapping at the interfaces is negligible. Electronic supplementary information (ESI) available: Detailed experimental procedure, Nyquist

  1. Active Region Soft X-Ray Spectra as Observed Using Sounding Rocket Measurements from the Solar Aspect Monitor (SAM), - a Modified SDO/EVE Instrument

    NASA Astrophysics Data System (ADS)

    Wieman, S. R.; Didkovsky, L. V.; Woods, T. N.; Jones, A. R.; Caspi, A.; Warren, H. P.

    2015-12-01

    Observations of solar active regions (ARs) in the soft x-ray spectral range (0.5 to 3.0 nm) were made on sounding rocket flight NASA 36.290 using a modified Solar Aspect Monitor (SAM), a pinhole camera on the EUV Variability Experiment (EVE) sounding rocket instrument. The suite of EVE rocket instruments is designed for under-flight calibrations of the orbital EVE on SDO. While the sounding rocket EVE instrument is for the most part a duplicate of the EVE on SDO, the SAM channel on the rocket version was modified in 2012 to include a free-standing transmission grating so that it could provide spectrally resolved images of the solar disk with the best signal to noise ratio for the brightest features on it, such as ARs. Calibrations of the EVE sounding rocket instrument at the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility (NIST SURF) have provided a measurement of the SAM absolute spectral response function and a mapping of wavelength separation in the grating diffraction pattern. For solar observations, this spectral separation is on a similar scale to the spatial size of the AR on the CCD, so dispersed AR images associated with emission lines of similar wavelength tend to overlap. Furthermore, SAM shares a CCD detector with MEGS-A, a separate EVE spectrometer channel, and artifacts of the MEGS-A signal (a set of bright spectral lines) appear in the SAM images. For these reasons some processing and analysis of the solar images obtained by SAM must be performed in order to determine spectra of the observed ARs. We present a method for determining AR spectra from the SAM rocket images and report initial soft X-ray spectra for two of the major active regions (AR11877 and AR11875) observed on flight 36.290 on 21 October 2013 at about 18:30 UT. We also compare our results with concurrent measurements from other solar soft x-ray instrumentation.

  2. EPA Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry

    EPA Pesticide Factsheets

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine metal-containing compounds only as the total metal (e.g., total arsenic), inductively coupled plasma-mass spectrometry.

  3. EPA Method 524.2: Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry

    EPA Pesticide Factsheets

    SAM lists this method for preparation and analysis of water samples. This method determines carbon disulfide and 1,2-dichloroethane in drinking water and acrylonitrile and methyl acrylonitrile in drinking and aqueous/liquid samples.

  4. A new application of SAM in the non-destructive inspection for SIM card

    NASA Astrophysics Data System (ADS)

    Cai, Bin; He, Yandong; Zhao, Yang; Chen, Yanning; Zhang, Haifeng; Zhao, Dongyan

    2017-07-01

    Scanning Acoustic Microscopy (SAM) is a typical inspection method in the semiconductor IC manufacturing industry. Because the die thickness is a key parameter for SIM card, a new method to measure the internal die thickness of SIM card is proposed with SAM’s reflective scanning mode. Using this method the internal die thickness of SIM card can be accurately measured without introducing any damages to SIM card. The thickness model and methodology based on the SAM signals have been established. The model was properly verified and calibrated by two real test cases.

  5. On LAM's and SAM's for Halley's rotation

    NASA Technical Reports Server (NTRS)

    Peale, Stanton J.

    1992-01-01

    Non principal axis rotation for comet Halley is inferred from dual periodicities evident in the observations. The modes where the spin axis precesses around the axis of minimum moment of inertia (long axis mode or LAM) and where it precesses around the axis of maximum moment of inertia (short axis mode or SAM) are described from an inertial point of view. The currently favored LAM model for Halley's rotation state satisfies observational and dynamical constraints that apparently no SAM can satisfy. But it cannot reproduce the observed post perihelion brightening through seasonal illumination of localized sources on the nucleus, whereas a SAM can easily produce post or pre perihelion brightening by this mechanism. However, the likelihood of a LAM rotation for elongated nuclei of periodic comets such as Halley together with Halley's extreme post perihelion behavior far from the Sun suggest that Halley's post perihelion brightening may be due to effects other than seasonal illumination of localized sources, and therefore such brightening may not constrain its rotation state.

  6. Drug delivery from therapeutic self-assembled monolayers (T-SAMs) on 316L stainless steel.

    PubMed

    Mahapatro, Anil; Johnson, Dave M; Patel, Devang N; Feldman, Marc D; Ayon, Arturo A; Agrawal, C Mauli

    2008-01-01

    Delivery of therapeutic agents from self-assembled monolayers (SAMs) on 316L stainless steel (SS) has been demonstrated as a viable method to deliver drugs for localized coronary artery stent application. SAMs are highly-ordered, nano-sized molecular coatings, adding 1-10 nm thickness to a surface. Hydroxyl terminated alkanethiol SAMs of 11-mercapto-1-undecanol (-OH SAM) were formed on 316L SS with 48 hr immersion in ethanolic solutions. Attachment of ibuprofen (a model drug) to the functional SAMs was carried out in toluene for 5 hrs at 60 degrees C using Novozume-435 as a biocatalyst. SAM formation and subsequent attachment of ibuprofen was characterized collectively using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and contact angle (CA) measure-ments. The quantitative in vitro release of ibuprofen into a "physiological" buffer solution was characterized using reverse phase HPLC. Drug release kinetics showed that 14.1 microg of ibuprofen eluted over a period of 35 days with 2.7microg being eluted in the first day and the remaining being eluted over a period of 35 days. The drug release kinetics showed an increase in ibuprofen elution that occurred during first 14 days (2.7microg in 1 day to 9.5 microg in 14 days), following which there was a decrease in the rate of elution. Thus, functional SAMs on 316L SS could be used as tethers for drug attachment and could serve as a drug delivery mechanism from stainless steel implants such as coronary artery stents.

  7. Standardized added metabolic activity (SAM): a partial volume independent marker of total lesion glycolysis in liver metastases.

    PubMed

    Mertens, Jeroen; Dobbeleir, André; Ham, Hamphrey; D'Asseler, Yves; Goethals, Ingeborg; Van de Wiele, Christophe

    2012-09-01

    SUV(max) values in responders versus non-responders were, respectively, 3.9 (SD 2.4) versus 6.3 (SD 3.1) for SUV(max)1 (p = 0.08) and 94 % (SD 17) versus 7 % (SD 40 %) for ΔSUV(max) (p = 0.0001). The AUC of ΔSAM and ΔSUV(max) were not significantly different on receiver-operating characteristic (ROC) analysis (AUC 1.0 and 0.99, respectively, p = 0.6). SAM is a promising parameter for tumour response assessment of liver metastases by means of (18)F-fluorodeoxyglucose PET.

  8. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Conrad, P. G.; Cabane, M.; Webster, C. R.; Atreya, S. A.; Manning, H.

    2010-01-01

    An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers.

  9. Introducing the aerosol-climate model MAECHAM5-SAM2

    NASA Astrophysics Data System (ADS)

    Hommel, R.; Timmreck, C.; Graf, H. F.

    2009-04-01

    We are presenting a new global aerosol model MAECHAM5-SAM2 to study the aerosol dynamics in the UTLS under background and volcanic conditions. The microphysical core modul SAM2 treats the formation, the evolution and the transport of stratospheric sulphuric acid aerosol. The aerosol size distribution and the weight percentage of the sulphuric acid solution is calculated dependent on the concentrations of H2SO4 and H2O, their vapor pressures, the atmospheric temperature and pressure. The fixed sectional method is used to resolve an aerosol distribution between 1 nm and 2.6 micron in particle radius. Homogeneous nucleation, condensation and evaporation, coagulation, water-vapor growth, sedimentation and sulphur chemistry are included. The module is applied in the middle-atmosphere MAECHAM5 model, resolving the atmosphere up to 0.01 hPa (~80 km) in 39 layers. It is shown here that MAECHAM5-SAM2 well represents in-situ measured size distributions of stratospheric background aerosol in the northern hemisphere mid-latitudes. Distinct differences can be seen when derived integrated aerosol parameters (surface area, effective radius) are compared with aerosol climatologies based on the SAGE II satellite instrument (derived by the University of Oxford and the NASA AMES laboratory). The bias between the model and the SAGE II data increases as the moment of the aerosol size distribution decreases. Thus the modeled effective radius show the strongest bias, followed by the aerosol surface area density. Correspondingly less biased are the higher moments volume area density and the mass density of the global stratospheric aerosol coverage. This finding supports the key finding No. 2 of the SPARC Assessment of Stratospheric Aerosol Properties (2006), where it was shown that during periods of very low aerosol load in the stratosphere, the consistency between in-situ and satellite measurements, which exist in a volcanically perturbed stratosphere, breaks down and significant

  10. SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers.

    PubMed

    Roeder, Susanna; Dreschler, Katharina; Wirtz, Markus; Cristescu, Simona M; van Harren, Frans J M; Hell, Rüdiger; Piechulla, Birgit

    2009-07-01

    S'adenosyl-L: -methionine (SAM) is a ubiquitous methyl donor and a precursor in the biosynthesis of ethylene, polyamines, biotin, and nicotianamine in plants. Only limited information is available regarding its synthesis (SAM cycle) and its concentrations in plant tissues. The SAM concentrations in flowers of Nicotiana suaveolens were determined during day/night cycles and found to fluctuate rhythmically between 10 and 50 nmol g(-1) fresh weight. Troughs of SAM levels were measured in the evening and night, which corresponds to the time when the major floral scent compound, methyl benzoate, is synthesized by a SAM dependent methyltransferase (NsBSMT) and when this enzyme possesses its highest activity. The SAM synthetase (NsSAMS1) and methionine synthase (NsMS1) are enzymes, among others, which are involved in the synthesis and regeneration of SAM. Respective genes were isolated from a N. suaveolens petal cDNA library. Transcript accumulation patterns of both SAM regenerating enzymes matched perfectly those of the bifunctional NsBSMT; maximum mRNA accumulations of NsMS1 and NsSAMS1 were attained in the evening. Ethylene, which is synthesized from SAM, reached only low levels of 1-2 ppbv in N. suaveolens flowers. It is emitted in a burst at the end of the life span of the flowers, which correlates with the increased expression of the 1-aminocyclopropane-1-carboxylate oxidase (NsACO).

  11. SAM Sample preparation and its impact on the detection of organic compounds on Mars

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Szopa, Cyril; Coll, Patrice; Freissinet, Caroline; Glavin, Daniel; Belmahdi, Imene; François, Pascaline; Millan, Maeva; Eigenbrode, Jennifer; navarro, Rafael; Stern, Jennifer; Pinnick, Veronica; Coscia, David; Teinturier, Samuel; Miller, Kristen; Summons, Roger; Mahaffy, Paul

    2014-05-01

    The wet chemistry experiments on the Sample Analysis at Mars (SAM) [1] experiment in the Curiosity rover of the Mars Science Laboratory mission supports extraction of polar organic compounds from solid samples that improves their detection either by increasing the release of chemical species from solid sample matrices, or by changing their chemical structure to make compounds more amenable to gas chromatography mass spectrometry (GCMS). The wet chemistry approach provides an alternative to the nominal inert-thermal desorption/pyrolysis analytical protocol used by SAM [1] that is more aptly suited for polar components. SAM, includes two different wet chemistry experiments: MTBSTFA derivatization [2-3] and TMAH thermochemolysis [4]. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA products in the SAM evolved gas analysis and GCMS experiments, and the implications of this detection. Solid sample were heated up to approximately 840°C at a rate of 35°C/min under He flow. For GC analyses, the majority of the gas released was trapped on a hydrocarbon trap (Tenax®) over a specific temperature range. Adsorbed volatiles on the GC injection trap (IT) were then released into the GC column (CLP-MXT 30m x 0.25mm x 0.25µm) by rapidly heating the IT to 300°C. Then, in order better understand the part of compounds detected coming from internal reaction we have performed several lab experiments to mimic the SAM device. We have investigated the thermal degradation of Tenax®, and possible interaction with MTBSTFA and perchlorate in the SAM trap (Tenax®) to better constrain interpretations of SAM results on Mars. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Buch, A. et al. (2009) J chrom. A, 43, 143-151. [3] Stalport, F. et al. (2012) Planet. Space Sci. 67: 1-13 [4] Geffroy-Rodier, C. et al. (2009) JAAP, 85, 454-459. Acknowledgements: SAM-GC team acknowledges support from the French Space Agency

  12. Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch.

    PubMed

    Manz, Christoph; Kobitski, Andrei Yu; Samanta, Ayan; Keller, Bettina G; Jäschke, Andres; Nienhaus, G Ulrich

    2017-09-18

    S-adenosyl-L-methionine (SAM) ligand binding induces major structural changes in SAM-I riboswitches, through which gene expression is regulated via transcription termination. Little is known about the conformations and motions governing the function of the full-length Bacillus subtilis yitJ SAM-I riboswitch. Therefore, we have explored its conformational energy landscape as a function of Mg(2+) and SAM ligand concentrations using single-molecule Förster resonance energy transfer (smFRET) microscopy and hidden Markov modeling analysis. We resolved four conformational states both in the presence and the absence of SAM and determined their Mg(2+)-dependent fractional populations and conformational dynamics, including state lifetimes, interconversion rate coefficients and equilibration timescales. Riboswitches with terminator and antiterminator folds coexist, and SAM binding only gradually shifts the populations toward terminator states. We observed a pronounced acceleration of conformational transitions upon SAM binding, which may be crucial for off-switching during the brief decision window before expression of the downstream gene.

  13. SAM-Like Evolved Gas Analyses of Phyllosilicate Minerals and Applications to SAM Analyses of the Sheepbed Mudstone, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Franz, H. B.; Mahaffy, P. R.; Eigenbrode, J. L.; Stern, J. C.; Brunner, B.; Sutter, B.; Archer, P. D.; Ming , D. W.; Morris, R. V.; Bish, D. L.; Atreya, S. K.

    2014-01-01

    While in Yellowknife Bay, the Mars Science Laboratory Curiosity rover collected two drilled samples, John Klein (hereafter "JK") and Cumberland ("CB"), from the Sheepbed mudstone, as well as a scooped sample from the Rocknest aeolian bedform ("RN"). These samples were sieved by Curiosity's sample processing system and then several subsamples of these materials were delivered to the Sample Analysis at Mars (SAM) instrument suite and the CheMin X-ray diffraction/X-ray fluorescence instrument. CheMin provided the first in situ X-ray diffraction-based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., Fe-saponite) and comprise 20 wt% of the mudstone samples [1]. SAM's evolved gas analysis (EGA) mass spectrometry analyses of JK and CB subsamples, as well as RN subsamples, detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, OCS, CS2 and other trace gases evolved during pyrolysis. The identity of evolved gases and temperature( s) of evolution can augment mineral detection by CheMin and place constraints on trace volatile-bearing phases present below the CheMin detection limit or those phases difficult to characterize with XRD (e.g., X-ray amorphous phases). Here we will focus on the SAM H2O data, in the context of CheMin analyses, and comparisons to laboratory SAM-like analyses of several phyllosilicate minerals including smectites.

  14. Searching for Reduced Carbon on the Surface of Mars: The SAM Combustion Experiment

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Mahaffy, P. R.; Webster, C. R.; Eigenbrode, J. L.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Glavin, D. P.; Graham, H. V.; McAdam, A. C.; Ming, D. W.; Navarro-Gonzalez, R.; Niles, P. B.; Steele, A.; Sutter, B.; Trainer, M. G.

    2014-01-01

    The search for reduced carbon has been a major focus of past and present missions to Mars. Thermal evolved gas analysis was used by the Viking and Phoenix landers and is currently in use by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) to characterize volatiles evolved from solid samples, including those associated with reduced organic species. SAM has the additional capability to perform a combustion experiment, in which a sample of Mars regolith is heated in the presence of oxygen and the composition of the evolved gases is measured using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS) [1]. Organics detection on the Martian surface has been complicated by oxidation and destruction during heating by soil oxidants [2], including oxychlorine compounds, and terrestrial organics in the SAM background contributed by one of the SAM wet chemistry reagents MTBSTFA (N-Methyl-N-tertbutyldimethylsilyl- trifluoroacetamide) [3,4]. Thermal Evolved Gas Analysis (TEGA) results from Phoenix show a mid temperature CO2 release between 400 C - 680 C speculated to be carbonate, CO2 adsorbed to grains, or combustion of organics by soil oxidants [5]. Low temperature CO2 evolutions (approx. 200 C - 400 C) were also present at all three sites in Gale Crater where SAM Evolved Gas Analysis (EGA) was performed, and potential sources include combustion of terrestrial organics from SAM, as well as combustion and/or decarboxylation either indigenous martian or exogenous organic carbon [4,6]. By performing an experiment to intentionally combust all reduced materials in the sample, we hope to compare the bulk abundance of CO2 and other oxidized species evolved by combustion to that evolved during an EGA experiment to estimate how much CO2 could be contributed by reduced carbon sources. In addition, C, O, and H isotopic compositions of CO2 and H2O measured by TLS can contribute information regarding the potential sources of these

  15. Characterization of a S-adenosyl-l-methionine (SAM)-accumulating strain of Scheffersomyces stipitis.

    PubMed

    Križanović, Stela; Butorac, Ana; Mrvčić, Jasna; Krpan, Maja; Cindrić, Mario; Bačun-Družina, Višnja; Stanzer, Damir

    2015-06-01

    S-adenosyl-l-methionine (SAM) is an important molecule in the cellular metabolism of mammals. In this study, we examined several of the physiological characteristics of a SAM-accumulating strain of the yeast Scheffersomyces stipitis (M12), including SAM production, ergosterol content, and ethanol tolerance. S. stipitis M12 accumulated up to 52.48 mg SAM/g dry cell weight. Proteome analyses showed that the disruption of C-24 methylation in ergosterol biosynthesis, a step mediated by C-24 sterol methyltransferase (Erg6p), results in greater SAM accumulation by S. stipitis M12 compared to the wild-type strain. A comparative proteome-wide analysis identified 25 proteins that were differentially expressed by S. stipitis M12. These proteins are involved in ribosome biogenesis, translation, the stress response, ubiquitin-dependent catabolic processes, the cell cycle, ethanol tolerance, posttranslational modification, peroxisomal membrane stability, epigenetic regulation, the actin cytoskeleton and cell morphology, iron and copper homeostasis, cell signaling, and energy metabolism. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  16. The survey of autobiographical memory (SAM): a novel measure of trait mnemonics in everyday life.

    PubMed

    Palombo, Daniela J; Williams, Lynne J; Abdi, Hervé; Levine, Brian

    2013-06-01

    Compared to the abundance of laboratory-based memory tasks, few measures exist to assess self-reported memory function. This need is particularly important for naturalistic mnemonic capacities, such as autobiographical memory (recall of events and facts from one's past), because it is difficult to reliably assess in the laboratory. Furthermore, naturalistic mnemonic capacities may show stable individual differences that evade the constraints of laboratory testing. The Survey of Autobiographical Memory (SAM) was designed to assess such trait mnemonics, or the dimensional characterization of self-reported mnemonic characteristics. The SAM comprises items assessing self-reported episodic autobiographical, semantic, and spatial memory, as well as future prospection. In a large sample of healthy young adults, the latent dimensional structure of the SAM was characterized with multiple correspondence analysis (MCA). This analysis revealed dimensions corresponding to general mnemonic abilities (i.e., good vs poor memory across subtypes), spatial memory, and future prospection. While episodic and semantic items did not separate in this data-driven analysis, these categories did show expected dissociations in relation to depression history and to laboratory-based measures of recollection. Remote spatial memory as assessed by the SAM showed the expected advantage for males over females. Spatial memory was also related to autobiographical memory performance. Brief versions of the SAM are provided for efficient research applications. Individual differences in memory function are likely related to other health-related factors, including personality, psychopathology, dementia risk, brain structure and function, and genotype. In conjunction with laboratory or performance based assessments, the SAM can provide a useful measure of naturalistic self-report trait mnemonics for probing these relationships.

  17. EPA Method 903.1: Radium-226 in Drinking Water Radon Emanation Technique

    EPA Pesticide Factsheets

    SAM lists this method to provide for the analysis of drinking water samples that contain Radium-226, and is based on the emanation and scintillation counting of Radon-222, the immediate decay product of Radium-226.

  18. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry

    EPA Pesticide Factsheets

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine metal-containing compounds as the total metal (e.g., total arsenic), using inductively coupled plasma-atomic emission spectrometry.

  19. The crystal structure of a novel SAM-dependent methyltransferase PH1915 from Pyrococcus horikoshii.

    SciTech Connect

    Sun, W.; Xu, X.; Pavlova, M.; Edwards, A.; Joachimiak, A.; Savchenko, A.; Christendat, D.; Biosciences Division; Univ. of Toronto; Univ. Health Network

    2005-01-01

    The S-adenosyl-L-methionine (SAM)-dependent methyltransferases represent a diverse and biologically important class of enzymes. These enzymes utilize the ubiquitous methyl donor SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. Here we present the crystal structure of PH1915 from Pyrococcus horikoshii OT3, a predicted SAM-dependent methyltransferase. This protein belongs to the Cluster of Orthologous Group 1092, and the presented crystal structure is the first representative structure of this protein family. Based on sequence and 3D structure analysis, we have made valuable functional insights that will facilitate further studies for characterizing this group of proteins. Specifically, we propose that PH1915 and its orthologs are rRNA- or tRNA-specific methyltransferases.

  20. Detection of Organics at Mars: How Wet Chemistry Onboard SAM Helps

    NASA Technical Reports Server (NTRS)

    Buch, A.; Freissinet, Caroline; Szopa, C.; Glavin, D.; Coll, P.; Cabane, M.; Eigenbrode, J.; Navarro-Gonzalez, R.; Coscia, D.; Teinturier, S.; Mahaffy, P.

    2013-01-01

    For the first time in the history of space exploration, a mission of interest to astrobiology could be able to analyze refractory organic compounds in the soil of Mars. Wet chemistry experiment allow organic components to be altered in such a way that improves there detection either by releasing the compounds from sample matricies or by changing the chemical structure to be amenable to analytical conditions. The latter is particular important when polar compounds are present. Sample Analysis at Mars (SAM), on the Curiosity rover of the Mars Science Laboratory mission, has onboard two wet chemistry experiments: derivatization and thermochemolysis. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA in initial SAM results, and the implications of this detection.

  1. Results from the Curiosity Rover's SAM Investigation at Gale Crater and links to Habitability of Mars

    NASA Astrophysics Data System (ADS)

    Coll, P. J.; Mahaffy, P. R.; Webster, C. R.; Cabane, M.; Atreya, S. K.; Conrad, P. G.; Navarro-gonzalez, R.; SAM; MSL Science Teams

    2013-05-01

    The Mars Science Laboratory Mission (MSL) has as its goal an exploration of the potential of the ancient Gale Crater to support life. The Sample Analysis at Mars (SAM) instrument suite (3) contributes to this exploration of habitability with (1) a search for organic compounds in rocks and soils, (2) a determination of the composition of inorganic volatiles compounds in the atmosphere or extracted from solid materials, and (3) measurements of the isotopic composition of several of these volatiles. The initial exploration of the region near the landing point has revealed a diverse geology and SAM has made measurements of both atmospheric and solid samples. Additional prime exploration targets are the clay and sulfate layers in the central mound (Mt. Sharp) of Gale crater. SAM is located in the interior of the Curiosity rover. Nine other instruments complete the payload including an XRD/XRF instrument and a variety of imaging, laser induced breakdown spectroscopy, and elemental analysis instrumentation. Several of these instruments serve to locate sampling sites and interrogate candidate materials before solid sample is collected either with a drill or a scoop for delivery to SAM and the XRD/XRF instruments. SAM's instruments are a quadrupole mass spectrometer (QMS), a tunable laser spectrometer (TLS), and a 6-column gas chromatograph (GC) coupled through a solid sample transport system and a gas processing and enrichment system. SAM atmospheric runs include a determination of: new volume mixing ratios for the 5 major isotopic constituents; an upper limit for the volume mixing ratio of methane; C and O isotope ratios in CO2; D/H in water; and the 40Ar/36Ar ratio. Major evolved gases from fines scooped from an eolian drift were H2O, CO2, O2, SO2, and a number of minor species. Chlorine containing compounds in this material were tentatively identified as perchlorates.

  2. SOAR Adaptive Module (SAM): Seeing Improvement with a UV Laser

    NASA Astrophysics Data System (ADS)

    Tokovinin, Andrei; Cantarutti, Rolando; Tighe, Roberto; Schurter, Patricio; Martinez, Manuel; Thomas, Sandrine; van der Bliek, Nicole

    2016-12-01

    The adaptive module of the 4.1 m SOAR telescope, SOAR Adaptive Module (SAM), corrects ground-layer turbulence using an ultraviolet laser guide star. It has been commissioned in 2013 and it is in regular science operation since 2014. SAM works with the CCD imager covering a 3‧ field or with the speckle camera. It operates routinely and stably, delivering resolution in the I band equal to the free-atmosphere seeing. This paper describes the SAM system as a whole, providing essential reference for its users and technical information of interest to instrumentalists. Operation of the instrument, its performance, and science projects done with SAM so far are reviewed.

  3. What can we learn from Wet Chemistry onboard the Mars Science Laboratory SAM Suite?

    NASA Astrophysics Data System (ADS)

    Buch, A.; Szopa, C.; Coll, P.; Eigenbrode, J.; Coscia, D.; Navarro Gonzalez, R.; Cabane, M.; MSL Science Team

    2013-09-01

    Direct pyrolysis of Mars soil samples has been used up today today to analyse their content in volatile molecules. However, this technique has been shown to have limitation for the analysis of a few chemical families, or macromolecules. The SAM experiment is the first space instrument onboarding a device based on wet chemistry to overcome this limitation.

  4. METHODS OF MAGNETOTELLURIC ANALYSIS

    DTIC Science & Technology

    Magnetotelluric prospecting is a method of geophysical exploration that makes use of the fluctuations in the natural electric and magnetic fields...function of the conductivity structure of the earth’s substrata. This report describes some new methods for analyzing and interpreting magnetotelluric

  5. Tropical Storm Sam, Eastern Indian Ocean

    NASA Image and Video Library

    1990-01-20

    STS032-80-036 (9-20 Jan. 1990) --- This oblique view of Tropical Storm Sam in the eastern Indian Ocean off the western coast of Australia was photographed with a 70mm camera by the astronauts. Tropical Storm Sam (known as Willy-Willy in Australia) was born in the eastern Indian Ocean near the islands of Timor and Sumba in Indonesia. The storm tracked southwestward attaining sustained winds in excess of 60 knots (70 miles per hour). Other than on Christmas Island and the Cocos (Keeling) Islands south of Java, and for strong swells along the western Australia coast, the storm had little impact on land areas. At the time this photograph was taken, the storm was beginning to dissipate in the south Indian Ocean. The eye of the storm is still visible near center, with the swirling bands of the storm propagating in a clockwise direction toward the center. Winds aloft have begun to shear the tops of thunderstorms associated with the storm, forming a high cirrus cloud cover over the center portions of the storm. This picture was used by the crew at their January 30, 1990 Post-Flight Press Conference (PFPC).

  6. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.; hide

    2013-01-01

    A single scoop of the Rocknest aeolian deposit was sieved (less than 150 micrometers), and four separate sample portions, each with a mass of approximately 50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of approximately 0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the

  7. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater

    NASA Astrophysics Data System (ADS)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas; Atreya, Sushil K.; Brinckerhoff, William B.; Cabane, Michel; Coll, Patrice; Conrad, Pamela G.; Coscia, David; Dworkin, Jason P.; Franz, Heather B.; Grotzinger, John P.; Leshin, Laurie A.; Martin, Mildred G.; McKay, Christopher; Ming, Douglas W.; Navarro-González, Rafael; Pavlov, Alexander; Steele, Andrew; Summons, Roger E.; Szopa, Cyril; Teinturier, Samuel; Mahaffy, Paul R.

    2013-10-01

    A single scoop of the Rocknest aeolian deposit was sieved (< 150 µm), and four separate sample portions, each with a mass of ~50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of ~0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the Martian regolith.

  8. EPA Method EMSL-33: Isotopic Determination of Plutonium, Uranium, and Thorium in Water, Soil, Air, and Biological Tissue

    EPA Pesticide Factsheets

    SAM lists this method to provide for the analysis of isotopic plutonium, uranium and thorium, together or individually, in drinking water, aqueous/liquid, soil/sediment, surface wipe and/or air filter samples by alpha spectrometry.

  9. Interfacial tension analysis of oligo(ethylene glycol)-terminated self-assembled monolayers and their resistance to bacterial attachment.

    PubMed

    Ista, Linnea K; López, Gabriel P

    2012-09-04

    The fouling resistance of oligo(ethylene glycol) (OEG)-terminated self-assembled monolayers (SAMs) of alkanethiolates on gold has been well established. Although hydration of the OEG chains seems key to OEG-SAM resistance to macromolecular adsorption and cellular attachment, the details of how hydration prevents biofouling have been inferred largely through computational methods. Because OEG-SAMs of different lengths exhibit differing degrees of fouling resistance, the interactions between water and OEG-SAMs leading to fouling resistance can be deduced by comparing the properties of fouling and nonfouling OEG-SAMs. While all OEG-SAMs had similar water contact angles, contact angles taken with glycerol were able to individuate between different OEG-SAMs and between fouling and nonfouling OEG-SAMs. Subsequent estimation of surface and interfacial tension using a colloidal model showed that nonfouling surfaces are associated with an increased negative interfacial tension between those OEG-SAMs that resisted attachment and water. Further analysis of this interfacial tension experimentally confirmed current mathematical models that cite OEG-water hydrogen-bond formation as a driving force behind short-term fouling resistance. Finally, we found a correlation between solid-water interfacial tension and packing density and molecular density of ethylene glycol.

  10. Rapid Method for Sodium Hydroxide/Sodium Peroxide Fusion ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Plutonium-238 and plutonium-239 in water and air filters Method Selected for: SAM lists this method as a pre-treatment technique supporting analysis of refractory radioisotopic forms of plutonium in drinking water and air filters using the following qualitative techniques: • Rapid methods for acid or fusion digestion • Rapid Radiochemical Method for Plutonium-238 and Plutonium 239/240 in Building Materials for Environmental Remediation Following Radiological Incidents. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  11. Sam68 regulates cell proliferation and cell adhesion-mediated drug resistance (CAM-DR) via the AKT pathway in non-Hodgkin's lymphoma.

    PubMed

    Wu, Yaxun; Xu, Xiaohong; Miao, Xiaobing; Zhu, Xinghua; Yin, Haibing; He, Yunhua; Li, Chunsun; Liu, Yushan; Chen, Yali; Lu, Xiaoyun; Wang, Yuchan; He, Song

    2015-12-01

    Sam68 (Src-associated in mitosis 68 kDa), a substrate for tyrosine kinase c-Src during mitosis, is up-regulated in a variety of human cancers and acts oncogenically promoting tumour progression. This study has explored biological function and clinical significance of Sam68 in non-Hodgkin's lymphoma (NHL). To examine Sam68 expression in NHL, clinically, eight diffuse large B-cell lymphomas and four reactive lymphoid hyperplasia fresh-frozen tissues were obtained for western blot and quantitative real-time PCR analyses. Using immunohistochemical staining, paraffin wax embedded sections from 164 cases of NHL patients were used to evaluate prognostic value of Sam68. Cell Counting Kit-8 (CCK-8) and soft agar colony assays were conducted to investigate the role of Sam68 in cell viability and cell proliferation respectively. Furthermore, effects of Sam68 on cell adhesion-mediated drug resistance (CAM-DR) was determined by CCK-8 assay and flow cytometric analysis. Expression status of Sam68 inversely correlated with clinical outcomes of patients with NHL, and it was also an independent prognostic factor for the outcomes. In addition, Sam68 was associated with proliferation of NHL cells. Knock-down of its gene inhibited cell proliferation and colony formation by delaying cell cycle progression. Furthermore, OCI-Ly8 and Jeko-1 cells adhering to FN and HS-5 expressed higher Sam68 protein, compared to their suspension counterparts. Sam68 promoted cell adhesion-mediated drug resistance (CAM-DR) via the AKT pathway. Increased Sam68 expression in NHL resulted in poor prognosis, and it promoted CAM-DR in NHL via AKT. © 2015 John Wiley & Sons Ltd.

  12. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    SciTech Connect

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  13. Complementing Gender Analysis Methods.

    PubMed

    Kumar, Anant

    2016-01-01

    The existing gender analysis frameworks start with a premise that men and women are equal and should be treated equally. These frameworks give emphasis on equal distribution of resources between men and women and believe that this will bring equality which is not always true. Despite equal distribution of resources, women tend to suffer and experience discrimination in many areas of their lives such as the power to control resources within social relationships, and the need for emotional security and reproductive rights within interpersonal relationships. These frameworks believe that patriarchy as an institution plays an important role in women's oppression, exploitation, and it is a barrier in their empowerment and rights. Thus, some think that by ensuring equal distribution of resources and empowering women economically, institutions like patriarchy can be challenged. These frameworks are based on proposed equality principle which puts men and women in competing roles. Thus, the real equality will never be achieved. Contrary to the existing gender analysis frameworks, the Complementing Gender Analysis framework proposed by the author provides a new approach toward gender analysis which not only recognizes the role of economic empowerment and equal distribution of resources but suggests to incorporate the concept and role of social capital, equity, and doing gender in gender analysis which is based on perceived equity principle, putting men and women in complementing roles that may lead to equality. In this article the author reviews the mainstream gender theories in development from the viewpoint of the complementary roles of gender. This alternative view is argued based on existing literature and an anecdote of observations made by the author. While criticizing the equality theory, the author offers equity theory in resolving the gender conflict by using the concept of social and psychological capital.

  14. The Sample Analysis at Mars (SAM) Detections of CO2 and CO in Sedimentary Material from Gale Crater, Mars: Implications for the Presence of Organic Carbon and Microbial Habitability on Mars.

    NASA Astrophysics Data System (ADS)

    Sutter, B.; Eigenbrode, J. L.; Steele, A.; McAdam, A.; Ming, D. W.; Archer, D., Jr.; Mahaffy, P. R.

    2016-12-01

    Sedimentary rock samples heated to 860°C in the SAM instrument evolved CO2 and CO indicating the presence of organic-carbon(C) in Gale Crater materials. Martian or exogenous (meteoritic, interplanetary dust) CO2 and CO could be derived from combustion of simple organics (<300°C), complex refractory organics/amorphous carbon (300-600°C), and/or magmatic carbon (>600°C) as result of thermal decomposition of Gale Crater perchlorates, and sulfates present that produce O2. Oxidized organic compounds could also evolve CO2 and CO over broad temperature range (150 to 800°C) and such organics are expected on Mars via exogenous sources. Alternatively, organic-C could also have been oxidized to carboxylic acids [e.g, mellitic acid (RCOOH), acetate (CH3CO2-), and oxalates (C2O42-)] by oxidative radiolytic weathering, or other oxidation processes. The presence of oxidized organics is consistent with the limited detection of reduced organic-C phases by the SAM-gas chromatography. Organic-C content as determined by CO2 and CO contents could range between 800 and 2400 ppm C indicating that substantial organic-C component is present in Gale Crater. There are contributions from SAM background however, even in worse case scenarios, this would only account for as much as half of the detected CO2 and CO. Nevertheless, if organic-C levels were biologically available on ancient Mars, then <1% of C in Gale Crater sediments could have accommodated biomass requirements of 1 x 105 cells/g sediment (assumes 9 x 10-7 µg/cell and 0.5 µg C/µg cell). While other essential nutrients (e.g., N and P) could be limiting, organic-C contents, may have been sufficient to support limited heterotrophic microbial populations on ancient Mars.

  15. The Sample at Mars Analysis (SAM) Detections of CO2 and CO in Sedimentary Material from Gale Crater, Mars: Implications for the Presence of Organic Carbon and Microbial Habitability on Mars

    NASA Technical Reports Server (NTRS)

    Sutter, Brad

    2016-01-01

    Sedimentary rock samples heated to 860 C in the SAM instrument evolved CO2 and CO indicating the presence of organic-carbon(C) in Gale Crater materials. Martian or exogenous (meteoritic, interplanetary dust) CO2 and CO could be derived from combustion of simple organics (less than 300 C), complex refractory organics/amorphous carbon (300-600 C), and/or magmatic carbon (greater than 600 C) as result of thermal decomposition of Gale Crater perchlorates, and sulfates present that produce O2. Oxidized organic compounds could also evolve CO2 and CO over broad temperature range (150 to 800 C) and such organics are expected on Mars via exogenous sources. Alternatively, organic-C could also have been oxidized to carboxylic acids [e.g, mellitic acid (RCOOH), acetate (CH3CO2(-)), and oxalates ((2)C2O4(-))] by oxidative radiolytic weathering, or other oxidation processes. The presence of oxidized organics is consistent with the limited detection of reduced organic-C phases by the SAM-gas chromatography. Organic-C content as determined by CO2 and CO contents could range between 800 and 2400 ppm C indicating that substantial organic-C component is present in Gale Crater. There are contributions from SAM background however, even in worse case scenarios, this would only account for as much as half of the detected CO2 and CO. Nevertheless, if organic-C levels were assumed to have existed in a reduced form on ancient Mars and this was bioavailable C, then less than 1% of C in Gale Crater sediments could have supported an exclusively heterotrophic microbial population of 1 x 10(exp 5) cells/g sediment (assumes 9 x 10(exp -7) microgram/cell and 0.5 micrograms C/microgram cell). While other essential nutrients (e.g., S and P) could be limiting, organic-C contents, may have been sufficient to support limited heterotrophic microbial populations on ancient Mars.

  16. Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation.

    PubMed

    Zhang, Hua; Song, Lei; Cong, Haolong; Tien, Po

    2015-10-01

    Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5' untranslated region (5'UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection and could potentially

  17. Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation

    PubMed Central

    Zhang, Hua; Song, Lei; Cong, Haolong

    2015-01-01

    ABSTRACT Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5′ untranslated region (5′UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. IMPORTANCE The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection

  18. Testing the validity, reliability and utility of the Self-Administration of Medication (SAM) tool in patients undergoing rehabilitation.

    PubMed

    Anderson, Jessica; Manias, Elizabeth; Kusljic, Snezana; Finch, Sue

    2014-01-01

    Determination of patients' ability to self-administer medications in the hospital has largely been determined using the subjective judgment of health professionals. To examine the validity, reliability and utility of the Self-Administration of Medication (SAM) tool as an objective means to determine patients' ability to self-administer in a rehabilitation unit of a public teaching hospital in Melbourne, Australia. To assess validity of the SAM tool, associations were examined between the total SAM tool score and of the patients' competence to self-administer from the perceptions of the tool administrator, patients and nurses. Validity also was determined from a principal component analysis. Pearson correlations were calculated for how SAM scores related to scores obtained from the Functional Independence Measure (FIM) and Barthel Score Index (BSI). To assess the SAM tool's reliability, a Cronbach's alpha coefficient was calculated. Utility of the SAM tool was evidenced by documenting its administration time. One hundred patients participated in this study. The SAM tool had a Cronbach's alpha coefficient of 0.75 and took a mean time of 5.36 min to complete. The capability to self-medicate section of the SAM tool had strong correlations with the FIM (r = 0.485) and BSI (r = 0.472) data, respectively, and the total SAM tool had moderate and strong correlations with the nurses' (r = 0.315) and tool administrator's (r = 0.632) perceptions of patients' ability to self-administer, respectively. Bland-Altman and ROC curve analyses showed poor agreement between the total SAM tool score and the nurses' perceptions. The SAM tool demonstrated acceptable overall internal consistency. It only requires a short time to be completed and is more objective than seeking out health professionals' perceptions. Additional research is needed to further validate this approach to determining patients' ability to self-medicate. Crown Copyright © 2014. Published by Elsevier Inc. All

  19. The SAM domain of ANKS6 has different interacting partners and mutations can induce different cystic phenotypes.

    PubMed

    Bakey, Zeineb; Bihoreau, Marie-Thérèse; Piedagnel, Rémi; Delestré, Laure; Arnould, Catherine; de Villiers, Alexandre d'Hotman; Devuyst, Olivier; Hoffmann, Sigrid; Ronco, Pierre; Gauguier, Dominique; Lelongt, Brigitte

    2015-08-01

    The ankyrin repeat and sterile α motif (SAM) domain-containing six gene (Anks6) is a candidate for polycystic kidney disease (PKD). Originally identified in the PKD/Mhm(cy/+) rat model of PKD, the disease is caused by a mutation (R823W) in the SAM domain of the encoded protein. Recent studies support the etiological role of the ANKS6 SAM domain in human cystic diseases, but its function in kidney remains unknown. To investigate the role of ANKS6 in cyst formation, we screened an archive of N-ethyl-N-nitrosourea-treated mice and derived a strain carrying a missense mutation (I747N) within the SAM domain of ANKS6. This mutation is only six amino acids away from the PKD-causing mutation (R823W) in cy/+ rats. Evidence of renal cysts in these mice confirmed the crucial role of the SAM domain of ANKS6 in kidney function. Comparative phenotype analysis in cy/+ rats and our Anks6(I747N) mice further showed that the two models display noticeably different PKD phenotypes and that there is a defective interaction between ANKS6 with ANKS3 in the rat and between ANKS6 and BICC1 (bicaudal C homolog 1) in the mouse. Thus, our data demonstrate the importance of ANKS6 for kidney structure integrity and the essential mediating role of its SAM domain in the formation of protein complexes.

  20. RHESUS MONKEY - SAM - POSTFLIGHT - LITTLE JOE II (LJ-2) SPACECRAFT

    NASA Image and Video Library

    1963-10-23

    S63-19199 (4 Dec. 1959) --- Sam, the Rhesus monkey, and his handler after his ride in the Little Joe 2 (LJ-2) spacecraft. He is still encased in his contour couch. A U.S. Navy destroyer safely recovered Sam after he experienced three minutes of weightlessness during the flight. Photo credit: NASA

  1. Using SAM Assessment and Training for Office 2003

    ERIC Educational Resources Information Center

    Whittle, Gary

    2005-01-01

    This presentation will demonstrate the uses of SAM 2003 from Course Technology as a skills assessment and training software that is used via the Internet. Historically, testing in computer education has taken the form of pencil and paper or standardized testing. The actual computer skills of the student have not been properly assessed. With SAM,…

  2. Extending SAM to Include All Community College Students. Final Report.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    A fourth year study of project SAM (Student Accountability Model), initially an effort to provide a system of procedures for collecting data on community college occupational students during and after their stay in college, was expanded to devise a system for incorporating nonoccupational students into the SAM model. The primary objective of the…

  3. Theodore Roosevelt Chloroforming Uncle Sam "In the Hopeless Ward".

    PubMed

    Drew, Benjamin A; Bause, George S

    2016-10-01

    In March of 1905 in Judge magazine, Louis Dalrymple published his political cartoon of Theodore Roosevelt chloroforming "Uncle Sam." Having sampled a host of Democratic remedies, the 125-year-old Sam can expect that Roosevelt's chloroform will either cure him with major Republican surgery or kill him with Osler-linked euthanasia.

  4. Constraints on the Mineralogy of Gale Crater Mudstones from MSL SAM Evolved Water

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Sutter, B.; Franz, H. B.; Hogancamp, J. V. (Clark); Knudson, C. A.; Andrejkovicova, S.; Archer, P. D.; Eigenbrode, J. L.; Ming, D. W.; Mahaffy, P. R.

    2017-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) have analysed more than 150 micron fines from 14 sites at Gale Crater. Here we focus on the mudstone samples. Two were drilled from sites John Klein (JK) and Cumberland (CB) in the Sheepbed mudstone. Six were drilled from Murray Formation mudstone: Confidence Hills (CH), Mojave (MJ), Telegraph Peak (TP), Buckskin (BK), Oudam (OU), Marimba (MB). SAM's evolved gas analysis mass spectrometry (EGA-MS) detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with X-ray diffraction (e.g., amorphous phases). Here we will focus on SAM H2O data and comparisons to SAM-like analyses of key reference materials.

  5. Initial SAM calibration gas experiments on Mars: Quadrupole mass spectrometer results and implications

    NASA Astrophysics Data System (ADS)

    Franz, Heather B.; Trainer, Melissa G.; Malespin, Charles A.; Mahaffy, Paul R.; Atreya, Sushil K.; Becker, Richard H.; Benna, Mehdi; Conrad, Pamela G.; Eigenbrode, Jennifer L.; Freissinet, Caroline; Manning, Heidi L. K.; Prats, Benito D.; Raaen, Eric; Wong, Michael H.

    2017-04-01

    The Sample Analysis at Mars (SAM) instrument suite of the Mars Science Laboratory (MSL) Curiosity rover is equipped to analyze both martian atmospheric gases and volatiles released by pyrolysis of solid surface materials, with target measurements including chemical and isotopic composition (Mahaffy et al., 2012). To facilitate assessment of instrument performance and validation of results obtained on Mars, SAM houses a calibration cell containing CO2, Ar, N2, Xe, and several fluorinated hydrocarbon compounds (Franz et al., 2014; Mahaffy et al., 2012). This report describes the first two experiments utilizing this calibration cell on Mars and gives results from analysis of data acquired with the SAM Quadrupole Mass Spectrometer (QMS). These data support the accuracy of isotope ratios obtained with the QMS (Conrad et al., 2016; Mahaffy et al., 2013) and provide ground-truth for reassessment of analytical constants required for atmospheric measurements, which were reported in previous contributions (Franz et al., 2015, 2014). The most significant implication of the QMS data involves reinterpretation of pre-launch contamination previously believed to affect only CO abundance measurements (Franz et al., 2015) to affect N2 abundances, as well. The corresponding adjustment to the N2 calibration constant presented here brings the atmospheric volume mixing ratios for Ar and N2 retrieved by SAM into closer agreement with those reported by the Viking mission (Owen et al., 1977; Oyama and Berdahl, 1977).

  6. Initial SAM Calibration Gas Experiments on Mars: Quadrupole Mass Spectrometer Results and Implications

    NASA Technical Reports Server (NTRS)

    Franz, Heather B.; Trainer, Melissa G.; Malespin, Charles A.; Mahaffy, Paul R.; Atreya, Sushil K.; Becker, Richard H,; Benna, Mehdi; Conrad, Pamela G.; Eigenbrode, Jennifer L.; Freissinet, Caroline; hide

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument suite of the Mars Science Laboratory (MSL) Curiosity rover is equipped to analyze both martian atmospheric gases and volatiles released by pyrolysis of solid surface materials, with target measurements including chemical and isotopic composition (Mahaffy et al., 2012). To facilitate assessment of instrument performance and validation of results obtained on Mars, SAM houses a calibration cell containing CO2, Ar, N2, Xe, and several fluorinated hydrocarbon compounds (Franz et al., 2014; Mahaffy et al., 2012). This report describes the first two experiments utilizing this calibration cell on Mars and gives results from analysis of data acquired with the SAM Quadrupole Mass Spectrometer (QMS). These data support the accuracy of isotope ratios obtained with the QMS (Conrad et al., 2016; Mahaffy et al., 2013) and provide ground-truth for reassessment of analytical constants required for atmospheric measurements, which were reported in previous contributions (Franz et al., 2015, 2014). The most significant implication of the QMS data involves reinterpretation of pre-launch contamination previously believed to affect only CO abundance measurements (Franz et al., 2015) to affect N2 abundances, as well. The corresponding adjustment to the N2 calibration constant presented here brings the atmospheric volume mixing ratios for Ar and N2 retrieved by SAM into closer agreement with those reported by the Viking mission (Owen et al., 1977; Oyama and Berdahl, 1977).

  7. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    NASA Astrophysics Data System (ADS)

    Huo, Lixia; Du, Pengcheng; Zhou, Hui; Zhang, Kaifeng; Liu, Peng

    2017-02-01

    It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C6, C12, or C18) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (Ra) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al2O3 ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C12 alkyl chain (C12-SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C12-SAM with desirable alkyl chain length.

  8. Evaluating the Effectiveness of Self-Administration of Medication (SAM) Schemes in the Hospital Setting: A Systematic Review of the Literature

    PubMed Central

    Richardson, Suzanna J.; Brooks, Hannah L.; Bramley, George; Coleman, Jamie J.

    2014-01-01

    Background Self-administration of medicines is believed to increase patients' understanding about their medication and to promote their independence and autonomy in the hospital setting. The effect of inpatient self-administration of medication (SAM) schemes on patients, staff and institutions is currently unclear. Objective To systematically review the literature relating to the effect of SAM schemes on the following outcomes: patient knowledge, patient compliance/medication errors, success in self-administration, patient satisfaction, staff satisfaction, staff workload, and costs. Design Keyword and text word searches of online databases were performed between January and March 2013. Included articles described and evaluated inpatient SAM schemes. Case studies and anecdotal studies were excluded. Results 43 papers were included for final analysis. Due to the heterogeneity of results and unclear findings it was not possible to perform a quantitative synthesis of results. Participation in SAM schemes often led to increased knowledge about drugs and drug regimens, but not side effects. However, the effect of SAM schemes on patient compliance/medication errors was inconclusive. Patients and staff were highly satisfied with their involvement in SAM schemes. Conclusions SAM schemes appear to provide some benefits (e.g. increased patient knowledge), but their effect on other outcomes (e.g. compliance) is unclear. Few studies of high methodological quality using validated outcome measures exist. Inconsistencies in both measuring and reporting outcomes across studies make it challenging to compare results and draw substantive conclusions about the effectiveness of SAM schemes. PMID:25463269

  9. Evaluating the effectiveness of self-administration of medication (SAM) schemes in the hospital setting: a systematic review of the literature.

    PubMed

    Richardson, Suzanna J; Brooks, Hannah L; Bramley, George; Coleman, Jamie J

    2014-01-01

    Self-administration of medicines is believed to increase patients' understanding about their medication and to promote their independence and autonomy in the hospital setting. The effect of inpatient self-administration of medication (SAM) schemes on patients, staff and institutions is currently unclear. To systematically review the literature relating to the effect of SAM schemes on the following outcomes: patient knowledge, patient compliance/medication errors, success in self-administration, patient satisfaction, staff satisfaction, staff workload, and costs. Keyword and text word searches of online databases were performed between January and March 2013. Included articles described and evaluated inpatient SAM schemes. Case studies and anecdotal studies were excluded. 43 papers were included for final analysis. Due to the heterogeneity of results and unclear findings it was not possible to perform a quantitative synthesis of results. Participation in SAM schemes often led to increased knowledge about drugs and drug regimens, but not side effects. However, the effect of SAM schemes on patient compliance/medication errors was inconclusive. Patients and staff were highly satisfied with their involvement in SAM schemes. SAM schemes appear to provide some benefits (e.g. increased patient knowledge), but their effect on other outcomes (e.g. compliance) is unclear. Few studies of high methodological quality using validated outcome measures exist. Inconsistencies in both measuring and reporting outcomes across studies make it challenging to compare results and draw substantive conclusions about the effectiveness of SAM schemes.

  10. Student Activities in Meteorology (SAM), June 1994

    SciTech Connect

    Meier, B.L.; Passarelli, E.

    1994-06-01

    In an effort to inspire student interest in science and technology, scientists from the Forecast Systems Laboratory, a laboratory within the National Oceanic and Atmospheric Administration's (NOAA) Environmental Research Laboratories, and classroom teachers from the Boulder Valley School District collaborated to produce a series of classroom science activities on meteorology and atmospheric science. We call this series 'Student Activities in Meteorology,' or SAM. The goal is to provide activities that are interesting to students, and at the same time convenient and easy to use for teachers. The activity topics chosen are to incorporate trend setting scientific research and cutting edge technology. Several of the activities focus on the meteorological concerns of the Denver metropolitan area because many of NOAA's research labs are located in Boulder, where much of the research and testing for the region is performed. We believe that these activities are versatile and can be easily integrated into current science, environmental studies, health, social studies, and math curricula.

  11. Radical SAM-Mediated Methylation of Ribosomal RNA

    PubMed Central

    Stojkovic, Vanja; Fujimori, Danica Galonić

    2015-01-01

    Post-transcriptional modifications of RNA play an important role in a wide range of biological processes. In ribosomal RNA (rRNA), methylation of nucleotide bases is the predominant modification. In recent years, methylation of adenosine 2503 (A2503) in bacterial 23S rRNA has attracted significant attention due to both the unusual regioselectivity of the methyl group incorporation, as well as the pathophysiological roles of the resultant methylations. Specifically, A2503 is methylated at the C2 and C8 positions of the adenine ring, and the introduced modifications have a profound impact on translational fidelity and antibiotic resistance, respectively. These modifications are performed by RlmN and Cfr, two members, of the recently discovered class of radical S-adenosylmethionine (radical SAM) methylsynthases. Here, we present several methods that can be used to evaluate the activity of these enzymes, under both in vivo and in vitro conditions. PMID:26253978

  12. SAM-GRID: A system utilizing grid middleware and SAM to enable full function grid computing

    NASA Astrophysics Data System (ADS)

    Baranovski, Andrew; Garzoglio, Gabriele; Lueking, Lee; Terekhov, Dane Skow Igor; Walker, Rodney

    2003-06-01

    We present a grid system, which is in development, employing an architecture comprising the primary functional components of job handling, data handling, and monitoring and information services. Each component is built using existing Grid middleware. The Job handling utilizes Condor Match Making Services to broker job submissions, Condor-G to schedule, and GRAM to submit and execute jobs on remote compute resources. The information services provide strategic information of the system including a file replica catalogue, compute availability, and network data-throughput rate predictions, which are made available to the other components. Data handling services are provided by SAM, the data management system built for the Dzero experiment at Fermilab, to optimize data delivery, and cache and replicate data as needed at the processing nodes. The SAM-Grid system is being built to provide experiments in progress at Fermilab the ability to utilize worldwide computing resources to process enormous quantities of data for complex physics analyses.

  13. Methods of Cosmochemical Analysis

    NASA Astrophysics Data System (ADS)

    Lahiri, S.; Maiti, M.

    Some radionuclides, like 10Be (T 1/2 = 1.5 Ma), 14C (T 1/2 = 5,730 years), 26Al (T 1/2 = 0.716 Ma), 53Mn (T 1/2 = 3.7 Ma), and 60Fe (T 1/2 = 1.5 Ma), 146Sm (T 1/2 = 103 Ma), 182Hf (T 1/2 = 9 Ma), 244Pu (T 1/2 = 80 Ma) are either being produced continuously by the interaction of cosmic rays (CR) or might have been produced in supernovae millions of years ago. Analysis of these radionuclides in ultratrace scale has strong influence in almost all branches of sciences, starting from archaeology to biology, nuclear physics to astrophysics. However, measurement of these radionuclides appeared as a borderline problem exploiting their decay properties because of scarcity in natural archives and long half-life. The one and only way seemed to be that of mass measurement. Accelerator mass spectrometry (AMS) is the best suited for this purpose. Apart from AMS, other mass measurement techniques like inductively coupled plasma-mass spectrometry (ICP-MS), thermal ionization mass spectrometry (TIMS), resonant laser ionization mass spectrometry (RIMS), secondary ionization mass spectrometry (SIMS) have also been used with limited sensitivity and approach.

  14. Socioeconomic Methods in Educational Analysis.

    ERIC Educational Resources Information Center

    Weber, William H., III

    This book explores the possibilities in a new approach to educational analysis--a fusion of methods drawn from economics, sociology, and social psychology. The author combines his explanation of socioeconomic analysis with the presentation of several examples that illustrate the application of his method to different analytical problems. The book…

  15. Comparing Surfaces and Engineered Interfaces using Self-Assembled Monolayers (SAMs) and Injected SAMs Silanes

    SciTech Connect

    Morris, Mark J.; Simmons, Kevin L.

    2003-11-01

    The objective of this study was to show a comparison between property changes by formation of a self-assembled monolayer on the surface of PPG synthetic precipitated silica, which is a technique developed at PNNL, and by adding the SAMs silane chemical directly into the mixing bowl. These coatings have the potential to greatly increase the bond strength and enhance other properties between the particle and the rubber matrix of a rubber compound. Tensile testing measured peak stress and elongation at break. The increase in tensile strength shows how well the polymer-filler interfacial adhesion is doing. The study used five different SAM systems with a sulfur cured styrene butadiene rubber (SBR) tire rubber formulation. The three propylsilanes were propyl triethoxysilane, allyl triethoxysilane and 3-mercaptopropyl triethoxysilane. Five combinations of silanes were used in this study. The application of the silanes were 100% propyl triethoxy silane (100% Alkyl); a 10/90 mixture of allyl and propyl triethoxy silanes (10% vinyl/90% alkyl); a 50/50 mixture of the allyl and propyl (50% vinyl/50% alkyl); a 10/90mixture of 3-mercaptopropyl trimethoxysilane and propyl trimethoxysilane (10% mercaptan/90% alkyl) and lastly a 50/50 3-mercaptopropyl and propylsilanes (50% mercaptan/alkyl). The data not only shows improvement with SAMs, the peak stress data (ultimate strength) shows that the by changing the amount of silane content can change the physical properties

  16. Rapid Method for Sodium Hydroxide Fusion of Concrete and ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  17. Characterisation of Desulfovibrio vulgaris haem b synthase, a radical SAM family member.

    PubMed

    Lobo, Susana A L; Lawrence, Andrew D; Romão, Célia V; Warren, Martin J; Teixeira, Miguel; Saraiva, Lígia M

    2014-07-01

    An alternative route for haem b biosynthesis is operative in sulfate-reducing bacteria of the Desulfovibrio genus and in methanogenic Archaea. This pathway diverges from the canonical one at the level of uroporphyrinogen III and progresses via a distinct branch, where sirohaem acts as an intermediate precursor being converted into haem b by a set of novel enzymes, named the alternative haem biosynthetic proteins (Ahb). In this work, we report the biochemical characterisation of the Desulfovibrio vulgaris AhbD enzyme that catalyses the last step of the pathway. Mass spectrometry analysis showed that AhbD promotes the cleavage of S-adenosylmethionine (SAM) and converts iron-coproporphyrin III via two oxidative decarboxylations to yield haem b, methionine and the 5'-deoxyadenosyl radical. Electron paramagnetic resonance spectroscopy studies demonstrated that AhbD contains two [4Fe-4S](2+/1+) centres and that binding of the substrates S-adenosylmethionine and iron-coproporphyrin III induces conformational modifications in both centres. Amino acid sequence comparisons indicated that D. vulgaris AhbD belongs to the radical SAM protein superfamily, with a GGE-like motif and two cysteine-rich sequences typical for ligation of SAM molecules and iron-sulfur clusters, respectively. A structural model of D. vulgaris AhbD with putative binding pockets for the iron-sulfur centres and the substrates SAM and iron-coproporphyrin III is discussed.

  18. SAM-based Cell Transfer to Photopatterned Hydrogels for Microengineering Vascular-Like Structures

    PubMed Central

    Sadr, Nasser; Zhu, Mojun; Osaki, Tatsuya; Kakegawa, Takahiro; Yang, Yunzhi; Moretti, Matteo; Fukuda, Junji; Khademhosseini, Ali

    2011-01-01

    A major challenge in tissue engineering is to reproduce the native 3D microvascular architecture fundamental for in vivo functions. Current approaches still lack a network of perfusable vessels with native 3D structural organization. Here we present a new method combining self-assembled monolayer (SAM)-based cell transfer and gelatin methacrylate hydrogel photopatterning techniques for microengineering vascular structures. Human umbilical vein cell (HUVEC) transfer from oligopeptide SAM-coated surfaces to the hydrogel revealed two SAM desorption mechanisms: photoinduced and electrochemically triggered. The former, occurs concomitantly to hydrogel photocrosslinking, and resulted in efficient (>97%) monolayer transfer. The latter, prompted by additional potential application, preserved cell morphology and maintained high transfer efficiency of VE-cadherin positive monolayers over longer culture periods. This approach was also applied to transfer HUVECs to 3D geometrically defined vascular-like structures in hydrogels, which were then maintained in perfusion culture for 15 days. As a step toward more complex constructs, a cell-laden hydrogel layer was photopatterned around the endothelialized channel to mimic the vascular smooth muscle structure of distal arterioles. This study shows that the coupling of the SAM-based cell transfer and hydrogel photocrosslinking could potentially open up new avenues in engineering more complex, vascularized tissue constructs for regenerative medicine and tissue engineering applications. PMID:21802723

  19. Traditional Methods for Mineral Analysis

    NASA Astrophysics Data System (ADS)

    Ward, Robert E.; Carpenter, Charles E.

    This chapter describes traditional methods for analysis of minerals involving titrimetric and colorimetric procedures, and the use of ion selective electrodes. Other traditional methods of mineral analysis include gravimetric titration (i.e., insoluble forms of minerals are precipitated, rinse, dried, and weighed) and redox reactions (i.e., mineral is part of an oxidation-reduction reaction, and product is quantitated). However, these latter two methods will not be covered because they currently are used little in the food industry. The traditional methods that will be described have maintained widespread usage in the food industry despite the development of more modern instrumentation such as atomic absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy (Chap. 24). Traditional methods generally require chemicals and equipment that are routinely available in an analytical laboratory and are within the experience of most laboratory technicians. Additionally, traditional methods often form the basis for rapid analysis kits (e.g., Quantab®; for salt determination) that are increasingly in demand. Procedures for analysis of minerals of major nutritional or food processing concern are used for illustrative purposes. For additional examples of traditional methods refer to references (1-6). Slight modifications of these traditional methods are often needed for specific foodstuffs to minimize interferences or to be in the range of analytical performance. For analytical requirements for specific foods see the Official Methods of Analysis of AOAC International (5) and related official methods (6).

  20. The Sample at Mars Analysis (SAM) Detections of CO2 and CO in Sedimentary Material from Gale Crater, Mars: Implications for the Presence of Organic Carbon and Microbial Habitability on Mars

    NASA Technical Reports Server (NTRS)

    Sutter, Brad; Eigenbrode, Jennifer L.; Steele, Andrew; Ming, Douglas W.

    2016-01-01

    Sedimentary rock samples heated to 860 degrees Centigrade in the SAM (Sample at Mars) instrument evolved CO2 and CO indicating the presence of organic-carbon(C) in Gale Crater materials. Martian or exogenous (meteoritic, interplanetary dust) CO2 and CO could be derived from combustion of simple organics (less than 300 degrees Centigrade), complex refractory organics/amorphous carbon (300-600 degrees Centigrade), and/or magmatic carbon (greater than 600 degrees Centigrade) as result of thermal decomposition of Gale Crater perchlorates, and sulfates present that produce O2. Oxidized organic compounds could also evolve CO2 and CO over broad temperature range (150 to 800 degrees Centigrade) and such organics are expected on Mars via exogenous sources. Alternatively, organic-C could also have been oxidized to carboxylic acids [e.g, mellitic acid (RCOOH), acetate (CH3CO2-), and oxalates (C2O42-)] by oxidative radiolytic weathering, or other oxidation processes. The presence of oxidized organics is consistent with the limited detection of reduced organic-C phases by the SAM-gas chromatography. Organic-C content as determined by CO2 and CO contents could range between 800 and 2400 parts per million C indicating that substantial organic-C component is present in Gale Crater. There are contributions from SAM background however, even in worst-case scenarios, this would only account for as much as half of the detected CO2 and CO. Nevertheless, if organic-C levels were assumed to have existed in a reduced form on ancient Mars and this was bioavailable C, then less than 1 percent of C in Gale Crater sediments could have supported an exclusively heterotrophic microbial population of 1 by 10 (sup 5) cells per gram sediment (assumes 9 by 10 (sup -7) microgram per cell and 0.5 micrograms C per microgram cell). While other essential nutrients (e.g., S and P) could be limiting, organic-C contents, may have been sufficient to support limited heterotrophic microbial populations on

  1. Hydrogen transfer in SAM-mediated enzymatic radical reactions.

    PubMed

    Hioe, Johnny; Zipse, Hendrik

    2012-12-14

    S-adenosylmethionine (SAM) plays an essential role in a variety of enzyme-mediated radical reactions. One-electron reduction of SAM is currently believed to generate the C5'-desoxyadenosyl radical, which subsequently abstracts a hydrogen atom from the actual substrate in a catalytic or a non-catalytic fashion. Using a combination of theoretical and experimental bond dissociation energy (BDE) data, the energetics of these radical processes have now been quantified. SAM-derived radicals are found to react with their respective substrates in an exothermic fashion in enzymes using SAM in a stoichiometric (non-catalytic) way. In contrast, the catalytic use of SAM appears to be linked to a sequence of moderately endothermic and exothermic reaction steps. The use of SAM in spore photoproduct lyase (SPL) appears to fit neither of these general categories and appears to constitute the first example of a SAM-initiated radical reaction propagated independently of the cofactor. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Probabilistic methods for rotordynamics analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.

    1991-01-01

    This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.

  3. Structural investigation of a C-terminal EphA2 receptor mutant: Does mutation affect the structure and interaction properties of the Sam domain?

    PubMed

    Mercurio, Flavia A; Costantini, Susan; Di Natale, Concetta; Pirone, Luciano; Guariniello, Stefano; Scognamiglio, Pasqualina L; Marasco, Daniela; Pedone, Emilia M; Leone, Marilisa

    2017-09-01

    Ephrin A2 receptor (EphA2) plays a key role in cancer, it is up-regulated in several types of tumors and the process of ligand-induced receptor endocytosis, followed by degradation, is considered as a potential path to diminish tumor malignancy. Protein modulators of this mechanism are recruited at the cytosolic Sterile alpha motif (Sam) domain of EphA2 (EphA2-Sam) through heterotypic Sam-Sam associations. These interactions engage the C-terminal helix of EphA2 and close loop regions (the so called End Helix side). In addition, several studies report on destabilizing mutations in EphA2 related to cataract formation and located in/or close to the Sam domain. Herein, we analyzed from a structural point of view, one of these mutants characterized by the insertion of a novel 39 residue long polypeptide at the C-terminus of EphA2-Sam. A 3D structural model was built by computational methods and revealed partial disorder in the acquired C-terminal tail and a few residues participating in an α-helix and two short β-strands. We investigated by CD and NMR studies the conformational properties in solution of two peptides encompassing the whole C-terminal tail and its predicted helical region, respectively. NMR binding experiments demonstrated that these peptides do not interact relevantly with either EphA2-Sam or its interactor Ship2-Sam. Molecular dynamics (MD) simulations further indicated that the EphA2 mutant could be represented only through a conformational ensemble and that the C-terminal tail should not largely wrap the EphA2-Sam End-Helix interface and affect binding to other Sam domains. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.; hide

    2013-01-01

    Four individual sample portions from a single scoop of the Rocknest aeolian deposit were sieved ( 150 m) and delivered to the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatography mass spectrometry analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of 0.01 to 2.3 nanomole.The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N- (tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), a chemical that leaked from a derivatization cup inside SAM.The best candidate for the oxychloride phase in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated species measured by SAM, although other chlorine bearing phases are being considered. Laboratory pyrolysis experiments suggest that reaction of martian chlorine with organic carbon from MTBSTFA can explain the presence of the chloromethanes and a chloromethylpropene also detected by SAM.However, we cannot exclude the possibility that traces of organic carbon of either martian or exogenous origin contributed to some of the chloromethanes measured by SAM. Although the alteration history and exposure age of the Rocknest deposit is unknown, it is possible that oxidative degradation of complex organic matter by ionizing radiation or other chemical processes in Rocknest has occurred.

  5. MSL/SAM Measurements of Nitrogen Isotopes in the Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Wong, Michael H.; Franz, H. B.; Malespin, C. A.; Trainer, M. G.; Atreya, S. K.; Mahaffy, P. R.; Stern, J. C.; McKay, C. P.; Manning, H.; Jones, J. H.; Owen, T. C.; Navarro-González, R.; the MSL Team

    2013-10-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) measured the Mars atmospheric δ15N value on sol 232 of the mission. This value falls within the uncertainty of the Viking aeroshell mass spectrometer measurement, which was 619‰ ± 182‰ (Neir and McElroy 1977). The SAM measurement achieved about a factor of two smaller uncertainty than the Viking value, and about a factor of two higher signal to background ratio (S/BG). The MSL/SAM value was based on Quadrupole Mass Spectrometer measurements of an enriched sample of Mars atmosphere, with CO2 and H2O removed. We used the m/z 14/14.5 ratio, from doubly-ionized nitrogen, because it had higher S/BG than other relevant count ratios in the experiment. The m/z 28/29 ratio confirms the isotopic ratio with slightly lower precision. The enrichment experiment, and several direct atmospheric experiments, gave a range of δ15N values from 813‰ to 528‰, where the measurements with the highest S/BG gave values most consistent with the enrichment experiment. The direct measurements also used data at m/z 14 and 14.5, to avoid confusion from CO ions at m/z 28 and 29. We will report the SAM δ15N value at the meeting, pending confirmation by an additional enrichment experiment on Mars to be completed just days after the abstract submission deadline. Trapped gases in martian meteorite glasses have previously been interpreted as mixtures of two components, based on ratios of 15N/14N and 40Ar/14N (e.g., Becker and Pepin 1984). One component is thought to have martian atmospheric composition, as measured by Viking. Recent MSL/SAM measurements (Mahaffy et al. 2013) of the 40Ar/14N ratio 0.5) are incompatible with the Viking ratio 0.3), complicating the interpretation of the meteorite gases. The slope of the meteorite mixing line is less consistent with Viking atmospheric composition if alternative assumptions are used for meteorite cosmic ray exposure ages, cosmogenic 15N production rates, and

  6. Mars Atmospheric Argon Isotopes Measured by the SAM Instrument Suite on MSL

    NASA Astrophysics Data System (ADS)

    Manning, Heidi L.; Wong, M. H.; Franz, H. B.; Trainer, M.; Malespin, C. A.; Raaen, E.; Mahaffy, P. R.; Atreya, S. K.; Jones, J. H.; Pepin, R. O.; Navarro-Gonzalez, R.; Owen, T.; The MSL Team

    2013-10-01

    The Sample Analysis at Mars (SAM) Suite (Mahaffy et al. 2012, SSR 170) is one of the science packages on the Mars Science Laboratory (MSL) “Curiosity” rover. The SAM is comprised of a Quadrupole Mass Spectrometer (QMS), a Tunable Laser Spectrometer (TLS) and a Gas Chromatograph (GC). Together these instruments, along with the solid sample manipulation and gas processing system, are able to measure directly the composition of the Mars atmosphere as well as gases thermally evolved from the rock samples delivered to SAM. During the first 200 sols of the mission, the QMS carried out three nighttime in situ atmospheric measurements, providing an initial determination of the chemical and isotopic composition of the Mars atmosphere. These direct atmospheric experiments determine the atmospheric 40Ar/36Ar ratio to be 1900 ± 300 (Mahaffy et al. 2013, Science, in press). A subsequent experiment on sol 232 examined an enriched sample of Mars atmosphere, with CO2 and H2O removed, increasing the signal-to-background ratio at m/z 36 by a factor of ~5. The SAM enrichment experiment confirms that MSL measures a Mars atmospheric ratio that is much lower than the 3000 ± 500 determined by the Viking landers (Owen et al. 1977, JGR 82). This finding agrees with the analyses of martian meteorites (made between the times of the Viking and MSL landings) suggesting that the Viking 40Ar/36Ar ratio was overestimated (e.g., Bogard and Garrison 1999, Met. & Pl. Sci. 34). The MSL 40Ar/36Ar measurement (as well as other isotopic ratios) constrains atmospheric escape and evolution, crustal degassing, and interpretation of martian meteorite composition. Recent experiments with the SAM QMS in the sol 200-360 range include daytime atmospheric measurements and a gas enrichment experiment in which the abundance and isotopic composition of Kr, Xe and 38Ar/36Ar was measured. Results of these experiments will be presented.

  7. Crystal structures of the SAM-III/S[subscript MK] riboswitch reveal the SAM-dependent translation inhibition mechanism

    SciTech Connect

    Lu, C.; Smith, A.M.; Fuchs, R.T.; Ding, F.; Rajashankar, K.; Henkin, T.M.; Ke, A.

    2010-01-07

    Three distinct classes of S-adenosyl-L-methionine (SAM)-responsive riboswitches have been identified that regulate bacterial gene expression at the levels of transcription attenuation or translation inhibition. The SMK box (SAM-III) translational riboswitch has been identified in the SAM synthetase gene in members of the Lactobacillales. Here we report the 2.2-{angstrom} crystal structure of the Enterococcus faecalis SMK box riboswitch. The Y-shaped riboswitch organizes its conserved nucleotides around a three-way junction for SAM recognition. The Shine-Dalgarno sequence, which is sequestered by base-pairing with the anti-Shine-Dalgarno sequence in response to SAM binding, also directly participates in SAM recognition. The riboswitch makes extensive interactions with the adenosine and sulfonium moieties of SAM but does not appear to recognize the tail of the methionine moiety. We captured a structural snapshot of the SMK box riboswitch sampling the near-cognate ligand S-adenosyl-L-homocysteine (SAH) in which SAH was found to adopt an alternative conformation and fails to make several key interactions.

  8. The SAM-Grid Fabric services

    NASA Astrophysics Data System (ADS)

    Garzoglio, G.; Terekhov, I.; Baranovski, A.; Veseli, S.; Lueking, L.; Mhashilkar, P.; Murthi, V.

    2004-11-01

    To enable globally distributed computing for a large HEP experiment, a collection of computing and data storage facilities, together called the Grid fabric, must be linked together in a coherent way. The standard Grid software, including most notably the Globus Gatekeeper and Meta Directory Service, provides core tools to insert a site into the Grid and for its low-level monitoring. In practice, large experiments have data and job handling infrastructures that are not governed by the core tools. For example, local job submission is seldom done directly to the batch system, but rather, through an interface that allows for pre-submission steps (such as the decomposition of a job into smaller chunks) or is tightly integrated with a data handling system such as SAM. Likewise, monitoring is seldom done in terms of individual processors or individual jobs, but rather, via cluster-wide aggregated characteristics. In this paper, we present some of the work we have done to abstract the management of the fabric facilities of the FNAL Run II experiments, in order to enable globally distributed computing.

  9. Inversion of solar extinction data from the Apollo-Soyuz Test Project Stratospheric Aerosol Measurement (ASTP/SAM) experiment

    NASA Technical Reports Server (NTRS)

    Pepin, T. J.

    1977-01-01

    The inversion methods are reported that have been used to determine the vertical profile of the extinction coefficient due to the stratospheric aerosols from data measured during the ASTP/SAM solar occultation experiment. Inversion methods include the onion skin peel technique and methods of solving the Fredholm equation for the problem subject to smoothing constraints. The latter of these approaches involves a double inversion scheme. Comparisons are made between the inverted results from the SAM experiment and near simultaneous measurements made by lidar and balloon born dustsonde. The results are used to demonstrate the assumptions required to perform the inversions for aerosols.

  10. Comparison of Hartmann analysis methods.

    PubMed

    Canovas, Carmen; Ribak, Erez N

    2007-04-01

    Analysis of Hartmann-Shack wavefront sensors for the eye is traditionally performed by locating and centroiding the sensor spots. These centroids provide the gradient, which is integrated to yield the ocular aberration. Fourier methods can replace the centroid stage, and Fourier integration can replace the direct integration. The two--demodulation and integration--can be combined to directly retrieve the wavefront, all in the Fourier domain. Now we applied this full Fourier analysis to circular apertures and real images. We performed a comparison between it and previous methods of convolution, interpolation, and Fourier demodulation. We also compared it with a centroid method, which yields the Zernike coefficients of the wavefront. The best performance was achieved for ocular pupils with a small boundary slope or far from the boundary and acceptable results for images missing part of the pupil. The other Fourier analysis methods had much higher tolerance to noncentrosymmetric apertures.

  11. SAM: A Simple Averaging Model of Impression Formation

    ERIC Educational Resources Information Center

    Lewis, Robert A.

    1976-01-01

    Describes the Simple Averaging Model (SAM) which was developed to demonstrate impression-formation computer modeling with less complex and less expensive procedures than are required by most established programs. (RC)

  12. Using askSam to Manage Files of Bibliographic References.

    ERIC Educational Resources Information Center

    Pruett, Nancy Jones

    1987-01-01

    Describes the use of askSam, a flexible text based management system, for handling personal collections of bibliographic references. Sample programs and searches are provided for both unstructured (minimum input and programming by the user) and structure applications. (CLB)

  13. Plant SAM-Domain Proteins Start to Reveal Their Roles.

    PubMed

    Denay, Grégoire; Vachon, Gilles; Dumas, Renaud; Zubieta, Chloe; Parcy, François

    2017-08-01

    Proteins often act in complexes assembled via protein-protein interaction domains. The sterile alpha motif (SAM) domain is one of the most prominent interaction domains in animals and is present in proteins of diverse functions. This domain allows head-to-tail closed oligomerisation or polymer formation resulting in homo- and/or heterocomplexes that have been shown to be important for proper protein localisation and function. In plants this domain is also present but has been poorly studied except for recent studies on the LEAFY floral regulator and the tRNA import component (TRIC)1/2 proteins. Here we catalogue SAM domain-containing proteins from arabidopsis (Arabidopsis thaliana), compare plant and other eukaryotic SAM domains, and perform homology modelling to probe plant SAM domain interaction capabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Early Results from the Curiosity Rover's SAM Investigation at Gale Crater

    NASA Astrophysics Data System (ADS)

    Mahaffy, Paul; Webster, Chris; Cabane, Michael; Coll, Patrice

    2013-04-01

    The goals of the Mars Science Laboratory Mission (1, 2) are to explore the potential of the Gale Crater landing site to support life either in the distant past or the present. The contribution of the Sample Analysis at Mars (SAM) instrument suite (3) in this exploration of habitability is (A) to search for organic compounds in rocks and soils, (B) to determine the composition of inorganic volatiles compounds in the atmosphere or extracted from solid materials, and (C) to measure the isotopic composition of several of these volatiles. While prime exploration targets of MSL's Curiosity Rover are the layers in the central mound (Mt. Sharp) of Gale crater the initial exploration of region near the landing point has revealed a diverse geology and the early part of the mission has been spent both commissioning the 10 Curiosity instruments and the Rover subsystems and making first time measurements of both atmospheric and solid samples. SAM is located in the interior of MSL's Curiosity rover next to the XRD/XRF CheMin instrument. A variety of imaging, laser induced breakdown spectroscopy, and elemental analysis instrumentation serves to locate sampling sites and interogate candidate materials before solid sample is collected either with a drill or a scoop for delivery to SAM and CheMin. SAM's instruments are a quadrupole mass spectrometer (QMS), a tunable laser spectrometer (TLS), and a 6-column gas chromatograph (GC). These are coupled through a solid sample transport system and a gas processing and enrichment system. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. Early results from SAM atmospheric runs include a determination of: new volume mixing ratios for the 5 major isotopic constituents showing Ar approximately equal to N2; an upper limit of 3.5 ppb for the volume mixing ratio of methane; C and O isotope ratios showing both heavier than terrestrial averages

  15. Early Evolved Gas Results from the Curiosity Rover’s SAM Investigation at Gale Crater

    NASA Astrophysics Data System (ADS)

    Mahaffy, Paul R.; Franz, H.; McAdam, A.; Brunner, A.; Eigenbrode, J.; Stern, J.; SAM Science Team; MSL Science Team

    2013-10-01

    The Mars Science Laboratory Mission is designed to explore the habitability of the selected landing site at Gale crater. The Sample Analysis at Mars (SAM) instrument suite contributes to this study with a search for organic compounds, an analysis of the composition of inorganic volatiles, and measurements of the isotopic composition light elements. Both atmospheric and solid samples are analyzed. The layers in the central mound (Mt. Sharp) of Gale crater are important targets for the MSL mission. However, in situ measurements made during the past year of interesting regions close to the Bradbury landing site have revealed a diverse geology and several primary mission objectives have already been realized. SAM is located in the interior of the Curiosity rover. The MSL cameras, a laser induced breakdown spectrometer, and elemental analysis instrumentation serves to locate sampling sites and interogate candidate materials before solid sample is collected either with a drill or a scoop for delivery to SAM and the XRD instrument CheMin. SAM integrates a quadrupole mass spectrometer (QMS), a tunable laser spectrometer (TLS), and a 6-column gas chromatograph (GC) with a solid sample transport system and a gas processing and enrichment system. Results of SAM atmospheric composition analyses have already been reported (1,2). To date, multiple SAM evolved gas experiments have examined samples from fines scooped from an aeolian drift and from two drilled samples of a mudstone. Major evolved gases are H2O, CO2, O2, SO2, H2S, H2, and a number of minor species. These data help confirm the likely presence of perchlorates, the presence of phylosillicates, and both reduced and oxidized compounds evolved from the same sample. 1) P.R. Mahaffy et al., Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover, Science 343, (2013). 2) C.R. Webster et al., Isotope Ratios of H, C and O in Martian Atmospheric Carbon Dioxide and Water Measured by the

  16. Development of a "one-pot" sample preparation procedure for the in situ analysis by GC/MS of textraterrestrial environnements : application to the Sample Analysis at Mars experiment (SAM for MSL 2009)

    NASA Astrophysics Data System (ADS)

    Buch, A.; Sternberg, R.; Mettetal, F.; Szopa, C.; Coscia, D.; Rodier, C.; Coll, P.; Cabane, M.; Raulin, F.; Sam Team

    In the frame of the MSL2009 exploratory mission to Mars a new one-pot one step method to analyse in-situ the martian soil has been developed The goal is to detect if they exist the key compounds of the origin of life such as carboxylic acids amino acids and nucleobases Before their analysis by GC MS all the targeted compounds should be extracted and derivatized With a classical procedure 1 extraction and derivatization are carried out in a two steps process which needs separation and evaporation of the extraction solvent in order to preconcentrate the extracted compounds Moreover the derivatizing agent used MTBSTFA could react with the solvent of extraction With the new procedure extraction and derivatization are carried out in a one-pot and one step procedure by heating the sample prior to the derivatization Once heated the sample is introduced in a reactor and heated in the range of 200 r C to 500 r C during about 20 minutes Then the derivatizing agent is deposited on the soil and the derivatization is performed at 75 r C during 30 minutes The gaseous phase thus obtained in the reactor is flushed by the carrier gas He in the column of the GCMS through a six-port sampling valve This sample preparation method has been tested on soil samples collected from the Atacama desert in Chile described as one of the best Mars-like analog given the presence of oxidizing materials trace quantities of organic compounds and extremely low levels of culturable bacteria 2 All the targeted compounds already detected by the

  17. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  18. Analogue Experiments Identify Possible Precursor Compounds for Chlorohydrocarbons Detected in SAM

    NASA Astrophysics Data System (ADS)

    Miller, K.; Summons, R. E.; Eigenbrode, J. L.; Freissinet, C.; Glavin, D. P.; Martin, M. G.; Team, M.

    2013-12-01

    Since landing at Gale Crater on August 6, 2012, the Sample Analysis at Mars (SAM) instrument suite, aboard the Curiosity Rover, has conducted multiple analyses of scooped and drilled samples and has identified a suite of chlorohydrocarbons including chloromethane, dichloromethane, trichloromethane, chloromethylpropene, and chlorobenzene (Glavin et al., 2013; Leshin et al., 2013). These compounds were identified after samples were pyrolysed at temperatures up to ~835°C through a combination of Evolved Gas Analysis (EGA) and Gas Chromatography Mass Spectrometry (GCMS). Since these chlorinated species were well above the background levels determined by empty cup blanks analyzed prior to solid sample analyses, thermal degradation of oxychlorine phases, such as perchlorate, present in the Martian soil, are the most likely source of chlorine needed to generate these chlorohydrocarbons. Laboratory analogue experiments show that terrestrial organics internal to SAM, such as N-methyl-N(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), a derivatization agent, can react with perchlorates to produce all of the chlorohydrocarbons detected by SAM. However, in pyrolysis-trap-GCMS laboratory experiments with MTBSTFA, C4 compounds are the predominant chlorohydrocarbon observed, whereas on SAM the C1 chlorohydrocarbons dominate (Glavin et al., 2013). This, in addition to the previous identification of chloromethane and dichloromethane by the 1976 Viking missions (Biemann et al., 1977), suggest that there could be another, possibly Martian, source of organic carbon contributing to the formation of the C1 chlorohydrocarbons, or other components of the solid samples analyzed by SAM are having a catalytic effect on chlorohydrocarbon generation. Laboratory analogue experiments investigated a suite of organic compounds that have the potential to accumulate on Mars (Benner et al., 2000) and thus serve as sources of carbon for the formation of chlorohydrocarbons detected by the SAM and

  19. Assessing the suitability of written stroke materials: an evaluation of the interrater reliability of the suitability assessment of materials (SAM) checklist.

    PubMed

    Hoffmann, Tammy; Ladner, Yvette

    2012-01-01

    Written materials are frequently used to provide education to stroke patients and their carers. However, poor quality materials are a barrier to effective information provision. A quick and reliable method of evaluating material quality is needed. This study evaluated the interrater reliability of the Suitability Assessment of Materials (SAM) checklist in a sample of written stroke education materials. Two independent raters evaluated the materials (n = 25) using the SAM, and ratings were analyzed to reveal total percentage agreements and weighted kappa values for individual items and overall SAM rating. The majority of the individual SAM items had high interrater reliability, with 17 of the 22 items achieving substantial, almost perfect, or perfect weighted kappa value scores. The overall SAM rating achieved a weighted kappa value of 0.60, with a percentage total agreement of 96%. Health care professionals should evaluate the content and design characteristics of written education materials before using them with patients. A tool such as the SAM checklist can be used; however, raters should exercise caution when interpreting results from items with more subjective scoring criteria. Refinements to the scoring criteria for these items are recommended. The value of the SAM is that it can be used to identify specific elements that should be modified before education materials are provided to patients.

  20. Zen and Behavior Analysis

    PubMed Central

    Bass, Roger

    2010-01-01

    Zen's challenge for behavior analysis is to explain a repertoire that renders analysis itself meaningless—a result following not from scientific or philosophical arguments but rather from a unique verbal history generated by Zen's methods. Untying Zen's verbal knots suggests how meditation's and koans' effects on verbal behavior contribute to Enlightenment and Samādhi. The concept of stimulus singularity is introduced to account for why, within Zen's frame of reference, its methods can be studied but its primary outcomes (e.g., Samādhi and Satori) cannot be described in any conventional sense. PMID:22479128

  1. Study of the resistance of SAMs on aluminium to acidic and basic solutions using dynamic contact angle measurement.

    PubMed

    Liakos, Ioannis L; Newman, Roger C; McAlpine, Eoghan; Alexander, Morgan R

    2007-01-30

    We report the development of a method to determine the aqueous stability of self-assembled monolayers (SAMs) using the Wilhelmy plate dynamic contact angle (DCA) experiment. The DCA is measured in solutions over a range of pH values for alkyl carboxylic and alkyl phosphonic acid SAMs formed on magnetron-sputtered aluminum. The change in DCA on repeated immersion is used as a measure of the degradation of the SAMs by hydrolytic attack. The short and intermediate chain length alkyl acids are not stable in water of neutral pH, whereas molecules with the longest alkyl chains show considerably greater stability in neutral and both high and low pH solutions. The packing density inferred from the DCA and the contact angle hysteresis suggests the C18CO2H monolayer to be slightly less well packed than that of the C18P(=O)(OH)2; this is consistent with related friction force microscopy and infrared reflection absorption spectroscopy findings published elsewhere (Foster, T. T.; Alexander, M. R.; Leggett, G. J.; McAlpine, E. Langmuir 2006, 22, 9254-9259). The resistance of the SAMs to acid and alkaline environments is discussed in the context of aluminum oxide solubility, SAM packing density, and the resistance of the interfacial phosphate and carboxylate functionalities to different aqueous conditions.

  2. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber

    NASA Technical Reports Server (NTRS)

    Gundersen, Cynthia; Hoffman, Christopher; Munoz, Bruno; Steohenson, Timothy; Thomas, Walter

    2008-01-01

    In support of the GPS for the SAM instrument suite built by GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr wire, 0.0056 inches in diameter, for use as a heater element for the carbon dioxide scrubber. The wire would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The wire also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni-20Cr in low pressure CO2, together with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the wire reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  3. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suite Gas Processing System (GPS) Carbon Dioxide Scrubber

    NASA Technical Reports Server (NTRS)

    Hoffman, Christopher; Munoz, Bruno; Gundersen, Cynthia; Thomas, Walter, III; Stephenson, Timothy

    2008-01-01

    In support of the GPS for the SAM instrument suite built by NASA/GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr alloy wire, 0.0142 cm diameter, for use as a heater element for the carbon dioxide scrubber. The element would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The element also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni- 20Cr in low pressure CO2, coupled with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the element reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  4. Effect of S-adenosyl-L-methionine (SAM), an allosteric activator of cystathionine-β-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro

    PubMed Central

    Módis, Katalin; Coletta, Ciro; Asimakopoulou, Antonia; Szczesny, Bartosz; Chao, Celia; Papapetropoulos, Andreas; Hellmich, Mark R.; Szabo, Csaba

    2014-01-01

    Recent data show that colon cancer cells selectively overexpress cystathionine-β-synthase (CBS), which produces hydrogen sulfide (H2S), to maintain cellular bioenergetics, support tumor growth and stimulate angiogenesis and vasorelaxation in the tumor microenvironment. The purpose of the current study was to investigate the effect of the allosteric CBS activator S-adenosyl-L-methionine (SAM) on the proliferation and bioenergetics of the CBS-expressing colon cancer cell line HCT116. The non-transformed, non-tumorigenic colon epithelial cell line NCM356 was used as control. For assessment of cell proliferation, the xCELLigence system was used. Bioenergetic function was measured by Extracellular Flux Analysis. Experiments using human recombinant CBS or HCT116 homogenates complemented the cell-based studies. SAM markedly enhanced CBS-mediated H2S production in vitro, especially when a combination of cysteine and homocysteine was used as substrates. Addition of SAM (0.1 – 3 mM) to HCT116 cells induced a concentration-dependent increase H2S production. SAM exerted time-and concentration-dependent modulatory effects on cell proliferation. At 0.1–1 mM SAM increased HCT116 proliferation between 0–12 h, while the highest SAM concentration (3 mM) inhibited proliferation. Over a longer time period (12–24 h), only the lowest concentration of SAM used (0.1 mM) stimulated cell proliferation; higher SAM concentrations produced a concentration-dependent inhibition. The short-term stimulatory effects of SAM were attenuated by the CBS inhibitor aminooxyacetic acid (AOAA) or by stable silencing of CBS. In contrast, the inhibitory effects of SAM on cell proliferation was unaffected by CBS inhibition or CBS silencing. In contrast to HCT116 cells, the lower rate of proliferation of the low-CBS expressor NCM356 cells was unaffected by SAM. Short-term (1h) exposure of HCT116 cells to SAM induced a concentration-dependent increase in oxygen consumption and bioenergetic function at

  5. Effect of S-adenosyl-L-methionine (SAM), an allosteric activator of cystathionine-β-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro.

    PubMed

    Módis, Katalin; Coletta, Ciro; Asimakopoulou, Antonia; Szczesny, Bartosz; Chao, Celia; Papapetropoulos, Andreas; Hellmich, Mark R; Szabo, Csaba

    2014-09-15

    Recent data show that colon cancer cells selectively overexpress cystathionine-β-synthase (CBS), which produces hydrogen sulfide (H2S), to maintain cellular bioenergetics, support tumor growth and stimulate angiogenesis and vasorelaxation in the tumor microenvironment. The purpose of the current study was to investigate the effect of the allosteric CBS activator S-adenosyl-L-methionine (SAM) on the proliferation and bioenergetics of the CBS-expressing colon cancer cell line HCT116. The non-transformed, non-tumorigenic colon epithelial cell line NCM356 was used as control. For assessment of cell proliferation, the xCELLigence system was used. Bioenergetic function was measured by Extracellular Flux Analysis. Experiments using human recombinant CBS or HCT116 homogenates complemented the cell-based studies. SAM markedly enhanced CBS-mediated H2S production in vitro, especially when a combination of cysteine and homocysteine was used as substrates. Addition of SAM (0.1-3 mM) to HCT116 cells induced a concentration-dependent increase H2S production. SAM exerted time- and concentration-dependent modulatory effects on cell proliferation. At 0.1-1 mM SAM increased HCT116 proliferation between 0 and 12 h, while the highest SAM concentration (3 mM) inhibited proliferation. Over a longer time period (12-24 h), only the lowest concentration of SAM used (0.1 mM) stimulated cell proliferation; higher SAM concentrations produced a concentration-dependent inhibition. The short-term stimulatory effects of SAM were attenuated by the CBS inhibitor aminooxyacetic acid (AOAA) or by stable silencing of CBS. In contrast, the inhibitory effects of SAM on cell proliferation was unaffected by CBS inhibition or CBS silencing. In contrast to HCT116 cells, the lower rate of proliferation of the low-CBS expressor NCM356 cells was unaffected by SAM. Short-term (1 h) exposure of HCT116 cells to SAM induced a concentration-dependent increase in oxygen consumption and bioenergetic function at 0

  6. SAMMate: a GUI tool for processing short read alignments in SAM/BAM format

    PubMed Central

    2011-01-01

    Background Next Generation Sequencing (NGS) technology generates tens of millions of short reads for each DNA/RNA sample. A key step in NGS data analysis is the short read alignment of the generated sequences to a reference genome. Although storing alignment information in the Sequence Alignment/Map (SAM) or Binary SAM (BAM) format is now standard, biomedical researchers still have difficulty accessing this information. Results We have developed a Graphical User Interface (GUI) software tool named SAMMate. SAMMate allows biomedical researchers to quickly process SAM/BAM files and is compatible with both single-end and paired-end sequencing technologies. SAMMate also automates some standard procedures in DNA-seq and RNA-seq data analysis. Using either standard or customized annotation files, SAMMate allows users to accurately calculate the short read coverage of genomic intervals. In particular, for RNA-seq data SAMMate can accurately calculate the gene expression abundance scores for customized genomic intervals using short reads originating from both exons and exon-exon junctions. Furthermore, SAMMate can quickly calculate a whole-genome signal map at base-wise resolution allowing researchers to solve an array of bioinformatics problems. Finally, SAMMate can export both a wiggle file for alignment visualization in the UCSC genome browser and an alignment statistics report. The biological impact of these features is demonstrated via several case studies that predict miRNA targets using short read alignment information files. Conclusions With just a few mouse clicks, SAMMate will provide biomedical researchers easy access to important alignment information stored in SAM/BAM files. Our software is constantly updated and will greatly facilitate the downstream analysis of NGS data. Both the source code and the GUI executable are freely available under the GNU General Public License at http://sammate.sourceforge.net. PMID:21232146

  7. Method of multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2004-01-06

    A method of determining the properties of a sample from measured spectral data collected from the sample by performing a multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used to analyze X-ray spectral data generated by operating a Scanning Electron Microscope (SEM) with an attached Energy Dispersive Spectrometer (EDS).

  8. SAMS Acceleration Measurements on Mir from June to November 1995

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Ken; Moskowitz, Milton; McPherson, Kevin

    1996-01-01

    The NASA Microgravity Science and Applications Division (MSAD) sponsors science experiments on a variety of microgravity carriers, including sounding rockets, drop towers, parabolic aircraft, and Orbiter missions. The MSAD sponsors the Space Acceleration Measurement System (SAMS) to support microgravity science experiments with acceleration measurements to characterize the microgravity environment to which the experiments were exposed. The Principal Investigator Microgravity Services project at the NASA Lewis Research Center supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. In 1993, a cooperative effort was started between the United States and Russia involving science utilization of the Russian Mir space station by scientists from the United States and Russia. MSAD is currently sponsoring science experiments participating in the Shuttle-Mir Science Program in cooperation with the Russians on the Mir space station. Included in the complement of MSAD experiments and equipment is a SAMS unit In a manner similar to Orbiter mission support, the SAMS unit supports science experiments from the U.S. and Russia by measuring the microgravity environment during experiment operations. The initial SAMS supported experiment was a Protein Crystal Growth (PCG) experiment from June to November 1995. SAMS data were obtained during the PCG operations on Mir in accordance with the PCG Principal Investigator's requirements. This report presents an overview of the SAMS data recorded to support this PCG experiment. The report contains plots of the SAMS 100 Hz sensor head data as an overview of the microgravity environment, including the STS-74 Shuttle-Mir docking.

  9. Toward a prediction of the redox properties of electroactive SAMs: a free energy calculation by molecular simulation.

    PubMed

    Filippini, Gaëlle; Goujon, Florent; Bonal, Christine; Malfreyt, Patrice

    2010-10-14

    We report free energy calculations of FcC(6)S-/C(4)S-Au and FcC(6)S-/C(12)S-Au binary self-assembled monolayers (SAMs) formed by one ferrocenylhexanethiolate chain and alkylthiolate chains. We demonstrate that the free energy perturbation methods are able to reproduce the positive shift of the redox potential when the coadsorbed butanethiolate C(4)S chains are replaced by dodecanethiolate C(12)S chains. The different contributions to the Ewald summation involved in the perturbation process are thoroughly described. We complete the study by a microscopic description of the binary SAMs before and after oxidation. The molecular dynamics (MD) simulations evidence that the formation of the ion-pair between the ferricinium and a single perchlorate anion of the supporting electrolyte is more favored in FcC(6)S-/C(12)S-Au SAM.

  10. Background and Artifacts Generated by the by the Sample Preparation Experiment on SAM

    NASA Astrophysics Data System (ADS)

    Belmahdi, Imene; Buch, Arnaud; Szopa, Cyril; Freissinet, Caroline; Glavin, Daniel; Coll, Patrice; Cabane, Michel; Millan, Maeva; Eigenbrode, Jennifer; Navarro-Gonzalez, Rafael; Stern, Jennifer; Coscia, David; Bonnet, Jean-Yves; Teinturier, Samuel; Morisson, Marietta; Stambouli, Moncef; Dequaire, Tristan; Mahaffy, Paul

    2016-04-01

    Sample Analysis at Mars (SAM) is one of the instruments of the Mars Science Laboratory mission. Three analytical devices composed the SAM experiment: the Tunable Laser Spectrometer (TLS), the Gas Chromatography (GC) and the Mass Spectrometer (MS). To adapt the nature of a sample to the analytical devices used, a sample preparation and gas processing system implemented with (a) a pyrolysis system, (b) wet chemistry: MTBSTFA and TMAH (c) the hydrocarbon trap (silica beads, Tenax® TA and Carbosieve G) and the injection trap (Tenax® GR composed of Tenax® TA and 30% of graphite) are employed to concentrate volatiles released from the sample prior to GC-MS analysis. Our study investigates several propositions for chlorinated hydrocarbon formation detected in the SAM background by looking for: (a) all products coming from the interaction of Tenax® and perchlorates present on Mars, (b) also between some soil sample and perchlorates and (c) sources of chlorinated hydrocarbon precursors. Here we report on the detection of chlorohydrocarbon compounds and their potential origin.

  11. Major Volatiles from MSL SAM Evolved Gas Analyses: Yellowknife Bay Through Lower Mount Sharp

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Archer, P. D., Jr.; Sutter, B.; Franz, H. B.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Stern, J. C.; Freissinet, C.; Glavin, D. P.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Mahaffy, P. R.; Navarro-Gonzalez, R.; McKay, C. P.; Wilhelm, M. B.

    2015-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of <150 µm fines from five sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform ("RN") and drilled Sheepbed mudstone from sites John Klein ("JK") and Cumberland ("CB"). One was drilled from the Windjana ("WJ") site on a sandstone of the Kimberly formation investigated on route to Mount Sharp. Another was drilled from the Confidence Hills ("CH") site on a sandstone of the Murray Formation at the base of Mt. Sharp (Pahrump Hills). Outcrops are sedimentary rocks that are largely of fluvial or lacustrine origin, with minor aeolian deposits.. SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature (T) of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with XRD (e.g., X-ray amorphous phases). They can also give constraints on sample organic chemistry. Here, we discuss trends in major evolved volatiles from SAM EGA analyses to date.

  12. Microtribological and electrochemical corrosion behaviors of polydopamine coating on APTS-SAM modified Si substrate

    NASA Astrophysics Data System (ADS)

    Ou, Junfei; Wang, Jinqing; Liu, Sheng; Zhou, Jinfang; Ren, Sili; Yang, Shengrong

    2009-11-01

    A polydopamine coating (coded as PDAc) was prepared successfully on a Si substrate through a two-step process. Briefly, to improve the adhesion of PDAc on the Si substrate, a self-assembled monolayer of 3-aminopropyl triethoxysilane (coded as APTS-SAM) was firstly generated on the bare Si wafer. Thereafter, the PDAc with different thickness was fabricated through the chemical adsorption and autopolymerization of the dopamine hydrochloride on the APTS-SAM coated Si substrate. The formation of PDAc on the APTS-SAM modified Si substrate was proved by the characterizations of contact angle measurement, attenuated total reflectance Fourier transform infrared (ATR-FTIR) analysis, and X-ray photoelectron spectroscope (XPS), etc. The ellipsometric thickness measurement and atomic force microscopy (AFM) image analysis showed that the PDAc became thicker and rougher with the deposition time prolongation. Microtribological study showed that the thickness and roughness of the PDAc played a significant role in the tribological properties. In comparison with the bare Si substrate, the PDAc with thinner thickness possessed lower friction and was anticipated to be used as protecting coating in the field of boundary lubrication. The electrochemical corrosion behaviors of the prepared PDAc were investigated using the electrochemical station and a low corrosion current density was revealed, implying that the PDAc had good anti-corrosion capability and might find potential applications in the field of corrosion resistance.

  13. SAMSVM: A tool for misalignment filtration of SAM-format sequences with support vector machine.

    PubMed

    Yang, Jianfeng; Ding, Xiaofan; Sun, Xing; Tsang, Shui-Ying; Xue, Hong

    2015-12-01

    Sequence alignment/map (SAM) formatted sequences [Li H, Handsaker B, Wysoker A et al., Bioinformatics 25(16):2078-2079, 2009.] have taken on a main role in bioinformatics since the development of massive parallel sequencing. However, because misalignment of sequences poses a significant problem in analysis of sequencing data that could lead to false positives in variant calling, the exclusion of misaligned reads is a necessity in analysis. In this regard, the multiple features of SAM-formatted sequences can be treated as vectors in a multi-dimension space to allow the application of a support vector machine (SVM). Applying the LIBSVM tools developed by Chang and Lin [Chang C-C, Lin C-J, ACM Trans Intell Syst Technol 2:1-27, 2011.] as a simple interface for support vector classification, the SAMSVM package has been developed in this study to enable misalignment filtration of SAM-formatted sequences. Cross-validation between two simulated datasets processed with SAMSVM yielded accuracies that ranged from 0.89 to 0.97 with F-scores ranging from 0.77 to 0.94 in 14 groups characterized by different mutation rates from 0.001 to 0.1, indicating that the model built using SAMSVM was accurate in misalignment detection. Application of SAMSVM to actual sequencing data resulted in filtration of misaligned reads and correction of variant calling.

  14. OARE and SAMS on STS-94/MSL-1

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton; Hrovat, Kenneth; McPherson, Kevin; Tschen, Peter; DeLombard, Richard; Nati, Maurizio

    1998-01-01

    Four microgravity acceleration measurement instruments were included on MSL-1 to measure the accelerations and vibrations to which science experiments were exposed during their operation on the mission. The data were processed and presented to the principal investigators in a variety of formats to aid their assessment of the microgravity environment during their experiment operations. Two accelerometer systems managed by the NASA Lewis Research Center (LeRC) supported the MSL-1 mission: the Orbital Acceleration Research Experiment (OARE), and the Space Acceleration Measurement System (SAMS). In addition, the Microgravity Measurement Assembly (MMA) and the Quasi- Steady Acceleration Measurement (QSAM) system, both sponsored by the Microgravity Research Division, collected acceleration data as a part of the MSL-1 mission. The NIMA was funded and designed by the European Space Agency in the Netherlands (ESA/ESTEC), and the QSAM system was funded and designed by the German Space Agency (DLR). The Principal Investigator Microgravity Services (PIMS) project at the NASA Lewis Research Center (LeRC) supports Principal Investigators (PIs) of the Microgravity science community as they evaluate the effects of acceleration on their experiments. PIMS primary responsibility is to support NASA-sponsored investigators in the area of acceleration data analysis and interpretation. A mission summary report was prepared and published by PIMS in order to furnish interested experiment investigators with a guide for evaluating the acceleration environment during the MSL-1 mission.

  15. Method of photon spectral analysis

    DOEpatents

    Gehrke, R.J.; Putnam, M.H.; Killian, E.W.; Helmer, R.G.; Kynaston, R.L.; Goodwin, S.G.; Johnson, L.O.

    1993-04-27

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and [gamma]-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2,000 keV), as well as high-energy [gamma] rays (>1 MeV). A 8,192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The [gamma]-ray portion of each spectrum is analyzed by a standard Ge [gamma]-ray analysis program. This method can be applied to any analysis involving x- and [gamma]-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the [gamma]-ray analysis and accommodated during the x-ray analysis.

  16. Method of photon spectral analysis

    DOEpatents

    Gehrke, Robert J.; Putnam, Marie H.; Killian, E. Wayne; Helmer, Richard G.; Kynaston, Ronnie L.; Goodwin, Scott G.; Johnson, Larry O.

    1993-01-01

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and .gamma.-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2000 keV), as well as high-energy .gamma. rays (>1 MeV). A 8192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The .gamma.-ray portion of each spectrum is analyzed by a standard Ge .gamma.-ray analysis program. This method can be applied to any analysis involving x- and .gamma.-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the .gamma.-ray analysis and accommodated during the x-ray analysis.

  17. Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    B. Franz, Heather; G. Trainer, Melissa; H. Wong, Michael; L. K. Manning, Heidi; C. Stern, Jennifer; R. Mahaffy, Paul; K. Atreya, Sushil; Benna, Mehdi; G. Conrad, Pamela; N. Harpold, Dan; A. Leshin, Laurie; A. Malespin, Charles; P. McKay, Christopher; Thomas Nolan, J.; Raaen, Eric

    2014-06-01

    The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars' Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSL's primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars' atmosphere from measurements obtained with SAM's quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM (Mahaffy et al., 2013) and Viking (Owen et al., 1977; Oyama and Berdahl, 1977) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples. The Sample Analysis at Mars (SAM) instrument measures the composition of the martian atmosphere. Rigorous calibration of SAM's mass spectrometer was performed with relevant gas mixtures. Calibration included derivation of a new model to correct for electron multiplier effects. Volume mixing ratios for Ar and N2 obtained with SAM differ from those obtained with Viking. Differences between SAM and Viking

  18. SAM68: Signal Transduction and RNA Metabolism in Human Cancer

    PubMed Central

    Frisone, Paola; Pradella, Davide; Di Matteo, Anna; Belloni, Elisa

    2015-01-01

    Alterations in expression and/or activity of splicing factors as well as mutations in cis-acting splicing regulatory sequences contribute to cancer phenotypes. Genome-wide studies have revealed more than 15,000 tumor-associated splice variants derived from genes involved in almost every aspect of cancer cell biology, including proliferation, differentiation, cell cycle control, metabolism, apoptosis, motility, invasion, and angiogenesis. In the past decades, several RNA binding proteins (RBPs) have been implicated in tumorigenesis. SAM68 (SRC associated in mitosis of 68 kDa) belongs to the STAR (signal transduction and activation of RNA metabolism) family of RBPs. SAM68 is involved in several steps of mRNA metabolism, from transcription to alternative splicing and then to nuclear export. Moreover, SAM68 participates in signaling pathways associated with cell response to stimuli, cell cycle transitions, and viral infections. Recent evidence has linked this RBP to the onset and progression of different tumors, highlighting misregulation of SAM68-regulated splicing events as a key step in neoplastic transformation and tumor progression. Here we review recent studies on the role of SAM68 in splicing regulation and we discuss its contribution to aberrant pre-mRNA processing in cancer. PMID:26273626

  19. SAM, the Starfire Optical Range Atmospheric Monitor

    NASA Astrophysics Data System (ADS)

    Spillar, Earl J.; Shoemake, Marjorie A.; Slavin, Ann C.

    2011-10-01

    We describe the Starfire Optical Range (SOR) Atmospheric Monitor (SAM). SAM is a 40 cm telescope feeding a Shack-Hartmann wave-front sensor with 20 subapertures across the telescope aperture, which in turn feeds a 1 kHz CCD camera. The unique features of SAM include the ability to work through both day and night and the ability to estimate r0 values down to 1.5 cm at 750 nm. Because SAM can measure 200 tilts simultaneously in 1 ms, it is able to detect rapid changes in turbulence parameters. It will be able to estimate the Fried parameter r0, the Greenwood parameter fg, scintillation, and a rough profile simultaneously. After describing the basic design and construction of SAM and our algorithm for estimating r0, we describe the initial capabilities of the system. We show some initial data regarding the diurnal variation of r0 at the SOR, simulations of SAM’s performance, and a validation against another system. We conclude with future plans for the system.

  20. The Study of Active Monitoring in Sweden (SAMS): A randomized study comparing two different follow-up schedules for active surveillance of low-risk prostate cancer

    PubMed Central

    Carlsson, Stefan; Holmberg, Erik; Holmberg, Lars; Johansson, Eva; Josefsson, Andreas; Nilsson, Annika; Nyberg, Maria; Robinsson, David; Sandberg, Jonas; Sandblom, Dag; Stattin, Pär

    2013-01-01

    Objective Only a minority of patients with low-risk prostate cancer needs treatment, but the methods for optimal selection of patients for treatment are not established. This article describes the Study of Active Monitoring in Sweden (SAMS), which aims to improve those methods. Material and methods SAMS is a prospective, multicentre study of active surveillance for low-risk prostate cancer. It consists of a randomized part comparing standard rebiopsy and follow-up with an extensive initial rebiopsy coupled with less intensive follow-up and no further scheduled biopsies (SAMS-FU), as well as an observational part (SAMS-ObsQoL). Quality of life is assessed with questionnaires and compared with patients receiving primary curative treatment. SAMS-FU is planned to randomize 500 patients and SAMS-ObsQoL to include at least 500 patients during 5 years. The primary endpoint is conversion to active treatment. The secondary endpoints include symptoms, distant metastases and mortality. All patients will be followed for 10–15 years. Results Inclusion started in October 2011. In March 2013, 148 patients were included at 13 Swedish urological centres. Conclusions It is hoped that the results of SAMS will contribute to fewer patients with indolent, low-risk prostate cancer receiving unnecessary treatment and more patients on active surveillance who need treatment receiving it when the disease is still curable. The less intensive investigational follow-up in the SAMS-FU trial would reduce the healthcare resources allocated to this large group of patients if it replaced the present standard schedule. PMID:23883427

  1. Multivariate analysis methods for spectroscopic blood analysis

    NASA Astrophysics Data System (ADS)

    Wood, Michael F. G.; Rohani, Arash; Ghazalah, Rashid; Vitkin, I. Alex; Pawluczyk, Romuald

    2012-01-01

    Blood tests are an essential tool in clinical medicine with the ability diagnosis or monitor various diseases and conditions; however, the complexities of these measurements currently restrict them to a laboratory setting. P&P Optica has developed and currently produces patented high performance spectrometers and is developing a spectrometer-based system for rapid reagent-free blood analysis. An important aspect of this analysis is the need to extract the analyte specific information from the measured signal such that the analyte concentrations can be determined. To this end, advanced chemometric methods are currently being investigated and have been tested using simulated spectra. A blood plasma model was used to generate Raman, near infrared, and optical rotatory dispersion spectra with glucose as the target analyte. The potential of combined chemometric techniques, where multiple spectroscopy modalities are used in a single regression model to improve the prediction ability was investigated using unfold partial least squares and multiblock partial least squares. Results show improvement in the predictions of glucose levels using the combined methods and demonstrate potential for multiblock chemometrics in spectroscopic blood analysis.

  2. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    SciTech Connect

    Kurup, Parthiv; Turchi, Craig S.

    2015-11-01

    This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTrough analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m2 +/- $6/m2. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m2 if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m2, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.

  3. A magnesium-induced triplex pre-organizes the SAM-II riboswitch

    PubMed Central

    Roy, Susmita; Lammert, Heiko; Dayie, T. Kwaku; Sanbonmatsu, Karissa Y.

    2017-01-01

    Our 13C- and 1H-chemical exchange saturation transfer (CEST) experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding free energy landscape of the SAM-II riboswitch. We use this analysis to predict that magnesium ions remodel the landscape, shifting the equilibrium away from the extended, partially unfolded state towards a compact, pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS experiments, at different magnesium ion concentrations, quantitatively confirm our simulation results, demonstrating that magnesium ions induce collapse and pre-organization. Agreement between theory and experiment bolsters microscopic interpretation of our simulations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II riboswitch allows rapid detection of ligand with high selectivity, which is important for biological function. PMID:28248966

  4. Experience producing simulated events for the DZero experiment on the SAM-Grid

    SciTech Connect

    Garzoglio, G.; Terekhov, I.; Snow, J.; Jain, S.; Nishandar, A.; /Texas U., Arlington

    2004-12-01

    Most of the simulated events for the DZero experiment at Fermilab have been historically produced by the ''remote'' collaborating institutions. One of the principal challenges reported concerns the maintenance of the local software infrastructure, which is generally different from site to site. As the understanding of the distributed computing community over distributively owned and shared resources progresses, the adoption of grid technologies to address the production of Monte Carlo events for high energy physics experiments becomes increasingly interesting. SAM-Grid is a software system developed at Fermilab, which integrates standard grid technologies for job and information management with SAM, the data handling system of the DZero and CDF experiments. During the past few months, this grid system has been tailored for the Monte Carlo production of DZero. Since the initial phase of deployment, this experience has exposed an interesting series of requirements to the SAM-Grid services, the standard middleware, the resources and their management and to the analysis framework of the experiment. As of today, the inefficiency due to the grid infrastructure has been reduced to as little as 1%. In this paper, we present our statistics and the ''lessons learned'' in running large high energy physics applications on a grid infrastructure.

  5. Combined Mössbauer spectroscopic, multi-edge X-ray absorption spectroscopic, and density functional theoretical study of the radical SAM enzyme spore photoproduct lyase.

    PubMed

    Silver, Sunshine C; Gardenghi, David J; Naik, Sunil G; Shepard, Eric M; Huynh, Boi Hanh; Szilagyi, Robert K; Broderick, Joan B

    2014-03-01

    Spore photoproduct lyase (SPL), a member of the radical S-adenosyl-L-methionine (SAM) superfamily, catalyzes the direct reversal of the spore photoproduct, a thymine dimer specific to bacterial spores, to two thymines. SPL requires SAM and a redox-active [4Fe-4S] cluster for catalysis. Mössbauer analysis of anaerobically purified SPL indicates the presence of a mixture of cluster states with the majority (40 %) as [2Fe-2S](2+) clusters and a smaller amount (15 %) as [4Fe-4S](2+) clusters. On reduction, the cluster content changes to primarily (60 %) [4Fe-4S](+). The speciation information from Mössbauer data allowed us to deconvolute iron and sulfur K-edge X-ray absorption spectra to uncover electronic (X-ray absorption near-edge structure, XANES) and geometric (extended X-ray absorption fine structure, EXAFS) structural features of the Fe-S clusters, and their interactions with SAM. The iron K-edge EXAFS data provide evidence for elongation of a [2Fe-2S] rhomb of the [4Fe-4S] cluster on binding SAM on the basis of an Fe···Fe scatterer at 3.0 Å. The XANES spectra of reduced SPL in the absence and presence of SAM overlay one another, indicating that SAM is not undergoing reductive cleavage. The X-ray absorption spectroscopy data for SPL samples and data for model complexes from the literature allowed the deconvolution of contributions from [2Fe-2S] and [4Fe-4S] clusters to the sulfur K-edge XANES spectra. The analysis of pre-edge features revealed electronic changes in the Fe-S clusters as a function of the presence of SAM. The spectroscopic findings were further corroborated by density functional theory calculations that provided insights into structural and electronic perturbations that can be correlated by considering the role of SAM as a catalyst or substrate.

  6. Description of ferrocenylalkylthiol SAMs on gold by molecular dynamics simulations.

    PubMed

    Goujon, F; Bonal, C; Limoges, B; Malfreyt, P

    2009-08-18

    Molecular dynamics simulations of mixed monolayers consisting of Fc(CH2)12S-/C10S-Au SAMs are carried out to calculate structural (density profiles, angular distributions, positions of atoms) and energetic properties. The purpose of this paper is to explore the possible inhomogeneity of the neutral ferrocene moieties within the monolayer. Five systems have been studied using different grafting densities for the ferrocenylalkylthiolates. The angular distributions are described in terms of the relative contributions from isolated and clustered ferrocene moieties in the binary SAMs. It is shown that the energetic contributions strongly depend on the state of the ferrocene. The ability of molecular dynamics simulations to enable better understanding the SAM structure is illustrated in this work.

  7. The SAM-GRID project: architecture and plan

    NASA Astrophysics Data System (ADS)

    Baranovski, A.; Garzoglio, G.; Koutaniemi, H.; Lueking, L.; Patil, S.; Pordes, R.; Rana, A.; Terekhov, I.; Veseli, S.; Yu, J.; Walker, R.; White, V.

    2003-04-01

    SAM is a robust distributed file-based data management and access service, fully integrated with the D0 experiment at Fermilab and in phase of evaluation at the CDF experiment. The goal of the SAM-Grid project is to fully enable distributed computing for the experiments. The architecture of the project is composed of three primary functional blocks: the job handling, data handling, and monitoring and information services. Job handling and monitoring/information services are built on top of standard grid technologies (Condor-G/Globus Toolkit), which are integrated with the data handling system provided by SAM. The plan is devised to provide the users incrementally increasing levels of capability over the next 2 years.

  8. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    SciTech Connect

    Ryberg, David; Freeman, Janine

    2015-09-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a wide variety of system designs and locations. A scattering of independent snow coverage models have been developed over the last 15 years; however, there has been very little effort spent on verifying these models beyond the system design and location on which they were based. Moreover, none of the major PV modeling software products have incorporated any of these models into their workflow. In response to this deficiency, we have integrated the methodology of the snow model developed in the paper by Marion et al. [1] into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work we describe how the snow model is implemented in SAM and discuss our demonstration of the model's effectiveness at reducing error in annual estimations for two PV arrays. Following this, we use this new functionality in conjunction with a long term historical dataset to estimate average snow losses across the United States for a typical PV system design. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nation-wide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.

  9. SAM: a system for iteratively building marker maps.

    PubMed

    Soderlund, C; Dunham, I

    1995-12-01

    SAM (system for assembling markers) is a system which supports man-machine problem solving for iteratively ordering a set of markers. SAM aids the user in partially ordering a set of markers based on incomplete and uncertain data. As data is added and modified, SAM aids the user in updating the previously assembled maps. The input is a file of clones and for each clone, a list of the markers contained within it. The objective is to order the set of markers such that the markers contained in each clone are consecutive. The user directs the map building by selecting functions to assemble a region of markers, order the clones to fit the order of the markers and position new markers within an ordered set of markers. The user can edit the input data, edit the assembled map and add clones to the map based on their marker content. The results are displayed graphically and can be saved in a solution file. Based on the partial map, the user designs new experiments or edits the existing data to fill gaps and resolve ambiguities. When a previously assembled map is loaded into SAM, it is automatically updated with the new or altered data. SAM treats all markers as points, but has special features for multiple copy and long markers so that they can be used in the map building process. This system has supported the building of a YAC map of human chromosome 22 at the Sanger Centre, where use of Alu-PCR product markers is a major component in determining clone overlap and where we have an on-going effort to accumulate data from various sources. SAM is also being used at various other laboratories.

  10. Flow methods in chiral analysis.

    PubMed

    Trojanowicz, Marek; Kaniewska, Marzena

    2013-11-01

    The methods used for the separation and analytical determination of individual isomers are based on interactions with substances exhibiting optical activity. The currently used methods for the analysis of optically active compounds are primarily high-performance separation methods, such as gas and liquid chromatography using chiral stationary phases or chiral selectors in the mobile phase, and highly efficient electromigration techniques, such as capillary electrophoresis using chiral selectors. Chemical sensors and biosensors may also be designed for the analysis of optically active compounds. As enantiomers of the same compound are characterised by almost identical physico-chemical properties, their differentiation/separation in one-step unit operation in steady-state or dynamic flow systems requires the use of highly effective chiral selectors. Examples of such determinations are reviewed in this paper, based on 105 references. The greatest successes for isomer determination involve immunochemical interactions, enantioselectivity of the enzymatic biocatalytic processes, and interactions with ion-channel receptors or molecularly imprinted polymers. Conducting such processes under dynamic flow conditions may significantly enhance the differences in the kinetics of such processes, leading to greater differences in the signals recorded for enantiomers. Such determinations in flow conditions are effectively performed using surface-plasmon resonance and piezoelectric detections, as well as using common spectroscopic and electrochemical detections.

  11. Technoeconomic Modeling of Battery Energy Storage in SAM

    SciTech Connect

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven; Nelson, Austin; Lundstrom, Blake

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  12. Imaging and clinical findings in segmental arterial mediolysis (SAM).

    PubMed

    Alhalabi, Kinan; Menias, Christine; Hines, Robert; Mamoun, Ihsan; Naidu, Sailendra

    2017-02-01

    Segmental arterial mediolysis (SAM) is an uncommon, non-atherosclerotic, non-inflammatory arteriopathy that tends to affect the medium-sized splanchnic branches of the aorta along with renal, carotid, cerebral, and coronary arteries. The clinical presentation ranges from asymptomatic to severe, life-threatening intra-abdominal hemorrhage and shock. SAM overlaps clinically and radiologically with other inflammatory vasculitides. This article describes the pathologic-radiologic correlation, imaging findings, and the management of the disease. Radiologists should be familiar with this disease entity as imaging plays a crucial role in the diagnosis.

  13. Voltametric analysis apparatus and method

    SciTech Connect

    Almon, A.C.

    1991-12-31

    An apparatus and method are disclosed for electrochemical analysis of elements in solution. An auxiliary electrode a reference electrode and five working electrodes are positioned in a container containing a sample solution. The working electrodes are spaced apart evenly from each other and auxiliary electrode to minimize any inter-electrode interference that may occur during analysis. An electric potential is applied between auxiliary electrode and each of the working electrodes. Simultaneous measurements taken of the current flow through each of the working electrodes for each given potential in a potential range are used for identifying chemical elements present in sample solution and their respective concentrations. Multiple working electrodes enable a more positive identification to be made by providing unique data characteristic of chemical elements present in the sample solution.

  14. Voltametric analysis apparatus and method

    DOEpatents

    Almon, Amy C.

    1993-01-01

    An apparatus and method for electrochemical analysis of elements in solution. An auxiliary electrode 14, a reference electrode 18, and five working electrodes 20, 22, 26, 28, and 30 are positioned in a container 12 containing a sample solution 34. The working electrodes are spaced apart evenly from each other and auxiliary electrode 14 to minimize any inter-electrode interference that may occur during analysis. An electric potential is applied between auxiliary electrode 14 and each of the working electrodes 20, 22, 26, 28, and 30. Simultaneous measurements taken of the current flow through each of the working electrodes for each given potential in a potential range are used for identifying chemical elements present in sample solution 34 and their respective concentrations. Multiple working electrodes enable a more positive identification to be made by providing unique data characteristic of chemical elements present in the sample solution.

  15. Voltammetric analysis apparatus and method

    DOEpatents

    Almon, A.C.

    1993-06-08

    An apparatus and method is described for electrochemical analysis of elements in solution. An auxiliary electrode, a reference electrode, and five working electrodes are positioned in a container containing a sample solution. The working electrodes are spaced apart evenly from each other and the auxiliary electrode to minimize any inter-electrode interference that may occur during analysis. An electric potential is applied between the auxiliary electrode and each of the working electrodes. Simultaneous measurements taken of the current flow through each of the working electrodes for each given potential in a potential range are used for identifying chemical elements present in the sample solution and their respective concentrations. Multiple working electrodes enable a more positive identification to be made by providing unique data characteristic of chemical elements present in the sample solution.

  16. First results from the CheMin, DAN and SAM instruments on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Mahaffy, P. R.; Mitrofanov, I.

    2012-12-01

    One of the principal goals of the Mars Science Laboratory rover Curiosity is to identify and characterize the early habitable environments of Mars, as recorded in the stratified rocks and soil of Gale crater. The suite of instruments aboard Curiosity will make measurements useful for determining the presence and lateral/vertical distribution of hydrated phases, the mineralogy and "preservation potential" of sediments and rocks, and the identity and isotopic composition of organic and other carbon containing molecules, should such be present. Three of Curiosity's instruments, DAN ("Dynamic Albedo of Neutrons," a soil hydrogen detector), CheMin ("Chemistry and Mineralogy," a mineralogy instrument) and SAM ("Surface Analysis at Mars," an organic molecule and isotopic analysis instrument) are uniquely suited to this purpose. DAN consists of a pulsed neutron generator and neutron detector that will measure the hydrogen content (i.e., hydrated phases, water ice) in the upper meter of the soil. Both passive and active measurements will be obtained, resulting in a meter-scale resolution transect map of near-surface hydrogen along the path of the rover. These measurements will provide context for the mineralogical and organic measurements of drilled and scooped samples analyzed by CheMin and SAM. CheMin, a powder X-ray Diffraction (pXRD) instrument, will determine the mineralogy of scooped soils and powders obtained from drilled rocks. Hydrated minerals will be identified, along with whole-rock mineralogy for characterizing the environment of formation and preservation potential for organic molecules. SAM consists of a sample handling system, a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer. SAM will accept the same powdered rock and soil samples as CheMin, and will measure and identify organic carbon in these samples as well as evolved inorganic gases such as CO2, CH4, and H2O. Isotopic composition of noble gases and several light elements are

  17. Detecting Complex Organic Compounds Using the SAM Wet Chemistry Experiment on Mars

    NASA Astrophysics Data System (ADS)

    Freissinet, C.; Buch, A.; Glavin, D. P.; Brault, A.; Eigenbrode, J. L.; Kashyap, S.; Martin, M. G.; Miller, K.; Mahaffy, P. R.; Team, M.

    2013-12-01

    The search for organic molecules on Mars can provide important first clues of abiotic chemistry and/or extinct or extant biota on the planet. Gas Chromatography Mass Spectrometry (GC-MS) is currently the most relevant space-compatible analytical tool for the detection of organic compounds. Nevertheless, GC separation is intrinsically restricted to volatile molecules, and many molecules of astrobiological interest are chromatographically refractory or polar. To analyze these organics such as amino acids, nucleobases and carboxylic acids in the Martian regolith, an additional derivatization step is required to transform them into volatile derivatives that are amenable to GC analysis. As part of the Sample Analysis at Mars (SAM) experiment onboard Mars Science Laboratory (MSL) Curiosity rover, a single-step protocol of extraction and chemical derivatization with the silylating reagent N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) has been developed to reach a wide range of astrobiology-relevant refractory organic molecules (Mahaffy et al. 2012; Stalport et al. 2012). Seven cups in the SAM instrument are devoted to MTBSTFA derivatization. However, this chemical reaction adds a protective silyl group in place of each labile hydrogen, which makes the molecule non-identifiable in common mass spectra libraries. Therefore, we have created an extended library of mass spectra of MTBSTFA derivatized compounds of interest, considering their potential occurrence in Mars soils. We then looked specifically for MTBSTFA derivatized compounds using the existing and the newly created library, in various Mars analog soils. To enable a more accurate interpretation of the in situ derivatization GC-MS results that will be obtained by SAM, the lab experiments were performed as close as possible to the SAM flight instrument experimental conditions. Our first derivatization experiments display promising results, the laboratory system permitting an extraction and detection

  18. Information System through ANIS at CeSAM

    NASA Astrophysics Data System (ADS)

    Moreau, C.; Agneray, F.; Gimenez, S.

    2015-09-01

    ANIS (AstroNomical Information System) is a web generic tool developed at CeSAM to facilitate and standardize the implementation of astronomical data of various kinds through private and/or public dedicated Information Systems. The architecture of ANIS is composed of a database server which contains the project data, a web user interface template which provides high level services (search, extract and display imaging and spectroscopic data using a combination of criteria, an object list, a sql query module or a cone search interfaces), a framework composed of several packages, and a metadata database managed by a web administration entity. The process to implement a new ANIS instance at CeSAM is easy and fast : the scientific project has to submit data or a data secure access, the CeSAM team installs the new instance (web interface template and the metadata database), and the project administrator can configure the instance with the web ANIS-administration entity. Currently, the CeSAM offers through ANIS a web access to VO compliant Information Systems for different projects (HeDaM, HST-COSMOS, CFHTLS-ZPhots, ExoDAT,...).

  19. Astronaut Curtis Brown works with SAMS on Shuttle Atlantis middeck

    NASA Technical Reports Server (NTRS)

    1994-01-01

    On the Space Shuttle Atlantis' mid-deck, astronaut Curtis L. Brown, pilot, works with the Space Acceleration Measurement System (SAMS), which is making its eleventh Shuttle flight. This system supports the Protein Crystal Growth (PCG) experiments onboard by collecting and recording data characterizing the microgravity environment in the Shuttle mid-deck.

  20. Astronaut Curtis Brown works with SAMS on Shuttle Atlantis middeck

    NASA Technical Reports Server (NTRS)

    1994-01-01

    On the Space Shuttle Atlantis' mid-deck, astronaut Curtis L. Brown, pilot, works with the Space Acceleration Measurement System (SAMS), which is making its eleventh Shuttle flight. This system supports the Protein Crystal Growth (PCG) experiments onboard by collecting and recording data characterizing the microgravity environment in the Shuttle mid-deck.

  1. SAMS Acceleration Measurement on Mir From March to September 1996

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Ken; Truong, Duc; Reckart, Timothy

    1997-01-01

    During NASA Increment 2 (March to September 1996), over 15 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 55 optical disks and were returned to Earth on STS-79. During this time, SAMS data were collected in the Kristall and Kvant modules, and in the Priroda module to support the following experiments: the Queen's University Experiments in Liquid Diffusion (QUELD), the Technological Evaluation of the MIM (TEM), the Forced Flow Flame Spreading Test (FFFT), and Candle Flames in Microgravity (CFM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-76 operations, an extravehicular activity (EVA) to install and deploy solar panels on the Kvant module, a Progress engine burn to raise Mir's altitude, and an on-orbit SAMS calibration procedure. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  2. Being SAM President - A Long Journey in a Short Time.

    PubMed

    Holland, Mark

    2017-01-01

    My first piece of advice for all aspiring medical leaders would be this, 'don't bother' with a leadership course, as nothing can fully prepare you for the role. That said, please continue reading as I will try and provide an honest review of my time as President to the Society for Acute Medicine (SAM).

  3. Laser Induced Temperature Field on Surfaces: Application to SAM Patterning

    NASA Astrophysics Data System (ADS)

    Shadnam, Mohammad Reza; Amirfazli, Alidad

    2004-03-01

    Laser is used to thermally desorb a self assembeled monolayer (SAM) from a gold substrate. This process is a key step in making patterned surfaces. In many applications making curvilinear features is useful. Heating of a surface by a CW laser along a nonlinear trajectory is considered using Green's functions. Temperature profiles are calculated for heating along circular-arc trajectories of different curvatures. The effect of heating trajectory's radius of curvature and heating spot's velocity (Laser scanning rate) on resulting surface temperature is studied. It is shown that within the range of parameters considered, the induced surface temperature profiles are symmetric. It is also shown that change of heating trajectory's radius of curvature by one order of magnitude at heating velocity of 0.1 mm/s changes the induced surface temperatures by 12 K; this temperature increase will be 36 K at 1 mm/s. The effect of such temperature increases are discussed in terms of laser processing of SAM coated surfaces. For a case of heating along straight line, the kinetics of SAM desorption is coupled with heat diffusion equation to predict the percentage of SAM desorped and determine the feature size. The resulting surface chemical composition profiles are compared with experimental measurements and good agreement is reported.

  4. 77 FR 67813 - Sam Rayburn Dam Project Power Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... Southwestern Power Administration Sam Rayburn Dam Project Power Rate AGENCY: Southwestern Power Administration, DOE. ACTION: Notice of Rate Order Approving an Extension of Power Rate on an Interim Basis. SUMMARY..., Assistant Administrator, Southwestern Power Administration, Department of Energy, Williams Center Tower...

  5. Multispectral scanner data processing over Sam Houston National Forest

    NASA Technical Reports Server (NTRS)

    Reeves, C. A.; Kan, E. P.

    1974-01-01

    The Edit 9 forest scene, a computer processing technique, and its capability to map timber types in the Sam Houston National Forest, are evaluated. Special efforts were made to evaluate existing computer processing techniques in mapping timber types using ERTS-1 and aircraft data, and to provide an opportunity to open up new research and development areas in forestry data.

  6. The fSAM Model of False Recall

    ERIC Educational Resources Information Center

    Kimball, Daniel R.; Smith, Troy A.; Kahana, Michael J.

    2007-01-01

    The authors report a new theory of false memory building upon existing associative memory models and implemented in fSAM, the first fully specified quantitative model of false recall. Participants frequently intrude unstudied critical words while recalling lists comprising their strongest semantic associates but infrequently produce other…

  7. The Seismic Aftershock Monitoring System (SAMS) for OSI - Experiences from IFE14

    NASA Astrophysics Data System (ADS)

    Gestermann, Nicolai; Sick, Benjamin; Häge, Martin; Blake, Thomas; Labak, Peter; Joswig, Manfred

    2016-04-01

    An on-site inspection (OSI) is the third of four elements of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The sole purpose of an OSI is to confirm whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of the treaty and to gather any facts which might assist in identifying any possible violator. It thus constitutes the final verification measure under the CTBT if all other available measures are not able to confirm the nature of a suspicious event. The Provisional Technical Secretariat (PTS) carried out the Integrated Field Exercise 2014 (IFE14) in the Dead Sea Area of Jordan from 3 November to 9. December 2014. It was a fictitious OSI whose aim was to test the inspection capabilities in an integrated manner. The technologies allowed during an OSI are listed in the Treaty. The aim of the Seismic Aftershock Monitoring System (SAMS) is to detect and localize aftershocks of low magnitudes of the triggering event or collapses of underground cavities. The locations of these events are expected in the vicinity of a possible previous explosion and help to narrow down the search area within an inspection area (IA) of an OSI. The success of SAMS depends on the main elements, hardware, software, deployment strategy, the search logic and not least the effective use of personnel. All elements of SAMS were tested and improved during the Built-Up Exercises (BUE) which took place in Austria and Hungary. IFE14 provided more realistic climatic and hazardous terrain conditions with limited resources. Significant variations in topography of the IA of IFE14 in the mountainous Dead Sea Area of Jordan led to considerable challenges which were not expected from experiences encountered during BUE. The SAMS uses mini arrays with an aperture of about 100 meters and with a total of 4 elements. The station network deployed during IFE14 and results of the data analysis will be presented. Possible aftershocks of

  8. Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Franz, H.; Mahaffy, P. R.; Eigenbrode, J. L.; Stern, J. C.; Brunner, A.; Sutter, B.; Archer, P. D.; Ming, D. W.; Morris, R. V.; Atreya, S. K.; Team, M.

    2013-12-01

    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise ~20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000oC and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures <500oC, and an evolution peak at higher temperatures near ~750oC. The low temperature H2O evolution has many potential contributors, including adsorbed H2O, smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the ~20% observed in the mudstone samples. This potential detection underscores the

  9. Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, Amy; Franz, Heather; Mahaffy, Paul R.; Eigenbrode, Jennifer L.; Stern, Jennifer C.; Brunner, Anna; Archer, Paul Douglas; Ming, Douglas W.; Morris, Richard V.; Atreya, Sushil K.

    2013-01-01

    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise approx 20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000 C and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures < 500 C, and an evolution peak at higher temperatures near approx 750 C. The low temperature H2O evolution has many potential contributors, including adsorbed H2O, smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the approx 20% observed in the mudstone samples. This potential detection

  10. EFFECTS OF POLYCYCLIC AROMATIC HYDROCARBON OF SAM-COATED ELECTRODES USING FERRYICYANIDE AS THE REDOX INDICATOR

    EPA Science Inventory

    Electrochemical responses on self-assembled monolayer (SAM)-coated polycrystalline gold electrodes were investigated using cyclic voltammetry and square wave voltammetry with a three electrode system. Experimental results show potential in the application of pyrene-imprinted SAM...

  11. EFFECTS OF POLYCYCLIC AROMATIC HYDROCARBON OF SAM-COATED ELECTRODES USING FERRYICYANIDE AS THE REDOX INDICATOR

    EPA Science Inventory

    Electrochemical responses on self-assembled monolayer (SAM)-coated polycrystalline gold electrodes were investigated using cyclic voltammetry and square wave voltammetry with a three electrode system. Experimental results show potential in the application of pyrene-imprinted SAM...

  12. Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae.

    PubMed

    Chen, Hailong; Wang, Zhou; Wang, Zhilai; Dou, Jie; Zhou, Changlin

    2016-04-01

    S-adenosyl-L-methionine (SAM), biosynthesized from methionine and ATP, exhibited diverse pharmaceutical applications. To enhance SAM accumulation in S. cerevisiae CGMCC 2842 (wild type), improvement of methionine and ATP availability through MET6 and SAM2 co-expression combined with sodium citrate feeding was investigated here. Feeding 6 g/L methionine at 12 h into medium was found to increase SAM accumulation by 38 % in wild type strain. Based on this result, MET6, encoding methionine synthase, was overexpressed, which caused a 59 % increase of SAM. To redirect intracellular methionine into SAM, MET6 and SAM2 (encoding methionine adenosyltransferase) were co-expressed to obtain the recombinant strain YGSPM in which the SAM accumulation was 2.34-fold of wild type strain. The data obtained showed that co-expression of MET6 and SAM2 improved intracellular methionine availability and redirected the methionine to SAM biosynthesis. To elevate intracellular ATP levels, 6 g/L sodium citrate, used as an auxiliary energy substrate, was fed into the batch fermentation medium, and an additional 19 % increase of SAM was observed after sodium citrate addition. Meanwhile, it was found that addition of sodium citrate improved the isocitrate dehydrogenase activity which was associated with the intracellular ATP levels. The results demonstrated that addition of sodium citrate improved intracellular ATP levels which promoted conversion of methionine into SAM. This study presented a feasible approach with considerable potential for developing highly SAM-productive strains based on improving methionine and ATP availability.

  13. Flow analysis system and method

    NASA Technical Reports Server (NTRS)

    Hill, Wayne S. (Inventor); Barck, Bruce N. (Inventor)

    1998-01-01

    A non-invasive flow analysis system and method wherein a sensor, such as an acoustic sensor, is coupled to a conduit for transmitting a signal which varies depending on the characteristics of the flow in the conduit. The signal is amplified and there is a filter, responsive to the sensor signal, and tuned to pass a narrow band of frequencies proximate the resonant frequency of the sensor. A demodulator generates an amplitude envelope of the filtered signal and a number of flow indicator quantities are calculated based on variations in amplitude of the amplitude envelope. A neural network, or its equivalent, is then used to determine the flow rate of the flow in the conduit based on the flow indicator quantities.

  14. Aircraft accidents : method of analysis

    NASA Technical Reports Server (NTRS)

    1929-01-01

    This report on a method of analysis of aircraft accidents has been prepared by a special committee on the nomenclature, subdivision, and classification of aircraft accidents organized by the National Advisory Committee for Aeronautics in response to a request dated February 18, 1928, from the Air Coordination Committee consisting of the Assistant Secretaries for Aeronautics in the Departments of War, Navy, and Commerce. The work was undertaken in recognition of the difficulty of drawing correct conclusions from efforts to analyze and compare reports of aircraft accidents prepared by different organizations using different classifications and definitions. The air coordination committee's request was made "in order that practices used may henceforth conform to a standard and be universally comparable." the purpose of the special committee therefore was to prepare a basis for the classification and comparison of aircraft accidents, both civil and military. (author)

  15. Selective Plasma Deposition of Fluorocarbon Films on SAMs

    NASA Technical Reports Server (NTRS)

    Crain, Mark M., III; Walsh, Kevin M.; Cohn, Robert W.

    2006-01-01

    A dry plasma process has been demonstrated to be useful for the selective modification of self-assembled monolayers (SAMs) of alkanethiolates. These SAMs are used, during the fabrication of semiconductor electronic devices, as etch masks on gold layers that are destined to be patterned and incorporated into the devices. The selective modification involves the formation of fluorocarbon films that render the SAMs more effective in protecting the masked areas of the gold against etching by a potassium iodide (KI) solution. This modification can be utilized, not only in the fabrication of single electronic devices but also in the fabrication of integrated circuits, microelectromechanical systems, and circuit boards. In the steps that precede the dry plasma process, a silicon mold in the desired pattern is fabricated by standard photolithographic techniques. A stamp is then made by casting polydimethylsiloxane (commonly known as silicone rubber) in the mold. The stamp is coated with an alkanethiol solution, then the stamp is pressed on the gold layer of a device to be fabricated in order to deposit the alkanethiol to form an alkanethiolate SAM in the desired pattern (see figure). Next, the workpiece is exposed to a radio-frequency plasma generated from a mixture of CF4 and H2 gases. After this plasma treatment, the SAM is found to be modified, while the exposed areas of gold remain unchanged. This dry plasma process offers the potential for forming masks superior to those formed in a prior wet etching process. Among the advantages over the wet etching process are greater selectivity, fewer pin holes in the masks, and less nonuniformity of the masks. The fluorocarbon films formed in this way may also be useful as intermediate layers for subsequent fabrication steps and as dielectric layers to be incorporated into finished products.

  16. Hybrid methods for rotordynamic analysis

    NASA Technical Reports Server (NTRS)

    Noah, Sherif T.

    1986-01-01

    Effective procedures are presented for the response analysis of the Space Shuttle Main Engine turbopumps under transient loading conditions. Of particular concern is the determination of the nonlinear response of the systems to rotor imbalance in presence of bearing clearances. The proposed procedures take advantage of the nonlinearities involved being localized at only a few rotor/housing coupling joints. The methods include those based on integral formulations for the incremental solutions involving the transition matrices of the rotor and housing. Alternatively, a convolutional representation of the housing displacements at the coupling points is proposed which would allow performing the transient analysis on a reduced model of the housing. The integral approach is applied to small dynamical models to demonstrate the efficiency of the approach. For purposes of assessing the numerical integration results for the nonlinear rotor/housing systems, a numerical harmonic balance procedure is developed to enable determining all possible harmonic, subharmonic, and nonperiodic solutions of the systems. A brief account of the Fourier approach is presented as applied to a two degree of freedon rotor-support system.

  17. Analysis Methods of Magnesium Chips

    NASA Astrophysics Data System (ADS)

    Ohmann, Sven; Ditze, André; Scharf, Christiane

    2015-11-01

    The quality of recycled magnesium from chips depends strongly on their exposure to inorganic and organic impurities that are added during the production processes. Different kinds of magnesium chips from these processes were analyzed by several methods. In addition, the accuracy and effectiveness of the methods are discussed. The results show that the chips belong either to the AZ91, AZ31, AM50/60, or AJ62 alloy. Some kinds of chips show deviations from the above-mentioned normations. Different impurities result mainly from transition metals and lime. The water and oil content does not exceed 25%, and the chip size is not more than 4 mm in the diameter. The sieve analysis shows good results for oily and wet chips. The determination of oil and water shows better results for the application of a Soxhlet compared with the addition of lime and vacuum distillation. The most accurate values for the determination of water and oil are obtained by drying at 110°C (for water) and washing with acetone (for oil) by hand.

  18. Reliability and cost analysis methods

    NASA Technical Reports Server (NTRS)

    Suich, Ronald C.

    1991-01-01

    In the design phase of a system, how does a design engineer or manager choose between a subsystem with .990 reliability and a more costly subsystem with .995 reliability? When is the increased cost justified? High reliability is not necessarily an end in itself but may be desirable in order to reduce the expected cost due to subsystem failure. However, this may not be the wisest use of funds since the expected cost due to subsystem failure is not the only cost involved. The subsystem itself may be very costly. We should not consider either the cost of the subsystem or the expected cost due to subsystem failure separately but should minimize the total of the two costs, i.e., the total of the cost of the subsystem plus the expected cost due to subsystem failure. This final report discusses the Combined Analysis of Reliability, Redundancy, and Cost (CARRAC) methods which were developed under Grant Number NAG 3-1100 from the NASA Lewis Research Center. CARRAC methods and a CARRAC computer program employ five models which can be used to cover a wide range of problems. The models contain an option which can include repair of failed modules.

  19. Response of Antarctic ice shelf melt to SAM trend and possible feedbacks with the ice-dynamics

    NASA Astrophysics Data System (ADS)

    Donat-Magnin, Marion; Jourdain, Nicolas C.; Gallée, Hubert; Spence, Paul; Cornford, Stephen L.; Le Sommer, Julien; Durand, Gaël

    2017-04-01

    The observed positive trend in the Southern Annular Mode (SAM) may warm the Southern Ocean sub-surface through decreased Ekman downward pumping. Subsequent change in ice-shelves melt has been suggested to trigger glacier acceleration in West Antarctica. Here we use a regional ocean model configuration of the Amundsen Sea that includes interactive ice-shelf cavities. Our results show that the inclusion of ice-shelves changes the ocean response to the projected SAM trend, i.e. it typically inhibits a part of the SAM-induced subsurface warming. Heat budget analysis has been used to propose responsible mechanisms. Regarding Thwaites and Pine Island, sub ice-shelf melt increases above 400m by approximately 40% for Thwaites and 10% for Pine Island and decreases by up to 10% below in response to ocean temperature changes driven by the projected SAM trend. The melt sensitivity to poleward shifting winds is nonetheless small compared to the sensitivity to an ice-sheet instability, i.e. to a projected change in the shape of ice-shelf cavities. For instance, the sub ice-shelf melt are doubled near the grounding line of some glaciers in response to the largest grounding line retreat projected for 2100. Large increase in basal melt close to the grounding line could largely impact instability and glacier acceleration. Our work suggests the need for including ice shelves into ocean models, and to couple ocean models to ice-sheet models in climate projections.

  20. Influence of Oxychlorine Phases During the Pyrolysis of Organic Molecules: Implications for the Quest of Organics on Mars with the SAM Experiment Onboard the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Glavin, D. P.; Freissinet, C.; Eigenbrode, J. L.; Archer, P. D., Jr,; Sutter, B.; Mahaffy, P.

    2017-01-01

    One among the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples heated up to approximately 850 degrees Centigrade, and collected by Curiosity on Mars surface/sub-surface in Gale crater. With this aim, SAM uses a gas-chromatograph coupled to a quadrupole mass spectrometer (GC-QMS) devoted to separate, detect and identify both volatile inorganic and organic compounds. SAM detected chlorinated organic molecules produced in evolved gas analysis (EGA) experiments. Several of these were also detected by the Viking experiments in 1976. SAM also detected oxychlorine compounds that were present at the Phoenix landing site. The oxychlorines may be prevelant over much of the martian surface. The C1 to C3 aliphatic chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM were attributed to reaction products occurring between the oxychlorines phases and the organic compounds coming from SAM instrument background. But SAM also showed the presence of a large excess of chlorobenzene and C2 to C4 dichloroalkanes among the volatile species released by the Cumberland sample of the Sheepbed mudstone. For the first time in the history of the Mars exploration, this proved the presence of Mars indigenous organic material at the Mars' surface. However, the identification of the precursor organic compounds of these chlorohydrocarbons is difficult due to the complexity of the reactions occurring during the sample pyrolysis. Laboratory pyrolysis experiments have demonstrated that oxychlorines phases such as perchlorates and chlorates, decomposed into dioxygen and volatile chlorine bearing molecules (HCl and/or Cl2) during the pyrolysis. These chemical species can then react with the organic molecules present in the martian solid samples through oxidation, chlorination and oxychlorination processes.

  1. Computational methods for global/local analysis

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Mccleary, Susan L.; Aminpour, Mohammad A.; Knight, Norman F., Jr.

    1992-01-01

    Computational methods for global/local analysis of structures which include both uncoupled and coupled methods are described. In addition, global/local analysis methodology for automatic refinement of incompatible global and local finite element models is developed. Representative structural analysis problems are presented to demonstrate the global/local analysis methods.

  2. Rapid Method for Sodium Hydroxide Fusion of Asphalt ...

    EPA Pesticide Factsheets

    Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 Rapid method developed for analysis of Americium-241 (241Am), plutonium-238 (238Pu), plutonium-239 (239Pu), radium-226 (226Ra), strontium-90 (90Sr), uranium-234 (234U), uranium-235 (235U) and uranium-238 (238U) in asphalt roofing material samples

  3. A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning.

    PubMed

    Wostenberg, Christopher; Ceres, Pablo; Polaski, Jacob T; Batey, Robert T

    2015-11-06

    RNA folding in vivo is significantly influenced by transcription, which is not necessarily recapitulated by Mg(2+)-induced folding of the corresponding full-length RNA in vitro. Riboswitches that regulate gene expression at the transcriptional level are an ideal system for investigating this aspect of RNA folding as ligand-dependent termination is obligatorily co-transcriptional, providing a clear readout of the folding outcome. The folding of representative members of the SAM-I family of riboswitches has been extensively analyzed using approaches focusing almost exclusively upon Mg(2+) and/or S-adenosylmethionine (SAM)-induced folding of full-length transcripts of the ligand binding domain. To relate these findings to co-transcriptional regulatory activity, we have investigated a set of structure-guided mutations of conserved tertiary architectural elements of the ligand binding domain using an in vitro single-turnover transcriptional termination assay, complemented with phylogenetic analysis and isothermal titration calorimetry data. This analysis revealed a conserved internal loop adjacent to the SAM binding site that significantly affects ligand binding and regulatory activity. Conversely, most single point mutations throughout key conserved features in peripheral tertiary architecture supporting the SAM binding pocket have relatively little impact on riboswitch activity. Instead, a secondary structural element in the peripheral subdomain appears to be the key determinant in observed differences in regulatory properties across the SAM-I family. These data reveal a highly coupled network of tertiary interactions that promote high-fidelity co-transcriptional folding of the riboswitch but are only indirectly linked to regulatory tuning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. 75 FR 4579 - Certificate of Alternative Compliance for the Tugboat MR SAM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... SECURITY Coast Guard Certificate of Alternative Compliance for the Tugboat MR SAM AGENCY: Coast Guard, DHS... issued for the tugboat MR SAM as required by 33 U.S.C. 1605(c) and 33 CFR 81.18. DATES: The Certificate..., Parts 81 and 89, has been issued for the tugboat MR SAM, O.N. 1218725. Full compliance with 72 COLREGS...

  5. NaCl stress induces CsSAMs gene expression in Cucumis sativus by mediating the binding of CsGT-3b to the GT-1 element within the CsSAMs promoter.

    PubMed

    Wang, Li-Wei; He, Mei-Wen; Guo, Shi-Rong; Zhong, Min; Shu, Sheng; Sun, Jin

    2017-05-01

    The CsSAMs promoter is a salt-stress-inducible promoter containing three GT-1 elements that are sufficient for the salt-stress response. The transcription factor CsGT-3b was found to bind to the GT-1 element. The S-adenosyl-L-methionine synthase (SAMs) gene is among the functional genes induced during environmental stress. However, little is known about the regulatory mechanism and upstream regulators of this salt-inducible gene in cucumber plants. Thus, it is necessary to understand the characteristics of the SAMs gene by analyzing its promoter and transcription factors. In this study, we isolated and functionally analyzed a 1743-bp flanking fragment of the CsSAMs gene from Cucumis sativus. To examine promoter activity, the full-length promoter, as well as different promoter fragments, were fused to the β-glucuronidase (GUS) reporter gene and introduced into the tobacco genome. The full-length promoter displayed maximal promoter activity, whereas the P4 promoter, containing 321 bp of upstream sequence, showed no basal promoter activity. In addition, the CsSAMs promoter exhibited stress-inducible regulation rather than tissue-specific activity in transgenic tobacco. Histochemical analysis revealed strong GUS staining in leaves, stems, and roots, especially in the veins of leaves, the vascular bundle of stems, and root tip zones following NaCl stress. A transient expression assay confirmed that the 242-bp region (-1743 to -1500) was sufficient for the NaCl-stress response. Yeast one-hybrid assays further revealed interaction between the NaCl-response protein CsGT-3b and the GT-1 (GAAAAA) element within the 242-bp region. Taken together, we revealed the presence of four salt-stress-responsive elements (GT-1 cis-elements) in the CsSAMs promoter and identified a transcription factor, CsGT-3b, that specifically binds to this sequence. These results might help us better understand the intricate regulatory network of the cucumber SAMs gene.

  6. Suk-Sam-Bai: the quality of life perceptions among middle-aged women living with a disability in Isaan, Thailand.

    PubMed

    Rukwong, Pensri; Chirawatkul, Siriporn; Markovic, Milica

    2007-12-01

    Midlife represents a time of shifting roles and biopsychosociocultural change for women. Physical disabilities compound the effect of such on daily life and quality of life. The objective of this study was to explore how middle-aged women with disabilities in Isaan perceived their current quality of life. A qualitative method was applied. Data were collected using in-depth interviews and observations. Sixteen disabled women were recruited through purposive and theoretical sampling. Qualitative data were analyzed using both thematic and content analysis. Triangulation was used to ensure data rigor. "Suk-Sam-Bai" was a term frequently used by disabled women in this study to define their quality of life. Life experiences, goals, and achievements lead to experiences of gain, maintenance, and loss in three interrelated aspects that include: fluctuations in physical capacity and health, maintaining gender role, and a caring and supportive environment. These three aspects impact on an individual's personal perception of Suk-Sam-Bai. Study findings indicate that gender and culture play significant roles in the lives of disabled women in Isaan culture. Based on study findings, providing gender- cultural sensitive nursing care is essential to delivering comprehensive and effective healthcare to women with disabilities.

  7. PROPOSED STANDARDIZED ASSESSMENT METHODS (SAMS) FOR ELECTROFISHING LARGE RIVERS

    EPA Science Inventory

    The effects of electrofishing design and sampling distance were studied at 49 sites across four boatable rivers ranging in drainage area from 13,947 to 23,041 km2 in the Ohio River basin. Two general types of sites were sampled: Run-of-the-River (Free-flowing sites or with smal...

  8. PROPOSED STANDARDIZED ASSESSMENT METHODS (SAMS) FOR ELECTROFISHING LARGE RIVERS

    EPA Science Inventory

    The effects of electrofishing design and sampling distance were studied at 49 sites across four boatable rivers ranging in drainage area from 13,947 to 23,041 km2 in the Ohio River basin. Two general types of sites were sampled: Run-of-the-River (Free-flowing sites or with smal...

  9. Genome Mining for Radical SAM Protein Determinants Reveals Multiple Sactibiotic-Like Gene Clusters

    PubMed Central

    Murphy, Kiera; O'Sullivan, Orla; Rea, Mary C.; Cotter, Paul D.; Ross, R. Paul; Hill, Colin

    2011-01-01

    Thuricin CD is a two-component bacteriocin produced by Bacillus thuringiensis that kills a wide range of clinically significant Clostridium difficile. This bacteriocin has recently been characterized and consists of two distinct peptides, Trnβ and Trnα, which both possess 3 intrapeptide sulphur to α-carbon bridges and act synergistically. Indeed, thuricin CD and subtilosin A are the only antimicrobials known to possess these unusual structures and are known as the sactibiotics (sulplur to alpha carbon-containing antibiotics). Analysis of the thuricin CD-associated gene cluster revealed the presence of genes encoding two highly unusual SAM proteins (TrnC and TrnD) which are proposed to be responsible for these unusual post-translational modifications. On the basis of the frequently high conservation among enzymes responsible for the post-translational modification of specific antimicrobials, we performed an in silico screen for novel thuricin CD–like gene clusters using the TrnC and TrnD radical SAM proteins as driver sequences to perform an initial homology search against the complete non-redundant database. Fifteen novel thuricin CD–like gene clusters were identified, based on the presence of TrnC and TrnD homologues in the context of neighbouring genes encoding potential bacteriocin structural peptides. Moreover, metagenomic analysis revealed that TrnC or TrnD homologs are present in a variety of metagenomic environments, suggesting a widespread distribution of thuricin-like operons in a variety of environments. In-silico analysis of radical SAM proteins is sufficient to identify novel putative sactibiotic clusters. PMID:21760885

  10. Comparison of SAM and OBIA as Tools for Lava Morphology Classification - A Case Study in Krafla, NE Iceland

    NASA Astrophysics Data System (ADS)

    Aufaristama, Muhammad; Hölbling, Daniel; Höskuldsson, Ármann; Jónsdóttir, Ingibjörg

    2017-04-01

    The Krafla volcanic system is part of the Icelandic North Volcanic Zone (NVZ). During Holocene, two eruptive events occurred in Krafla, 1724-1729 and 1975-1984. The last eruptive episode (1975-1984), known as the "Krafla Fires", resulted in nine volcanic eruption episodes. The total area covered by the lavas from this eruptive episode is 36 km2 and the volume is about 0.25-0.3 km3. Lava morphology is related to the characteristics of the surface morphology of a lava flow after solidification. The typical morphology of lava can be used as primary basis for the classification of lava flows when rheological properties cannot be directly observed during emplacement, and also for better understanding the behavior of lava flow models. Although mapping of lava flows in the field is relatively accurate such traditional methods are time consuming, especially when the lava covers large areas such as it is the case in Krafla. Semi-automatic mapping methods that make use of satellite remote sensing data allow for an efficient and fast mapping of lava morphology. In this study, two semi-automatic methods for lava morphology classification are presented and compared using Landsat 8 (30 m spatial resolution) and SPOT-5 (10 m spatial resolution) satellite images. For assessing the classification accuracy, the results from semi-automatic mapping were compared to the respective results from visual interpretation. On the one hand, the Spectral Angle Mapper (SAM) classification method was used. With this method an image is classified according to the spectral similarity between the image reflectance spectrums and the reference reflectance spectra. SAM successfully produced detailed lava surface morphology maps. However, the pixel-based approach partly leads to a salt-and-pepper effect. On the other hand, we applied the Random Forest (RF) classification method within an object-based image analysis (OBIA) framework. This statistical classifier uses a randomly selected subset of training

  11. Forest Classification Accuracy as Influenced by Multispectral Scanner Spatial Resolution. [Sam Houston National Forest, Texas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.

  12. A Script Assisted Microscopy (SAM) Package to Improve Data Acquisition Rates on FEI Tecnai Electron Microscopes equipped with Gatan CCD Cameras

    PubMed Central

    Shi, Jian; Williams, Dewight R.; Stewart, Phoebe L.

    2008-01-01

    High throughput methods of data acquisition are advantageous for cryoelectron microscopy and single particle reconstruction as high-resolution structure determination requires thousands of particle images. We have developed a semi-automated data collection method that utilizes the scripting languages provided by FEI for their Tecnai User Interface (TUI) and by Gatan for their Digital Micrograph package. Our Script Assisted Microscopy (SAM) method allows for the selection of multiple locations within a low magnification, search mode, micrograph and for subsequent automated imaging of these locations at a higher exposure magnification. The SAM approach permits the user to retain control over the microscope, while streamlining the most repetitive steps of collecting and evaluating micrographs. With SAM, we have found an average of 1,000 micrographs can be collected per day on any grid type, either irregular homemade grids or prefabricated grids with regularly spaced holes. This rate of data collection represents a five-fold improvement over our manual collection rates. SAM provides an example of an individually tailored approach to data acquisition utilizing the scripting interfaces provided by the equipment manufacturers. The SAM method has proven valuable for determination of a subnanometer resolution cryoEM structure of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a 469kDa protein. PMID:18621546

  13. Technical Note: Radiation properties of tissue- and water-equivalent materials formulated using the stoichiometric analysis method in charged particle therapy

    SciTech Connect

    Yohannes, Indra; Vasiliniuc, Stefan; Hild, Sebastian; Langner, Oliver; Graeff, Christian; Bert, Christoph

    2016-01-15

    Purpose: Five tissue- and water-equivalent materials (TEMs) mimicking ICRU real tissues have been formulated using a previously established stoichiometric analysis method (SAM) to be applied in charged particle therapy. The purpose of this study was an experimental verification of the TEMs-SAM against charged particle beam measurements and for different computed tomography (CT) scanners. The potential of the TEMs-SAM to be employed in the dosimetry was also investigated. Methods: Experimental verification with three CT scanners was carried out to validate the calculated Hounsfield units (HUs) of the TEMs. Water-equivalent path lengths (WEPLs) of the TEMs for proton (106.8 MeV/u), helium (107.93 MeV/u), and carbon (200.3 MeV/u) ions were measured to be compared with the computed relative stopping powers. HU calibration curves were also generated. Results: Differences between the measured HUs of the TEMs and the calculated HUs of the ICRU real tissues for all CT scanners were smaller than 4 HU except for the skeletal tissues which deviated up to 21 HU. The measured WEPLs verified the calculated WEPLs of the TEMs (maximum deviation was 0.17 mm) and were in good agreement with the calculated WEPLs of the ICRU real tissues (maximum deviation was 0.23 mm). Moreover, the relative stopping powers converted from the measured WEPLs differed less than 0.8% and 1.3% from the calculated values of the SAM and the ICRU, respectively. Regarding the relative nonelastic cross section per unit of volume for 200 MeV protons, the ICRU real tissues were generally well represented by the TEMs except for adipose which differed 3.8%. Further, the HU calibration curves yielded the mean and the standard deviation of the errors not larger than 0.5% and 1.9%, respectively. Conclusions: The results of this investigation implied the potential of the TEMs formulated using the SAM to be employed for both, beam dosimetry and HU calibration in charged particle therapy.

  14. Fyn requires HnRNPA2B1 and Sam68 to synergistically regulate apoptosis in pancreatic cancer.

    PubMed

    Chen, Zhi-Yu; Cai, Lei; Zhu, Jin; Chen, Min; Chen, Jian; Li, Zhi-Hua; Liu, Xiang-De; Wang, Shu-Guang; Bie, Ping; Jiang, Peng; Dong, Jia-Hong; Li, Xiao-Wu

    2011-10-01

    The Src family kinase Fyn, heterogenous nuclear ribonucleoprotein (HnRNP) A2B1 and Sam68 are thought to be associated with the metastasis of tumors, but their roles in the regulation of apoptosis remain unclear. This study investigated the role of Fyn and its potential relationship with HnRNPA2B1 and Sam68 in the regulation of apoptosis in pancreatic cancer. Experimental design. We examined both the activity of Fyn and the expression of HnRNPA2B1 in human pancreatic cancer tissues and systematically investigated the apoptotic mechanisms induced by Fyn activity using multiple experimental approaches. We found that Fyn activity was increased in metastatic pancreatic cancer tissues. In the pancreatic cancer BxPc3 cell line, the inhibition of Fyn activity by kinase-dead Fyn downregulated HnRNPA2B1 expression. Further analysis showed that HnRNPA2B1 expression was associated with pancreatic cancer progression. In BxPc3 cells, HnRNPA2B1 bound to Bcl-x messenger RNA (mRNA), which affected splicing and therefore, the formation of Bcl-x(s). Downregulation of HnRNPA2B1 by RNA interference (RNAi) resulted in the increased formation of the pro-apoptotic Bcl-x(s) and promoted apoptosis of BxPc3 cells. In addition, deactivation of Fyn in BxPc3 cells reduced Sam68 phosphorylation. This resulted in increased binding between Sam68 and Bcl-x mRNA, promoting the formation of the anti-apoptotic Bcl-x(L). The knockdown of Sam68 by RNAi also increased the formation of Bcl-x(L). Finally, HnRNPA2B1 overexpression or Sam68 knockdown could rescue pancreatic cancer cells from apoptosis. Our results suggest a mechanism by which Fyn requires HnRNPA2B1 and Sam68 to coordinate and regulate apoptosis, thus promoting the proliferation and metastasis of pancreatic cancer.

  15. The SAM Domains of Anks Family Proteins Are Critically Involved in Modulating the Degradation of EphA Receptors ▿

    PubMed Central

    Kim, Jieun; Lee, Haeryung; Kim, Yujin; Yoo, Sooyeon; Park, Eunjeong; Park, Soochul

    2010-01-01

    We recently reported that the phosphotyrosine-binding (PTB) domain of Anks family proteins binds to EphA8, thereby positively regulating EphA8-mediated signaling pathways. In the current study, we identified a potential role for the SAM domains of Anks family proteins in EphA signaling. We found that SAM domains of Anks family proteins directly bind to ubiquitin, suggesting that Anks proteins regulate the degradation of ubiquitinated EphA receptors. Consistent with the role of Cbl ubiquitin ligases in the degradation of Eph receptors, our results revealed that the ubiquitin ligase c-Cbl induced the ubiquitination and degradation of EphA8 upon ligand binding. Ubiquitinated EphA8 also bound to the SAM domains of Odin, a member of the Anks family proteins. More importantly, the overexpression of wild-type Odin protected EphA8 and EphA2 from undergoing degradation following ligand stimulation and promoted EphA-mediated inhibition of cell migration. In contrast, a SAM domain deletion mutant of Odin strongly impaired the function of endogenous Odin, suggesting that the mutant functions in a dominant-negative manner. An analysis of Odin-deficient primary embryonic fibroblasts indicated that Odin levels play a critical role in regulating the stability of EphA2 in response to ligand stimulation. Taken together, our studies suggest that the SAM domains of Anks family proteins play a pivotal role in enhancing the stability of EphA receptors by modulating the ubiquitination process. PMID:20100865

  16. AKT-dependent phosphorylation of the SAM domain induces oligomerization and activation of the scaffold protein CNK1.

    PubMed

    Fischer, Adrian; Weber, Wilfried; Warscheid, Bettina; Radziwill, Gerald

    2017-01-01

    Scaffold proteins are hubs for the coordination of intracellular signaling networks. The scaffold protein CNK1 promotes several signal transduction pathway. Here we demonstrate that sterile motif alpha (SAM) domain-dependent oligomerization of CNK1 stimulates CNK1-mediated signaling in growth factor-stimulated cells. We identified Ser22 located within the SAM domain as AKT-dependent phosphorylation site triggering CNK1 oligomerization. Oligomeric CNK1 increased the affinity for active AKT indicating a positive AKT feedback mechanism. A CNK1 mutant lacking the SAM domain and the phosphorylation-defective mutant CNK1S22A antagonizes oligomerization and prevents CNK1-driven cell proliferation and matrix metalloproteinase 14 promoter activation. The phosphomimetic mutant CNK1S22D constitutively oligomerizes and stimulates CNK1 downstream signaling. Searching the COSMIC database revealed Ser22 as putative target for oncogenic activation of CNK1. Like the phosphomimetic mutant CNK1S22D, the oncogenic mutant CNK1S22F forms clusters in serum-starved cells comparable to clusters of CNK1 in growth factor-stimulated cells. CNK1 clusters induced by activating Ser22 mutants correlate with enhanced cell invasion and binding to and activation of ADP ribosylation factor 1 associated with tumor formation. Mutational analysis indicate that EGF-triggered phosphorylation of Thr8 within the SAM domain prevents AKT binding and antagonizes CNK1-mediated AKT signaling. Our findings reveal SAM domain-dependent oligomerization by AKT as switch for CNK1 activation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Flood Mitigation Planning Using HEC-SAM.

    DTIC Science & Technology

    1980-06-01

    the HEC who contributed substantially include R. Pat Webb--responsible for most of the developmental work and day-to-day servicing, Shelle Barkin --data...23 pages. #48 Direct Runoff Hydroqraph Parameters Versus Urbanization, David L. Gundlach, September 1976, 10 pages. #49 Experience of HEC in...Sedimentation, David T. Williams, October 1977, 39 pages. #51 Design of Flood Control Improvements by Systems Analysis: A Case Study, Howard 0. Reese, Arnold

  18. The Sam Domain of EphA2 Receptor and its Relevance to Cancer: A Novel Challenge for Drug Discovery?

    PubMed

    Mercurio, Flavia A; Leone, Marilisa

    2016-01-01

    Eph receptors play important functions in developmental processes and diseases and among them EphA2 is well known for its controversial role in cancer. Drug discovery strategies are mainly centered on EphA2 extracellular ligand-binding domain however, the receptor also contains a largely unexplored cytosolic Sam (Sterile alpha motif) domain at the C-terminus. EphA2-Sam binds the Sam domain from the lipid phosphatase Ship2 and the first Sam domain of Odin. Sam-Sam interactions may be important to regulate ligand-induced receptor endocytosis and degradation i.e., processes that could be engaged against tumor malignancy. We critically analyzed literature related to a) Eph receptors with particular emphasis on EphA2 and its role in cancer, b) Sam domains, c) heterotypic Sam-Sam interactions involving EphA2-Sam. While literature data indicate that binding of EphA2-Sam to Ship2-Sam should largely generate pro-oncogenic effects in cancer cells, the correlation between EphA2- Sam/Odin-Sam1 complex and the disease is unclear. Recently a few linear peptides encompassing binding interfaces from either Ship2-Sam and Odin-Sam1 have been characterized but failed to efficiently block heterotypic Sam-Sam interactions involving EphA2-Sam due to the lack of a native like fold. Molecule antagonists of heterotypic EphA2-Sam associations could work as potential anticancer agents or be implemented as tools to further clarify receptor functions and eventually validate its role as a novel target in the field of anti-cancer drug discovery. Due to the failure of linear peptides there is a crucial need for novel approaches, based on cyclic or helical molecules, to target Sam-Sam interfaces.

  19. An ADC for the SAM on the SOAR Telescope

    NASA Astrophysics Data System (ADS)

    Tighe, Roberto; Tokovinin, Andrei; Schurter, Patricio; Martínez, Manuel; Cantarutti, Rolando

    2016-08-01

    SAM (Soar Adaptive-optics Module), the SOAR (Southern Observatory for Astrophysical Research) GLAO facility is in service since 2011, with a UV, 355nm Laser Guide Star (LGS). The atmospheric wavefront error is therefore measured at 355nm and the star images are corrected in the visible range (BVRI bands). An ADC is required for High Resolution imaging at low telescope elevation, especially at shorter wavelengths of the visible spectrum. The ADC is based on 80mm diameter rotating prisms. This compact unit, fully automated, can be inserted or removed from the tightly constrained SAM collimated beam space-envelope, it adjusts to the parallactic angle and corrects the atmospheric dispersion. Here we present the optical and opto-mechanical design, the control design, the operational strategy and performance results obtained from extensive use in on-sky HR Speckle Imaging.

  20. Molecular ion emission from alkanethiol-SAMs by HCI bombardment

    NASA Astrophysics Data System (ADS)

    Flores, Marcos; Esaulov, Vladimir; Yamazaki, Yasunori

    2011-06-01

    In this work, we employ highly charged ions to study the sputtering of positive molecular fragments from two different alkanethiol self-assembled monolayers (SAMs) on gold surfaces: undecanethiol and dodecanethiol. The SAMs are bombarded with a pulsed Arq+ beam (3

  1. The water quality of Sam Rayburn Reservoir, eastern Texas

    USGS Publications Warehouse

    Rawson, Jack; Lansford, Myra W.

    1971-01-01

    Results of periodic surveys indicate that dissolved-oxygen concentrations at three sites in the 19-mile reach of the Angelina River downstream from Sam Rayburn Dam were low in late summer and early fall after periods of summer stagnation in the reservoir. Moreover, the amount of reaeration that occurred in the reach was insignificant. During periods when the dissolved-oxygen deficiency was large, the concentrations of iron and manganese at each of the three sites increased greatly.

  2. Technical Manual for the SAM Biomass Power Generation Model

    SciTech Connect

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  3. Astronaut Sam Gemar, wearing EMU, prepares for training in WETF

    NASA Image and Video Library

    1987-03-01

    S87-26630 (March 1987) --- Astronaut Charles D. (Sam) Gemar, wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, prepares to be emersed in the 25-ft. deep waters of the Weightless Environment Training Facility (WET-F) at the Johnson Space Center (JSC). Once underwater, Gemar was able to achieve a neutrally buoyant state and to simulate the floating type activities of an astronaut in microgravity. Gemar began training as an astronaut candidate in the summer of 1985.

  4. The ALICE Glance Shift Accounting Management System (SAMS)

    NASA Astrophysics Data System (ADS)

    Martins Silva, H.; Abreu Da Silva, I.; Ronchetti, F.; Telesca, A.; Maidantchik, C.

    2015-12-01

    ALICE (A Large Ion Collider Experiment) is an experiment at the CERN LHC (Large Hadron Collider) studying the physics of strongly interacting matter and the quark-gluon plasma. The experiment operation requires a 24 hours a day and 7 days a week shift crew at the experimental site, composed by the ALICE collaboration members. Shift duties are calculated for each institute according to their correlated members. In order to ensure the full coverage of the experiment operation as well as its good quality, the ALICE Shift Accounting Management System (SAMS) is used to manage the shift bookings as well as the needed training. ALICE SAMS is the result of a joint effort between the Federal University of Rio de Janeiro (UFRJ) and the ALICE Collaboration. The Glance technology, developed by the UFRJ and the ATLAS experiment, sits at the basis of the system as an intermediate layer isolating the particularities of the databases. In this paper, we describe the ALICE SAMS development process and functionalities. The database has been modelled according to the collaboration needs and is fully integrated with the ALICE Collaboration repository to access members information and respectively roles and activities. Run, period and training coordinators can manage their subsystem operation and ensure an efficient personnel management. Members of the ALICE collaboration can book shifts and on-call according to pre-defined rights. ALICE SAMS features a user profile containing all the statistics and user contact information as well as the Institutes profile. Both the user and institute profiles are public (within the scope of the collaboration) and show the credit balance in real time. A shift calendar allows the Run Coordinator to plan data taking periods in terms of which subsystems shifts are enabled or disabled and on-call responsible people and slots. An overview display presents the shift crew present in the control room and allows the Run Coordination team to confirm the presence

  5. Structural studies of viperin, an antiviral radical SAM enzyme.

    PubMed

    Fenwick, Michael K; Li, Yue; Cresswell, Peter; Modis, Yorgo; Ealick, Steven E

    2017-06-27

    Viperin is an IFN-inducible radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45-362) complexed with S-adenosylhomocysteine (SAH) or 5'-deoxyadenosine (5'-dAdo) and l-methionine (l-Met). Viperin contains a partial (βα)6-barrel fold with a disordered N-terminal extension (residues 45-74) and a partially ordered C-terminal extension (residues 285-362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5'-dAdo and l-Met (SAM cleavage products) is consistent with the canonical mechanism of 5'-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type.

  6. Mercury astronauts at the Sam Houston Colosseum, Houston, Texas

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The original seven Mercury astronauts, each wearing new cowboy hats and a badge in the shape of a star, are pictured on stage at the Sam Houston Colosseum. A large crowd was on hand to welcome them to Houston, Texas. Left to right are astronauts M. Scott Carpenter, L. Gordon Cooper Jr., John H. Glenn Jr., Virgil I. Grissom, Walter M. Schirra Jr., Alan B. Shepard Jr., and Donald K. Slayton. Sen. John Tower (R.-Texas) is seen in far right background.

  7. Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria

    PubMed Central

    Kaminska, Katarzyna H.; Purta, Elzbieta; Hansen, Lykke H.; Bujnicki, Janusz M.; Vester, Birte; Long, Katherine S.

    2010-01-01

    The Cfr methyltransferase confers combined resistance to five classes of antibiotics that bind to the peptidyl tranferase center of bacterial ribosomes by catalyzing methylation of the C-8 position of 23S rRNA nucleotide A2503. The same nucleotide is targeted by the housekeeping methyltransferase RlmN that methylates the C-2 position. Database searches with the Cfr sequence have revealed a large group of closely related sequences from all domains of life that contain the conserved CX3CX2C motif characteristic of radical S-adenosyl-l-methionine (SAM) enzymes. Phylogenetic analysis of the Cfr/RlmN family suggests that the RlmN subfamily is likely the ancestral form, whereas the Cfr subfamily arose via duplication and horizontal gene transfer. A structural model of Cfr has been calculated and used as a guide for alanine mutagenesis studies that corroborate the model-based predictions of a 4Fe–4S cluster, a SAM molecule coordinated to the iron–sulfur cluster (SAM1) and a SAM molecule that is the putative methyl group donor (SAM2). All mutations at predicted functional sites affect Cfr activity significantly as assayed by antibiotic susceptibility testing and primer extension analysis. The investigation has identified essential amino acids and Cfr variants with altered reaction mechanisms and represents a first step towards understanding the structural basis of Cfr activity. PMID:20007606

  8. SAM : an experiment dedicated to the Carbon Quest at Mars

    NASA Astrophysics Data System (ADS)

    Coll, Patrice; Mahaffy, Paul; Webster, Chris; Cabane, Michel; Tan, F.; Coscia, D.; Nolan, T.; Rahen, E.; Teinturier, S.; Goutail, J. P.; Martin, D.; Montaron, C.; Galic, A.

    SAM is a suite of instruments that will be onboard the Mars Science Laboratory (MSL) rover. The SAM team consist of scientists and engineers at GSFC, U. Paris/CNRS, JPL, and Honeybee Robotics, along with many additional external partners. SAM's five science goals will address three of the most fundamental questions about the ability of Mars to support life -past, present, and future. Question 1: What does the inventory of carbon compounds near the surface of Mars tell us about its potential habitability? 1.Goal 1: Survey carbon compound sources and evaluate their possible mechanism of formation and destruction. 2.Goal 2: Search for organic compounds of biotic and prebiotic importance expecially methane. Question 2: What are the chemical and isotopic states of the lighter elements in the solids and atmosphere of Mars and what do they tell us about its potential habitability? 1.Goal 3: Reveal the chemical and isotopic state of elements (i.e., N, H, O, S and others) that are important for life as we know it. 2.Goal 4: Evaluate the habitability of Mars by studying its atmospheric chemistry and the composition of trace species that are evidence of interactions between the atmosphere and soil. Question 3: Were past habitability conditions different from today's? 1.Goal 5: Understand atmospheric and climatic evolution through measurements of noble gas and light element isotopes.

  9. Mechanistic Enzymology of the Radical SAM Enzyme DesII.

    PubMed

    Ruszczycky, Mark W; Liu, Hung-Wen

    2015-04-01

    DesII is a member of the radical SAM family of enzymes that catalyzes radical-mediated transformations of TDP-4-amino-4,6-didexoy-D-glucose as well as other sugar nucleotide diphosphates. Like nearly all radical SAM enzymes, the reactions begin with the reductive homolysis of SAM to produce a 5'-deoxyadenosyl radical which is followed by regiospecific hydrogen atom abstraction from the substrate. What happens next, however, depends on the nature of the substrate radical so produced. In the case of the biosynthetically relevant substrate, a radical-mediated deamination ensues; however, when this amino group is replaced with a hydroxyl, one instead observes dehydrogenation. The factors that govern the fate of the initially generated substrate radical as well as the mechanistic details underlying these transformations have been a key focus of research into the chemistry of DesII. This review will discuss recent discoveries pertaining to the enzymology of DesII, how it may relate to understanding other radical-mediated lyases and dehydrogenases and the working hypotheses currently being investigated regarding the mechanism of DesII catalysis.

  10. CE-SAM: a conversational interface for ISR mission support

    NASA Astrophysics Data System (ADS)

    Pizzocaro, Diego; Parizas, Christos; Preece, Alun; Braines, Dave; Mott, David; Bakdash, Jonathan Z.

    2013-05-01

    There is considerable interest in natural language conversational interfaces. These allow for complex user interactions with systems, such as fulfilling information requirements in dynamic environments, without requiring extensive training or a technical background (e.g. in formal query languages or schemas). To leverage the advantages of conversational interactions we propose CE-SAM (Controlled English Sensor Assignment to Missions), a system that guides users through refining and satisfying their information needs in the context of Intelligence, Surveillance, and Reconnaissance (ISR) operations. The rapidly-increasing availability of sensing assets and other information sources poses substantial challenges to effective ISR resource management. In a coalition context, the problem is even more complex, because assets may be "owned" by different partners. We show how CE-SAM allows a user to refine and relate their ISR information needs to pre-existing concepts in an ISR knowledge base, via conversational interaction implemented on a tablet device. The knowledge base is represented using Controlled English (CE) - a form of controlled natural language that is both human-readable and machine processable (i.e. can be used to implement automated reasoning). Users interact with the CE-SAM conversational interface using natural language, which the system converts to CE for feeding-back to the user for confirmation (e.g. to reduce misunderstanding). We show that this process not only allows users to access the assets that can support their mission needs, but also assists them in extending the CE knowledge base with new concepts.

  11. Sam68: a new STAR in the male fertility firmament.

    PubMed

    Sette, Claudio; Messina, Valeria; Paronetto, Maria Paola

    2010-01-01

    Male infertility accounts for approximately 50% of the cases of sterile human couples, and in many instances the genetic or molecular defects involved remain unknown. Studies conducted in animal models have elucidated the key role played by RNA-binding proteins and by the posttranscriptional regulation of gene expression during spermatogenesis. Ablation of proteins involved in each of the steps required for the processing and the utilization of messenger RNAs impairs the production of fertile spermatozoa. Recent evidence indicates that the RNA-binding protein Sam68 is absolutely required for the correct progression of spermatogenesis and for male fertility in the mouse. Sam68 belongs to the evolutionary conserved signal transduction and activation of RNA (STAR) family of RNA-binding proteins. The members of this family have been demonstrated to play crucial roles in cell differentiation and development, including male and female gametogenesis. In this review we will summarize the observations gathered on the functions of STAR proteins in different organisms, with particular emphasis on the role of Sam68 in male fertility.

  12. SAMS Acceleration Measurements on Mir (NASA Increment 4)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    During NASA Increment 4 (January to May 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurements System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 28 optical disks which were returned to Earth on STS-84. During this increment, SAMS data were collected in the Priroda module to support the Mir Structural Dynamics Experiment (MiSDE), the Binary Colloidal Alloy Tests (BCAT), Angular Liquid Bridge (ALB), Candle Flames in Microgravity (CFM), Diffusion Controlled Apparatus Module (DCAM), Enhanced Dynamic Load Sensors (EDLS), Forced Flow Flame Spreading Test (FFFr), Liquid Metal Diffusion (LMD), Protein Crystal Growth in Dewar (PCG/Dewar), Queen's University Experiments in Liquid Diffusion (QUELD), and Technical Evaluation of MIM (TEM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-84 operations, a Progress engine bum, Soyuz vehicle docking and undocking, and Progress vehicle docking. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous summary reports prepared by the Principal Investigator Microgravity Services (PIMS) group.

  13. Deposition of DNA rafts on cationic SAMs on silicon [100].

    PubMed

    Sarveswaran, Koshala; Hu, Wenchuang; Huber, Paul W; Bernstein, Gary H; Lieberman, Marya

    2006-12-19

    We demonstrate a guided self-assembly approach to the fabrication of DNA nanostructures on silicon substrates. DNA oligonucleotides self-assemble into "rafts" 8 x 37 x 2 nm in size. The rafts bind to cationic SAMs on silicon wafers. Electron-beam lithography of a thin poly(methyl methacrylate) (PMMA) resist layer was used to define trenches, and (3-aminopropyl)triethoxysilane (APTES), a cationic SAM precursor, was deposited from aqueous solution onto the exposed silicon dioxide at the trench bottoms. The remaining PMMA can be cleanly stripped off with dichloromethane, leaving APTES layers 0.7-1.2 nm in thickness and 110 nm in width. DNA rafts bind selectively to the resulting APTES stripes. The coverage of DNA rafts on adjacent areas of silicon dioxide is 20 times lower than on the APTES stripes. The topographic features of the rafts, measured by AFM, are identical to those of rafts deposited on wide-area SAMs. Binding to the APTES stripes appears to be very strong as indicated by "jamming" of the rafts at a saturation coverage of 42% and the stability to repeated AFM scanning in air.

  14. Computerized methods for trafficability analysis

    NASA Technical Reports Server (NTRS)

    Lewandowski, G. M.; Mc Adams, H. T.; Reese, P. A.

    1971-01-01

    Computer program produces trafficability maps displaying terrain characteristics in digital form for computer analysis. Maps serve as aid to vehicular operation and highway planning based on maneuverability parameters.

  15. Combustion of organic matter in Mars analogs using SAM-like techniques

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; McAdam, A.; Mahaffy, P. R.; Steele, A.

    2012-12-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure the carbon isotopic composition (δ13C) of the evolved CO2 using the Tunable Laser Spectrometer (TLS). The degree to which the δ13C of the sample is representative of any organic carbon present depends on a) whether complete combustion has been achieved, and b) the simultaneous presence of inorganic, or mineralogical carbon in the sample, and our ability to quantify its contribution to the bulk δ13C. To optimize and characterize combustion of a variety of organic molecules in a range of rock matrices, combustion experiments simulating those to be performed on SAM were conducted at NASA Goddard. CO2 gas generated by heating Mars analogs in a SAM-like oven in the presence of oxygen on a laboratory breadboard was captured and analyzed via IRMS for δ13C. These values were compared to bulk and total organic carbon (TOC) abundance and δ13C values using commercial flash combustion EA- IRMS techniques to determine whether quantitative conversion of reduced carbon to CO2 was achieved. Factors contributing to incomplete combustion and isotopic fractionation include structural complexity of reduced organics, their thermal decomposition temperatures, and mineral-organic associations. An additional consideration must be made for unintentional combustion by oxidizing salts (perchlorates), which may partially or totally oxidize reduced organic compounds to CO2, depending on soil perchlorate concentration, sample matrix, and how refractory the organics are. Thus, to investigate the oxidizing potential of a salt known to exist on the Martian surface, laboratory breadboard experiments heating simple and complex organics in the presence of Mg perchlorate were performed using a SAM-like oven coupled to a Hiden Mass Spectrometer and gas collection manifold. Samples were heated in the absence and presence of Mg perchlorate to

  16. Detection of neonatal seizures through computerized EEG analysis.

    PubMed

    Liu, A; Hahn, J S; Heldt, G P; Coen, R W

    1992-01-01

    Neonatal seizures are a symptom of central nervous system disturbances. Neonatal seizures may be identified by direct clinical observation by the majority of electrographic seizures are clinically silent or subtle. Electrographic seizures in the newborn consist of periodic or rhythmic discharges that are distinctively different from normal background cerebral activity. Utilizing these differences, we have developed a technique to identify electrographic seizure activity. In this study, autocorrelation analysis was used to distinguish seizures from background electrocerebral activity. Autocorrelation data were scored to quantify the periodicity using a newly developed scoring system. This method, Scored Autocorrelation Moment (SAM) analysis, successfully distinguished epochs of EEGs with seizures from those without (N = 117 epochs, 58 with seizure and 59 without). SAM analysis showed a sensitivity of 84% and a specificity of 98%. SAM analysis of EEG may provide a method for monitoring electrographic seizures in high-risk newborns.

  17. Methods of Building Cost Analysis.

    ERIC Educational Resources Information Center

    Building Research Inst., Inc., Washington, DC.

    Presentation of symposium papers includes--(1) a study describing techniques for economic analysis of building designs, (2) three case studies of analysis techniques, (3) procedures for measuring the area and volume of buildings, and (4) an open forum discussion. Case studies evaluate--(1) the thermal economics of building enclosures, (2) an…

  18. Status Report on NEAMS System Analysis Module Development

    SciTech Connect

    Hu, R.; Fanning, T. H.; Sumner, T.; Yu, Y.

    2015-12-01

    Under the Reactor Product Line (RPL) of DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, an advanced SFR System Analysis Module (SAM) is being developed at Argonne National Laboratory. The goal of the SAM development is to provide fast-running, improved-fidelity, whole-plant transient analyses capabilities. SAM utilizes an object-oriented application framework MOOSE), and its underlying meshing and finite-element library libMesh, as well as linear and non-linear solvers PETSc, to leverage modern advanced software environments and numerical methods. It also incorporates advances in physical and empirical models and seeks closure models based on information from high-fidelity simulations and experiments. This report provides an update on the SAM development, and summarizes the activities performed in FY15 and the first quarter of FY16. The tasks include: (1) implement the support of 2nd-order finite elements in SAM components for improved accuracy and computational efficiency; (2) improve the conjugate heat transfer modeling and develop pseudo 3-D full-core reactor heat transfer capabilities; (3) perform verification and validation tests as well as demonstration simulations; (4) develop the coupling requirements for SAS4A/SASSYS-1 and SAM integration.

  19. The Improvement of SAM Accumulation by Integrating the Endogenous Methionine Adenosyltransferase Gene SAM2 in Genome of the Industrial Saccharomyces cerevisiae Strain.

    PubMed

    Zhao, Weijun; Shi, Feng; Hang, Baojian; Huang, Lei; Cai, Jin; Xu, Zhinan

    2016-03-01

    S-Adenosyl-L-methionine (SAM) plays important roles in trans-methylation, trans-sulfuration, and polyamine synthesis in all living cells, and it is also an effective cure for liver disease, depressive syndromes, and osteoarthritis. The increased demands of SAM in pharmaceuticals industry have aroused lots of attempts to improve its production. In this study, a multiple-copy integrative plasmid pYMIKP-SAM2 was introduced into the chromosome of wild-type Saccharomyces cerevisiae strain ZJU001 to construct the recombined strain R1-ZJU001. Further studies showed that the recombinant yeast exhibited higher enzymatic activity of methionine adenosyltransferase and improved its SAM biosynthesis. With a three-phase fed-batch strategy in 15-liter bench-top fermentor, 8.81 g/L SAM was achieved after 52 h cultivation of R1-ZJU001, about 27.1 % increase over its parent strain ZJU001, whereas the SAM content was also improved from 64.6 mg/g DCW to 91.0 mg/g DCW. Our results shall provide insights into the metabolic engineering of SAM pathway in yeast for improved productivity of SAM and subsequent industrial applications.

  20. Wet Chemistry on SAM: How it Helps to Detect Organics on Mars

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Freissinet, Caroline; Szopa, Cyril; Glavin, Danny; Coll, Patrice; Cabane, Michel; Eigenbrode, Jen; Navarro-Gonzalez, Rafael; Stern, Jen; Coscia, David; Teinturier, Samuel; Dworkin, Jason; Mahaffy, Paul; MSL Science Team

    2013-04-01

    For the first time in the history of space exploration, a mission of interest to astrobiology could be able to analyze refractory organic compounds in the soil of Mars with wet chemistry. This analytical technique modifies organic components in such a way that improves their detection, either by releasing the compounds from sample matrices, or by changing the chemical structure to be amenable to analytical conditions. The latter effect is particularly important when polar compounds are present. Sample Analysis at Mars (SAM), on the Curiosity rover of the Mars Science Laboratory mission, onboards two wet chemistry experiments: derivatization [1-2] and thermochemolysis [3-4]. Here we report on the nature of the MTBSTFA derivatization experiment in SAM, the detection of MTBSTFA in the first SAM analyzes, and the implications of this detection. Chemical derivatization of polar molecular compounds is achieved by the MTBSTFA (N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide) / DMF (Dimethylformamide) silylation reaction in order to transform refractory polar compounds into a more volatile form that can be analyzed and detected by GCMS. The first samples of Martian soil (Rocknest, Gale crater) have been analyzed by evolved gas analysis (EGA) and via GC using thermal conductivity (TCD) and MS detection. The samples have been heated up to approximately 840°C with a heating rate of 35°C/min under He flow. The evolved gas was analyzed directly by the QMS in EGA mode. For GC analyses, the majority of the gas released was trapped on a hydrocarbon trap (silica beads, Tenax TA, Carbosieve G) over a specific temperature range. Trapped volatiles were then released by heating the trap to ~300 °C and sent to the GC under He flow. The first results obtained when running an analysis with an empty cup (no solid sample) showed the presence of MTBSTFA in the system. MTBSTFA was first detected in the EGA-QMS analysis blank then by GC-TCD-QMS analysis. This means that MTBSTFA is part

  1. Convergence analysis of combinations of different methods

    SciTech Connect

    Kang, Y.

    1994-12-31

    This paper provides a convergence analysis for combinations of different numerical methods for solving systems of differential equations. The author proves that combinations of two convergent linear multistep methods or Runge-Kutta methods produce a new convergent method of which the order is equal to the smaller order of the two original methods.

  2. Prognostic Analysis System and Methods of Operation

    NASA Technical Reports Server (NTRS)

    MacKey, Ryan M. E. (Inventor); Sneddon, Robert (Inventor)

    2014-01-01

    A prognostic analysis system and methods of operating the system are provided. In particular, a prognostic analysis system for the analysis of physical system health applicable to mechanical, electrical, chemical and optical systems and methods of operating the system are described herein.

  3. Reactions Involving Calcium and Magnesium Sulfates as Potential Sources of Sulfur Dioxide During MSL SAM Evolved Gas Analyses

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Knudson, C. A.; Sutter, B.; Franz, H. B.; Archer, P. D., Jr.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Hurowitz, J. A.; Mahaffy, P. R.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) have analyzed several subsamples of <150 micron fines from ten sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform (RN) and drilled Sheepbed mudstone from sites John Klein (JK) and Cumberland (CB). One was drilled from the Windjana (WJ) site on a sandstone of the Kimberly formation. Four were drilled from sites Confidence Hills (CH), Mojave (MJ), Telegraph Peak (TP) and Buckskin (BK) of the Murray Formation at the base of Mt. Sharp. Two were drilled from sandstones of the Stimson formation targeting relatively unaltered (Big Sky, BY) and then altered (Greenhorn, GH) material associated with a light colored fracture zone. CheMin analyses provided quantitative sample mineralogy. SAM's evolved gas analysis mass spectrometry (EGA-MS) detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases. This contribution will focus on evolved SO2. All samples evolved SO2 above 500 C. The shapes of the SO2 evolution traces with temperature vary between samples but most have at least two "peaks' within the wide high temperature evolution, from approx. 500-700 and approx. 700-860 C (Fig. 1). In many cases, the only sulfur minerals detected with CheMin were Ca sulfates (e.g., RN and GH), which should thermally decompose at temperatures above those obtainable by SAM (>860 C). Sulfides or Fe sulfates were detected by CheMin (e.g., CB, MJ, BK) and could contribute to the high temperature SO2 evolution, but in most cases they are not present in enough abundance to account for all of the SO2. This additional SO2 could be largely associated with x-ray amorphous material, which comprises a significant portion of all samples. It can also be attributed to trace S phases present below the CheMin detection limit, or to reactions which lower the temperatures of SO2 evolution from sulfates that are typically expected to thermally decompose

  4. Trial Sequential Methods for Meta-Analysis

    ERIC Educational Resources Information Center

    Kulinskaya, Elena; Wood, John

    2014-01-01

    Statistical methods for sequential meta-analysis have applications also for the design of new trials. Existing methods are based on group sequential methods developed for single trials and start with the calculation of a required information size. This works satisfactorily within the framework of fixed effects meta-analysis, but conceptual…

  5. Trial Sequential Methods for Meta-Analysis

    ERIC Educational Resources Information Center

    Kulinskaya, Elena; Wood, John

    2014-01-01

    Statistical methods for sequential meta-analysis have applications also for the design of new trials. Existing methods are based on group sequential methods developed for single trials and start with the calculation of a required information size. This works satisfactorily within the framework of fixed effects meta-analysis, but conceptual…

  6. Systematic biochemical characterization of the SAM domains in Eph receptor family from Mus Musculus.

    PubMed

    Wang, Yue; Li, Qingxia; Zheng, Yunhua; Li, Gang; Liu, Wei

    2016-05-13

    The Eph receptor family is the largest subfamily of receptor tyrosine kinases and well-known for their pivotal roles in axon guidance, synaptogenesis, artery/venous differentiation and tumorigenesis, etc. Activation of the Eph receptor needs multimerization of the receptors. The intracellular C-terminal SAM domain of Eph receptor was reported to mediate self-association of Eph receptors via the homo SAM-SAM interaction. In this study, we systematically expressed and purified the SAM domain proteins of all fourteen Eph receptors of Mus musculus in Escherichia coli. The FPLC (fast protein liquid chromatography) results showed the recombinant SAM domains were highly homogeneous. Using CD (circular dichroism) spectrometry, we found that the secondary structure of all the SAM domains was typically alpha helical folded and remarkably similar. The thermo-stability tests showed that they were quite stable in solution. SEC-MALS (size exclusion chromatography coupled with multiple angle light scattering) results illustrated 200 μM Eph SAM domains behaved as good monomers in the size-exclusion chromatography. More importantly, DLS (dynamic light scattering) results revealed the overwhelming majority of SAM domains was not multimerized in solution either at 200 μM or 2000 μM protein concentration, which indicating the SAM domain alone was not sufficient to mediate the polymerization of Eph receptor. In summary, our studies provided the systematic biochemical characterizations of the Eph receptor SAM domains and implied their roles in Eph receptor mediated signaling pathways.

  7. Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function.

    PubMed

    Kim, Jungwook; Xiao, Hui; Bonanno, Jeffrey B; Kalyanaraman, Chakrapani; Brown, Shoshana; Tang, Xiangying; Al-Obaidi, Nawar F; Patskovsky, Yury; Babbitt, Patricia C; Jacobson, Matthew P; Lee, Young-Sam; Almo, Steven C

    2013-06-06

    The identification of novel metabolites and the characterization of their biological functions are major challenges in biology. X-ray crystallography can reveal unanticipated ligands that persist through purification and crystallization. These adventitious protein-ligand complexes provide insights into new activities, pathways and regulatory mechanisms. We describe a new metabolite, carboxy-S-adenosyl-l-methionine (Cx-SAM), its biosynthetic pathway and its role in transfer RNA modification. The structure of CmoA, a member of the SAM-dependent methyltransferase superfamily, revealed a ligand consistent with Cx-SAM in the catalytic site. Mechanistic analyses showed an unprecedented role for prephenate as the carboxyl donor and the involvement of a unique ylide intermediate as the carboxyl acceptor in the CmoA-mediated conversion of SAM to Cx-SAM. A second member of the SAM-dependent methyltransferase superfamily, CmoB, recognizes Cx-SAM and acts as a carboxymethyltransferase to convert 5-hydroxyuridine into 5-oxyacetyl uridine at the wobble position of multiple tRNAs in Gram-negative bacteria, resulting in expanded codon-recognition properties. CmoA and CmoB represent the first documented synthase and transferase for Cx-SAM. These findings reveal new functional diversity in the SAM-dependent methyltransferase superfamily and expand the metabolic and biological contributions of SAM-based biochemistry. These discoveries highlight the value of structural genomics approaches in identifying ligands within the context of their physiologically relevant macromolecular binding partners, and in revealing their functions.

  8. Methods of DNA methylation analysis.

    USDA-ARS?s Scientific Manuscript database

    The purpose of this review was to provide guidance for investigators who are new to the field of DNA methylation analysis. Epigenetics is the study of mitotically heritable alterations in gene expression potential that are not mediated by changes in DNA sequence. Recently, it has become clear that n...

  9. Characterization of the Candida albicans Amino Acid Permease Family: Gap2 Is the Only General Amino Acid Permease and Gap4 Is an S-Adenosylmethionine (SAM) Transporter Required for SAM-Induced Morphogenesis

    PubMed Central

    Kraidlova, Lucie; Schrevens, Sanne; Tournu, Hélène; Van Zeebroeck, Griet; Sychrova, Hana

    2016-01-01

    ABSTRACT Amino acids are key sources of nitrogen for growth of Candida albicans. In order to detect and take up these amino acids from a broad range of different and changing nitrogen sources inside the host, this fungus must be able to adapt via its expression of genes for amino acid uptake and further metabolism. We analyzed six C. albicans putative general amino acid permeases based on their homology to the Saccharomyces cerevisiae Gap1 general amino acid permease. We generated single- and multiple-deletion strains and found that, based on growth assays and transcriptional or posttranscriptional regulation, Gap2 is the functional orthologue to ScGap1, with broad substrate specificity. Expression analysis showed that expression of all GAP genes is under control of the Csy1 amino acid sensor, which is different from the situation in S. cerevisiae, where the expression of ScGAP1 is not regulated by Ssy1. We show that Gap4 is the functional orthologue of ScSam3, the only S-adenosylmethionine (SAM) transporter in S. cerevisiae, and we report that Gap4 is required for SAM-induced morphogenesis. IMPORTANCE Candida albicans is a commensal organism that can thrive in many niches in its human host. The environmental conditions at these different niches differ quite a bit, and this fungus must be able to sense these changes and adapt its metabolism to them. Apart from glucose and other sugars, the uptake of amino acids is very important. This is underscored by the fact that the C. albicans genome encodes 6 orthologues of the Saccharomyces. cerevisiae general amino acid permease Gap1 and many other amino acid transporters. In this work, we characterize these six permeases and we show that C. albicans Gap2 is the functional orthologue of ScGap1 and that C. albicans Gap4 is an orthologue of ScSam3, an S-adenosylmethionine (SAM) transporter. Furthermore, we show that Gap4 is required for SAM-induced morphogenesis, an important virulence factor of C. albicans. PMID

  10. Characterization of the Candida albicans Amino Acid Permease Family: Gap2 Is the Only General Amino Acid Permease and Gap4 Is an S-Adenosylmethionine (SAM) Transporter Required for SAM-Induced Morphogenesis.

    PubMed

    Kraidlova, Lucie; Schrevens, Sanne; Tournu, Hélène; Van Zeebroeck, Griet; Sychrova, Hana; Van Dijck, Patrick

    2016-01-01

    Amino acids are key sources of nitrogen for growth of Candida albicans. In order to detect and take up these amino acids from a broad range of different and changing nitrogen sources inside the host, this fungus must be able to adapt via its expression of genes for amino acid uptake and further metabolism. We analyzed six C. albicans putative general amino acid permeases based on their homology to the Saccharomyces cerevisiae Gap1 general amino acid permease. We generated single- and multiple-deletion strains and found that, based on growth assays and transcriptional or posttranscriptional regulation, Gap2 is the functional orthologue to ScGap1, with broad substrate specificity. Expression analysis showed that expression of all GAP genes is under control of the Csy1 amino acid sensor, which is different from the situation in S. cerevisiae, where the expression of ScGAP1 is not regulated by Ssy1. We show that Gap4 is the functional orthologue of ScSam3, the only S-adenosylmethionine (SAM) transporter in S. cerevisiae, and we report that Gap4 is required for SAM-induced morphogenesis. IMPORTANCECandida albicans is a commensal organism that can thrive in many niches in its human host. The environmental conditions at these different niches differ quite a bit, and this fungus must be able to sense these changes and adapt its metabolism to them. Apart from glucose and other sugars, the uptake of amino acids is very important. This is underscored by the fact that the C. albicans genome encodes 6 orthologues of the Saccharomyces. cerevisiae general amino acid permease Gap1 and many other amino acid transporters. In this work, we characterize these six permeases and we show that C. albicans Gap2 is the functional orthologue of ScGap1 and that C. albicans Gap4 is an orthologue of ScSam3, an S-adenosylmethionine (SAM) transporter. Furthermore, we show that Gap4 is required for SAM-induced morphogenesis, an important virulence factor of C. albicans.

  11. Exploration of the Habitability of Mars with the SAM Suite Investigation on the 2009 Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.

    2008-01-01

    The 2009 Mars Science Laboratory (MSL) with a substantially larger payload capability that any other Mars rover, to date, is designed to quantitatively assess a local region on Mars as a potential habitat for present or past life. Its goals are (1) to assess past or present biological potential of a target environment, (2) to characterize geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The Sample Analysis at Mars (SAM) Suite, in its final stages of integration and test, enables a sensitive search for organic molecules and chemical and isotopic analysis of martian volatiles. MSL contact and remote surface and subsurface survey Instruments establish context for these measurements and facilitate sample identification and selection. The SAM instruments are a gas chromatograph (GC), a mass spectrometer (MS), and a tunable laser spectrometer (TLS). These together with supporting sample manipulation and gas processing devices are designed to analyze either the atmospheric composition or gases extracted from solid phase samples such as rocks and fines. For example, one of the core SAM experiment sequences heats a small powdered sample of a Mars rock or soil from ambient to -1300 K in a controlled manner while continuously monitoring evolved gases. This is followed by GCMS analysis of released organics. The general chemical survey is complemented by a specific search for molecular classes that may be relevant to life including atmospheric methane and its carbon isotope with the TLS and biomarkers with the GCMS.

  12. Exploration of the Habitability of Mars with the SAM Suite Investigation on the 2009 Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.

    2008-01-01

    The 2009 Mars Science Laboratory (MSL) with a substantially larger payload capability that any other Mars rover, to date, is designed to quantitatively assess a local region on Mars as a potential habitat for present or past life. Its goals are (1) to assess past or present biological potential of a target environment, (2) to characterize geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The Sample Analysis at Mars (SAM) Suite, in its final stages of integration and test, enables a sensitive search for organic molecules and chemical and isotopic analysis of martian volatiles. MSL contact and remote surface and subsurface survey Instruments establish context for these measurements and facilitate sample identification and selection. The SAM instruments are a gas chromatograph (GC), a mass spectrometer (MS), and a tunable laser spectrometer (TLS). These together with supporting sample manipulation and gas processing devices are designed to analyze either the atmospheric composition or gases extracted from solid phase samples such as rocks and fines. For example, one of the core SAM experiment sequences heats a small powdered sample of a Mars rock or soil from ambient to -1300 K in a controlled manner while continuously monitoring evolved gases. This is followed by GCMS analysis of released organics. The general chemical survey is complemented by a specific search for molecular classes that may be relevant to life including atmospheric methane and its carbon isotope with the TLS and biomarkers with the GCMS.

  13. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch.

    PubMed

    Suresh, Gorle; Srinivasan, Harini; Nanda, Shivani; Priyakumar, U Deva

    2016-06-21

    Riboswitches are structured RNA motifs that control gene expression by sensing the concentrations of specific metabolites and make up a promising new class of antibiotic targets. S-Adenosylmethionine (SAM)-III riboswitch, mainly found in lactic acid bacteria, is involved in regulating methionine and SAM biosynthetic pathways. SAM-III riboswitch regulates the gene expression by switching the translation process on and off with respect to the absence and presence of the SAM ligand, respectively. In this study, an attempt is made to understand the key conformational transitions involved in ligand binding using atomistic molecular dynamics (MD) simulations performed in an explicit solvent environment. G26 is found to recognize the SAM ligand by forming hydrogen bonds, whereas the absence of the ligand leads to opening of the binding pocket. Consistent with experimental results, the absence of the SAM ligand weakens the base pairing interactions between the nucleobases that are part of the Shine-Dalgarno (SD) and anti-Shine-Dalgarno (aSD) sequences, which in turn facilitates recognition of the SD sequence by ribosomes. Detailed analysis reveals that a duplex-like structure formed by nucleotides from different parts of the RNA and the adenine base of the ligand is crucial for the stability of the completely folded state in the presence of the ligand. Previous experimental studies have shown that the SAM-III riboswitch exists in equilibrium between the unfolded and partially folded states in the absence of the ligand, which completely folds upon binding of the ligand. Comparison of the results presented here to the available experimental data indicates the structures obtained using the MD simulations resemble the partially folded state. Thus, this study provides a detailed understanding of the fully and partially folded structures of the SAM-III riboswitch in the presence and absence of the ligand, respectively. This study hypothesizes a dual role for the SAM ligand

  14. Hybrid methods for cybersecurity analysis :

    SciTech Connect

    Davis, Warren Leon,; Dunlavy, Daniel M.

    2014-01-01

    Early 2010 saw a signi cant change in adversarial techniques aimed at network intrusion: a shift from malware delivered via email attachments toward the use of hidden, embedded hyperlinks to initiate sequences of downloads and interactions with web sites and network servers containing malicious software. Enterprise security groups were well poised and experienced in defending the former attacks, but the new types of attacks were larger in number, more challenging to detect, dynamic in nature, and required the development of new technologies and analytic capabilities. The Hybrid LDRD project was aimed at delivering new capabilities in large-scale data modeling and analysis to enterprise security operators and analysts and understanding the challenges of detection and prevention of emerging cybersecurity threats. Leveraging previous LDRD research e orts and capabilities in large-scale relational data analysis, large-scale discrete data analysis and visualization, and streaming data analysis, new modeling and analysis capabilities were quickly brought to bear on the problems in email phishing and spear phishing attacks in the Sandia enterprise security operational groups at the onset of the Hybrid project. As part of this project, a software development and deployment framework was created within the security analyst work ow tool sets to facilitate the delivery and testing of new capabilities as they became available, and machine learning algorithms were developed to address the challenge of dynamic threats. Furthermore, researchers from the Hybrid project were embedded in the security analyst groups for almost a full year, engaged in daily operational activities and routines, creating an atmosphere of trust and collaboration between the researchers and security personnel. The Hybrid project has altered the way that research ideas can be incorporated into the production environments of Sandias enterprise security groups, reducing time to deployment from months and

  15. Root Cause Analysis: Methods and Mindsets.

    ERIC Educational Resources Information Center

    Kluch, Jacob H.

    This instructional unit is intended for use in training operations personnel and others involved in scram analysis at nuclear power plants in the techniques of root cause analysis. Four lessons are included. The first lesson provides an overview of the goals and benefits of the root cause analysis method. Root cause analysis techniques are covered…

  16. Microparticle analysis system and method

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    2007-01-01

    A device for analyzing microparticles is provided which includes a chamber with an inlet and an outlet for respectively introducing and dispensing a flowing fluid comprising microparticles, a light source for providing light through the chamber and a photometer for measuring the intensity of light transmitted through individual microparticles. The device further includes an imaging system for acquiring images of the fluid. In some cases, the device may be configured to identify and determine a quantity of the microparticles within the fluid. Consequently, a method for identifying and tracking microparticles in motion is contemplated herein. The method involves flowing a fluid comprising microparticles in laminar motion through a chamber, transmitting light through the fluid, measuring the intensities of the light transmitted through the microparticles, imaging the fluid a plurality of times and comparing at least some of the intensities of light between different images of the fluid.

  17. Shear-Induced Detachment of Polystyrene Beads from SAM-Coated Surfaces.

    PubMed

    Cho, Kwun Lun; Rosenhahn, Axel; Thelen, Richard; Grunze, Michael; Lobban, Matthew; Karahka, Markus Leopold; Kreuzer, H Jürgen

    2015-10-13

    In this work we experimentally and theoretically analyze the detachment of microscopic polystyrene beads from different self-assembled monolayer (SAM) surfaces in a shear flow in order to develop a mechanistic model for the removal of cells from surfaces. The detachment of the beads from the surface is treated as a thermally activated process applying an Arrhenius Ansatz to determine the activation barrier and attempt frequency of the rate determing step in bead removal. The statistical analysis of the experimental shear detachment data obtained in phosphate-buffered saline buffer results in an activation energy around 20 kJ/mol, which is orders of magnitude lower than the adhesion energy measured by atomic force microscopy (AFM). The same order of magnitude for the adhesion energy measured by AFM is derived from ab initio calculations of the van der Waals interaction energy between the polystyrene beads and the SAM-covered gold surface. We conclude that the rate determing step for detachment of the beads is the initiation of rolling on the surface (overcoming static friction) and not physical detachment, i.e., lifting the particle off the surface.

  18. XPS and SAM studies of the surface chemistry of lunar impact glasses including 12054

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.; Cirlin, E. H.

    1979-01-01

    We report and discuss quantitative X-ray photoemission (XPS) analyses of mm size areas and qualitative scanning Auger microprobe (SAM) analyses of micron size areas on the surfaces of impact glass coatings found on fragments in the 14161 coarse fines and on the top surface, and a reentrant crack surface of rock 12054. The data suggest that some segregation occurs during impact glass formation leading to surface enrichments in Si and depletions in Mg, Al, Ca, and Ti. The magnitude of the effect appears fairly small, although the complexity of the surfaces severely complicates the data analysis. Because of the complexity of the surfaces, both XPS and SAM data were essential. A search for direct evidence of either solar wind sputter erosion or vapor deposition on the exposed top surface of 12054 provided interesting results which we cannot yet fully interpret. Both this surface and the surface from the re-entrant crack showed enrichments of more than a factor of two in Fe with respect to the bulk.

  19. Benchmark Simulations of the Thermal-Hydraulic Responses during EBR-II Inherent Safety Tests using SAM

    SciTech Connect

    Hu, Rui; Sumner, Tyler S.

    2016-01-01

    An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and wholeplant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP- 302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulation results are also included for a code-to-code comparison.

  20. Benchmark Simulations of the Thermal-Hydraulic Responses during EBR-II Inherent Safety Tests using SAM

    SciTech Connect

    Hu, Rui; Sumner, Tyler S.

    2016-04-17

    An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and whole-plant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP-302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulation results are also included for a code-to-code comparison.

  1. Aircraft accidents : method of analysis

    NASA Technical Reports Server (NTRS)

    1931-01-01

    The revised report includes the chart for the analysis of aircraft accidents, combining consideration of the immediate causes, underlying causes, and results of accidents, as prepared by the special committee, with a number of the definitions clarified. A brief statement of the organization and work of the special committee and of the Committee on Aircraft Accidents; and statistical tables giving a comparison of the types of accidents and causes of accidents in the military services on the one hand and in civil aviation on the other, together with explanations of some of the important differences noted in these tables.

  2. GABAergic inhibition shapes SAM responses in rat auditory thalamus.

    PubMed

    Cai, R; Caspary, D M

    2015-07-23

    Auditory thalamus (medial geniculate body [MGB]) receives ascending inhibitory GABAergic inputs from inferior colliculus (IC) and descending GABAergic projections from the thalamic reticular nucleus (TRN) with both inputs postulated to play a role in shaping temporal responses. Previous studies suggested that enhanced processing of temporally rich stimuli occurs at the level of MGB, with our recent study demonstrating enhanced GABA sensitivity in MGB compared to IC. The present study used sinusoidal amplitude-modulated (SAM) stimuli to generate modulation transfer functions (MTFs), to examine the role of GABAergic inhibition in shaping the response properties of MGB single units in anesthetized rats. Rate MTFs (rMTFs) were parsed into "bandpass (BP)", "mixed (Mixed)", "highpass (HP)" or "atypical" response types, with most units showing the Mixed response type. GABAA receptor blockade with iontophoretic application of the GABAA receptor (GABAAR) antagonist gabazine (GBZ) selectively altered the response properties of most MGB neurons examined. Mixed and HP units showed significant GABAAR-mediated SAM-evoked rate response changes at higher modulation frequencies (fms), which were also altered by N-methyl-d-aspartic acid (NMDA) receptor blockade (2R)-amino-5-phosphonopentanoate (AP5). BP units, and the lower arm of Mixed units responded to GABAAR blockade with increased responses to SAM stimuli at or near the rate best modulation frequency (rBMF). The ability of GABA circuits to shape responses at higher modulation frequencies is an emergent property of MGB units, not observed at lower levels of the auditory pathway and may reflect activation of MGB NMDA receptors (Rabang and Bartlett, 2011; Rabang et al., 2012). Together, GABAARs exert selective rate control over selected fms, generally without changing the units' response type. These results showed that coding of modulated stimuli at the level of auditory thalamus is at least, in part, strongly controlled by GABA

  3. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    SciTech Connect

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  4. Methylene blue incorporation into alkanethiol SAMs on Au(111): effect of hydrocarbon chain ordering.

    PubMed

    Grumelli, Doris; Méndez De Leo, Lucila P; Bonazzola, Cecilia; Zamlynny, Vlad; Calvo, Ernesto J; Salvarezza, Roberto C

    2010-06-01

    A detailed polarization modulation infrared reflection absorption spectroscopy, scanning tunneling microscopy, and electrochemical study on methylene blue (MB) incorporation into alkanethiolate self-assembled monolayers (SAMs) on Au(111) is reported. Results show that the amount of MB incorporated in the SAMs reaches a maximum for intermediate hydrocarbon chain lengths (C10-C12). Well-ordered SAMs of long alkanethiols (C > C12) hinder the incorporation of the MB molecules into the SAM. On the other hand, less ordered SAMs of short alkanethiols (C < or = C6) are not efficient to retain the MB incorporated through the defects. For C12 the amount of incorporated MB increases as the SAM disorder is increased. This information is essential to the design of efficient thiol-based Au vectors for transport and delivery of molecules as well as thiol-based Au devices for molecular sensing.

  5. The p53 status can influence the role of Sam68 in tumorigenesis

    PubMed Central

    Li, Naomi; Ngo, Chau Tuan-Anh; Aleynikova, Olga; Beauchemin, Nicole; Richard, Stéphane

    2016-01-01

    The expression and activities of RNA binding proteins are frequently dysregulated in human cancer. Their roles, however, appears to be complex, with reports indicating both pro-tumorigenic and tumor suppressive functions. Here we show, using two classical mouse cancer models, that the role of KH-type RNA binding protein, Sam68, in tumor development can be influenced by the status of the p53 tumor suppressor. We demonstrate that in mice expressing wild type p53, Sam68-deficiency resulted in a higher incidence and malignancy of carcinogen-induced tumors, suggesting a tumor suppressive role for Sam68. In marked contrast, Sam68-haploinsufficiency significantly delayed the onset of tumors in mice lacking p53 and prolonged their survival, indicating that Sam68 accelerates the development of p53-deficient tumors. These findings provide considerable insight into a previously unknown relationship between Sam68 and the p53 tumor suppressor in tumorigenesis. PMID:27690217

  6. The Vesicle Protein SAM-4 Regulates the Processivity of Synaptic Vesicle Transport

    PubMed Central

    Zheng, Qun; Ahlawat, Shikha; Schaefer, Anneliese; Mahoney, Tim; Koushika, Sandhya P.; Nonet, Michael L.

    2014-01-01

    Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport. PMID:25329901

  7. The vesicle protein SAM-4 regulates the processivity of synaptic vesicle transport.

    PubMed

    Zheng, Qun; Ahlawat, Shikha; Schaefer, Anneliese; Mahoney, Tim; Koushika, Sandhya P; Nonet, Michael L

    2014-10-01

    Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport.

  8. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase.

    PubMed

    Fenwick, Michael K; Mehta, Angad P; Zhang, Yang; Abdelwahed, Sameh H; Begley, Tadhg P; Ealick, Steven E

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  9. DNA methylation signature (SAM40) identifies subgroups of the Luminal A breast cancer samples with distinct survival

    PubMed Central

    Aure, Miriam Ragle; Louhimo, Riku; Pladsen, Arne V.; Ottestad, Lars; Touleimat, Nizar; Laakso, Marko; Halvorsen, Ann Rita; Alnæs, Grethe I. Grenaker; Riis, Margit L.H.; Helland, Åslaug; Hautaniemi, Sampsa; Lønning, Per Eystein; Naume, Bjørn; Børresen-Dale, Anne-Lise; Tost, Jörg; Kristensen, Vessela N.

    2017-01-01

    Breast cancer patients with Luminal A disease generally have a good prognosis, but among this patient group are patients with good prognosis that are currently overtreated with adjuvant chemotherapy, and also patients that have a bad prognosis and should be given more aggressive treatment. There is no available method for subclassification of this patient group. Here we present a DNA methylation signature (SAM40) that segregates Luminal A patients based on prognosis, and identify one good prognosis group and one bad prognosis group. The prognostic impact of SAM40 was validated in four independent patient cohorts. Being able to subdivide the Luminal A patients may give the two-sided benefit of identifying one subgroup that may benefit from a more aggressive treatment than what is given today, and importantly, identifying a subgroup that may benefit from less treatment. PMID:27911866

  10. Paramagnetic Intermediates Generated by Radical S-Adenosylmethionine (SAM) Enzymes

    PubMed Central

    2015-01-01

    Conspectus A [4Fe–4S]+ cluster reduces a bound S-adenosylmethionine (SAM) molecule, cleaving it into methionine and a 5′-deoxyadenosyl radical (5′-dA•). This step initiates the varied chemistry catalyzed by each of the so-called radical SAM enzymes. The strongly oxidizing 5′-dA• is quenched by abstracting a H-atom from a target species. In some cases, this species is an exogenous molecule of substrate, for example, l-tyrosine in the [FeFe] hydrogenase maturase, HydG. In other cases, the target is a proteinaceous residue as in all the glycyl radical forming enzymes. The generation of this initial radical species and the subsequent chemistry involving downstream radical intermediates is meticulously controlled by the enzyme so as to prevent unwanted reactions. But the manner in which this control is exerted is unknown. Electron paramagnetic resonance (EPR) spectroscopy has proven to be a valuable tool used to gain insight into these mechanisms. In this Account, we summarize efforts to trap such radical intermediates in radical SAM enzymes and highlight four examples in which EPR spectroscopic results have shed significant light on the corresponding mechanism. For lysine 2,3-aminomutase, nearly each possible intermediate, from an analogue of the initial 5′-dA• to the product radical l-β-lysine, has been explored. A paramagnetic intermediate observed in biotin synthase is shown to involve an auxiliary [FeS] cluster whose bridging sulfide is a co-substrate for the final step in the biosynthesis of vitamin B7. In HydG, the l-tyrosine substrate is converted in unprecedented fashion to a 4-oxidobenzyl radical on the way to generating CO and CN– ligands for the [FeFe] cluster of hydrogenase. And finally, EPR has confirmed a mechanistic proposal for the antibiotic resistance protein Cfr, which methylates the unactivated sp2-hybridized C8-carbon of an adenosine base of 23S ribosomal RNA. These four systems provide just a brief survey of the ever-growing set

  11. Carbon extension in peptidylnucleoside biosynthesis by radical-SAM enzymes

    PubMed Central

    Lilla, Edward A.; Yokoyama, Kenichi

    2016-01-01

    Nikkomycins and polyoxins are antifungal peptidylnucleoside (PN) antibiotics active against human and plant pathogens. Here, we report that during PN biosynthesis in Streptomyces cacaoi and Streptomyces tendae, the C5′-extension of the nucleoside essential for downstream structural diversification is catalyzed by a conserved radical S-adenosyl-L-methionine (SAM) enzyme, PolH or NikJ. This is distinct from the nucleophilic mechanism reported for antibacterial nucleosides and represents a novel mechanism of nucleoside natural product biosynthesis. PMID:27642865

  12. Astronaut Curtis Brown works with SAMS on Shuttle Atlantis middeck

    NASA Image and Video Library

    1994-11-14

    STS066-14-021 (3-14 Nov 1994) --- On the Space Shuttle Atlantis' mid-deck, astronaut Curtis L. Brown, Jr., pilot, works with the Space Acceleration Measurement System (SAMS), which is making its eleventh Shuttle flight. This system supports the Protein Crystal Growth (PCG) experiments onboard by collecting and recording data characterizing the microgravity environment in the Shuttle mid-deck. Brown joined four other NASA astronauts and a European Space Agency (ESA) astronaut for 11-days aboard Atlantis in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.

  13. Paramagnetic intermediates generated by radical S-adenosylmethionine (SAM) enzymes.

    PubMed

    Stich, Troy A; Myers, William K; Britt, R David

    2014-08-19

    A [4Fe-4S](+) cluster reduces a bound S-adenosylmethionine (SAM) molecule, cleaving it into methionine and a 5'-deoxyadenosyl radical (5'-dA(•)). This step initiates the varied chemistry catalyzed by each of the so-called radical SAM enzymes. The strongly oxidizing 5'-dA(•) is quenched by abstracting a H-atom from a target species. In some cases, this species is an exogenous molecule of substrate, for example, L-tyrosine in the [FeFe] hydrogenase maturase, HydG. In other cases, the target is a proteinaceous residue as in all the glycyl radical forming enzymes. The generation of this initial radical species and the subsequent chemistry involving downstream radical intermediates is meticulously controlled by the enzyme so as to prevent unwanted reactions. But the manner in which this control is exerted is unknown. Electron paramagnetic resonance (EPR) spectroscopy has proven to be a valuable tool used to gain insight into these mechanisms. In this Account, we summarize efforts to trap such radical intermediates in radical SAM enzymes and highlight four examples in which EPR spectroscopic results have shed significant light on the corresponding mechanism. For lysine 2,3-aminomutase, nearly each possible intermediate, from an analogue of the initial 5'-dA(•) to the product radical L-β-lysine, has been explored. A paramagnetic intermediate observed in biotin synthase is shown to involve an auxiliary [FeS] cluster whose bridging sulfide is a co-substrate for the final step in the biosynthesis of vitamin B7. In HydG, the L-tyrosine substrate is converted in unprecedented fashion to a 4-oxidobenzyl radical on the way to generating CO and CN(-) ligands for the [FeFe] cluster of hydrogenase. And finally, EPR has confirmed a mechanistic proposal for the antibiotic resistance protein Cfr, which methylates the unactivated sp(2)-hybridized C8-carbon of an adenosine base of 23S ribosomal RNA. These four systems provide just a brief survey of the ever-growing set of radical

  14. Component outage data analysis methods. Volume 2: Basic statistical methods

    NASA Astrophysics Data System (ADS)

    Marshall, J. A.; Mazumdar, M.; McCutchan, D. A.

    1981-08-01

    Statistical methods for analyzing outage data on major power system components such as generating units, transmission lines, and transformers are identified. The analysis methods produce outage statistics from component failure and repair data that help in understanding the failure causes and failure modes of various types of components. Methods for forecasting outage statistics for those components used in the evaluation of system reliability are emphasized.

  15. Cardiological aging in SAM model: effect of chronic treatment with growth hormone.

    PubMed

    Forman, K; Vara, E; García, C; Ariznavarreta, C; Escames, G; Tresguerres, J A F

    2010-06-01

    The purpose of this study was to investigate the effect of aging on different parameters related to inflammation, oxidative stress and apoptosis in hearts from two types of male mice models: senescence-accelerated mice (SAM-P8) and senescence-accelerated-resistant (SAM-R1), and the influence of chronic administration of Growth Hormone (GH) on old SAM-P8 mice. Forty male mice were used. Animals were divided into five experimental groups: two 10 month old untreated groups (SAM-P8/SAM-R1), two 2 month old young groups (SAM-P8/SAM-R1) and one 10 month old group (SAM-P8) treated with GH for 30 days. The expression of tumor necrosis factor-alpha, interleukin 1, interleukin 10, heme oxygenases 1 and 2, endothelial and inducible nitric oxide synthases, NFkB, Bad, Bax and Bcl-2 were determined by real-time reverse transcription polymerase chain reaction (RT-PCR). Results were submitted to a two way ANOVA statistical evaluation using the Statgraphics program. Inflammation, as well as, oxidative stress and apoptosis markers were increased in the heart of old SAM-P8 males, as compared to young controls and this situation was not observed in the old SAM-R1 mice. Exogenous GH administration reverted the effect of aging in the described parameters of old SAM-P8 mice. Our results suggest that inflammation, apoptosis and oxidative stress could play an important role in the observed cardiovascular alterations related to aging of SAM-P8 mice and that GH may play a potential protective effect on the cardiovascular system of these animals.

  16. SAMS: The synchronization and monitoring system for ATF (Advanced Toroidal Facility) data acquisition

    SciTech Connect

    Greenwood, D.E.

    1987-01-01

    SAMS performs much of the synchronization of the distributed data acquisition system for the Advanced Toroidal Facility (ATF). SAMS is responsible for propagating shot information and managing te data system directories and logical names. This paper describes how SAMS communicates with other processes, both within the VAX cluster that supports most of the ATF data acquisition and on VAXes that are connected to the cluster via DECnet. 3 refs.

  17. Comparative studies of aerosol extinction measurements made by the SAM II and SAGE II satellite experiments

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Mccormick, M. P.; Chu, W. P.; Wang, P.; Osborn, M. T.

    1989-01-01

    Results from the Stratospheric Aerosol Measurement (SAM) II and Stratospheric Aerosol and Gas Experiment (SAGE) II are compared for measurement locations which are coincident in time and space. At 1.0 micron, the SAM II and SAGE II aerosol extinction profiles are similar within their measurement errors. In addition, sunrise and sunset aerosol extinction data at four different wavelengths are compared for occasions when the SAGE II and SAM II measurements are nearly coincident in space and about 12 hours apart.

  18. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B.; Novascone, Stephen R.; Wright, Jerry P.

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  19. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2012-05-29

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  20. Conjugal immunity of Streptomyces strains carrying the integrative element pSAM2 is due to the pif gene (pSAM2 immunity factor).

    PubMed

    Possoz, Christophe; Gagnat, Josette; Sezonov, Guennadi; Guérineau, Michel; Pernodet, Jean-Luc

    2003-03-01

    Mechanisms of conjugal immunity preventing redundant exchange between two cells harbouring the same conjugative element have been reported in diverse bacteria. Such a system does exist for pSAM2, a conjugative and integrative element of Streptomyces. The apparition of the conjugative free form of pSAM2 in the donor strain during mating can be considered as the initial step of transfer. We analysed the genes involved in transfer inhibition by mating donors harbouring pSAM2 with recipient strains containing different regions of pSAM2. The conjugal immunity was previously thought to be mediated by the transcriptional repressor KorSA. Although the transfer efficiency is reduced by its presence in the recipient, the initiation of the transfer process is not affected. In contrast, the presence in the recipient strain of a single pSAM2 gene, pif (pSAM2 immunity factor), was sufficient to abolish both transfer and initiation of transfer. Thus, the clustered genes korSA and pif act complementarily to maintain pSAM2 in a 'prophage' state under non-conjugal conditions. KorSA is involved in intracellular signalling, whereas Pif participates in intercellular signalling. The Pif nudix motif is essential for its activity. This is the first protein of the nudix family shown to be involved in bacterial conjugation.

  1. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells

    SciTech Connect

    Lawrence, Paul; Schafer, Elizabeth A.; Rieder, Elizabeth

    2012-03-30

    Picornavirus infection can lead to disruption of nuclear pore traffic, shut-off of cell translation machinery, and cleavage of proteins involved in cellular signal transduction and the innate response to infection. Here, we demonstrated that the FMDV 3C{sup pro} induced the cleavage of nuclear RNA-binding protein Sam68 C-terminus containing the nuclear localization sequence (NLS). Consequently, it stimulated the redistribution of Sam68 to the cytoplasm. The siRNA knockdown of Sam68 resulted in a 1000-fold reduction in viral titers, which prompted us to study the effect of Sam68 on FMDV post-entry events. Interestingly, Sam68 interacts with the internal ribosomal entry site within the 5 Prime non-translated region of the FMDV genome, and Sam68 knockdown decreased FMDV IRES-driven activity in vitro suggesting that it could modulate translation of the viral genome. The results uncover a novel role for Sam68 in the context of picornaviruses and the proteolysis of a new cellular target of the FMDV 3C{sup pro}.

  2. NMR structure of a heterodimeric SAM:SAM complex: characterization and manipulation of EphA2 binding reveal new cellular functions of SHIP2.

    PubMed

    Lee, Hyeong J; Hota, Prasanta K; Chugha, Preeti; Guo, Hong; Miao, Hui; Zhang, Liqun; Kim, Soon-Jeung; Stetzik, Lukas; Wang, Bing-Cheng; Buck, Matthias

    2012-01-11

    The sterile alpha motif (SAM) for protein-protein interactions is encountered in over 200 proteins, but the structural basis for its interactions is just becoming clear. Here we solved the structure of the EphA2-SHIP2 SAM:SAM heterodimeric complex by use of NMR restraints from chemical shift perturbations, NOE and RDC experiments. Specific contacts between the protein surfaces differ significantly from a previous model and other SAM:SAM complexes. Molecular dynamics and docking simulations indicate fluctuations in the complex toward alternate, higher energy conformations. The interface suggests that EphA family members bind to SHIP2 SAM, whereas EphB members may not; correspondingly, we demonstrate binding of EphA1, but not of EphB2, to SHIP2. A variant of EphB2 SAM was designed that binds SHIP2. Functional characterization of a mutant EphA2 compromised in SHIP2 binding reveals two previously unrecognized functions of SHIP2 in suppressing ligand-induced activation of EphA2 and in promoting receptor coordinated chemotactic cell migration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The first year: Development of a LANDSAT capability at Sam Houston State University

    NASA Technical Reports Server (NTRS)

    Bounds, J. H.

    1981-01-01

    Problems encountered in initiating a LANDSAT data processing capability at Sam Houston State University are discussed. Computer requirements, financing, and academic and administrative support are addressed.

  4. Sam68 is cleaved by caspases under apoptotic cell death induced by ionizing radiation.

    PubMed

    Cho, Seong-Jun; Choi, Moo Hyun; Nam, Seon Young; Kim, Ji Young; Kim, Cha Soon; Pyo, Suhkneung; Yang, Kwang Hee

    2015-03-01

    The RNA-binding protein Sam68, a mitotic substrate of tyrosine kinases, has been reported to participate in the cell cycle, apoptosis, and signaling. In particular, overexpression of Sam68 protein is known to suppress cell growth and cell cycle progression in NIH3T3 cells. Although Sam68 is involved in many cellular activities, the function of Sam68, especially in response to apoptotic stimulation, is not well understood. In this study, we found that Sam68 protein is cleaved in immune cells undergoing apoptosis induced by γ-radiation. Moreover, we found that Sam68 cleavage was induced by apoptotic stimuli containing γ-radiation in a caspase-dependent manner. In particular, we showed that activated casepase-3, 7, 8 and 9 can directly cleave Sam68 protein through in vitro protease cleavage assay. Finally, we found that the knockdown of Sam68 attenuated γ-radiation-induced cell death and growth suppression. Conclusively, the cleavage of Sam68 is a new indicator for the cell damaging effects of ionizing radiation. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  5. [Effects of Sam68 gene silence on proliferation of acute T lymphoblastic leukemia cell line Jurkat].

    PubMed

    Wang, Chi-Juan; Xu, Hua; Zhang, Hai-Rui; Wang, Jian; Lin, Ya-Ni; Pang, Tian-Xiang; Li, Qing-Hua

    2014-08-01

    This study was purpose to investigate the effect of Sam68 gene silence on proliferation of human acute T lymphoblastic leukemia cell line Jurkat. The sequence of shRNA targeting the site 531-552 of Sam68 mRNA was designed and chemically synthesized, then a single-vector lentiviral, Tet-inducible shRNA-Sam68 system (pLKO-Tet-On) was constructed; next the Jurkat cells were infected with lentivirus to create stable cell clones with regulatable Sam68 gene expression. The inhibitory efficiency of Sam68 gene was assayed by Real-time PCR and Western blot; the cell activity of Jurkat cells was detected with MTT assay; the change of colony forming potential of Jurkat cells was analyzed by colony forming test; the cell cycle distribution was tested by flow cytometry. The results indicated that the expression of Sam68 in experimental cells was statistically decreased as compared with that of the control cells; the cells activity and colony forming capacity of the Jurkat cells with Sam68 gene silence were significantly inhibited; with Sam68 gene silencing, the percentage of S phase cells was significantly increased, while the percentage of G2 phase cells was significantly decreased. It is concluded that the silencing Sam68 gene using shRNA interference can effectively inhibit the proliferation of human acute T lymphoblastic leukemia cell line Jurkat.

  6. SAM-2 ground-truth plan: Correlative measurements for the Stratospheric Aerosol Measurement-2 (SAM 2) sensor on the Nimbus G satellite

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.; Mcmaster, L. R.; Pepin, T. J.; Chu, W. P.; Swissler, T. J.

    1978-01-01

    The SAM-2 will fly aboard the Nimbus-G satellite for launch in the fall of 1978 and measure stratospheric vertical profiles of aerosol extinction in high latitude bands. The plan gives details of the location and times for the simultaneous satellite/correlative measurements for the nominal launch time, the rationale and choice of the correlative sensors, their characteristics and expected accuracies, and the conversion of their data to extinction profiles. The SAM-2 expected instrument performance and data inversion results are presented. Various atmospheric models representative of polar stratospheric aerosols are used in the SAM-2 and correlative sensor analyses.

  7. SAM 2 measurements of the polar stratospheric aerosol, volume 5

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Brandl, D.

    1985-01-01

    The Stratospheric Aerosol Measurement (SAM) 2 sensor is aboard the Earth-orbiting Nimbus 7 spacecraft providing extinction measurements of the Antarctic and Arctic stratospheric aerosol with a vertical resolution of 1 km. Representative examples and weekly averages of aerosol data and corresponding temperature profiles for the time and place of each SAM 2 mesurement (Oct. 1980 through Apr. 1981) are presented. Contours of aerosol extinction as a function of altitude and longitude or time are plotted and weekly aerosol optical depths are calculated. Seasonal variations and variations in space (altitude and longitude) for both polar regions are easily seen. Stratospheric optical depths are 0.002 to 0.003 for the Antarctic region and 0.005 to 0.006 at the beginning to 0.002 to 0.003 at the end of the time period for the Arctic region. The Northern Hemisphere values are quite large due mainly to the eruption of Mount St. Helens (46.2 deg N, 122.2 deg W) in May 1980. Polar stratospheric clouds at altitudes of about 20 km were observed during the Arctic winter. A ready-to-use format containing a representative sample of the fifth 6 months of data to be used in atmospheric and climatic studies is presented.

  8. SAM 2 measurements of the polar stratospheric aerosol, volume 2

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Brandl, D.

    1986-01-01

    The Stratospheric Aerosol Measurement (SAM) 2 sensor aboard Nimbus 7 is providing extinction measurements of Antarctic and Arctic stratospheric aerosols with a vertical resolution of 1 km. Representative examples and weekly averages including corresponding temperature profiles provided by NOAA for the time and place of each SAM 2 measurement (Oct. 1981 - Apr. 1982) are presented. Contours of aerosol extinction as a function of altitude and longitude or time are plotted, and aerosol optical depths are calculated for each week. Typical values of aerosol extinction at 1.0 micron in the main lower stratospheric aerosol layer for this time period are 2 to 4 times 10 to the -4 power/km. for the Antarctic region and 0.5 to 1 times 10 to the -3 power/km. for the Arctic region. Stratospheric optical depths are about 0.001 to 0.004 for the Antarctic region and 0.003 to 0.004 at the beginning to about 0.006 at the end of the time period for the Arctic region. Polar stratospheric clouds (PSC's) were observed during the Arctic winter, as expected. This report provides, in a ready-to-use format, a representative sample of the seventh semester of data to be used in atmospheric and climatic studies.

  9. Mechanistic and functional versatility of radical SAM enzymes.

    PubMed

    Booker, Squire J; Grove, Tyler L

    2010-07-14

    Enzymes of the radical SAM (RS) superfamily catalyze a diverse assortment of reactions that proceed via intermediates containing unpaired electrons. The radical initiator is the common metabolite S-adenosyl-l-methionine (SAM), which is reductively cleaved to generate a 5'-deoxyadenosyl 5'-radical, a universal and obligate intermediate among enzymes within this class. A bioinformatics study that appeared in 2001 indicated that this superfamily contained over 600 members, many catalyzing reactions that were rich in novel chemical transformations. Since that seminal study, the RS superfamily has grown immensely, and new details about the scope of reactions and biochemical pathways in which its members participate have emerged. This review will highlight only a few of the most significant findings from the past 2-3 years, focusing primarily on: RS enzymes involved in complex metallocofactor maturation; characterized RS enzymes that lack the canonical CxxxCxxC motif; RS enzymes containing multiple iron-sulfur clusters; RS enzymes catalyzing reactions with compelling medical implications; and the energetics and mechanism of generating the 5'-deoxyadenosyl radical. A number of significant studies of RS enzymes will unfortunately be omitted, and it is hoped that the reader will access the relevant literature - particularly a number of superb review articles recently written on the subject - to acquire a deeper appreciation of this class of enzymes.

  10. Thermal Reactivity of Organic Molecules in the Presence of Chlorates and Perchlorates and the Quest for Organics on Mars with the SAM Experiment Onboard the Curiostiy Rover

    NASA Astrophysics Data System (ADS)

    Szopa, Cyril; Millan, Maeva; Buch, Arnaud; Belmahdi, Imene; Coll, Patrice; Glavin, Daniel P.; Freissinet, Caroline; Eigenbrode, Jennifer; archer, doug; sutter, brad; Summons, Roger; Navarro-Gonzalez, Rafael; Mahaffy, Paul; cabane, Michel

    2016-10-01

    One of the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples collected by Curiosity when they are heated up to ~850°C. With this aim SAM uses a gas-chromatograph coupled to a mass spectrometer (GC-MS) able to detect and identify both inorganic and organic molecules released by the samples.During the pyrolysis, chemical reactions occur between oxychlorines, probably homogeneously distributed at Mars's surface, and organic compounds SAM seeks for. This was confirmed by the first chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM that were entirely attributed to reaction products occurring between these oxychlorines and organics from instrument background. But SAM also detected in the Sheepbed mudstone of Gale crater, chloroalkanes produced by reaction between oxychlorines and Mars indigenous organics, proving for the first time the presence of organics in the soil of Mars. However, the identification of the molecules at the origin of these chloroalkanes is much more difficult due to the complexity of the reactivity occurring during the sample pyrolysis. If a first study has already been done recently with this aim, it was relatively limited in terms of parameters investigated.This is the reason why, we performed a systematic study in the laboratory to help understanding the influence of oxychlorines on organic matter during pyrolysis. With this aim, different organic compounds from various chemical families (e.g. amino and carboxylic acids) mixed with different perchlorates and chlorates, in concentrations compatible with the Mars soil from estimations done with SAM measurements, were pyrolyzed under SAM like conditions. The products of reaction were analyzed and identified by GC-MS in order to show a possible correlation between them and the parent molecule. Different parameters were tested for the pyrolysis to evaluate their potential influence on the

  11. SWECS tower dynamics analysis methods and results

    NASA Technical Reports Server (NTRS)

    Wright, A. D.; Sexton, J. H.; Butterfield, C. P.; Thresher, R. M.

    1981-01-01

    Several different tower dynamics analysis methods and computer codes were used to determine the natural frequencies and mode shapes of both guyed and freestanding wind turbine towers. These analysis methods are described and the results for two types of towers, a guyed tower and a freestanding tower, are shown. The advantages and disadvantages in the use of and the accuracy of each method are also described.

  12. An Evaluation of the Hydrocarbon Trap as a Potential Source of Organic Compounds Detected by the SAM Instrument on the Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Summons, R. E.; Miller, K.; Glavin, D. P.; Martin, M.; Eigenbrode, J. L.; Szopa, C.; Buch, A.; Belmahadi, I.

    2014-12-01

    The Sample Analysis at Mars (SAM) instrument suite aboard the Curiosity rover catalogued a suite of organic compounds using pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) and evolved gas analyses (EGA) of aeolian and subsurface drill fines at Gale Crater, Mars. The sources of these organic compounds are also being investigated through laboratory experiments in which Mars analogue mixtures are analyzed by Py-GC-MS and EGA under SAM-like conditions. In this study we examined the hydrocarbon trap, a component of the SAM Py-GC-MS system, as a potential source of some of the compounds detected on Mars. Analogue mixtures consisting of olivine sand and varying amounts of Cl-containing salts and magnetite were analyzed with Py-GC-MS operated under SAM-like conditions (i.e. trap materials and pyrolysis and GC temperature programs were the same as SAM analyses). Carbon dioxide, benzene and toluene were identified in all experiments and chlorobenzenes (CBs) and HCl were identified in the experiments with Cl salts. As the concentration of Cl salts increased the abundance of CBs, HCl and CO2 increased whereas the abundance of benzene and toluene remained stable. In order to confirm that these compounds originate from the trap we analyzed the samples while bypassing the trap. Benzene was detected, although at much lower concentrations, and toluene could not be definitively identified. Traces of CB were also detected when Cl salts were analyzed without the trap, again at lower concentrations. Additionally, traces of phthalic acid were detected in the Cl salt samples; this compound readily forms CBs in the presence of HCl (Miller et al., 2013). From this we can conclude that traces of benzene, toluene, and CBs can be degradation products originating from the hydrocarbon trap. Understanding how these compounds form and their relationship to the concentration of different mineral decomposition products helps us interpret the significance of all the organic compounds

  13. Activated Cdc42-associated kinase 1 (ACK1) binds the sterile α motif (SAM) domain of the adaptor SLP-76 and phosphorylates proximal tyrosines.

    PubMed

    Thaker, Youg R; Recino, Asha; Raab, Monika; Jabeen, Asma; Wallberg, Maja; Fernandez, Nelson; Rudd, Christopher E

    2017-04-14

    The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a crucial role in T cell activation by linking antigen receptor (T cell receptor, TCR) signals to downstream pathways. At its N terminus, SLP-76 has three key tyrosines (Tyr-113, Tyr-128, and Tyr-145, "3Y") as well as a sterile α motif (SAM) domain whose function is unclear. We showed previously that the SAM domain has two binding regions that mediate dimer and oligomer formation. In this study, we have identified SAM domain-carrying non-receptor tyrosine kinase, activated Cdc42-associated tyrosine kinase 1 (ACK1; also known as Tnk2, tyrosine kinase non-receptor 2) as a novel binding partner of SLP-76. Co-precipitation, laser-scanning confocal microscopy, and in situ proximity analysis confirmed the binding of ACK1 to SLP-76. Further, the interaction was induced in response to the anti-TCR ligation and abrogated by the deletion of SLP-76 SAM domain (ΔSAM) or mutation of Tyr-113, Tyr-128, and Tyr-145 to phenylalanine (3Y3F). ACK1 induced phosphorylation of the SLP-76 N-terminal tyrosines (3Y) dependent on the SAM domain. Further, ACK1 promoted calcium flux and NFAT-AP1 promoter activity and decreased the motility of murine CD4(+) primary T cells on ICAM-1-coated plates, an event reversed by a small molecule inhibitor of ACK1 (AIM-100). These findings identify ACK1 as a novel SLP-76-associated protein-tyrosine kinase that modulates early activation events in T cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. MSL SAM-like Analyses of Hawaiian Altered Basaltic Materials: Implications for Analyses by the Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Eigenbrode, J. L.; Young, K. E.; Bleacher, J. E.; Knudson, C. A.; Rogers, D.; Glotch, T. D.; Sutter, B.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Downs, R. T.

    2015-12-01

    Samples of basaltic materials were collected during several traverses of the Kau Desert on the leeward side of the Kilauea Volcano, Hawaii, conducted by the Remote, In Situ, and Synchrotron Studies for Science and Exploration (RIS4E) team, a node of the Solar System Exploration and Research Virtual Institute (SSERVI) program. Some of these samples had been exposed to circumneutral to slightly acidic alteration conditions from exposure to fog/rain, and acidic fog/rain, while others had been exposed to more acidic conditions due to proximity to fumaroles. The samples consisted of basalts with coatings, sands and soils, and ash, and were collected using organically clean protocols to enable investigation of organic chemistry and organic-mineral associations, in addition to mineralogy. The Mars Science Laboratory (MSL) rover has analyzed basaltic materials inferred to have been altered under conditions ranging from circumneutral to acidic, but several aspects of the Sample Analysis at Mars (SAM) instrument suite results are still being investigated and analyses of relevant terrestrial analogs can play an important role in interpretation of the data. For example, all materials analyzed to date have a significant amorphous component. Comparisons of the mineralogy obtained with the MSL CheMin instrument and volatiles evolved during SAM analyses indicate that, by mass balance, some portion of the volatiles, such as SO2 and H2O, are likely associated with this component. Many of the RIS4E samples also have a significant amorphous component, and field x-ray diffraction (XRD) and x-ray fluorescence (XRF) data indicate differences in the chemistry of this material in samples exposed to different alteration conditions. Preliminary SAM-like analyses indicate that the amorphous materials in some of these samples evolve volatiles such as H2O and SO2 during heating. Here we will discuss these results, and others, obtained through SAM-like analyses of selected samples.

  15. Gravimetric approach to the standard addition method in instrumental analysis. 1.

    PubMed

    Kelly, W Robert; MacDonald, Bruce S; Guthrie, William F

    2008-08-15

    A mathematical formulation for a gravimetric approach to the univariate standard addition method (SAM) is presented that has general applicability for both liquids and solids. Using gravimetry rather than volumetry reduces the preparation time, increases design flexibility, and makes increased accuracy possible. SAM has most often been used with analytes in aqueous solutions that are aspirated into flames or plasmas and determined by absorption, emission, or mass spectrometric techniques. The formulation presented here shows that the method can also be applied to complex matrixes, such as distillate and residual fuel oils, using techniques such as X-ray fluorescence (XRF) or combustion combined with atomic fluorescence or absorption. These techniques, which can be subject to matrix-induced interferences, could realize the same benefits that have been demonstrated for dilute aqueous solutions.

  16. Text analysis methods, text analysis apparatuses, and articles of manufacture

    DOEpatents

    Whitney, Paul D; Willse, Alan R; Lopresti, Charles A; White, Amanda M

    2014-10-28

    Text analysis methods, text analysis apparatuses, and articles of manufacture are described according to some aspects. In one aspect, a text analysis method includes accessing information indicative of data content of a collection of text comprising a plurality of different topics, using a computing device, analyzing the information indicative of the data content, and using results of the analysis, identifying a presence of a new topic in the collection of text.

  17. HPA and SAM axis responses as correlates of self- vs parental ratings of anxiety in boys with an Autistic Disorder.

    PubMed

    Bitsika, Vicki; Sharpley, Christopher F; Sweeney, John A; McFarlane, James R

    2014-03-29

    Anxiety and Autistic Disorder (AD) are both neurological conditions and both disorders share some features that make it difficult to precisely allocate specific symptoms to each disorder. HPA and SAM axis activities have been conclusively associated with anxiety, and may provide a method of validating anxiety rating scale assessments given by parents and their children with AD about those children. Data from HPA axis (salivary cortisol) and SAM axis (salivary alpha amylase) responses were collected from a sample of 32 high-functioning boys (M age=11yr) with an Autistic Disorder (AD) and were compared with the boys' and their mothers' ratings of the boys' anxiety. There was a significant difference between the self-ratings given by the boys and ratings given about them by their mothers. Further, only the boys' self-ratings of their anxiety significantly predicted the HPA axis responses and neither were significantly related to SAM axis responses. Some boys showed cortisol responses which were similar to that previously reported in children who had suffered chronic and severe anxiety arising from stressful social interactions. As well as suggesting that some boys with an AD can provide valid self-assessments of their anxiety, these data also point to the presence of very high levels of chronic HPA-axis arousal and consequent chronic anxiety in these boys. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Background removal in soil analysis using laser- induced breakdown spectroscopy combined with standard addition method.

    PubMed

    Yi, R X; Guo, L B; Zou, X H; Li, J M; Hao, Z Q; Yang, X Y; Li, X Y; Zeng, X Y; Lu, Y F

    2016-02-08

    The matrix effect of powder samples, especially for soil samples, is significant in laser-induced breakdown spectroscopy (LIBS), which affects the prediction accuracy of the element concentration. In order to reduce this effect of the soil samples in LIBS, the standard addition method (SAM) based on background removal by wavelet transform algorithm was investigated in this work. Five different kinds of certified reference soil samples (lead (Pb) concentrations were 110, 283, 552, 675, and 1141 ppm, respectively) were used to examine the accuracy of this method. The root mean square error of prediction (RMSEP) was more than 303 ppm by using the conventional calibration method. After adoption of SAM with background removal by wavelet transform algorithm, the RMSEP was reduced to 25.7 ppm. Therefore, the accuracy of the Pb element was improved significantly. The mechanism of background removal by wavelet transform algorithm based on SAM is discussed. Further study demonstrated that this method can also improve the predicted accuracy of the Cd element.

  19. Advanced Technology for SAM Systems Analysis Synthesis and Simulation

    DTIC Science & Technology

    1984-05-01

    naltre, de se d~velooper, de se n~rimer, souvent de renaltre :en matit’re de Capteurs d’informations, le radar et lea proctd~s 6lectro- optiques ont...pbles d~i d~nominateur. 5-4S La riponse naturelle du missile i un ordre de pilotage est de ce fait fid~le, rapide et peu affect~e per 1 ’oscillation

  20. Rio Hondo Sediment Assessment Analysis Using SAM. Numerical Model Investigation

    DTIC Science & Technology

    1991-05-01

    Distribution Unlimited 91-05652 SU Army1ngi11er Ds i lbuquerque Prepared for US Army Engineer District, Albuquerque Albuquerque, New Mexico 87103-1580 LB...Roswell, New Mexico , is located in the southwestern part of New Mexico in the Pecos River watershed (Figure 1). The source of the Pecos River basin...Report, Two Rivers Reservoir, New Mexico ," prepared for US Army Engineer District, Albuquerque, by Resource Technology, Albuquerque, NM. 5 Rio Hondo

  1. An evaluation of fracture analysis methods

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1985-01-01

    The results of an experimental and predictive round robin on the applications of fracture analysis methods are presented. The objective of the round robin was to verify whether fracture analysis methods currently in use can or cannot predict failure loads on complex structural components containing cracks. Fracture results from tests on a number of compact specimens were used to make the predictions. The accuracy of the prediction methods was evaluated in terms of the variation in the ratio of predicted to experimental failure loads, and the predictions methods are ranked in order of minimum standard error. A range of applicability of the different methods was also considered in assessing their usefulness. For 7075-T651 aluminum alloy, the best methods were: the effective K sub R curve; the critical crack-tip opening displacement (CTOD) criterion using a finite element analysis; and the K sub R curve with the Dugdale model. For the 2024-T351 aluminum alloy, the best methods included: the two-parameter fracture criterion (TPFC); the CTOD parameter using finite element analysis; the K-curve with the Dugdale model; the deformation plasticity failure assessment diagram (DPFAD); and the effective K sub R curve with a limit load condition. For 304 stainless steel, the best methods were the limit load analysis; the CTOD criterion using finite-element analysis TPFC and DPFAD. Some sample experimental results are given in an appendix.

  2. Sam68 is a regulator of Toll-like receptor signaling

    PubMed Central

    Tomalka, Jeffrey A; de Jesus, Tristan J; Ramakrishnan, Parameswaran

    2017-01-01

    Recognition of pathogens by Toll-like receptors (TLR) activate multiple signaling cascades and expression of genes tailored to mount a primary immune response, inflammation, cell survival and apoptosis. Although TLR-induced activation of pathways, such as nuclear factor kappaB (NF-κB) and mitogen-activated protein kinases (MAPK), has been well studied, molecular entities controlling quantitative regulation of these pathways during an immune response remain poorly defined. We identified Sam68 as a novel regulator of TLR-induced NF-κB and MAPK activation. We found that TLR2 and TLR3 are totally dependent, whereas TLR4 is only partially dependent on Sam68 to induce the activation of NF-κB c-Rel. Absence of Sam68 greatly decreased TLR2- and TLR3-induced NF-κB p65 activation, whereas TLR4-induced p65 activation in a Sam68-independent manner. In contrast, Sam68 appeared to be a negative regulator of MAPK pathways because absence of Sam68 enhanced TLR2-induced activation of extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK). Interestingly, TLR2- and TLR3-induced gene expression showed a differential requirement of Sam68. Absence of Sam68 impaired TLR2-induced gene expression, suggesting that Sam68 has a critical role in myeloid differentiation primary response gene 88-dependent TLR2 signaling. TLR3-induced gene expression that utilize Toll/Interleukin-1 receptor-domain-containing adapter-inducing beta interferon pathway, depend only partially on Sam68. Our findings suggest that Sam68 may function as an immune rheostat that balances the activation of NF-κB p65 and c-Rel, as well as MAPK, revealing a potential novel target to manipulate TLR signaling. PMID:27374795

  3. Sam68 is a regulator of Toll-like receptor signaling.

    PubMed

    Tomalka, Jeffrey A; de Jesus, Tristan J; Ramakrishnan, Parameswaran

    2017-01-01

    Recognition of pathogens by Toll-like receptors (TLR) activate multiple signaling cascades and expression of genes tailored to mount a primary immune response, inflammation, cell survival and apoptosis. Although TLR-induced activation of pathways, such as nuclear factor kappaB (NF-κB) and mitogen-activated protein kinases (MAPK), has been well studied, molecular entities controlling quantitative regulation of these pathways during an immune response remain poorly defined. We identified Sam68 as a novel regulator of TLR-induced NF-κB and MAPK activation. We found that TLR2 and TLR3 are totally dependent, whereas TLR4 is only partially dependent on Sam68 to induce the activation of NF-κB c-Rel. Absence of Sam68 greatly decreased TLR2- and TLR3-induced NF-κB p65 activation, whereas TLR4-induced p65 activation in a Sam68-independent manner. In contrast, Sam68 appeared to be a negative regulator of MAPK pathways because absence of Sam68 enhanced TLR2-induced activation of extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK). Interestingly, TLR2- and TLR3-induced gene expression showed a differential requirement of Sam68. Absence of Sam68 impaired TLR2-induced gene expression, suggesting that Sam68 has a critical role in myeloid differentiation primary response gene 88-dependent TLR2 signaling. TLR3-induced gene expression that utilize Toll/Interleukin-1 receptor-domain-containing adapter-inducing beta interferon pathway, depend only partially on Sam68. Our findings suggest that Sam68 may function as an immune rheostat that balances the activation of NF-κB p65 and c-Rel, as well as MAPK, revealing a potential novel target to manipulate TLR signaling.

  4. A Micro-Method of Protein Analysis

    DTIC Science & Technology

    The determination of protein by means of Weichselbaum’s (1) biuret method is too inexact when dealing with small quantities of protein (less than 200...microgram/ml initial reactant), owing to the low sensitivity of the color reaction . Although we have used this method for protein analysis of...have searched for a more sensitive colorimetric method. Nielsen (3) recently reported on a method in which the Cu bound by protein in the biuret

  5. Comparison of High-Level Microarray Analysis Methods in the Context of Result Consistency.

    PubMed

    Chrominski, Kornel; Tkacz, Magdalena

    2015-01-01

    When we were asked for help with high-level microarray data analysis (on Affymetrix HGU-133A microarray), we faced the problem of selecting an appropriate method. We wanted to select a method that would yield "the best result" (detected as many "really" differentially expressed genes (DEGs) as possible, without false positives and false negatives). However, life scientists could not help us--they use their "favorite" method without special argumentation. We also did not find any norm or recommendation. Therefore, we decided to examine it for our own purpose. We considered whether the results obtained using different methods of high-level microarray data analyses--Significant Analysis of Microarrays, Rank Products, Bland-Altman, Mann-Whitney test, T test and the Linear Models for Microarray Data--would be in agreement. Initially, we conducted a comparative analysis of the results on eight real data sets from microarray experiments (from the Array Express database). The results were surprising. On the same array set, the set of DEGs by different methods were significantly different. We also applied the methods to artificial data sets and determined some measures that allow the preparation of the overall scoring of tested methods for future recommendation. We found a very low level concordance of results from tested methods on real array sets. The number of common DEGs (detected by all six methods on fixed array sets, checked on eight array sets) ranged from 6 to 433 (22,283 total array readings). Results on artificial data sets were better than those on the real data. However, they were not fully satisfying. We scored tested methods on accuracy, recall, precision, f-measure and Matthews correlation coefficient. Based on the overall scoring, the best methods were SAM and LIMMA. We also found TT to be acceptable. The worst scoring was MW. Based on our study, we recommend: 1. Carefully taking into account the need for study when choosing a method, 2. Making high

  6. Airbreathing hypersonic vehicle design and analysis methods

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae; Petley, Dennis H.; Hunt, James L.; Martin, John G.

    1996-01-01

    The design, analysis, and optimization of airbreathing hypersonic vehicles requires analyses involving many highly coupled disciplines at levels of accuracy exceeding those traditionally considered in a conceptual or preliminary-level design. Discipline analysis methods including propulsion, structures, thermal management, geometry, aerodynamics, performance, synthesis, sizing, closure, and cost are discussed. Also, the on-going integration of these methods into a working environment, known as HOLIST, is described.

  7. [Framework analysis method in qualitative research].

    PubMed

    Liao, Xing; Liu, Jian-ping; Robison, Nicola; Xie, Ya-ming

    2014-05-01

    In recent years a number of qualitative research methods have gained popularity within the health care arena. Despite this popularity, different qualitative analysis methods pose many challenges to most researchers. The present paper responds to the needs expressed by recent Chinese medicine researches. The present paper is mainly focused on the concepts, nature, application of framework analysis, especially on how to use it, in such a way to assist the newcomer of Chinese medicine researchers to engage with the methodology.

  8. Improving Transmission Efficiency of Large Sequence Alignment/Map (SAM) Files

    PubMed Central

    Sakib, Muhammad Nazmus; Tang, Jijun; Zheng, W. Jim; Huang, Chin-Tser

    2011-01-01

    Research in bioinformatics primarily involves collection and analysis of a large volume of genomic data. Naturally, it demands efficient storage and transfer of this huge amount of data. In recent years, some research has been done to find efficient compression algorithms to reduce the size of various sequencing data. One way to improve the transmission time of large files is to apply a maximum lossless compression on them. In this paper, we present SAMZIP, a specialized encoding scheme, for sequence alignment data in SAM (Sequence Alignment/Map) format, which improves the compression ratio of existing compression tools available. In order to achieve this, we exploit the prior knowledge of the file format and specifications. Our experimental results show that our encoding scheme improves compression ratio, thereby reducing overall transmission time significantly. PMID:22164252

  9. Improving transmission efficiency of large sequence alignment/map (SAM) files.

    PubMed

    Sakib, Muhammad Nazmus; Tang, Jijun; Zheng, W Jim; Huang, Chin-Tser

    2011-01-01

    Research in bioinformatics primarily involves collection and analysis of a large volume of genomic data. Naturally, it demands efficient storage and transfer of this huge amount of data. In recent years, some research has been done to find efficient compression algorithms to reduce the size of various sequencing data. One way to improve the transmission time of large files is to apply a maximum lossless compression on them. In this paper, we present SAMZIP, a specialized encoding scheme, for sequence alignment data in SAM (Sequence Alignment/Map) format, which improves the compression ratio of existing compression tools available. In order to achieve this, we exploit the prior knowledge of the file format and specifications. Our experimental results show that our encoding scheme improves compression ratio, thereby reducing overall transmission time significantly.

  10. SAM managed cache and processing for clusters in a worldwide grid-enabled system

    SciTech Connect

    Andrew Baranovski et al.

    2002-07-17

    SAM has been developed within the Computing Division at Fermilab as a versatile, distributed, data management system. One of its many features is its ability to control processing and manage a distributed cache within a cluster of compute servers. Requirements, concepts, and features of this system are described and issues involved in interfacing it to several batch systems are discussed. The system is used within the Dzero experimental collaboration to distribute hundreds of Terabytes of data for processing and analysis around the world. Several hardware configurations deployed at Fermilab are described. Data is currently disseminated using this system to over two dozen sites worldwide, and this number will grow to nearly one hundred in the coming years. The planned design evolution to accommodate this growth is discussed, and the transition of the system to grid standard middleware is described.

  11. Winning Attitude & Dedication to Physical Therapy Keep Sam Schmidt on Track

    ERIC Educational Resources Information Center

    Bosley, Nikki Prevenslik

    2006-01-01

    This article relates how Sam Schmidt returned to living a productive life after an accident left him with spinal cord injury. Schmidt was a former Indy Racing League driver who founded Sam Schmidt Motorsports after his accident in 2000. Schmidt's car hit the wall as he exited turn two during a practice session at Walt Disney World Speedway in…

  12. Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools

    PubMed Central

    Cheng, Yinhe; Tzeng, Tzy-Hwa Kathy

    2016-01-01

    This paper introduces a high-throughput software tool framework called sam2bam that enables users to significantly speed up pre-processing for next-generation sequencing data. The sam2bam is especially efficient on single-node multi-core large-memory systems. It can reduce the runtime of data pre-processing in marking duplicate reads on a single node system by 156–186x compared with de facto standard tools. The sam2bam consists of parallel software components that can fully utilize multiple processors, available memory, high-bandwidth storage, and hardware compression accelerators, if available. The sam2bam provides file format conversion between well-known genome file formats, from SAM to BAM, as a basic feature. Additional features such as analyzing, filtering, and converting input data are provided by using plug-in tools, e.g., duplicate marking, which can be attached to sam2bam at runtime. We demonstrated that sam2bam could significantly reduce the runtime of next generation sequencing (NGS) data pre-processing from about two hours to about one minute for a whole-exome data set on a 16-core single-node system using up to 130 GB of memory. The sam2bam could reduce the runtime of NGS data pre-processing from about 20 hours to about nine minutes for a whole-genome sequencing data set on the same system using up to 711 GB of memory. PMID:27861637

  13. Regioselective patterning of multiple SAMs and applications in surface-guided smart microfluidics.

    PubMed

    Chen, Chuanzhao; Xu, Pengcheng; Li, Xinxin

    2014-12-24

    A top-down nanofabrication technology is developed to integrate multiple SAMs (self-assembled monolayers) into regioselective patterns. With ultraviolet light exposure through regioselectively hollowed hard mask, an existing SAM at designated microregions can be removed and a dissimilar kind of SAM can be regrown there. By repeating the photolithography-like process cycle, diverse kinds of SAM building blocks can be laid out as a desired pattern in one microfluidic channel. In order to ensure high quality of the surface modifications, the SAMs are vapor-phase deposited before the channel is closed by a bonding process. For the first time the technique makes it possible to integrate three or more kinds of SAMs in one microchannel. The technique is very useful for multiplex surface functionalization of microfluidic chips where different segments of a microfluidic channel need to be individually modified with different SAMs or into arrayed pattern for surface-guided fluidic properties like hydrophobicity/philicity and/or oleophobicity/philicity, etc. The technique has been well validated by experimental demonstration of various surface-directed flow-guiding functions. By modifying a microchannel surface into an arrayed pattern of multi-SAM "two-tone" stripe array, surface-guiding-induced 3D swirling flow is generated in a microfluidic channel that experimentally exhibits quick oil/water mixing and high-efficiency oil-to-water chemical extraction.

  14. Overview of SAM results obtained at Gale Crater during the 180 first sols

    NASA Astrophysics Data System (ADS)

    Coll, P.; Mahaffy, P. R.; Cabane, M.; Webster, C. R.; Archer, D.; Atreya, S. K.; Benna, M.; Brinckerhoff, W. B.; Brunner, A.; Buch, A.; Conrad, P.; Coscia, D.; Dobson, N.; Dworkin, J.; Eigenbrode, J.; Farley, K.; Flesch, G.; Franz, H.; Freissinet, C.; Galvin, D.; Gorevan, S.; Harpold, D.; Hengemihle, J.; Jaeger, F.; Johnson, C.; Johnson, M.; Jones, J.; Lefavor, M.; Leshin, L.; Lyness, E.; Malespin, C.; Manning, H.; Martin, D.; McAdam, A.; McKay, C.; Miller, K.; Ming, D. W.; Morris, R. V.; Navarro-González, R.; Niles, P.; Nolan, T.; Owen, T.; Pavolv, A.; Prats, B.; Pepin, R.; Raaen, E.; Raulin, F.; Steele, A.; Stern, J.; Squyres, S.; Sutter, B.; Summons, R. E.; Szopa, C.; Tan, F.; Teinturier, S.; Trainer, M.; Wong, M.; Wray, J.

    2013-09-01

    During the first 180 sols of Curiosity's landed mission on Mars (8/6/2012 to 2/7/2013) SAM sampled the atmosphere more than a dozen times, the dusty sandpile named Rocknest and a basin site named John Klein on the floor of Gale crater. The atmospheric experiments utilized SAM's quadrupole mass spectrometer (QMS) and its tunable laser spectrometer (TLS) while the solid sample experiments also utilized the gas chromatograph (GC). Although a number of core experiments were pre-programmed and stored in SAM EEProm, the high level SAM scripting language enabled the team to often optimize experiments based on prior runs. SAM and its Experiment Sequences exercised during the First 120 Sols: The SAM instruments, its gas processing system (GPS) and its sample manipulation system (SMS) have been already described [1]. During the first few weeks of the landed mission SAM carried out a variety of instrument health checks and then began a series of atmospheric experiments to measure atmospheric composition and isotope ratios. From sol 56 to 102 Curiosity lingered at Rocknest to clean out the surfaces of the sample processing system by scooping several times into this fine grained material, vibrating to abrade possible contamination from surfaces, and then discarding before delivery of sample to SAM from the 5th scoop.

  15. Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools.

    PubMed

    Ogasawara, Takeshi; Cheng, Yinhe; Tzeng, Tzy-Hwa Kathy

    2016-01-01

    This paper introduces a high-throughput software tool framework called sam2bam that enables users to significantly speed up pre-processing for next-generation sequencing data. The sam2bam is especially efficient on single-node multi-core large-memory systems. It can reduce the runtime of data pre-processing in marking duplicate reads on a single node system by 156-186x compared with de facto standard tools. The sam2bam consists of parallel software components that can fully utilize multiple processors, available memory, high-bandwidth storage, and hardware compression accelerators, if available. The sam2bam provides file format conversion between well-known genome file formats, from SAM to BAM, as a basic feature. Additional features such as analyzing, filtering, and converting input data are provided by using plug-in tools, e.g., duplicate marking, which can be attached to sam2bam at runtime. We demonstrated that sam2bam could significantly reduce the runtime of next generation sequencing (NGS) data pre-processing from about two hours to about one minute for a whole-exome data set on a 16-core single-node system using up to 130 GB of memory. The sam2bam could reduce the runtime of NGS data pre-processing from about 20 hours to about nine minutes for a whole-genome sequencing data set on the same system using up to 711 GB of memory.

  16. Winning Attitude & Dedication to Physical Therapy Keep Sam Schmidt on Track

    ERIC Educational Resources Information Center

    Bosley, Nikki Prevenslik

    2006-01-01

    This article relates how Sam Schmidt returned to living a productive life after an accident left him with spinal cord injury. Schmidt was a former Indy Racing League driver who founded Sam Schmidt Motorsports after his accident in 2000. Schmidt's car hit the wall as he exited turn two during a practice session at Walt Disney World Speedway in…

  17. K-sam gene encodes secreted as well as transmembrane receptor tyrosine kinase.

    PubMed Central

    Katoh, M; Hattori, Y; Sasaki, H; Tanaka, M; Sugano, K; Yazaki, Y; Sugimura, T; Terada, M

    1992-01-01

    K-sam was first identified as a gene amplified in the stomach cancer cell line KATO-III. The size of the major transcript of the K-sam gene was 3.5 kilobases in KATO-III cells, and we have previously shown that K-sam encodes a receptor tyrosine kinase that belongs to the heparin-binding growth factor receptor, or fibroblast growth factor receptor, gene family. The K-sam gene expresses multiple sizes of mRNAs in brain tissue, the immature teratoma cell line NCC-IT, and KATO-III. RNA blot analyses with a variety of K-sam probes indicate that there are at least four classes of K-sam mRNAs. Three types of K-sam cDNAs in addition to the previously reported type of K-sam cDNA were isolated, and their nucleotide sequences encode a full-length transmembrane receptor, a secreted receptor with a tyrosine kinase domain, and a secreted receptor without a tyrosine kinase domain. Images PMID:1313574

  18. Unanticipated coordination of tris buffer to the Radical SAM cluster of the RimO methylthiotransferase.

    PubMed

    Molle, Thibaut; Clémancey, Martin; Latour, Jean-Marc; Kathirvelu, Velavan; Sicoli, Giuseppe; Forouhar, Farhad; Mulliez, Etienne; Gambarelli, Serge; Atta, Mohamed

    2016-07-01

    Radical SAM enzymes generally contain a [4Fe-4S](2+/1+) (RS cluster) cluster bound to the protein via the three cysteines of a canonical motif CxxxCxxC. The non-cysteinyl iron is used to coordinate SAM via its amino-carboxylate moiety. The coordination-induced proximity between the cluster acting as an electron donor and the adenosyl-sulfonium bond of SAM allows for the homolytic cleavage of the latter leading to the formation of the reactive 5'-deoxyadenosyl radical used for substrate activation. Most of the structures of Radical SAM enzymes have been obtained in the presence of SAM, and therefore, little is known about the situation when SAM is not present. In this report, we show that RimO, a methylthiotransferase belonging to the radical SAM superfamily, binds a Tris molecule in the absence of SAM leading to specific spectroscopic signatures both in Mössbauer and pulsed EPR spectroscopies. These data provide a cautionary note for researchers who work with coordinative unsaturated iron sulfur clusters.

  19. Solution structure of the first Sam domain of Odin and binding studies with the EphA2 receptor.

    PubMed

    Mercurio, Flavia Anna; Marasco, Daniela; Pirone, Luciano; Pedone, Emilia Maria; Pellecchia, Maurizio; Leone, Marilisa

    2012-03-13

    The EphA2 receptor plays key roles in many physiological and pathological events, including cancer. The process of receptor endocytosis and the consequent degradation have attracted attention as possible means of overcoming the negative outcomes of EphA2 in cancer cells and decreasing tumor malignancy. A recent study indicates that Sam (sterile alpha motif) domains of Odin, a member of the ANKS (ankyrin repeat and sterile alpha motif domain-containing) family of proteins, are important for the regulation of EphA2 endocytosis. Odin contains two tandem Sam domains (Odin-Sam1 and -Sam2). Herein, we report on the nuclear magnetic resonance (NMR) solution structure of Odin-Sam1; through a variety of assays (employing NMR, surface plasmon resonance, and isothermal titration calorimetry techniques), we clearly demonstrate that Odin-Sam1 binds to the Sam domain of EphA2 in the low micromolar range. NMR chemical shift perturbation experiments and molecular modeling studies point out that the two Sam domains interact with a head-to-tail topology characteristic of several Sam-Sam complexes. This binding mode is similar to that we have previously proposed for the association between the Sam domains of the lipid phosphatase Ship2 and EphA2. This work further validates structural elements relevant for the heterotypic Sam-Sam interactions of EphA2 and provides novel insights for the design of potential therapeutic compounds that can modulate receptor endocytosis.

  20. SOLUTION STRUCTURE OF THE FIRST SAM DOMAIN OF ODIN AND BINDING STUDIES WITH THE EPHA2 RECEPTOR

    PubMed Central

    Mercurio, Flavia Anna; Marasco, Daniela; Pirone, Luciano; Pedone, Emilia Maria; Pellecchia, Maurizio; Leone, Marilisa

    2012-01-01

    The EphA2 receptor plays key roles in many physiological and pathological events including cancer. The process of receptor endocytosis and the consequent degradation have lately attracted attention as possible means of overcoming the negative outcomes of EphA2 in cancer cells and decreasing tumor malignancy. A recent study indicates that Sam (Sterile Alpha Motif) domains of Odin, a member of the ANKS (Ankyrin repeat and sterile alpha motif domain-containing) family of proteins, are important to regulate EphA2 endocytosis. Odin contains two tandem Sam domains (Odin-Sam1 and Sam2). Herein we report on the NMR solution structure of Odin-Sam1; through a variety of assays (employing NMR, SPR and ITC techniques), we clearly demonstrate that Odin-Sam1 binds to the Sam domain of EphA2 in the low micromolar range. NMR chemical shift perturbation experiments and molecular modeling studies point out that the two Sam domains interact with a head to tail topology characteristic of several Sam-Sam complexes. This binding mode is similar to that we have previously proposed for the association between the Sam domains of the lipid phosphatase Ship2 and EphA2. This work further validates structural elements relevant for the heterotypic Sam-Sam interactions of EphA2 and provides novel insights for the design of potential therapeutic compounds that can modulate receptor endocytosis. PMID:22332920

  1. NMR STUDIES OF A HETEROTYPIC SAM-SAM DOMAIN ASSOCIATION: THE INTERACTION BETWEEN THE LIPID PHOSPHATASE SHIP2 AND THE EPHA2 RECEPTOR

    PubMed Central

    Leone, Marilisa; Cellitti, Jason; Pellecchia, Maurizio

    2009-01-01

    Sterile alpha motif (Sam) domains are protein interaction modules that are implicated in many biological processes mainly via homo- and hetero-dimerization. It has been recently reported that the lipid phosphatase Ship2 regulates endocytosis of the EphA2 receptor, a process that has been investigated as a possible route to reduce tumor malignancy. A heterotypic Sam-Sam domain interaction is mediating this process. Here, we report NMR and ITC (Isothermal Titration Calorimetry) studies on the Sam domain of Ship2 revealing its three-dimensional structure and its possible mode of interaction with the Sam domain from the EphA2 receptor. These studies have also resulted in the identification of a minimal peptide region of Ship2 that retains binding affinity for the Sam domain of EphA2 receptor. Hence, this peptide and the detection of key structural elements important for EphA2 receptor endocytosis provide possible ways for the development of novel small molecule antagonists with potential anti-cancer activity. PMID:18991394

  2. Laboratory theory and methods for sediment analysis

    USGS Publications Warehouse

    Guy, Harold P.

    1969-01-01

    The diverse character of fluvial sediments makes the choice of laboratory analysis somewhat arbitrary and the pressing of sediment samples difficult. This report presents some theories and methods used by the Water Resources Division for analysis of fluvial sediments to determine the concentration of suspended-sediment samples and the particle-size distribution of both suspended-sediment and bed-material samples. Other analyses related to these determinations may include particle shape, mineral content, and specific gravity, the organic matter and dissolved solids of samples, and the specific weight of soils. The merits and techniques of both the evaporation and filtration methods for concentration analysis are discussed. Methods used for particle-size analysis of suspended-sediment samples may include the sieve pipet, the VA tube-pipet, or the BW tube-VA tube depending on the equipment available, the concentration and approximate size of sediment in the sample, and the settling medium used. The choice of method for most bed-material samples is usually limited to procedures suitable for sand or to some type of visual analysis for large sizes. Several tested forms are presented to help insure a well-ordered system in the laboratory to handle the samples, to help determine the kind of analysis required for each, to conduct the required processes, and to assist in the required computations. Use of the manual should further 'standardize' methods of fluvial sediment analysis among the many laboratories and thereby help to achieve uniformity and precision of the data.

  3. Two MIS Analysis Methods: An Experimental Comparison.

    ERIC Educational Resources Information Center

    Wang, Shouhong

    1996-01-01

    In China, 24 undergraduate business students applied data flow diagrams (DFD) to a mini-case, and 20 used object-oriented analysis (OOA). DFD seemed easier to learn, but after training, those using the OOA method for systems analysis made fewer errors. (SK)

  4. Two MIS Analysis Methods: An Experimental Comparison.

    ERIC Educational Resources Information Center

    Wang, Shouhong

    1996-01-01

    In China, 24 undergraduate business students applied data flow diagrams (DFD) to a mini-case, and 20 used object-oriented analysis (OOA). DFD seemed easier to learn, but after training, those using the OOA method for systems analysis made fewer errors. (SK)

  5. Hypothesis analysis methods, hypothesis analysis devices, and articles of manufacture

    DOEpatents

    Sanfilippo, Antonio P [Richland, WA; Cowell, Andrew J [Kennewick, WA; Gregory, Michelle L [Richland, WA; Baddeley, Robert L [Richland, WA; Paulson, Patrick R [Pasco, WA; Tratz, Stephen C [Richland, WA; Hohimer, Ryan E [West Richland, WA

    2012-03-20

    Hypothesis analysis methods, hypothesis analysis devices, and articles of manufacture are described according to some aspects. In one aspect, a hypothesis analysis method includes providing a hypothesis, providing an indicator which at least one of supports and refutes the hypothesis, using the indicator, associating evidence with the hypothesis, weighting the association of the evidence with the hypothesis, and using the weighting, providing information regarding the accuracy of the hypothesis.

  6. S.A.M., the Italian Martian simulation chamber.

    PubMed

    Galletta, G; Ferri, F; Fanti, G; D'Alessandro, M; Bertoloni, G; Pavarin, D; Bettanini, C; Cozza, P; Pretto, P; Bianchini, G; Debei, S

    2006-12-01

    The Martian Environment Simulator (SAM "Simulatore di Ambiente Marziano") is a interdisciplinary project of Astrobiology done at University of Padua. The research is aimed to the study of the survival of the microorganisms exposed to the "extreme" planetary environment. The facility has been designed in order to simulate Mars' environmental conditions in terms of atmospheric pressure, temperature cycles and UV radiation dose. The bacterial cells, contained into dedicated capsules, will be exposed to thermal cycles simulating diurnal and seasonal Martian cycles. The metabolism of the different biological samples will be analysed at different phases of the experiment, to study their survival and eventual activity of protein synthesis (mortality, mutations and capability of DNA repairing). We describe the experimental facility and provide the perspectives of the biological experiments we will perform in order to provide hints on the possibility of life on Mars either autochthonous or imported from Earth.

  7. Presentation on a Space Acceleration Measurement System (SAMS)

    NASA Technical Reports Server (NTRS)

    Chase, Theodore L.

    1990-01-01

    The primary objective of the Space Acceleration Measurement Systems (SAMS) project is to provide an acceleration measurement system capable of serving a wide variety of space experiments. The design of the system being developed under this project takes into consideration requirements for experiments located in the middeck, in the orbiter bay, and in Spacelab. In addition to measuring, conditioning, and recording accelerations, the system will be capable of performing complex calculations and interactive control. The main components consist of a remote triaxial optical storage device. In operation, the triaxial sensor head produces output signals in response to acceleration inputs. These signals are preamplified, filtered and converted into digital data which is then transferred to optical memory. The system design is modular, facilitating both software and hardware upgrading as technology advances. Two complete acceleration measurement flight systems will be build and tested under this project.

  8. STM characterization of DNA immobilized via Zr ion glue onto gold thiol SAMs

    NASA Astrophysics Data System (ADS)

    Pourbeyram, S.; Shervedani, R. K.; Sabzyan, H.

    2013-10-01

    In this paper layer-by-layer (LBL) assembly of calf thymus DNA (ct-DNA) onto gold-mercaptopropionic acid self-assembled monolayer via Zr(IV) ion glue, Au-MPA-Zr(IV)-ct-DNA SAM, is monitored by scanning tunneling microscopy (STM) technique. The STM images of Au-MPA-Zr(IV) template show well-organized arrays of rod-like peaks. ct-DNA has been immobilized on the Au-MPA-Zr(IV) surface in hilly forms, implying globular structure for the immobilized ct-DNA. This immobilization strategy offers a simple and fast method to prepare the Au-MPA-Zr(IV)-ct-DNA template with promising applications for immobilization and study of the other compounds.

  9. Re-engineering SAM or Changing the Engine in the Train While it is Running

    NASA Astrophysics Data System (ADS)

    Illingworth, R.; Mengel, M.; Norman, A.

    2015-12-01

    In the last few years at Fermilab we re-architect-ed our SAM1[1] family of data catalog and file transfer tools - including major changes - while continuing to transfer over 1 Pb/month of data to multiple existing experiments and bring new experiments on board. This work was done with less than 3 FTE-years of effort, and the changes made include major ones, such as changing interprocess communication protocols, migrating database back-ends, removing and replacing major components, and supporting new file delivery methods. This paper will summarize the approaches we have used to do this, including using design patterns like the Facade, Adapter, and Command patterns, and assisting experiments one at a time with client migration. This process has allowed us to modernize our infrastructure with reasonable costs in both calendar time and developer effort, while continuing to provide the operating service to our customers with minimal interruptions.

  10. MSL SAM-Like Evolved Gas Analyses of Si-rich Amorphous Materials

    NASA Technical Reports Server (NTRS)

    McAdam, Amy; Knudson, Christine; Sutter, Brad; Andrejkovicova, Slavka; Archer, P. Douglas; Franz, Heather; Eigenbrode, Jennifer; Morris, Richard; Ming, Douglas; Sun, Vivian; Wilhelm, Mary Beth; Mahaffy, Paul

    2016-01-01

    Chemical and mineralogical analyses of several samples from Murray Formation mudstones and Stimson Formation sandstones by the Mars Science Laboratory (MSL) revealed the presence of Si-rich amorphous or poorly ordered materials. It is possible to identify the presence of high-SiO2 vs. lower SiO2 amorphous materials (e.g., basaltic glasses), based on the position of the resulting wide diffraction features in XRD patterns from the Chemistry and Mineralogy (CheMin) instrument, but it is not possible to distinguish between several candidate high-SiO2 amorphous materials such as opal-A or rhyolitic glass. In the Buckskin (BS) sample from the upper Murray Formation, and the Big Sky (BY) and Greenhorn (GH) samples from the Stimson Formation, analyses by the Sample Analysis at Mars (SAM) instrument showed very broad H2O evolutions during sample heating at temperatures >450-500degC which had not been observed from previous samples. BS also had a significant broad evolution <450-500degC. We have undertaken a laboratory study targeted at understanding if the data from SAM can be used to place constraints on the nature of the amorphous phases. SAM-like evolved gas analyses have been performed on several opal and rhyolitic glass samples. Opal-A samples exhibited wide <500degC H2O evolutions, with lesser H2O evolved above 500degC. H2O evolution traces from rhyolitic glasses varied, having either two broad H2O peaks, <300degC and >500degC, or a broad peak centered around 400degC. For samples that produced two evolutions, the lower temperature peak is more intense than the higher temperature peak, a trend also exhibited by opal-A. This trend is consistent with data from BS, but does not seem consistent with data from BY and GH which evolved most of their H2O >500degC. It may be that dehydration of opal-A and/or rhyolitic glass can result in some preferential loss of lower temperature H2O, to produce traces that more closely resemble BY and GH. This is currently under investigation

  11. Radical SAM catalysis via an organometallic intermediate with an Fe-[5'-C]-deoxyadenosyl bond.

    PubMed

    Horitani, Masaki; Shisler, Krista; Broderick, William E; Hutcheson, Rachel U; Duschene, Kaitlin S; Marts, Amy R; Hoffman, Brian M; Broderick, Joan B

    2016-05-13

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to cleave SAM to initiate diverse radical reactions. These reactions are thought to involve the 5'-deoxyadenosyl radical intermediate, which has not yet been detected. We used rapid freeze-quenching to trap a catalytically competent intermediate in the reaction catalyzed by the radical SAM enzyme pyruvate formate-lyase activating enzyme. Characterization of the intermediate by electron paramagnetic resonance and (13)C, (57)Fe electron nuclear double-resonance spectroscopies reveals that it contains an organometallic center in which the 5' carbon of a SAM-derived deoxyadenosyl moiety forms a bond with the unique iron site of the [4Fe-4S] cluster. Discovery of this intermediate extends the list of enzymatic bioorganometallic centers to the radical SAM enzymes, the largest enzyme superfamily known, and reveals intriguing parallels to B12 radical enzymes.

  12. Causal Moderation Analysis Using Propensity Score Methods

    ERIC Educational Resources Information Center

    Dong, Nianbo

    2012-01-01

    This paper is based on previous studies in applying propensity score methods to study multiple treatment variables to examine the causal moderator effect. The propensity score methods will be demonstrated in a case study to examine the causal moderator effect, where the moderators are categorical and continuous variables. Moderation analysis is an…

  13. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  14. Cooperation between Magnesium and Metabolite Controls Collapse of the SAM-I Riboswitch.

    PubMed

    Roy, Susmita; Onuchic, José N; Sanbonmatsu, Karissa Y

    2017-07-25

    The S-adenosylmethionine (SAM)-I riboswitch is a noncoding RNA that regulates the transcription termination process in response to metabolite (SAM) binding. The aptamer portion of the riboswitch may adopt an open or closed state depending on the presence of metabolite. Although the transition between the open and closed states is critical for the switching process, its atomistic details are not well understood. Using atomistic simulations, we calculate the effect of SAM and magnesium ions on the folding free energy landscape of the SAM-I riboswitch. These molecular simulation results are consistent with our previous wetlab experiments and aid in interpreting the SHAPE probing measurements. Here, molecular dynamics simulations explicitly identify target RNA motifs sensitive to magnesium ions and SAM. In the simulations, we observe that, whereas the metabolite mostly stabilizes the P1 and P3 helices, magnesium serves an important role in stabilizing a pseudoknot interaction between the P2 and P4 helices, even at high metabolite concentrations. The pseudoknot stabilization by magnesium, in combination with P1 stabilization by SAM, explains the requirement of both SAM and magnesium to form the fully collapsed metabolite-bound closed state of the SAM-I riboswitch. In the absence of SAM, frequent open-to-closed conformational transitions of the pseudoknot occur, akin to breathing. These pseudoknot fluctuations disrupt the binding site by facilitating fluctuations in the 5'-end of helix P1. Magnesium biases the landscape toward a collapsed state (preorganization) by coordinating pseudoknot and 5'-P1 fluctuations. The cooperation between SAM and magnesium in stabilizing important tertiary interactions elucidates their functional significance in transcription regulation. Published by Elsevier Inc.

  15. Method and apparatus for ceramic analysis

    DOEpatents

    Jankowiak, Ryszard J.; Schilling, Chris; Small, Gerald J.; Tomasik, Piotr

    2003-04-01

    The present invention relates to a method and apparatus for ceramic analysis, in particular, a method for analyzing density, density gradients and/or microcracks, including an apparatus with optical instrumentation for analysis of density, density gradients and/or microcracks in ceramics. The method provides analyzing density of a ceramic comprising exciting a component on a surface/subsurface of the ceramic by exposing the material to excitation energy. The method may further include the step of obtaining a measurement of an emitted energy from the component. The method may additionally include comparing the measurement of the emitted energy from the component with a predetermined reference measurement so as to obtain a density for said ceramic.

  16. Bioanalytical methods for food contaminant analysis.

    PubMed

    Van Emon, Jeanette M

    2010-01-01

    Foods are complex mixtures of lipids, carbohydrates, proteins, vitamins, organic compounds, and other naturally occurring substances. Sometimes added to this mixture are residues of pesticides, veterinary and human drugs, microbial toxins, preservatives, contaminants from food processing and packaging, and other residues. This milieu of compounds can pose difficulties in the analysis of food contaminants. There is an expanding need for rapid and cost-effective residue methods for difficult food matrixes to safeguard our food supply. Bioanalytical methods are established for many food contaminants such as mycotoxins and are the method of choice for many food allergens. Bioanalytical methods are often more cost-effective and sensitive than instrumental procedures. Recent developments in bioanalytical methods may provide more applications for their use in food analysis.

  17. SAMS, a syndrome of short stature, auditory-canal atresia, mandibular hypoplasia, and skeletal abnormalities is a unique neurocristopathy caused by mutations in Goosecoid.

    PubMed

    Parry, David A; Logan, Clare V; Stegmann, Alexander P A; Abdelhamed, Zakia A; Calder, Alistair; Khan, Shabana; Bonthron, David T; Clowes, Virginia; Sheridan, Eamonn; Ghali, Neeti; Chudley, Albert E; Dobbie, Angus; Stumpel, Constance T R M; Johnson, Colin A

    2013-12-05

    Short stature, auditory canal atresia, mandibular hypoplasia, and skeletal abnormalities (SAMS) has been reported previously to be a rare, autosomal-recessive developmental disorder with other, unique rhizomelic skeletal anomalies. These include bilateral humeral hypoplasia, humeroscapular synostosis, pelvic abnormalities, and proximal defects of the femora. To identify the genetic basis of SAMS, we used molecular karyotyping and whole-exome sequencing (WES) to study small, unrelated families. Filtering of variants from the WES data included segregation analysis followed by comparison of in-house exomes. We identified a homozygous 306 kb microdeletion and homozygous predicted null mutations of GSC, encoding Goosecoid homeobox protein, a paired-like homeodomain transcription factor. This confirms that SAMS is a human malformation syndrome resulting from GSC mutations. Previously, Goosecoid has been shown to be a determinant at the Xenopus gastrula organizer region and a segment-polarity determinant in Drosophila. In the present report, we present data on Goosecoid protein localization in staged mouse embryos. These data and the SAMS clinical phenotype both suggest that Goosecoid is a downstream effector of the regulatory networks that define neural-crest cell-fate specification and subsequent mesoderm cell lineages in mammals, particularly during shoulder and hip formation. Our findings confirm that Goosecoid has an essential role in human craniofacial and joint development and suggest that Goosecoid is an essential regulator of mesodermal patterning in mammals and that it has specific functions in neural crest cell derivatives.

  18. Trial sequential methods for meta-analysis.

    PubMed

    Kulinskaya, Elena; Wood, John

    2014-09-01

    Statistical methods for sequential meta-analysis have applications also for the design of new trials. Existing methods are based on group sequential methods developed for single trials and start with the calculation of a required information size. This works satisfactorily within the framework of fixed effects meta-analysis, but conceptual difficulties arise in the random effects model. One approach applying sequential meta-analysis to design is 'trial sequential analysis', developed by Wetterslev, Thorlund, Brok, Gluud and others from the Copenhagen Trial Unit. In trial sequential analysis, information size is based on the required sample size of a single new trial, which, in the random effects model, is obtained by simply inflating it in comparison with fixed effects meta-analysis. However, this is not sufficient as, depending on the amount of heterogeneity, a minimum of several new trials may be indicated, and the total number of new patients needed may be substantially reduced by planning an even larger number of small trials. We provide explicit formulae to determine the requisite minimum number of trials and their sample sizes within this framework, which also exemplify the conceptual difficulties referred to. We illustrate all these points with two practical examples, including the well-known meta-analysis of magnesium for myocardial infarction. Copyright © 2013 John Wiley & Sons, Ltd.

  19. MSL/SAM Measurements of Non Condensable Volatiles, Comparison with Viking Lander, and Implications for Seasonal Cycle

    NASA Astrophysics Data System (ADS)

    Atreya, Sushil; Squyres, Steve; Mahaffy, Paul; Leshin, Laurie; Franz, Heather; Trainer, Melissa; Wong, Michael; McKay, Christopher; Navarro-Gonzalez, Rafael; ScienceTeam, MarsScienceLab

    2013-04-01

    The first measurements of the composition of the Martian atmosphere above Gale Crater by the Sample Analysis at Mars (SAM) instrument on Curiosity Rover revealed that although the volume mixing ratios (vmr) of the gases are generally similar to those measured by the Viking Lander 2 (VL2) thirty five years ago [2], they are notably different for N2 and 40Ar [1]. SAM finds a vmr of 1.9% each for N2 and Ar, so that N2 is 30% lower while Ar is 21% greater than the corresponding VL2 values, resulting in a 40% lower N2/Ar ratio compared to the VL2 result. The Ar/N ratio is used to assess the degree of mixing between the Martian atmosphere and the internal gas component of Mars meteorites due to the shock of impact ejection [e.g. 3]. The above differences in N2 and 40Ar seem to result either from different instrument characteristics or time variable atmospheric phenomena or both. The VL2 data were taken during northern summer (48°N, Ls=135°), whereas the SAM measurements correspond to the beginning of spring season (4.5°S, Ls=182-190°). Previous observations by Mars Odyssey Gamma Ray Spectrometer over three years have shown that the Ar mixing ratio increased by a factor of 6 over the south polar region in the winter [4]. However, the data are controversial for the equatorial region, ranging from no seasonal change [4] to as much as a 35% change [5]. No significant change was seen between the equator (SAM) and the midlatitude northern summer (VL2), however [4]. Thus the difference between the SAM and VL2 Ar does not appear to be related to different seasons. On the other hand, the vmr's of non-condensable volatiles (NCV), N2, Ar and CO, at any latitude are expected to vary seasonally due to the annual, global CO2 cycle. Diurnal changes are not expected, considering the long lifetimes of NCV's that exceed the martian year [6]. In addition to Ar, seasonal changes have been recorded in CO from ground-based [7] and MRO/CRISM observations [8], but show a much smaller

  20. The Effect of S-Adenosylmethionine on Cognitive Performance in Mice: An Animal Model Meta-Analysis

    PubMed Central

    Montgomery, Sarah E.; Sepehry, Amir A.; Wangsgaard, John D.; Koenig, Jeremy E.

    2014-01-01

    Background Alzheimer's disease (AD) is the most frequently diagnosed form of dementia resulting in cognitive impairment. Many AD mouse studies, using the methyl donor S-adenosylmethionine (SAM), report improved cognitive ability, but conflicting results between and within studies currently exist. To address this, we conducted a meta-analysis to evaluate the effect of SAM on cognitive ability as measured by Y maze performance. As supporting evidence, we include further discussion of improvements in cognitive ability, by SAM, as measured by the Morris water maze (MWM). Methods We conducted a comprehensive literature review up to April 2014 based on searches querying MEDLINE, EMBASE, Web of Science, the Cochrane Library and Proquest Theses and Dissertation databases. We identified three studies containing a total of 12 experiments that met our inclusion criteria and one study for qualitative review. The data from these studies were used to evaluate the effect of SAM on cognitive performance according to two scenarios: 1. SAM supplemented folate deficient (SFD) diet compared to a folate deficient (FD) diet and 2. SFD diet compared to a nutrient complete (NC) diet. Hedge's g was used to calculate effect sizes and mixed effects model meta-regression was used to evaluate moderating factors. Results Our findings showed that the SFD diet was associated with improvements in cognitive performance. SFD diet mice also had superior cognitive performance compared to mice on an NC diet. Further to this, meta-regression analyses indicated a significant positive effect of study quality score and treatment duration on the effect size estimate for both the FD vs SFD analysis and the SFD vs NC analysis. Conclusion The findings of this meta-analysis demonstrate efficacy of SAM in acting as a cognitive performance-enhancing agent. As a corollary, SAM may be useful in improving spatial memory in patients suffering from many dementia forms including AD. PMID:25347725