Sample records for analysis modal analysis

  1. Development of the mathematical model for design and verification of acoustic modal analysis methods

    NASA Astrophysics Data System (ADS)

    Siner, Alexander; Startseva, Maria

    2016-10-01

    To reduce the turbofan noise it is necessary to develop methods for the analysis of the sound field generated by the blade machinery called modal analysis. Because modal analysis methods are very difficult and their testing on the full scale measurements are very expensive and tedious it is necessary to construct some mathematical models allowing to test modal analysis algorithms fast and cheap. At this work the model allowing to set single modes at the channel and to analyze generated sound field is presented. Modal analysis of the sound generated by the ring array of point sound sources is made. Comparison of experimental and numerical modal analysis results is presented at this work.

  2. Multiset singular value decomposition for joint analysis of multi-modal data: application to fingerprint analysis

    NASA Astrophysics Data System (ADS)

    Emge, Darren K.; Adalı, Tülay

    2014-06-01

    As the availability and use of imaging methodologies continues to increase, there is a fundamental need to jointly analyze data that is collected from multiple modalities. This analysis is further complicated when, the size or resolution of the images differ, implying that the observation lengths of each of modality can be highly varying. To address this expanding landscape, we introduce the multiset singular value decomposition (MSVD), which can perform a joint analysis on any number of modalities regardless of their individual observation lengths. Through simulations, the inter modal relationships across the different modalities which are revealed by the MSVD are shown. We apply the MSVD to forensic fingerprint analysis, showing that MSVD joint analysis successfully identifies relevant similarities for further analysis, significantly reducing the processing time required. This reduction, takes this technique from a laboratory method to a useful forensic tool with applications across the law enforcement and security regimes.

  3. Modal Analysis of Space-rocket Equipment Components

    NASA Astrophysics Data System (ADS)

    Igolkin, A. A.; Safin, A. I.; Prokofiev, A. B.

    2018-01-01

    In order to prevent vibration damage an analysis of natural frequencies and mode shapes of elements of rocket and space technology should be developed. This paper discusses technique of modal analysis on the example of the carrier platform. Modal analysis was performed by using mathematical modeling and laser vibrometer. Experimental data was clarified by using Test.Lab software. As a result of modal analysis amplitude-frequency response of carrier platform was obtained and the parameters of the elasticity was clarified.

  4. Strain Modal Analysis of Small and Light Pipes Using Distributed Fibre Bragg Grating Sensors

    PubMed Central

    Huang, Jun; Zhou, Zude; Zhang, Lin; Chen, Juntao; Ji, Chunqian; Pham, Duc Truong

    2016-01-01

    Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications. PMID:27681728

  5. Comparative Investigation on Modal analysis of LM25 Aluminium alloy with other Aluminim alloys using Finite element analysis software

    NASA Astrophysics Data System (ADS)

    Arunkumar, S.; Baskaralal, V. P. M.; Muthuraman, V.

    2017-03-01

    The rudimentary steps of the modal analysis and simulation are carried out. The modal analysis is carried out on the different Aluminum Alloys cantilever beam. The cantilever beam is designed in the graphical environment of the ANSYS. The cantilever beam was fine-tuned on one end with all degree of liberation on this end were taken, beam cannot move and rotate. Mode shapes and natural frequencies are premeditated in platforms ANSYS with arithmetical formulation of the direct solver including the block Lanczos method. Aluminum alloys are widely utilized in much application due to their estimable weight to vigor property. Many examination works have been distributed out to make developments the mechanical properties of aluminum alloys. The composition of alloying elements plays a consequential role in deciding the properties of an alloy. In this study a numerical analysis implement i.e., finite element analysis (FEA) is utilized. The work obtainable in this paper is aimed at the study of effect of modal analysis of different aluminum alloys. The modeling and analysis is carried out utilizing ANSYS FEA software. A modal analysis is carried out to understand the modes of frequency demeanor of the material considered. The modal analysis play a vital role in the design of components subjected to high vibration.

  6. Acta Aeronautica et Astronautica Sinica,

    DTIC Science & Technology

    1983-07-28

    substructural analysis in modal synthesis - two improved substructural assembling techniques 49 9-node quadrilateral isoparametric element 64 Application of laser...Time from Service Data, J. Aircraft, Vol. 15, No. 11, 1978. 48 MULTI-LEVEL SUBSTRUCTURAL ANALYSIS IN MODAL SYNTHESIS -- TWO IMPROVED SUBSTRUCTURAL...34 Modal Synthesis in Structural Dynamic Analysis ," Naching Institute of Aeronautics and Astronautics, 1979. 62a 8. Chang Te-wen, "Free-Interface Modal

  7. Computing the modal mass from the state space model in combined experimental-operational modal analysis

    NASA Astrophysics Data System (ADS)

    Cara, Javier

    2016-05-01

    Modal parameters comprise natural frequencies, damping ratios, modal vectors and modal masses. In a theoretic framework, these parameters are the basis for the solution of vibration problems using the theory of modal superposition. In practice, they can be computed from input-output vibration data: the usual procedure is to estimate a mathematical model from the data and then to compute the modal parameters from the estimated model. The most popular models for input-output data are based on the frequency response function, but in recent years the state space model in the time domain has become popular among researchers and practitioners of modal analysis with experimental data. In this work, the equations to compute the modal parameters from the state space model when input and output data are available (like in combined experimental-operational modal analysis) are derived in detail using invariants of the state space model: the equations needed to compute natural frequencies, damping ratios and modal vectors are well known in the operational modal analysis framework, but the equation needed to compute the modal masses has not generated much interest in technical literature. These equations are applied to both a numerical simulation and an experimental study in the last part of the work.

  8. Analysis of structural response data using discrete modal filters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    1991-01-01

    The application of reciprocal modal vectors to the analysis of structural response data is described. Reciprocal modal vectors are constructed using an existing experimental modal model and an existing frequency response matrix of a structure, and can be assembled into a matrix that effectively transforms the data from the physical space to a modal space within a particular frequency range. In other words, the weighting matrix necessary for modal vector orthogonality (typically the mass matrix) is contained within the reciprocal model matrix. The underlying goal of this work is mostly directed toward observing the modal state responses in the presence of unknown, possibly closed loop forcing functions, thus having an impact on both operating data analysis techniques and independent modal space control techniques. This study investigates the behavior of reciprocol modal vectors as modal filters with respect to certain calculation parameters and their performance with perturbed system frequency response data.

  9. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 2: Data

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Schmidt, D. K.

    1985-01-01

    Two analysis methods are applied to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop modal analysis technique. This method considers the effect of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Both analyses indicated that dynamic aeroelastic effects caused a degradation in vehicle tracking performance, based on the evaluation of some simulation results. Volume 2 consists of the presentation of the state variable models of the flexible aircraft configurations used in the analysis applications mode shape plots for the structural modes, numerical results from the modal analysis frequency response plots from the pilot in the loop analysis and a listing of the modal analysis computer program.

  10. Modal cost analysis for simple continua

    NASA Technical Reports Server (NTRS)

    Hu, A.; Skelton, R. E.; Yang, T. Y.

    1988-01-01

    The most popular finite element codes are based upon appealing theories of convergence of modal frequencies. For example, the popularity of cubic elements for beam-like structures is due to the rapid convergence of modal frequencies and stiffness properties. However, for those problems in which the primary consideration is the accuracy of response of the structure at specified locations, it is more important to obtain accuracy in the modal costs than in the modal frequencies. The modal cost represents the contribution of a mode in the norm of the response vector. This paper provides a complete modal cost analysis for simple continua such as beam-like structures. Upper bounds are developed for mode truncation errors in the model reduction process and modal cost analysis dictates which modes to retain in order to reduce the model for control design purposes.

  11. Noise elimination algorithm for modal analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, X. X., E-mail: baoxingxian@upc.edu.cn; Li, C. L.; Xiong, C. B.

    2015-07-27

    Modal analysis is an ongoing interdisciplinary physical issue. Modal parameters estimation is applied to determine the dynamic characteristics of structures under vibration excitation. Modal analysis is more challenging for the measured vibration response signals are contaminated with noise. This study develops a mathematical algorithm of structured low rank approximation combined with the complex exponential method to estimate the modal parameters. Physical experiments using a steel cantilever beam with ten accelerometers mounted, excited by an impulse load, demonstrate that this method can significantly eliminate noise from measured signals and accurately identify the modal frequencies and damping ratios. This study provides amore » fundamental mechanism of noise elimination using structured low rank approximation in physical fields.« less

  12. A modal analysis of flexible aircraft dynamics with handling qualities implications

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1983-01-01

    A multivariable modal analysis technique is presented for evaluating flexible aircraft dynamics, focusing on meaningful vehicle responses to pilot inputs and atmospheric turbulence. Although modal analysis is the tool, vehicle time response is emphasized, and the analysis is performed on the linear, time-domain vehicle model. In evaluating previously obtained experimental pitch tracking data for a family of vehicle dynamic models, it is shown that flexible aeroelastic effects can significantly affect pitch attitude handling qualities. Consideration of the eigenvalues alone, of both rigid-body and aeroelastic modes, does not explain the simulation results. Modal analysis revealed, however, that although the lowest aeroelastic mode frequency was still three times greater than the short-period frequency, the rigid-body attitude response was dominated by this aeroelastic mode. This dominance was defined in terms of the relative magnitudes of the modal residues in selected vehicle responses.

  13. Dual ant colony operational modal analysis parameter estimation method

    NASA Astrophysics Data System (ADS)

    Sitarz, Piotr; Powałka, Bartosz

    2018-01-01

    Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.

  14. Sensitivity Analysis for Coupled Aero-structural Systems

    NASA Technical Reports Server (NTRS)

    Giunta, Anthony A.

    1999-01-01

    A novel method has been developed for calculating gradients of aerodynamic force and moment coefficients for an aeroelastic aircraft model. This method uses the Global Sensitivity Equations (GSE) to account for the aero-structural coupling, and a reduced-order modal analysis approach to condense the coupling bandwidth between the aerodynamic and structural models. Parallel computing is applied to reduce the computational expense of the numerous high fidelity aerodynamic analyses needed for the coupled aero-structural system. Good agreement is obtained between aerodynamic force and moment gradients computed with the GSE/modal analysis approach and the same quantities computed using brute-force, computationally expensive, finite difference approximations. A comparison between the computational expense of the GSE/modal analysis method and a pure finite difference approach is presented. These results show that the GSE/modal analysis approach is the more computationally efficient technique if sensitivity analysis is to be performed for two or more aircraft design parameters.

  15. Asymptotic modal analysis of a rectangular acoustic cavity excited by wall vibration

    NASA Technical Reports Server (NTRS)

    Peretti, Linda F.; Dowell, Earl H.

    1992-01-01

    Asymptotic modal analysis, a method that has recently been developed for structural dynamical systems, has been applied to a rectangular acoustic cavity. The cavity had a flexible vibrating portion on one wall, and the other five walls were rigid. Banded white noise was transmitted through the flexible portion (plate) only. Both the location along the wall and the size of the plate were varied. The mean square pressure levels of the cavity interior were computed as a ratio of the result obtained from classical modal analysis to that obtained from asymptotic modal analysis for the various plate configurations. In general, this ratio converged to 1.0 as the number of responding modes increased. Intensification effects were found due to both the excitation location and the response location. The asymptotic modal analysis method was both efficient and accurate in solving the given problem. The method has advantages over the traditional methods that are used for solving dynamics problems with a large number of responding modes.

  16. Dynamic Stability Analysis of Linear Time-varying Systems via an Extended Modal Identification Approach

    NASA Astrophysics Data System (ADS)

    Ma, Zhisai; Liu, Li; Zhou, Sida; Naets, Frank; Heylen, Ward; Desmet, Wim

    2017-03-01

    The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stability-preserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam experimental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides a new way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.

  17. An operational modal analysis method in frequency and spatial domain

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Zhang, Lingmi; Tamura, Yukio

    2005-12-01

    A frequency and spatial domain decomposition method (FSDD) for operational modal analysis (OMA) is presented in this paper, which is an extension of the complex mode indicator function (CMIF) method for experimental modal analysis (EMA). The theoretical background of the FSDD method is clarified. Singular value decomposition is adopted to separate the signal space from the noise space. Finally, an enhanced power spectrum density (PSD) is proposed to obtain more accurate modal parameters by curve fitting in the frequency domain. Moreover, a simulation case and an application case are used to validate this method.

  18. The Shock and Vibration Digest. Volume 16, Number 4

    DTIC Science & Technology

    1984-04-01

    The 2nd International Modal Analysis Conference, which was held in Orlando, Florida, this past February, was highly successful in all respects. A...announcement of the formation of a new technical society dedicated to advancing the modal analysis technology, the International Society for Modal Testing and... Analysis . This new society is I unique in two respects. First, it is dedicated to a specific branch of a specialized technical field..Second, it is a

  19. Asymptotic modal analysis of a rectangular acoustic cavity and characterization of its intensification zones

    NASA Technical Reports Server (NTRS)

    Peretti, Linda F.; Dowell, Earl H.

    1989-01-01

    Asymptotic modal analysis (AMA) is used to study a rectangular cavity with a flexible vibrating portion on one wall and five rigid walls. The agreement between mean square pressure levels of the cavity interior calculated from classical modal analysis and from the AMA method improved as the number of responding modes increased. It is shown that intensification effects were due to both the excitation location and the response location.

  20. Comparison of low‐dose, half‐rotation, cone‐beam CT with electronic portal imaging device for registration of fiducial markers during prostate radiotherapy

    PubMed Central

    Wee, Leonard; Hackett, Sara Lyons; Jones, Andrew; Lim, Tee Sin; Harper, Christopher Stirling

    2013-01-01

    This study evaluated the agreement of fiducial marker localization between two modalities — an electronic portal imaging device (EPID) and cone‐beam computed tomography (CBCT) — using a low‐dose, half‐rotation scanning protocol. Twenty‐five prostate cancer patients with implanted fiducial markers were enrolled. Before each daily treatment, EPID and half‐rotation CBCT images were acquired. Translational shifts were computed for each modality and two marker‐matching algorithms, seed‐chamfer and grey‐value, were performed for each set of CBCT images. The localization offsets, and systematic and random errors from both modalities were computed. Localization performances for both modalities were compared using Bland‐Altman limits of agreement (LoA) analysis, Deming regression analysis, and Cohen's kappa inter‐rater analysis. The differences in the systematic and random errors between the modalities were within 0.2 mm in all directions. The LoA analysis revealed a 95% agreement limit of the modalities of 2 to 3.5 mm in any given translational direction. Deming regression analysis demonstrated that constant biases existed in the shifts computed by the modalities in the superior–inferior (SI) direction, but no significant proportional biases were identified in any direction. Cohen's kappa analysis showed good agreement between the modalities in prescribing translational corrections of the couch at 3 and 5 mm action levels. Images obtained from EPID and half‐rotation CBCT showed acceptable agreement for registration of fiducial markers. The seed‐chamfer algorithm for tracking of fiducial markers in CBCT datasets yielded better agreement than the grey‐value matching algorithm with EPID‐based registration. PACS numbers: 87.55.km, 87.55.Qr PMID:23835391

  1. Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis

    PubMed Central

    Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.

    2006-01-01

    In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in MATLAB with a user friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely-used T-field, has been implemented in the correlation analysis for more accurate results. An example with in-vivo data is presented demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. PMID:17070709

  2. Asymptotic modal analysis and statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Dowell, Earl H.

    1992-01-01

    Asymptotic Modal Analysis (AMA) is a method which is used to model linear dynamical systems with many participating modes. The AMA method was originally developed to show the relationship between statistical energy analysis (SEA) and classical modal analysis (CMA). In the limit of a large number of modes of a vibrating system, the classical modal analysis result can be shown to be equivalent to the statistical energy analysis result. As the CMA result evolves into the SEA result, a number of systematic assumptions are made. Most of these assumptions are based upon the supposition that the number of modes approaches infinity. It is for this reason that the term 'asymptotic' is used. AMA is the asymptotic result of taking the limit of CMA as the number of modes approaches infinity. AMA refers to any of the intermediate results between CMA and SEA, as well as the SEA result which is derived from CMA. The main advantage of the AMA method is that individual modal characteristics are not required in the model or computations. By contrast, CMA requires that each modal parameter be evaluated at each frequency. In the latter, contributions from each mode are computed and the final answer is obtained by summing over all the modes in the particular band of interest. AMA evaluates modal parameters only at their center frequency and does not sum the individual contributions from each mode in order to obtain a final result. The method is similar to SEA in this respect. However, SEA is only capable of obtaining spatial averages or means, as it is a statistical method. Since AMA is systematically derived from CMA, it can obtain local spatial information as well.

  3. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-03-01

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.

  4. Vibration signature analysis of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.

    1989-01-01

    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.

  5. Remote-Controlled Rotorcraft Blade Vibration and Modal Analysis at Low Frequencies

    DTIC Science & Technology

    2016-02-01

    modal analysis, remote-controlled helicopter , remote-controlled rotorcraft, HUMS for rotorcraft 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...Experimental Setup 1 4. Results 4 4.1 Rotor Blade Acceleration 4 4.2 Modal Analysis: Using an Impact Hammer 7 4.3 Dynamic Response Revisited 8 5... Rotor blade response to shaker outputting 1-V sine wave at 100 Hz ....5 Fig. 6 Rotor blade response to shaker outputting 1-V sine sweep from 20- to 100

  6. Charles River Crossing

    DTIC Science & Technology

    2012-04-06

    48 MODAL ANALYSIS...2. Lateral Loads 3. Non-uniform Loads 4. Modal Analysis 5. Seismic Analysis 6. Moving Load Analysis All of these analyses were conducted with...Tandem c onsisting of a t wo a xle ve hicle with 25 kips on each axle spaced by 4 ft Self-Weight Dead Load: Steel density of 0.49 kips per cubic foot

  7. A modal analysis of lamellar diffraction gratings in conical mountings

    NASA Technical Reports Server (NTRS)

    Li, Lifeng

    1992-01-01

    A rigorous modal analysis of lamellar grating, i.e., gratings having rectangular grooves, in conical mountings is presented. It is an extension of the analysis of Botten et al. which considered non-conical mountings. A key step in the extension is a decomposition of the electromagnetic field in the grating region into two orthogonal components. A computer program implementing this extended modal analysis is capable of dealing with plane wave diffraction by dielectric and metallic gratings with deep grooves, at arbitrary angles of incidence, and having arbitrary incident polarizations. Some numerical examples are included.

  8. Dynamic Testing of a Pre-stretched Flexible Tube for Identifying the Factors Affecting Modal Parameter Estimation

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Madhusudanan; Rajan, Akash; Basanthvihar Raghunathan, Binulal; Kochupillai, Jayaraj

    2017-08-01

    Experimental modal analysis is the primary tool for obtaining the fundamental dynamic characteristics like natural frequency, mode shape and modal damping ratio that determine the behaviour of any structure under dynamic loading conditions. This paper discusses about a carefully designed experimental method for calculating the dynamic characteristics of a pre-stretched horizontal flexible tube made of polyurethane material. The factors that affect the modal parameter estimation like the application time of shaker excitation, pause time between successive excitation cycles, averaging and windowing of measured signal, as well as the precautions to be taken during the experiment are explained in detail. The modal parameter estimation is done using MEscopeVESTM software. A finite element based pre-stressed modal analysis of the flexible tube is also done using ANSYS ver.14.0 software. The experimental and analytical results agreed well. The proposed experimental methodology may be extended for carrying out the modal analysis of many flexible structures like inflatables, tires and membranes.

  9. Identification of modal parameters including unmeasured forces and transient effects

    NASA Astrophysics Data System (ADS)

    Cauberghe, B.; Guillaume, P.; Verboven, P.; Parloo, E.

    2003-08-01

    In this paper, a frequency-domain method to estimate modal parameters from short data records with known input (measured) forces and unknown input forces is presented. The method can be used for an experimental modal analysis, an operational modal analysis (output-only data) and the combination of both. A traditional experimental and operational modal analysis in the frequency domain starts respectively, from frequency response functions and spectral density functions. To estimate these functions accurately sufficient data have to be available. The technique developed in this paper estimates the modal parameters directly from the Fourier spectra of the outputs and the known input. Instead of using Hanning windows on these short data records the transient effects are estimated simultaneously with the modal parameters. The method is illustrated, tested and validated by Monte Carlo simulations and experiments. The presented method to process short data sequences leads to unbiased estimates with a small variance in comparison to the more traditional approaches.

  10. Modal Test/Analysis Correlation of Space Station Structures Using Nonlinear Sensitivity

    NASA Technical Reports Server (NTRS)

    Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan

    1992-01-01

    The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlation. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.

  11. Modal test/analysis correlation of Space Station structures using nonlinear sensitivity

    NASA Technical Reports Server (NTRS)

    Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan

    1992-01-01

    The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlations. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.

  12. Application of Artificial Boundary Conditions in Sensitivity-Based Updating of Finite Element Models

    DTIC Science & Technology

    2007-06-01

    is known as the impedance matrix[ ]( )Z Ω . [ ] [ ] 1( ) ( )Z H −Ω = Ω (12) where [ ] 2( )Z K M j C ⎡ ⎤Ω = −Ω + Ω⎣ ⎦ (13) A. REDUCED ORDER...D.L. A correlation coefficient for modal vector analysis. Proceedings of 1st International Modal Analysis Conference, 1982, 110-116. Anton , H ... Rorres , C ., (2005). Elementary Linear Algebra. New York: John Wiley and Sons. Avitable, Peter (2001, January) Experimental Modal Analysis, A Simple

  13. A Frequency Domain Approach to Pretest Analysis Model Correlation and Model Updating for the Mid-Frequency Range

    DTIC Science & Technology

    2009-02-01

    range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The corresponding...frequency range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The...predictions. The averaging process is consistent with the averaging done in statistical energy analysis for stochastic systems. The FEM will always

  14. Multi-body Dynamic Contact Analysis Tool for Transmission Design

    DTIC Science & Technology

    2003-04-01

    frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using assumed time domain... modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal format (dataset 55...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by

  15. Modal Analysis and Testing of Missile Systems

    DTIC Science & Technology

    1988-12-01

    TECHNICAL REPORT -Rb-ST-eS MODAL ANALY AND TESMG OF MISSU E SYSTEMS Lfl 0 N Larry C. Mixon John A4 Schaeffel , Jr. Peter L. Green ,I iLT Roque L...Include Stcurty Claz ficaDin) MODAL ANALYSIS AND TESTING OF MISSILE SYSTEMS 12. PERSONAL AUTHOR(S) Larry C. Mixon, John A. Schaeffel , Jr., Peter L. Green

  16. Multi-Body Dynamic Contact Analysis. Tool for Transmission Design SBIR Phase II Final Report

    DTIC Science & Technology

    2003-04-01

    shapes and natural frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using...COSMIC NASTRAN via modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by

  17. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less

  18. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    DOE PAGES

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...

    2016-12-05

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less

  19. Experimental strain modal analysis for beam-like structure by using distributed fiber optics and its damage detection

    NASA Astrophysics Data System (ADS)

    Cheng, Liangliang; Busca, Giorgio; Cigada, Alfredo

    2017-07-01

    Modal analysis is commonly considered as an effective tool to obtain the intrinsic characteristics of structures including natural frequencies, modal damping ratios, and mode shapes, which are significant indicators for monitoring the health status of engineering structures. The complex mode indicator function (CMIF) can be regarded as an effective numerical tool to perform modal analysis. In this paper, experimental strain modal analysis based on the CMIF has been introduced. Moreover, a distributed fiber-optic sensor, as a dense measuring device, has been applied to acquire strain data along a beam surface. Thanks to the dense spatial resolution of the distributed fiber optics, more detailed mode shapes could be obtained. In order to test the effectiveness of the method, a mass lump—considered as a linear damage component—has been attached to the surface of the beam, and damage detection based on strain mode shape has been carried out. The results manifest that strain modal parameters can be estimated effectively by utilizing the CMIF based on the corresponding simulations and experiments. Furthermore, damage detection based on strain mode shapes benefits from the accuracy of strain mode shape recognition and the excellent performance of the distributed fiber optics.

  20. Projections of Demand for Waterborne Transportation, Ohio River Basin, 1980, 1990, 2000, 2020, 2040. Volume 1. Study Summary.

    DTIC Science & Technology

    1980-12-01

    NOTES 3 19. KEY WORDS (Continue on revere side If n.cessary d Identify by block number) Bulk cargo Market demand analysis Commodity resource inventory...The study included a Commodity Resource Inventory, a Modal Split Analysis and a Market Demand Analysis. The work included investigation and analyses...inventory, a modal split analysis and a market demand analysis. The work included investigation and analyses of the production, transportation, and

  1. Operational modal analysis applied to the concert harp

    NASA Astrophysics Data System (ADS)

    Chomette, B.; Le Carrou, J.-L.

    2015-05-01

    Operational modal analysis (OMA) methods are useful to extract modal parameters of operating systems. These methods seem to be particularly interesting to investigate the modal basis of string instruments during operation to avoid certain disadvantages due to conventional methods. However, the excitation in the case of string instruments is not optimal for OMA due to the presence of damped harmonic components and low noise in the disturbance signal. Therefore, the present study investigates the least-square complex exponential (LSCE) and the modified least-square complex exponential methods in the case of a string instrument to identify modal parameters of the instrument when it is played. The efficiency of the approach is experimentally demonstrated on a concert harp excited by some of its strings and the two methods are compared to a conventional modal analysis. The results show that OMA allows us to identify modes particularly present in the instrument's response with a good estimation especially if they are close to the excitation frequency with the modified LSCE method.

  2. International Space Station Modal Correction Analysis

    NASA Technical Reports Server (NTRS)

    Fotz[atrocl. Lrostom; Grugoer. < ocjae; Laible, Michael; Sugavanam, Sujatha

    2012-01-01

    This paper summarizes the on-orbit modal test and the related modal analysis, model validation and correlation performed for the ISS Stage ULF4, DTF S4-1A, October 11,2010, GMT 284/06:13:00.00. The objective of this analysis is to validate and correlate analytical models with the intent to verify the ISS critical interface dynamic loads and improve fatigue life prediction. For the ISS configurations under consideration, on-orbit dynamic responses were collected with Russian vehicles attached and without the Orbiter attached to the ISS. ISS instrumentation systems that were used to collect the dynamic responses during the DTF S4-1A included the Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS), Structural Dynamic Measurement System (SDMS), Space Acceleration Measurement System (SAMS), Inertial Measurement Unit (IMU) and ISS External Cameras. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping and mode shape information. Correlation and comparisons between test and analytical modal parameters were performed to assess the accuracy of models for the ISS configuration under consideration. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. Section 2.0 of this report presents the math model used in the analysis. This section also describes the ISS configuration under consideration and summarizes the associated primary modes of interest along with the fundamental appendage modes. Section 3.0 discusses the details of the ISS Stage ULF4 DTF S4-1A test. Section 4.0 discusses the on-orbit instrumentation systems that were used in the collection of the data analyzed in this paper. The modal analysis approach and results used in the analysis of the collected data are summarized in Section 5.0. The model correlation and validation effort is reported in Section 6.0. Conclusions and recommendations drawn from this analysis are included in Section 7.0.

  3. Asian Perspectives on Diagnostic and Therapeutic Strategies in Inflammatory Bowel Disease: Report and Analysis of a Survey with Questionnaires.

    PubMed

    Yoshida, Atsushi; Ueno, Fumiaki; Morizane, Toshio; Joh, Takashi; Kamiya, Takeshi; Takahashi, Shin''ichi; Tokunaga, Kengo; Iwakiri, Ryuichi; Kinoshita, Yoshikazu; Suzuki, Hidekazu; Naito, Yuji; Uchiyama, Kazuhiko; Fukodo, Shin; Chan, Francis K L; Halm, Ki-Baik; Kachintorn, Udom; Fock, Kwong Ming; Rani, Abdul Aziz; Syam, Ari Fahrial; Sollano, Jose D; Zhu, Qi

    2017-01-01

    Diagnostic and therapeutic strategies in inflammatory bowel disease (IBD) vary among countries in terms of availability of modalities, affordability of health care resource, health care policy and cultural background. This may be the case in different countries in Eastern Asia. The aim of this study was to determine and understand the differences in diagnostic and therapeutic strategies of IBD between Japan and the rest of Asian countries (ROA). Questionnaires with regard to clinical practice in IBD were distributed to members of the International Gastroenterology Consensus Symposium Study Group. The responders were allowed to select multiple items for each question, as multiple modalities are frequently utilized in the diagnosis and the management of IBD. Dependency and independency of selected items for each question were evaluated by the Bayesian network analysis. The selected diagnostic modalities were not very different between Japan and ROA, except for those related to small bowel investigations. Balloon-assisted enteroscopy and small bowel follow through are frequently used in Japan, while CT/MR enterography is popular in ROA. Therapeutic modalities for IBD depend on availability of such modalities in clinical practice. As far as modalities commonly available in both regions are concerned, there seemed to be similarity in the selection of each therapeutic modality. However, evaluation of dependency of separate therapeutic modalities by Bayesian network analysis disclosed some difference in therapeutic strategies between Japan and ROA. Although selected modalities showed some similarity, Bayesian network analysis elicited certain differences in the clinical approaches combining multiple modalities in various aspects of IBD between Japan and ROA. © 2016 S. Karger AG, Basel.

  4. Galileo spacecraft modal test and evaluation of testing techniques

    NASA Technical Reports Server (NTRS)

    Chen, J.-C.

    1984-01-01

    The structural configuration, modal test requirements and pre-test activities involved in modeling the expected dynamic environment and responses of the Galileo spacecraft are discussed. The probe will be Shuttle-launched in 1986 and will gather data on the Jupiter system. Loads analysis for the 5300 lb spacecraft were performed with the NASTRAN code, and covered 10,000 static degrees of freedom and 1600 mass degrees of freedom. A modal analysis will be used to verify the predictions for natural frequencies, mode shapes, orthogonality checks, residual mass, modal damping and forces, and generalized forces. Verification of the validity of considering only 70 natural modes in the numerical simulation is being performed by examining the forcing functions of the analysis. The analysis led to requirements that 162 channels of accelerometer data and 118 channels of strain gage data be recorded during shaker tests to reveal areas where design changes will be needed to eliminate vibration peaks.

  5. Modeling and control of beam-like structures

    NASA Technical Reports Server (NTRS)

    Hu, A.; Skelton, R. E.; Yang, T. Y.

    1987-01-01

    The most popular finite element codes are based upon appealing theories of convergence of modal frequencies. For example, the popularity of cubic elements for beam-like structures is due to the rapid convergence of modal frequencies and stiffness properties. However, for those problems in which the primary consideration is the accuracy of response of the structure at specified locations it is more important to obtain accuracy in the modal costs than in the modal frequencies. The modal cost represents the contribution of a mode in the norm of the response vector. This paper provides a complete modal cost analysis for beam-like continua. Upper bounds are developed for mode truncation errors in the model reduction process and modal cost analysis dictates which modes to retain in order to reduce the model for control design purposes.

  6. A generalized modal shock spectra method for spacecraft loads analysis. [internal loads in a spacecraft structure subjected to a dynamic launch environment

    NASA Technical Reports Server (NTRS)

    Trubert, M.; Salama, M.

    1979-01-01

    Unlike an earlier shock spectra approach, generalization permits an accurate elastic interaction between the spacecraft and launch vehicle to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis with or without a dummy spacecraft - is exploited to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces. Greater accuracy is achieved with the present method over the earlier shock spectra, while saving much computational effort over the transient analysis.

  7. A Prospective Programmatic Cost Analysis of Fuel Your Life: A Worksite Translation of DPP.

    PubMed

    Ingels, Justin B; Walcott, Rebecca L; Wilson, Mark G; Corso, Phaedra S; Padilla, Heather M; Zuercher, Heather; DeJoy, David M; Vandenberg, Robert J

    2016-11-01

    An accounting of the resources necessary for implementation of efficacious programs is important for economic evaluations and dissemination. A programmatic costs analysis was conducted prospectively in conjunction with an efficacy trial of Fuel Your Life (FYL), a worksite translation of the Diabetes Prevention Program. FYL was implemented through three different modalities, Group, Phone, and Self-study, using a micro-costing approach from both the employer and societal perspectives. The Phone modality was the most costly at $354.6 per participant, compared with $154.6 and $75.5 for the Group and Self-study modalities, respectively. With the inclusion of participant-related costs, the Phone modality was still more expensive than the Group modality but with a smaller incremental difference ($461.4 vs $368.1). This level of cost-related detail for a preventive intervention is rare, and our analysis can aid in the transparency of future economic evaluations.

  8. Comparison of Modal Analysis Methods Applied to a Vibro-Acoustic Test Article

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn; Pappa, Richard; Buehrle, Ralph; Grosveld, Ferdinand

    2001-01-01

    Modal testing of a vibro-acoustic test article referred to as the Aluminum Testbed Cylinder (ATC) has provided frequency response data for the development of validated numerical models of complex structures for interior noise prediction and control. The ATC is an all aluminum, ring and stringer stiffened cylinder, 12 feet in length and 4 feet in diameter. The cylinder was designed to represent typical aircraft construction. Modal tests were conducted for several different configurations of the cylinder assembly under ambient and pressurized conditions. The purpose of this paper is to present results from dynamic testing of different ATC configurations using two modal analysis software methods: Eigensystem Realization Algorithm (ERA) and MTS IDEAS Polyreference method. The paper compares results from the two analysis methods as well as the results from various test configurations. The effects of pressurization on the modal characteristics are discussed.

  9. Projections of Demand for Waterborne Transportation, Ohio River Basin, 1980, 1990, 2000, 2020, 2040. Volume 10. Group VIII. Iron Ore, Steel and Iron.

    DTIC Science & Technology

    1980-12-01

    SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse aide if neceeary aod identify by block number) Bulk cargo Market demand analysis Iron Commodity resource...shown below. The study included a Commodity Resource Inventory, a Modal Split Analysis and a Market Demand Analysis. The work included investigation...resource inventory, a modal split analysis and a market demand analysis. The work included investigation and analyses of the production

  10. Multi-Modal Intelligent Traffic Signal Systems (MMITSS) impacts assessment.

    DOT National Transportation Integrated Search

    2015-08-01

    The study evaluates the potential network-wide impacts of the Multi-Modal Intelligent Transportation Signal System (MMITSS) based on a field data analysis utilizing data collected from a MMITSS prototype and a simulation analysis. The Intelligent Tra...

  11. Modal analysis applied to circular, rectangular, and coaxial waveguides

    NASA Technical Reports Server (NTRS)

    Hoppe, D. J.

    1988-01-01

    Recent developments in the analysis of various waveguide components and feedhorns using Modal Analysis (Mode Matching Method) are summarized. A brief description of the theory is presented, and the important features of the method are pointed out. Specific examples in circular, rectangular, and coaxial waveguides are included, with comparisons between the theory and experimental measurements. Extensions to the methods are described.

  12. Advanced Gun System (AGS) Dynamic Characterization: Modal Test and Analysis, High-Frequency Analysis.

    DTIC Science & Technology

    1999-12-01

    frequency data (to 10 kHz) in the AGS test. 3.2 High-Frequency Damping Determination by Wavelet Transform. The continuous wavelet transform (CWT...ARMY RESEARCH LABORATORY MmOSm Hi Advanced Gun System ( AGS ) Dynamic Characterization: Modal Test and Analysis, High-Frequency Analysis by Morris...this report when it is no longer needed. Do not return it to the originator. ERRATA SHEET re: ARL-TR-2138 "Advanced Gun System ( AGS ) Dynamic

  13. An investigation into NVC characteristics of vehicle behaviour using modal analysis

    NASA Astrophysics Data System (ADS)

    Hanouf, Zahir; Faris, Waleed F.; Ahmad, Kartini

    2017-03-01

    NVC characterizations of vehicle behavior is one essential part of the development targets in automotive industries. Therefore understanding dynamic behavior of each structural part of the vehicle is a major requirement in improving the NVC characteristics of a vehicle. The main focus of this research is to investigate structural dynamic behavior of a passenger car using modal analysis part by part technique and apply this method to derive the interior noise sources. In the first part of this work computational modal analysis part by part tests were carried out to identify the dynamic parameters of the passenger car. Finite elements models of the different parts of the car are constructed using VPG 3.2 software. Ls-Dyna pre and post processing was used to identify and analyze the dynamic behavior of each car components panels. These tests had successfully produced natural frequencies and their associated mode shapes of such panels like trunk, hood, roof and door panels. In the second part of this research, experimental modal analysis part by part is performed on the selected car panels to extract modal parameters namely frequencies and mode shapes. The study establishes the step-by-step procedures to carry out experimental modal analysis on the car structures, using single input excitation and multi-output responses (SIMO) technique. To ensure the validity of the results obtained by the previous method an inverse method was done by fixing the response and moving the excitation and the results found were absolutely the same. Finally, comparison between results obtained from both analyses showed good similarity in both frequencies and mode shapes. Conclusion drawn from this part of study was that modal analysis part-by-part can be strongly used to establish the dynamic characteristics of the whole car. Furthermore, the developed method is also can be used to show the relationship between structural vibration of the car panels and the passengers’ noise comfort inside the cabin.

  14. Data dependent systems approach to modal analysis Part 1: Theory

    NASA Astrophysics Data System (ADS)

    Pandit, S. M.; Mehta, N. P.

    1988-05-01

    The concept of Data Dependent Systems (DDS) and its applicability in the context of modal vibration analysis is presented. The ability of the DDS difference equation models to provide a complete representation of a linear dynamic system from its sampled response data forms the basis of the approach. The models are decomposed into deterministic and stochastic components so that system characteristics are isolated from noise effects. The modelling strategy is outlined, and the method of analysis associated with modal parameter identification is described in detail. Advantages and special features of the DDS methodology are discussed. Since the correlated noise is appropriately and automatically modelled by the DDS, the modal parameters are shown to be estimated very accurately and hence no preprocessing of the data is needed. Complex mode shapes and non-classical damping are as easily analyzed as the classical normal mode analysis. These features are illustrated by using simulated data in this Part I and real data on a disc-brake rotor in Part II.

  15. Modal analysis on resonant excitation of two-dimensional waveguide grating filters

    NASA Astrophysics Data System (ADS)

    Zhou, Jianyu; Sang, Tian; Li, Junlang; Wang, Rui; Wang, La; Wang, Benxin; Wang, Yueke

    2017-12-01

    Modal analysis on resonant excitation of two-dimensional (2-D) waveguide grating filters (WGFs) is proposed. It is shown that the 2-D WGFs can support the excitation of a resonant pair, and the locations of the resonant pair arising from the TE and TM guided-mode resonances (GMRs) can be estimated accurately based on the modal analysis. Multichannel filtering using the resonant pair is investigated, and the antireflection (AR) design of the 2-D WGFs is also studied. It is shown that the reflection sideband can be reduced by placing an AR layer on the bottom of the homogeneous layer, and the well-shaped reflection spectrum with near-zero sideband reflection can be achieved by using the double-faced AR design. By merely increasing the thickness of the homogeneous layer with other parameters maintained, the spectrally dense comb-like filters with good unpolarized filtering features can be achieved. The proposed modal analysis can be extended to study the resonant excitation of 2-D periodic nanoarrays with diverse surface profiles.

  16. A generalized modal shock spectra method for spacecraft loads analysis

    NASA Technical Reports Server (NTRS)

    Trubert, M.; Salama, M.

    1979-01-01

    Unlike the traditional shock spectra approach, the generalization presented in this paper permits elastic interaction between the spacecraft and launch vehicle in order to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis - with or without a dummy spacecraft - is exploited in order to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces.

  17. Numerical Investigation on Detection of Prestress Losses in a Prestressed Concrete Slab by Modal Analysis

    NASA Astrophysics Data System (ADS)

    Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.

    2017-10-01

    The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.

  18. Ares I-X In-Flight Modal Identification

    NASA Technical Reports Server (NTRS)

    Bartkowicz, Theodore J.; James, George H., III

    2011-01-01

    Operational modal analysis is a procedure that allows the extraction of modal parameters of a structure in its operating environment. It is based on the idealized premise that input to the structure is white noise. In some cases, when free decay responses are corrupted by unmeasured random disturbances, the response data can be processed into cross-correlation functions that approximate free decay responses. Modal parameters can be computed from these functions by time domain identification methods such as the Eigenvalue Realization Algorithm (ERA). The extracted modal parameters have the same characteristics as impulse response functions of the original system. Operational modal analysis is performed on Ares I-X in-flight data. Since the dynamic system is not stationary due to propellant mass loss, modal identification is only possible by analyzing the system as a series of linearized models over short periods of time via a sliding time-window of short time intervals. A time-domain zooming technique was also employed to enhance the modal parameter extraction. Results of this study demonstrate that free-decay time domain modal identification methods can be successfully employed for in-flight launch vehicle modal extraction.

  19. Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part III: Application to statistical modal analysis

    NASA Astrophysics Data System (ADS)

    Yan, Wang-Ji; Ren, Wei-Xin

    2018-01-01

    This study applies the theoretical findings of circularly-symmetric complex normal ratio distribution Yan and Ren (2016) [1,2] to transmissibility-based modal analysis from a statistical viewpoint. A probabilistic model of transmissibility function in the vicinity of the resonant frequency is formulated in modal domain, while some insightful comments are offered. It theoretically reveals that the statistics of transmissibility function around the resonant frequency is solely dependent on 'noise-to-signal' ratio and mode shapes. As a sequel to the development of the probabilistic model of transmissibility function in modal domain, this study poses the process of modal identification in the context of Bayesian framework by borrowing a novel paradigm. Implementation issues unique to the proposed approach are resolved by Lagrange multiplier approach. Also, this study explores the possibility of applying Bayesian analysis in distinguishing harmonic components and structural ones. The approaches are verified through simulated data and experimentally testing data. The uncertainty behavior due to variation of different factors is also discussed in detail.

  20. A prospective programmatic cost analysis of Fuel Your Life: A worksite translation of DPP

    PubMed Central

    Walcott, Rebecca L; Wilson, Mark G; Corso, Phaedra S; Padilla, Heather; Zuercher, Heather; DeJoy, David M.; Vandenberg, Robert J.

    2018-01-01

    Objective An accounting of the resources necessary for implementation of efficacious programs is important for economic evaluations and dissemination. Methods A programmatic costs analysis was conducted prospectively in conjunction with an efficacy trial of Fuel Your Life (FYL), a worksite translation of the Diabetes Prevention Program. FYL was implemented through three different modalities, Group, Phone, and Self-study, using a micro-costing approach from both the employer and societal perspectives. Results The Phone modality was the most costly at $354.6 per participant, compared to $154.6 and $75.5 for the Group and Self-study modalities, respectively. With the inclusion of participant-related costs, the Phone modality was still more expensive than the Group modality but with a smaller incremental difference ($461.4 vs. $368.1). Conclusions This level of cost-related detail for a preventive intervention is rare, and our analysis can aid in the transparency of future economic evaluations. PMID:27820760

  1. Dynamic analysis using superelements for a large helicopter model

    NASA Technical Reports Server (NTRS)

    Patel, M. P.; Shah, L. C.

    1978-01-01

    Using superelements (substructures), modal and frequency response analysis was performed for a large model of the Advanced Attack Helicopter developed for the U.S. Army. Whiffletree concept was employed so that the residual structure along with the various superelements could be represented as beam-like structures for economical and accurate dynamic analysis. A very large DMAP alter to the rigid format was developed so that the modal analysis, the frequency response, and the strain energy in each component could be computed in the same run.

  2. Does the modality effect exist? And if so, which modality effect?

    PubMed

    Reinwein, Joachim

    2012-02-01

    The modality effect is a central issue in multimedia learning [see Mayer (Cambridge University Press, 2005a), for a review]. Sweller's Cognitive Load Theory (CLT), for example, presumes that an illustrated text is better understood when presented visually rather than orally. The predictive power of CLT lies in how it links in to Baddeley's (1986) model of working memory and Penney's (Mem Cognit 17:398-442, 1989) Separate-Streams Hypothesis. Ginns's (Learn Instr 4:313-331, 2005) recent meta-analysis also supports the modality effect (d = 0.72, based on 43 independent effects). This article replicates the meta-analysis of the modality effect based on 86 independent effects (with within-study subgroups as the unit of analysis and with mean of the outcomes as the dependent measure), with results showing a reduction of the overall effect size by almost half (d = 0.38), and even more when Duval and Tweedie's Trim and Fill method is used to correct publication bias (d = 0.20). This article also widens the scope of the analysis of moderator variables (e.g. Pace of presentation, Type of visualization, Research group) as well as their potentially confounded effects. Finally, it is argued that, for theoretical reasons, the so-called modality effect cannot be based on Penney's or Baddeley's theories and must be explained in a different way.

  3. TACT: A Set of MSC/PATRAN- and MSC/NASTRAN- based Modal Correlation Tools

    NASA Technical Reports Server (NTRS)

    Marlowe, Jill M.; Dixon, Genevieve D.

    1998-01-01

    This paper describes the functionality and demonstrates the utility of the Test Analysis Correlation Tools (TACT), a suite of MSC/PATRAN Command Language (PCL) tools which automate the process of correlating finite element models to modal survey test data. The initial release of TACT provides a basic yet complete set of tools for performing correlation totally inside the PATRAN/NASTRAN environment. Features include a step-by-step menu structure, pre-test accelerometer set evaluation and selection, analysis and test result export/import in Universal File Format, calculation of frequency percent difference and cross-orthogonality correlation results using NASTRAN, creation and manipulation of mode pairs, and five different ways of viewing synchronized animations of analysis and test modal results. For the PATRAN-based analyst, TACT eliminates the repetitive, time-consuming and error-prone steps associated with transferring finite element data to a third-party modal correlation package, which allows the analyst to spend more time on the more challenging task of model updating. The usefulness of this software is presented using a case history, the correlation for a NASA Langley Research Center (LaRC) low aspect ratio research wind tunnel model. To demonstrate the improvements that TACT offers the MSC/PATRAN- and MSC/DIASTRAN- based structural analysis community, a comparison of the modal correlation process using TACT within PATRAN versus external third-party modal correlation packages is presented.

  4. Bayesian operational modal analysis with asynchronous data, part I: Most probable value

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Chen; Au, Siu-Kui

    2018-01-01

    In vibration tests, multiple sensors are used to obtain detailed mode shape information about the tested structure. Time synchronisation among data channels is required in conventional modal identification approaches. Modal identification can be more flexibly conducted if this is not required. Motivated by the potential gain in feasibility and economy, this work proposes a Bayesian frequency domain method for modal identification using asynchronous 'output-only' ambient data, i.e. 'operational modal analysis'. It provides a rigorous means for identifying the global mode shape taking into account the quality of the measured data and their asynchronous nature. This paper (Part I) proposes an efficient algorithm for determining the most probable values of modal properties. The method is validated using synthetic and laboratory data. The companion paper (Part II) investigates identification uncertainty and challenges in applications to field vibration data.

  5. NASTRAN documentation for flutter analysis of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Gallo, A. M.; Skalski, S. C.

    1982-01-01

    An existing capability developed to conduct modal flutter analysis of tuned bladed-shrouded discs was modified to facilitate investigation of the subsonic unstalled flutter characteristics of advanced turbopropellers. The modifications pertain to the inclusion of oscillatory modal aerodynamic loads of blades with large (backward and forward) varying sweep.

  6. Potential and Limitations of the Modal Characterization of a Spacecraft Bus Structure by Means of Active Structure Elements

    NASA Technical Reports Server (NTRS)

    Grillenbeck, Anton M.; Dillinger, Stephan A.; Elliott, Kenny B.

    1998-01-01

    Theoretical and experimental studies have been performed to investigate the potential and limitations of the modal characterization of a typical spacecraft bus structure by means of active structure elements. The aim of these studies has been test and advance tools for performing an accurate on-orbit modal identification which may be characterized by the availability of a generally very limited test instrumentation, autonomous excitation capabilities by active structure elements and a zero-g environment. The NASA LARC CSI Evolutionary Testbed provided an excellent object for the experimental part of this study program. The main subjects of investigation were: (1) the selection of optimum excitation and measurement to unambiguously identify modes of interest; (2) the applicability of different types of excitation means with focus on active structure elements; and (3) the assessment of the modal identification potential of different types of excitation functions and modal analysis tools. Conventional as well as dedicated modal analysis tools were applied to determine modal parameters and mode shapes. The results will be presented and discussed based on orthogonality checks as well as on suitable indicators for the quality of the acquired modes with respect to modal purity. In particular, the suitability for modal analysis of the acquired frequency response functions as obtained by excitation with active structure elements will be demonstrated with the help of reciprocity checks. Finally, the results will be summarized in a procedure to perform an on-orbit modal identification, including an indication of limitation to be observed.

  7. Experimental and Theoretical Modal Analysis of Full-Sized Wood Composite Panels Supported on Four Nodes

    PubMed Central

    Guan, Cheng; Zhang, Houjiang; Wang, Xiping; Miao, Hu; Zhou, Lujing; Liu, Fenglu

    2017-01-01

    Key elastic properties of full-sized wood composite panels (WCPs) must be accurately determined not only for safety, but also serviceability demands. In this study, the modal parameters of full-sized WCPs supported on four nodes were analyzed for determining the modulus of elasticity (E) in both major and minor axes, as well as the in-plane shear modulus of panels by using a vibration testing method. The experimental modal analysis was conducted on three full-sized medium-density fiberboard (MDF) and three full-sized particleboard (PB) panels of three different thicknesses (12, 15, and 18 mm). The natural frequencies and mode shapes of the first nine modes of vibration were determined. Results from experimental modal testing were compared with the results of a theoretical modal analysis. A sensitivity analysis was performed to identify the sensitive modes for calculating E (major axis: Ex and minor axis: Ey) and the in-plane shear modulus (Gxy) of the panels. Mode shapes of the MDF and PB panels obtained from modal testing are in a good agreement with those from theoretical modal analyses. A strong linear relationship exists between the measured natural frequencies and the calculated frequencies. The frequencies of modes (2, 0), (0, 2), and (2, 1) under the four-node support condition were determined as the characteristic frequencies for calculation of Ex, Ey, and Gxy of full-sized WCPs. The results of this study indicate that the four-node support can be used in free vibration test to determine the elastic properties of full-sized WCPs. PMID:28773043

  8. IMAGES: A digital computer program for interactive modal analysis and gain estimation for eigensystem synthesis

    NASA Technical Reports Server (NTRS)

    Jones, R. L.

    1984-01-01

    An interactive digital computer program for modal analysis and gain estimation for eigensystem synthesis was written. Both mathematical and operation considerations are described; however, the mathematical presentation is limited to those concepts essential to the operational capability of the program. The program is capable of both modal and spectral synthesis of multi-input control systems. It is user friendly, has scratchpad capability and dynamic memory, and can be used to design either state or output feedback systems.

  9. Multi-disciplinary optimization of aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay

    1991-01-01

    New methods were developed for efficient aeroservoelastic analysis and optimization. The main target was to develop a method for investigating large structural variations using a single set of modal coordinates. This task was accomplished by basing the structural modal coordinates on normal modes calculated with a set of fictitious masses loading the locations of anticipated structural changes. The following subject areas are covered: (1) modal coordinates for aeroelastic analysis with large local structural variations; and (2) time simulation of flutter with large stiffness changes.

  10. Comparison of NASTRAN analysis with ground vibration results of UH-60A NASA/AEFA test configuration

    NASA Technical Reports Server (NTRS)

    Idosor, Florentino; Seible, Frieder

    1990-01-01

    Preceding program flight tests, a ground vibration test and modal test analysis of a UH-60A Black Hawk helicopter was conducted by Sikorsky Aircraft to complement the UH-60A test plan and NASA/ARMY Modern Technology Rotor Airloads Program. The 'NASA/AEFA' shake test configuration was tested for modal frequencies and shapes and compared with its NASTRAN finite element model counterpart to give correlative results. Based upon previous findings, significant differences in modal data existed and were attributed to assumptions regarding the influence of secondary structure contributions in the preliminary NASTRAN modeling. An analysis of an updated finite element model including several secondary structural additions has confirmed that the inclusion of specific secondary components produces a significant effect on modal frequency and free-response shapes and improves correlations at lower frequencies with shake test data.

  11. An efficient high-frequency analysis of modal reflection and transmission coefficients for a class of waveguide discontinuities

    NASA Technical Reports Server (NTRS)

    Pathak, P. H.; Altintas, A.

    1988-01-01

    A high-frequency analysis of electromagnetic modal reflection and transmission coefficients is presented for waveguide discontinuities formed by joining different waveguide sections. The analysis uses an extended version of the concept of geometrical theory of diffraction based equivalent edge currents in conjunction with the reciprocity theorem to describe interior scattering effects. If the waveguide modes and their associated modal rays can be found explicitly, general two- and three-dimensional waveguide geometries can be analyzed. Expressions are developed for two-dimensional reflection and transmission coefficients. Numerical results are given for a flanged, semi-infinite parallel plate waveguide and for the junction between two linearly tapered waveguides.

  12. Modal simulation analysis of novel 3D elliptical ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Kurniawan, R.; Ali, S.; Ko, T. J.

    2018-03-01

    This paper aims to present the modal simulation analysis results of a novel 3D elliptical ultrasonic transducer. This research aims to develop a novel elliptical transducer that works in ultrasonic and is able to generate a three dimensional motion in Cartesian space. The concept of the transducer design is basically to find a coupling frequency of the longitudinal-bending-bending mode. To achieve that purpose, the modal simulation analysis was performed to find a proper dimension of the transducer, thus the natural frequency of the 1st longitudinal mode is much closed with the two of natural frequency of the 3rd bending mode. The finite element modelling (FEM) was used to perform this work.

  13. Completely automated modal analysis procedure based on the combination of different OMA methods

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Bussini, Alberto; Resta, Ferruccio

    2018-03-01

    In this work a completely automated output-only Modal Analysis procedure is presented and all its benefits are listed. Based on the merging of different Operational Modal Analysis methods and a statistical approach, the identification process has been improved becoming more robust and giving as results only the real natural frequencies, damping ratios and mode shapes of the system. The effect of the temperature can be taken into account as well, leading to the creation of a better tool for automated Structural Health Monitoring. The algorithm has been developed and tested on a numerical model of a scaled three-story steel building present in the laboratories of Politecnico di Milano.

  14. Mobile, Multi-modal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia

    DTIC Science & Technology

    2015-10-01

    eyes and image choroidal vessels/capillaries using CARS intravital microscopy Subtask 3: Measure oxy-hemoglobin levels in PBI test and control eyes...AWARD NUMBER: W81XWH-14-1-0537 TITLE: Mobile, Multi-modal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia...4. TITLE AND SUBTITLE Mobile, Multimodal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia 5a. CONTRACT NUMBER W81XWH

  15. On modal cross-coupling in the asymptotic modal limit

    NASA Astrophysics Data System (ADS)

    Culver, Dean; Dowell, Earl

    2018-03-01

    The conditions under which significant modal cross-coupling occurs in dynamical systems responding to high-frequency, broadband forcing that excites many modes is studied. The modal overlap factor plays a key role in the analysis of these systems as the modal density (the ratio of number of modes to the frequency bandwidth) becomes large. The modal overlap factor is effectively the ratio of the width of a resonant peak (the damping ratio times the resonant frequency) to the average frequency interval between resonant peaks (or rather, the inverse of the modal density). It is shown that this parameter largely determines whether substantial modal cross-coupling occurs in a given system's response. Here, two prototypical systems are considered. The first is a simple rectangular plate whose significant modal cross-coupling is the exception rather than the norm. The second is a pair of rectangular plates attached at a point where significant modal cross-coupling is more likely to occur. We show that, for certain cases of modal density and damping, non-negligible cross coupling occurs in both systems. Under similar circumstances, the constraint force between the two plates in the latter system becomes broadband. The implications of this for using Asymptotic Modal Analysis (AMA) in multi-component systems are discussed.

  16. A graph theory approach to identify resonant and non-resonant transmission paths in statistical modal energy distribution analysis

    NASA Astrophysics Data System (ADS)

    Aragonès, Àngels; Maxit, Laurent; Guasch, Oriol

    2015-08-01

    Statistical modal energy distribution analysis (SmEdA) extends classical statistical energy analysis (SEA) to the mid frequency range by establishing power balance equations between modes in different subsystems. This circumvents the SEA requirement of modal energy equipartition and enables applying SmEdA to the cases of low modal overlap, locally excited subsystems and to deal with complex heterogeneous subsystems as well. Yet, widening the range of application of SEA is done at a price with large models because the number of modes per subsystem can become considerable when the frequency increases. Therefore, it would be worthwhile to have at one's disposal tools for a quick identification and ranking of the resonant and non-resonant paths involved in modal energy transmission between subsystems. It will be shown that previously developed graph theory algorithms for transmission path analysis (TPA) in SEA can be adapted to SmEdA and prove useful for that purpose. The case of airborne transmission between two cavities separated apart by homogeneous and ribbed plates will be first addressed to illustrate the potential of the graph approach. A more complex case representing transmission between non-contiguous cavities in a shipbuilding structure will be also presented.

  17. Modal energy analysis for mechanical systems excited by spatially correlated loads

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Fei, Qingguo; Li, Yanbin; Wu, Shaoqing; Chen, Qiang

    2018-10-01

    MODal ENergy Analysis (MODENA) is an energy-based method, which is proposed to deal with vibroacoustic problems. The performance of MODENA on the energy analysis of a mechanical system under spatially correlated excitation is investigated. A plate/cavity coupling system excited by a pressure field is studied in a numerical example, in which four kinds of pressure fields are involved, which include the purely random pressure field, the perfectly correlated pressure field, the incident diffuse field, and the turbulent boundary layer pressure fluctuation. The total energies of subsystems differ to reference solution only in the case of purely random pressure field and only for the non-excited subsystem (the cavity). A deeper analysis on the scale of modal energy is further conducted via another numerical example, in which two structural modes excited by correlated forces are coupled with one acoustic mode. A dimensionless correlation strength factor is proposed to determine the correlation strength between modal forces. Results show that the error on modal energy increases with the increment of the correlation strength factor. A criterion is proposed to establish a link between the error and the correlation strength factor. According to the criterion, the error is negligible when the correlation strength is weak, in this situation the correlation strength factor is less than a critical value.

  18. Unstalled flutter stability predictions and comparisons to test data for a composite prop-fan model

    NASA Technical Reports Server (NTRS)

    Turnberg, J. E.

    1986-01-01

    The aeroelastic stability analyses for three graphite/epoxy composite Prop-Fan designs and post-test stability analysis for one of the designs, the SR-3C-X2 are presented. It was shown that Prop-Fan stability can be effectively analyzed using the F203 modal aeroelastic stability analysis developed at Hamilton Standard and that first mode torsion-bending coupling has a direct effect on blade stability. Positive first mode torsion-bending coupling is a destabilizing factor and the minimization of this parameter will increase Prop-Fan stability. It was also shown that Prop-Fan stability analysis using F203 is sensitive to the blade modal data used as input. Calculated blade modal properties varied significantly with the structural analysis used, and these variations are reflected in the F203 calculations.

  19. Fixed Base Modal Survey of the MPCV Orion European Service Module Structural Test Article

    NASA Technical Reports Server (NTRS)

    Winkel, James P.; Akers, J. C.; Suarez, Vicente J.; Staab, Lucas D.; Napolitano, Kevin L.

    2017-01-01

    Recently, the MPCV Orion European Service Module Structural Test Article (E-STA) underwent sine vibration testing using the multi-axis shaker system at NASA GRC Plum Brook Station Mechanical Vibration Facility (MVF). An innovative approach using measured constraint shapes at the interface of E-STA to the MVF allowed high-quality fixed base modal parameters of the E-STA to be extracted, which have been used to update the E-STA finite element model (FEM), without the need for a traditional fixed base modal survey. This innovative approach provided considerable program cost and test schedule savings. This paper documents this modal survey, which includes the modal pretest analysis sensor selection, the fixed base methodology using measured constraint shapes as virtual references and measured frequency response functions, and post-survey comparison between measured and analysis fixed base modal parameters.

  20. Correlation Results for a Mass Loaded Vehicle Panel Test Article Finite Element Models and Modal Survey Tests

    NASA Technical Reports Server (NTRS)

    Maasha, Rumaasha; Towner, Robert L.

    2012-01-01

    High-fidelity Finite Element Models (FEMs) were developed to support a recent test program at Marshall Space Flight Center (MSFC). The FEMs correspond to test articles used for a series of acoustic tests. Modal survey tests were used to validate the FEMs for five acoustic tests (a bare panel and four different mass-loaded panel configurations). An additional modal survey test was performed on the empty test fixture (orthogrid panel mounting fixture, between the reverb and anechoic chambers). Modal survey tests were used to test-validate the dynamic characteristics of FEMs used for acoustic test excitation. Modal survey testing and subsequent model correlation has validated the natural frequencies and mode shapes of the FEMs. The modal survey test results provide a basis for the analysis models used for acoustic loading response test and analysis comparisons

  1. Response format, magnitude of laterality effects, and sex differences in laterality.

    PubMed

    Voyer, Daniel; Doyle, Randi A

    2012-01-01

    The present study examined the evidence for the claim that response format might affect the magnitude of laterality effects by means of a meta-analysis. The analysis included the 396 effect sizes drawn from 266 studies retrieved by Voyer (1996) and relevant to the main effect of laterality and sex differences in laterality for verbal and non-verbal tasks in the auditory, tactile, and visual sensory modality. The response format used in specific studies was the only moderator variable of interest in the present analysis, resulting in four broad response categories (oral, written, computer, and pointing). A meta-analysis analogue to ANOVA showed no significant influence of response format on either the main effect of laterality or sex differences in laterality when all sensory modalities were combined. However, when modalities were considered separately, response format affected the main effect of laterality in the visual modality, with a clear advantage for written responses. Further pointed analyses revealed some specific differences among response formats. Results are discussed in terms of their implications for the measurement of laterality.

  2. Comparison of modal analysis results of laser vibrometry and nearfield acoustical holography measurements of an aluminum plate

    NASA Astrophysics Data System (ADS)

    Potter, Jennifer L.

    2011-12-01

    Noise and vibration has long been sought to be reduced in major industries: automotive, aerospace and marine to name a few. Products must be tested and pass certain levels of federally regulated standards before entering the market. Vibration measurements are commonly acquired using accelerometers; however limitations of this method create a need for alternative solutions. Two methods for non-contact vibration measurements are compared: Laser Vibrometry, which directly measures the surface velocity of the aluminum plate, and Nearfield Acoustic Holography (NAH), which measures sound pressure in the nearfield, and using Green's Functions, reconstructs the surface velocity at the plate. The surface velocity from each method is then used in modal analysis to determine the comparability of frequency, damping and mode shapes. Frequency and mode shapes are also compared to an FEA model. Laser Vibrometry is a proven, direct method for determining surface velocity and subsequently calculating modal analysis results. NAH is an effective method in locating noise sources, especially those that are not well separated spatially. Little work has been done in incorporating NAH into modal analysis.

  3. Joint modality fusion and temporal context exploitation for semantic video analysis

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Georgios Th; Mezaris, Vasileios; Kompatsiaris, Ioannis; Strintzis, Michael G.

    2011-12-01

    In this paper, a multi-modal context-aware approach to semantic video analysis is presented. Overall, the examined video sequence is initially segmented into shots and for every resulting shot appropriate color, motion and audio features are extracted. Then, Hidden Markov Models (HMMs) are employed for performing an initial association of each shot with the semantic classes that are of interest separately for each modality. Subsequently, a graphical modeling-based approach is proposed for jointly performing modality fusion and temporal context exploitation. Novelties of this work include the combined use of contextual information and multi-modal fusion, and the development of a new representation for providing motion distribution information to HMMs. Specifically, an integrated Bayesian Network is introduced for simultaneously performing information fusion of the individual modality analysis results and exploitation of temporal context, contrary to the usual practice of performing each task separately. Contextual information is in the form of temporal relations among the supported classes. Additionally, a new computationally efficient method for providing motion energy distribution-related information to HMMs, which supports the incorporation of motion characteristics from previous frames to the currently examined one, is presented. The final outcome of this overall video analysis framework is the association of a semantic class with every shot. Experimental results as well as comparative evaluation from the application of the proposed approach to four datasets belonging to the domains of tennis, news and volleyball broadcast video are presented.

  4. Modal strain energies in COSMIC NASTRAN

    NASA Technical Reports Server (NTRS)

    Snyder, B. D.; Venkayya, V. B.

    1989-01-01

    A computer program was developed to take a NASTRAN output file from a normal modes analysis and calculate the modal strain energies of selected elements. The FORTRAN program can determine the modal strain energies for CROD, CBAR, CELAS, CTRMEM, CQDMEM2, and CSHEAR elements. Modal strain energies are useful in estimating damping in structures.

  5. Linearised dynamics and non-modal instability analysis of an impinging under-expanded supersonic jet

    NASA Astrophysics Data System (ADS)

    Karami, Shahram; Stegeman, Paul C.; Theofilis, Vassilis; Schmid, Peter J.; Soria, Julio

    2018-04-01

    Non-modal instability analysis of the shear layer near the nozzle of a supersonic under-expanded impinging jet is studied. The shear layer instability is considered to be one of the main components of the feedback loop in supersonic jets. The feedback loop is observed in instantaneous visualisations of the density field where it is noted that acoustic waves scattered by the nozzle lip internalise as shear layer instabilities. A modal analysis describes the asymptotic limit of the instability disturbances and fails to capture short-time responses. Therefore, a non-modal analysis which allows the quantitative description of the short-time amplification or decay of a disturbance is performed by means of a local far-field pressure pulse. An impulse response analysis is performed which allows a wide range of frequencies to be excited. The temporal and spatial growths of the disturbances in the shear layer near the nozzle are studied by decomposing the response using dynamic mode decomposition and Hilbert transform analysis. The short-time response shows that disturbances with non-dimensionalised temporal frequencies in the range of 1 to 4 have positive growth rates in the shear layer. The Hilbert transform analysis shows that high non-dimensionalised temporal frequencies (>4) are dampened immediately, whereas low non-dimensionalised temporal frequencies (<1) are neutral. Both dynamic mode decomposition and Hilbert transform analysis show that spatial frequencies between 1 and 3 have positive spatial growth rates. Finally, the envelope of the streamwise velocity disturbances reveals the presence of a convective instability.

  6. An automatic data system for vibration modal tuning and evaluation

    NASA Technical Reports Server (NTRS)

    Salyer, R. A.; Jung, E. J., Jr.; Huggins, S. L.; Stephens, B. L.

    1975-01-01

    A digitally based automatic modal tuning and analysis system developed to provide an operational capability beginning at 0.1 hertz is described. The elements of the system, which provides unique control features, maximum operator visibility, and rapid data reduction and documentation, are briefly described; and the operational flow is discussed to illustrate the full range of capabilities and the flexibility of application. The successful application of the system to a modal survey of the Skylab payload is described. Information about the Skylab test article, coincident-quadrature analysis of modal response data, orthogonality, and damping calculations is included in the appendixes. Recommendations for future application of the system are also made.

  7. Analysis of frame structure of medium and small truck crane

    NASA Astrophysics Data System (ADS)

    Cao, Fuyi; Li, Jinlong; Cui, Mengkai

    2018-03-01

    Truck crane is an important part of hoisting machinery. Frame, as the support component of the quality of truck crane, determines the safety of crane jib load and the rationality of structural design. In this paper, the truck crane frame is a box structure, the three-dimensional model is established in CATIA software, and imported into Hyperworks software for finite element analysis. On the base of doing constraints and loads for the finite element model of the frame, the finite element static analysis is carried out. And the static stress test verifies whether the finite element model and the frame structure design are reasonable; then the free modal analysis of the frame and the analysis of the first 8 - order modal vibration deformation are carried out. The analysis results show that the maximum stress value of the frame is greater than the yield limit value of the material, and the low-order modal value is close to the excitation frequency value, which needs to be improved to provide theoretical reference for the structural design of the truck crane frame.

  8. A modal approach to the prediction of the sound reduction index

    NASA Astrophysics Data System (ADS)

    Tisseyre, Alain; Courné, Cécile; Buzzy, Thomas; Moulinier, André

    2003-04-01

    The calculation of the sound reduction index in modal analysis is presented in a general way; different possible approaches are described. These calculations are done in two steps: a vibratory study to determine the transverse displacement of the plate and a study of radiation. The specificity of orthotropic plates is presented. This study led to programming a calculation algorithm. Initial hypotheses are indicated, as well as results obtained for various plates or partitions. Modal analysis calculation results are then compared to the Cremer-Sewell approach results.

  9. Meaning Making through Multiple Modalities in a Biology Classroom: A Multimodal Semiotics Discourse Analysis

    ERIC Educational Resources Information Center

    Jaipal, Kamini

    2010-01-01

    The teaching of science is a complex process, involving the use of multiple modalities. This paper illustrates the potential of a multimodal semiotics discourse analysis framework to illuminate meaning-making possibilities during the teaching of a science concept. A multimodal semiotics analytical framework is developed and used to (1) analyze the…

  10. ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS.
    Chong S. Kim, SC. Hu*, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, ...

  11. Operational Modal Analysis of the Cablestayed Footbridge

    NASA Astrophysics Data System (ADS)

    Kortiš, Ján; Daniel, Ľuboš; Farbák, Matúš; Maliar, Lukáš; Škarupa, Milan

    2017-12-01

    Modern architecture leads to design subtle bridge structures that are more sensitive to increased dynamic loading than the massive ones. This phenomenon can be especially observed on lightweight steel structures such as suspended footbridges. As a result, it is necessary to know precisely its dynamic characteristics, such as natural frequencies, natural shapes and damping of construction. This information can be used for further analysis such as damage detection, system identification, health monitoring, etc. or also for the design of new types of construction. For this purpose, classical modal analysis using trigger load or harmonic vibration exciter in combination with acceleration sensors is used in practice. However, there are many situations where it is not possible to stop the traffic or operation of the bridge. The article presents an experimental measurement of the dynamic parameters of the structure at the operating load using the operational modal analysis.

  12. Modal Auxiliaries and Their Semantic Functions Used by Advanced EFL Learners

    ERIC Educational Resources Information Center

    Torabiardakani, Najmeh; Khojasteh, Laleh; Shokrpour, Nasrin

    2015-01-01

    Since modal auxiliary verbs have been proved to be one of the most troublesome grammatical structures in English, the researchers of this study decided to do an analysis on the ways in which advanced EFL Iranian students use modal auxiliaries focusing specially on nine modals' semantic functions. Consequently, was conducted based on the following…

  13. Bayesian operational modal analysis of Jiangyin Yangtze River Bridge

    NASA Astrophysics Data System (ADS)

    Brownjohn, James Mark William; Au, Siu-Kui; Zhu, Yichen; Sun, Zhen; Li, Binbin; Bassitt, James; Hudson, Emma; Sun, Hongbin

    2018-09-01

    Vibration testing of long span bridges is becoming a commissioning requirement, yet such exercises represent the extreme of experimental capability, with challenges for instrumentation (due to frequency range, resolution and km-order separation of sensor) and system identification (because of the extreme low frequencies). The challenge with instrumentation for modal analysis is managing synchronous data acquisition from sensors distributed widely apart inside and outside the structure. The ideal solution is precisely synchronised autonomous recorders that do not need cables, GPS or wireless communication. The challenge with system identification is to maximise the reliability of modal parameters through experimental design and subsequently to identify the parameters in terms of mean values and standard errors. The challenge is particularly severe for modes with low frequency and damping typical of long span bridges. One solution is to apply 'third generation' operational modal analysis procedures using Bayesian approaches in both the planning and analysis stages. The paper presents an exercise on the Jiangyin Yangtze River Bridge, a suspension bridge with a 1385 m main span. The exercise comprised planning of a test campaign to optimise the reliability of operational modal analysis, the deployment of a set of independent data acquisition units synchronised using precision oven controlled crystal oscillators and the subsequent identification of a set of modal parameters in terms of mean and variance errors. Although the bridge has had structural health monitoring technology installed since it was completed, this was the first full modal survey, aimed at identifying important features of the modal behaviour rather than providing fine resolution of mode shapes through the whole structure. Therefore, measurements were made in only the (south) tower, while torsional behaviour was identified by a single measurement using a pair of recorders across the carriageway. The modal survey revealed a first lateral symmetric mode with natural frequency 0.0536 Hz with standard error ±3.6% and damping ratio 4.4% with standard error ±88%. First vertical mode is antisymmetric with frequency 0.11 Hz ± 1.2% and damping ratio 4.9% ± 41%. A significant and novel element of the exercise was planning of the measurement setups and their necessary duration linked to prior estimation of the precision of the frequency and damping estimates. The second novelty is the use of the multi-sensor precision synchronised acquisition without external time reference on a structure of this scale. The challenges of ambient vibration testing and modal identification in a complex environment are addressed leveraging on advances in practical implementation and scientific understanding of the problem.

  14. On-line damage detection in rotating machinery

    NASA Astrophysics Data System (ADS)

    Alkhalifa, Tareq Jawad

    This work is concerned with a set of techniques to detect internal defects in uniform circular discs (rotors). An internal defect is intentionally manufactured in stereolithographic discs by a rapid prototyping process using cured resin SL 5170 material. The analysis and results presented here are limited to a uniform circular disc, with internal defects, mounted on a uniform flexible circular shaft. The setup is comprised of a Bently Nevada rotor kit connected to a data acquisition system. The rotor consists of a disc and shaft that is supported by journal bearings and is coupled to a motor by a rubber joint. Damage produces localized changes in the strain energy, which is quantified to characterize the damage. Based on previous research, the Strain Energy Damage Index (SEDI) is utilized to localize the damage due to strain energy differences between damaged and undamaged modes. To accomplish the objective, this work covers three types of analysis: finite element analysis, vibration analysis, and experimental modal analysis. Finite element analysis (using SDRC Ideas software) is performed to develop a multi-degree-of-freedom (MDOF) rotor system with internal damage, and its dynamic characteristics are investigated. The analysis is performed for two different types damage cases: radial damage and circular damage. Parametric study for radial damage and random noise to undamaged disc have been investigated to predict the effect of noise in the damage detection. The developed on-line damage detection technique for rotating equipment incorporates and couples both vibration analysis and experimental modal analysis. The dynamic investigation of the rotating discs (with and without defect) is conducted by vibration signal analysis (using proximity sensors, data acquisition and LabView). The vibration analysis provides a unique vibration signature for the damaged disc, which indicates the existence of the damage. The vibration data are acquired at different running speeds (1000, 2500, 5000 rpm). Then the dynamic investigation of non-rotating discs (with and without defect) is conducted by experimental modal analysis (using STAR software). While the vibration analysis detects and indicates the existence of damage while the disc is rotating, experimental modal analysis (using STAR and MATLAB software) provides the localization of damage through the modal parameters for a non-rotating disc. Both of the experimental diagnostic algorithms are based on measurement of the dynamic behavior of the damaged disc. The results are compared with the reference, or baseline, one, obtained initially for an undamaged disc. (Abstract shortened by UMI.)

  15. Linked independent component analysis for multimodal data fusion.

    PubMed

    Groves, Adrian R; Beckmann, Christian F; Smith, Steve M; Woolrich, Mark W

    2011-02-01

    In recent years, neuroimaging studies have increasingly been acquiring multiple modalities of data and searching for task- or disease-related changes in each modality separately. A major challenge in analysis is to find systematic approaches for fusing these differing data types together to automatically find patterns of related changes across multiple modalities, when they exist. Independent Component Analysis (ICA) is a popular unsupervised learning method that can be used to find the modes of variation in neuroimaging data across a group of subjects. When multimodal data is acquired for the subjects, ICA is typically performed separately on each modality, leading to incompatible decompositions across modalities. Using a modular Bayesian framework, we develop a novel "Linked ICA" model for simultaneously modelling and discovering common features across multiple modalities, which can potentially have completely different units, signal- and contrast-to-noise ratios, voxel counts, spatial smoothnesses and intensity distributions. Furthermore, this general model can be configured to allow tensor ICA or spatially-concatenated ICA decompositions, or a combination of both at the same time. Linked ICA automatically determines the optimal weighting of each modality, and also can detect single-modality structured components when present. This is a fully probabilistic approach, implemented using Variational Bayes. We evaluate the method on simulated multimodal data sets, as well as on a real data set of Alzheimer's patients and age-matched controls that combines two very different types of structural MRI data: morphological data (grey matter density) and diffusion data (fractional anisotropy, mean diffusivity, and tensor mode). Copyright © 2010 Elsevier Inc. All rights reserved.

  16. A Deeper Look at How Teachers Say What They Say: A Quantitative Modality Analysis of Teacher-to-Teacher Talk

    ERIC Educational Resources Information Center

    Kosko, Karl W.; Herbst, Patricio

    2012-01-01

    Analysis of teacher-to-teacher talk provides researchers with useful information regarding the teaching profession and teachers' perspectives. This article provides a description of a method, with accompanying example, examining teacher-to-teacher talk by incorporating semantic modality and examining trends of its usage in a quantitative manner.…

  17. Analysis of Modal Growth on the Leeward Centerplane of the X-51 Vehicle

    DTIC Science & Technology

    2009-09-01

    Research Center ( CUBRC ) 4455 Genesee Street Buffalo, NY 14225 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research...8 Figure 9. Disturbance N-factor Growth and CUBRC Data Showing Transition...for CUBRC Run 4 9 LIST OF TABLES Table Page Table 1. Freestream Conditions for Ground Test Cases Selected for Modal Analysis Study

  18. A Review of Multivariate Methods for Multimodal Fusion of Brain Imaging Data

    PubMed Central

    Adali, Tülay; Yu, Qingbao; Calhoun, Vince D.

    2011-01-01

    The development of various neuroimaging techniques is rapidly improving the measurements of brain function/structure. However, despite improvements in individual modalities, it is becoming increasingly clear that the most effective research approaches will utilize multi-modal fusion, which takes advantage of the fact that each modality provides a limited view of the brain. The goal of multimodal fusion is to capitalize on the strength of each modality in a joint analysis, rather than a separate analysis of each. This is a more complicated endeavor that must be approached more carefully and efficient methods should be developed to draw generalized and valid conclusions from high dimensional data with a limited number of subjects. Numerous research efforts have been reported in the field based on various statistical approaches, e.g. independent component analysis (ICA), canonical correlation analysis (CCA) and partial least squares (PLS). In this review paper, we survey a number of multivariate methods appearing in previous reports, which are performed with or without prior information and may have utility for identifying potential brain illness biomarkers. We also discuss the possible strengths and limitations of each method, and review their applications to brain imaging data. PMID:22108139

  19. Restricted Modal Analysis Applied to Internal Annular Combustor Autospectra and Cross-Spectra Measurements

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2007-01-01

    A treatment of the modal decomposition of the pressure field in a combustor as determined by two pressure time history measurements is developed herein. It is applied to a Pratt and Whitney PW4098 engine combustor over a range of operating conditions. For modes other than the plane wave the assumption is made that there are distinct frequency bands in which the individual modes, including the plane wave mode, overlap such that if circumferential mode m and circumferential mode m-1 are present then circumferential mode m-2 is not. In the analysis used herein at frequencies above the first cutoff mode frequency, only pairs of circumferential modes are individually present at each frequency. Consequently, this is a restricted modal analysis. As part of the analysis one specifies mode cut-on frequencies. This creates a set of frequencies that each mode spans. One finding was the successful use of the same modal span frequencies over a range of operating conditions for this particular engine. This suggests that for this case the cut-on frequencies are in proximity at each operating condition. Consequently, the combustion noise spectrum related to the circumferential modes might not change much with operating condition.

  20. Determination of orthotropic material properties by modal analysis

    NASA Astrophysics Data System (ADS)

    Lai, Junpeng

    The methodology for determination of orthotropic material properties in plane stress condition will be presented. It is applied to orthotropic laminated plates like printed wiring boards. The first part of the thesis will focus on theories and methodologies. The static beam model and vibratory plate model is presented. The methods are validated by operating a series of test on aluminum. In the static tests, deflection and two directions of strain are measured, thus four of the properties will be identified: Ex, Ey, nuxy, nuyx. Moving on to dynamic test, the first ten modes' resonance frequencies are obtained. The technique of modal analysis is adopted. The measured data is processed by FFT and analyzed by curve fitting to extract natural frequencies and mode shapes. With the last material property to be determined, a finite element method using ANSYS is applied. Along with the identified material properties in static tests, and proper initial guess of the unknown shear modulus, an iterative process creates finite element model and conducts modal analysis with the updating model. When the modal analysis result produced by ANSYS matches the natural frequencies acquired by dynamic test, the process will halt. Then we obtained the last material property in plane stress condition.

  1. Structural Analysis of Kufasat Using Ansys Program

    NASA Astrophysics Data System (ADS)

    Al-Maliky, Firas T.; AlBermani, Mohamed J.

    2018-03-01

    The current work focuses on vibration and modal analysis of KufaSat structure using ANSYS 16 program. Three types of Aluminum alloys (5052-H32, 6061-T6 and 7075-T6) were selected for investigation of the structure under design loads. Finite element analysis (FEA) in design static load of 51 g was performed. The natural frequencies for five modes were estimated using modal analysis. In order to ensure that KufaSat could withstand with various conditions during launch, the Margin of safety was calculated. The results of deformation and Von Mises stress for linear buckling analysis were also performed. The comparison of data was done to select the optimum material for KufaSat structures.

  2. Modal Identification in an Automotive Multi-Component System Using HS 3D-DIC

    PubMed Central

    López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.

    2018-01-01

    The modal characterization of automotive lighting systems becomes difficult using sensors due to the light weight of the elements which compose the component as well as the intricate access to allocate them. In experimental modal analysis, high speed 3D digital image correlation (HS 3D-DIC) is attracting the attention since it provides full-field contactless measurements of 3D displacements as main advantage over other techniques. Different methodologies have been published that perform modal identification, i.e., natural frequencies, damping ratios, and mode shapes using the full-field information. In this work, experimental modal analysis has been performed in a multi-component automotive lighting system using HS 3D-DIC. Base motion excitation was applied to simulate operating conditions. A recently validated methodology has been employed for modal identification using transmissibility functions, i.e., the transfer functions from base motion tests. Results make it possible to identify local and global behavior of the different elements of injected polymeric and metallic materials. PMID:29401725

  3. Modal density of rectangular structures in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Parrinello, A.; Ghiringhelli, G. L.

    2018-04-01

    A novel approach to investigate the modal density of a rectangular structure in a wide frequency range is presented. First, the modal density is derived, in the whole frequency range of interest, on the basis of sound transmission through the infinite counterpart of the structure; then, it is corrected by means of the low-frequency modal behavior of the structure, taking into account actual size and boundary conditions. A statistical analysis reveals the connection between the modal density of the structure and the transmission of sound through its thickness. A transfer matrix approach is used to compute the required acoustic parameters, making it possible to deal with structures having arbitrary stratifications of different layers. A finite element method is applied on coarse grids to derive the first few eigenfrequencies required to correct the modal density. Both the transfer matrix approach and the coarse grids involved in the finite element analysis grant high efficiency. Comparison with alternative formulations demonstrates the effectiveness of the proposed methodology.

  4. Finite-Element Vibration Analysis and Modal Testing of Graphite Epoxy Tubes and Correlation Between the Data

    NASA Technical Reports Server (NTRS)

    Taleghani, Barmac K.; Pappa, Richard S.

    1996-01-01

    Structural materials in the form of graphite epoxy composites with embedded rubber layers are being used to reduce vibrations in rocket motor tubes. Four filament-wound, graphite epoxy tubes were studied to evaluate the effects of the rubber layer on the modal parameters (natural vibration frequencies, damping, and mode shapes). Tube 1 contained six alternating layers of 30-degree helical wraps and 90-degree hoop wraps. Tube 2 was identical to tube 1 with the addition of an embedded 0.030-inch-thick rubber layer. Tubes 3 and 4 were identical to tubes 1 and 2, respectively, with the addition of a Textron Kelpoxy elastomer. This report compares experimental modal parameters obtained by impact testing with analytical modal parameters obtained by NASTRAN finite-element analysis. Four test modes of tube 1 and five test modes of tube 3 correlate highly with corresponding analytical predictions. Unsatisfactory correlation of test and analysis results occurred for tubes 2 and 4 and these comparisons are not shown. Work is underway to improve the analytical models of these tubes. Test results clearly show that the embedded rubber layers significantly increase structural modal damping as well as decrease natural vibration frequencies.

  5. Identification of Historical Veziragasi Aqueduct Using the Operational Modal Analysis

    PubMed Central

    Ercan, E.; Nuhoglu, A.

    2014-01-01

    This paper describes the results of a model updating study conducted on a historical aqueduct, called Veziragasi, in Turkey. The output-only modal identification results obtained from ambient vibration measurements of the structure were used to update a finite element model of the structure. For the purposes of developing a solid model of the structure, the dimensions of the structure, defects, and material degradations in the structure were determined in detail by making a measurement survey. For evaluation of the material properties of the structure, nondestructive and destructive testing methods were applied. The modal analysis of the structure was calculated by FEM. Then, a nondestructive dynamic test as well as operational modal analysis was carried out and dynamic properties were extracted. The natural frequencies and corresponding mode shapes were determined from both theoretical and experimental modal analyses and compared with each other. A good harmony was attained between mode shapes, but there were some differences between natural frequencies. The sources of the differences were introduced and the FEM model was updated by changing material parameters and boundary conditions. Finally, the real analytical model of the aqueduct was put forward and the results were discussed. PMID:24511287

  6. Using Response Surface Methods to Correlate the Modal Test of an Inflatable Test Article

    NASA Technical Reports Server (NTRS)

    Gupta, Anju

    2013-01-01

    This paper presents a practical application of response surface methods (RSM) to correlate a finite element model of a structural modal test. The test article is a quasi-cylindrical inflatable structure which primarily consists of a fabric weave, with an internal bladder and metallic bulkheads on either end. To mitigate model size, the fabric weave was simplified by representing it with shell elements. The task at hand is to represent the material behavior of the weave. The success of the model correlation is measured by comparing the four major modal frequencies of the analysis model to the four major modal frequencies of the test article. Given that only individual strap material properties were provided and material properties of the overall weave were not available, defining the material properties of the finite element model became very complex. First it was necessary to determine which material properties (modulus of elasticity in the hoop and longitudinal directions, shear modulus, Poisson's ratio, etc.) affected the modal frequencies. Then a Latin Hypercube of the parameter space was created to form an efficiently distributed finite case set. Each case was then analyzed with the results input into RSM. In the resulting response surface it was possible to see how each material parameter affected the modal frequencies of the analysis model. If the modal frequencies of the analysis model and its corresponding parameters match the test with acceptable accuracy, it can be said that the model correlation is successful.

  7. Quasi-modal vibration control by means of active control bearings

    NASA Technical Reports Server (NTRS)

    Nonami, K.; Fleming, D. P.

    1986-01-01

    This paper investigates a design method of an active control bearing system with only velocity feedback. The study provides a new quasi-modal control method for a control system design of an active control bearing system in which feedback coefficients are determined on the basis of a modal analysis. Although the number of sensors and actuators is small, this quasi-modal control method produces a control effect close to an ideal modal control.

  8. Direct system parameter identification of mechanical structures with application to modal analysis

    NASA Technical Reports Server (NTRS)

    Leuridan, J. M.; Brown, D. L.; Allemang, R. J.

    1982-01-01

    In this paper a method is described to estimate mechanical structure characteristics in terms of mass, stiffness and damping matrices using measured force input and response data. The estimated matrices can be used to calculate a consistent set of damped natural frequencies and damping values, mode shapes and modal scale factors for the structure. The proposed technique is attractive as an experimental modal analysis method since the estimation of the matrices does not require previous estimation of frequency responses and since the method can be used, without any additional complications, for multiple force input structure testing.

  9. Complementary and alternative exercise for fibromyalgia: a meta-analysis.

    PubMed

    Mist, Scott David; Firestone, Kari A; Jones, Kim Dupree

    2013-01-01

    Complementary and alternative medicine includes a number of exercise modalities, such as tai chi, qigong, yoga, and a variety of lesser-known movement therapies. A meta-analysis of the current literature was conducted estimating the effect size of the different modalities, study quality and bias, and adverse events. The level of research has been moderately weak to date, but most studies report a medium-to-high effect size in pain reduction. Given the lack of adverse events, there is little risk in recommending these modalities as a critical component in a multimodal treatment plan, which is often required for fibromyalgia management.

  10. Experimental modal analysis of the fuselage panels of an Aero Commander aircraft

    NASA Technical Reports Server (NTRS)

    Geisler, D.

    1981-01-01

    The reduction of interior noise in light aircraft was investigated with emphasis the thin fuselage sidewall. The approach used is theoretical and involves modeling of the sidewall panels and stiffeners. Experimental data obtained from tests investigating the effects of mass and stiffness treatments to the sidewalls are presented. The dynamic characteristics of treated panels are contrasted with the untreated sidewall panels using experimental modal analysis techniques. The results include the natural frequencies, modal dampling, and mode shapes of selected panels. Frequency response functions, data relating to the global fuselage response, and acoustic response are also presented.

  11. Automated SEM Modal Analysis Applied to the Diogenites

    NASA Technical Reports Server (NTRS)

    Bowman, L. E.; Spilde, M. N.; Papike, James J.

    1996-01-01

    Analysis of volume proportions of minerals, or modal analysis, is routinely accomplished by point counting on an optical microscope, but the process, particularly on brecciated samples such as the diogenite meteorites, is tedious and prone to error by misidentification of very small fragments, which may make up a significant volume of the sample. Precise volume percentage data can be gathered on a scanning electron microscope (SEM) utilizing digital imaging and an energy dispersive spectrometer (EDS). This form of automated phase analysis reduces error, and at the same time provides more information than could be gathered using simple point counting alone, such as particle morphology statistics and chemical analyses. We have previously studied major, minor, and trace-element chemistry of orthopyroxene from a suite of diogenites. This abstract describes the method applied to determine the modes on this same suite of meteorites and the results of that research. The modal abundances thus determined add additional information on the petrogenesis of the diogenites. In addition, low-abundance phases such as spinels were located for further analysis by this method.

  12. A modal aeroelastic analysis scheme for turbomachinery blading. M.S. Thesis - Case Western Reserve Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Smith, Todd E.

    1991-01-01

    An aeroelastic analysis is developed which has general application to all types of axial-flow turbomachinery blades. The approach is based on linear modal analysis, where the blade's dynamic response is represented as a linear combination of contributions from each of its in-vacuum free vibrational modes. A compressible linearized unsteady potential theory is used to model the flow over the oscillating blades. The two-dimensional unsteady flow is evaluated along several stacked axisymmetric strips along the span of the airfoil. The unsteady pressures at the blade surface are integrated to result in the generalized force acting on the blade due to simple harmonic motions. The unsteady aerodynamic forces are coupled to the blade normal modes in the frequency domain using modal analysis. An iterative eigenvalue problem is solved to determine the stability of the blade when the unsteady aerodynamic forces are included in the analysis. The approach is demonstrated by applying it to a high-energy subsonic turbine blade from a rocket engine turbopump power turbine. The results indicate that this turbine could undergo flutter in an edgewise mode of vibration.

  13. A scaling procedure for the response of an isolated system with high modal overlap factor

    NASA Astrophysics Data System (ADS)

    De Rosa, S.; Franco, F.

    2008-10-01

    The paper deals with a numerical approach that reduces some physical sizes of the solution domain to compute the dynamic response of an isolated system: it has been named Asymptotical Scaled Modal Analysis (ASMA). The proposed numerical procedure alters the input data needed to obtain the classic modal responses to increase the frequency band of validity of the discrete or continuous coordinates model through the definition of a proper scaling coefficient. It is demonstrated that the computational cost remains acceptable while the frequency range of analysis increases. Moreover, with reference to the flexural vibrations of a rectangular plate, the paper discusses the ASMA vs. the statistical energy analysis and the energy distribution approach. Some insights are also given about the limits of the scaling coefficient. Finally it is shown that the linear dynamic response, predicted with the scaling procedure, has the same quality and characteristics of the statistical energy analysis, but it can be useful when the system cannot be solved appropriately by the standard Statistical Energy Analysis (SEA).

  14. Modal analysis of untransposed bilateral three-phase lines -- a perturbation approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria, J.A.B.; Mendes, J.H.B.

    1997-01-01

    Model analysis of three-phase power lines exhibiting bilateral symmetry leads to modal transformation matrices that closely resemble Clarke`s transformation. The authors develop a perturbation theory approach to justify, interpret, and gain understanding of this well known fact. Further, the authors show how to find new frequency dependent correction terms that once added to Clarke`s transformation lead to improved accuracy.

  15. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.

    PubMed

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman

    2016-09-01

    Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a significantly greater forward than backward information flow between the ROIs. This simultaneous fMRI, fNIRS and EEG study has shown through independent GC analysis of the respective time series that a bi-directional effective connectivity occurs within a cortico-cortical sensorimotor network (SMC, PMC and DLPFC) during finger movement tasks.

  16. A density distribution algorithm for bone incorporating local orthotropy, modal analysis and theories of cellular solids.

    PubMed

    Impelluso, Thomas J

    2003-06-01

    An algorithm for bone remodeling is presented which allows for both a redistribution of density and a continuous change of principal material directions for the orthotropic material properties of bone. It employs a modal analysis to add density for growth and a local effective strain based analysis to redistribute density. General re-distribution functions are presented. The model utilizes theories of cellular solids to relate density and strength. The code predicts the same general density distributions and local orthotropy as observed in reality.

  17. An Analysis Technique/Automated Tool for Comparing and Tracking Analysis Modes of Different Finite Element Models

    NASA Technical Reports Server (NTRS)

    Towner, Robert L.; Band, Jonathan L.

    2012-01-01

    An analysis technique was developed to compare and track mode shapes for different Finite Element Models. The technique may be applied to a variety of structural dynamics analyses, including model reduction validation (comparing unreduced and reduced models), mode tracking for various parametric analyses (e.g., launch vehicle model dispersion analysis to identify sensitivities to modal gain for Guidance, Navigation, and Control), comparing models of different mesh fidelity (e.g., a coarse model for a preliminary analysis compared to a higher-fidelity model for a detailed analysis) and mode tracking for a structure with properties that change over time (e.g., a launch vehicle from liftoff through end-of-burn, with propellant being expended during the flight). Mode shapes for different models are compared and tracked using several numerical indicators, including traditional Cross-Orthogonality and Modal Assurance Criteria approaches, as well as numerical indicators obtained by comparing modal strain energy and kinetic energy distributions. This analysis technique has been used to reliably identify correlated mode shapes for complex Finite Element Models that would otherwise be difficult to compare using traditional techniques. This improved approach also utilizes an adaptive mode tracking algorithm that allows for automated tracking when working with complex models and/or comparing a large group of models.

  18. Modality and Causation in Serbian Dative Anticausatives: A Crosslinguistic Perspective

    ERIC Educational Resources Information Center

    Ilic, Tatjana

    2013-01-01

    In this dissertation I provide a principled, unified account of modality and causation in Serbian dative anticausatives using a typological, cognitive approach. This analysis is set within a larger claim that the causative and modal meanings crosslinguistically arise in the same morphosyntactic environments, indicating a shared conceptual base…

  19. Beamformer source analysis and connectivity on concurrent EEG and MEG data during voluntary movements.

    PubMed

    Muthuraman, Muthuraman; Hellriegel, Helge; Hoogenboom, Nienke; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Krause, Holger; Schnitzler, Alfons; Deuschl, Günther; Raethjen, Jan

    2014-01-01

    Electroencephalography (EEG) and magnetoencephalography (MEG) are the two modalities for measuring neuronal dynamics at a millisecond temporal resolution. Different source analysis methods, to locate the dipoles in the brain from which these dynamics originate, have been readily applied to both modalities alone. However, direct comparisons and possible advantages of combining both modalities have rarely been assessed during voluntary movements using coherent source analysis. In the present study, the cortical and sub-cortical network of coherent sources at the finger tapping task frequency (2-4 Hz) and the modes of interaction within this network were analysed in 15 healthy subjects using a beamformer approach called the dynamic imaging of coherent sources (DICS) with subsequent source signal reconstruction and renormalized partial directed coherence analysis (RPDC). MEG and EEG data were recorded simultaneously allowing the comparison of each of the modalities separately to that of the combined approach. We found the identified network of coherent sources for the finger tapping task as described in earlier studies when using only the MEG or combined MEG+EEG whereas the EEG data alone failed to detect single sub-cortical sources. The signal-to-noise ratio (SNR) level of the coherent rhythmic activity at the tapping frequency in MEG and combined MEG+EEG data was significantly higher than EEG alone. The functional connectivity analysis revealed that the combined approach had more active connections compared to either of the modalities during the finger tapping (FT) task. These results indicate that MEG is superior in the detection of deep coherent sources and that the SNR seems to be more vital than the sensitivity to theoretical dipole orientation and the volume conduction effect in the case of EEG.

  20. Experimental Modal Analysis and Dynaic Strain Fiber Bragg Gratings for Structural Health Monitoring of Composite Aerospace Structures

    NASA Astrophysics Data System (ADS)

    Panopoulou, A.; Fransen, S.; Gomez Molinero, V.; Kostopoulos, V.

    2012-07-01

    The objective of this work is to develop a new structural health monitoring system for composite aerospace structures based on dynamic response strain measurements and experimental modal analysis techniques. Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of vibration testing. The hypothesis of all vibration tests was that actual damage in composites reduces their stiffness and produces the same result as mass increase produces. Thus, damage was simulated by slightly varying locally the mass of the structure at different zones. Experimental modal analysis based on the strain responses was conducted and the extracted strain mode shapes were the input for the damage detection expert system. A feed-forward back propagation neural network was the core of the damage detection system. The features-input to the neural network consisted of the strain mode shapes, extracted from the experimental modal analysis. Dedicated training and validation activities were carried out based on the experimental results. The system showed high reliability, confirmed by the ability of the neural network to recognize the size and the position of damage on the structure. The experiments were performed on a real structure i.e. a lightweight antenna sub- reflector, manufactured and tested at EADS CASA ESPACIO. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on the structure with optimum topology. Numerical simulation of both structures was used as a support tool at all the steps of the work. Potential applications for the proposed system are during ground qualification extensive tests of space structures and during the mission as modal analysis tool on board, being able via the FBG responses to identify a potential failure.

  1. Beamformer Source Analysis and Connectivity on Concurrent EEG and MEG Data during Voluntary Movements

    PubMed Central

    Muthuraman, Muthuraman; Hellriegel, Helge; Hoogenboom, Nienke; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Krause, Holger; Schnitzler, Alfons; Deuschl, Günther; Raethjen, Jan

    2014-01-01

    Electroencephalography (EEG) and magnetoencephalography (MEG) are the two modalities for measuring neuronal dynamics at a millisecond temporal resolution. Different source analysis methods, to locate the dipoles in the brain from which these dynamics originate, have been readily applied to both modalities alone. However, direct comparisons and possible advantages of combining both modalities have rarely been assessed during voluntary movements using coherent source analysis. In the present study, the cortical and sub-cortical network of coherent sources at the finger tapping task frequency (2–4 Hz) and the modes of interaction within this network were analysed in 15 healthy subjects using a beamformer approach called the dynamic imaging of coherent sources (DICS) with subsequent source signal reconstruction and renormalized partial directed coherence analysis (RPDC). MEG and EEG data were recorded simultaneously allowing the comparison of each of the modalities separately to that of the combined approach. We found the identified network of coherent sources for the finger tapping task as described in earlier studies when using only the MEG or combined MEG+EEG whereas the EEG data alone failed to detect single sub-cortical sources. The signal-to-noise ratio (SNR) level of the coherent rhythmic activity at the tapping frequency in MEG and combined MEG+EEG data was significantly higher than EEG alone. The functional connectivity analysis revealed that the combined approach had more active connections compared to either of the modalities during the finger tapping (FT) task. These results indicate that MEG is superior in the detection of deep coherent sources and that the SNR seems to be more vital than the sensitivity to theoretical dipole orientation and the volume conduction effect in the case of EEG. PMID:24618596

  2. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    PubMed

    Henyš, Petr; Čapek, Lukáš

    2017-02-01

    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  3. Failure Analysis of a Complex Learning Framework Incorporating Multi-Modal and Semi-Supervised Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pullum, Laura L; Symons, Christopher T

    2011-01-01

    Machine learning is used in many applications, from machine vision to speech recognition to decision support systems, and is used to test applications. However, though much has been done to evaluate the performance of machine learning algorithms, little has been done to verify the algorithms or examine their failure modes. Moreover, complex learning frameworks often require stepping beyond black box evaluation to distinguish between errors based on natural limits on learning and errors that arise from mistakes in implementation. We present a conceptual architecture, failure model and taxonomy, and failure modes and effects analysis (FMEA) of a semi-supervised, multi-modal learningmore » system, and provide specific examples from its use in a radiological analysis assistant system. The goal of the research described in this paper is to provide a foundation from which dependability analysis of systems using semi-supervised, multi-modal learning can be conducted. The methods presented provide a first step towards that overall goal.« less

  4. Ultrasonic image analysis and image-guided interventions.

    PubMed

    Noble, J Alison; Navab, Nassir; Becher, H

    2011-08-06

    The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.

  5. Detection of rebar delamination using modal analysis

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.

    2003-08-01

    A non-destructive method for early detection of reinforcement steel bars (re-bar) delamination in concrete structures has been developed. This method, termed modal analysis, has been shown effective in both laboratory and field experiments. In modal analysis, an audio speaker is used to generate flexural resonant modes in the re-bar in reinforced concrete structures. Vibrations associated with these modes are coupled to the surrounding concrete and propagate to the surface where they are detected using a laser vibrometer and/or accelerometer. Monitoring both the frequency and amplitude of these vibrations provides information on the bonding state of the embedded re-bar. Laboratory measurements were performed on several specially prepared concrete blocks with re-bar of varying degrees of simulated corrosion. Field measurements were performed on an old bridge about to be torn down in Howard County, Maryland and the results compared with those obtained using destructive analysis of the bridge after demolition. Both laboratory and field test results show this technique to be sensitive to re-bar delamination.

  6. Integration of heterogeneous data for classification in hyperspectral satellite imagery

    NASA Astrophysics Data System (ADS)

    Benedetto, J.; Czaja, W.; Dobrosotskaya, J.; Doster, T.; Duke, K.; Gillis, D.

    2012-06-01

    As new remote sensing modalities emerge, it becomes increasingly important to nd more suitable algorithms for fusion and integration of dierent data types for the purposes of target/anomaly detection and classication. Typical techniques that deal with this problem are based on performing detection/classication/segmentation separately in chosen modalities, and then integrating the resulting outcomes into a more complete picture. In this paper we provide a broad analysis of a new approach, based on creating fused representations of the multi- modal data, which then can be subjected to analysis by means of the state-of-the-art classiers or detectors. In this scenario we shall consider the hyperspectral imagery combined with spatial information. Our approach involves machine learning techniques based on analysis of joint data-dependent graphs and their associated diusion kernels. Then, the signicant eigenvectors of the derived fused graph Laplace operator form the new representation, which provides integrated features from the heterogeneous input data. We compare these fused approaches with analysis of integrated outputs of spatial and spectral graph methods.

  7. A three-way parallel ICA approach to analyze links among genetics, brain structure and brain function.

    PubMed

    Vergara, Victor M; Ulloa, Alvaro; Calhoun, Vince D; Boutte, David; Chen, Jiayu; Liu, Jingyu

    2014-09-01

    Multi-modal data analysis techniques, such as the Parallel Independent Component Analysis (pICA), are essential in neuroscience, medical imaging and genetic studies. The pICA algorithm allows the simultaneous decomposition of up to two data modalities achieving better performance than separate ICA decompositions and enabling the discovery of links between modalities. However, advances in data acquisition techniques facilitate the collection of more than two data modalities from each subject. Examples of commonly measured modalities include genetic information, structural magnetic resonance imaging (MRI) and functional MRI. In order to take full advantage of the available data, this work extends the pICA approach to incorporate three modalities in one comprehensive analysis. Simulations demonstrate the three-way pICA performance in identifying pairwise links between modalities and estimating independent components which more closely resemble the true sources than components found by pICA or separate ICA analyses. In addition, the three-way pICA algorithm is applied to real experimental data obtained from a study that investigate genetic effects on alcohol dependence. Considered data modalities include functional MRI (contrast images during alcohol exposure paradigm), gray matter concentration images from structural MRI and genetic single nucleotide polymorphism (SNP). The three-way pICA approach identified links between a SNP component (pointing to brain function and mental disorder associated genes, including BDNF, GRIN2B and NRG1), a functional component related to increased activation in the precuneus area, and a gray matter component comprising part of the default mode network and the caudate. Although such findings need further verification, the simulation and in-vivo results validate the three-way pICA algorithm presented here as a useful tool in biomedical data fusion applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Full-field modal analysis during base motion excitation using high-speed 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Molina-Viedma, Ángel J.; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.

    2017-10-01

    In recent years, many efforts have been made to exploit full-field measurement optical techniques for modal identification. Three-dimensional digital image correlation using high-speed cameras has been extensively employed for this purpose. Modal identification algorithms are applied to process the frequency response functions (FRF), which relate the displacement response of the structure to the excitation force. However, one of the most common tests for modal analysis involves the base motion excitation of a structural element instead of force excitation. In this case, the relationship between response and excitation is typically based on displacements, which are known as transmissibility functions. In this study, a methodology for experimental modal analysis using high-speed 3D digital image correlation and base motion excitation tests is proposed. In particular, a cantilever beam was excited from its base with a random signal, using a clamped edge join. Full-field transmissibility functions were obtained through the beam and converted into FRF for proper identification, considering a single degree-of-freedom theoretical conversion. Subsequently, modal identification was performed using a circle-fit approach. The proposed methodology facilitates the management of the typically large amounts of data points involved in the DIC measurement during modal identification. Moreover, it was possible to determine the natural frequencies, damping ratios and full-field mode shapes without requiring any additional tests. Finally, the results were experimentally validated by comparing them with those obtained by employing traditional accelerometers, analytical models and finite element method analyses. The comparison was performed by using the quantitative indicator modal assurance criterion. The results showed a high level of correspondence, consolidating the proposed experimental methodology.

  9. Linguistic analysis of face-to-face interviews with patients with an explicit request for euthanasia, their closest relatives, and their attending physicians: the use of modal verbs in Dutch.

    PubMed

    Dieltjens, Sylvain M; Heynderickx, Priscilla C; Dees, Marianne K; Vissers, Kris C

    2014-04-01

    The literature, field research, and daily practice stress the need for adequate communication in palliative care. Although language is of the utmost importance in communication, linguistic analysis of end-of-life discussions is scarce. Our aim is 2-fold: We want to determine what the use of 4 significant Dutch modal verbs expressing volition, obligation, possibility, and permission reveals about the concept of unbearable suffering and about physicians' communicative style. We quantitatively (TextStat) and qualitatively (bottom-up approach) analyzed the use of the modal verbs in 15 interviews, with patients requesting euthanasia or physician-assisted suicide, their physicians, and their closest relatives. An essential element of unbearable suffering is the patient's incapacity to perform certain tasks. Further, the physician's preference for particular modal verbs reveals whether his attitude toward patients is more or less patronizing and more or less appreciative. Linguistic analysis can help medical professionals to better understand their communicative skills, styles, and approach to patients in end-of-life situations. We have shown how linguistic analysis can contribute to a better understanding of physician-patient interaction. Moreover, we have illustrated the usefulness of interdisciplinary research in the medical domain. © 2013 World Institute of Pain.

  10. Dynamic test/analysis correlation using reduced analytical models

    NASA Technical Reports Server (NTRS)

    Mcgowan, Paul E.; Angelucci, A. Filippo; Javeed, Mehzad

    1992-01-01

    Test/analysis correlation is an important aspect of the verification of analysis models which are used to predict on-orbit response characteristics of large space structures. This paper presents results of a study using reduced analysis models for performing dynamic test/analysis correlation. The reduced test-analysis model (TAM) has the same number and orientation of DOF as the test measurements. Two reduction methods, static (Guyan) reduction and the Improved Reduced System (IRS) reduction, are applied to the test/analysis correlation of a laboratory truss structure. Simulated test results and modal test data are used to examine the performance of each method. It is shown that selection of DOF to be retained in the TAM is critical when large structural masses are involved. In addition, the use of modal test results may provide difficulties in TAM accuracy even if a large number of DOF are retained in the TAM.

  11. Complementary and alternative exercise for fibromyalgia: a meta-analysis

    PubMed Central

    Mist, Scott David; Firestone, Kari A; Jones, Kim Dupree

    2013-01-01

    Complementary and alternative medicine includes a number of exercise modalities, such as tai chi, qigong, yoga, and a variety of lesser-known movement therapies. A meta-analysis of the current literature was conducted estimating the effect size of the different modalities, study quality and bias, and adverse events. The level of research has been moderately weak to date, but most studies report a medium-to-high effect size in pain reduction. Given the lack of adverse events, there is little risk in recommending these modalities as a critical component in a multimodal treatment plan, which is often required for fibromyalgia management. PMID:23569397

  12. Restricted Acoustic Modal Analysis Applied to Internal Combustor Spectra and Cross-Spectra Measurements

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2006-01-01

    A treatment of the modal decomposition of the pressure field in a combustor as determined by two Kulite pressure measurements is developed herein. It is applied to a Pratt & Whitney PW4098 engine combustor over a range of operating conditions. For modes other than the plane wave the new part of the treatment is the assumption that there are distinct frequency bands in which the individual modes, including the plane wave mode, overlap such that if circumferential mode m and circumferential mode m-1 are present than circumferential mode m 2 is not. Consequently, in the analysis used herein at frequencies above the first cut-off mode frequency, only pairs of circumferential modes are individually present at each frequency. Consequently, this is a restricted modal analysis. A new result is that the successful use of the same modal span frequencies over a range of operating conditions for this particular engine suggests that the temperature, T, and the velocity, v, of the flow at each operating condition are related by c(sup 2)-v(sup 2) = a constant where c is the speed of sound.

  13. Numerical Analysis of Stochastic Dynamical Systems in the Medium-Frequency Range

    DTIC Science & Technology

    2003-02-01

    frequency vibration analysis such as the statistical energy analysis (SEA), the traditional modal analysis (well-suited for high and low: frequency...that the first few structural normal modes primarily constitute the total response. In the higher frequency range, the statistical energy analysis (SEA

  14. Grid-Enabled Quantitative Analysis of Breast Cancer

    DTIC Science & Technology

    2010-10-01

    large-scale, multi-modality computerized image analysis . The central hypothesis of this research is that large-scale image analysis for breast cancer...research, we designed a pilot study utilizing large scale parallel Grid computing harnessing nationwide infrastructure for medical image analysis . Also

  15. Contribucion al estudio de la semantica de los verbos modales en espanol (con ejemplos del habla de Madrid). The Contribution of Spanish Modal Verbs to the Study of Semantics (with Evidence from Madrid Speech).

    ERIC Educational Resources Information Center

    Sirbu-Dumitrescu, Domnita

    1988-01-01

    Spanish modal verbs may express necessity, obligation, probability, and possibility, in either their personal or impersonal modes. Analysis is based on examples of contemporary Madrid speech. Four modals, "poder,""deber (de)," tener que," and "haber que," are placed within a tripartite structure defined by…

  16. Outcome of transarterial chemoembolization-based multi-modal treatment in patients with unresectable hepatocellular carcinoma.

    PubMed

    Song, Do Seon; Nam, Soon Woo; Bae, Si Hyun; Kim, Jin Dong; Jang, Jeong Won; Song, Myeong Jun; Lee, Sung Won; Kim, Hee Yeon; Lee, Young Joon; Chun, Ho Jong; You, Young Kyoung; Choi, Jong Young; Yoon, Seung Kew

    2015-02-28

    To investigate the efficacy and safety of transarterial chemoembolization (TACE)-based multimodal treatment in patients with large hepatocellular carcinoma (HCC). A total of 146 consecutive patients were included in the analysis, and their medical records and radiological data were reviewed retrospectively. In total, 119 patients received TACE-based multi-modal treatments, and the remaining 27 received conservative management. Overall survival (P<0.001) and objective tumor response (P=0.003) were significantly better in the treatment group than in the conservative group. After subgroup analysis, survival benefits were observed not only in the multi-modal treatment group compared with the TACE-only group (P=0.002) but also in the surgical treatment group compared with the loco-regional treatment-only group (P<0.001). Multivariate analysis identified tumor stage (P<0.001) and tumor type (P=0.009) as two independent pre-treatment factors for survival. After adjusting for significant pre-treatment prognostic factors, objective response (P<0.001), surgical treatment (P=0.009), and multi-modal treatment (P=0.002) were identified as independent post-treatment prognostic factors. TACE-based multi-modal treatments were safe and more beneficial than conservative management. Salvage surgery after successful downstaging resulted in long-term survival in patients with large, unresectable HCC.

  17. Outcome of transarterial chemoembolization-based multi-modal treatment in patients with unresectable hepatocellular carcinoma

    PubMed Central

    Song, Do Seon; Nam, Soon Woo; Bae, Si Hyun; Kim, Jin Dong; Jang, Jeong Won; Song, Myeong Jun; Lee, Sung Won; Kim, Hee Yeon; Lee, Young Joon; Chun, Ho Jong; You, Young Kyoung; Choi, Jong Young; Yoon, Seung Kew

    2015-01-01

    AIM: To investigate the efficacy and safety of transarterial chemoembolization (TACE)-based multimodal treatment in patients with large hepatocellular carcinoma (HCC). METHODS: A total of 146 consecutive patients were included in the analysis, and their medical records and radiological data were reviewed retrospectively. RESULTS: In total, 119 patients received TACE-based multi-modal treatments, and the remaining 27 received conservative management. Overall survival (P < 0.001) and objective tumor response (P = 0.003) were significantly better in the treatment group than in the conservative group. After subgroup analysis, survival benefits were observed not only in the multi-modal treatment group compared with the TACE-only group (P = 0.002) but also in the surgical treatment group compared with the loco-regional treatment-only group (P < 0.001). Multivariate analysis identified tumor stage (P < 0.001) and tumor type (P = 0.009) as two independent pre-treatment factors for survival. After adjusting for significant pre-treatment prognostic factors, objective response (P < 0.001), surgical treatment (P = 0.009), and multi-modal treatment (P = 0.002) were identified as independent post-treatment prognostic factors. CONCLUSION: TACE-based multi-modal treatments were safe and more beneficial than conservative management. Salvage surgery after successful downstaging resulted in long-term survival in patients with large, unresectable HCC. PMID:25741147

  18. Model validity and frequency band selection in operational modal analysis

    NASA Astrophysics Data System (ADS)

    Au, Siu-Kui

    2016-12-01

    Experimental modal analysis aims at identifying the modal properties (e.g., natural frequencies, damping ratios, mode shapes) of a structure using vibration measurements. Two basic questions are encountered when operating in the frequency domain: Is there a mode near a particular frequency? If so, how much spectral data near the frequency can be included for modal identification without incurring significant modeling error? For data with high signal-to-noise (s/n) ratios these questions can be addressed using empirical tools such as singular value spectrum. Otherwise they are generally open and can be challenging, e.g., for modes with low s/n ratios or close modes. In this work these questions are addressed using a Bayesian approach. The focus is on operational modal analysis, i.e., with 'output-only' ambient data, where identification uncertainty and modeling error can be significant and their control is most demanding. The approach leads to 'evidence ratios' quantifying the relative plausibility of competing sets of modeling assumptions. The latter involves modeling the 'what-if-not' situation, which is non-trivial but is resolved by systematic consideration of alternative models and using maximum entropy principle. Synthetic and field data are considered to investigate the behavior of evidence ratios and how they should be interpreted in practical applications.

  19. Modal Representations and Their Role in the Learning Process: A Theoretical and Pragmatic Analysis

    ERIC Educational Resources Information Center

    Gunel, Murat; Yesildag-Hasancebi, Funda

    2016-01-01

    In the construction and sharing of scientific knowledge, modal representations such as text, graphics, pictures, and mathematical expressions are commonly used. Due to the increasing importance of their role in the production and communication of science, modal representations have become a topic of growing interest in science education research…

  20. Constrained maximum likelihood modal parameter identification applied to structural dynamics

    NASA Astrophysics Data System (ADS)

    El-Kafafy, Mahmoud; Peeters, Bart; Guillaume, Patrick; De Troyer, Tim

    2016-05-01

    A new modal parameter estimation method to directly establish modal models of structural dynamic systems satisfying two physically motivated constraints will be presented. The constraints imposed in the identified modal model are the reciprocity of the frequency response functions (FRFs) and the estimation of normal (real) modes. The motivation behind the first constraint (i.e. reciprocity) comes from the fact that modal analysis theory shows that the FRF matrix and therefore the residue matrices are symmetric for non-gyroscopic, non-circulatory, and passive mechanical systems. In other words, such types of systems are expected to obey Maxwell-Betti's reciprocity principle. The second constraint (i.e. real mode shapes) is motivated by the fact that analytical models of structures are assumed to either be undamped or proportional damped. Therefore, normal (real) modes are needed for comparison with these analytical models. The work done in this paper is a further development of a recently introduced modal parameter identification method called ML-MM that enables us to establish modal model that satisfies such motivated constraints. The proposed constrained ML-MM method is applied to two real experimental datasets measured on fully trimmed cars. This type of data is still considered as a significant challenge in modal analysis. The results clearly demonstrate the applicability of the method to real structures with significant non-proportional damping and high modal densities.

  1. Computer program for supersonic Kernel-function flutter analysis of thin lifting surfaces

    NASA Technical Reports Server (NTRS)

    Cunningham, H. J.

    1974-01-01

    This report describes a computer program (program D2180) that has been prepared to implement the analysis described in (N71-10866) for calculating the aerodynamic forces on a class of harmonically oscillating planar lifting surfaces in supersonic potential flow. The planforms treated are the delta and modified-delta (arrowhead) planforms with subsonic leading and supersonic trailing edges, and (essentially) pointed tips. The resulting aerodynamic forces are applied in a Galerkin modal flutter analysis. The required input data are the flow and planform parameters including deflection-mode data, modal frequencies, and generalized masses.

  2. Dynamic assessment of reinforced concrete beams repaired with externally bonded FRP sheets

    NASA Astrophysics Data System (ADS)

    Bonfiglioli, B.; Pascale, G.

    2006-01-01

    This research deals with RC beams strengthened with FRP. An experimental research is presented which is aimed at evaluating the capability of an experimental modal analysis to assess the stiffness decrease due to damage, as well as the stiffness recovery due to strengthening. Ten beams were tested. All of them were subjected to loading cycles with increasing load levels in order to induce cracking of different severity in them. The beams were then retrofitted by externally bonded FRP sheets. Three types of composites were used. The number of layers was varied, too. Modal tests were carried out after each loading-unloading cycle. The modal frequencies and damping ratios were determined for the first four vibration modes. The results obtained indicate that an experimental modal analysis can give useful information on the severity of damage and the effectiveness of strengthening.

  3. Alternative Modal Basis Selection Procedures For Reduced-Order Nonlinear Random Response Simulation

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Guo, Xinyun; Rizi, Stephen A.

    2012-01-01

    Three procedures to guide selection of an efficient modal basis in a nonlinear random response analysis are examined. One method is based only on proper orthogonal decomposition, while the other two additionally involve smooth orthogonal decomposition. Acoustic random response problems are employed to assess the performance of the three modal basis selection approaches. A thermally post-buckled beam exhibiting snap-through behavior, a shallowly curved arch in the auto-parametric response regime and a plate structure are used as numerical test articles. The results of a computationally taxing full-order analysis in physical degrees of freedom are taken as the benchmark for comparison with the results from the three reduced-order analyses. For the cases considered, all three methods are shown to produce modal bases resulting in accurate and computationally efficient reduced-order nonlinear simulations.

  4. Retrospective Analysis of Communication Events - Understanding the Dynamics of Collaborative Multi-Party Discourse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowell, Andrew J.; Haack, Jereme N.; McColgin, Dave W.

    2006-06-08

    This research is aimed at understanding the dynamics of collaborative multi-party discourse across multiple communication modalities. Before we can truly make sig-nificant strides in devising collaborative communication systems, there is a need to understand how typical users utilize com-putationally supported communications mechanisms such as email, instant mes-saging, video conferencing, chat rooms, etc., both singularly and in conjunction with traditional means of communication such as face-to-face meetings, telephone calls and postal mail. Attempting to un-derstand an individual’s communications profile with access to only a single modal-ity is challenging at best and often futile. Here, we discuss the development of RACE –more » Retrospective Analysis of Com-munications Events – a test-bed prototype to investigate issues relating to multi-modal multi-party discourse.« less

  5. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie Dawn

    2010-01-01

    Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.

  6. Fusion of 4D echocardiography and cine cardiac magnetic resonance volumes using a salient spatio-temporal analysis

    NASA Astrophysics Data System (ADS)

    Atehortúa, Angélica; Garreau, Mireille; Romero, Eduardo

    2017-11-01

    An accurate left (LV) and right ventricular (RV) function quantification is important to support evaluation, diagnosis and prognosis of cardiac pathologies such as the cardiomyopathies. Currently, diagnosis by ultrasound is the most cost-effective examination. However, this modality is highly noisy and operator dependent, hence prone to errors. Therefore, fusion with other cardiac modalities may provide complementary information and improve the analysis of the specific pathologies like cardiomyopathies. This paper proposes an automatic registration between two complementary modalities, 4D echocardiography and Magnetic resonance images, by mapping both modalities to a common space of salience where an optimal registration between them is estimated. The obtained matrix transformation is then applied to the MRI volume which is superimposed to the 4D echocardiography. Manually selected marks in both modalities are used to evaluate the precision of the superimposition. Preliminary results, in three evaluation cases, show the distance between these marked points and the estimated with the transformation is about 2 mm.

  7. Surface-emitting circular DFB, disk- and ring- Bragg resonator lasers with chirped gratings: a unified theory and comparative study.

    PubMed

    Sun, Xiankai; Yariv, Amnon

    2008-06-09

    We have developed a theory that unifies the analysis of the modal properties of surface-emitting chirped circular grating lasers. This theory is based on solving the resonance conditions which involve two types of reflectivities of chirped circular gratings. This approach is shown to be in agreement with previous derivations which use the characteristic equations. Utilizing this unified analysis, we obtain the modal properties of circular DFB, disk-, and ring- Bragg resonator lasers. We also compare the threshold gain, single mode range, quality factor, emission efficiency, and modal area of these types of circular grating lasers. It is demonstrated that, under similar conditions, disk Bragg resonator lasers have the highest quality factor, the highest emission efficiency, and the smallest modal area, indicating their suitability in low-threshold, high-efficiency, ultracompact laser design, while ring Bragg resonator lasers have a large single mode range, high emission efficiency, and large modal area, indicating their suitability for high-efficiency, large-area, high-power applications.

  8. Thermal modal analysis of novel non-pneumatic mechanical elastic wheel based on FEM and EMA

    NASA Astrophysics Data System (ADS)

    Zhao, Youqun; Zhu, Mingmin; Lin, Fen; Xiao, Zhen; Li, Haiqing; Deng, Yaoji

    2018-01-01

    A combination of Finite Element Method (FEM) and Experiment Modal Analysis (EMA) have been employed here to characterize the structural dynamic response of mechanical elastic wheel (ME-Wheel) operating under a specific thermal environment. The influence of high thermal condition on the structural dynamic response of ME-Wheel is investigated. The obtained results indicate that the EMA results are in accordance with those obtained using the proposed Finite Element (FE) model, indicting the high reliability of this FE model applied in analyzing the modal of ME-Wheel working under practical thermal environment. It demonstrates that the structural dynamic response of ME-Wheel operating under a specific thermal condition can be predicted and evaluated using the proposed analysis method, which is beneficial for the dynamic optimization design of the wheel structure to avoid tire temperature related vibration failure and improve safety of tire.

  9. Panel Absorber

    NASA Astrophysics Data System (ADS)

    MECHEL, F. P.

    2001-11-01

    A plane wave is incident on a simply supported elastic plate covering a back volume; the arrangement is surrounded by a hard baffle wall. The plate may be porous with a flow friction resistance; the back volume may be filled either with air or with a porous material. The back volume may be bulk reacting (i.e., with sound propagation parallel to the plate) or locally reacting. Since this arrangement is of some importance in room acoustics, Cremer in his book about room acoustics [1] has presented an approximate analysis. However, Cremer's analysis uses a number of assumptions which make his solution, in his own estimate, unsuited for low frequencies, where, on the other hand, the arrangement mainly is applied. This paper presents a sound field description which uses modal analysis. It is applicable not only in the far field, but also near the absorber. Further, approximate solutions are derived, based on simplifying assumptions like Cremer has used. The modal analysis solution is of interest not only as a reference for approximations but also for practical applications, because the aspect of computing time becomes more and more unimportant (the 3D-plots presented below for the sound field were evaluated with modal analysis in about 6 s).

  10. Asymptotic modal analysis and statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Dowell, Earl H.

    1988-01-01

    Statistical Energy Analysis (SEA) is defined by considering the asymptotic limit of Classical Modal Analysis, an approach called Asymptotic Modal Analysis (AMA). The general approach is described for both structural and acoustical systems. The theoretical foundation is presented for structural systems, and experimental verification is presented for a structural plate responding to a random force. Work accomplished subsequent to the grant initiation focusses on the acoustic response of an interior cavity (i.e., an aircraft or spacecraft fuselage) with a portion of the wall vibrating in a large number of structural modes. First results were presented at the ASME Winter Annual Meeting in December, 1987, and accepted for publication in the Journal of Vibration, Acoustics, Stress and Reliability in Design. It is shown that asymptotically as the number of acoustic modes excited becomes large, the pressure level in the cavity becomes uniform except at the cavity boundaries. However, the mean square pressure at the cavity corner, edge and wall is, respectively, 8, 4, and 2 times the value in the cavity interior. Also it is shown that when the portion of the wall which is vibrating is near a cavity corner or edge, the response is significantly higher.

  11. Dynamic Analysis of Heavy Vehicle Medium Duty Drive Shaft Using Conventional and Composite Material

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Jain, Rajat; Patil, Pravin P.

    2016-09-01

    The main highlight of this study is structural and modal analysis of single piece drive shaft for selection of material. Drive shaft is used for torque carrying from vehicle transmission to rear wheel differential system. Heavy vehicle medium duty transmission drive shaft was selected as research object. Conventional materials (Steel SM45 C, Stainless Steel) and composite materials (HS carbon epoxy, E Glass Polyester Resin Composite) were selected for the analysis. Single piece composite material drive shaft has advantage over conventional two-piece steel drive shaft. It has higher specific strength, longer life, less weight, high critical speed and higher torque carrying capacity. The main criteria for drive shaft failure are strength and weight. Maximum modal frequency obtained is 919 Hz. Various harmful vibration modes (lateral vibration and torsional vibration) were identified and maximum deflection region was specified. For single-piece drive shaft the natural bending frequency should be higher because it is subjected to torsion and shear stress. Single piece drive shaft was modelled using Solid Edge and Pro-E. Finite Element Analysis was used for structural and modal analysis with actual running boundary condition like frictional support, torque and moment. FEA simulation results were validated with experimental literature results.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.

    Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis,more » also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work presented in this report aims to develop such a method and establish a Modal Analysis for Grid Operation (MANGO) procedure to aid grid operation decision making to increase inter-area modal damping. The procedure can provide operation suggestions (such as increasing generation or decreasing load) for mitigating inter-area oscillations.« less

  13. A Single Session of rTMS Enhances Small-Worldness in Writer's Cramp: Evidence from Simultaneous EEG-fMRI Multi-Modal Brain Graph.

    PubMed

    Bharath, Rose D; Panda, Rajanikant; Reddam, Venkateswara Reddy; Bhaskar, M V; Gohel, Suril; Bhardwaj, Sujas; Prajapati, Arvind; Pal, Pramod Kumar

    2017-01-01

    Background and Purpose : Repetitive transcranial magnetic stimulation (rTMS) induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI. Method : Simultaneous EEG-fMRI was acquired in duplicate before (R1) and after (R2) a single session of rTMS in 14 patients with Writer's Cramp (WC). Whole brain neuronal and hemodynamic network connectivity were explored using the graph theory measures and clustering coefficient, path length and small-world index were calculated for EEG and resting state fMRI (rsfMRI). Multi-modal graph theory analysis was used to evaluate the correlation of EEG and fMRI clustering coefficients. Result : A single session of rTMS was found to increase the clustering coefficient and small-worldness significantly in both EEG and fMRI ( p < 0.05). Multi-modal graph theory analysis revealed significant modulations in the fronto-parietal regions immediately after rTMS. The rsfMRI revealed additional modulations in several deep brain regions including cerebellum, insula and medial frontal lobe. Conclusion : Multi-modal graph theory analysis of simultaneous EEG-fMRI can supplement motor physiology methods in understanding the neurobiology of rTMS in vivo . Coinciding evidence from EEG and rsfMRI reports small-world morphology for the acute phase network hyper-connectivity indicating changes ensuing low-frequency rTMS is probably not "noise".

  14. Three-way parallel independent component analysis for imaging genetics using multi-objective optimization.

    PubMed

    Ulloa, Alvaro; Jingyu Liu; Vergara, Victor; Jiayu Chen; Calhoun, Vince; Pattichis, Marios

    2014-01-01

    In the biomedical field, current technology allows for the collection of multiple data modalities from the same subject. In consequence, there is an increasing interest for methods to analyze multi-modal data sets. Methods based on independent component analysis have proven to be effective in jointly analyzing multiple modalities, including brain imaging and genetic data. This paper describes a new algorithm, three-way parallel independent component analysis (3pICA), for jointly identifying genomic loci associated with brain function and structure. The proposed algorithm relies on the use of multi-objective optimization methods to identify correlations among the modalities and maximally independent sources within modality. We test the robustness of the proposed approach by varying the effect size, cross-modality correlation, noise level, and dimensionality of the data. Simulation results suggest that 3p-ICA is robust to data with SNR levels from 0 to 10 dB and effect-sizes from 0 to 3, while presenting its best performance with high cross-modality correlations, and more than one subject per 1,000 variables. In an experimental study with 112 human subjects, the method identified links between a genetic component (pointing to brain function and mental disorder associated genes, including PPP3CC, KCNQ5, and CYP7B1), a functional component related to signal decreases in the default mode network during the task, and a brain structure component indicating increases of gray matter in brain regions of the default mode region. Although such findings need further replication, the simulation and in-vivo results validate the three-way parallel ICA algorithm presented here as a useful tool in biomedical data decomposition applications.

  15. Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling

    NASA Astrophysics Data System (ADS)

    Dumeige, Yannick; Féron, Patrice

    2011-10-01

    Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processing or ternary optical logic applications.

  16. Analysis of spurious oscillation modes for the shallow water and Navier-Stokes equations

    USGS Publications Warehouse

    Walters, R.A.; Carey, G.F.

    1983-01-01

    The origin and nature of spurious oscillation modes that appear in mixed finite element methods are examined. In particular, the shallow water equations are considered and a modal analysis for the one-dimensional problem is developed. From the resulting dispersion relations we find that the spurious modes in elevation are associated with zero frequency and large wave number (wavelengths of the order of the nodal spacing) and consequently are zero-velocity modes. The spurious modal behavior is the result of the finite spatial discretization. By means of an artificial compressibility and limiting argument we are able to resolve the similar problem for the Navier-Stokes equations. The relationship of this simpler analysis to alternative consistency arguments is explained. This modal approach provides an explanation of the phenomenon in question and permits us to deduce the cause of the very complex behavior of spurious modes observed in numerical experiments with the shallow water equations and Navier-Stokes equations. Furthermore, this analysis is not limited to finite element formulations, but is also applicable to finite difference formulations. ?? 1983.

  17. Modal analysis using a Fourier analyzer, curve-fitting, and modal tuning

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.; Chung, Y. T.

    1981-01-01

    The proposed modal test program differs from single-input methods in that preliminary data may be acquired using multiple inputs, and modal tuning procedures may be employed to define closely spaced frquency modes more accurately or to make use of frequency response functions (FRF's) which are based on several input locations. In some respects the proposed modal test proram resembles earlier sine-sweep and sine-dwell testing in that broadband FRF's are acquired using several input locations, and tuning is employed to refine the modal parameter estimates. The major tasks performed in the proposed modal test program are outlined. Data acquisition and FFT processing, curve fitting, and modal tuning phases are described and examples are given to illustrate and evaluate them.

  18. Combining optimization methods with response spectra curve-fitting toward improved damping ratio estimation

    NASA Astrophysics Data System (ADS)

    Brewick, Patrick T.; Smyth, Andrew W.

    2016-12-01

    The authors have previously shown that many traditional approaches to operational modal analysis (OMA) struggle to properly identify the modal damping ratios for bridges under traffic loading due to the interference caused by the driving frequencies of the traffic loads. This paper presents a novel methodology for modal parameter estimation in OMA that overcomes the problems presented by driving frequencies and significantly improves the damping estimates. This methodology is based on finding the power spectral density (PSD) of a given modal coordinate, and then dividing the modal PSD into separate regions, left- and right-side spectra. The modal coordinates were found using a blind source separation (BSS) algorithm and a curve-fitting technique was developed that uses optimization to find the modal parameters that best fit each side spectra of the PSD. Specifically, a pattern-search optimization method was combined with a clustering analysis algorithm and together they were employed in a series of stages in order to improve the estimates of the modal damping ratios. This method was used to estimate the damping ratios from a simulated bridge model subjected to moving traffic loads. The results of this method were compared to other established OMA methods, such as Frequency Domain Decomposition (FDD) and BSS methods, and they were found to be more accurate and more reliable, even for modes that had their PSDs distorted or altered by driving frequencies.

  19. Dynamic analysis of flexible rotor-bearing systems using a modal approach

    NASA Technical Reports Server (NTRS)

    Choy, K. C.; Gunter, E. J.; Barrett, L. E.

    1978-01-01

    The generalized dynamic equations of motion were obtained by the direct stiffness method for multimass flexible rotor-bearing systems. The direct solution of the equations of motion is illustrated on a simple 3-mass system. For complex rotor-bearing systems, the direct solution of the equations becomes very difficult. The transformation of the equations of motion into modal coordinates can greatly simplify the computation for the solution. The use of undamped and damped system mode shapes in the transformation are discussed. A set of undamped critical speed modes is used to transform the equations of motion into a set of coupled modal equations of motion. A rapid procedure for computing stability, steady state unbalance response, and transient response of the rotor-bearing system is presented. Examples of the application of this modal approach are presented. The dynamics of the system is further investigated with frequency spectrum analysis of the transient response.

  20. Ares I-X Flight Test Vehicle: Stack 5 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Danel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA's Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the first modal test that was performed on the top section of the vehicle referred to as Stack 5, which consisted of the spacecraft adapter, service module, crew module and launch abort system simulators. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 5 modal test.

  1. Ares I-X Flight Test Vehicle:Stack 1 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA s Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the second modal test that was performed on the middle section of the vehicle referred to as Stack 1, which consisted of the subassembly from the 5th segment simulator through the interstage. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 1 modal test.

  2. Amodal processing in human prefrontal cortex.

    PubMed

    Tamber-Rosenau, Benjamin J; Dux, Paul E; Tombu, Michael N; Asplund, Christopher L; Marois, René

    2013-07-10

    Information enters the cortex via modality-specific sensory regions, whereas actions are produced by modality-specific motor regions. Intervening central stages of information processing map sensation to behavior. Humans perform this central processing in a flexible, abstract manner such that sensory information in any modality can lead to response via any motor system. Cognitive theories account for such flexible behavior by positing amodal central information processing (e.g., "central executive," Baddeley and Hitch, 1974; "supervisory attentional system," Norman and Shallice, 1986; "response selection bottleneck," Pashler, 1994). However, the extent to which brain regions embodying central mechanisms of information processing are amodal remains unclear. Here we apply multivariate pattern analysis to functional magnetic resonance imaging (fMRI) data to compare response selection, a cognitive process widely believed to recruit an amodal central resource across sensory and motor modalities. We show that most frontal and parietal cortical areas known to activate across a wide variety of tasks code modality, casting doubt on the notion that these regions embody a central processor devoid of modality representation. Importantly, regions of anterior insula and dorsolateral prefrontal cortex consistently failed to code modality across four experiments. However, these areas code at least one other task dimension, process (instantiated as response selection vs response execution), ensuring that failure to find coding of modality is not driven by insensitivity of multivariate pattern analysis in these regions. We conclude that abstract encoding of information modality is primarily a property of subregions of the prefrontal cortex.

  3. Statistical analysis of modal parameters of a suspension bridge based on Bayesian spectral density approach and SHM data

    NASA Astrophysics Data System (ADS)

    Li, Zhijun; Feng, Maria Q.; Luo, Longxi; Feng, Dongming; Xu, Xiuli

    2018-01-01

    Uncertainty of modal parameters estimation appear in structural health monitoring (SHM) practice of civil engineering to quite some significant extent due to environmental influences and modeling errors. Reasonable methodologies are needed for processing the uncertainty. Bayesian inference can provide a promising and feasible identification solution for the purpose of SHM. However, there are relatively few researches on the application of Bayesian spectral method in the modal identification using SHM data sets. To extract modal parameters from large data sets collected by SHM system, the Bayesian spectral density algorithm was applied to address the uncertainty of mode extraction from output-only response of a long-span suspension bridge. The posterior most possible values of modal parameters and their uncertainties were estimated through Bayesian inference. A long-term variation and statistical analysis was performed using the sensor data sets collected from the SHM system of the suspension bridge over a one-year period. The t location-scale distribution was shown to be a better candidate function for frequencies of lower modes. On the other hand, the burr distribution provided the best fitting to the higher modes which are sensitive to the temperature. In addition, wind-induced variation of modal parameters was also investigated. It was observed that both the damping ratios and modal forces increased during the period of typhoon excitations. Meanwhile, the modal damping ratios exhibit significant correlation with the spectral intensities of the corresponding modal forces.

  4. Finite element analysis of damped vibrations of laminated composite plates

    NASA Astrophysics Data System (ADS)

    Hu, Baogang

    1992-11-01

    Damped free vibrations of composite laminates are subjected to macromechanical analysis. Two models are developed: a viscoelastic damping model and a specific damping capacity model. The important symmetry property of the damping matrix is retained in both models. A modified modal strain energy method is proposed for evaluating modal damping in the viscoelastic model using a real (instead of a complex) eigenvalue problem solution. Numerical studies of multidegree of freedom systems are conducted to illustrate the improved accuracy of the method compared to the modal strain energy method. The experimental data reported in the literature for damped free vibrations in both polymer matrix and metal matrix composites were used in finite element analysis to test and compare the damping models. The natural frequencies and modal damping were obtained using both the viscoelastic and specific models. Results from both models are in satisfactory agreement with experimental data. Both models were found to be reasonably accurate for systems with low damping. Parametric studies were conducted to examine the effects on damping of the side to thickness ratio, the principal moduli ratio, the total number of layers, the ply angle, and the boundary conditions.

  5. Vibration fatigue using modal decomposition

    NASA Astrophysics Data System (ADS)

    Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.

  6. Determining the best treatment for simple bone cyst: a decision analysis.

    PubMed

    Lee, Seung Yeol; Chung, Chin Youb; Lee, Kyoung Min; Sung, Ki Hyuk; Won, Sung Hun; Choi, In Ho; Cho, Tae-Joon; Yoo, Won Joon; Yeo, Ji Hyun; Park, Moon Seok

    2014-03-01

    The treatment of simple bone cysts (SBC) in children varies significantly among physicians. This study examined which procedure is better for the treatment of SBC, using a decision analysis based on current published evidence. A decision tree focused on five treatment modalities of SBC (observation, steroid injection, autologous bone marrow injection, decompression, and curettage with bone graft) were created. Each treatment modality was further branched, according to the presence and severity of complications. The probabilities of all cases were obtained by literature review. A roll back tool was utilized to determine the most preferred treatment modality. One-way sensitivity analysis was performed to determine the threshold value of the treatment modalities. Two-way sensitivity analysis was utilized to examine the joint impact of changes in probabilities of two parameters. The decision model favored autologous bone marrow injection. The expected value of autologous bone marrow injection was 0.9445, while those of observation, steroid injection, decompression, and curettage and bone graft were 0.9318, 0.9400, 0.9395, and 0.9342, respectively. One-way sensitivity analysis showed that autologous bone marrow injection was better than that of decompression for the expected value when the rate of pathologic fracture, or positive symptoms of SBC after autologous bone marrow injection, was lower than 20.4%. In our study, autologous bone marrow injection was found to be the best choice of treatment of SBC. However, the results were sensitive to the rate of pathologic fracture after treatment of SBC. Physicians should consider the possibility of pathologic fracture when they determine a treatment method for SBC.

  7. Applications of data compression techniques in modal analysis for on-orbit system identification

    NASA Technical Reports Server (NTRS)

    Carlin, Robert A.; Saggio, Frank; Garcia, Ephrahim

    1992-01-01

    Data compression techniques have been investigated for use with modal analysis applications. A redundancy-reduction algorithm was used to compress frequency response functions (FRFs) in order to reduce the amount of disk space necessary to store the data and/or save time in processing it. Tests were performed for both single- and multiple-degree-of-freedom (SDOF and MDOF, respectively) systems, with varying amounts of noise. Analysis was done on both the compressed and uncompressed FRFs using an SDOF Nyquist curve fit as well as the Eigensystem Realization Algorithm. Significant savings were realized with minimal errors incurred by the compression process.

  8. Polynomial modal analysis of lamellar diffraction gratings in conical mounting.

    PubMed

    Randriamihaja, Manjakavola Honore; Granet, Gérard; Edee, Kofi; Raniriharinosy, Karyl

    2016-09-01

    An efficient numerical modal method for modeling a lamellar grating in conical mounting is presented. Within each region of the grating, the electromagnetic field is expanded onto Legendre polynomials, which allows us to enforce in an exact manner the boundary conditions that determine the eigensolutions. Our code is successfully validated by comparison with results obtained with the analytical modal method.

  9. Deontic Modals in RP-US Visiting Forces Agreement (VFA): A Corpus-Based Analysis

    ERIC Educational Resources Information Center

    Dela Rosa, John Paul Obillos

    2017-01-01

    The marriage between language and the law is apparent in any legal document of whatever purpose. Hence, at present, studies on the language of the law are definitely in vogue. Grounded on Quirk et al. (1985) and Matulewska's (2010) description of deontic modality, this corpus-based linguistic study aimed at analyzing the use of deontic modals in…

  10. Modality distribution of sensory neurons in the feline caudate nucleus and the substantia nigra.

    PubMed

    Márkus, Zita; Eördegh, Gabriella; Paróczy, Zsuzsanna; Benedek, G; Nagy, A

    2008-09-01

    Despite extensive analysis of the motor functions of the basal ganglia and the fact that multisensory information processing appears critical for the execution of their behavioral action, little is known concerning the sensory functions of the caudate nucleus (CN) and the substantia nigra (SN). In the present study, we set out to describe the sensory modality distribution and to determine the proportions of multisensory units within the CN and the SN. The separate single sensory modality tests demonstrated that a majority of the neurons responded to only one modality, so that they seemed to be unimodal. In contrast with these findings, a large proportion of these neurons exhibited significant multisensory cross-modal interactions. Thus, these neurons should also be classified as multisensory. Our results suggest that a surprisingly high proportion of sensory neurons in the basal ganglia are multisensory, and demonstrate that an analysis without a consideration of multisensory cross-modal interactions may strongly underrepresent the number of multisensory units. We conclude that a majority of the sensory neurons in the CN and SN process multisensory information and only a minority of these units are clearly unimodal.

  11. Fiducial marker for correlating images

    DOEpatents

    Miller, Lisa Marie [Rocky Point, NY; Smith, Randy J [Wading River, NY; Warren, John B [Port Jefferson, NY; Elliott, Donald [Hampton Bays, NY

    2011-06-21

    The invention relates to a fiducial marker having a marking grid that is used to correlate and view images produced by different imaging modalities or different imaging and viewing modalities. More specifically, the invention relates to the fiducial marking grid that has a grid pattern for producing either a viewing image and/or a first analytical image that can be overlaid with at least one other second analytical image in order to view a light path or to image different imaging modalities. Depending on the analysis, the grid pattern has a single layer of a certain thickness or at least two layers of certain thicknesses. In either case, the grid pattern is imageable by each imaging or viewing modality used in the analysis. Further, when viewing a light path, the light path of the analytical modality cannot be visualized by viewing modality (e.g., a light microscope objective). By correlating these images, the ability to analyze a thin sample that is, for example, biological in nature but yet contains trace metal ions is enhanced. Specifically, it is desired to analyze both the organic matter of the biological sample and the trace metal ions contained within the biological sample without adding or using extrinsic labels or stains.

  12. Representational similarity analysis reveals commonalities and differences in the semantic processing of words and objects.

    PubMed

    Devereux, Barry J; Clarke, Alex; Marouchos, Andreas; Tyler, Lorraine K

    2013-11-27

    Understanding the meanings of words and objects requires the activation of underlying conceptual representations. Semantic representations are often assumed to be coded such that meaning is evoked regardless of the input modality. However, the extent to which meaning is coded in modality-independent or amodal systems remains controversial. We address this issue in a human fMRI study investigating the neural processing of concepts, presented separately as written words and pictures. Activation maps for each individual word and picture were used as input for searchlight-based multivoxel pattern analyses. Representational similarity analysis was used to identify regions correlating with low-level visual models of the words and objects and the semantic category structure common to both. Common semantic category effects for both modalities were found in a left-lateralized network, including left posterior middle temporal gyrus (LpMTG), left angular gyrus, and left intraparietal sulcus (LIPS), in addition to object- and word-specific semantic processing in ventral temporal cortex and more anterior MTG, respectively. To explore differences in representational content across regions and modalities, we developed novel data-driven analyses, based on k-means clustering of searchlight dissimilarity matrices and seeded correlation analysis. These revealed subtle differences in the representations in semantic-sensitive regions, with representations in LIPS being relatively invariant to stimulus modality and representations in LpMTG being uncorrelated across modality. These results suggest that, although both LpMTG and LIPS are involved in semantic processing, only the functional role of LIPS is the same regardless of the visual input, whereas the functional role of LpMTG differs for words and objects.

  13. Computer-Assisted Traffic Engineering Using Assignment, Optimal Signal Setting, and Modal Split

    DOT National Transportation Integrated Search

    1978-05-01

    Methods of traffic assignment, traffic signal setting, and modal split analysis are combined in a set of computer-assisted traffic engineering programs. The system optimization and user optimization traffic assignments are described. Travel time func...

  14. Ground Vibration Test Planning and Pre-Test Analysis for the X-33 Vehicle

    NASA Technical Reports Server (NTRS)

    Bedrossian, Herand; Tinker, Michael L.; Hidalgo, Homero

    2000-01-01

    This paper describes the results of the modal test planning and the pre-test analysis for the X-33 vehicle. The pre-test analysis included the selection of the target modes, selection of the sensor and shaker locations and the development of an accurate Test Analysis Model (TAM). For target mode selection, four techniques were considered, one based on the Modal Cost technique, one based on Balanced Singular Value technique, a technique known as the Root Sum Squared (RSS) method, and a Modal Kinetic Energy (MKE) approach. For selecting sensor locations, four techniques were also considered; one based on the Weighted Average Kinetic Energy (WAKE), one based on Guyan Reduction (GR), one emphasizing engineering judgment, and one based on an optimum sensor selection technique using Genetic Algorithm (GA) search technique combined with a criteria based on Hankel Singular Values (HSV's). For selecting shaker locations, four techniques were also considered; one based on the Weighted Average Driving Point Residue (WADPR), one based on engineering judgment and accessibility considerations, a frequency response method, and an optimum shaker location selection based on a GA search technique combined with a criteria based on HSV's. To evaluate the effectiveness of the proposed sensor and shaker locations for exciting the target modes, extensive numerical simulations were performed. Multivariate Mode Indicator Function (MMIF) was used to evaluate the effectiveness of each sensor & shaker set with respect to modal parameter identification. Several TAM reduction techniques were considered including, Guyan, IRS, Modal, and Hybrid. Based on a pre-test cross-orthogonality checks using various reduction techniques, a Hybrid TAM reduction technique was selected and was used for all three vehicle fuel level configurations.

  15. Separate modal analysis for tumor detection with a digital image elasto tomography (DIET) breast cancer screening system.

    PubMed

    Kashif, Amer S; Lotz, Thomas F; Heeren, Adrianus M W; Chase, James G

    2013-11-01

    It is estimated that every year, 1 × 10(6) women are diagnosed with breast cancer, and more than 410,000 die annually worldwide. Digital Image Elasto Tomography (DIET) is a new noninvasive breast cancer screening modality that induces mechanical vibrations in the breast and images its surface motion with digital cameras to detect changes in stiffness. This research develops a new automated approach for diagnosing breast cancer using DIET based on a modal analysis model. The first and second natural frequency of silicone phantom breasts is analyzed. Separate modal analysis is performed for each region of the phantom to estimate the modal parameters using imaged motion data over several input frequencies. Statistical methods are used to assess the likelihood of a frequency shift, which can indicate tumor location. Phantoms with 5, 10, and 20 mm stiff inclusions are tested, as well as a homogeneous (healthy) phantom. Inclusions are located at four locations with different depth. The second natural frequency proves to be a reliable metric with the potential to clearly distinguish lesion like inclusions of different stiffness, as well as providing an approximate location for the tumor like inclusions. The 10 and 20 mm inclusions are always detected regardless of depth. The 5 mm inclusions are only detected near the surface. The homogeneous phantom always yields a negative result, as expected. Detection is based on a statistical likelihood analysis to determine the presence of significantly different frequency response over the phantom, which is a novel approach to this problem. The overall results show promise and justify proof of concept trials with human subjects.

  16. Experimental Modal Analysis and Dynamic Component Synthesis. Volume 3. Modal Parameter Estimation

    DTIC Science & Technology

    1987-12-01

    residues as well as poles is achieved. A singular value decomposition method has been used to develop a complex mode indicator function ( CMIF )[70...which can be used to help determine the number of poles before the analysis. The CMIF is formed by performing a singular value decomposition of all of...servo systems which can include both low and high damping modes. "• CMIF can be used to indicate close or repeated eigenvalues before the parameter

  17. Hybrid Soft Soil Tire Model (HSSTM). Part 1: Tire Material and Structure Modeling

    DTIC Science & Technology

    2015-04-28

    commercially available vehicle simulation packages. Model parameters are obtained using a validated finite element tire model, modal analysis, and other...design of experiment matrix. This data, in addition to modal analysis data were used to validate the tire model. Furthermore, to study the validity...é ë ê ê ê ê ê ê ê ù û ú ú ú ú ú ú ú (78) The applied forces to the rim center consist of the axle forces and suspension forces: FFF Gsuspension G

  18. Fiber facet gratings for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Vanek, Martin; Vanis, Jan; Baravets, Yauhen; Todorov, Filip; Ctyroky, Jiri; Honzatko, Pavel

    2017-12-01

    We numerically investigated the properties of diffraction gratings designated for fabrication on the facet of an optical fiber. The gratings are intended to be used in high-power fiber lasers as mirrors either with a low or high reflectivity. The modal reflectance of low reflectivity polarizing grating has a value close to 3% for TE mode while it is significantly suppressed for TM mode. Such a grating can be fabricated on laser output fiber facet. The polarizing grating with high modal reflectance is designed as a leaky-mode resonant diffraction grating. The grating can be etched in a thin layer of high index dielectric which is sputtered on fiber facet. We used refractive index of Ta2O5 for such a layer. We found that modal reflectance can be close to 0.95 for TE polarization and polarization extinction ratio achieves 18 dB. Rigorous coupled wave analysis was used for fast optimization of grating parameters while aperiodic rigorous coupled wave analysis, Fourier modal method and finite difference time domain method were compared and used to compute modal reflectance of designed gratings.

  19. NASTRAN postprocessor program for transient response to input accelerations. [procedure for generating and writing modal input data on tapes using NASTRAN

    NASA Technical Reports Server (NTRS)

    Wingate, R. T.; Jones, T. C.; Stephens, M. V.

    1973-01-01

    The description of a transient analysis program for computing structural responses to input base accelerations is presented. A hybrid modal formulation is used and a procedure is demonstrated for generating and writing all modal input data on user tapes via NASTRAN. Use of several new Level 15 modules is illustrated along with a problem associated with reading the postprocessor program input from a user tape. An example application of the program is presented for the analysis of a spacecraft subjected to accelerations initiated by thrust transients. Experience with the program has indicated it to be very efficient and economical because of its simplicity and small central memory storage requirements.

  20. Correlation of analytical and experimental hot structure vibration results

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Deaton, Vivian C.

    1993-01-01

    High surface temperatures and temperature gradients can affect the vibratory characteristics and stability of aircraft structures. Aircraft designers are relying more on finite-element model analysis methods to ensure sufficient vehicle structural dynamic stability throughout the desired flight envelope. Analysis codes that predict these thermal effects must be correlated and verified with experimental data. Experimental modal data for aluminum, titanium, and fiberglass plates heated at uniform, nonuniform, and transient heating conditions are presented. The data show the effect of heat on each plate's modal characteristics, a comparison of predicted and measured plate vibration frequencies, the measured modal damping, and the effect of modeling material property changes and thermal stresses on the accuracy of the analytical results at nonuniform and transient heating conditions.

  1. Hybrid SPECT/CT imaging in neurology.

    PubMed

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  2. Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumeige, Yannick; Feron, Patrice

    Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processingmore » or ternary optical logic applications.« less

  3. Transportation of U. S. Grains: A Modal Share Analysis, 1978-95

    DOT National Transportation Integrated Search

    1998-03-01

    This analysis of grain movements by transport mode updates a 1992 study. It : provides information about changes in the competitiveness and relative : efficiencies between the modes. The goal of this analysis was to estimate the : tonnages of grain r...

  4. Performance bounds for modal analysis using sparse linear arrays

    NASA Astrophysics Data System (ADS)

    Li, Yuanxin; Pezeshki, Ali; Scharf, Louis L.; Chi, Yuejie

    2017-05-01

    We study the performance of modal analysis using sparse linear arrays (SLAs) such as nested and co-prime arrays, in both first-order and second-order measurement models. We treat SLAs as constructed from a subset of sensors in a dense uniform linear array (ULA), and characterize the performance loss of SLAs with respect to the ULA due to using much fewer sensors. In particular, we claim that, provided the same aperture, in order to achieve comparable performance in terms of Cramér-Rao bound (CRB) for modal analysis, SLAs require more snapshots, of which the number is about the number of snapshots used by ULA times the compression ratio in the number of sensors. This is shown analytically for the case with one undamped mode, as well as empirically via extensive numerical experiments for more complex scenarios. Moreover, the misspecified CRB proposed by Richmond and Horowitz is also studied, where SLAs suffer more performance loss than their ULA counterpart.

  5. A tri-modality image fusion method for target delineation of brain tumors in radiotherapy.

    PubMed

    Guo, Lu; Shen, Shuming; Harris, Eleanor; Wang, Zheng; Jiang, Wei; Guo, Yu; Feng, Yuanming

    2014-01-01

    To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors. A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV) delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT) and tri-modality (MRI/CT/PET) image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV), the average distance between surface and centroid (ADSC), and the local standard deviation (SDlocal). Analysis of COV was also performed to evaluate intra-observer volume variation. The inter-observer variation analysis showed that, the mean COV was 0.14(± 0.09) and 0.07(± 0.01) for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05) with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm) and patient 3 (from 0.42 cm to 0.36 cm) with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00) with the tri-modality method as compared with using the dual-modality method. With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.

  6. Conceptual Structure within and between Modalities

    PubMed Central

    Dilkina, Katia; Lambon Ralph, Matthew A.

    2012-01-01

    Current views of semantic memory share the assumption that conceptual representations are based on multimodal experience, which activates distinct modality-specific brain regions. This proposition is widely accepted, yet little is known about how each modality contributes to conceptual knowledge and how the structure of this contribution varies across these multiple information sources. We used verbal feature lists, features from drawings, and verbal co-occurrence statistics from latent semantic analysis to examine the informational structure in four domains of knowledge: perceptual, functional, encyclopedic, and verbal. The goals of the analysis were three-fold: (1) to assess the structure within individual modalities; (2) to compare structures between modalities; and (3) to assess the degree to which concepts organize categorically or randomly. Our results indicated significant and unique structure in all four modalities: perceptually, concepts organize based on prominent features such as shape, size, color, and parts; functionally, they group based on use and interaction; encyclopedically, they arrange based on commonality in location or behavior; and verbally, they group associatively or relationally. Visual/perceptual knowledge gives rise to the strongest hierarchical organization and is closest to classic taxonomic structure. Information is organized somewhat similarly in the perceptual and encyclopedic domains, which differs significantly from the structure in the functional and verbal domains. Notably, the verbal modality has the most unique organization, which is not at all categorical but also not random. The idiosyncrasy and complexity of conceptual structure across modalities raise the question of how all of these modality-specific experiences are fused together into coherent, multifaceted yet unified concepts. Accordingly, both methodological and theoretical implications of the present findings are discussed. PMID:23293593

  7. A System for the Semantic Multimodal Analysis of News Audio-Visual Content

    NASA Astrophysics Data System (ADS)

    Mezaris, Vasileios; Gidaros, Spyros; Papadopoulos, GeorgiosTh; Kasper, Walter; Steffen, Jörg; Ordelman, Roeland; Huijbregts, Marijn; de Jong, Franciska; Kompatsiaris, Ioannis; Strintzis, MichaelG

    2010-12-01

    News-related content is nowadays among the most popular types of content for users in everyday applications. Although the generation and distribution of news content has become commonplace, due to the availability of inexpensive media capturing devices and the development of media sharing services targeting both professional and user-generated news content, the automatic analysis and annotation that is required for supporting intelligent search and delivery of this content remains an open issue. In this paper, a complete architecture for knowledge-assisted multimodal analysis of news-related multimedia content is presented, along with its constituent components. The proposed analysis architecture employs state-of-the-art methods for the analysis of each individual modality (visual, audio, text) separately and proposes a novel fusion technique based on the particular characteristics of news-related content for the combination of the individual modality analysis results. Experimental results on news broadcast video illustrate the usefulness of the proposed techniques in the automatic generation of semantic annotations.

  8. Efficient techniques for forced response involving linear modal components interconnected by discrete nonlinear connection elements

    NASA Astrophysics Data System (ADS)

    Avitabile, Peter; O'Callahan, John

    2009-01-01

    Generally, response analysis of systems containing discrete nonlinear connection elements such as typical mounting connections require the physical finite element system matrices to be used in a direct integration algorithm to compute the nonlinear response analysis solution. Due to the large size of these physical matrices, forced nonlinear response analysis requires significant computational resources. Usually, the individual components of the system are analyzed and tested as separate components and their individual behavior may essentially be linear when compared to the total assembled system. However, the joining of these linear subsystems using highly nonlinear connection elements causes the entire system to become nonlinear. It would be advantageous if these linear modal subsystems could be utilized in the forced nonlinear response analysis since much effort has usually been expended in fine tuning and adjusting the analytical models to reflect the tested subsystem configuration. Several more efficient techniques have been developed to address this class of problem. Three of these techniques given as: equivalent reduced model technique (ERMT);modal modification response technique (MMRT); andcomponent element method (CEM); are presented in this paper and are compared to traditional methods.

  9. Dynamic mobility applications policy analysis : policy and institutional issues for multi-modal intelligent traffic signal system (MMITSS).

    DOT National Transportation Integrated Search

    2015-03-01

    The Connected Vehicle Mobility Policy team (herein, policy team) developed this report to document policy considerations for the Multi-Modal Intelligent Traffic Signal System, or MMITSS. MMITSS comprises a bundle of dynamic mobility application...

  10. Validation of a new method for finding the rotational axes of the knee using both marker-based roentgen stereophotogrammetric analysis and 3D video-based motion analysis for kinematic measurements.

    PubMed

    Roland, Michelle; Hull, M L; Howell, S M

    2011-05-01

    In a previous paper, we reported the virtual axis finder, which is a new method for finding the rotational axes of the knee. The virtual axis finder was validated through simulations that were subject to limitations. Hence, the objective of the present study was to perform a mechanical validation with two measurement modalities: 3D video-based motion analysis and marker-based roentgen stereophotogrammetric analysis (RSA). A two rotational axis mechanism was developed, which simulated internal-external (or longitudinal) and flexion-extension (FE) rotations. The actual axes of rotation were known with respect to motion analysis and RSA markers within ± 0.0006 deg and ± 0.036 mm and ± 0.0001 deg and ± 0.016 mm, respectively. The orientation and position root mean squared errors for identifying the longitudinal rotation (LR) and FE axes with video-based motion analysis (0.26 deg, 0.28 m, 0.36 deg, and 0.25 mm, respectively) were smaller than with RSA (1.04 deg, 0.84 mm, 0.82 deg, and 0.32 mm, respectively). The random error or precision in the orientation and position was significantly better (p=0.01 and p=0.02, respectively) in identifying the LR axis with video-based motion analysis (0.23 deg and 0.24 mm) than with RSA (0.95 deg and 0.76 mm). There was no significant difference in the bias errors between measurement modalities. In comparing the mechanical validations to virtual validations, the virtual validations produced comparable errors to those of the mechanical validation. The only significant difference between the errors of the mechanical and virtual validations was the precision in the position of the LR axis while simulating video-based motion analysis (0.24 mm and 0.78 mm, p=0.019). These results indicate that video-based motion analysis with the equipment used in this study is the superior measurement modality for use with the virtual axis finder but both measurement modalities produce satisfactory results. The lack of significant differences between validation techniques suggests that the virtual sensitivity analysis previously performed was appropriately modeled. Thus, the virtual axis finder can be applied with a thorough understanding of its errors in a variety of test conditions.

  11. Representational Similarity Analysis Reveals Commonalities and Differences in the Semantic Processing of Words and Objects

    PubMed Central

    Devereux, Barry J.; Clarke, Alex; Marouchos, Andreas; Tyler, Lorraine K.

    2013-01-01

    Understanding the meanings of words and objects requires the activation of underlying conceptual representations. Semantic representations are often assumed to be coded such that meaning is evoked regardless of the input modality. However, the extent to which meaning is coded in modality-independent or amodal systems remains controversial. We address this issue in a human fMRI study investigating the neural processing of concepts, presented separately as written words and pictures. Activation maps for each individual word and picture were used as input for searchlight-based multivoxel pattern analyses. Representational similarity analysis was used to identify regions correlating with low-level visual models of the words and objects and the semantic category structure common to both. Common semantic category effects for both modalities were found in a left-lateralized network, including left posterior middle temporal gyrus (LpMTG), left angular gyrus, and left intraparietal sulcus (LIPS), in addition to object- and word-specific semantic processing in ventral temporal cortex and more anterior MTG, respectively. To explore differences in representational content across regions and modalities, we developed novel data-driven analyses, based on k-means clustering of searchlight dissimilarity matrices and seeded correlation analysis. These revealed subtle differences in the representations in semantic-sensitive regions, with representations in LIPS being relatively invariant to stimulus modality and representations in LpMTG being uncorrelated across modality. These results suggest that, although both LpMTG and LIPS are involved in semantic processing, only the functional role of LIPS is the same regardless of the visual input, whereas the functional role of LpMTG differs for words and objects. PMID:24285896

  12. [Cost-effectiveness of multiple screening modalities on breast cancer in Chinese women from Shanghai].

    PubMed

    Wu, F; Mo, M; Qin, X X; Fang, H; Zhao, G M; Liu, G Y; Chen, Y Y; Cao, Z G; Yan, Y J; Lyu, L L; Xu, W H; Shao, Z M

    2017-12-10

    Objective: To determine the most cost-effective modality for breast cancer screening in women living in Shanghai. Methods: A Markov model for breast cancer was redeveloped based on true effect which was derived from a project for detection of women at high risk of breast cancer and an organized breast cancer screening program conducted simultaneously in Minhang district, Shanghai, during 2008 to 2012. Parameters of the model were derived from literatures. General principles related to cost-effectiveness analysis were used to compare the costs and effects of 12 different screening modalities in a simulated cohort involving 100 000 women aged 45 years. Incremental cost-effectiveness ratio (ICER) was used to determine the most cost-effective modality. Sensitivity analysis was conducted to evaluate how these factors affected the estimated cost-effectiveness. Results: The modality of biennial CBE followed by ultrasonic and mammography among those with positive CBE was observed as the most cost-effective one. The costs appeared as 182 526 Yuan RMB per life year gained and 144 386 Yuan RMB per quality adjusted life-year (QALY) saved, which were within the threshold of 2-3 times of local per capita Gross Domestic Product. Results from sensitivity analysis showed that, due to higher incidence rate of breast cancer in Shanghai, the cost per QALY would be 64 836 Yuan RMB lower in Shanghai than the average level in China. Conclusion: Our research findings showed that the biennial CBE program followed by ultrasonic and mammography for those with positive CBE results might serve as the optimal breast cancer screening modality for Chinese women living in Shanghai, and thus be widely promoted in this population elsewhere.

  13. Modal sound transmission loss of a single leaf panel: Asymptotic solutions.

    PubMed

    Wang, Chong

    2015-12-01

    In a previously published paper [C. Wang, J. Acoust. Soc. Am. 137(6), 3514-3522 (2015)], the modal sound transmission coefficients of a single leaf panel were discussed with regard to the inter-modal coupling effects. By incorporating such effect into the equivalent modal radiation impedance, which is directly related to the modal sound transmission coefficient of each mode, the overall sound transmission loss for both normal and randomized sound incidences was computed through a simple modal superposition. Benefiting from the analytical expressions of the equivalent modal impedance and modal transmission coefficients, in this paper, behaviors of modal sound transmission coefficients in several typical frequency ranges are discussed in detail. Asymptotic solutions are also given for the panels with relatively low bending stiffnesses, for which the sound transmission loss has been assumed to follow the mass law of a limp panel. Results are also compared to numerical analysis and the renowned mass law theories.

  14. To increase controllability of a large flexible antenna by modal optimization

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Wang, Pengpeng; Jiang, Wenjian

    2017-12-01

    Large deployable antennas are widely used in aerospace engineering to meet the envelop limit of rocket fairing. The high flexibility and low damping of antenna has proposed critical requirement not only for stability control of the antenna itself, but also for attitude control of the satellite. This paper aims to increase controllability of a large flexible antenna by modal optimization. Firstly, Sensitivity analysis of antenna modal frequencies to stiffness of support structure and stiffness of scanning mechanism are conducted respectively. Secondly, Modal simulation results of antenna frequencies are given, influences of scanning angles on moment of inertia and modal frequencies are evaluated, and modal test is carried out to validate the simulation results. All the simulation and test results show that, after modal optimization the modal characteristic of the large deployable antenna meets the controllability requirement well.

  15. Estimating multivariate similarity between neuroimaging datasets with sparse canonical correlation analysis: an application to perfusion imaging.

    PubMed

    Rosa, Maria J; Mehta, Mitul A; Pich, Emilio M; Risterucci, Celine; Zelaya, Fernando; Reinders, Antje A T S; Williams, Steve C R; Dazzan, Paola; Doyle, Orla M; Marquand, Andre F

    2015-01-01

    An increasing number of neuroimaging studies are based on either combining more than one data modality (inter-modal) or combining more than one measurement from the same modality (intra-modal). To date, most intra-modal studies using multivariate statistics have focused on differences between datasets, for instance relying on classifiers to differentiate between effects in the data. However, to fully characterize these effects, multivariate methods able to measure similarities between datasets are needed. One classical technique for estimating the relationship between two datasets is canonical correlation analysis (CCA). However, in the context of high-dimensional data the application of CCA is extremely challenging. A recent extension of CCA, sparse CCA (SCCA), overcomes this limitation, by regularizing the model parameters while yielding a sparse solution. In this work, we modify SCCA with the aim of facilitating its application to high-dimensional neuroimaging data and finding meaningful multivariate image-to-image correspondences in intra-modal studies. In particular, we show how the optimal subset of variables can be estimated independently and we look at the information encoded in more than one set of SCCA transformations. We illustrate our framework using Arterial Spin Labeling data to investigate multivariate similarities between the effects of two antipsychotic drugs on cerebral blood flow.

  16. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-01-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  17. APPLICATION OF STATISTICAL ENERGY ANALYSIS TO VIBRATIONS OF MULTI-PANEL STRUCTURES.

    DTIC Science & Technology

    cylindrical shell are compared with predictions obtained from statistical energy analysis . Generally good agreement is observed. The flow of mechanical...the coefficients of proportionality between power flow and average modal energy difference, which one must know in order to apply statistical energy analysis . No

  18. Time domain modal identification/estimation of the mini-mast testbed

    NASA Technical Reports Server (NTRS)

    Roemer, Michael J.; Mook, D. Joseph

    1991-01-01

    The Mini-Mast is a 20 meter long 3-dimensional, deployable/retractable truss structure designed to imitate future trusses in space. Presented here are results from a robust (with respect to measurement noise sensitivity), time domain, modal identification technique for identifying the modal properties of the Mini-Mast structure even in the face of noisy environments. Three testing/analysis procedures are considered: sinusoidal excitation near resonant frequencies of the Mini-Mast, frequency response function averaging of several modal tests, and random input excitation with a free response period.

  19. Fluid mass and thermal loading effects on the modal characteristics of space shuttle main engine liquid oxygen inlet splitter vanes

    NASA Technical Reports Server (NTRS)

    Panossian, H. V.; Boehnlein, J. J.

    1987-01-01

    An analysis and evaluation of experimental modal survey test data on the variations of modal characteristics induced by pressure and thermal loading events are presented. Extensive modal survey tests were carried out on a Space Shuttle Main Engine (SSME) test article using liquid nitrogen under cryogenic temperatures and high pressures. The results suggest that an increase of pressure under constant cryogenic temperature or a decrease of temperature under high pressure induces an upward shift of frequencies of various modes of the structures.

  20. Modal Filtering for Control of Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Mavris, Dimitri N.

    2013-01-01

    Modal regulators and deformation trackers are designed for an open-loop fluttering wing model. The regulators are designed with modal coordinate and accelerometer inputs respectively. The modal coordinates are estimated with simulated fiber optics. The robust stability of the closed-loop systems is compared in a structured singular-value vector analysis. Performance is evaluated and compared in a gust alleviation and flutter suppression simulation. For the same wing and flight condition two wing-shape-tracking control architectures are presented, which achieve deformation control at any point on the wing.

  1. Bayesian operational modal analysis with asynchronous data, Part II: Posterior uncertainty

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Chen; Au, Siu-Kui

    2018-01-01

    A Bayesian modal identification method has been proposed in the companion paper that allows the most probable values of modal parameters to be determined using asynchronous ambient vibration data. This paper investigates the identification uncertainty of modal parameters in terms of their posterior covariance matrix. Computational issues are addressed. Analytical expressions are derived to allow the posterior covariance matrix to be evaluated accurately and efficiently. Synthetic, laboratory and field data examples are presented to verify the consistency, investigate potential modelling error and demonstrate practical applications.

  2. Pour un enseignement aspectuo-modal et illustre des temps du passe (For an Illustrated, Modal-Aspectual Teaching of the Past Tenses).

    ERIC Educational Resources Information Center

    Gezundhajt, Henriette

    2000-01-01

    Demonstrates how multimedia tools can be combined with an enunciation based analysis of the French verb system in order to develop innovative ways of teaching the imparfait and passe compose. (Author/VWL)

  3. Modal Traffic Impacts of Waterway User Charges : Volume 2. Distribution Systems Analysis.

    DOT National Transportation Integrated Search

    1977-08-01

    The report has considered waterway user charges, which have been proposed as a method of cost recovery of Federal expenditures. The report has examined possible modal carrier and traffic impacts due to user charges on the inland river system, and pot...

  4. Modal Survey of ETM-3, A 5-Segment Derivative of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Nielsen, D.; Townsend, J.; Kappus, K.; Driskill, T.; Torres, I.; Parks, R.

    2005-01-01

    The complex interactions between internal motor generated pressure oscillations and motor structural vibration modes associated with the static test configuration of a Reusable Solid Rocket Motor have potential to generate significant dynamic thrust loads in the 5-segment configuration (Engineering Test Motor 3). Finite element model load predictions for worst-case conditions were generated based on extrapolation of a previously correlated 4-segment motor model. A modal survey was performed on the largest rocket motor to date, Engineering Test Motor #3 (ETM-3), to provide data for finite element model correlation and validation of model generated design loads. The modal survey preparation included pretest analyses to determine an efficient analysis set selection using the Effective Independence Method and test simulations to assure critical test stand component loads did not exceed design limits. Historical Reusable Solid Rocket Motor modal testing, ETM-3 test analysis model development and pre-test loads analyses, as well as test execution, and a comparison of results to pre-test predictions are discussed.

  5. Progress in Operational Analysis of Launch Vehicles in Nonstationary Flight

    NASA Technical Reports Server (NTRS)

    James, George; Kaouk, Mo; Cao, Timothy

    2013-01-01

    This paper presents recent results in an ongoing effort to understand and develop techniques to process launch vehicle data, which is extremely challenging for modal parameter identification. The primary source of difficulty is due to the nonstationary nature of the situation. The system is changing, the environment is not steady, and there is an active control system operating. Hence, the primary tool for producing clean operational results (significant data lengths and data averaging) is not available to the user. This work reported herein uses a correlation-based two step operational modal analysis approach to process the relevant data sets for understanding and development of processes. A significant drawback for such processing of short time histories is a series of beating phenomena due to the inability to average out random modal excitations. A recursive correlation process coupled to a new convergence metric (designed to mitigate the beating phenomena) is the object of this study. It has been found in limited studies that this process creates clean modal frequency estimates but numerically alters the damping.

  6. Effects of auditory and visual modalities in recall of words.

    PubMed

    Gadzella, B M; Whitehead, D A

    1975-02-01

    Ten experimental conditions were used to study the effects of auditory and visual (printed words, uncolored and colored pictures) modalities and their various combinations with college students. A recall paradigm was employed in which subjects responded in a written test. Analysis of data showed the auditory modality was superior to visual (pictures) ones but was not significantly different from visual (printed words) modality. In visual modalities, printed words were superior to colored pictures. Generally, conditions with multiple modes of representation of stimuli were significantly higher than for conditions with single modes. Multiple modalities, consisting of two or three modes, did not differ significantly from each other. It was concluded that any two modalities of the stimuli presented simultaneously were just as effective as three in recall of stimulus words.

  7. Modal vector estimation for closely spaced frequency modes

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.; Chung, Y. T.; Blair, M.

    1982-01-01

    Techniques for obtaining improved modal vector estimates for systems with closely spaced frequency modes are discussed. In describing the dynamical behavior of a complex structure modal parameters are often analyzed: undamped natural frequency, mode shape, modal mass, modal stiffness and modal damping. From both an analytical standpoint and an experimental standpoint, identification of modal parameters is more difficult if the system has repeated frequencies or even closely spaced frequencies. The more complex the structure, the more likely it is to have closely spaced frequencies. This makes it difficult to determine valid mode shapes using single shaker test methods. By employing band selectable analysis (zoom) techniques and by employing Kennedy-Pancu circle fitting or some multiple degree of freedom (MDOF) curve fit procedure, the usefulness of the single shaker approach can be extended.

  8. Modal Analysis for Grid Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANGO software is to provide a solution for improving small signal stability of power systems through adjusting operator-controllable variables using PMU measurement. System oscillation problems are one of the major threats to the grid stability and reliability in California and the Western Interconnection. These problems result in power fluctuations, lower grid operation efficiency, and may even lead to large-scale grid breakup and outages. This MANGO software aims to solve this problem by automatically generating recommended operation procedures termed Modal Analysis for Grid Operation (MANGO) to improve damping of inter-area oscillation modes. The MANGO procedure includes three steps: recognizing small signalmore » stability problems, implementing operating point adjustment using modal sensitivity, and evaluating the effectiveness of the adjustment. The MANGO software package is designed to help implement the MANGO procedure.« less

  9. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.

    PubMed

    Jones, Cameron L; Achuthan, Ajit; Erath, Byron D

    2015-02-01

    This study demonstrates the effect of a substrate layer of adipose tissue on the modal response of the vocal folds, and hence, on the mechanics of voice production. Modal analysis is performed on the vocal fold structure with a lateral layer of adipose tissue. A finite element model is employed, and the first six mode shapes and modal frequencies are studied. The results show significant changes in modal frequencies and substantial variation in mode shapes depending on the strain rate of the adipose tissue. These findings highlight the importance of considering adipose tissue in computational vocal fold modeling.

  10. Using experimental modal analysis to assess the behaviour of timber elements

    NASA Astrophysics Data System (ADS)

    Kouroussis, Georges; Fekih, Lassaad Ben; Descamps, Thierry

    2018-03-01

    Timber frameworks are one of the most important and widespread types of structures. Their configurations and joints are usually complex and require a high level of craftsmanship to assemble. In the field of restoration, a good understanding of the structural behaviour is necessary and is often based on assessment techniques dedicated to wood characterisation. This paper presents the use of experimental modal analysis for finite element updating. To do this, several timber beams in a free supported condition were analysed in order to extract their bending natural characteristics (frequency, damping and mode shapes). Corresponding ABAQUS finite element models were derived which included the effects of local defects (holes, cracks and wood nodes), moisture and structural decay. To achieve the modal updating, additional simulations were performed in order to study the sensitivity of the mechanical parameters. With the intent to estimate their mechanical properties, a procedure of modal updating was carried out in MatLab with a Python script. This was created to extract the modal information from the ABAQUS modal analysis results to be compared with the experimental results. The updating was based on a minimum of unconstrained multivariable function using a derivative-free method. The objective function was selected from the conventional comparison tools (absolute or relative frequency difference, and/or modal assurance criterion). This testing technique was used to determine the dynamic mechanical properties of timber beams, such as the anisotropic Young's Moduli and damping ratio. To verify the modulus, a series of static 4-point bending tests and STS04 classifications were conducted. The results also revealed that local defects have a negligible influence on natural frequencies. The results demonstrate that this assessment tool offers an effective method to obtain the mechanical properties of timber elements, especially when on-site and non-destructive techniques are needed, for example when retrofitting an existing structure.

  11. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities

    PubMed Central

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior. PMID:29535614

  12. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities.

    PubMed

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior.

  13. Modal Analysis of MARS Solar Panel and Planar Vibrations

    NASA Technical Reports Server (NTRS)

    Simonyan, Andranik; Williams, R. Brett

    2007-01-01

    This slide presentation reviews the modal analysis of MARS solar panels and the planar vibrations. Included are views of the solar panels mock-up assembly, a view of the test seup,a view of the plot from the test, with the raw numbers of the frequencies in Hz values with the mode number, the spatial acceleration plots of Center sub panel at resonant frequencies, predictions from the Finite element models, an explanation of the two test that were done on the plate and the results from both tests,

  14. Multimode excitation-induced phase shifts in intrinsic Fabry-Perot interferometric fiber sensor spectra.

    PubMed

    Ma, Cheng; Wang, Anbo

    2010-09-01

    We report the modal analysis of optical fiber single-mode-multimode-single-mode intrinsic Fabry-Perot interferometer sensors. The multimode nature of the Fabry-Perot cavity gives rise to an additional phase term in the spectrogram due to intermodal dispersion-induced wavefront distortion, which could significantly affect the cavity length demodulation accuracy. By using an exact model to analyze the modal behavior, this phase term is explained by employing a rotating vector approach. Comparison of the theoretical analysis with experimental results is presented.

  15. Modal analysis for Liapunov stability of rotating elastic bodies. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Colin, A. D.

    1973-01-01

    This study consisted of four parallel efforts: (1) modal analyses of elastic continua for Liapunov stability analysis of flexible spacecraft; (2) development of general purpose simulation equations for arbitrary spacecraft; (3) evaluation of alternative mathematical models for elastic components of spacecraft; and (4) examination of the influence of vehicle flexibility on spacecraft attitude control system performance. A complete record is given of achievements under tasks (1) and (3), in the form of technical appendices, and a summary description of progress under tasks two and four.

  16. Study of stability and control moment gyro wobble damping of flexible, spinning space stations

    NASA Technical Reports Server (NTRS)

    Berman, H.; Markowitz, J.; Holmer, W.

    1972-01-01

    An executive summary and an analysis of the results are discussed. A user's guide for the digital computer program that simulates the flexible, spinning space station is presented. Control analysis activities and derivation of dynamic equations of motion and the modal analysis are also cited.

  17. Turbine design using complex modes and substructuring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olausson, H.L.; Torby, B.J.

    1988-10-01

    A complex modal-analysis method for studying the behavior of a turbine near its design speed is presented. The modal calculations account for gyroscopic moments as well as nonsymmetric bearing effects. Results of calculations performed for a 650 MW ASEA STAL turbine installation are presented. 12 references.

  18. Computational Aeroelastic Analysis of Ares Crew Launch Vehicle Bi-Modal Loading

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Chwalowski, Pawel

    2010-01-01

    A Reynolds averaged Navier-Stokes analysis, with and without dynamic aeroelastic effects, is presented for the Ares I-X launch vehicle at transonic Mach numbers and flight Reynolds numbers for two grid resolutions and two angles of attack. The purpose of the study is to quantify the force and moment increment imparted by the sudden transition from fully separated flow around the crew module - service module junction to that of the bi-modal flow state in which only part of the flow reattaches. The bi-modal flow phenomenon is of interest to the guidance, navigation and control community because it causes a discontinuous jump in forces and moments. Computations with a rigid structure at zero zero angle of attack indicate significant increases in normal force and pitching moment. Dynamic aeroelastic computations indicate the bi-modal flow state is insensitive to vehicle flexibility due to the resulting deflections imparting only very small changes in local angle of attack. At an angle of attack of 2.5deg, the magnitude of the pitching moment increment resulting from the bi-modal state nearly triples, while occurring at a slightly lower Mach number. Significant grid induced variations between the solutions indicate that further grid refinement is warranted.

  19. Nonlinear Reduced Order Random Response Analysis of Structures with Shallow Curvature

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2006-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.

  20. Nonlinear Reduced Order Random Response Analysis of Structures With Shallow Curvature

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2005-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.

  1. Rigorous modal analysis of plasmonic nanoresonators

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Faggiani, Rémi; Lalanne, Philippe

    2018-05-01

    The specificity of modal-expansion formalisms is their capabilities to model the physical properties in the natural resonance-state basis of the system in question, leading to a transparent interpretation of the numerical results. In electromagnetism, modal-expansion formalisms are routinely used for optical waveguides. In contrast, they are much less mature for analyzing open non-Hermitian systems, such as micro- and nanoresonators. Here, by accounting for material dispersion with auxiliary fields, we considerably extend the capabilities of these formalisms, in terms of computational effectiveness, number of states handled, and range of validity. We implement an efficient finite-element solver to compute the resonance states, and derive closed-form expressions of the modal excitation coefficients for reconstructing the scattered fields. Together, these two achievements allow us to perform rigorous modal analysis of complicated plasmonic resonators, being not limited to a few resonance states, with straightforward physical interpretations and remarkable computation speeds. We particularly show that, when the number of states retained in the expansion increases, convergence toward accurate predictions is achieved, offering a solid theoretical foundation for analyzing important issues, e.g., Fano interference, quenching, and coupling with the continuum, which are critical in nanophotonic research.

  2. Vibroacoustics of the piano soundboard: (Non)linearity and modal properties in the low- and mid-frequency ranges

    NASA Astrophysics Data System (ADS)

    Ege, Kerem; Boutillon, Xavier; Rébillat, Marc

    2013-03-01

    The piano soundboard transforms the string vibration into sound and therefore, its vibrations are of primary importance for the sound characteristics of the instrument. An original vibro-acoustical method is presented to isolate the soundboard nonlinearity from that of the exciting device (here: a loudspeaker) and to measure it. The nonlinear part of the soundboard response to an external excitation is quantitatively estimated for the first time, at ≈-40 dB below the linear part at the ff nuance. Given this essentially linear response, a modal identification is performed up to 3 kHz by means of a novel high resolution modal analysis technique [K. Ege, X. Boutillon, B. David, High-resolution modal analysis, Journal of Sound and Vibration 325 (4-5) (2009) 852-869]. Modal dampings (which, so far, were unknown for the piano in this frequency range) are determined in the mid-frequency domain where FFT-based methods fail to evaluate them with an acceptable precision. They turn out to be close to those imposed by wood. A finite-element modelling of the soundboard is also presented. The low-order modal shapes and the comparison between the corresponding experimental and numerical modal frequencies suggest that the boundary conditions can be considered as blocked, except at very low frequencies. The frequency-dependency of the estimated modal densities and the observation of modal shapes reveal two well-separated regimes. Below ≈1 kHz, the soundboard vibrates more or less like a homogeneous plate. Above that limit, the structural waves are confined by ribs, as already noticed by several authors, and localised in restricted areas (one or a few inter-rib spaces), presumably due to a slightly irregular spacing of the ribs across the soundboard.

  3. Cross-modal representation of spoken and written word meaning in left pars triangularis.

    PubMed

    Liuzzi, Antonietta Gabriella; Bruffaerts, Rose; Peeters, Ronald; Adamczuk, Katarzyna; Keuleers, Emmanuel; De Deyne, Simon; Storms, Gerrit; Dupont, Patrick; Vandenberghe, Rik

    2017-04-15

    The correspondence in meaning extracted from written versus spoken input remains to be fully understood neurobiologically. Here, in a total of 38 subjects, the functional anatomy of cross-modal semantic similarity for concrete words was determined based on a dual criterion: First, a voxelwise univariate analysis had to show significant activation during a semantic task (property verification) performed with written and spoken concrete words compared to the perceptually matched control condition. Second, in an independent dataset, in these clusters, the similarity in fMRI response pattern to two distinct entities, one presented as a written and the other as a spoken word, had to correlate with the similarity in meaning between these entities. The left ventral occipitotemporal transition zone and ventromedial temporal cortex, retrosplenial cortex, pars orbitalis bilaterally, and the left pars triangularis were all activated in the univariate contrast. Only the left pars triangularis showed a cross-modal semantic similarity effect. There was no effect of phonological nor orthographic similarity in this region. The cross-modal semantic similarity effect was confirmed by a secondary analysis in the cytoarchitectonically defined BA45. A semantic similarity effect was also present in the ventral occipital regions but only within the visual modality, and in the anterior superior temporal cortex only within the auditory modality. This study provides direct evidence for the coding of word meaning in BA45 and positions its contribution to semantic processing at the confluence of input-modality specific pathways that code for meaning within the respective input modalities. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Comparative analysis of success of psoriasis treatment with standard therapeutic modalities and balneotherapy.

    PubMed

    Baros, Duka Ninković; Gajanin, Vesna S; Gajanin, Radoslav B; Zrnić, Bogdan

    2014-01-01

    Psoriasis is a chronic, inflammatory, immune-mediated skin disease. In addition to standard therapeutic modalities (antibiotics, cytostatics, phototherapy, photochemotherapy and retinoids), nonstandard methods can be used in the treatment of psoriasis. This includes balneotherapy which is most commonly used in combination with therapeutic resources. The aim of this research was to determine the length of remission of psoriasis in patients treated with standard therapeutic modalities, balneotherapy, and combined treatment (standard therapeutic modalities and balneotherapy). The study analyzed 60 adult patients, of both sexes, with different clinical forms of psoriasis, who were divided into three groups according to the applied therapeutic modalities: the first group (treated with standard therapeutic modalities), the second group (treated with balneotherapy) and the third group (treated with combined therapy-standard methods therapy and balneotherapy). The Psoriasis Area and Severity Index was determined in first, third and sixth week of treatment for all patients. The following laboratory analysis were performed and monitored: C reactive protein, iron with total iron binding capacity, unsaturated iron binding capacity and ferritin, uric acid, rheumatoid factors and antibodies to streptolysin O in the first and sixth week of treatment. The average length of remission in patients treated with standard therapeutic modalities and in those treated with balneotherapy was 1.77 +/- 0.951 months and 1.79 +/- 0.918 months, respectively. There was a statistically significant difference in the duration of remission between the patients treated with combination therapy and patients treated with standard therapeutic modalities (p = 0.019) and balneotherapy (p = 0.032). The best results have been achieved when the combination therapy was administered.

  5. Organizational culture, creative behavior, and information and communication technology (ICT) usage: a facet analysis.

    PubMed

    Carmeli, Abraham; Sternberg, Akiva; Elizur, D

    2008-04-01

    Despite the prominence of organizational culture (OC), this concept is controversial and its structure has yet to be systematically analyzed. This study develops a three-pronged formal definitional framework on the basis of facet theory (FT) and explores behavior modality, referent, and object. This facet analysis (FA) of OC accounts successfully for variation in both creative behavior at work and the usage of information and communication technologies (ICTs). An analysis of data collected from 230 employees in the financial industry indicates that a radex structure was obtained for work and ICT. The behavior modality facet ordered the space from center to periphery, and referents facet relates to the direction angles away from the origin.

  6. Determination of the critical bending speeds of a multy-rotor shaft from the vibration signal analysis

    NASA Astrophysics Data System (ADS)

    Crâştiu, I.; Nyaguly, E.; Deac, S.; Gozman-Pop, C.; Bârgău, A.; Bereteu, L.

    2018-01-01

    The purpose of this paper is the development and validation of an impulse excitation technique to determine flexural critical speeds of a single rotor shaft and multy-rotor shaft. The experimental measurement of the vibroacoustic response is carried out by using a condenser microphone as a transducer. By the means of Modal Analysis using Finite Element Method (FEM), the natural frequencies and shape modes of one rotor and three rotor specimens are determined. The vibration responses of the specimens, in simple supported conditions, are carried out using algorithms based on Fast Fourier Transform (FFT). To validate the results of the modal parameters estimated using Finite Element Analysis (FEA) these are compared with experimental ones.

  7. Grid-Enabled Quantitative Analysis of Breast Cancer

    DTIC Science & Technology

    2009-10-01

    large-scale, multi-modality computerized image analysis . The central hypothesis of this research is that large-scale image analysis for breast cancer...pilot study to utilize large scale parallel Grid computing to harness the nationwide cluster infrastructure for optimization of medical image ... analysis parameters. Additionally, we investigated the use of cutting edge dataanalysis/ mining techniques as applied to Ultrasound, FFDM, and DCE-MRI Breast

  8. The Shock and Vibration Bulletin. Part 2. Invited Papers, Structural Dynamics

    DTIC Science & Technology

    1974-08-01

    VIKING LANDER DYNAMICS 41 Mr. Joseph C. Pohlen, Martin Marietta Aerospace, Denver, Colorado Structural Dynamics PERFORMANCE OF STATISTICAL ENERGY ANALYSIS 47...aerospace structures. Analytical prediction of these environments is beyond the current scope of classical modal techniques. Statistical energy analysis methods...have been developed that circumvent the difficulties of high-frequency nodal analysis. These statistical energy analysis methods are evaluated

  9. Electronic health record analysis via deep poisson factor models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henao, Ricardo; Lu, James T.; Lucas, Joseph E.

    Electronic Health Record (EHR) phenotyping utilizes patient data captured through normal medical practice, to identify features that may represent computational medical phenotypes. These features may be used to identify at-risk patients and improve prediction of patient morbidity and mortality. We present a novel deep multi-modality architecture for EHR analysis (applicable to joint analysis of multiple forms of EHR data), based on Poisson Factor Analysis (PFA) modules. Each modality, composed of observed counts, is represented as a Poisson distribution, parameterized in terms of hidden binary units. In-formation from different modalities is shared via a deep hierarchy of common hidden units. Activationmore » of these binary units occurs with probability characterized as Bernoulli-Poisson link functions, instead of more traditional logistic link functions. In addition, we demon-strate that PFA modules can be adapted to discriminative modalities. To compute model parameters, we derive efficient Markov Chain Monte Carlo (MCMC) inference that scales efficiently, with significant computational gains when compared to related models based on logistic link functions. To explore the utility of these models, we apply them to a subset of patients from the Duke-Durham patient cohort. We identified a cohort of over 12,000 patients with Type 2 Diabetes Mellitus (T2DM) based on diagnosis codes and laboratory tests out of our patient population of over 240,000. Examining the common hidden units uniting the PFA modules, we identify patient features that represent medical concepts. Experiments indicate that our learned features are better able to predict mortality and morbidity than clinical features identified previously in a large-scale clinical trial.« less

  10. Electronic health record analysis via deep poisson factor models

    DOE PAGES

    Henao, Ricardo; Lu, James T.; Lucas, Joseph E.; ...

    2016-01-01

    Electronic Health Record (EHR) phenotyping utilizes patient data captured through normal medical practice, to identify features that may represent computational medical phenotypes. These features may be used to identify at-risk patients and improve prediction of patient morbidity and mortality. We present a novel deep multi-modality architecture for EHR analysis (applicable to joint analysis of multiple forms of EHR data), based on Poisson Factor Analysis (PFA) modules. Each modality, composed of observed counts, is represented as a Poisson distribution, parameterized in terms of hidden binary units. In-formation from different modalities is shared via a deep hierarchy of common hidden units. Activationmore » of these binary units occurs with probability characterized as Bernoulli-Poisson link functions, instead of more traditional logistic link functions. In addition, we demon-strate that PFA modules can be adapted to discriminative modalities. To compute model parameters, we derive efficient Markov Chain Monte Carlo (MCMC) inference that scales efficiently, with significant computational gains when compared to related models based on logistic link functions. To explore the utility of these models, we apply them to a subset of patients from the Duke-Durham patient cohort. We identified a cohort of over 12,000 patients with Type 2 Diabetes Mellitus (T2DM) based on diagnosis codes and laboratory tests out of our patient population of over 240,000. Examining the common hidden units uniting the PFA modules, we identify patient features that represent medical concepts. Experiments indicate that our learned features are better able to predict mortality and morbidity than clinical features identified previously in a large-scale clinical trial.« less

  11. Most and Least Helpful Events in Three Supervision Modalities

    ERIC Educational Resources Information Center

    Fickling, Melissa J.; Borders, L. DiAnne; Mobley, Keith A.; Wester, Kelly

    2017-01-01

    The authors conducted a content analysis of supervisors' (n = 10) and supervisees' (n = 31) descriptions (n = 707) of most and least helpful significant events in individual, group, and triadic supervision across 1 semester. Categories by group for each modality and areas of agreement and disagreement are highlighted.

  12. Modal Frequency Detection in Composite Beams Using Fiber Optic Sensors

    DTIC Science & Technology

    1997-04-18

    Structures 4, 270-280 (1995). [35] Chen-Jung Li and Ray Asok , "Neural Network Representation of Fatigue Damage Dynamics," Smart Materials and Structures 3...37] Roland Ray Kilcher, "Modal Analysis and Impact Damage Assessment of Composite Laminates: an Experimental Study," M.S. thesis, University of

  13. Nonlinear Reduced-Order Analysis with Time-Varying Spatial Loading Distributions

    NASA Technical Reports Server (NTRS)

    Prezekop, Adam

    2008-01-01

    Oscillating shocks acting in combination with high-intensity acoustic loadings present a challenge to the design of resilient hypersonic flight vehicle structures. This paper addresses some features of this loading condition and certain aspects of a nonlinear reduced-order analysis with emphasis on system identification leading to formation of a robust modal basis. The nonlinear dynamic response of a composite structure subject to the simultaneous action of locally strong oscillating pressure gradients and high-intensity acoustic loadings is considered. The reduced-order analysis used in this work has been previously demonstrated to be both computationally efficient and accurate for time-invariant spatial loading distributions, provided that an appropriate modal basis is used. The challenge of the present study is to identify a suitable basis for loadings with time-varying spatial distributions. Using a proper orthogonal decomposition and modal expansion, it is shown that such a basis can be developed. The basis is made more robust by incrementally expanding it to account for changes in the location, frequency and span of the oscillating pressure gradient.

  14. Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks.

    PubMed

    Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Galka, Andreas; Granert, Oliver; Wolff, Stephan; Deuschl, Guenther; Raethjen, Jan; Heute, Ulrich; Muthuraman, Muthuraman

    2013-01-01

    Brain activity can be measured using different modalities. Since most of the modalities tend to complement each other, it seems promising to measure them simultaneously. In to be presented research, the data recorded from Functional Magnetic Resonance Imaging (fMRI) and Near Infrared Spectroscopy (NIRS), simultaneously, are subjected to causality analysis using time-resolved partial directed coherence (tPDC). Time-resolved partial directed coherence uses the principle of state space modelling to estimate Multivariate Autoregressive (MVAR) coefficients. This method is useful to visualize both frequency and time dynamics of causality between the time series. Afterwards, causality results from different modalities are compared by estimating the Spearman correlation. In to be presented study, we used directionality vectors to analyze correlation, rather than actual signal vectors. Results show that causality analysis of the fMRI correlates more closely to causality results of oxy-NIRS as compared to deoxy-NIRS in case of a finger sequencing task. However, in case of simple finger tapping, no clear difference between oxy-fMRI and deoxy-fMRI correlation is identified.

  15. Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Lucero, John M.; Mehmed, Oral; Stefko, George L.

    1992-01-01

    A modal aeroelastic analysis combining structural and aerodynamic models is applied to counterrotating propfans to evaluate their structural integrity for wind-tunnel testing. The aeroelastic analysis code is an extension of the 2D analysis code called the Aeroelastic Stability and Response of Propulsion Systems. Rotational speed and freestream Mach number are the parameters for calculating the stability of the two blade designs with a modal method combining a finite-element structural model with 2D steady and unsteady cascade aerodynamic models. The model demonstrates convergence to the least stable aeroelastic mode, describes the effects of a nonuniform inflow, and permits the modification of geometry and rotation. The analysis shows that the propfan designs are suitable for the wind-tunnel test and confirms that the propfans should be flutter-free under the range of conditions of the testing.

  16. Nano- and micro-electromechanical switch dynamics

    NASA Astrophysics Data System (ADS)

    Pulskamp, Jeffrey S.; Proie, Robert M.; Polcawich, Ronald G.

    2013-01-01

    This paper reports theoretical analysis and experimental results on the dynamics of piezoelectric MEMS mechanical logic relays. The multiple degree of freedom analytical model, based on modal decomposition, utilizes modal parameters obtained from finite element analysis and an analytical model of piezoelectric actuation. The model accounts for exact device geometry, damping, drive waveform variables, and high electric field piezoelectric nonlinearity. The piezoelectrically excited modal force is calculated directly and provides insight into design optimization for switching speed. The model accurately predicts the propagation delay dependence on actuation voltage of mechanically distinct relay designs. The model explains the observed discrepancies in switching speed of these devices relative to single degree of freedom switching speed models and suggests the strong potential for improved switching speed performance in relays designed for mechanical logic and RF circuits through the exploitation of higher order vibrational modes.

  17. A Benchmark Problem for Development of Autonomous Structural Modal Identification

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Woodard, Stanley E.; Juang, Jer-Nan

    1996-01-01

    This paper summarizes modal identification results obtained using an autonomous version of the Eigensystem Realization Algorithm on a dynamically complex, laboratory structure. The benchmark problem uses 48 of 768 free-decay responses measured in a complete modal survey test. The true modal parameters of the structure are well known from two previous, independent investigations. Without user involvement, the autonomous data analysis identified 24 to 33 structural modes with good to excellent accuracy in 62 seconds of CPU time (on a DEC Alpha 4000 computer). The modal identification technique described in the paper is the baseline algorithm for NASA's Autonomous Dynamics Determination (ADD) experiment scheduled to fly on International Space Station assembly flights in 1997-1999.

  18. 5-ALA induced fluorescent image analysis of actinic keratosis

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Jin; Bae, Youngwoo; Choi, Eung-Ho; Jung, Byungjo

    2010-02-01

    In this study, we quantitatively analyzed 5-ALA induced fluorescent images of actinic keratosis using digital fluorescent color and hyperspectral imaging modalities. UV-A was utilized to induce fluorescent images and actinic keratosis (AK) lesions were demarcated from surrounding the normal region with different methods. Eight subjects with AK lesion were participated in this study. In the hyperspectral imaging modality, spectral analysis method was utilized for hyperspectral cube image and AK lesions were demarcated from the normal region. Before image acquisition, we designated biopsy position for histopathology of AK lesion and surrounding normal region. Erythema index (E.I.) values on both regions were calculated from the spectral cube data. Image analysis of subjects resulted in two different groups: the first group with the higher fluorescence signal and E.I. on AK lesion than the normal region; the second group with lower fluorescence signal and without big difference in E.I. between two regions. In fluorescent color image analysis of facial AK, E.I. images were calculated on both normal and AK lesions and compared with the results of hyperspectral imaging modality. The results might indicate that the different intensity of fluorescence and E.I. among the subjects with AK might be interpreted as different phases of morphological and metabolic changes of AK lesions.

  19. Finite-element analysis and modal testing of a rotating wind turbine

    NASA Astrophysics Data System (ADS)

    Carne, T. G.; Lobitz, D. W.; Nord, A. R.; Watson, R. A.

    1982-10-01

    A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, was developed to compute the mode shapes and frequencies of rotating structures. Special applications of this capability was made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine is established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.

  20. Finite element analysis and modal testing of a rotating wind turbine

    NASA Astrophysics Data System (ADS)

    Carne, T. G.; Lobitz, D. W.; Nord, A. R.; Watson, R. A.

    A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, has been developed to compute the mode shapes and frequencies of rotating structures. Special application of this capability has been made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine has been established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.

  1. Model mismatch analysis and compensation for modal phase measuring deflectometry

    DOE PAGES

    Huang, Lei; Xue, Junpeng; Gao, Bo; ...

    2017-01-11

    The correspondence residuals due to the discrepancy between the reality and the shape model in use are analyzed for the modal phase measuring deflectometry. Slope residuals are calculated from these discrepancies between the modal estimation and practical acquisition. Since the shape mismatch mainly occurs locally, zonal integration methods which are good at dealing with local variations are used to reconstruct the height residual for compensation. Finally, results of both simulation and experiment indicate the proposed height compensation method is effective, which can be used as a post-complement for the modal phase measuring deflectometry.

  2. Turbulence excited frequency domain damping measurement and truncation effects

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1976-01-01

    Existing frequency domain modal frequency and damping analysis methods are discussed. The effects of truncation in the Laplace and Fourier transform data analysis methods are described. Methods for eliminating truncation errors from measured damping are presented. Implications of truncation effects in fast Fourier transform analysis are discussed. Limited comparison with test data is presented.

  3. A multimodal image sensor system for identifying water stress in grapevines

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Zhang, Qin; Li, Minzan; Shao, Yongni; Zhou, Jianfeng; Sun, Hong

    2012-11-01

    Water stress is one of the most common limitations of fruit growth. Water is the most limiting resource for crop growth. In grapevines, as well as in other fruit crops, fruit quality benefits from a certain level of water deficit which facilitates to balance vegetative and reproductive growth and the flow of carbohydrates to reproductive structures. A multi-modal sensor system was designed to measure the reflectance signature of grape plant surfaces and identify different water stress levels in this paper. The multi-modal sensor system was equipped with one 3CCD camera (three channels in R, G, and IR). The multi-modal sensor can capture and analyze grape canopy from its reflectance features, and identify the different water stress levels. This research aims at solving the aforementioned problems. The core technology of this multi-modal sensor system could further be used as a decision support system that combines multi-modal sensory data to improve plant stress detection and identify the causes of stress. The images were taken by multi-modal sensor which could output images in spectral bands of near-infrared, green and red channel. Based on the analysis of the acquired images, color features based on color space and reflectance features based on image process method were calculated. The results showed that these parameters had the potential as water stress indicators. More experiments and analysis are needed to validate the conclusion.

  4. Visual and auditory synchronization deficits among dyslexic readers as compared to non-impaired readers: a cross-correlation algorithm analysis

    PubMed Central

    Sela, Itamar

    2014-01-01

    Visual and auditory temporal processing and crossmodal integration are crucial factors in the word decoding process. The speed of processing (SOP) gap (Asynchrony) between these two modalities, which has been suggested as related to the dyslexia phenomenon, is the focus of the current study. Nineteen dyslexic and 17 non-impaired University adult readers were given stimuli in a reaction time (RT) procedure where participants were asked to identify whether the stimulus type was only visual, only auditory or crossmodally integrated. Accuracy, RT, and Event Related Potential (ERP) measures were obtained for each of the three conditions. An algorithm to measure the contribution of the temporal SOP of each modality to the crossmodal integration in each group of participants was developed. Results obtained using this model for the analysis of the current study data, indicated that in the crossmodal integration condition the presence of the auditory modality at the pre-response time frame (between 170 and 240 ms after stimulus presentation), increased processing speed in the visual modality among the non-impaired readers, but not in the dyslexic group. The differences between the temporal SOP of the modalities among the dyslexics and the non-impaired readers give additional support to the theory that an asynchrony between the visual and auditory modalities is a cause of dyslexia. PMID:24959125

  5. Integration of Multi-Modal Biomedical Data to Predict Cancer Grade and Patient Survival.

    PubMed

    Phan, John H; Hoffman, Ryan; Kothari, Sonal; Wu, Po-Yen; Wang, May D

    2016-02-01

    The Big Data era in Biomedical research has resulted in large-cohort data repositories such as The Cancer Genome Atlas (TCGA). These repositories routinely contain hundreds of matched patient samples for genomic, proteomic, imaging, and clinical data modalities, enabling holistic and multi-modal integrative analysis of human disease. Using TCGA renal and ovarian cancer data, we conducted a novel investigation of multi-modal data integration by combining histopathological image and RNA-seq data. We compared the performances of two integrative prediction methods: majority vote and stacked generalization. Results indicate that integration of multiple data modalities improves prediction of cancer grade and outcome. Specifically, stacked generalization, a method that integrates multiple data modalities to produce a single prediction result, outperforms both single-data-modality prediction and majority vote. Moreover, stacked generalization reveals the contribution of each data modality (and specific features within each data modality) to the final prediction result and may provide biological insights to explain prediction performance.

  6. Modal analysis and nonlinear characterization of an airborne power ultrasonic transducer with rectangular plate radiator.

    PubMed

    Andrés, R R; Acosta, V M; Lucas, M; Riera, E

    2018-01-01

    Some industrial processes like particle agglomeration or food dehydration among others can be enhanced by the use of power ultrasonic technologies. These technologies are based on an airborne power ultrasonic transducer (APUT) constituted by a pre-stressed Langevin-type transducer, a mechanical amplifier and an extensive plate radiator. In order to produce the desired effects in industrial processing, the transducer has to vibrate in an extensional mode driving an extensive radiator in the desired flexural mode with high amplitude displacements. Due to the generation of these high amplitude displacements in the radiator surfaces, non-linear effects like frequency shifts, hysteresis or modal interactions, among others, may be produced in the transducer behavior. When any nonlinear effect appears, when applying power, the stability and efficiency of this ultrasonic technology decreases, and the transducer may be damaged depending on the excitation power level and the nature of the nonlinearity. In this paper, an APUT with flat rectangular radiator is presented, as the active part of an innovative system with stepped reflectors. The nonlinear behavior of the APUT has been characterized numerically and experimentally in case of the modal analysis and experimentally in the case of dynamic analysis. According to the results obtained after the experiments, no modal interactions are expected, nor do other nonlinear effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Application of a flight test and data analysis technique to flutter of a drone aircraft

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.; Abel, I.

    1981-01-01

    Modal identification results are presented that were obtained from recent flight flutter tests of a drone vehicle with a research wing equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surfaces on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.

  8. Experimental Quiet Sprocket Design and Noise Reduction in Tracked Vehicles

    DTIC Science & Technology

    1981-04-01

    Track and Suspension Noise Reduction Statistical Energy Analysis Mechanical Impedance Measurement Finite Element Modal Analysis\\Noise Sources 2...shape and idler attachment are different. These differen- ces were investigated using the concepts of statistical energy analysis for hull generated noise...element r,’calculated from Statistical Energy Analysis . Such an approach will be valid within reasonable limits for frequencies of about 200 Hz and

  9. Compendium of Methods for Applying Measured Data to Vibration and Acoustic Problems

    DTIC Science & Technology

    1985-10-01

    statistical energy analysis , finite element models, transfer function...Procedures for the Modal Analysis Method .............................................. 8-22 8.4 Summary of the Procedures for the Statistical Energy Analysis Method... statistical energy analysis . 8-1 • o + . . i... "_+,A" L + "+..• •+A ’! i, + +.+ +• o.+ -ore -+. • -..- , .%..% ". • 2 -".-2- ;.-.’, . o . It is helpful

  10. Development of Composite Materials with High Passive Damping Properties

    DTIC Science & Technology

    2006-05-15

    frequency response function analysis. Sound transmission through sandwich panels was studied using the statistical energy analysis (SEA). Modal density...2.2.3 Finite element models 14 2.2.4 Statistical energy analysis method 15 CHAPTER 3 ANALYSIS OF DAMPING IN SANDWICH MATERIALS. 24 3.1 Equation of...sheets and the core. 2.2.4 Statistical energy analysis method Finite element models are generally only efficient for problems at low and middle frequencies

  11. Spatial Analysis of Case-Mix and Dialysis Modality Associations.

    PubMed

    Phirtskhalaishvili, Tamar; Bayer, Florian; Edet, Stephane; Bongiovanni, Isabelle; Hogan, Julien; Couchoud, Cécile

    2016-01-01

    ♦ Health-care systems must attempt to provide appropriate, high-quality, and economically sustainable care that meets the needs and choices of patients with end-stage renal disease (ESRD). France offers 9 different modalities of dialysis, each characterized by dialysis technique, the extent of professional assistance, and the treatment site. The aim of this study was 1) to describe the various dialysis modalities in France and the patient characteristics associated with each of them, and 2) to analyze their regional patterns to identify possible unexpected associations between case-mixes and dialysis modalities. ♦ The clinical characteristics of the 37,421 adult patients treated by dialysis were described according to their treatment modality. Agglomerative hierarchical cluster analysis was used to aggregate the regions into clusters according to their use of these modalities and the characteristics of their patients. ♦ The gradient of patient characteristics was similar from home hemodialyis (HD) to in-center HD and from non-assisted automated peritoneal dialysis (APD) to assisted continuous ambulatory peritoneal dialysis (CAPD). Analyzing their spatial distribution, we found differences in the patient case-mix on dialysis across regions but also differences in the health-care provided for them. The classification of the regions into 6 different clusters allowed us to detect some unexpected associations between case-mixes and treatment modalities. ♦ The 9 modalities of treatment available make it theoretically possible to adapt treatment to patients' clinical characteristics and abilities. However, although we found an overall appropriate association of dialysis modalities to the case-mix, major inter-region heterogeneity and the low rate of peritoneal dialysis (PD) and home HD suggest that factors besides patients' clinical conditions impact the choice of dialysis modality. The French organization should now be evaluated in terms of patients' quality of life, satisfaction, survival, and global efficiency. Copyright © 2016 International Society for Peritoneal Dialysis.

  12. Spatial Analysis of Case-Mix and Dialysis Modality Associations

    PubMed Central

    Phirtskhalaishvili, Tamar; Bayer, Florian; Edet, Stephane; Bongiovanni, Isabelle; Hogan, Julien; Couchoud, Cécile

    2016-01-01

    ♦ Background: Health-care systems must attempt to provide appropriate, high-quality, and economically sustainable care that meets the needs and choices of patients with end-stage renal disease (ESRD). France offers 9 different modalities of dialysis, each characterized by dialysis technique, the extent of professional assistance, and the treatment site. The aim of this study was 1) to describe the various dialysis modalities in France and the patient characteristics associated with each of them, and 2) to analyze their regional patterns to identify possible unexpected associations between case-mixes and dialysis modalities. ♦ Methods: The clinical characteristics of the 37,421 adult patients treated by dialysis were described according to their treatment modality. Agglomerative hierarchical cluster analysis was used to aggregate the regions into clusters according to their use of these modalities and the characteristics of their patients. ♦ Result: The gradient of patient characteristics was similar from home hemodialyis (HD) to in-center HD and from non-assisted automated peritoneal dialysis (APD) to assisted continuous ambulatory peritoneal dialysis (CAPD). Analyzing their spatial distribution, we found differences in the patient case-mix on dialysis across regions but also differences in the health-care provided for them. The classification of the regions into 6 different clusters allowed us to detect some unexpected associations between case-mixes and treatment modalities. ♦ Conclusions: The 9 modalities of treatment available make it theoretically possible to adapt treatment to patients' clinical characteristics and abilities. However, although we found an overall appropriate association of dialysis modalities to the case-mix, major inter-region heterogeneity and the low rate of peritoneal dialysis (PD) and home HD suggest that factors besides patients' clinical conditions impact the choice of dialysis modality. The French organization should now be evaluated in terms of patients' quality of life, satisfaction, survival, and global efficiency. PMID:26475843

  13. Model reduction by weighted Component Cost Analysis

    NASA Technical Reports Server (NTRS)

    Kim, Jae H.; Skelton, Robert E.

    1990-01-01

    Component Cost Analysis considers any given system driven by a white noise process as an interconnection of different components, and assigns a metric called 'component cost' to each component. These component costs measure the contribution of each component to a predefined quadratic cost function. A reduced-order model of the given system may be obtained by deleting those components that have the smallest component costs. The theory of Component Cost Analysis is extended to include finite-bandwidth colored noises. The results also apply when actuators have dynamics of their own. Closed-form analytical expressions of component costs are also derived for a mechanical system described by its modal data. This is very useful to compute the modal costs of very high order systems. A numerical example for MINIMAST system is presented.

  14. Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation

    NASA Astrophysics Data System (ADS)

    Heyden, S.; Ortiz, M.

    2016-07-01

    We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.

  15. An image based vibration sensor for soft tissue modal analysis in a Digital Image Elasto Tomography (DIET) system.

    PubMed

    Feng, Sheng; Lotz, Thomas; Chase, J Geoffrey; Hann, Christopher E

    2010-01-01

    Digital Image Elasto Tomography (DIET) is a non-invasive elastographic breast cancer screening technology, based on image-based measurement of surface vibrations induced on a breast by mechanical actuation. Knowledge of frequency response characteristics of a breast prior to imaging is critical to maximize the imaging signal and diagnostic capability of the system. A feasibility analysis for a non-invasive image based modal analysis system is presented that is able to robustly and rapidly identify resonant frequencies in soft tissue. Three images per oscillation cycle are enough to capture the behavior at a given frequency. Thus, a sweep over critical frequency ranges can be performed prior to imaging to determine critical imaging settings of the DIET system to optimize its tumor detection performance.

  16. Recent advances in statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Heron, K. H.

    1992-01-01

    Statistical Energy Analysis (SEA) has traditionally been developed using modal summation and averaging approach, and has led to the need for many restrictive SEA assumptions. The assumption of 'weak coupling' is particularly unacceptable when attempts are made to apply SEA to structural coupling. It is now believed that this assumption is more a function of the modal formulation rather than a necessary formulation of SEA. The present analysis ignores this restriction and describes a wave approach to the calculation of plate-plate coupling loss factors. Predictions based on this method are compared with results obtained from experiments using point excitation on one side of an irregular six-sided box structure. Conclusions show that the use and calculation of infinite transmission coefficients is the way forward for the development of a purely predictive SEA code.

  17. Impact of Learning Modalities on Academic Success

    ERIC Educational Resources Information Center

    Fenouillet, Fabien; Kaplan, Jonathan

    2009-01-01

    This study is based on the analysis of academic results of 692 undergraduate and graduate students in two disciplines in a French university who attended their courses using one out of four possible learning modalities. Within the two disciplines, Art History and Educational Sciences, students chose between face-to-face learning (on campus),…

  18. Teaching Poetry through Collaborative Art: An Analysis of Multimodal Ensembles for Transformative Learning

    ERIC Educational Resources Information Center

    Wandera, David B.

    2016-01-01

    This study is anchored on two positions: that every communication is multimodal and that different modalities within multimodal communication have particular affordances. Written and oral language and other modalities, such as body language and audio/visual media, are interwoven in classroom communication. What might it look like to strategically…

  19. Modal parameter identification based on combining transmissibility functions and blind source separation techniques

    NASA Astrophysics Data System (ADS)

    Araújo, Iván Gómez; Sánchez, Jesús Antonio García; Andersen, Palle

    2018-05-01

    Transmissibility-based operational modal analysis is a recent and alternative approach used to identify the modal parameters of structures under operational conditions. This approach is advantageous compared with traditional operational modal analysis because it does not make any assumptions about the excitation spectrum (i.e., white noise with a flat spectrum). However, common methodologies do not include a procedure to extract closely spaced modes with low signal-to-noise ratios. This issue is relevant when considering that engineering structures generally have closely spaced modes and that their measured responses present high levels of noise. Therefore, to overcome these problems, a new combined method for modal parameter identification is proposed in this work. The proposed method combines blind source separation (BSS) techniques and transmissibility-based methods. Here, BSS techniques were used to recover source signals, and transmissibility-based methods were applied to estimate modal information from the recovered source signals. To achieve this combination, a new method to define a transmissibility function was proposed. The suggested transmissibility function is based on the relationship between the power spectral density (PSD) of mixed signals and the PSD of signals from a single source. The numerical responses of a truss structure with high levels of added noise and very closely spaced modes were processed using the proposed combined method to evaluate its ability to identify modal parameters in these conditions. Colored and white noise excitations were used for the numerical example. The proposed combined method was also used to evaluate the modal parameters of an experimental test on a structure containing closely spaced modes. The results showed that the proposed combined method is capable of identifying very closely spaced modes in the presence of noise and, thus, may be potentially applied to improve the identification of damping ratios.

  20. Four novel prosthodontic methods for managing upper airway resistance syndrome: an investigative analysis revealing the efficacy of the new nasopharyngeal aperture guard appliance.

    PubMed

    Venkat, R; Gopichander, N; Vasantakumar, M

    2010-01-01

    Obstructive sleep apnea is the most frequent cause for insomnia in the populace. Snoring is mulled over as the potential factor that can lead the sequel to obstructive sleep apnea. Although the etiology and deterrence measures for snoring are yet to be undoubtedly clarified by our scientific sorority, various means of surgical corrections have been affirmed and put into practice, with a substantial degree of success. Despite this, it is implicit that a noninvasive method of managing obstructive sleep apnea is more relevant for overcoming this condition. This manuscript intends to establish how snoring can be controlled prosthodontically by different modalities of scientifically defensible approaches. The most effective among the modalities was affirmed as the investigative analyses of the treatment outcomes with each modality. NOVEL METHODS: Four new methods of managing obstructive sleep apnea--uvula lift appliance, uvula and velopharynx lift appliance, nasopharyngeal aperture guard, and soft palate lift appliance were demonstrated through this article. The four new modalities stated and one conventional modality of mandibular advancement appliance for managing obstructive sleep apnea, a total of five types of appliance therapies, were described with case reports for each. Five individuals undergoing the appliance therapy were chosen for each modality. The treatment outcome with each modality was examined by analysis of clinical predictors and also by means of standard investigation, with nasal and oral endoscopic analyses. Among the five types of appliance therapies, the nasopharyngeal aperture guard provided the best treatment outcome in terms of clinical predictors and endoscopic analyses. Nasopharyngeal aperture guard, the novel method stated in this article is the better modality for managing obstructive sleep apnea, among the five different appliance therapies.

  1. Towards an intelligent framework for multimodal affective data analysis.

    PubMed

    Poria, Soujanya; Cambria, Erik; Hussain, Amir; Huang, Guang-Bin

    2015-03-01

    An increasingly large amount of multimodal content is posted on social media websites such as YouTube and Facebook everyday. In order to cope with the growth of such so much multimodal data, there is an urgent need to develop an intelligent multi-modal analysis framework that can effectively extract information from multiple modalities. In this paper, we propose a novel multimodal information extraction agent, which infers and aggregates the semantic and affective information associated with user-generated multimodal data in contexts such as e-learning, e-health, automatic video content tagging and human-computer interaction. In particular, the developed intelligent agent adopts an ensemble feature extraction approach by exploiting the joint use of tri-modal (text, audio and video) features to enhance the multimodal information extraction process. In preliminary experiments using the eNTERFACE dataset, our proposed multi-modal system is shown to achieve an accuracy of 87.95%, outperforming the best state-of-the-art system by more than 10%, or in relative terms, a 56% reduction in error rate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection

    NASA Astrophysics Data System (ADS)

    Magalhães, F.; Cunha, A.; Caetano, E.

    2012-04-01

    In order to evaluate the usefulness of approaches based on modal parameters tracking for structural health monitoring of bridges, in September of 2007, a dynamic monitoring system was installed in a concrete arch bridge at the city of Porto, in Portugal. The implementation of algorithms to perform the continuous on-line identification of modal parameters based on structural responses to ambient excitation (automated Operational Modal Analysis) has permitted to create a very complete database with the time evolution of the bridge modal characteristics during more than 2 years. This paper describes the strategy that was followed to minimize the effects of environmental and operational factors on the bridge natural frequencies, enabling, in a subsequent stage, the identification of structural anomalies. Alternative static and dynamic regression models are tested and complemented by a Principal Components Analysis. Afterwards, the identification of damages is tried with control charts. At the end, it is demonstrated that the adopted processing methodology permits the detection of realistic damage scenarios, associated with frequency shifts around 0.2%, which were simulated with a numerical model.

  3. A Modal Analysis of Submerged Composite Plates Using Digital Speckle Pattern Interferometry

    DTIC Science & Technology

    1991-05-01

    the drive point. The underwater mode shapes were slightly deformed compared to the in- air modes which is probably due to modal coupling by the dense...modes according to Leissa. The mode shapes in water are very similar to those in air with a small amount of distortion due to modal coupling by the fluid...and cantilever boundarv conditions is described in this thesis. The vibrations of the plates are studies in air and when Submerged in a water tank to

  4. Velo and REXAN - Integrated Data Management and High Speed Analysis for Experimental Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleese van Dam, Kerstin; Carson, James P.; Corrigan, Abigail L.

    2013-01-10

    The Chemical Imaging Initiative at the Pacific Northwest National Laboratory (PNNL) is creating a ‘Rapid Experimental Analysis’ (REXAN) Framework, based on the concept of reusable component libraries. REXAN allows developers to quickly compose and customize high throughput analysis pipelines for a range of experiments, as well as supporting the creation of multi-modal analysis pipelines. In addition, PNNL has coupled REXAN with its collaborative data management and analysis environment Velo to create an easy to use data management and analysis environments for experimental facilities. This paper will discuss the benefits of Velo and REXAN in the context of three examples: PNNLmore » High Resolution Mass Spectrometry - reducing analysis times from hours to seconds, and enabling the analysis of much larger data samples (100KB to 40GB) at the same time · ALS X-Ray tomography - reducing analysis times of combined STXM and EM data collected at the ALS from weeks to minutes, decreasing manual work and increasing data volumes that can be analysed in a single step ·Multi-modal nano-scale analysis of STXM and TEM data - providing a semi automated process for particle detection The creation of REXAN has significantly shortened the development time for these analysis pipelines. The integration of Velo and REXAN has significantly increased the scientific productivity of the instruments and their users by creating easy to use data management and analysis environments with greatly reduced analysis times and improved analysis capabilities.« less

  5. Quantifying and managing uncertainty in operational modal analysis

    NASA Astrophysics Data System (ADS)

    Au, Siu-Kui; Brownjohn, James M. W.; Mottershead, John E.

    2018-03-01

    Operational modal analysis aims at identifying the modal properties (natural frequency, damping, etc.) of a structure using only the (output) vibration response measured under ambient conditions. Highly economical and feasible, it is becoming a common practice in full-scale vibration testing. In the absence of (input) loading information, however, the modal properties have significantly higher uncertainty than their counterparts identified from free or forced vibration (known input) tests. Mastering the relationship between identification uncertainty and test configuration is of great interest to both scientists and engineers, e.g., for achievable precision limits and test planning/budgeting. Addressing this challenge beyond the current state-of-the-art that are mostly concerned with identification algorithms, this work obtains closed form analytical expressions for the identification uncertainty (variance) of modal parameters that fundamentally explains the effect of test configuration. Collectively referred as 'uncertainty laws', these expressions are asymptotically correct for well-separated modes, small damping and long data; and are applicable under non-asymptotic situations. They provide a scientific basis for planning and standardization of ambient vibration tests, where factors such as channel noise, sensor number and location can be quantitatively accounted for. The work is reported comprehensively with verification through synthetic and experimental data (laboratory and field), scientific implications and practical guidelines for planning ambient vibration tests.

  6. A refined Frequency Domain Decomposition tool for structural modal monitoring in earthquake engineering

    NASA Astrophysics Data System (ADS)

    Pioldi, Fabio; Rizzi, Egidio

    2017-07-01

    Output-only structural identification is developed by a refined Frequency Domain Decomposition ( rFDD) approach, towards assessing current modal properties of heavy-damped buildings (in terms of identification challenge), under strong ground motions. Structural responses from earthquake excitations are taken as input signals for the identification algorithm. A new dedicated computational procedure, based on coupled Chebyshev Type II bandpass filters, is outlined for the effective estimation of natural frequencies, mode shapes and modal damping ratios. The identification technique is also coupled with a Gabor Wavelet Transform, resulting in an effective and self-contained time-frequency analysis framework. Simulated response signals generated by shear-type frames (with variable structural features) are used as a necessary validation condition. In this context use is made of a complete set of seismic records taken from the FEMA P695 database, i.e. all 44 "Far-Field" (22 NS, 22 WE) earthquake signals. The modal estimates are statistically compared to their target values, proving the accuracy of the developed algorithm in providing prompt and accurate estimates of all current strong ground motion modal parameters. At this stage, such analysis tool may be employed for convenient application in the realm of Earthquake Engineering, towards potential Structural Health Monitoring and damage detection purposes.

  7. Residual mode correction in calibrating nonlinear damper for vibration control of flexible structures

    NASA Astrophysics Data System (ADS)

    Sun, Limin; Chen, Lin

    2017-10-01

    Residual mode correction is found crucial in calibrating linear resonant absorbers for flexible structures. The classic modal representation augmented with stiffness and inertia correction terms accounting for non-resonant modes improves the calibration accuracy and meanwhile avoids complex modal analysis of the full system. This paper explores the augmented modal representation in calibrating control devices with nonlinearity, by studying a taut cable attached with a general viscous damper and its Equivalent Dynamic Systems (EDSs), i.e. the augmented modal representations connected to the same damper. As nonlinearity is concerned, Frequency Response Functions (FRFs) of the EDSs are investigated in detail for parameter calibration, using the harmonic balance method in combination with numerical continuation. The FRFs of the EDSs and corresponding calibration results are then compared with those of the full system documented in the literature for varied structural modes, damper locations and nonlinearity. General agreement is found and in particular the EDS with both stiffness and inertia corrections (quasi-dynamic correction) performs best among available approximate methods. This indicates that the augmented modal representation although derived from linear cases is applicable to a relatively wide range of damper nonlinearity. Calibration of nonlinear devices by this means still requires numerical analysis while the efficiency is largely improved owing to the system order reduction.

  8. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie D.

    2011-01-01

    Ground vibration tests are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicles, thermoelastic vibration testing techniques are neither well established nor routinely performed. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. When high-temperature materials, which increase in stiffness when heated, are incorporated into a hot-structure that contains metallic components that decrease in stiffness when heated, the interaction between those materials can affect the hypersonic flutter analysis. A high-temperature modal survey will expand the research database for hypersonics and improve the understanding of this dual-material interaction. This report discusses the vibration testing of the carbon-silicon carbide Ruddervator Subcomponent Test Article, which is a truncated version of a full-scale hot-structure control surface. Two series of room-temperature modal test configurations were performed in order to define the modal characteristics of the test article during the elevated-temperature modal survey: one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary). Testing was performed in the NASA Dryden Flight Research Center Flight Loads Laboratory Large Nitrogen Test Chamber.

  9. Analysis of swept-sine runs during modal identification

    NASA Astrophysics Data System (ADS)

    Gloth, G.; Sinapius, M.

    2004-11-01

    Experimental modal analysis of large aerospace structures in Europe combine nowadays the benefits of the very reliable but time-consuming phase resonance method and the application of phase separation techniques evaluating frequency response functions (FRF). FRFs of a test structure can be determined by a variety of means. Applied excitation signal waveforms include harmonic signals like stepped-sine excitation, periodic signals like multi-sine excitation, transient signals like impulse and swept-sine excitation, and stochastic signals like random. The current article focuses on slow swept-sine excitation which is a good trade-off between magnitude of excitation level needed for large aircraft and testing time. However, recent ground vibration tests (GVTs) brought up that reliable modal data from swept-sine test runs depend on a proper data processing. The article elucidates the strategy of modal analysis based on swept-sine excitation. The standards for the application of slowly swept sinusoids defined by the international organisation for standardisation in ISO 7626 part 2 are critically reviewed. The theoretical background of swept-sine testing is expounded with particular emphasis to the transition through structural resonances. The effect of different standard procedures of data processing like tracking filter, fast Fourier transform (FFT), and data reduction via averaging are investigated with respect to their influence on the FRFs and modal parameters. Particular emphasis is given to FRF distortions evoked by unsuitable data processing. All data processing methods are investigated on a numerical example. Their practical usefulness is demonstrated on test data taken from a recent GVT on a large aircraft. The revision of ISO 7626 part 2 is suggested regarding the application of slow swept-sine excitation. Recommendations about the proper FRF estimation from slow swept-sine excitation are given in order to enable the optimisation on these applications for future modal survey tests of large aerospace structures.

  10. Selective parathyroid venous sampling in primary hyperparathyroidism: A systematic review and meta-analysis.

    PubMed

    Ibraheem, Kareem; Toraih, Eman A; Haddad, Antoine B; Farag, Mahmoud; Randolph, Gregory W; Kandil, Emad

    2018-05-14

    Minimally invasive parathyroidectomy requires accurate preoperative localization techniques. There is considerable controversy about the effectiveness of selective parathyroid venous sampling (sPVS) in primary hyperparathyroidism (PHPT) patients. The aim of this meta-analysis is to examine the diagnostic accuracy of sPVS as a preoperative localization modality in PHPT. Studies evaluating the diagnostic accuracy of sPVS for PHPT were electronically searched in the PubMed, EMBASE, Web of Science, and Cochrane Controlled Trials Register databases. Two independent authors reviewed the studies, and revised quality assessment of diagnostic accuracy study tool was used for the quality assessment. Study heterogeneity and pooled estimates were calculated. Two hundred and two unique studies were identified. Of those, 12 studies were included in the meta-analysis. Pooled sensitivity, specificity, and positive likelihood ratio (PLR) of sPVS were 74%, 41%, and 1.55, respectively. The area-under-the-receiver operating characteristic curve was 0.684, indicating an average discriminatory ability of sPVS. On comparison between sPVS and noninvasive imaging modalities, sensitivity, PLR, and positive posttest probability were significantly higher in sPVS compared to noninvasive imaging modalities. Interestingly, super-selective venous sampling had the highest sensitivity, accuracy, and positive posttest probability compared to other parathyroid venous sampling techniques. This is the first meta-analysis to examine the accuracy of sPVS in PHPT. sPVS had higher pooled sensitivity when compared to noninvasive modalities in revision parathyroid surgery. However, the invasiveness of this technique does not favor its routine use for preoperative localization. Super-selective venous sampling was the most accurate among all other parathyroid venous sampling techniques. Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.

  11. PageRank versatility analysis of multilayer modality-based network for exploring the evolution of oil-water slug flow.

    PubMed

    Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan

    2017-07-14

    Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.

  12. Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis

    NASA Astrophysics Data System (ADS)

    Dion, J.-L.; Tawfiq, I.; Chevallier, G.

    2012-01-01

    This work is a contribution in the field of Operational Modal Analysis to identify the modal parameters of mechanical structures using only measured responses. The study deals with structural responses coupled with harmonic components amplitude and frequency modulated in a short range, a common combination for mechanical systems with engines and other rotating machines in operation. These harmonic components generate misleading data interpreted erroneously by the classical methods used in OMA. The present work attempts to differentiate maxima in spectra stemming from harmonic components and structural modes. The detection method proposed is based on the so-called Optimized Spectral Kurtosis and compared with others definitions of Spectral Kurtosis described in the literature. After a parametric study of the method, a critical study is performed on numerical simulations and then on an experimental structure in operation in order to assess the method's performance.

  13. Repressing the effects of variable speed harmonic orders in operational modal analysis

    NASA Astrophysics Data System (ADS)

    Randall, R. B.; Coats, M. D.; Smith, W. A.

    2016-10-01

    Discrete frequency components such as machine shaft orders can disrupt the operation of normal Operational Modal Analysis (OMA) algorithms. With constant speed machines, they have been removed using time synchronous averaging (TSA). This paper compares two approaches for varying speed machines. In one method, signals are transformed into the order domain, and after the removal of shaft speed related components by a cepstral notching method, are transformed back to the time domain to allow normal OMA. In the other simpler approach an exponential shortpass lifter is applied directly in the time domain cepstrum to enhance the modal information at the expense of other disturbances. For simulated gear signals with speed variations of both ±5% and ±15%, the simpler approach was found to give better results The TSA method is shown not to work in either case. The paper compares the results with those obtained using a stationary random excitation.

  14. Factors influencing access to education, decision making, and receipt of preferred dialysis modality in unplanned dialysis start patients.

    PubMed

    Machowska, Anna; Alscher, Mark Dominik; Reddy Vanga, Satyanarayana; Koch, Michael; Aarup, Michael; Qureshi, Abdul Rashid; Lindholm, Bengt; Rutherford, Peter A

    2016-01-01

    Unplanned dialysis start (UPS) leads to worse clinical outcomes than planned start, and only a minority of patients ever receive education on this topic and are able to make a modality choice, particularly for home dialysis. This study aimed to determine the predictive factors for patients receiving education, making a decision, and receiving their preferred modality choice in UPS patients following a UPS educational program (UPS-EP). The Offering Patients Therapy Options in Unplanned Start (OPTiONS) study examined the impact of the implementation of a specific UPS-EP, including decision support tools and pathway improvement on dialysis modality choice. Linear regression models were used to examine the factors predicting three key steps: referral and receipt of UPS-EP, modality decision making, and actual delivery of preferred modality choice. A simple economic assessment was performed to examine the potential benefit of implementing UPS-EP in terms of dialysis costs. The majority of UPS patients could receive UPS-EP (214/270 patients) and were able to make a decision (177/214), although not all patients received their preferred choice (159/177). Regression analysis demonstrated that the initial dialysis modality was a predictive factor for referral and receipt of UPS-EP and modality decision making. In contrast, age was a predictor for referral and receipt of UPS-EP only, and comorbidity was not a predictor for any step, except for myocardial infarction, which was a weak predictor for lower likelihood of receiving preferred modality. Country practices predicted UPS-EP receipt and decision making. Economic analysis demonstrated the potential benefit of UPS-EP implementation because dialysis modality costs were associated with modality distribution driven by patient preference. Education and decision support can allow UPS patients to understand their options and choose dialysis modality, and attention needs to be focused on ensuring equity of access to educational programs, especially for the elderly. Physician practice and culture across units/countries is an important predictor of UPS patient management and modality choice independent of patient-related factors. Additional work is required to understand and improve patient pathways to ensure that modality preference is enacted. There appears to be a cost benefit of delivering education, supporting choice, and ensuring that the choice is enacted in UPS patients.

  15. Multimodal neural correlates of cognitive control in the Human Connectome Project.

    PubMed

    Lerman-Sinkoff, Dov B; Sui, Jing; Rachakonda, Srinivas; Kandala, Sridhar; Calhoun, Vince D; Barch, Deanna M

    2017-12-01

    Cognitive control is a construct that refers to the set of functions that enable decision-making and task performance through the representation of task states, goals, and rules. The neural correlates of cognitive control have been studied in humans using a wide variety of neuroimaging modalities, including structural MRI, resting-state fMRI, and task-based fMRI. The results from each of these modalities independently have implicated the involvement of a number of brain regions in cognitive control, including dorsal prefrontal cortex, and frontal parietal and cingulo-opercular brain networks. However, it is not clear how the results from a single modality relate to results in other modalities. Recent developments in multimodal image analysis methods provide an avenue for answering such questions and could yield more integrated models of the neural correlates of cognitive control. In this study, we used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) to identify multimodal patterns of variation related to cognitive control. We used two independent cohorts of participants from the Human Connectome Project, each of which had data from four imaging modalities. We replicated the findings from the first cohort in the second cohort using both independent and predictive analyses. The independent analyses identified a component in each cohort that was highly similar to the other and significantly correlated with cognitive control performance. The replication by prediction analyses identified two independent components that were significantly correlated with cognitive control performance in the first cohort and significantly predictive of performance in the second cohort. These components identified positive relationships across the modalities in neural regions related to both dynamic and stable aspects of task control, including regions in both the frontal-parietal and cingulo-opercular networks, as well as regions hypothesized to be modulated by cognitive control signaling, such as visual cortex. Taken together, these results illustrate the potential utility of multi-modal analyses in identifying the neural correlates of cognitive control across different indicators of brain structure and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Analysis and Report on SD2000: A Workshop to Determine Structural Dynamics Research for the Millenium

    DTIC Science & Technology

    2000-04-10

    interest. These include Statistical Energy Analysis (SEA), fuzzy structure theory, and approaches combining modal analysis and SEA. Non-determinism...34 arising with increasing frequency. This has led to Statistical Energy Analysis , in which a system is modelled as a collection of coupled subsystems...22. IUTAM Symposium on Statistical Energy Analysis . 1999 Ed. F.J. Fahy and W.G. Price. Kluwer Academic Publishing. • 23. R.S. Langley and P

  17. Reduction in unnecessary ventricular pacing fails to affect hard clinical outcomes in patients with preserved left ventricular function: a meta-analysis.

    PubMed

    Shurrab, Mohammed; Healey, Jeff S; Haj-Yahia, Saleem; Kaoutskaia, Anna; Boriani, Giuseppe; Carrizo, Aldo; Botto, Gianluca; Newman, David; Padeletti, Luigi; Connolly, Stuart J; Crystal, Eugene

    2017-02-01

    Several pacing modalities across multiple manufacturers have been introduced to minimize unnecessary right ventricular pacing. We conducted a meta-analysis to assess whether ventricular pacing reduction modalities (VPRM) influence hard clinical outcomes in comparison to standard dual-chamber pacing (DDD). An electronic search was performed using Cochrane Central Register, PubMed, Embase, and Scopus. Only randomized controlled trials (RCT) were included in this analysis. Outcomes of interest included: frequency of ventricular pacing (VP), incident persistent/permanent atrial fibrillation (PerAF), all-cause hospitalization and all-cause mortality. Odds ratios (OR) were reported for dichotomous variables. Seven RCTs involving 4119 adult patients were identified. Ventricular pacing reduction modalities were employed in 2069 patients: (MVP, Medtronic Inc.) in 1423 and (SafeR, Sorin CRM, Clamart) in 646 patients. Baseline demographics and clinical characteristics were similar between VPRM and DDD groups. The mean follow-up period was 2.5 ± 0.9 years. Ventricular pacing reduction modalities showed uniform reduction in VP in comparison to DDD groups among all individual studies. The incidence of PerAF was similar between both groups {8 vs. 10%, OR 0.84 [95% confidence interval (CI) 0.57; 1.24], P = 0.38}. Ventricular pacing reduction modalities showed no significant differences in comparison to DDD for all-cause hospitalization or all-cause mortality [9 vs. 11%, OR 0.82 (95% CI 0.65; 1.03), P= 0.09; 6 vs. 6%, OR 0.97 (95% CI 0.74; 1.28), P = 0.84, respectively]. Novel VPRM measures effectively reduce VP in comparison to standard DDD. When actively programmed, VPRM did not improve clinical outcomes and were not superior to standard DDD programming in reducing incidence of PerAF, all-cause hospitalization, or all-cause mortality.

  18. Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach.

    PubMed

    Liang, Muxuan; Li, Zhizhong; Chen, Ting; Zeng, Jianyang

    2015-01-01

    Identification of cancer subtypes plays an important role in revealing useful insights into disease pathogenesis and advancing personalized therapy. The recent development of high-throughput sequencing technologies has enabled the rapid collection of multi-platform genomic data (e.g., gene expression, miRNA expression, and DNA methylation) for the same set of tumor samples. Although numerous integrative clustering approaches have been developed to analyze cancer data, few of them are particularly designed to exploit both deep intrinsic statistical properties of each input modality and complex cross-modality correlations among multi-platform input data. In this paper, we propose a new machine learning model, called multimodal deep belief network (DBN), to cluster cancer patients from multi-platform observation data. In our integrative clustering framework, relationships among inherent features of each single modality are first encoded into multiple layers of hidden variables, and then a joint latent model is employed to fuse common features derived from multiple input modalities. A practical learning algorithm, called contrastive divergence (CD), is applied to infer the parameters of our multimodal DBN model in an unsupervised manner. Tests on two available cancer datasets show that our integrative data analysis approach can effectively extract a unified representation of latent features to capture both intra- and cross-modality correlations, and identify meaningful disease subtypes from multi-platform cancer data. In addition, our approach can identify key genes and miRNAs that may play distinct roles in the pathogenesis of different cancer subtypes. Among those key miRNAs, we found that the expression level of miR-29a is highly correlated with survival time in ovarian cancer patients. These results indicate that our multimodal DBN based data analysis approach may have practical applications in cancer pathogenesis studies and provide useful guidelines for personalized cancer therapy.

  19. Primary treatments for clinically localized prostate cancer: a comprehensive lifetime cost-utility analysis

    PubMed Central

    Cooperberg, Matthew R.; Ramakrishna, Naren R.; Duff, Steven B.; Hughes, Kathleen E.; Sadownik, Sara; Smith, Joseph A.; Tewari, Ashutosh K.

    2012-01-01

    Objectives To characterize the costs and outcomes associated with radical prostatectomy (open, laparoscopic, or robot-assisted) and radiation therapy (dose-escalated 3-dimensional conformal radiation, intensity-modulated radiation, brachytherapy, or combination), using a comprehensive, lifetime decision analytic model. Patients and Methods A Markov model was constructed to follow hypothetical men with low-, intermediate-, and high-risk prostate cancer over their lifetimes following primary treatment; probabilities of outcomes were based on an exhaustive literature search yielding 232 unique publications. Patients could experience remission, recurrence, salvage treatment, metastasis, death from prostate cancer, and death from other causes. Utilities for each health state were determined, and disutilities were applied for complications and toxicities of treatment. Costs were determined from the U.S. payer perspective, with incorporation of patient costs in a sensitivity analysis. Results Differences in quality-adjusted life years across modalities were modest, ranging from 10.3 to 11.3 for low-risk patients, 9.6 to 10.5 for intermediate-risk patients, and 7.8 to 9.3 for high-risk patients. There were no statistically significant differences among surgical modalities, which tended to be more effective than radiation modalities, with the exception of combination external beam + brachytherapy for high-risk disease. Radiation modalities were consistently more expensive than surgical modalities; costs ranged from $19,901 (robot-assisted prostatectomy for low-risk disease) to $50,276 (combination radiation for high-risk disease). These findings were robust to an extensive set of sensitivity analyses. Conclusions Our analysis found small differences in outcomes and substantial differences in payer and patient costs across treatment alternatives. These findings may inform future policy discussions regarding strategies to improve efficiency of treatment selection for localized prostate cancer. PMID:23279038

  20. Simulating flight boundary conditions for orbiter payload modal survey

    NASA Technical Reports Server (NTRS)

    Chung, Y. T.; Sernaker, M. L.; Peebles, J. H.

    1993-01-01

    An approach to simulate the characteristics of the payload/orbiter interfaces for the payload modal survey was developed. The flexure designed for this approach is required to provide adequate stiffness separation in the free and constrained interface degrees of freedom to closely resemble the flight boundary condition. Payloads will behave linearly and demonstrate similar modal effective mass distribution and load path as the flight if the flexure fixture is used for the payload modal survey. The potential non-linearities caused by the trunnion slippage during the conventional fixed base modal survey may be eliminated. Consequently, the effort to correlate the test and analysis models can be significantly reduced. An example is given to illustrate the selection and the sensitivity of the flexure stiffness. The advantages of using flexure fixtures for the modal survey and for the analytical model verification are also demonstrated.

  1. Application of USNRC NUREG/CR-6661 and draft DG-1108 to evolutionary and advanced reactor designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang 'Apollo', Chen

    2006-07-01

    For the seismic design of evolutionary and advanced nuclear reactor power plants, there are definite financial advantages in the application of USNRC NUREG/CR-6661 and draft Regulatory Guide DG-1108. NUREG/CR-6661, 'Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems', was by Brookhaven National Laboratory (BNL) for the USNRC, and Draft Regulatory Guide DG-1108 is the proposed revision to the current Regulatory Guide (RG) 1.92, Revision 1, 'Combining Modal Responses and Spatial Components in Seismic Response Analysis'. The draft Regulatory Guide DG-1108 is available at http://members.cox.net/apolloconsulting, which also provides a link to the USNRC ADAMS site to searchmore » for NUREG/CR-6661 in text file or image file. The draft Regulatory Guide DG-1108 removes unnecessary conservatism in the modal combinations for closely spaced modes in seismic response spectrum analysis. Its application will be very helpful in coupled seismic analysis for structures and heavy equipment to reduce seismic responses and in piping system seismic design. In the NUREG/CR-6661 benchmark program, which investigated coupled seismic analysis of structures and equipment or piping systems with different damping values, three of the four participants applied the complex mode solution method to handle different damping values for structures, equipment, and piping systems. The fourth participant applied the classical normal mode method with equivalent weighted damping values to handle differences in structural, equipment, and piping system damping values. Coupled analysis will reduce the equipment responses when equipment, or piping system and structure are in or close to resonance. However, this reduction in responses occurs only if the realistic DG-1108 modal response combination method is applied, because closely spaced modes will be produced when structure and equipment or piping systems are in or close to resonance. Otherwise, the conservatism in the current Regulatory Guide 1.92, Revision 1, will overshadow the advantage of coupled analysis. All four participants applied the realistic modal combination method of DG-1108. Consequently, more realistic and reduced responses were obtained. (authors)« less

  2. Modal noise impact in radio over fiber multimode fiber links.

    PubMed

    Gasulla, I; Capmany, J

    2008-01-07

    A novel analysis is given on the statistics of modal noise for a graded-index multimode fiber (MMF) link excited by an analog intensity modulated laser diode. We present the speckle contrast as a function of the power spectrum of the modulated source and the transfer function of the MMF which behaves as an imperfect transversal microwave photonic filter. The theoretical results confirm that the modal noise is directly connected with the coherence properties of the optical source and show that the performance of high-frequency Radio Over Fiber (ROF) transmission through MMF links for short and middle reach distances is not substantially degraded by modal noise.

  3. A modal parameter extraction procedure applicable to linear time-invariant dynamic systems

    NASA Technical Reports Server (NTRS)

    Kurdila, A. J.; Craig, R. R., Jr.

    1985-01-01

    Modal analysis has emerged as a valuable tool in many phases of the engineering design process. Complex vibration and acoustic problems in new designs can often be remedied through use of the method. Moreover, the technique has been used to enhance the conceptual understanding of structures by serving to verify analytical models. A new modal parameter estimation procedure is presented. The technique is applicable to linear, time-invariant systems and accommodates multiple input excitations. In order to provide a background for the derivation of the method, some modal parameter extraction procedures currently in use are described. Key features implemented in the new technique are elaborated upon.

  4. Least-squares sequential parameter and state estimation for large space structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.; Eliazov, T.; Montgomery, R. C.

    1982-01-01

    This paper presents the formulation of simultaneous state and parameter estimation problems for flexible structures in terms of least-squares minimization problems. The approach combines an on-line order determination algorithm, with least-squares algorithms for finding estimates of modal approximation functions, modal amplitudes, and modal parameters. The approach combines previous results on separable nonlinear least squares estimation with a regression analysis formulation of the state estimation problem. The technique makes use of sequential Householder transformations. This allows for sequential accumulation of matrices required during the identification process. The technique is used to identify the modal prameters of a flexible beam.

  5. Analysis of longitudinal data from the Puget Sound transportation panel : task E : modal split analysis

    DOT National Transportation Integrated Search

    1996-11-01

    The Highway Economic Requirements System (HERS) is a computer model designed to simulate improvement selection decisions based on the relative benefit-cost merits of alternative improvement options. HERS is intended to estimate national level investm...

  6. Interim analysis report : model deployment of a regional, multi-modal 511 traveler information system

    DOT National Transportation Integrated Search

    2004-02-17

    This document presents the results of the analysis of baseline, or "pre-enhancement," data describing the operation of the existing 511 telephone traveler information system operated by the Arizona Department of Transportation (ADOT). The model deplo...

  7. Polysemous Verbs and Modality in Native and Non-Native Argumentative Writing: A Corpus-Based Study

    ERIC Educational Resources Information Center

    Salazar, Danica; Verdaguer, Isabel

    2009-01-01

    The present study is a corpus-based analysis of a selection of polysemous lexical verbs used to express modality in student argumentative writing. Twenty-three lexical verbs were searched for in three 100,000-word corpora of argumentative essays written in English by American, Filipino and Spanish university students. Concordance lines were…

  8. Comparative Analysis of Nursing Students' Perspectives toward Avatar Learning Modality: Gain Pre-Clinical Experience via Self-Paced Cognitive Tool

    ERIC Educational Resources Information Center

    Commendador, Kathleen; Chi, Robert

    2013-01-01

    This study was undertaken to better understand the nature of nursing students' perspectives toward simulative learning modality for gaining pre-clinical experience via self-paced cognitive tool--Avatar. Findings indicates that participants engaged in synchronous Avatar learning environment had higher levels of appreciation toward Avatar learning…

  9. Vibration of carbon nanotubes with defects: order reduction methods

    NASA Astrophysics Data System (ADS)

    Hudson, Robert B.; Sinha, Alok

    2018-03-01

    Order reduction methods are widely used to reduce computational effort when calculating the impact of defects on the vibrational properties of nearly periodic structures in engineering applications, such as a gas-turbine bladed disc. However, despite obvious similarities these techniques have not yet been adapted for use in analysing atomic structures with inevitable defects. Two order reduction techniques, modal domain analysis and modified modal domain analysis, are successfully used in this paper to examine the changes in vibrational frequencies, mode shapes and mode localization caused by defects in carbon nanotubes. The defects considered are isotope defects and Stone-Wales defects, though the methods described can be extended to other defects.

  10. Experimental Modal Analysis and Dynamic Component Synthesis. Volume 2. Measurement Techniques for Experimental Modal Analysis

    DTIC Science & Technology

    1987-12-01

    A- -- HZ LIN 3.0 . Be-I. •,% •4’ 20.. 0-p -4 -0 30a 4a j0 O0 100a 10 4140 iSo 130 20C. 2210 140 M* LIN g•" %g Figur 19. Cyli Avergin (N4,M 0 -3- 40...shows that the degree of nonlinearity of a structure varies according to the characteristics of the system. That is, welded structures will usually...exhibit a linear response; where a riveted or spot welded structure exhibits a very nonlinear response [52]. As an example of a nonlinear system

  11. Optimal Location of Piezoelectric Patch on Composite Structure using Viewing Method

    NASA Astrophysics Data System (ADS)

    Samyal, Rahul; Bagha, Ashok K.

    2017-08-01

    A useful material which is manufactured by mixing of two or three different materials in homogeneous level is termed as composite material. In now day’s composite materials are used in wide area such as aerospace, automobiles, satellite, bullet proof jackets, rotor blades etc. In this paper modal analysis of composite material, mixture of polyester as matrix and glass as fiber, is carried out by using ABAQUS software. The modal analysis of composite material for fiber orientation 450 is carried out. In this paper by viewing the different mode shapes of the composite material, the optimal location of piezoelectric patch is carried out.

  12. The connectome viewer toolkit: an open source framework to manage, analyze, and visualize connectomes.

    PubMed

    Gerhard, Stephan; Daducci, Alessandro; Lemkaddem, Alia; Meuli, Reto; Thiran, Jean-Philippe; Hagmann, Patric

    2011-01-01

    Advanced neuroinformatics tools are required for methods of connectome mapping, analysis, and visualization. The inherent multi-modality of connectome datasets poses new challenges for data organization, integration, and sharing. We have designed and implemented the Connectome Viewer Toolkit - a set of free and extensible open source neuroimaging tools written in Python. The key components of the toolkit are as follows: (1) The Connectome File Format is an XML-based container format to standardize multi-modal data integration and structured metadata annotation. (2) The Connectome File Format Library enables management and sharing of connectome files. (3) The Connectome Viewer is an integrated research and development environment for visualization and analysis of multi-modal connectome data. The Connectome Viewer's plugin architecture supports extensions with network analysis packages and an interactive scripting shell, to enable easy development and community contributions. Integration with tools from the scientific Python community allows the leveraging of numerous existing libraries for powerful connectome data mining, exploration, and comparison. We demonstrate the applicability of the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/

  13. The Connectome Viewer Toolkit: An Open Source Framework to Manage, Analyze, and Visualize Connectomes

    PubMed Central

    Gerhard, Stephan; Daducci, Alessandro; Lemkaddem, Alia; Meuli, Reto; Thiran, Jean-Philippe; Hagmann, Patric

    2011-01-01

    Advanced neuroinformatics tools are required for methods of connectome mapping, analysis, and visualization. The inherent multi-modality of connectome datasets poses new challenges for data organization, integration, and sharing. We have designed and implemented the Connectome Viewer Toolkit – a set of free and extensible open source neuroimaging tools written in Python. The key components of the toolkit are as follows: (1) The Connectome File Format is an XML-based container format to standardize multi-modal data integration and structured metadata annotation. (2) The Connectome File Format Library enables management and sharing of connectome files. (3) The Connectome Viewer is an integrated research and development environment for visualization and analysis of multi-modal connectome data. The Connectome Viewer's plugin architecture supports extensions with network analysis packages and an interactive scripting shell, to enable easy development and community contributions. Integration with tools from the scientific Python community allows the leveraging of numerous existing libraries for powerful connectome data mining, exploration, and comparison. We demonstrate the applicability of the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/ PMID:21713110

  14. The effect of time synchronization of wireless sensors on the modal analysis of structures

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, V.; Fowler, K.; Sazonov, E.

    2008-10-01

    Driven by the need to reduce the installation cost and maintenance cost of structural health monitoring (SHM) systems, wireless sensor networks (WSNs) are becoming increasingly popular. Perfect time synchronization amongst the wireless sensors is a key factor enabling the use of low-cost, low-power WSNs for structural health monitoring applications based on output-only modal analysis of structures. In this paper we present a theoretical framework for analysis of the impact created by time delays in the measured system response on the reconstruction of mode shapes using the popular frequency domain decomposition (FDD) technique. This methodology directly estimates the change in mode shape values based on sensor synchronicity. We confirm the proposed theoretical model by experimental validation in modal identification experiments performed on an aluminum beam. The experimental validation was performed using a wireless intelligent sensor and actuator network (WISAN) which allows for close time synchronization between sensors (0.6-10 µs in the tested configuration) and guarantees lossless data delivery under normal conditions. The experimental results closely match theoretical predictions and show that even very small delays in output response impact the mode shapes.

  15. Analysis and optimization of dynamic model of eccentric shaft grinder

    NASA Astrophysics Data System (ADS)

    Gao, Yangjie; Han, Qiushi; Li, Qiguang; Peng, Baoying

    2018-04-01

    Eccentric shaft servo grinder is the core equipment in the process chain of machining eccentric shaft. The establishment of the movement model and the determination of the kinematic relation of the-axis in the grinding process directly affect the quality of the grinding process, and there are many error factors in grinding, and it is very important to analyze the influence of these factors on the work piece quality. The three-dimensional model of eccentric shaft grinder is drawn by Pro/E three-dimensional drawing software, the model is imported into ANSYS Workbench Finite element analysis software, and the finite element analysis is carried out, and then the variation and parameters of each component of the bed are obtained by the modal analysis result. The natural frequencies and formations of the first six steps of the eccentric shaft grinder are obtained by modal analysis, and the weak links of the parts of the grinder are found out, and a reference improvement method is proposed for the design of the eccentric shaft grinder in the future.

  16. Space simulation facilities providing a stable thermal vacuum facility

    NASA Technical Reports Server (NTRS)

    Tellalian, Martin L.

    1990-01-01

    CBI has recently constructed the Intermediate Thermal Vacuum Facility. Built as a corporate facility, the installation will first be used on the Boost Surveillance and Tracking System (BSTS) program. It will also be used to develop and test other sensor systems. The horizontal chamber has a horseshoe shaped cross section and is supported on pneumatic isolators for vibration isolation. The chamber structure was designed to meet stability and stiffness requirements. The design process included measurement of the ambient ground vibrations, analysis of various foundation test article support configurations, design and analysis of the chamber shell and modal testing of the chamber shell. A detailed 3-D finite element analysis was made in the design stage to predict the lowest three natural frequencies and mode shapes and to identify local vibrating components. The design process is described and the results are compared of the finite element analysis to the results of the field modal testing and analysis for the 3 lowest natural frequencies and mode shapes. Concepts are also presented for stiffening large steel structures along with methods to improve test article stability in large space simulation facilities.

  17. A Preliminary Analysis of the Linguistic Complexity of Numeracy Skills Test Items for Pre Service Teachers

    ERIC Educational Resources Information Center

    O'Keeffe, Lisa

    2016-01-01

    Language is frequently discussed as barrier to mathematics word problems. Hence this paper presents the initial findings of a linguistic analysis of numeracy skills test sample items. The theoretical perspective of multi-modal text analysis underpinned this study, in which data was extracted from the ten sample numeracy test items released by the…

  18. Toward a Technology of Derived Stimulus Relations: An Analysis of Articles Published in the "Journal of Applied Behavior Analysis," 1992-2009

    ERIC Educational Resources Information Center

    Rehfeldt, Ruth Anne

    2011-01-01

    Every article on stimulus equivalence or derived stimulus relations published in the "Journal of Applied Behavior Analysis" was evaluated in terms of characteristics that are relevant to the development of applied technologies: the type of participants, settings, procedure automated vs. tabletop), stimuli, and stimulus sensory modality; types of…

  19. Finite Element Analysis and Vibration Control of Lorry’s Shift Mechanism

    NASA Astrophysics Data System (ADS)

    Qiangwei, Li

    2017-11-01

    The transmission is one of the important parts of the automobile’s transmission system, Shift mechanism’s main function of transmission is to adjust the position of the shift fork, toggle the synchronizer’s tooth ring, so that the gears are separated and combined to achieve the shift. Therefore, in order to ensure the reliability and stability of the shift process, the vibration characteristics of the shift mechanism cannot be ignored. The static analysis of the shift fork is carried out, and the stress distribution of the shift fork is obtained according to the operating characteristics of the shift mechanism of the lorry transmission in this paper. The modal analysis of the shift mechanism shows the low-order vibration frequencies and the corresponding modal vibration shapes, and the vibration control analysis is carried out according to the simulation results. The simulation results provide the theoretical basis for the reasonable optimization design of the shift mechanism of the lorry transmission.

  20. Liver CT image processing: a short introduction of the technical elements.

    PubMed

    Masutani, Y; Uozumi, K; Akahane, Masaaki; Ohtomo, Kuni

    2006-05-01

    In this paper, we describe the technical aspects of image analysis for liver diagnosis and treatment, including the state-of-the-art of liver image analysis and its applications. After discussion on modalities for liver image analysis, various technical elements for liver image analysis such as registration, segmentation, modeling, and computer-assisted detection are covered with examples performed with clinical data sets. Perspective in the imaging technologies is also reviewed and discussed.

  1. Solitary plasmacytoma: population-based analysis of survival trends and effect of various treatment modalities in the USA.

    PubMed

    Thumallapally, Nishitha; Meshref, Ahmed; Mousa, Mohammed; Terjanian, Terenig

    2017-01-05

    Solitary plasmacytoma (SP) is a localized neoplastic plasma cell disorder with an annual incidence of less than 450 cases. Given the rarity of this disorder, it is difficult to conduct large-scale population studies. Consequently, very limited information on the disorder is available, making it difficult to estimate the incidence and survival rates. Furthermore, limited information is available on the efficacy of various treatment modalities in relation to primary tumor sites. The data for this retrospective study were drawn from the Surveillance, Epidemiology and End Results (SEER) database, which comprises 18 registries; patient demographics, treatment modalities and survival rates were obtained for those diagnosed with SP from 1998 to 2007. Various prognostic factors were analyzed via Kaplan-Meier analysis and log-rank test, with 5-year relative survival rate defined as the primary outcome of interest. Cox regression analysis was employed in the multivariate analysis. The SEER search from 1998 to 2007 yielded records for 1691 SP patients. The median age at diagnosis was 63 years. The patient cohort was 62.4% male, 37.6% female, 80% Caucasian, 14.6% African American and 5.4% other races. Additionally, 57.8% had osseous plasmacytoma, and 31.9% had extraosseous involvement. Unspecified plasmacytoma was noted in 10.2% of patients. The most common treatment modalities were radiotherapy (RT) (48.8%), followed by combination surgery with RT (21.2%) and surgery alone (11.6%). Univariate analysis of prognostic factors revealed that the survival outcomes were better for younger male patients who received RT with surgery (p < 0.05). Additionally, patients who received neoadjuvant RT had increased survival rates compared to those receiving adjuvant RT (86% vs 73%, p < 0.05). Furthermore, the analyses revealed that 5-year survival rates for patients with axial plasmacytoma were superior when RT was combined with surgery (p < 0.05). In the multivariate analysis, age <60 years and treatment with either RT or surgery showed superior survival rates. Progression to multiple myeloma (MM) was noted in 551 patients. Age >60 years was associated with a lower 5-year survival in patients who progressed to MM compared to those who were diagnosed initially with MM (15.1 vs 16.6%). Finally, those who received RT and progressed to MM still had a higher chance of survival than those who were diagnosed with MM initially and treated with RT/surgery (21.8% vs 15.9%, p < 0.05). A review of the pertinent literature indicates that we provided the most comprehensive population-based analysis of SP to date. Moreover, our study contributes to the establishment of the optimal SP treatment modality, as RT is the favored option in frontline settings. Consensus is currently lacking regarding the benefits of combined treatment including surgery. Thus, the findings reported here elucidate the role of primary treatment modalities while also demonstrating the quantifiable benefits of combining RT with surgery in relation to different primary tumor sites. While our results are promising, they should be confirmed through further large-scale randomized studies.

  2. Analysis of structural dynamic data from Skylab. Volume 2: Skylab analytical and test model data

    NASA Technical Reports Server (NTRS)

    Demchak, L.; Harcrow, H.

    1976-01-01

    The orbital configuration test modal data, analytical test correlation modal data, and analytical flight configuration modal data are presented. Tables showing the generalized mass contributions (GMCs) for each of the thirty tests modes are given along with the two dimensional mode shape plots and tables of GMCs for the test correlated analytical modes. The two dimensional mode shape plots for the analytical modes and uncoupled and coupled modes of the orbital flight configuration at three development phases of the model are included.

  3. Estimating free-body modal parameters from tests of a constrained structure

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    1993-01-01

    Hardware advances in suspension technology for ground tests of large space structures provide near on-orbit boundary conditions for modal testing. Further advances in determining free-body modal properties of constrained large space structures have been made, on the analysis side, by using time domain parameter estimation and perturbing the stiffness of the constraints over multiple sub-tests. In this manner, passive suspension constraint forces, which are fully correlated and therefore not usable for spectral averaging techniques, are made effectively uncorrelated. The technique is demonstrated with simulated test data.

  4. Economic Analyses in Squamous Cell Carcinoma of the Head and Neck: A Review of the Literature From a Clinical Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Jonas A. de, E-mail: jdesouza@medicine.bsd.uchicago.edu; Santana, Iuri A.; Castro, Gilberto de

    The purpose of this review was to describe cost-effectiveness and cost analysis studies across treatment modalities for squamous cell carcinoma of the head and neck (SCCHN), while placing their results in context of the current clinical practice. We performed a literature search in PubMed for English-language studies addressing economic analyses of treatment modalities for SCCHN published from January 2000 to March 2013. We also performed an additional search for related studies published by the National Institute for Health and Clinical Excellence in the United Kingdom. Identified articles were classified into 3 clinical approaches (organ preservation, radiation therapy modalities, and chemotherapy regimens)more » and into 2 types of economic studies (cost analysis and cost-effectiveness/cost-utility studies). All cost estimates were normalized to US dollars, year 2013 values. Our search yielded 23 articles: 13 related to organ preservation approaches, 5 to radiation therapy modalities, and 5 to chemotherapy regimens. In general, studies analyzed different questions and modalities, making it difficult to reach a conclusion. Even when restricted to comparisons of modalities within the same clinical approach, studies often yielded conflicting findings. The heterogeneity across economic studies of SCCHN should be carefully understood in light of the modeling assumptions and limitations of each study and placed in context with relevant settings of clinical practices and study perspectives. Furthermore, the scarcity of comparative effectiveness and quality-of-life data poses unique challenges for conducting economic analyses for a resource-intensive disease, such as SCCHN, that requires a multimodal care. Future research is needed to better understand how to compare the costs and cost-effectiveness of different modalities for SCCHN.« less

  5. The Inception of OMA in the Development of Modal Testing Technology for Wind Turbines

    NASA Technical Reports Server (NTRS)

    James, George H., III; Carne. Thomas G.

    2008-01-01

    Wind turbines are immense, flexible structures with aerodynamic forces acting on the rotating blades at harmonics of the turbine rotational frequency, which are comparable to the modal frequencies of the structure. Predicting and experimentally measuring the modal frequencies of wind turbines has been important to their successful design and operation. Performing modal tests on wind turbine structures over 100 meters tall is a substantial challenge, which has inspired innovative developments in modal test technology. For wind turbines, a further complication is that the modal frequencies are dependent on the turbine rotation speed. The history and development of a new technique for acquiring the modal parameters using output-only response data, called the Natural Excitation Technique (NExT), will be reviewed, showing historical tests and techniques. The initial attempts at output-only modal testing began in the late 1980's with the development of NExT in the 1990's. NExT was a predecessor to OMA, developed to overcome these challenges of testing immense structures excited with environmental inputs. We will trace the difficulties and successes of wind turbine modal testing from 1982 to the present. Keywords: OMA, Modal Analysis, NExT, Wind Turbines, Wind Excitation

  6. Problems and Issues in Meta-Analysis.

    ERIC Educational Resources Information Center

    George, Carrie A.

    Single studies, by themselves, rarely explain the effect of treatments or interventions definitively in the social sciences. Researchers created meta-analysis in the 1970s to address this need. Since then, meta-analytic techniques have been used to support certain treatment modalities and to influence policymakers. Although these techniques…

  7. Modal characteristics of a simplified brake rotor model using semi-analytical Rayleigh Ritz method

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Cheng, L.; Yam, L. H.; Zhou, L. M.

    2006-10-01

    Emphasis of this paper is given to the modal characteristics of a brake rotor which is utilized in automotive disc brake system. The brake rotor is modeled as a combined structure comprising an annular plate connected to a segment of cylindrical shell by distributed artificial springs. Modal analysis shows the existence of three types of modes for the combined structure, depending on the involvement of each substructure. A decomposition technique is proposed, allowing each mode of the combined structure to be decomposed into a linear combination of the individual substructure modes. It is shown that the decomposition coefficients provide a direct and systematic means to carry out modal classification and quantification.

  8. The English Modals and Their Equivalents in Serbo-Croatian, with Pedagogical Material. New Studies Series, Volume 1.

    ERIC Educational Resources Information Center

    Kalogjera, Damir; Vilke, Mirjana

    Part of a 20-year Yugoslav Serbocroatian-English Contrastive Project, this study is intended to make students, teachers, textbook writers, and scholars aware of elements in the system of English modals that might cause difficulties to the native Serbocroatian-speaking learner of English. An eclectic method of contrastive analysis consisting of…

  9. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasure, John, et. al.

    Through past DOE funding, the MIND Research network has funded a national consortium effort that used multi-modal neuroimaging, genetics, and clinical assessment of subjects to study schizophrenia in both first episode and persistently ill patients. Although active recruitment of research participants is complete, this consortium remains active and productive in terms of analysis of this unique multi-modal data collected on over 320 subjects.

  10. Modal Parameters Evaluation in a Full-Scale Aircraft Demonstrator under Different Environmental Conditions Using HS 3D-DIC.

    PubMed

    Molina-Viedma, Ángel Jesús; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A; Rodríguez-Ahlquist, Javier; Iglesias-Vallejo, Manuel

    2018-02-02

    In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers.

  11. Modal parameter identification of a compression-loaded CFRP stiffened plate and correlation with its buckling behaviour

    NASA Astrophysics Data System (ADS)

    Chaves-Vargas, M.; Dafnis, A.; Reimerdes, H.-G.; Schröder, K.-U.

    2015-10-01

    In order to study the dynamic response and the buckling behaviour of several load-carrying structural components of civil aircraft when subjected to transient load scenarios such as gusts or a landing impact, a generic mid-size aircraft is defined within the European research project DAEDALOS. From this aircraft, several sections or panels in different regions such as wing, vertical tailplane and fuselage are defined. The stiffened carbon-fibre-reinforced plastic (CFRP) plate investigated within the present work represents a simplified version of the wing panel selected from the generic aircraft. As part of the current work, the buckling behaviour and the modal properties of the stiffened plate under the effect of a static in-plane compression load are studied. This is accomplished by means of a test series including quasi-static buckling tests and an experimental modal analysis (EMA). One of the key objectives pursued is the correlation of the modal properties to the buckling behaviour by studying the relationship between the natural frequencies of the stiffened plate and its corresponding buckling load. The experimental work is verified by a finite element analysis.

  12. Extraction of Modal Parameters from Spacecraft Flight Data

    NASA Technical Reports Server (NTRS)

    James, George H.; Cao, Timothy T.; Fogt, Vincent A.; Wilson, Robert L.; Bartkowicz, Theodore J.

    2010-01-01

    The modeled response of spacecraft systems must be validated using flight data as ground tests cannot adequately represent the flight. Tools from the field of operational modal analysis would typically be brought to bear on such structures. However, spacecraft systems have several complicated issues: 1. High amplitudes of loads; 2. Compressive loads on the vehicle in flight; 3. Lack of generous time-synchronized flight data; 4. Changing properties during the flight; and 5. Major vehicle changes due to staging. A particularly vexing parameter to extract is modal damping. Damping estimation has become a more critical issue as new mass-driven vehicle designs seek to use the highest damping value possible. The paper will focus on recent efforts to utilize spacecraft flight data to extract system parameters, with a special interest on modal damping. This work utilizes the analysis of correlation functions derived from a sliding window technique applied to the time record. Four different case studies are reported in the sequence that drove the authors understanding. The insights derived from these four exercises are preliminary conclusions for the general state-of-the-art, but may be of specific utility to similar problems approached with similar tools.

  13. Voxelwise multivariate analysis of multimodality magnetic resonance imaging

    PubMed Central

    Naylor, Melissa G.; Cardenas, Valerie A.; Tosun, Duygu; Schuff, Norbert; Weiner, Michael; Schwartzman, Armin

    2015-01-01

    Most brain magnetic resonance imaging (MRI) studies concentrate on a single MRI contrast or modality, frequently structural MRI. By performing an integrated analysis of several modalities, such as structural, perfusion-weighted, and diffusion-weighted MRI, new insights may be attained to better understand the underlying processes of brain diseases. We compare two voxelwise approaches: (1) fitting multiple univariate models, one for each outcome and then adjusting for multiple comparisons among the outcomes and (2) fitting a multivariate model. In both cases, adjustment for multiple comparisons is performed over all voxels jointly to account for the search over the brain. The multivariate model is able to account for the multiple comparisons over outcomes without assuming independence because the covariance structure between modalities is estimated. Simulations show that the multivariate approach is more powerful when the outcomes are correlated and, even when the outcomes are independent, the multivariate approach is just as powerful or more powerful when at least two outcomes are dependent on predictors in the model. However, multiple univariate regressions with Bonferroni correction remains a desirable alternative in some circumstances. To illustrate the power of each approach, we analyze a case control study of Alzheimer's disease, in which data from three MRI modalities are available. PMID:23408378

  14. Modal Parameters Evaluation in a Full-Scale Aircraft Demonstrator under Different Environmental Conditions Using HS 3D-DIC

    PubMed Central

    López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.; Rodríguez-Ahlquist, Javier; Iglesias-Vallejo, Manuel

    2018-01-01

    In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers. PMID:29393897

  15. Modal element method for potential flow in non-uniform ducts: Combining closed form analysis with CFD

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Baumeister, Joseph F.

    1994-01-01

    An analytical procedure is presented, called the modal element method, that combines numerical grid based algorithms with eigenfunction expansions developed by separation of variables. A modal element method is presented for solving potential flow in a channel with two-dimensional cylindrical like obstacles. The infinite computational region is divided into three subdomains; the bounded finite element domain, which is characterized by the cylindrical obstacle and the surrounding unbounded uniform channel entrance and exit domains. The velocity potential is represented approximately in the grid based domain by a finite element solution and is represented analytically by an eigenfunction expansion in the uniform semi-infinite entrance and exit domains. The calculated flow fields are in excellent agreement with exact analytical solutions. By eliminating the grid surrounding the obstacle, the modal element method reduces the numerical grid size, employs a more precise far field boundary condition, as well as giving theoretical insight to the interaction of the obstacle with the mean flow. Although the analysis focuses on a specific geometry, the formulation is general and can be applied to a variety of problems as seen by a comparison to companion theories in aeroacoustics and electromagnetics.

  16. Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models

    NASA Technical Reports Server (NTRS)

    Coppolino, Robert N.

    2018-01-01

    Responses to challenges associated with verification and validation (V&V) of Space Launch System (SLS) structural dynamics models are presented in this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA), which has gained acceptance by various principals in the NASA community, defines efficient and accurate FEM modal sensitivity models that are useful in test-analysis correlation and reconciliation and parametric uncertainty studies. (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976), developed to remedy difficulties encountered with the widely used Classical Guyan Reduction (CGR) method, are presented. MGR and HR are particularly relevant for estimation of "body dominant" target modes of shell-type SLS assemblies that have numerous "body", "breathing" and local component constituents. Realities associated with configuration features and "imperfections" cause "body" and "breathing" mode characteristics to mix resulting in a lack of clarity in the understanding and correlation of FEM- and test-derived modal data. (3) Mode Consolidation (MC) is a newly introduced procedure designed to effectively "de-feature" FEM and experimental modes of detailed structural shell assemblies for unambiguous estimation of "body" dominant target modes. Finally, (4) Experimental Mode Verification (EMV) is a procedure that addresses ambiguities associated with experimental modal analysis of complex structural systems. Specifically, EMV directly separates well-defined modal data from spurious and poorly excited modal data employing newly introduced graphical and coherence metrics.

  17. Modernization of the Transonic Axial Compressor Test Rig

    DTIC Science & Technology

    2017-12-01

    13. ABSTRACT (maximum 200 words) This work presents the design and simulation process of modernizing the Naval Postgraduate School’s transonic...fabricate the materials. Stiffness tests and modal analysis were conducted via Finite Element Analysis (FEA) software. This analysis was used to design ...work presents the design and simulation process of modernizing the Naval Postgraduate School’s transonic compressor test rig (TCR). The TCR, which

  18. Mössbauer study of Brazilian soapstone

    NASA Astrophysics Data System (ADS)

    Gonçalves, M. A.; de Jesus Filho, M. F.; Garg, V. K.

    1991-11-01

    Steatite mineral rocks, soapstone, have been studied by X-ray diffraction, optical microscopic analysis (modal analysis), electron probe micro analysis and Mössbauer spectroscopy for characterization, mineral percentages and chemical composition. Mössbauer spectra show both, magnetic interactions corresponding to magnetite and doublets corresponding to talc. chlorite, dolomite and tremolite. The temperature dependence of the quadrupole splitting in dolomite has been explained in terms of crystal field interaction.

  19. Dynamic characteristics of the rotor in a magnetically suspended control moment gyroscope with active magnetic bearing and passive magnetic bearing.

    PubMed

    Tang, Jiqiang; Xiang, Biao; Zhang, Yongbin

    2014-07-01

    For a magnetically suspended control moment gyroscope, stiffness and damping of magnetic bearing will influence modal frequency of a rotor. In this paper the relationship between modal frequency and stiffness and damping has been investigated. The mathematic calculation model of axial passive magnetic bearing (PMB) stiffness is developed. And PID control based on internal model control is introduced into control of radial active magnetic bearing (AMB), considering the radial coupling of axial PMB, a mathematic calculation model of stiffness and damping of radial AMB is established. According to modal analysis, the relationship between modal frequency and modal shapes is achieved. Radial vibration frequency is mainly influenced by stiffness of radial AMB; however, when stiffness increases, radial vibration will disappear and a high frequency bending modal will appear. Stiffness of axial PMB mainly affects the axial vibration mode, which will turn into high-order bending modal. Axial PMB causes bigger influence on torsion modal of the rotor. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. The National Treatment Improvement Evaluation Study: Retention Analysis.

    ERIC Educational Resources Information Center

    Orwin, Rob; Williams, Valerie

    This study focuses on programmatic factors that predict retention for individuals in drug and alcohol treatment programs through secondary analysis of data from the National Treatment Improvement Evaluation Study (NTIES). It addresses the relationships between completion rates, lengths of stay, and treatment modality. It examines the effect of…

  1. Implementation of SEREP Into LLNL Dyna3d for Global/Local Analysis

    DTIC Science & Technology

    2005-08-01

    System Equivalent Reduction Expansion Process (SEREP). Presented at the 7th International Modal Analysis Conference, Las Vegas, NV, February 1989. 7...HUTCHINSON F SCHWARZ WARREN MI 48397-5000 14 BENET LABS AMSTA AR CCB R FISCELLA M SOJA E KATHE M SCAVULO G SPENCER P WHEELER

  2. Exploration of the Maximum Entropy/Optimal Projection Approach to Control Design Synthesis for Large Space Structures.

    DTIC Science & Technology

    1985-02-01

    Energy Analysis , a branch of dynamic modal analysis developed for analyzing acoustic vibration problems, its present stage of development embodies a...Maximum Entropy Stochastic Modelling and Reduced-Order Design Synthesis is a rigorous new approach to this class of problems. Inspired by Statistical

  3. Active Structural Acoustic Control as an Approach to Acoustic Optimization of Lightweight Structures

    DTIC Science & Technology

    2001-06-01

    appropriate approach based on Statistical Energy Analysis (SEA) would facilitate investigations of the structural behavior at a high modal density. On the way...higher frequency investigations an approach based on the Statistical Energy Analysis (SEA) is recommended to describe the structural dynamic behavior

  4. Ontology based decision system for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Trabelsi Ben Ameur, Soumaya; Cloppet, Florence; Wendling, Laurent; Sellami, Dorra

    2018-04-01

    In this paper, we focus on analysis and diagnosis of breast masses inspired by expert concepts and rules. Accordingly, a Bag of Words is built based on the ontology of breast cancer diagnosis, accurately described in the Breast Imaging Reporting and Data System. To fill the gap between low level knowledge and expert concepts, a semantic annotation is developed using a machine learning tool. Then, breast masses are classified into benign or malignant according to expert rules implicitly modeled with a set of classifiers (KNN, ANN, SVM and Decision Tree). This semantic context of analysis offers a frame where we can include external factors and other meta-knowledge such as patient risk factors as well as exploiting more than one modality. Based on MRI and DECEDM modalities, our developed system leads a recognition rate of 99.7% with Decision Tree where an improvement of 24.7 % is obtained owing to semantic analysis.

  5. Breast Angiosarcoma: Case Series and Expression of Vascular Endothelial Growth Factor

    PubMed Central

    Brar, Rondeep; West, Robert; Witten, Daniela; Raman, Bhargav; Jacobs, Charlotte; Ganjoo, Kristen

    2009-01-01

    Purpose Angiosarcoma of the breast is a rare, malignant tumor for which little is known regarding prognostic indicators and optimal therapeutic regimens. To address this issue, we performed a retrospective analysis of breast angiosarcoma cases seen at Stanford University along with immunohistochemical analysis for markers of angiogenesis. Methods Breast angiosarcoma cases seen between 1980 and 2008 were examined. Viable tissue blocks were analyzed for expression of vascular endothelial growth factor and its receptors. Results A total of 16 cases were identified. Data was collected regarding epidemiology, treatment, response rates, disease-free survival, and the use of various imaging modalities. Five tissue blocks remained viable for immunohistochemical analysis. Vascular endothelial growth factor-A was positively expressed in 3 of these samples. Conclusion Angiosarcoma of the breast is an aggressive malignancy with a propensity for both local recurrence and distant metastases. Angiogenesis inhibition may represent a novel therapeutic modality in this rare, vascular malignancy. PMID:20737044

  6. OMA analysis of a launcher under operational conditions with time-varying properties

    NASA Astrophysics Data System (ADS)

    Eugeni, M.; Coppotelli, G.; Mastroddi, F.; Gaudenzi, P.; Muller, S.; Troclet, B.

    2018-05-01

    The objective of this paper is the investigation of the capability of operational modal analysis approaches to deal with time-varying system in the low-frequency domain. Specifically, the problem of the identification of the dynamic properties of a launch vehicle, working under actual operative conditions, is studied. Two OMA methods are considered: the frequency-domain decomposition and the Hilbert transform method. It is demonstrated that both OMA approaches allow the time-tracking of modal parameters, namely, natural frequencies, damping ratios, and mode shapes, from the response accelerations only recorded during actual flight tests of a launcher characterized by a large mass variation due to fuel burning typical of the first phase of the flight.

  7. Prediction of light aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.; Morales, D. A.

    1976-01-01

    At the present time, predictions of aircraft interior noise depend heavily on empirical correction factors derived from previous flight measurements. However, to design for acceptable interior noise levels and to optimize acoustic treatments, analytical techniques which do not depend on empirical data are needed. This paper describes a computerized interior noise prediction method for light aircraft. An existing analytical program (developed for commercial jets by Cockburn and Jolly in 1968) forms the basis of some modal analysis work which is described. The accuracy of this modal analysis technique for predicting low-frequency coupled acoustic-structural natural frequencies is discussed along with trends indicating the effects of varying parameters such as fuselage length and diameter, structural stiffness, and interior acoustic absorption.

  8. Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses

    NASA Technical Reports Server (NTRS)

    Mei, C.

    1984-01-01

    The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.

  9. Application of a flight test and data analysis technique to flutter of a drone aircraft

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.

    1981-01-01

    Modal identification results presented were obtained from recent flight flutter tests of a drone vehicle with a research wing (DAST ARW-1 for Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing-1). This vehicle is equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surface on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.

  10. Complex modal analysis of transverse free vibrations for axially moving nanobeams based on the nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shen, Huoming; Zhang, Bo; Liu, Juan; Zhang, Yingrong

    2018-07-01

    We investigate the transverse free vibration behaviour of axially moving nanobeams based on the nonlocal strain gradient theory. Considering the geometrical nonlinearity, which takes the form of von Kármán strains, the coupled plane motion equations and related boundary conditions of a new size-dependent beam model of Euler-Bernoulli type are developed using the generalized Hamilton principle. Using the simply supported axially moving nanobeams as an example, the complex modal analysis method is adopted to solve the governing equation; then, the effect of the order of modal truncation on the natural frequencies is discussed. Subsequently, the roles of the nonlocal parameter, material characteristic parameter, axial speed, stiffness and axial support rigidity parameter on the free vibration are comprehensively addressed. The material characteristic parameter induces the stiffness hardening of nanobeams, while the nonlocal parameter induces stiffness softening. In addition, the roles of small-scale parameters on the flutter critical velocity and stability are explained.

  11. Simulation Analysis of Helicopter Ground Resonance Nonlinear Dynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Lu, Yu-hui; Ling, Ai-min

    2017-07-01

    In order to accurately predict the dynamic instability of helicopter ground resonance, a modeling and simulation method of helicopter ground resonance considering nonlinear dynamic characteristics of components (rotor lead-lag damper, landing gear wheel and absorber) is presented. The numerical integral method is used to calculate the transient responses of the body and rotor, simulating some disturbance. To obtain quantitative instabilities, Fast Fourier Transform (FFT) is conducted to estimate the modal frequencies, and the mobile rectangular window method is employed in the predictions of the modal damping in terms of the response time history. Simulation results show that ground resonance simulation test can exactly lead up the blade lead-lag regressing mode frequency, and the modal damping obtained according to attenuation curves are close to the test results. The simulation test results are in accordance with the actual accident situation, and prove the correctness of the simulation method. This analysis method used for ground resonance simulation test can give out the results according with real helicopter engineering tests.

  12. An Energy-Based Limit State Function for Estimation of Structural Reliability in Shock Environments

    DOE PAGES

    Guthrie, Michael A.

    2013-01-01

    limit state function is developed for the estimation of structural reliability in shock environments. This limit state function uses peak modal strain energies to characterize environmental severity and modal strain energies at failure to characterize the structural capacity. The Hasofer-Lind reliability index is briefly reviewed and its computation for the energy-based limit state function is discussed. Applications to two degree of freedom mass-spring systems and to a simple finite element model are considered. For these examples, computation of the reliability index requires little effort beyond a modal analysis, but still accounts for relevant uncertainties in both the structure and environment.more » For both examples, the reliability index is observed to agree well with the results of Monte Carlo analysis. In situations where fast, qualitative comparison of several candidate designs is required, the reliability index based on the proposed limit state function provides an attractive metric which can be used to compare and control reliability.« less

  13. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  14. Harmonic analysis of electrified railway based on improved HHT

    NASA Astrophysics Data System (ADS)

    Wang, Feng

    2018-04-01

    In this paper, the causes and harms of the current electric locomotive electrical system harmonics are firstly studied and analyzed. Based on the characteristics of the harmonics in the electrical system, the Hilbert-Huang transform method is introduced. Based on the in-depth analysis of the empirical mode decomposition method and the Hilbert transform method, the reasons and solutions to the endpoint effect and modal aliasing problem in the HHT method are explored. For the endpoint effect of HHT, this paper uses point-symmetric extension method to extend the collected data; In allusion to the modal aliasing problem, this paper uses the high frequency harmonic assistant method to preprocess the signal and gives the empirical formula of high frequency auxiliary harmonic. Finally, combining the suppression of HHT endpoint effect and modal aliasing problem, an improved HHT method is proposed and simulated by matlab. The simulation results show that the improved HHT is effective for the electric locomotive power supply system.

  15. Assessing the Effectiveness of E-learning Integration in College Physics in the Alamo Community Colleges District

    NASA Astrophysics Data System (ADS)

    Zhou, Qiaoying

    Academic achievement and student participation in physics are lower than desired. Research has shown that there is a shortage of college students entering science and technology fields such as physics. E-learning may provide the technology-oriented Net Generation learner an option for taking courses such as physics in a course modality with which they are most comfortable thus garnering more participation and higher academic achievement. A quantitative ex-post facto study was performed to compare face-to-face and E-learning modalities on course completion and physics achievement for an entire introductory physics course. The theoretical framework for this study was based on the constructivist theory of education that implies a student-centered learning process. The sample consisted of 116 students enrolled in introductory physics courses at four 2-year community colleges in Texas. Course completion, SAT scores, Force Concept Inventory examination scores, as well as demographic information and employment information were examined. Linear and ordinal multiple regression analysis were used to determine if course modality is predictive of physics achievement while controlling for general scholastic aptitude, current employment, the presence of children in the home, and teacher evaluations. The results showed that students in the E-learning course performed better on the Force Concept Inventory than those in the traditional course both in the multiple regression analysis, beta = .61, p < .001, and in the ordinal regression analysis, Wald(1) = 18.83, p < .001. A chi-square test was used to determine if course completion rates differ between students in the two course modalities. The results showed no difference in course completion rates between students in the two course modalities, chi 2(1, n = 116) = 1.02, p = .312. It was concluded that students in an E-learning course modality had higher physics achievement but were no more likely to complete the introductory physics course than students were in a face-to-face modality. It was recommended that other colleges and universities should develop and test E-learning courses for introductory physics, that larger sample sizes should be used in future studies, and that additional outcome variables including the likelihood that a student chooses physics as a major or the likelihood that a student completes a physics degree should be examined.

  16. Capsule Endoscopy in the Assessment of Obscure Gastrointestinal Bleeding: An Evidence-Based Analysis

    PubMed Central

    2015-01-01

    Background Obscure gastrointestinal bleeding (OGIB) is defined as persistent or recurrent bleeding associated with negative findings on upper and lower gastrointestinal (GI) endoscopic evaluations. The diagnosis and management of patients with OGIB is particularly challenging because of the length and complex loops of the small intestine. Capsule endoscopy (CE) is 1 diagnostic modality that is used to determine the etiology of bleeding. Objectives The objective of this analysis was to review the diagnostic accuracy, safety, and impact on health outcomes of CE in patients with OGIB in comparison with other diagnostic modalities. Data Sources A literature search was performed using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published between 2007 and 2013. Review Methods Data on diagnostic accuracy, safety, and impact on health outcomes were abstracted from included studies. Quality of evidence was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Results The search yielded 1,189 citations, and 24 studies were included. Eight studies reported diagnostic accuracy comparing CE with other diagnostic modalities. Capsule endoscopy has a higher sensitivity and lower specificity than magnetic resonance enteroclysis, computed tomography, and push enteroscopy. Capsule endoscopy has a good safety profile with few adverse events, although comparative safety data with other diagnostic modalities are limited. Capsule endoscopy is associated with no difference in patient health-related outcomes such as rebleeding or follow-up treatment compared with push enteroscopy, small-bowel follow-through, and angiography. Limitations There was significant heterogeneity in estimates of diagnostic accuracy, which prohibited a statistical summary of findings. The analysis was also limited by the fact that there is no established reference standard to which the diagnostic accuracy of CE can be compared. Conclusions There is very-low-quality evidence that CE has a higher sensitivity but a lower specificity than other diagnostic modalities. Capsule endoscopy has few adverse events, with capsule retention being the most serious complication. Capsule endoscopy is perceived by patients as less painful and less burdensome compared with other modalities. There is low-quality evidence that patients who undergo CE have similar rates of rebleeding, further therapeutic interventions, and hospitalization compared with other diagnostic modalities. PMID:26357529

  17. Structural Finite Element Model Updating Using Vibration Tests and Modal Analysis for NPL footbridge - SHM demonstrator

    NASA Astrophysics Data System (ADS)

    Barton, E.; Middleton, C.; Koo, K.; Crocker, L.; Brownjohn, J.

    2011-07-01

    This paper presents the results from collaboration between the National Physical Laboratory (NPL) and the University of Sheffield on an ongoing research project at NPL. A 50 year old reinforced concrete footbridge has been converted to a full scale structural health monitoring (SHM) demonstrator. The structure is monitored using a variety of techniques; however, interrelating results and converting data to knowledge are not possible without a reliable numerical model. During the first stage of the project, the work concentrated on static loading and an FE model of the undamaged bridge was created, and updated, under specified static loading and temperature conditions. This model was found to accurately represent the response under static loading and it was used to identify locations for sensor installation. The next stage involves the evaluation of repair/strengthening patches under both static and dynamic loading. Therefore, before deliberately introducing significant damage, the first set of dynamic tests was conducted and modal properties were estimated. The measured modal properties did not match the modal analysis from the statically updated FE model; it was clear that the existing model required updating. This paper introduces the results of the dynamic testing and model updating. It is shown that the structure exhibits large non-linear, amplitude dependant characteristics. This creates a difficult updating process, but we attempt to produce the best linear representation of the structure. A sensitivity analysis is performed to determine the most sensitive locations for planned damage/repair scenarios and is used to decide whether additional sensors will be necessary.

  18. Importance of partitioning membranes of the brain and the influence of the neck in head injury modelling.

    PubMed

    Kumaresan, S; Radhakrishnan, S

    1996-01-01

    A head injury model consisting of the skull, the CSF, the brain and its partitioning membranes and the neck region is simulated by considering its near actual geometry. Three-dimensional finite-element analysis is carried out to investigate the influence of the partitioning membranes of the brain and the neck in head injury analysis through free-vibration analysis and transient analysis. In free-vibration analysis, the first five modal frequencies are calculated, and in transient analysis intracranial pressure and maximum shear stress in the brain are determined for a given occipital impact load.

  19. Development of higher-order modal methods for transient thermal and structural analysis

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Haftka, Raphael T.

    1989-01-01

    A force-derivative method which produces higher-order modal solutions to transient problems is evaluated. These higher-order solutions converge to an accurate response using fewer degrees-of-freedom (eigenmodes) than lower-order methods such as the mode-displacement or mode-acceleration methods. Results are presented for non-proportionally damped structural problems as well as thermal problems modeled by finite elements.

  20. Modal analysis of a nonuniform string with end mass and variable tension

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Galaboff, Z. J.

    1983-01-01

    Modal synthesis techniques for dynamic systems containing strings describe the lateral displacements of these strings by properly chosen shape functions. An iterative algorithm is provided to calculate the natural modes of a nonuniform string and variable tension for some typical boundary conditions including one end mass. Numerical examples are given for a string in a constant and a gravity gradient force field.

  1. Aircraft interior noise prediction using a structural-acoustic analogy in NASTRAN modal synthesis

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Marulo, Francesco

    1988-01-01

    The noise induced inside a cylindrical fuselage model by shaker excitation is investigated theoretically and experimentally. The NASTRAN modal-synthesis program is used in the theoretical analysis, and the predictions are compared with experimental measurements in extensive graphs. Good general agreement is obtained, but the need for further refinements to account for acoustic-cavity damping and structural-acoustic interaction is indicated.

  2. Characterization of bone-implant fixation using modal analysis: Application to a press-fit implant model

    PubMed Central

    Swider, P.; Guérin, G.; Baas, Joergen; Søballe, Kjeld; Bechtold, Joan E.

    2013-01-01

    Orthopaedic implant fixation is strongly dependant upon the effective mechanical properties of newly formed tissue. In this study, we evaluated the potential of modal analysis to derive viscoelastic properties of periprosthetic tissue. We hypothesized that Young's modulus and loss factor could be obtained by a combined theoretical, computational and experimental modal analysis approach. This procedure was applied to ex vivo specimens from a cylindrical experimental implant placed in cancellous bone in an unloaded press-fit configuration, obtained after a four week observation period. Four sections each from seven textured titanium implants were investigated. The first resonant frequency and loss factor were measured. Average experimentally determined loss factor was 2% (SD 0.4%) and average first resonant frequency was 2.1 KHz (SD: 50). A 2D axisymmetric finite element (FE) model identified effective Young's modulus of tissue using experimental resonant frequencies as input. Average value was 42 MPa (SD: 2.4) and no significant difference between specimens was observed. In this pilot study, the non-destructive method allowed accurate measure of dynamic loss factor and resonant frequency and derivation of effective Young's modulus. Prior to implementing this dynamic protocol for broader mechanical evaluation of experimental implant fixation, further work is needed to determine if this affects results from subsequent destructive shear push-out tests. PMID:19464687

  3. Nonsmooth modal analysis of a N-degree-of-freedom system undergoing a purely elastic impact law

    NASA Astrophysics Data System (ADS)

    Legrand, Mathias; Junca, Stéphane; Heng, Sokly

    2017-04-01

    The dynamics of a N-degree-of-freedom autonomous oscillator undergoing an energy-preserving impact law on one of its masses is investigated in the light of nonlinear modal analysis. The impacted rigid foundation provides a natural Poincaré section of the investigated system from which is formulated a smooth First Return Map well-defined away from the grazing trajectory. In order to focus on the impact-induced nonlinearity, the oscillator is assumed linear. Continuous one-parameter families of T-periodic orbits featuring one impact per period and lying on two-dimensional invariant manifolds in the state-space are shown to exist. The geometry of these piecewise-smooth manifolds is such that a linear "flat" portion (on which contact is not activated) is continuously attached to a purely nonlinear portion (on which contact is activated once per period) exhibiting a velocity discontinuity through a grazing orbit. These features explain the newly introduced terminology "Nonsmooth modal analysis". The stability of the periodic orbits lying on the invariant manifolds is also explored by calculating the eigenvalues of the linearized First Return Map. Internal resonances and multiple impacts per period are not addressed in this work. However, the pre-stressed case is succinctly described and extensions to multiple oscillators as well as self-contact are discussed.

  4. International Space Station Model Correlation Analysis

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.; Fitzpatrick, Kristin; Hodge, Jennifer; Grygier, Michael

    2018-01-01

    This paper summarizes the on-orbit structural dynamic data and the related modal analysis, model validation and correlation performed for the International Space Station (ISS) configuration ISS Stage ULF7, 2015 Dedicated Thruster Firing (DTF). The objective of this analysis is to validate and correlate the analytical models used to calculate the ISS internal dynamic loads and compare the 2015 DTF with previous tests. During the ISS configurations under consideration, on-orbit dynamic measurements were collected using the three main ISS instrumentation systems; Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS) and the Structural Dynamic Measurement System (SDMS). The measurements were recorded during several nominal on-orbit DTF tests on August 18, 2015. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping, and mode shape information. Correlation and comparisons between test and analytical frequencies and mode shapes were performed to assess the accuracy of the analytical models for the configurations under consideration. These mode shapes were also compared to earlier tests. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. In particular, results of the first fundamental mode will be discussed, nonlinear results will be shown, and accelerometer placement will be assessed.

  5. Sensory impairments of the lower limb after stroke: a pooled analysis of individual patient data.

    PubMed

    Tyson, Sarah F; Crow, J Lesley; Connell, Louise; Winward, Charlotte; Hillier, Susan

    2013-01-01

    To obtain more generalizable information on the frequency and factors influencing sensory impairment after stroke and their relationship to mobility and function. A pooled analysis of individual data of stroke survivors (N = 459); mean (SD) age = 67.2 (14.8) years, 54% male, mean (SD) time since stroke = 22.33 (63.1) days, 50% left-sided weakness. Where different measurement tools were used, data were recorded. Descriptive statistics described frequency of sensory impairments, kappa coefficients investigated relationships between sensory modalities, binary logistic regression explored the factors influencing sensory impairments, and linear regression assessed the impact of sensory impairments on activity limitations. Most patients' sensation was intact (55%), and individual sensory modalities were highly associated (κ = 0.60, P < .001). Weakness and neglect influenced sensory impairment (P < .001), but demographics, stroke pathology, and spasticity did not. Sensation influenced independence in activities of daily living, mobility, and balance but less strongly than weakness. Pooled individual data analysis showed sensation of the lower limb is grossly preserved in most stroke survivors but, when present, it affects function. Sensory modalities are highly interrelated; interventions that treat the motor system during functional tasks may be as effective at treating the sensory system as sensory retraining alone.

  6. Motion interference analysis and optimal control of an electronic controlled bamboo-dance mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohong; Xu, Liang; Hu, Xiaobin

    2017-08-01

    An electric bamboo-dance mechanism was designed and developed to realize mechanism of automation and mechanization. For coherent and fluent motion, ANSYS finite element analysis was applied on movement interference. Static structural method was used for analyzing dynamic deflection and deformation of the slender rod, while modal analysis was applied on frequency analysis to avoid second deformation caused by resonance. Therefore, the deformation in vertical and horizontal direction was explored and reasonable optimization was taken to avoid interference.

  7. A Survey of Probabilistic Methods for Dynamical Systems with Uncertain Parameters.

    DTIC Science & Technology

    1986-05-01

    J., "An Approach to the Theoretical Background of Statistical Energy Analysis Applied to Structural Vibration," Journ. Acoust. Soc. Amer., Vol. 69...1973, Sect. 8.3. 80. Lyon, R.H., " Statistical Energy Analysis of Dynamical Systems," M.I.T. Press, 1975. e) Late References added in Proofreading !! 81...Dowell, E.H., and Kubota, Y., "Asymptotic Modal Analysis and ’~ y C-" -165- Statistical Energy Analysis of Dynamical Systems," Journ. Appi. - Mech

  8. NMR-based metabonomic analysis of MnO-embedded iron oxide nanoparticles as potential dual-modal contrast agents

    NASA Astrophysics Data System (ADS)

    Li, Jinquan; Zhou, Zijian; Feng, Jianghua; Cai, Shuhui; Gao, Jinhao; Chen, Zhong

    2014-05-01

    MnO-embedded iron oxide nanoparticles (MnIO-NPs) can be treated as potential dual-modal contrast agents. However, their overall bio-effects and potential toxicity remain unknown. In this study, the metabolic effects of MnIO-NPs (dosed at 1 and 5 mg Fe/kg) on Sprague-Dawley rats were investigated using metabonomic analysis, histopathological examination, and conventional biochemical analysis. The histological changes included a focal inflammation in the liver at high-dose and a slightly enlarged area of splenic white pulp after 48 h post-dose. Blood biochemical analysis showed that albumin, globulins, aspartate aminotransferase, lactate dehydrogenase, blood urea nitrogen, and glucose changed distinctly compared to the control. The metabonomic analysis of body fluids (serum and urine) and tissues (liver, kidney, and spleen) indicated that MnIO-NPs induced metabolic perturbation in rats including energy, nucleotides, amino acids and phospholipid metabolisms. Besides, the variations of supportive nutrients: valine, leucine, isoleucine, nicotinamide adenine dinucleotide (phosphate), and nicotinamide, and the conjugation substrates: glycine, taurine, glutamine, glutathione, and methyl donors (formate, sarcosine, dimethylglycine, choline, and betaine) were involved in detoxification reaction of MnIO-NPs. The obtained information would provide identifiable ground for the candidate selection and optimization.

  9. Efficient Analysis of Complex Structures

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.

    2000-01-01

    Last various accomplishments achieved during this project are : (1) A Survey of Neural Network (NN) applications using MATLAB NN Toolbox on structural engineering especially on equivalent continuum models (Appendix A). (2) Application of NN and GAs to simulate and synthesize substructures: 1-D and 2-D beam problems (Appendix B). (3) Development of an equivalent plate-model analysis method (EPA) for static and vibration analysis of general trapezoidal built-up wing structures composed of skins, spars and ribs. Calculation of all sorts of test cases and comparison with measurements or FEA results. (Appendix C). (4) Basic work on using second order sensitivities on simulating wing modal response, discussion of sensitivity evaluation approaches, and some results (Appendix D). (5) Establishing a general methodology of simulating the modal responses by direct application of NN and by sensitivity techniques, in a design space composed of a number of design points. Comparison is made through examples using these two methods (Appendix E). (6) Establishing a general methodology of efficient analysis of complex wing structures by indirect application of NN: the NN-aided Equivalent Plate Analysis. Training of the Neural Networks for this purpose in several cases of design spaces, which can be applicable for actual design of complex wings (Appendix F).

  10. Sustained Attention in Children with Primary Language Impairment: A Meta-Analysis

    PubMed Central

    Ebert, Kerry Danahy; Kohnert, Kathryn

    2014-01-01

    Purpose This study provides a meta-analysis of the difference between children with primary or specific language impairment (LI) and their typically developing peers on tasks of sustained attention. The meta-analysis seeks to determine if children with LI demonstrate subclinical deficits in sustained attention and, if so, under what conditions. Methods Articles that reported empirical data from the performance of children with LI, in comparison to typically developing peers, on a task assessing sustained attention were considered for inclusion. Twenty-eight effect sizes were included in the meta-analysis. Two moderator analyses addressed the effects of stimulus modality and ADHD exclusion. In addition, reaction time outcomes and the effects of task variables were summarized qualitatively. Results The meta-analysis supports the existence of sustained attention deficits in children with LI in both auditory and visual modalities, as demonstrated by reduced accuracy compared to typically developing peers. Larger effect sizes are found in tasks that use auditory and linguistic stimuli than in studies that use visual stimuli. Conclusions Future research should consider the role that sustained attention weaknesses play in LI, as well as the implications for clinical and research assessment tasks. Methodological recommendations are summarized. PMID:21646419

  11. Sustained attention in children with primary language impairment: a meta-analysis.

    PubMed

    Ebert, Kerry Danahy; Kohnert, Kathryn

    2011-10-01

    This study provides a meta-analysis of the difference between children with primary or specific language impairment (LI) and their typically developing peers on tasks of sustained attention. The meta-analysis seeks to determine whether children with LI demonstrate subclinical deficits in sustained attention and, if so, under what conditions. Articles that reported empirical data from the performance of children with LI, in comparison to typically developing peers, on a task assessing sustained attention were considered for inclusion. Twenty-eight effect sizes were included in the meta-analysis. Two moderator analyses addressed the effects of stimulus modality and attention-deficit/hypereactivity disorder exclusion. In addition, reaction time outcomes and the effects of task variables were summarized qualitatively. The meta-analysis supports the existence of sustained attention deficits in children with LI in both auditory and visual modalities, as demonstrated by reduced accuracy compared with typically developing peers. Larger effect sizes are found in tasks that use auditory-linguistic stimuli than in studies that use visual stimuli. Future research should consider the role that sustained attention weaknesses play in LI as well as the implications for clinical and research assessment tasks. Methodological recommendations are summarized.

  12. The Shock and Vibration Digest, Volume 17, Number 8

    DTIC Science & Technology

    1985-08-01

    ate, transmit, and radiate audible sound. dures are based on acoustic power flow, statistical energy analysis (SEA), and modal methods [22-283. A...modified partition area. features of the acoustic field. I.--1 85-1642 Statistical Energy Analysis , Structural Reso- nances, and Beam Networks BUILDING...energy methods, Structural resonance L.J. Lee Heriot-Watt Univ., Chambers St., Edinburgh The statistical energy analysis method is EHI 1HX, Scotland

  13. Determining the Best Treatment for Coronal Angular Deformity of the Knee Joint in Growing Children: A Decision Analysis

    PubMed Central

    Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Choi, In Ho; Cho, Tae-Joon; Yoo, Won Joon; Park, Moon Seok

    2014-01-01

    This study aimed to determine the best treatment modality for coronal angular deformity of the knee joint in growing children using decision analysis. A decision tree was created to evaluate 3 treatment modalities for coronal angular deformity in growing children: temporary hemiepiphysiodesis using staples, percutaneous screws, or a tension band plate. A decision analysis model was constructed containing the final outcome score, probability of metal failure, and incomplete correction of deformity. The final outcome was defined as health-related quality of life and was used as a utility in the decision tree. The probabilities associated with each case were obtained by literature review, and health-related quality of life was evaluated by a questionnaire completed by 25 pediatric orthopedic experts. Our decision analysis model favored temporary hemiepiphysiodesis using a tension band plate over temporary hemiepiphysiodesis using percutaneous screws or stapling, with utilities of 0.969, 0.957, and 0.962, respectively. One-way sensitivity analysis showed that hemiepiphysiodesis using a tension band plate was better than temporary hemiepiphysiodesis using percutaneous screws, when the overall complication rate of hemiepiphysiodesis using a tension band plate was lower than 15.7%. Two-way sensitivity analysis showed that hemiepiphysiodesis using a tension band plate was more beneficial than temporary hemiepiphysiodesis using percutaneous screws. PMID:25276801

  14. The use of various X-ray fluorescence analysis modalities for the investigation of historical paintings: The case study on the Late Gothic panel painting

    NASA Astrophysics Data System (ADS)

    Bártová, H.; Trojek, T.; Čechák, T.; Šefců, R.; Chlumská, Š.

    2017-10-01

    The presence of heavy chemical elements in old pigments is possible to identify in historical paintings using X-ray fluorescence analysis (XRF). This is a non-destructive analytical method frequently used in examination of objects that require in situ analysis, where it is necessary to avoid damaging the object by taking samples. Different modalities are available, such as microanalysis, scanning selected areas, or depth profiling techniques. Surface scanning is particularly profitable since 2D element distribution maps are much more understandable than the results of individual analyses. Information on the layered structure of the painting can be also obtained by handheld portable systems. Results presented in our paper combine 2D element distribution maps obtained by scanning analysis, and depth profiling using conventional XRF. The latter is very suitable for objects of art, as it can be evaluated from data measured with portable XRF device. Depth profiling by conventional XRF is based on the differences in X-ray absorption in paint layers. The XRF technique was applied for analysis of panel paintings of the Master of the St George Altarpiece who was active in Prague in the 1470s and 1480s. The results were evaluated by taking micro-samples and performing a material analysis.

  15. Autonomous Modal Identification of the Space Shuttle Tail Rudder

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; James, George H., III; Zimmerman, David C.

    1997-01-01

    Autonomous modal identification automates the calculation of natural vibration frequencies, damping, and mode shapes of a structure from experimental data. This technology complements damage detection techniques that use continuous or periodic monitoring of vibration characteristics. The approach shown in the paper incorporates the Eigensystem Realization Algorithm (ERA) as a data analysis engine and an autonomous supervisor to condense multiple estimates of modal parameters using ERA's Consistent-Mode Indicator and correlation of mode shapes. The procedure was applied to free-decay responses of a Space Shuttle tail rudder and successfully identified the seven modes of the structure below 250 Hz. The final modal parameters are a condensed set of results for 87 individual ERA cases requiring approximately five minutes of CPU time on a DEC Alpha computer.

  16. Application of a Modal Approach in Solving the Static Stability Problem for Electric Power Systems

    NASA Astrophysics Data System (ADS)

    Sharov, J. V.

    2017-12-01

    Application of a modal approach in solving the static stability problem for power systems is examined. It is proposed to use the matrix exponent norm as a generalized transition function of the power system disturbed motion. Based on the concept of a stability radius and the pseudospectrum of Jacobian matrix, the necessary and sufficient conditions for existence of the static margins were determined. The capabilities and advantages of the modal approach in designing centralized or distributed control and the prospects for the analysis of nonlinear oscillations and rendering the dynamic stability are demonstrated.

  17. Big data sharing and analysis to advance research in post-traumatic epilepsy.

    PubMed

    Duncan, Dominique; Vespa, Paul; Pitkanen, Asla; Braimah, Adebayo; Lapinlampi, Nina; Toga, Arthur W

    2018-06-01

    We describe the infrastructure and functionality for a centralized preclinical and clinical data repository and analytic platform to support importing heterogeneous multi-modal data, automatically and manually linking data across modalities and sites, and searching content. We have developed and applied innovative image and electrophysiology processing methods to identify candidate biomarkers from MRI, EEG, and multi-modal data. Based on heterogeneous biomarkers, we present novel analytic tools designed to study epileptogenesis in animal model and human with the goal of tracking the probability of developing epilepsy over time. Copyright © 2017. Published by Elsevier Inc.

  18. A retrospective analysis of preoperative staging modalities for oral squamous cell carcinoma.

    PubMed

    Kähling, Ch; Langguth, T; Roller, F; Kroll, T; Krombach, G; Knitschke, M; Streckbein, Ph; Howaldt, H P; Wilbrand, J-F

    2016-12-01

    An accurate preoperative assessment of cervical lymph node status is a prerequisite for individually tailored cancer therapies in patients with oral squamous cell carcinoma. The detection of malignant spread and its treatment crucially influence the prognosis. The aim of the present study was to analyze the different staging modalities used among patients with a diagnosis of primary oral squamous cell carcinoma between 2008 and 2015. An analysis of preoperative staging findings, collected by clinical palpation, ultrasound, and computed tomography (CT), was performed. The results obtained were compared with the results of the final histopathological findings of the neck dissection specimens. A statistical analysis using McNemar's test was performed. The sensitivity of CT for the detection of malignant cervical tumor spread was 74.5%. The ultrasound obtained a sensitivity of 60.8%. Both CT and ultrasound demonstrated significantly enhanced sensitivity compared to the clinical palpation with a sensitivity of 37.1%. No significant difference was observed between CT and ultrasound. A combination of different staging modalities increased the sensitivity significantly compared with ultrasound staging alone. No significant difference in sensitivity was found between the combined use of different staging modalities and CT staging alone. The highest sensitivity, of 80.0%, was obtained by a combination of all three staging modalities: clinical palpation, ultrasound and CT. The present study indicates that CT has an essential role in the preoperative staging of patients with oral squamous cell carcinoma. Its use not only significantly increases the sensitivity of cervical lymph node metastasis detection but also offers a preoperative assessment of local tumor spread and resection borders. An additional non-invasive cervical lymph node examination increases the sensitivity of the tumor staging process and reduces the risk of occult metastasis. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  19. The prediction of acoustical particle motion using an efficient polynomial curve fit procedure

    NASA Technical Reports Server (NTRS)

    Marshall, S. E.; Bernhard, R.

    1984-01-01

    A procedure is examined whereby the acoustic model parameters, natural frequencies and mode shapes, in the cavities of transportation vehicles are determined experimentally. The acoustic model shapes are described in terms of the particle motion. The acoustic modal analysis procedure is tailored to existing minicomputer based spectral analysis systems.

  20. Vibrational Responses Of Structures To Impulses

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1990-01-01

    Report discusses propagation of vibrations in structure in response to impulsive and/or concentrated loads. Effects of pulsed loads treated by analyzing propagation of characteristic vibrational waves explicitly through each member of structure. This wave-front analysis used in combination with usual finite-element modal analysis to obtain more accurate representation of overall vibrational behavior.

  1. Articulatory Mediation of Speech Perception: A Causal Analysis of Multi-Modal Imaging Data

    ERIC Educational Resources Information Center

    Gow, David W., Jr.; Segawa, Jennifer A.

    2009-01-01

    The inherent confound between the organization of articulation and the acoustic-phonetic structure of the speech signal makes it exceptionally difficult to evaluate the competing claims of motor and acoustic-phonetic accounts of how listeners recognize coarticulated speech. Here we use Granger causation analysis of high spatiotemporal resolution…

  2. Linearized Unsteady Aerodynamic Analysis of the Acoustic Response to Wake/Blade-Row Interaction

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Huff, Dennis L. (Technical Monitor)

    2001-01-01

    The three-dimensional, linearized Euler analysis, LINFLUX, is being developed to provide a comprehensive and efficient unsteady aerodynamic scheme for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. LINFLUX couples a near-field, implicit, wave-split, finite-volume solution to far-field acoustic eigensolutions, to predict the aerodynamic responses of a blade row to prescribed structural and aerodynamic excitations. It is applied herein to predict the acoustic responses of a fan exit guide vane (FEGV) to rotor wake excitations. The intent is to demonstrate and assess the LINFLUX analysis via application to realistic wake/blade-row interactions. Numerical results are given for the unsteady pressure responses of the FEGV, including the modal pressure responses at inlet and exit. In addition, predictions for the modal and total acoustic power levels at the FEGV exit are compared with measurements. The present results indicate that the LINFLUX analysis should be useful in the aeroacoustic design process, and for understanding the three-dimensional flow physics relevant to blade-row noise generation and propagation.

  3. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohd, Shukri; Holford, Karen M.; Pullin, Rhys

    2014-02-12

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup usingmore » H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.« less

  4. Stochastic response analysis, order reduction, and output feedback controllers for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Hablani, H. B.

    1985-01-01

    Real disturbances and real sensors have finite bandwidths. The first objective of this paper is to incorporate this finiteness in the 'open-loop modal cost analysis' as applied to a flexible spacecraft. Analysis based on residue calculus shows that among other factors, significance of a mode depends on the power spectral density of disturbances and the response spectral density of sensors at the modal frequency. The second objective of this article is to compare performances of an optimal and a suboptimal output feedback controller, the latter based on 'minimum error excitation' of Kosut. Both the performances are found to be nearly the same, leading us to favor the latter technique because it entails only linear computations. Our final objective is to detect an instability due to truncated modes by representing them as a multiplicative and an additive perturbation in a nominal transfer function. In an example problem it is found that this procedure leads to a narrow range of permissible controller gains, and that it labels a wrong mode as a cause of instability. A free beam is used to illustrate the analysis in this work.

  5. Stochastic subspace identification for operational modal analysis of an arch bridge

    NASA Astrophysics Data System (ADS)

    Loh, Chin-Hsiung; Chen, Ming-Che; Chao, Shu-Hsien

    2012-04-01

    In this paer the application of output-only system identification technique, known as Stochastic Subspace Identification (SSI) algorithms, for civil infrastructures is carried out. The ability of covariance driven stochastic subspace identification (SSI-COV) was proved through the analysis of the ambient data of an arch bridge under operational condition. A newly developed signal processing technique, Singular Spectrum analysis (SSA), capable to smooth noisy signals, is adopted for pre-processing the recorded data before the SSI. The conjunction of SSA and SSICOV provides a useful criterion for the system order determination. With the aim of estimating accurate modal parameters of the structure in off-line analysis, a stabilization diagram is constructed by plotting the identified poles of the system with increasing the size of data Hankel matrix. Identification task of a real structure, Guandu Bridge, is carried out to identify the system natural frequencies and mode shapes. The uncertainty of the identified model parameters from output-only measurement of the bridge under operation condition, such as temperature and traffic loading conditions, is discussed.

  6. Surface Enhanced Raman Spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices

    NASA Astrophysics Data System (ADS)

    Di Anibal, Carolina V.; Marsal, Lluís F.; Callao, M. Pilar; Ruisánchez, Itziar

    2012-02-01

    Raman spectroscopy combined with multivariate analysis was evaluated as a tool for detecting Sudan I dye in culinary spices. Three Raman modalities were studied: normal Raman, FT-Raman and SERS. The results show that SERS is the most appropriate modality capable of providing a proper Raman signal when a complex matrix is analyzed. To get rid of the spectral noise and background, Savitzky-Golay smoothing with polynomial baseline correction and wavelet transform were applied. Finally, to check whether unadulterated samples can be differentiated from samples adulterated with Sudan I dye, an exploratory analysis such as principal component analysis (PCA) was applied to raw data and data processed with the two mentioned strategies. The results obtained by PCA show that Raman spectra need to be properly treated if useful information is to be obtained and both spectra treatments are appropriate for processing the Raman signal. The proposed methodology shows that SERS combined with appropriate spectra treatment can be used as a practical screening tool to distinguish samples suspicious to be adulterated with Sudan I dye.

  7. Seeing touch is correlated with content-specific activity in primary somatosensory cortex.

    PubMed

    Meyer, Kaspar; Kaplan, Jonas T; Essex, Ryan; Damasio, Hanna; Damasio, Antonio

    2011-09-01

    There is increasing evidence to suggest that primary sensory cortices can become active in the absence of external stimulation in their respective modalities. This occurs, for example, when stimuli processed via one sensory modality imply features characteristic of a different modality; for instance, visual stimuli that imply touch have been observed to activate the primary somatosensory cortex (SI). In the present study, we addressed the question of whether such cross-modal activations are content specific. To this end, we investigated neural activity in the primary somatosensory cortex of subjects who observed human hands engaged in the haptic exploration of different everyday objects. Using multivariate pattern analysis of functional magnetic resonance imaging data, we were able to predict, based exclusively on the activity pattern in SI, which of several objects a subject saw being explored. Along with previous studies that found similar evidence for other modalities, our results suggest that primary sensory cortices represent information relevant for their modality even when this information enters the brain via a different sensory system.

  8. Performing a Large-Scale Modal Test on the B2 Stand Crane at NASA's Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Stasiunas, Eric C.; Parks, Russel A.; Sontag, Brendan D.

    2018-01-01

    A modal test of NASA's Space Launch System (SLS) Core Stage is scheduled to occur at the Stennis Space Center B2 test stand. A derrick crane with a 150-ft long boom, located at the top of the stand, will be used to suspend the Core Stage in order to achieve defined boundary conditions. During this suspended modal test, it is expected that dynamic coupling will occur between the crane and the Core Stage. Therefore, a separate modal test was performed on the B2 crane itself, in order to evaluate the varying dynamic characteristics and correlate math models of the crane. Performing a modal test on such a massive structure was challenging and required creative test setup and procedures, including implementing both AC and DC accelerometers, and performing both classical hammer and operational modal analysis. This paper describes the logistics required to perform this large-scale test, as well as details of the test setup, the modal test methods used, and an overview and application of the results.

  9. Performing a Large-Scale Modal Test on the B2 Stand Crane at NASA's Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Stasiunas, Eric C.; Parks, Russel A.

    2018-01-01

    A modal test of NASA’s Space Launch System (SLS) Core Stage is scheduled to occur prior to propulsion system verification testing at the Stennis Space Center B2 test stand. A derrick crane with a 180-ft long boom, located at the top of the stand, will be used to suspend the Core Stage in order to achieve defined boundary conditions. During this suspended modal test, it is expected that dynamic coupling will occur between the crane and the Core Stage. Therefore, a separate modal test was performed on the B2 crane itself, in order to evaluate the varying dynamic characteristics and correlate math models of the crane. Performing a modal test on such a massive structure was challenging and required creative test setup and procedures, including implementing both AC and DC accelerometers, and performing both classical hammer and operational modal analysis. This paper describes the logistics required to perform this large-scale test, as well as details of the test setup, the modal test methods used, and an overview of the results.

  10. Novel parametric reduced order model for aeroengine blade dynamics

    NASA Astrophysics Data System (ADS)

    Yuan, Jie; Allegri, Giuliano; Scarpa, Fabrizio; Rajasekaran, Ramesh; Patsias, Sophoclis

    2015-10-01

    The work introduces a novel reduced order model (ROM) technique to describe the dynamic behavior of turbofan aeroengine blades. We introduce an equivalent 3D frame model to describe the coupled flexural/torsional mode shapes, with their relevant natural frequencies and associated modal masses. The frame configurations are identified through a structural identification approach based on a simulated annealing algorithm with stochastic tunneling. The cost functions are constituted by linear combinations of relative errors associated to the resonance frequencies, the individual modal assurance criteria (MAC), and on either overall static or modal masses. When static masses are considered the optimized 3D frame can represent the blade dynamic behavior with an 8% error on the MAC, a 1% error on the associated modal frequencies and a 1% error on the overall static mass. When using modal masses in the cost function the performance of the ROM is similar, but the overall error increases to 7%. The approach proposed in this paper is considerably more accurate than state-of-the-art blade ROMs based on traditional Timoshenko beams, and provides excellent accuracy at reduced computational time when compared against high fidelity FE models. A sensitivity analysis shows that the proposed model can adequately predict the global trends of the variations of the natural frequencies when lumped masses are used for mistuning analysis. The proposed ROM also follows extremely closely the sensitivity of the high fidelity finite element models when the material parameters are used in the sensitivity.

  11. Distributed microscopic actuation analysis of paraboloidal membrane shells of different geometric parameters

    NASA Astrophysics Data System (ADS)

    Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen

    2018-03-01

    Paraboloidal membrane shells of revolution are commonly used as key components for advanced aerospace structures and aviation mechanical systems. Due to their high flexibility and low damping property, active vibration control is of significant importance for these in-orbit membrane structures. To explore the dynamic control behavior of space flexible paraboloidal membrane shells, precision distributed actuation and control effectiveness of free-floating paraboloidal membrane shells with piezoelectric actuators are investigated. Governing equations of the shell structronic system are presented first. Then, distributed control forces and control actions are formulated. A transverse mode shape function of the paraboloidal shell based on the membrane approximation theory and specified boundary condition is assumed in the modal control force analysis. The actuator induced modal control forces on the paraboloidal shell are derived. The expressions of microscopic local modal control forces are obtained by shrinking the actuator area into infinitesimal and the four control components are investigated respectively to predict the spatial microscopic actuation behavior. Geometric parameter (height-radius ratio and shell thickness) effects on the modal actuation behavior are explored when evaluating the micro-control efficiency. Four different cases are discussed and the results reveal the fact that shallow (e.g., antennas/reflectors) and deep (e.g., rocket/missile fairing) paraboloidal shells exhibit totally different modal actuation behaviors due to their curvature differences. Analytical results in this paper can serve as guidelines for optimal actuator placement for vibration control of different paraboloidal structures.

  12. The Effect of Basis Selection on Static and Random Acoustic Response Prediction Using a Nonlinear Modal Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2005-01-01

    An investigation of the effect of basis selection on geometric nonlinear response prediction using a reduced-order nonlinear modal simulation is presented. The accuracy is dictated by the selection of the basis used to determine the nonlinear modal stiffness. This study considers a suite of available bases including bending modes only, bending and membrane modes, coupled bending and companion modes, and uncoupled bending and companion modes. The nonlinear modal simulation presented is broadly applicable and is demonstrated for nonlinear quasi-static and random acoustic response of flat beam and plate structures with isotropic material properties. Reduced-order analysis predictions are compared with those made using a numerical simulation in physical degrees-of-freedom to quantify the error associated with the selected modal bases. Bending and membrane responses are separately presented to help differentiate the bases.

  13. Modal-Power-Based Haptic Motion Recognition

    NASA Astrophysics Data System (ADS)

    Kasahara, Yusuke; Shimono, Tomoyuki; Kuwahara, Hiroaki; Sato, Masataka; Ohnishi, Kouhei

    Motion recognition based on sensory information is important for providing assistance to human using robots. Several studies have been carried out on motion recognition based on image information. However, in the motion of humans contact with an object can not be evaluated precisely by image-based recognition. This is because the considering force information is very important for describing contact motion. In this paper, a modal-power-based haptic motion recognition is proposed; modal power is considered to reveal information on both position and force. Modal power is considered to be one of the defining features of human motion. A motion recognition algorithm based on linear discriminant analysis is proposed to distinguish between similar motions. Haptic information is extracted using a bilateral master-slave system. Then, the observed motion is decomposed in terms of primitive functions in a modal space. The experimental results show the effectiveness of the proposed method.

  14. Mixing Categories and Modal Logics in the Quantum Setting

    NASA Astrophysics Data System (ADS)

    Cinà, Giovanni

    The study of the foundations of Quantum Mechanics, especially after the advent of Quantum Computation and Information, has benefited from the application of category-theoretic tools and modal logics to the analysis of Quantum processes: we witness a wealth of theoretical frameworks casted in either of the two languages. This paper explores the interplay of the two formalisms in the peculiar context of Quantum Theory. After a review of some influential abstract frameworks, we show how different modal logic frames can be extracted from the category of finite dimensional Hilbert spaces, connecting the Categorical Quantum Mechanics approach to some modal logics that have been proposed for Quantum Computing. We then apply a general version of the same technique to two other categorical frameworks, the `topos approach' of Doering and Isham and the sheaf-theoretic work on contextuality by Abramsky and Brandenburger, suggesting how some key features can be expressed with modal languages.

  15. Experimental and theoretical modal analysis of full-sized wood composite panels supported on four nodes

    Treesearch

    Cheng Guan; Houjiang Zhang; Xiping Wang; Hu Miao; Lujing Zhou; Fenglu Liu

    2017-01-01

    Key elastic properties of full-sized wood composite panels (WCPs) must be accurately determined not only for safety, but also serviceability demands. In this study, the modal parameters of full-sized WCPs supported on four nodes were analyzed for determining the modulus of elasticity (E) in both major and minor axes, as well as the in-plane shear modulus of panels by...

  16. Vehicle Concept Model Abstractions For Integrated Geometric, Inertial ,Rigid Body, Powertrain and FE Analysis

    DTIC Science & Technology

    2011-06-17

    structure through quantitative assessment of stiffness and modal parameter changes resulting from modifications to the beam geometries and positions...power transmission assembly. If the power limit at a wheel exceeds the traction limit, then depending on the type of differential placed on the axle ...components with appropriate model connectivity instead to determine the free modal response of powertrain type components, without abstraction

  17. Vehicle Concept Model Abstractions for Integrated Geometric, Inertial, Rigid Body, Powertrain, and FE Analysis

    DTIC Science & Technology

    2011-01-01

    refinement of the vehicle body structure through quantitative assessment of stiffness and modal parameter changes resulting from modifications to the beam...differential placed on the axle , adjustment of the torque output to the opposite wheel may be required to obtain the correct solution. Thus...represented by simple inertial components with appropriate model connectivity instead to determine the free modal response of powertrain type

  18. Condition assessment of reinforced concrete beams using dynamic data measured with distributed long-gage macro-strain sensors

    NASA Astrophysics Data System (ADS)

    Hong, W.; Wu, Z. S.; Yang, C. Q.; Wan, C. F.; Wu, G.; Zhang, Y. F.

    2012-06-01

    A new condition assessment strategy of reinforced concrete (RC) beams is proposed in this paper. This strategy is based on frequency analysis of the dynamic data measured with distributed long-gage macro-stain sensors. After extracting modal macro-strain, the reference-based damage index is theoretically deducted in which the variations of modal flexural rigidity and modal neutral axis height are considered. The reference-free damage index is also presented for comparison. Both finite element simulation and experiment investigations were carried out to verify the proposed method. The manufacturing procedure of long-gage fiber Bragg grating (FBG) sensor chosen in the experiment is firstly presented, followed by an experimental study on the essential sensing properties of the long-gage macro-strain sensors and the results verify the excellent sensing properties, in particular the measurement accuracy and dynamic measuring capacity. Modal analysis results of a concrete beam show that the damage appearing in the beam can be well identified by the damage index while the vibration testing results of a RC beam show that the proposed method can not only capture small crack initiation but its propagation. It can be concluded that distributed long-gage dynamic macro-strain sensing technique has great potential for the condition assessment of RC structures subjected to dynamic loading.

  19. Modal analysis of 2-D sedimentary basin from frequency domain decomposition of ambient vibration array recordings

    NASA Astrophysics Data System (ADS)

    Poggi, Valerio; Ermert, Laura; Burjanek, Jan; Michel, Clotaire; Fäh, Donat

    2015-01-01

    Frequency domain decomposition (FDD) is a well-established spectral technique used in civil engineering to analyse and monitor the modal response of buildings and structures. The method is based on singular value decomposition of the cross-power spectral density matrix from simultaneous array recordings of ambient vibrations. This method is advantageous to retrieve not only the resonance frequencies of the investigated structure, but also the corresponding modal shapes without the need for an absolute reference. This is an important piece of information, which can be used to validate the consistency of numerical models and analytical solutions. We apply this approach using advanced signal processing to evaluate the resonance characteristics of 2-D Alpine sedimentary valleys. In this study, we present the results obtained at Martigny, in the Rhône valley (Switzerland). For the analysis, we use 2 hr of ambient vibration recordings from a linear seismic array deployed perpendicularly to the valley axis. Only the horizontal-axial direction (SH) of the ground motion is considered. Using the FDD method, six separate resonant frequencies are retrieved together with their corresponding modal shapes. We compare the mode shapes with results from classical standard spectral ratios and numerical simulations of ambient vibration recordings.

  20. 6 DOF articulated-arm robot and mobile platform: Dynamic modelling as Multibody System and its validation via Experimental Modal Analysis.

    NASA Astrophysics Data System (ADS)

    Toledo Fuentes, A.; Kipfmueller, M.; José Prieto, M. A.

    2017-10-01

    Mobile manipulators are becoming a key instrument to increase the flexibility in industrial processes. Some of their requirements include handling of objects with different weights and sizes and their “fast” transportation, without jeopardizing production workers and machines. The compensation of forces affecting the system dynamic is therefore needed to avoid unwanted oscillations and tilting by sudden accelerations and decelerations. One general solution may be the implementation of external positioning elements to active stabilize the system. To accomplish the approach, the dynamic behavior of a robotic arm and a mobile platform was investigated to develop the stabilization mechanism using multibody simulations. The methodology used was divided into two phases for each subsystem: their natural frequencies and modal shapes were obtained using experimental modal analyses. Then, based on these experimental results, multibody simulation models (MBS) were set up and its dynamical parameters adjusted. Their modal shapes together with their obtained natural frequencies allowed a quantitative and qualitative analysis. In summary, the MBS models were successfully validated with the real subsystems, with a maximal percentage error of 15%. These models will serve as the basis for future steps in the design of the external actuators and its control strategy using a co-simulation tool.

  1. Simulation of crash tests for high impact levels of a new bridge safety barrier

    NASA Astrophysics Data System (ADS)

    Drozda, Jiří; Rotter, Tomáš

    2017-09-01

    The purpose is to show the opportunity of a non-linear dynamic impact simulation and to explain the possibility of using finite element method (FEM) for developing new designs of safety barriers. The main challenge is to determine the means to create and validate the finite element (FE) model. The results of accurate impact simulations can help to reduce necessary costs for developing of a new safety barrier. The introductory part deals with the creation of the FE model, which includes the newly-designed safety barrier and focuses on the application of an experimental modal analysis (EMA). The FE model has been created in ANSYS Workbench and is formed from shell and solid elements. The experimental modal analysis, which was performed on a real pattern, was employed for measuring the modal frequencies and shapes. After performing the EMA, the FE mesh was calibrated after comparing the measured modal frequencies with the calculated ones. The last part describes the process of the numerical non-linear dynamic impact simulation in LS-DYNA. This simulation was validated after comparing the measured ASI index with the calculated ones. The aim of the study is to improve professional public knowledge about dynamic non-linear impact simulations. This should ideally lead to safer, more accurate and profitable designs.

  2. Voxelwise multivariate analysis of multimodality magnetic resonance imaging.

    PubMed

    Naylor, Melissa G; Cardenas, Valerie A; Tosun, Duygu; Schuff, Norbert; Weiner, Michael; Schwartzman, Armin

    2014-03-01

    Most brain magnetic resonance imaging (MRI) studies concentrate on a single MRI contrast or modality, frequently structural MRI. By performing an integrated analysis of several modalities, such as structural, perfusion-weighted, and diffusion-weighted MRI, new insights may be attained to better understand the underlying processes of brain diseases. We compare two voxelwise approaches: (1) fitting multiple univariate models, one for each outcome and then adjusting for multiple comparisons among the outcomes and (2) fitting a multivariate model. In both cases, adjustment for multiple comparisons is performed over all voxels jointly to account for the search over the brain. The multivariate model is able to account for the multiple comparisons over outcomes without assuming independence because the covariance structure between modalities is estimated. Simulations show that the multivariate approach is more powerful when the outcomes are correlated and, even when the outcomes are independent, the multivariate approach is just as powerful or more powerful when at least two outcomes are dependent on predictors in the model. However, multiple univariate regressions with Bonferroni correction remain a desirable alternative in some circumstances. To illustrate the power of each approach, we analyze a case control study of Alzheimer's disease, in which data from three MRI modalities are available. Copyright © 2013 Wiley Periodicals, Inc.

  3. Modality-specific spectral dynamics in response to visual and tactile sequential shape information processing tasks: An MEG study using multivariate pattern classification analysis.

    PubMed

    Gohel, Bakul; Lee, Peter; Jeong, Yong

    2016-08-01

    Brain regions that respond to more than one sensory modality are characterized as multisensory regions. Studies on the processing of shape or object information have revealed recruitment of the lateral occipital cortex, posterior parietal cortex, and other regions regardless of input sensory modalities. However, it remains unknown whether such regions show similar (modality-invariant) or different (modality-specific) neural oscillatory dynamics, as recorded using magnetoencephalography (MEG), in response to identical shape information processing tasks delivered to different sensory modalities. Modality-invariant or modality-specific neural oscillatory dynamics indirectly suggest modality-independent or modality-dependent participation of particular brain regions, respectively. Therefore, this study investigated the modality-specificity of neural oscillatory dynamics in the form of spectral power modulation patterns in response to visual and tactile sequential shape-processing tasks that are well-matched in terms of speed and content between the sensory modalities. Task-related changes in spectral power modulation and differences in spectral power modulation between sensory modalities were investigated at source-space (voxel) level, using a multivariate pattern classification (MVPC) approach. Additionally, whole analyses were extended from the voxel level to the independent-component level to take account of signal leakage effects caused by inverse solution. The modality-specific spectral dynamics in multisensory and higher-order brain regions, such as the lateral occipital cortex, posterior parietal cortex, inferior temporal cortex, and other brain regions, showed task-related modulation in response to both sensory modalities. This suggests modality-dependency of such brain regions on the input sensory modality for sequential shape-information processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Development and evaluation of the impulse transfer function technique

    NASA Technical Reports Server (NTRS)

    Mantus, M.

    1972-01-01

    The development of the test/analysis technique known as the impulse transfer function (ITF) method is discussed. This technique, when implemented with proper data processing systems, should become a valuable supplement to conventional dynamic testing and analysis procedures that will be used in the space shuttle development program. The method can relieve many of the problems associated with extensive and costly testing of the shuttle for transient loading conditions. In addition, the time history information derived from impulse testing has the potential for being used to determine modal data for the structure under investigation. The technique could be very useful in determining the time-varying modal characteristics of structures subjected to thermal transients, where conventional mode surveys are difficult to perform.

  5. Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.

    PubMed

    Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu

    2016-01-01

    The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.

  6. Nonlinear Analysis of Squeeze Film Dampers Applied to Gas Turbine Helicopter Engines.

    DTIC Science & Technology

    1980-11-01

    calculate the stability (complex roots) of a multi-level gas turbine with aero- dynamic excitation. This program has been applied to the space shuttle...such phenomena as oil film whirl. This paper devlops an analysis technique incorporating modal analysis and fast Fourier transform tech- niques to...USING A SQUEEZE FILM BEARING By M. A. Simpson Research Engineer L. E. Barrett Reserach Assistant Professor Department of Mechanical and Aerospace

  7. Dynamic System Coupler Program (DYSCO 4.1). Volume 1. Theoretical Manual

    DTIC Science & Technology

    1989-01-01

    present analysis is as follows: 1. Triplet X, Y, Z represents an inertia frame, R. The R system coordinates are the rotor shaft axes when there is...small perturbation analysis . 2.5 3-D MODAL STRUCTURE - CFM3 A three-dimensional structure is represented as a linear combination of orth­ ogonal modes...Include rotor blade damage modeling, Elgen analysis development, general time history solution development, frequency domain solution development

  8. Dynamic analysis for shuttle design verification

    NASA Technical Reports Server (NTRS)

    Fralich, R. W.; Green, C. E.; Rheinfurth, M. H.

    1972-01-01

    Two approaches that are used for determining the modes and frequencies of space shuttle structures are discussed. The first method, direct numerical analysis, involves finite element mathematical modeling of the space shuttle structure in order to use computer programs for dynamic structural analysis. The second method utilizes modal-coupling techniques of experimental verification made by vibrating only spacecraft components and by deducing modes and frequencies of the complete vehicle from results obtained in the component tests.

  9. Vibratory Response and Acoustical Radiation of a Water-Loaded, Turbulence-Excited Plate-Cavity System--Option 6

    DTIC Science & Technology

    1975-07-01

    Statistical Energy Analysis MAJOR ASSUMPTIONS AND LIMITATIONS . Simply supported panel it contidarad to ba vibrating freely in a mode consisting of e...Shells: Statistical Energy Analysis . Modal Coupling and Nonresonant Transmission. Univ Houston, Dept Mech Eng Tech Report 21 (Aug 1970); also J...Oscillators. J. Acoust. Soc. Am., Vol. 34, No. 5 (May 1962). 14. Ungar, E.E., Fundamentals of Statistical Energy Analysis of Vibrating Systems, Tech

  10. Bird impact analysis package for turbine engine fan blades

    NASA Technical Reports Server (NTRS)

    Hirschbein, M. S.

    1982-01-01

    A computer program has been developed to analyze the gross structural response of turbine engine fan blades subjected to bird strikes. The program couples a NASTRAN finite element model and modal analysis of a fan blade with a multi-mode bird impact analysis computer program. The impact analysis uses the NASTRAN blade model and a fluid jet model of the bird to interactively calculate blade loading during a bird strike event. The analysis package is computationaly efficient, easy to use and provides a comprehensive history of the gross structual blade response. Example cases are presented for a representative fan blade.

  11. Cost analysis of two community-based HIV testing service modalities led by a Non-Governmental Organization in Cape Town, South Africa.

    PubMed

    Meehan, Sue-Ann; Beyers, Nulda; Burger, Ronelle

    2017-12-02

    In South Africa, the financing and sustainability of HIV services is a priority. Community-based HIV testing services (CB-HTS) play a vital role in diagnosis and linkage to HIV care for those least likely to utilise government health services. With insufficient estimates of the costs associated with CB-HTS provided by NGOs in South Africa, this cost analysis explored the cost to implement and provide services at two NGO-led CB-HTS modalities and calculated the costs associated with realizing key HIV outputs for each CB-HTS modality. The study took place in a peri-urban area where CB-HTS were provided from a stand-alone centre and mobile service. Using a service provider (NGO) perspective, all inputs were allocated by HTS modality with shared costs apportioned according to client volume or personnel time. We calculated the total cost of each HTS modality and the cost categories (personnel, capital and recurring goods/services) across each HTS modality. Costs were divided into seven pre-determined project components, used to examine cost drivers. HIV outputs were analysed for each HTS modality and the mean cost for each HIV output was calculated per HTS modality. The annual cost of the stand-alone and mobile modalities was $96,616 and $77,764 respectively, with personnel costs accounting for 54% of the total costs at the stand-alone. For project components, overheads and service provision made up the majority of the costs. The mean cost per person tested at stand-alone ($51) was higher than at the mobile ($25). Linkage to care cost at the stand-alone ($1039) was lower than the mobile ($2102). This study provides insight into the cost of an NGO led CB-HTS project providing HIV testing and linkage to care through two CB-HIV testing modalities. The study highlights; (1) the importance of including all applicable costs (including overheads) to ensure an accurate cost estimate that is representative of the full service implementation cost, (2) the direct link between test uptake and mean cost per person tested, and (3) the need for effective linkage to care strategies to increase linkage and thereby reduce the mean cost per person linked to HIV care.

  12. Optical modeling of waveguide coupled TES detectors towards the SAFARI instrument for SPICA

    NASA Astrophysics Data System (ADS)

    Trappe, N.; Bracken, C.; Doherty, S.; Gao, J. R.; Glowacka, D.; Goldie, D.; Griffin, D.; Hijmering, R.; Jackson, B.; Khosropanah, P.; Mauskopf, P.; Morozov, D.; Murphy, A.; O'Sullivan, C.; Ridder, M.; Withington, S.

    2012-09-01

    The next generation of space missions targeting far-infrared wavelengths will require large-format arrays of extremely sensitive detectors. The development of Transition Edge Sensor (TES) array technology is being developed for future Far-Infrared (FIR) space applications such as the SAFARI instrument for SPICA where low-noise and high sensitivity is required to achieve ambitious science goals. In this paper we describe a modal analysis of multi-moded horn antennas feeding integrating cavities housing TES detectors with superconducting film absorbers. In high sensitivity TES detector technology the ability to control the electromagnetic and thermo-mechanical environment of the detector is critical. Simulating and understanding optical behaviour of such detectors at far IR wavelengths is difficult and requires development of existing analysis tools. The proposed modal approach offers a computationally efficient technique to describe the partial coherent response of the full pixel in terms of optical efficiency and power leakage between pixels. Initial wok carried out as part of an ESA technical research project on optical analysis is described and a prototype SAFARI pixel design is analyzed where the optical coupling between the incoming field and the pixel containing horn, cavity with an air gap, and thin absorber layer are all included in the model to allow a comprehensive optical characterization. The modal approach described is based on the mode matching technique where the horn and cavity are described in the traditional way while a technique to include the absorber was developed. Radiation leakage between pixels is also included making this a powerful analysis tool.

  13. Comparison of linear measurements between CBCT orthogonally synthesized cephalograms and conventional cephalograms

    PubMed Central

    Yang, S; Liu, D G

    2014-01-01

    Objectives: The purposes of the study are to investigate the consistency of linear measurements between CBCT orthogonally synthesized cephalograms and conventional cephalograms and to evaluate the influence of different magnifications on these comparisons based on a simulation algorithm. Methods: Conventional cephalograms and CBCT scans were taken on 12 dry skulls with spherical metal markers. Orthogonally synthesized cephalograms were created from CBCT data. Linear parameters on both cephalograms were measured via Photoshop CS v. 5.0 (Adobe® Systems, San Jose, CA), named measurement group (MG). Bland–Altman analysis was utilized to assess the agreement of two imaging modalities. Reproducibility was investigated using paired t-test. By a specific mathematical programme “cepha”, corresponding linear parameters [mandibular corpus length (Go-Me), mandibular ramus length (Co-Go), posterior facial height (Go-S)] on these two types of cephalograms were calculated, named simulation group (SG). Bland–Altman analysis was used to assess the agreement between MG and SG. Simulated linear measurements with varying magnifications were generated based on “cepha” as well. Bland–Altman analysis was used to assess the agreement of simulated measurements between two modalities. Results: Bland–Altman analysis suggested the agreement between measurements on conventional cephalograms and orthogonally synthesized cephalograms, with a mean bias of 0.47 mm. Comparison between MG and SG showed that the difference did not reach clinical significance. The consistency between simulated measurements of both modalities with four different magnifications was demonstrated. Conclusions: Normative data of conventional cephalograms could be used for CBCT orthogonally synthesized cephalograms during this transitional period. PMID:25029593

  14. Multi-modal data fusion using source separation: Two effective models based on ICA and IVA and their properties

    PubMed Central

    Adali, Tülay; Levin-Schwartz, Yuri; Calhoun, Vince D.

    2015-01-01

    Fusion of information from multiple sets of data in order to extract a set of features that are most useful and relevant for the given task is inherent to many problems we deal with today. Since, usually, very little is known about the actual interaction among the datasets, it is highly desirable to minimize the underlying assumptions. This has been the main reason for the growing importance of data-driven methods, and in particular of independent component analysis (ICA) as it provides useful decompositions with a simple generative model and using only the assumption of statistical independence. A recent extension of ICA, independent vector analysis (IVA) generalizes ICA to multiple datasets by exploiting the statistical dependence across the datasets, and hence, as we discuss in this paper, provides an attractive solution to fusion of data from multiple datasets along with ICA. In this paper, we focus on two multivariate solutions for multi-modal data fusion that let multiple modalities fully interact for the estimation of underlying features that jointly report on all modalities. One solution is the Joint ICA model that has found wide application in medical imaging, and the second one is the the Transposed IVA model introduced here as a generalization of an approach based on multi-set canonical correlation analysis. In the discussion, we emphasize the role of diversity in the decompositions achieved by these two models, present their properties and implementation details to enable the user make informed decisions on the selection of a model along with its associated parameters. Discussions are supported by simulation results to help highlight the main issues in the implementation of these methods. PMID:26525830

  15. Complementary and alternative medicine use by psychiatric inpatients.

    PubMed

    Elkins, Gary; Rajab, M Hasan; Marcus, Joel

    2005-02-01

    82 psychiatric inpatients hospitalized for acute care were interviewed about their use of complementary and alternative medicine (CAM) modalities. The clinical diagnoses of respondents included Depressive Disorder (61%), Substance Abuse (26%), Schizophrenia (9%), and Anxiety Disorders (5%). Analysis indicated that 63% used at least one CAM modality within the previous 12 mo. The most frequently used modality was herbal therapies (44%), followed by mind-body therapies such as relaxation or mental imagery, hypnosis, meditation, biofeedback (30%), and spiritual healing by another (30%). Physical modalities such as massage, chiropractic treatment, acupuncture, and yoga were used by 21% of respondents. CAM therapies were used for a variety of reasons ranging from treatment of anxiety and depression to weight loss. However, most respondents indicated they did not discuss such use with their psychiatrist or psychotherapist.

  16. Alternative Modal Basis Selection Procedures for Nonlinear Random Response Simulation

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Guo, Xinyun; Rizzi, Stephen A.

    2010-01-01

    Three procedures to guide selection of an efficient modal basis in a nonlinear random response analysis are examined. One method is based only on proper orthogonal decomposition, while the other two additionally involve smooth orthogonal decomposition. Acoustic random response problems are employed to assess the performance of the three modal basis selection approaches. A thermally post-buckled beam exhibiting snap-through behavior, a shallowly curved arch in the auto-parametric response regime and a plate structure are used as numerical test articles. The results of the three reduced-order analyses are compared with the results of the computationally taxing simulation in the physical degrees of freedom. For the cases considered, all three methods are shown to produce modal bases resulting in accurate and computationally efficient reduced-order nonlinear simulations.

  17. Development and Application of a Multi-Modal Task Analysis to Support Intelligent Tutoring of Complex Skills

    ERIC Educational Resources Information Center

    Skinner, Anna; Diller, David; Kumar, Rohit; Cannon-Bowers, Jan; Smith, Roger; Tanaka, Alyssa; Julian, Danielle; Perez, Ray

    2018-01-01

    Background: Contemporary work in the design and development of intelligent training systems employs task analysis (TA) methods for gathering knowledge that is subsequently encoded into task models. These task models form the basis of intelligent interpretation of student performance within education and training systems. Also referred to as expert…

  18. Assessment and Treatment of Stereotypic Vocalizations in a Taiwanese Adolescent with Autism: A Case Study

    ERIC Educational Resources Information Center

    Wu, Ya-Ping; Mirenda, Pat; Wang, Hwa-Pey; Chen, Ming-Chung

    2010-01-01

    This case study describes the processes of functional analysis and modality assessment that were utilized to design a communication intervention for an adolescent with autism who engaged in loud and disruptive vocalizations for most of the school day. The functional analysis suggested that the vocalizations served both tangible and escape…

  19. Automated Loads Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    Gardner, Stephen; Frere, Scot; O’Reilly, Patrick

    2013-01-01

    ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.

  20. Fiber-guided modes conversion using superposed helical gratings

    NASA Astrophysics Data System (ADS)

    Ma, Yancheng; Fang, Liang; Wu, Guoan

    2017-03-01

    Optical fibers can support various modal forms, including vector modes, linear polarization (LP) modes, and orbital angular momentum (OAM) modes, etc. The modal correlation among these modes is investigated via Jones matrix, associated with polarization and helical phase corresponding to spin angular momentum (SAM) and OAM of light, respectively. We can generate different modal forms by adopting superposed helical gratings (SHGs) with opposite helix orientations. Detailed analysis and discussion on mode conversion is given as for mode coupling in optical fibers with both low and high contrast index, respectively. Our study may deepen the understanding for various fiber-guided modes and mode conversion among them via fiber gratings.

  1. Phase retrieval in generalized optical interferometry systems.

    PubMed

    Farriss, Wesley E; Fienup, James R; Malhotra, Tanya; Vamivakas, A Nick

    2018-02-05

    Modal analysis of an optical field via generalized interferometry (GI) is a novel technique that treats said field as a linear superposition of transverse modes and recovers the amplitudes of modal weighting coefficients. We use phase retrieval by nonlinear optimization to recover the phase of these modal weighting coefficients. Information diversity increases the robustness of the algorithm by better constraining the solution. Additionally, multiple sets of random starting phase values assist the algorithm in overcoming local minima. The algorithm was able to recover nearly all coefficient phases for simulated fields consisting of up to 21 superpositioned Hermite Gaussian modes from simulated data and proved to be resilient to shot noise.

  2. Establishment and analysis of coupled dynamic model for dual-mass silicon micro-gyroscope

    NASA Astrophysics Data System (ADS)

    Wang, Zhanghui; Qiu, Anping; Shi, Qin; Zhang, Taoyuan

    2017-12-01

    This paper presents a coupled dynamic model for a dual-mass silicon micro-gyroscope (DMSG). It can quantitatively analyze the influence of left-right stiffness difference on the natural frequencies, modal matrix and modal coupling coefficient of the DMSG. The analytic results are verified by using the finite element method (FEM) simulation. The model shows that with the left-right stiffness difference of 1%, the modal coupling coefficient is 12% in the driving direction and 31% in the sensing direction. It also shows that in order to achieve good separation, the stiffness of base beam should be small enough in both the driving and sensing direction.

  3. Dynamic Dependence Analysis : Modeling and Inference of Changing Dependence Among Multiple Time-Series

    DTIC Science & Technology

    2009-06-01

    isolation. In addition to being inherently multi-modal, human perception takes advantages of multiple sources of information within a single modality...restric- tion was reasonable for the applications we looked at. However, consider using a TIM to model a teacher student relationship among moving objects...That is, imagine one teacher object demonstrating a behavior for a student object. The student can observe the teacher and then recreate the behavior

  4. Development of an Automated Modality-Independent Elastographic Image Analysis System for Tumor Screening

    DTIC Science & Technology

    2006-02-01

    further develop modality-independent elastography as a system that is able to reproducibly detect regions of increased stiffness within the breast based...tested on a tissue-like polymer phantom. elastography , breast cancer screening, image processing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...is a map of the breast (or other tissue of interest) that reflects material inhomogeneity, such as in the case of a tumor mass that disrupts the

  5. Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

    NASA Technical Reports Server (NTRS)

    Li, Wesley Waisang; Pak, Chan-Gi

    2010-01-01

    A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle

  6. The neural basis of kinesthetic and visual imagery in sports: an ALE meta - analysis.

    PubMed

    Filgueiras, Alberto; Quintas Conde, Erick Francisco; Hall, Craig R

    2017-12-19

    Imagery is a widely spread technique in the sport sciences that entails the mental rehearsal of a given situation to improve an athlete's learning, performance and motivation. Two modalities of imagery are reported to tap into distinct brain structures, but sharing common components: kinesthetic and visual imagery. This study aimed to investigate the neural basis of those types of imagery with Activation Likelihood Estimation algorithm to perform a meta - analysis. A systematic search was used to retrieve only experimental studies with athletes or sportspersons. Altogether, nine studies were selected and an ALE meta - analysis was performed. Results indicated significant activation of the premotor, somatosensory cortex, supplementary motor areas, inferior and superior parietal lobule, caudate, cingulate and cerebellum in both imagery tasks. It was concluded that visual and kinesthetic imagery share similar neural networks which suggests that combined interventions are beneficial to athletes whereas separate use of those two modalities of imagery may seem less efficient from a neuropsychological approach.

  7. Modal-pushover-based ground-motion scaling procedure

    USGS Publications Warehouse

    Kalkan, Erol; Chopra, Anil K.

    2011-01-01

    Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  8. Perturbation solutions of combustion instability problems

    NASA Technical Reports Server (NTRS)

    Googerdy, A.; Peddieson, J., Jr.; Ventrice, M.

    1979-01-01

    A method involving approximate modal analysis using the Galerkin method followed by an approximate solution of the resulting modal-amplitude equations by the two-variable perturbation method (method of multiple scales) is applied to two problems of pressure-sensitive nonlinear combustion instability in liquid-fuel rocket motors. One problem exhibits self-coupled instability while the other exhibits mode-coupled instability. In both cases it is possible to carry out the entire linear stability analysis and significant portions of the nonlinear stability analysis in closed form. In the problem of self-coupled instability the nonlinear stability boundary and approximate forms of the limit-cycle amplitudes and growth and decay rates are determined in closed form while the exact limit-cycle amplitudes and growth and decay rates are found numerically. In the problem of mode-coupled instability the limit-cycle amplitudes are found in closed form while the growth and decay rates are found numerically. The behavior of the solutions found by the perturbation method are in agreement with solutions obtained using complex numerical methods.

  9. The Image Data Resource: A Bioimage Data Integration and Publication Platform.

    PubMed

    Williams, Eleanor; Moore, Josh; Li, Simon W; Rustici, Gabriella; Tarkowska, Aleksandra; Chessel, Anatole; Leo, Simone; Antal, Bálint; Ferguson, Richard K; Sarkans, Ugis; Brazma, Alvis; Salas, Rafael E Carazo; Swedlow, Jason R

    2017-08-01

    Access to primary research data is vital for the advancement of science. To extend the data types supported by community repositories, we built a prototype Image Data Resource (IDR) that collects and integrates imaging data acquired across many different imaging modalities. IDR links data from several imaging modalities, including high-content screening, super-resolution and time-lapse microscopy, digital pathology, public genetic or chemical databases, and cell and tissue phenotypes expressed using controlled ontologies. Using this integration, IDR facilitates the analysis of gene networks and reveals functional interactions that are inaccessible to individual studies. To enable re-analysis, we also established a computational resource based on Jupyter notebooks that allows remote access to the entire IDR. IDR is also an open source platform that others can use to publish their own image data. Thus IDR provides both a novel on-line resource and a software infrastructure that promotes and extends publication and re-analysis of scientific image data.

  10. Application of Approximate Unsteady Aerodynamics for Flutter Analysis

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley W.

    2010-01-01

    A technique for approximating the modal aerodynamic influence coefficient (AIC) matrices by using basis functions has been developed. A process for using the resulting approximated modal AIC matrix in aeroelastic analysis has also been developed. The method requires the unsteady aerodynamics in frequency domain, and this methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root locus et cetera. The unsteady aeroelastic analysis using unsteady subsonic aerodynamic approximation is demonstrated herein. The technique presented is shown to offer consistent flutter speed prediction on an aerostructures test wing (ATW) 2 and a hybrid wing body (HWB) type of vehicle configuration with negligible loss in precision. This method computes AICs that are functions of the changing parameters being studied and are generated within minutes of CPU time instead of hours. These results may have practical application in parametric flutter analyses as well as more efficient multidisciplinary design and optimization studies.

  11. Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

    NASA Technical Reports Server (NTRS)

    Li, Wesley W.; Pak, Chan-gi

    2011-01-01

    A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.

  12. A theoretical analysis of the free vibrations of ring- and/or stringer-stiffened elliptical cylinders with arbitrary end conditions. Volume 1: Analytical derivation and applications

    NASA Technical Reports Server (NTRS)

    Boyd, D. E.; Rao, C. K. P.

    1973-01-01

    The derivation and application of a Rayleigh-Ritz modal vibration analysis are presented for ring and/or stringer stiffened noncircular cylindrical shells with arbitrary end conditions. Comparisons with previous results from experimental and analytical studies showed this method of analysis to be accurate for a variety of end conditions. Results indicate a greater effect of rings on natural frequencies than of stringers.

  13. Perceptual, auditory and acoustic vocal analysis of speech and singing in choir conductors.

    PubMed

    Rehder, Maria Inês Beltrati Cornacchioni; Behlau, Mara

    2008-01-01

    the voice of choir conductors. to evaluate the vocal quality of choir conductors based on the production of a sustained vowel during singing and when speaking in order to observe auditory and acoustic differences. participants of this study were 100 choir conductors, with an equal distribution between genders. Participants were asked to produce the sustained vowel "é" using a singing and speaking voice. Speech samples were analyzed based on auditory-perceptive and acoustic parameters. The auditory-perceptive analysis was carried out by two speech-language pathologist, specialists in this field of knowledge. The acoustic analysis was carried out with the support of the computer software Doctor Speech (Tiger Electronics, SRD, USA, version 4.0), using the Real Analysis module. the auditory-perceptive analysis of the vocal quality indicated that most conductors have adapted voices, presenting more alterations in their speaking voice. The acoustic analysis indicated different values between genders and between the different production modalities. The fundamental frequency was higher in the singing voice, as well as the values for the first formant; the second formant presented lower values in the singing voice, with statistically significant results only for women. the voice of choir conductors is adapted, presenting fewer deviations in the singing voice when compared to the speaking voice. Productions differ based the voice modality, singing or speaking.

  14. Interface conductance modal analysis of lattice matched InGaAs/InP

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Henry, Asegun

    2016-05-01

    We studied the heat conduction at InGaAs/InP interfaces and found that the total value of interface conductance was quite high ˜830 MW m-2 K-1. The modal contributions to the thermal interface conductance (TIC) were then investigated to determine the mode responsible. Using the recently developed interface conductance modal analysis method, we showed that more than 70% of the TIC arises from extended modes in the system. The lattice dynamics calculations across the interface revealed that, unlike any other interfaces previously studied, the different classes of vibration around the interface of InGaAs/InP naturally segregate into distinct regions with respect to frequency. In addition, interestingly, the entire region of frequency overlap between the sides of the interface is occupied by extended modes, whereby the two materials vibrate together with a single frequency. We also mapped the correlations between modes, which showed that the contribution by extended modes to the TIC primarily arises from coupling to the modes that have the same frequencies of vibration (i.e., autocorrelations). Moreover, interfacial modes despite their low population still contribute more than 6% to interfacial thermal transport. The analysis sheds light on the nature of heat conduction by different classes of vibration that exist in interfacial systems, which has technological relevance to applications such as thermophotovoltaics and optoelectronics.

  15. New applications of a model of electromechanical impedance for SHM

    NASA Astrophysics Data System (ADS)

    Pavelko, Vitalijs

    2014-03-01

    The paper focuses on the further development of the model of the electromechanical impedance (EMI) of the piezoceramics transducer (PZT) and its application for aircraft structural health monitoring (SHM). There was obtained an expression of the electromechanical impedance common to any dimension of models (1D, 2D, 3D), and directly independent from imposed constraints. Determination of the dynamic response of the system "host structure - PZT", which is crucial for the practical application supposes the use of modal analysis. This allows to get a general tool to determine EMI regardless of the specific features of a particular application. Earlier there was considered the technology of separate determination of the dynamic response for the PZT and the structural element". Here another version that involves the joint modal analysis of the entire system "host structure - PZT" is presented. As a result, the dynamic response is obtained in the form of modal decomposition of transducer mechanical strains. The use of models for the free and constrained transducer, analysis of the impact of the adhesive layer to the EMI is demonstrated. In all cases there was analyzed the influence of the dimension of the model (2D and 3D). The validity of the model is confirmed by experimental studies. Correlation between the fatigue crack length in a thin-walled Al plate and EMI of embedded PZT was simulated and compared with test result.

  16. Assessment of mental stress effects on prefrontal cortical activities using canonical correlation analysis: an fNIRS-EEG study.

    PubMed

    Al-Shargie, Fares; Tang, Tong Boon; Kiguchi, Masashi

    2017-05-01

    This paper presents an investigation about the effects of mental stress on prefrontal cortex (PFC) subregions using simultaneous measurement of functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) signals. The aim is to explore canonical correlation analysis (CCA) technique to study the relationship among the bi-modality signals in mental stress assessment, and how we could fuse the signals for better accuracy in stress detection. Twenty-five male healthy subjects participated in the study while performing mental arithmetic task under control and stress (under time pressure with negative feedback) conditions. The fusion of brain signals acquired by fNIRS-EEG was performed at feature-level using CCA by maximizing the inter-subject covariance across modalities. The CCA result discovered the associations across the modalities and estimated the components responsible for these associations. The experiment results showed that mental stress experienced by this cohort of subjects is subregion specific and localized to the right ventrolateral PFC subregion. These suggest the right ventrolateral PFC as a suitable candidate region to extract biomarkers as performance indicators of neurofeedback training in stress coping.

  17. Combining Acceleration and Displacement Dependent Modal Frequency Responses Using an MSC/NASTRAN DMAP Alter

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.

    1996-01-01

    Solving for dynamic responses of free-free launch vehicle/spacecraft systems acted upon by buffeting winds is commonly performed throughout the aerospace industry. Due to the unpredictable nature of this wind loading event, these problems are typically solved using frequency response random analysis techniques. To generate dynamic responses for spacecraft with statically-indeterminate interfaces, spacecraft contractors prefer to develop models which have response transformation matrices developed for mode acceleration data recovery. This method transforms spacecraft boundary accelerations and displacements into internal responses. Unfortunately, standard MSC/NASTRAN modal frequency response solution sequences cannot be used to combine acceleration- and displacement-dependent responses required for spacecraft mode acceleration data recovery. External user-written computer codes can be used with MSC/NASTRAN output to perform such combinations, but these methods can be labor and computer resource intensive. Taking advantage of the analytical and computer resource efficiencies inherent within MS C/NASTRAN, a DMAP Alter has been developed to combine acceleration- and displacement-dependent modal frequency responses for performing spacecraft mode acceleration data recovery. The Alter has been used successfully to efficiently solve a common aerospace buffeting wind analysis.

  18. Experimental and operational modal analysis of a laboratory scale model of a tripod support structure.

    NASA Astrophysics Data System (ADS)

    Luczak, M. M.; Mucchi, E.; Telega, J.

    2016-09-01

    The goal of the research is to develop a vibration-based procedure for the identification of structural failures in a laboratory scale model of a tripod supporting structure of an offshore wind turbine. In particular, this paper presents an experimental campaign on the scale model tested in two stages. Stage one encompassed the model tripod structure tested in air. The second stage was done in water. The tripod model structure allows to investigate the propagation of a circumferential representative crack of a cylindrical upper brace. The in-water test configuration included the tower with three bladed rotor. The response of the structure to the different waves loads were measured with accelerometers. Experimental and operational modal analysis was applied to identify the dynamic properties of the investigated scale model for intact and damaged state with different excitations and wave patterns. A comprehensive test matrix allows to assess the differences in estimated modal parameters due to damage or as potentially introduced by nonlinear structural response. The presented technique proves to be effective for detecting and assessing the presence of representative cracks.

  19. Dermatological Feasibility of Multimodal Facial Color Imaging Modality for Cross-Evaluation of Facial Actinic Keratosis

    PubMed Central

    Bae, Youngwoo; Son, Taeyoon; Nelson, J. Stuart; Kim, Jae-Hong; Choi, Eung Ho; Jung, Byungjo

    2010-01-01

    Background/Purpose Digital color image analysis is currently considered as a routine procedure in dermatology. In our previous study, a multimodal facial color imaging modality (MFCIM), which provides a conventional, parallel- and cross-polarization, and fluorescent color image, was introduced for objective evaluation of various facial skin lesions. This study introduces a commercial version of MFCIM, DermaVision-PRO, for routine clinical use in dermatology and demonstrates its dermatological feasibility for cross-evaluation of skin lesions. Methods/Results Sample images of subjects with actinic keratosis or non-melanoma skin cancers were obtained at four different imaging modes. Various image analysis methods were applied to cross-evaluate the skin lesion and, finally, extract valuable diagnostic information. DermaVision-PRO is potentially a useful tool as an objective macroscopic imaging modality for quick prescreening and cross-evaluation of facial skin lesions. Conclusion DermaVision-PRO may be utilized as a useful tool for cross-evaluation of widely distributed facial skin lesions and an efficient database management of patient information. PMID:20923462

  20. Numerical prediction on static and dynamic properties for rotating mirror of ultra-high-speed photography

    NASA Astrophysics Data System (ADS)

    Huang, Hongbin; Li, Jingzhen; Gong, Xiangdong; Sun, Fengshan; He, Tiefeng

    2007-01-01

    The methods of numerical analysis for the strength and vibration modals of rotating mirrors were presented based respectively on the three-dimensional elastic mechanics and dynamics. On strength computation, the finite element models of rotating mirror were established according to the real structure of mirror, and the rotating three-faced aluminous and beryllium mirrors were analysed contrastively. Results display that the surface deformation quantity of the aluminous mirror is approximately 20 times as large as beryllium one, and the maximum stress is 1.6 times against the latter. Then, the three-faced aluminous mirrors were analyzed at variedly fit between shaft and axle hole. One conclusion is gotten out that the mirror strength is foreign to fits, but it is weaken by the axle hole obviously. On the modal analysis of vibration, this method can simulates accurately the natural frequencies and corresponding modalities of mirror. And the results from three-face aluminous mirror indicate that the resonance points of a new mirror may be guaranteed existing in selected speed range.

  1. Comparison of breast density measurements made using ultrasound tomography and mammography

    NASA Astrophysics Data System (ADS)

    Sak, Mark; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Krycia, Mark; Sherman, Mark E.; Boyd, Norman; Gierach, Gretchen L.

    2015-03-01

    Women with elevated mammographic percent density, defined as the ratio of fibroglandular tissue area to total breast area on a mammogram are at an increased risk of developing breast cancer. Ultrasound tomography (UST) is an imaging modality that can create tomographic sound speed images of a patient's breast, which can then be used to measure breast density. These sound speed images are useful because physical tissue density is directly proportional to sound speed. The work presented here updates previous results that compared mammographic breast density measurements with UST breast density measurements within an ongoing study. The current analysis has been expanded to include 158 women with negative digital mammographic screens who then underwent a breast UST scan. Breast density was measured for both imaging modalities and preliminary analysis demonstrated strong and positive correlations (Spearman correlation coefficient rs = 0.703). Additional mammographic and UST related imaging characteristics were also analyzed and used to compare the behavior of both imaging modalities. Results suggest that UST can be used among women with negative mammographic screens as a quantitative marker of breast density that may avert shortcomings of mammography.

  2. Retrospective study of the physical therapy modalities applied in head and neck l ymphedema treatment.

    PubMed

    Tacani, Pascale Mutti; Franceschini, Juliana Pereira; Tacani, Rogério Eduardo; Machado, Aline Fernanda Perez; Montezello, Débora; Góes, João Carlos Guedes Sampaio; Marx, Angela

    2016-02-01

    Secondary lymphedema after head and neck cancer treatment is a serious complication and its management can be a challenge. The purpose of this study was to verify which physical therapy modalities were applied in the treatment of head and neck lymphedema through a retrospective analysis. A retrospective study was developed, based on the analysis of medical records of 32 patients treated in the physiotherapy outpatient department of the Brazilian Institute of Cancer Control (IBCC). The physiotherapy included manual lymphatic drainage, massage, exercises, patient education, and compression therapy with an average of 23.9 ± 14.8 sessions. Measurement results showed a significant reduction of face and neck lymphedema (p < .05) and pain (from 7.8 ± 2.2 to 3.6 ± 1.6; p < .001). The physical therapy modalities based on strategic manual lymphatic drainage, shoulder girdle massage, facial, tongue and neck exercises, compressive therapy at home, and patient education showed reduction of the lymphedema and pain, both of them secondary to head and neck cancer treatment. © 2014 Wiley Periodicals, Inc.

  3. Not just fear and sadness: meta-analytic evidence of pervasive emotion recognition deficits for facial and vocal expressions in psychopathy.

    PubMed

    Dawel, Amy; O'Kearney, Richard; McKone, Elinor; Palermo, Romina

    2012-11-01

    The present meta-analysis aimed to clarify whether deficits in emotion recognition in psychopathy are restricted to certain emotions and modalities or whether they are more pervasive. We also attempted to assess the influence of other important variables: age, and the affective factor of psychopathy. A systematic search of electronic databases and a subsequent manual search identified 26 studies that included 29 experiments (N = 1376) involving six emotion categories (anger, disgust, fear, happiness, sadness, surprise) across three modalities (facial, vocal, postural). Meta-analyses found evidence of pervasive impairments across modalities (facial and vocal) with significant deficits evident for several emotions (i.e., not only fear and sadness) in both adults and children/adolescents. These results are consistent with recent theorizing that the amygdala, which is believed to be dysfunctional in psychopathy, has a broad role in emotion processing. We discuss limitations of the available data that restrict the ability of meta-analysis to consider the influence of age and separate the sub-factors of psychopathy, highlighting important directions for future research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Numerical Simulation and Experimental Validation of Failure Caused by Vibration of a Fan

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Han, Wu; Feng, Jianmei; Jia, Xiaohan; Peng, Xueyuan

    2017-08-01

    This paper presents the root cause analysis of an unexpected fracture occurred on the blades of a motor fan used in a natural gas reciprocating compressor unit. A finite element model was established to investigate the natural frequencies and modal shapes of the fan, and a modal test was performed to verify the numerical results. It was indicated that the numerical results agreed well with experimental data. The third order natural frequency was close to the six times excitation frequency, and the corresponding modal shape was the combination of bending and torsional vibration, which consequently contributed to low-order resonance and fracture failure of the fan. The torsional moment obtained by a torsional vibration analysis of the compressor shaft system was exerted on the numerical model of the fan to evaluate the dynamic stress response of the fan. The results showed that the stress concentration regions on the numerical model were consistent with the location of fractures on the fan. Based on the numerical simulation and experimental validation, some recommendations were given to improve the reliability of the motor fan.

  5. Sparse representation based biomarker selection for schizophrenia with integrated analysis of fMRI and SNPs.

    PubMed

    Cao, Hongbao; Duan, Junbo; Lin, Dongdong; Shugart, Yin Yao; Calhoun, Vince; Wang, Yu-Ping

    2014-11-15

    Integrative analysis of multiple data types can take advantage of their complementary information and therefore may provide higher power to identify potential biomarkers that would be missed using individual data analysis. Due to different natures of diverse data modality, data integration is challenging. Here we address the data integration problem by developing a generalized sparse model (GSM) using weighting factors to integrate multi-modality data for biomarker selection. As an example, we applied the GSM model to a joint analysis of two types of schizophrenia data sets: 759,075 SNPs and 153,594 functional magnetic resonance imaging (fMRI) voxels in 208 subjects (92 cases/116 controls). To solve this small-sample-large-variable problem, we developed a novel sparse representation based variable selection (SRVS) algorithm, with the primary aim to identify biomarkers associated with schizophrenia. To validate the effectiveness of the selected variables, we performed multivariate classification followed by a ten-fold cross validation. We compared our proposed SRVS algorithm with an earlier sparse model based variable selection algorithm for integrated analysis. In addition, we compared with the traditional statistics method for uni-variant data analysis (Chi-squared test for SNP data and ANOVA for fMRI data). Results showed that our proposed SRVS method can identify novel biomarkers that show stronger capability in distinguishing schizophrenia patients from healthy controls. Moreover, better classification ratios were achieved using biomarkers from both types of data, suggesting the importance of integrative analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A new procedure of modal parameter estimation for high-speed digital image correlation

    NASA Astrophysics Data System (ADS)

    Huňady, Róbert; Hagara, Martin

    2017-09-01

    The paper deals with the use of 3D digital image correlation in determining modal parameters of mechanical systems. It is a non-contact optical method, which for the measurement of full-field spatial displacements and strains of bodies uses precise digital cameras with high image resolution. Most often this method is utilized for testing of components or determination of material properties of various specimens. In the case of using high-speed cameras for measurement, the correlation system is capable of capturing various dynamic behaviors, including vibration. This enables the potential use of the mentioned method in experimental modal analysis. For that purpose, the authors proposed a measuring chain for the correlation system Q-450 and developed a software application called DICMAN 3D, which allows the direct use of this system in the area of modal testing. The created application provides the post-processing of measured data and the estimation of modal parameters. It has its own graphical user interface, in which several algorithms for the determination of natural frequencies, mode shapes and damping of particular modes of vibration are implemented. The paper describes the basic principle of the new estimation procedure which is crucial in the light of post-processing. Since the FRF matrix resulting from the measurement is usually relatively large, the estimation of modal parameters directly from the FRF matrix may be time-consuming and may occupy a large part of computer memory. The procedure implemented in DICMAN 3D provides a significant reduction in memory requirements and computational time while achieving a high accuracy of modal parameters. Its computational efficiency is particularly evident when the FRF matrix consists of thousands of measurement DOFs. The functionality of the created software application is presented on a practical example in which the modal parameters of a composite plate excited by an impact hammer were determined. For the verification of the obtained results a verification experiment was conducted during which the vibration responses were measured using conventional acceleration sensors. In both cases MIMO analysis was realized.

  7. Integrated trimodal SSEP experimental setup for visual, auditory and tactile stimulation

    NASA Astrophysics Data System (ADS)

    Kuś, Rafał; Spustek, Tomasz; Zieleniewska, Magdalena; Duszyk, Anna; Rogowski, Piotr; Suffczyński, Piotr

    2017-12-01

    Objective. Steady-state evoked potentials (SSEPs), the brain responses to repetitive stimulation, are commonly used in both clinical practice and scientific research. Particular brain mechanisms underlying SSEPs in different modalities (i.e. visual, auditory and tactile) are very complex and still not completely understood. Each response has distinct resonant frequencies and exhibits a particular brain topography. Moreover, the topography can be frequency-dependent, as in case of auditory potentials. However, to study each modality separately and also to investigate multisensory interactions through multimodal experiments, a proper experimental setup appears to be of critical importance. The aim of this study was to design and evaluate a novel SSEP experimental setup providing a repetitive stimulation in three different modalities (visual, tactile and auditory) with a precise control of stimuli parameters. Results from a pilot study with a stimulation in a particular modality and in two modalities simultaneously prove the feasibility of the device to study SSEP phenomenon. Approach. We developed a setup of three separate stimulators that allows for a precise generation of repetitive stimuli. Besides sequential stimulation in a particular modality, parallel stimulation in up to three different modalities can be delivered. Stimulus in each modality is characterized by a stimulation frequency and a waveform (sine or square wave). We also present a novel methodology for the analysis of SSEPs. Main results. Apart from constructing the experimental setup, we conducted a pilot study with both sequential and simultaneous stimulation paradigms. EEG signals recorded during this study were analyzed with advanced methodology based on spatial filtering and adaptive approximation, followed by statistical evaluation. Significance. We developed a novel experimental setup for performing SSEP experiments. In this sense our study continues the ongoing research in this field. On the other hand, the described setup along with the presented methodology is a considerable improvement and an extension of methods constituting the state-of-the-art in the related field. Device flexibility both with developed analysis methodology can lead to further development of diagnostic methods and provide deeper insight into information processing in the human brain.

  8. Cyclic Crack Growth Testing of an A.O. Smith Multilayer Pressure Vessel with Modal Acoustic Emission Monitoring and Data Assessment

    NASA Technical Reports Server (NTRS)

    Ziola, Steven M.

    2014-01-01

    Digital Wave Corp. (DWC) was retained by Jacobs ATOM at NASA Ames Research Center to perform cyclic pressure crack growth sensitivity testing on a multilayer pressure vessel instrumented with DWC's Modal Acoustic Emission (MAE) system, with captured wave analysis to be performed using DWCs WaveExplorerTM software, which has been used at Ames since 2001. The objectives were to document the ability to detect and characterize a known growing crack in such a vessel using only MAE, to establish the sensitivity of the equipment vs. crack size and / or relevance in a realistic field environment, and to obtain fracture toughness materials properties in follow up testing to enable accurate crack growth analysis. This report contains the results of the testing.

  9. Reducing the uncertainty in robotic machining by modal analysis

    NASA Astrophysics Data System (ADS)

    Alberdi, Iñigo; Pelegay, Jose Angel; Arrazola, Pedro Jose; Ørskov, Klaus Bonde

    2017-10-01

    The use of industrial robots for machining could lead to high cost and energy savings for the manufacturing industry. Machining robots offer several advantages respect to CNC machines such as flexibility, wide working space, adaptability and relatively low cost. However, there are some drawbacks that are preventing a widespread adoption of robotic solutions namely lower stiffness, vibration/chatter problems and lower accuracy and repeatability. Normally due to these issues conservative cutting parameters are chosen, resulting in a low material removal rate (MRR). In this article, an example of a modal analysis of a robot is presented. For that purpose the Tap-testing technology is introduced, which aims at maximizing productivity, reducing the uncertainty in the selection of cutting parameters and offering a stable process free from chatter vibrations.

  10. Dynamic Graph Analytic Framework (DYGRAF): greater situation awareness through layered multi-modal network analysis

    NASA Astrophysics Data System (ADS)

    Margitus, Michael R.; Tagliaferri, William A., Jr.; Sudit, Moises; LaMonica, Peter M.

    2012-06-01

    Understanding the structure and dynamics of networks are of vital importance to winning the global war on terror. To fully comprehend the network environment, analysts must be able to investigate interconnected relationships of many diverse network types simultaneously as they evolve both spatially and temporally. To remove the burden from the analyst of making mental correlations of observations and conclusions from multiple domains, we introduce the Dynamic Graph Analytic Framework (DYGRAF). DYGRAF provides the infrastructure which facilitates a layered multi-modal network analysis (LMMNA) approach that enables analysts to assemble previously disconnected, yet related, networks in a common battle space picture. In doing so, DYGRAF provides the analyst with timely situation awareness, understanding and anticipation of threats, and support for effective decision-making in diverse environments.

  11. A more accurate modeling of the effects of actuators in large space structures

    NASA Technical Reports Server (NTRS)

    Hablani, H. B.

    1981-01-01

    The paper deals with finite actuators. A nonspinning three-axis stabilized space vehicle having a two-dimensional large structure and a rigid body at the center is chosen for analysis. The torquers acting on the vehicle are modeled as antisymmetric forces distributed in a small but finite area. In the limit they represent point torquers which also are treated as a special case of surface distribution of dipoles. Ordinary and partial differential equations governing the forced vibrations of the vehicle are derived by using Hamilton's principle. Associated modal inputs are obtained for both the distributed moments and the distributed forces. It is shown that the finite torquers excite the higher modes less than the point torquers. Modal cost analysis proves to be a suitable methodology to this end.

  12. Modal shifts in short-haul passenger travel and the consequent energy impacts. [Intercity travel under 500 miles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-03-01

    A study was performed to evaluate the impacts of strategies to effect modal shifts in short-haul passenger travel (defined herein as intercity travel under 500 miles) from energy-intensive modes to those modes that are less energy-intensive. A series of individual strategies, ranging from incentives to the less energy-intensive modes (bus, rail) to penalties to the more energy-intensive modes (auto, air) was examined to determine energy saved and policy implications relative to strategy implementation. The most effective of the individual strategies were then combined in all permutations, and the analysis was repeated. As part of the analytical process, effects of factorsmore » other than energy (user cost and time, emissions, government subsidy, and travel fatailities) were examined in a benefit/cost analysis. Finally, energy savings, benefit/cost impacts, implementation considerations, and policy implications were evaluated to arrive at conclusions as to the effectiveness of the more-influential strategies and to the overall effectiveness of induced modal shifts. The principal conclusion of the study is that the maximum 1980 energy saving that might be realized by modal shifts, discounting the concurrent effects of demand suppression and improvement of mode efficiency, is approximately 83 x 10/sup 12/ Btu (46,500 bbl gasoline per day), 3.8% of the total projected 1980 energy consumption in the short-haul transportation sector and 0.23% of the total US petroleum use. It was also concluded that strategies to achieve these small savings by modal shifts would result in significant economic, social, and business disruptions.« less

  13. Modality-Spanning Deficits in Attention-Deficit/Hyperactivity Disorder in Functional Networks, Gray Matter, and White Matter

    PubMed Central

    Kessler, Daniel; Angstadt, Michael; Welsh, Robert C.

    2014-01-01

    Previous neuroimaging investigations in attention-deficit/hyperactivity disorder (ADHD) have separately identified distributed structural and functional deficits, but interconnections between these deficits have not been explored. To unite these modalities in a common model, we used joint independent component analysis, a multivariate, multimodal method that identifies cohesive components that span modalities. Based on recent network models of ADHD, we hypothesized that altered relationships between large-scale networks, in particular, default mode network (DMN) and task-positive networks (TPNs), would co-occur with structural abnormalities in cognitive regulation regions. For 756 human participants in the ADHD-200 sample, we produced gray and white matter volume maps with voxel-based morphometry, as well as whole-brain functional connectomes. Joint independent component analysis was performed, and the resulting transmodal components were tested for differential expression in ADHD versus healthy controls. Four components showed greater expression in ADHD. Consistent with our a priori hypothesis, we observed reduced DMN-TPN segregation co-occurring with structural abnormalities in dorsolateral prefrontal cortex and anterior cingulate cortex, two important cognitive control regions. We also observed altered intranetwork connectivity in DMN, dorsal attention network, and visual network, with co-occurring distributed structural deficits. There was strong evidence of spatial correspondence across modalities: For all four components, the impact of the respective component on gray matter at a region strongly predicted the impact on functional connectivity at that region. Overall, our results demonstrate that ADHD involves multiple, cohesive modality spanning deficits, each one of which exhibits strong spatial overlap in the pattern of structural and functional alterations. PMID:25505309

  14. Topological and kinetic determinants of the modal matrices of dynamic models of metabolism

    PubMed Central

    2017-01-01

    Large-scale kinetic models of metabolism are becoming increasingly comprehensive and accurate. A key challenge is to understand the biochemical basis of the dynamic properties of these models. Linear analysis methods are well-established as useful tools for characterizing the dynamic response of metabolic networks. Central to linear analysis methods are two key matrices: the Jacobian matrix (J) and the modal matrix (M-1) arising from its eigendecomposition. The modal matrix M-1 contains dynamically independent motions of the kinetic model near a reference state, and it is sparse in practice for metabolic networks. However, connecting the structure of M-1 to the kinetic properties of the underlying reactions is non-trivial. In this study, we analyze the relationship between J, M-1, and the kinetic properties of the underlying network for kinetic models of metabolism. Specifically, we describe the origin of mode sparsity structure based on features of the network stoichiometric matrix S and the reaction kinetic gradient matrix G. First, we show that due to the scaling of kinetic parameters in real networks, diagonal dominance occurs in a substantial fraction of the rows of J, resulting in simple modal structures with clear biological interpretations. Then, we show that more complicated modes originate from topologically-connected reactions that have similar reaction elasticities in G. These elasticities represent dynamic equilibrium balances within reactions and are key determinants of modal structure. The work presented should prove useful towards obtaining an understanding of the dynamics of kinetic models of metabolism, which are rooted in the network structure and the kinetic properties of reactions. PMID:29267329

  15. Systematic Engine Uprate Technology Development and Deployment for Pipeline Compressor Engines through Increased Torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis Schmitt; Daniel Olsen

    2005-09-30

    Three methods were utilized to analyze key components of slow-speed, large-bore, natural gas integral engines. These three methods included the application of computational fluid dynamics (CFD), dynamic modal analysis using finite element analysis (FEA), and a stress analysis method also using FEA. The CFD analysis focuses primarily on the fuel mixing in the combustion chamber of a TLA engine. Results indicate a significant increase in the homogeneity of the air and fuel using high-pressure fuel injection (HPFI) instead of standard low-pressure mechanical gas admission valve (MGAV). A modal analysis of three engine crankshafts (TLA-6, HBA-6, and GMV-10) is developed andmore » presented. Results indicate that each crankshaft has a natural frequency and corresponding speed that is well away from the typical engine operating speed. A frame stress analysis method is also developed and presented. Two different crankcases are examined. A TLA-6 crankcase is modeled and a stress analysis is performed. The method of dynamic load determination, model setup, and the results from the stress analysis are discussed. Preliminary results indicate a 10%-15% maximum increase in frame stress due to a 20% increase in HP. However, the high stress regions were localized. A new hydraulically actuated mechanical fuel valve is also developed and presented. This valve provides equivalent high-energy (supersonic) fuel injection comparable to a HPFI system, at 1/5th of the natural gas fuel pressure. This valve was developed in cooperation with the Dresser-Rand Corporation.« less

  16. Dichotic and dichoptic digit perception in normal adults.

    PubMed

    Lawfield, Angela; McFarland, Dennis J; Cacace, Anthony T

    2011-06-01

    Verbally based dichotic-listening experiments and reproduction-mediated response-selection strategies have been used for over four decades to study perceptual/cognitive aspects of auditory information processing and make inferences about hemispheric asymmetries and language lateralization in the brain. Test procedures using dichotic digits have also been used to assess for disorders of auditory processing. However, with this application, limitations exist and paradigms need to be developed to improve specificity of the diagnosis. Use of matched tasks in multiple sensory modalities is a logical approach to address this issue. Herein, we use dichotic listening and dichoptic viewing of visually presented digits for making this comparison. To evaluate methodological issues involved in using matched tasks of dichotic listening and dichoptic viewing in normal adults. A multivariate assessment of the effects of modality (auditory vs. visual), digit-span length (1-3 pairs), response selection (recognition vs. reproduction), and ear/visual hemifield of presentation (left vs. right) on dichotic and dichoptic digit perception. Thirty adults (12 males, 18 females) ranging in age from 18 to 30 yr with normal hearing sensitivity and normal or corrected-to-normal visual acuity. A computerized, custom-designed program was used for all data collection and analysis. A four-way repeated measures analysis of variance (ANOVA) evaluated the effects of modality, digit-span length, response selection, and ear/visual field of presentation. The ANOVA revealed that performances on dichotic listening and dichoptic viewing tasks were dependent on complex interactions between modality, digit-span length, response selection, and ear/visual hemifield of presentation. Correlation analysis suggested a common effect on overall accuracy of performance but isolated only an auditory factor for a laterality index. The variables used in this experiment affected performances in the auditory modality to a greater extent than in the visual modality. The right-ear advantage observed in the dichotic-digits task was most evident when reproduction mediated response selection was used in conjunction with three-digit pairs. This effect implies that factors such as "speech related output mechanisms" and digit-span length (working memory) contribute to laterality effects in dichotic listening performance with traditional paradigms. Thus, the use of multiple-digit pairs to avoid ceiling effects and the application of verbal reproduction as a means of response selection may accentuate the role of nonperceptual factors in performance. Ideally, tests of perceptual abilities should be relatively free of such effects. American Academy of Audiology.

  17. Librarian instruction-delivery modality preferences for professional continuing education

    PubMed Central

    Lynn, Valerie A.; Bose, Arpita; Boehmer, Susan J.

    2010-01-01

    Objectives: Attending professional continuing education (CE) is an important component of librarianship. This research study identified librarians' preferences in delivery modalities of instruction for professional CE. The study also identified influential factors associated with attending CE classes. Methods: Five instruction-delivery modalities and six influential factors were identified for inclusion in an online survey. The survey completed by members of the American Library Association (ALA), Special Libraries Association (SLA), and Medical Library Association (MLA) provided the data for analysis of librarian preferences and influential factors. Results: The majority of respondents were MLA members, followed by ALA and SLA members. Librarians from all three library associations preferred the face-to-face instructional modality. The most influential factor associated with the decision to attend a professional CE class was cost. Conclusions: All five instruction-delivery modalities present useful structures for imparting professional CE. As librarians' experience with different modalities increases and as technology improves, preferences in instruction delivery may shift. But at present, face-to-face remains the most preferred modality. Based on the results of this study, cost was the most influential factor associated with attending a CE class. This may change as additional influential factors are identified and analyzed in future studies. PMID:20098656

  18. Sight and sound converge to form modality-invariant representations in temporo-parietal cortex

    PubMed Central

    Man, Kingson; Kaplan, Jonas T.; Damasio, Antonio; Meyer, Kaspar

    2013-01-01

    People can identify objects in the environment with remarkable accuracy, irrespective of the sensory modality they use to perceive them. This suggests that information from different sensory channels converges somewhere in the brain to form modality-invariant representations, i.e., representations that reflect an object independently of the modality through which it has been apprehended. In this functional magnetic resonance imaging study of human subjects, we first identified brain areas that responded to both visual and auditory stimuli and then used crossmodal multivariate pattern analysis to evaluate the neural representations in these regions for content-specificity (i.e., do different objects evoke different representations?) and modality-invariance (i.e., do the sight and the sound of the same object evoke a similar representation?). While several areas became activated in response to both auditory and visual stimulation, only the neural patterns recorded in a region around the posterior part of the superior temporal sulcus displayed both content-specificity and modality-invariance. This region thus appears to play an important role in our ability to recognize objects in our surroundings through multiple sensory channels and to process them at a supra-modal (i.e., conceptual) level. PMID:23175818

  19. Librarian instruction-delivery modality preferences for professional continuing education.

    PubMed

    Lynn, Valerie A; Bose, Arpita; Boehmer, Susan J

    2010-01-01

    Attending professional continuing education (CE) is an important component of librarianship. This research study identified librarians' preferences in delivery modalities of instruction for professional CE. The study also identified influential factors associated with attending CE classes. Five instruction-delivery modalities and six influential factors were identified for inclusion in an online survey. The survey completed by members of the American Library Association (ALA), Special Libraries Association (SLA), and Medical Library Association (MLA) provided the data for analysis of librarian preferences and influential factors. The majority of respondents were MLA members, followed by ALA and SLA members. Librarians from all three library associations preferred the face-to-face instructional modality. The most influential factor associated with the decision to attend a professional CE class was cost. All five instruction-delivery modalities present useful structures for imparting professional CE. As librarians' experience with different modalities increases and as technology improves, preferences in instruction delivery may shift. But at present, face-to-face remains the most preferred modality. Based on the results of this study, cost was the most influential factor associated with attending a CE class. This may change as additional influential factors are identified and analyzed in future studies.

  20. Stimulus Modality and Smoking Behavior: Moderating Role of Implicit Attitudes.

    PubMed

    Ezeh, Valentine C; Mefoh, Philip

    2015-07-20

    This study investigated whether stimulus modality influences smoking behavior among smokers in South Eastern Nigeria and also whether implicit attitudes moderate the relationship between stimulus modality and smoking behavior. 60 undergraduate students of University of Nigeria, Nsukka were used. Participants were individually administered the IAT task as a measure of implicit attitude toward smoking and randomly assigned into either image condition that paired images of cigarette with aversive images of potential health consequences or text condition that paired images of cigarette with aversive texts of potential health consequences. A one- predictor and one-moderator binary logistic analysis indicates that stimulus modality significantly predicts smoking behavior (p = < .05) with those in the image condition choosing not to smoke with greater probability than the text condition. The interaction between stimulus modality and IAT scores was also significant (p = < .05). Specifically, the modality effect was larger for participants in the image group who held more negative implicit attitudes towards smoking. The finding shows the urgent need to introduce the use of aversive images of potential health consequences on cigarette packs in Nigeria.

  1. A Developmental Analysis of Caregiving Modalities across Infancy in 38 Low- and Middle-Income Countries

    ERIC Educational Resources Information Center

    Bornstein, Marc H.; Putnick, Diane L.; Lansford, Jennifer E.; Deater-Deckard, Kirby; Bradley, Robert H.

    2015-01-01

    Caregiving is requisite to wholesome child development from the beginning of life. A cross-sectional microgenetic analysis of six caregiving practices across the child's 1st year (0-12 months) in 42,539 families from nationally representative samples in 38 low- and middle-income countries is reported. Rates of caregiving varied tremendously within…

  2. Derivation of improved load transformation matrices for launchers-spacecraft coupled analysis, and direct computation of margins of safety

    NASA Technical Reports Server (NTRS)

    Klein, M.; Reynolds, J.; Ricks, E.

    1989-01-01

    Load and stress recovery from transient dynamic studies are improved upon using an extended acceleration vector in the modal acceleration technique applied to structural analysis. Extension of the normal LTM (load transformation matrices) stress recovery to automatically compute margins of safety is presented with an application to the Hubble space telescope.

  3. Vibration and stress analysis of soft-bonded shuttle insulation tiles. Modal analysis with compact widely space stringers

    NASA Technical Reports Server (NTRS)

    Ojalvo, I. U.; Austin, F.; Levy, A.

    1974-01-01

    An efficient iterative procedure is described for the vibration and modal stress analysis of reusable surface insulation (RSI) of multi-tiled space shuttle panels. The method, which is quite general, is rapidly convergent and highly useful for this application. A user-oriented computer program based upon this procedure and titled RESIST (REusable Surface Insulation Stresses) has been prepared for the analysis of compact, widely spaced, stringer-stiffened panels. RESIST, which uses finite element methods, obtains three dimensional tile stresses in the isolator, arrestor (if any) and RSI materials. Two dimensional stresses are obtained in the tile coating and the stringer-stiffened primary structure plate. A special feature of the program is that all the usual detailed finite element grid data is generated internally from a minimum of input data. The program can accommodate tile idealizations with up to 850 nodes (2550 degrees-of-freedom) and primary structure idealizations with a maximum of 10,000 degrees-of-freedom. The primary structure vibration capability is achieved through the development of a new rapid eigenvalue program named ALARM (Automatic LArge Reduction of Matrices to tridiagonal form).

  4. Characteristics of Reduction Gear in Electric Agricultural Vehicle

    NASA Astrophysics Data System (ADS)

    Choi, W. S.; Pratama, P. S.; Supeno, D.; Jeong, S. W.; Byun, J. Y.; Woo, J. H.; Lee, E. S.; Park, C. S.

    2018-03-01

    In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.

  5. Fast mean and variance computation of the diffuse sound transmission through finite-sized thick and layered wall and floor systems

    NASA Astrophysics Data System (ADS)

    Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.

    2018-05-01

    A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.

  6. Diagnostic Health Monitoring System Development for Army Vehicle Reliability

    DTIC Science & Technology

    2011-07-01

    19-24 3.4 Receiver Operator Characteristics for fault detection ……………………….. 24-28 3.5 Extended diagnostic speed bump modal data analysis...extended diagnostic speed bump was akin to the use of modal impact testing for exciting broadband frequency ranges in mechanical systems for use in...for a front axle wheel crossing measured using long cleat for ( ) first 30, ( ) second 11, ( ) third 11, ( ) fourth 11, and ( ) fifth 11 data series

  7. Dynamic modulus estimation and structural vibration analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, A.

    1998-11-18

    Often the dynamic elastic modulus of a material with frequency dependent properties is difficult to estimate. These uncertainties are compounded in any structural vibration analysis using the material properties. Here, different experimental techniques are used to estimate the properties of a particular elastomeric material over a broad frequency range. Once the properties are determined, various structures incorporating the elastomer are analyzed by an interactive finite element method to determine natural frequencies and mode shapes. Then, the finite element results are correlated with results obtained by experimental modal analysis.

  8. Mechanics of inter-modal tunneling in nonlinear waveguides

    NASA Astrophysics Data System (ADS)

    Jiao, Weijian; Gonella, Stefano

    2018-02-01

    In this article, we investigate the mechanics of nonlinearly induced inter-modal energy tunneling between flexurally-dominated and axially-dominated modes in phononic waveguides. Special attention is devoted to elucidating the role played by the coupling between axial and flexural degrees of freedom in the determination of the available mode hopping conditions and the associated mechanisms of deformation. Waveguides offer an ideal test bed to investigate the mechanics of nonlinear energy tunneling, due to the fact that they naturally feature, even at low frequencies, families of modes (flexural and axial) that are intrinsically characterized by extreme complementarity. Moreover, thanks to their geometric simplicity, their behavior can be explained by resorting to intuitive structural mechanics models that effectively capture the dichotomy and interplay between flexural and axial mechanisms. After having delineated the fundamental mechanics of flexural-to-axial hopping using the benchmark example of a homogeneous structure, we adapt the analysis to the case of periodic waveguides, in which the complex dispersive behavior due to periodicity results in additional richness of mode hopping mechanisms. We finally extend the analysis to periodic waveguides with internal resonators, in which the availability of locally-resonant bandgaps implies the possibility to activate the resonators even at relatively low frequencies, thus increasing the degree of modal complementarity that is available in the acoustic range. In this context, inter-modal tunneling provides an unprecedented mechanism to transfer conspicuous packets of energy to the resonating microstructure.

  9. Experimental validation of a numerical 3-D finite model applied to wind turbines design under vibration constraints: TREVISE platform

    NASA Astrophysics Data System (ADS)

    Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi

    2018-04-01

    With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.

  10. Hybrid motion sensing and experimental modal analysis using collocated smartphone camera and accelerometers

    NASA Astrophysics Data System (ADS)

    Ozer, Ekin; Feng, Dongming; Feng, Maria Q.

    2017-10-01

    State-of-the-art multisensory technologies and heterogeneous sensor networks propose a wide range of response measurement opportunities for structural health monitoring (SHM). Measuring and fusing different physical quantities in terms of structural vibrations can provide alternative acquisition methods and improve the quality of the modal testing results. In this study, a recently introduced SHM concept, SHM with smartphones, is focused to utilize multisensory smartphone features for a hybridized structural vibration response measurement framework. Based on vibration testing of a small-scale multistory laboratory model, displacement and acceleration responses are monitored using two different smartphone sensors, an embedded camera and accelerometer, respectively. Double-integration or differentiation among different measurement types is performed to combine multisensory measurements on a comparative basis. In addition, distributed sensor signals from collocated devices are processed for modal identification, and performance of smartphone-based sensing platforms are tested under different configuration scenarios and heterogeneity levels. The results of these tests show a novel and successful implementation of a hybrid motion sensing platform through multiple sensor type and device integration. Despite the heterogeneity of motion data obtained from different smartphone devices and technologies, it is shown that multisensory response measurements can be blended for experimental modal analysis. Getting benefit from the accessibility of smartphone technology, similar smartphone-based dynamic testing methodologies can provide innovative SHM solutions with mobile, programmable, and cost-free interfaces.

  11. Protocol for a systematic review with network meta-analysis of the modalities used to deliver eHealth interventions for chronic pain.

    PubMed

    Slattery, Brian W; Haugh, Stephanie; Francis, Kady; O'Connor, Laura; Barrett, Katie; Dwyer, Christopher P; O'Higgins, Siobhan; Egan, Jonathan; McGuire, Brian E

    2017-03-03

    As eHealth interventions prove both efficacious and practical, and as they arguably overcome certain barriers encountered by traditional face-to-face treatment for chronic pain, their number has increased dramatically in recent times. However, there is a dearth of research that focuses on evaluating and comparing the different types of technology-assisted interventions. This is a protocol for a systematic review that aims to evaluate the eHealth modalities in the context of psychological and non-psychological (other than non-drug) interventions for chronic pain. We will search the Cochrane Central Register of Controlled Trials (CENTRAL: The Cochrane Library), MEDLINE, Embase and PsycINFO. Randomised controlled trials (RCTs) with more than 20 participants per trial arm that have evaluated non-drug psychological or non-psychological interventions delivered via an eHealth modality and have pain as an outcome measure will be included. Two review authors will independently extract data and assess the study suitability in accordance with the Cochrane Collaboration Risk of Bias Tool. Studies will be included if they measure at least one outcome variable in accordance with the IMMPACT guidelines (i.e. pain severity, pain interference, physical functioning, symptoms, emotional functioning, global improvement and disposition). Secondary outcomes will be measures of depression and health-related quality of life (HRQoL). A network meta-analysis will be conducted based on direct comparisons to generate indirect comparisons of modalities across treatment trials, which will return rankings for the eHealth modalities in terms of their effectiveness. Most trials that use an eHealth intervention to manage chronic pain typically use one modality. As a result, little evidence exists to support which modality type is the most effective. The current review will address this gap in the literature and compare the different eHealth modalities used for technology-assisted interventions for chronic pain. With the growing reliance and use of technology as a medium for delivering treatment for chronic conditions more generally, it is imperative that research identify the most efficacious eHealth modalities and systematically identify the most important features of such treatment types, so they may be replicated and used for research and in the provision of care. PROSPERO, CRD42016035595.

  12. Analysis of the costs of dialysis and the effects of an incentive mechanism for low-cost dialysis modalities.

    PubMed

    Cleemput, Irina; De Laet, Chris

    2013-05-01

    Treatment costs of end-stage renal disease with dialysis are high and vary between dialysis modalities. Public healthcare payers aim at stimulating the use of less expensive dialysis modalities, with maintenance of healthcare quality. This study examines the effects of Belgian financial incentive mechanisms for the use of low-cost dialysis treatments. First, the costs of different dialysis modalities were calculated from the hospital's perspective. Data were obtained through a hospital survey. The balance between costs and revenues was simulated for an average Belgian dialysis programme. Incremental profits were calculated in function of the proportion of patients on alternative dialysis modalities. Hospital haemodialysis is the most expensive modality per patient year, followed by peritoneal dialysis and finally satellite haemodialysis. Under current reimbursement rules mean profits of a dialysis programme are maximal if about 28% of patients are treated with a low-cost dialysis modality. This is only slightly lower than the observed percentage in Belgian dialysis centres in the same period. In Belgium, the financial incentives for the use of low-cost dialysis modalities only had a modest impact due to the continuing profits that could be generated by high-cost dialysis. Profit neutrality is crucial for the success of any financial incentive mechanism for low-cost dialysis modalities. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Nonlinear hybrid modal synthesis based on branch modes for dynamic analysis of assembled structure

    NASA Astrophysics Data System (ADS)

    Huang, Xing-Rong; Jézéquel, Louis; Besset, Sébastien; Li, Lin; Sauvage, Olivier

    2018-01-01

    This paper describes a simple and fast numerical procedure to study the steady state responses of assembled structures with nonlinearities along continuous interfaces. The proposed strategy is based on a generalized nonlinear modal superposition approach supplemented by a double modal synthesis strategy. The reduced nonlinear modes are derived by combining a single nonlinear mode method with reduction techniques relying on branch modes. The modal parameters containing essential nonlinear information are determined and then employed to calculate the stationary responses of the nonlinear system subjected to various types of excitation. The advantages of the proposed nonlinear modal synthesis are mainly derived in three ways: (1) computational costs are considerably reduced, when analyzing large assembled systems with weak nonlinearities, through the use of reduced nonlinear modes; (2) based on the interpolation models of nonlinear modal parameters, the nonlinear modes introduced during the first step can be employed to analyze the same system under various external loads without having to reanalyze the entire system; and (3) the nonlinear effects can be investigated from a modal point of view by analyzing these nonlinear modal parameters. The proposed strategy is applied to an assembled system composed of plates and nonlinear rubber interfaces. Simulation results have proven the efficiency of this hybrid nonlinear modal synthesis, and the computation time has also been significantly reduced.

  14. Voltage stability analysis in the new deregulated environment

    NASA Astrophysics Data System (ADS)

    Zhu, Tong

    Nowadays, a significant portion of the power industry is under deregulation. Under this new circumstance, network security analysis is more critical and more difficult. One of the most important issues in network security analysis is voltage stability analysis. Due to the expected higher utilization of equipment induced by competition in a power market that covers bigger power systems, this issue is increasingly acute after deregulation. In this dissertation, some selected topics of voltage stability analysis are covered. In the first part, after a brief review of general concepts of continuation power flow (CPF), investigations on various matrix analysis techniques to improve the speed of CPF calculation for large systems are reported. Based on these improvements, a new CPF algorithm is proposed. This new method is then tested by an inter-area transaction in a large inter-connected power system. In the second part, the Arnoldi algorithm, the best method to find a few minimum singular values for a large sparse matrix, is introduced into the modal analysis for the first time. This new modal analysis is applied to the estimation of the point of voltage collapse and contingency evaluation in voltage security assessment. Simulations show that the new method is very efficient. In the third part, after transient voltage stability component models are investigated systematically, a novel system model for transient voltage stability analysis, which is a logical-algebraic-differential-difference equation (LADDE), is offered. As an example, TCSC (Thyristor controlled series capacitors) is addressed as a transient voltage stabilizing controller. After a TCSC transient voltage stability model is outlined, a new TCSC controller is proposed to enhance both fault related and load increasing related transient voltage stability. Its ability is proven by the simulation.

  15. Sound transmission loss of composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Zhou, Ran

    Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the statistical energy analysis model.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zauls, A. Jason, E-mail: zauls@musc.edu; Watkins, John M.; Wahlquist, Amy E.

    Purpose: The American Society for Radiation Oncology published a Consensus Statement for accelerated partial breast irradiation identifying three groups: Suitable, Cautionary, and Unsuitable. The objective of this study was to compare oncologic outcomes in women treated with MammoSite brachytherapy (MB) vs. whole breast irradiation (WBI) after stratification into Statement groups. Methods: Eligible women had invasive carcinoma or ductal carcinoma in situ (DCIS) {<=}3 cm, and {<=}3 lymph nodes positive. Women were stratified by radiation modality and Statement groups. Survival analysis methods including Kaplan-Meier estimation, Cox regression, and competing risks analysis were used to assess overall survival (OS), disease-free survival (DFS),more » time to local failure (TTLF), and tumor bed failure (TBF). Results: A total of 459 (183 MB and 276 WBI) patients were treated from 2002 to 2009. After a median follow-up of 45 months, we found no statistical differences by stratification group or radiation modality with regard to OS and DFS. At 4 years TTLF or TBF were not statistically different between the cohorts. Univariate analysis in the MB cohort revealed that nodal positivity (pN1 vs. pN0) was related to TTLF (hazard ratio 6.39, p = 0.02). There was a suggestion that DCIS histology had an increased risk of failure when compared with invasive ductal carcinoma (hazard ratio 3.57, p = 0.06). Conclusions: MB and WBI patients stratified by Statement groups seem to combine women who will have similar outcomes regardless of radiation modality. Although outcomes were similar, we remain guarded in overinterpretation of these preliminary results until further analysis and long-term follow-up data become available. Caution should be used in treating women with DCIS or pN1 disease with MB.« less

  17. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    PubMed

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.

  18. Simultaneous measurement of cerebral blood flow and mRNA signals: pixel-based inter-modality correlational analysis.

    PubMed

    Zhao, W; Busto, R; Truettner, J; Ginsberg, M D

    2001-07-30

    The analysis of pixel-based relationships between local cerebral blood flow (LCBF) and mRNA expression can reveal important insights into brain function. Traditionally, LCBF and in situ hybridization studies for genes of interest have been analyzed in separate series. To overcome this limitation and to increase the power of statistical analysis, this study focused on developing a double-label method to measure local cerebral blood flow (LCBF) and gene expressions simultaneously by means of a dual-autoradiography procedure. A 14C-iodoantipyrine autoradiographic LCBF study was first performed. Serial brain sections (12 in this study) were obtained at multiple coronal levels and were processed in the conventional manner to yield quantitative LCBF images. Two replicate sections at each bregma level were then used for in situ hybridization. To eliminate the 14C-iodoantipyrine from these sections, a chloroform-washout procedure was first performed. The sections were then processed for in situ hybridization autoradiography for the probes of interest. This method was tested in Wistar rats subjected to 12 min of global forebrain ischemia by two-vessel occlusion plus hypotension, followed by 2 or 6 h of reperfusion (n=4-6 per group). LCBF and in situ hybridization images for heat shock protein 70 (HSP70) were generated for each rat, aligned by disparity analysis, and analyzed on a pixel-by-pixel basis. This method yielded detailed inter-modality correlation between LCBF and HSP70 mRNA expressions. The advantages of this method include reducing the number of experimental animals by one-half; and providing accurate pixel-based correlations between different modalities in the same animals, thus enabling paired statistical analyses. This method can be extended to permit correlation of LCBF with the expression of multiple genes of interest.

  19. Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.

  20. Dutch modality exclusivity norms: Simulating perceptual modality in space.

    PubMed

    Speed, Laura J; Majid, Asifa

    2017-12-01

    Perceptual information is important for the meaning of nouns. We present modality exclusivity norms for 485 Dutch nouns rated on visual, auditory, haptic, gustatory, and olfactory associations. We found these nouns are highly multimodal. They were rated most dominant in vision, and least in olfaction. A factor analysis identified two main dimensions: one loaded strongly on olfaction and gustation (reflecting joint involvement in flavor), and a second loaded strongly on vision and touch (reflecting joint involvement in manipulable objects). In a second study, we validated the ratings with similarity judgments. As expected, words from the same dominant modality were rated more similar than words from different dominant modalities; but - more importantly - this effect was enhanced when word pairs had high modality strength ratings. We further demonstrated the utility of our ratings by investigating whether perceptual modalities are differentially experienced in space, in a third study. Nouns were categorized into their dominant modality and used in a lexical decision experiment where the spatial position of words was either in proximal or distal space. We found words dominant in olfaction were processed faster in proximal than distal space compared to the other modalities, suggesting olfactory information is mentally simulated as "close" to the body. Finally, we collected ratings of emotion (valence, dominance, and arousal) to assess its role in perceptual space simulation, but the valence did not explain the data. So, words are processed differently depending on their perceptual associations, and strength of association is captured by modality exclusivity ratings.

  1. Integrated computer-aided forensic case analysis, presentation, and documentation based on multimodal 3D data.

    PubMed

    Bornik, Alexander; Urschler, Martin; Schmalstieg, Dieter; Bischof, Horst; Krauskopf, Astrid; Schwark, Thorsten; Scheurer, Eva; Yen, Kathrin

    2018-06-01

    Three-dimensional (3D) crime scene documentation using 3D scanners and medical imaging modalities like computed tomography (CT) and magnetic resonance imaging (MRI) are increasingly applied in forensic casework. Together with digital photography, these modalities enable comprehensive and non-invasive recording of forensically relevant information regarding injuries/pathologies inside the body and on its surface. Furthermore, it is possible to capture traces and items at crime scenes. Such digitally secured evidence has the potential to similarly increase case understanding by forensic experts and non-experts in court. Unlike photographs and 3D surface models, images from CT and MRI are not self-explanatory. Their interpretation and understanding requires radiological knowledge. Findings in tomography data must not only be revealed, but should also be jointly studied with all the 2D and 3D data available in order to clarify spatial interrelations and to optimally exploit the data at hand. This is technically challenging due to the heterogeneous data representations including volumetric data, polygonal 3D models, and images. This paper presents a novel computer-aided forensic toolbox providing tools to support the analysis, documentation, annotation, and illustration of forensic cases using heterogeneous digital data. Conjoint visualization of data from different modalities in their native form and efficient tools to visually extract and emphasize findings help experts to reveal unrecognized correlations and thereby enhance their case understanding. Moreover, the 3D case illustrations created for case analysis represent an efficient means to convey the insights gained from case analysis to forensic non-experts involved in court proceedings like jurists and laymen. The capability of the presented approach in the context of case analysis, its potential to speed up legal procedures and to ultimately enhance legal certainty is demonstrated by introducing a number of representative forensic cases. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. A Comparison of the Characteristics of Acupuncture- and Non-Acupuncture-Preferred Consumers: A Secondary Analysis of NHIS 2012 Data.

    PubMed

    Zhang, Yan; Leach, Matthew J; Bishop, Felicity L; Leung, Brenda

    2016-04-01

    To determine whether acupuncture use, sociodemographic characteristics, and existing health conditions differ between acupuncture-preferred consumers (i.e., those who deem acupuncture to be one of the three most important complementary and alternative medicine [CAM] modalities used) and non-acupuncture-preferred consumers who used acupuncture in the past 12 months This is a secondary analysis of the National Health Interview Survey Sample Adult File and Adult Alternative Medicine datasets collected by the Centers for Disease Control and Prevention during 2012. The sample was drawn from the noninstitutionalized civilian population of the United States. The datasets yielded 34,525 respondents aged 18 years and older. Measures included in the analysis were acupuncture use in the past 12 months, sociodemographic characteristics, and existing health conditions. Analyses were performed by using Stata software, version 9.0 (Stata Corp., College Station, TX). Of the 10,158 adults who responded to the question regarding the "three most important" CAM modalities used, 572 (5.6%) had used acupuncture in the past 12 months. Of these, 456 (79.7%) chose acupuncture as one of the top three CAM modalities most important to their health. Acupuncture-preferred consumers reported significantly more visits to acupuncturists (7.46 versus 3.99 visits; p < 0.001), as well as higher out-of-pocket costs ($342.8 versus $246.4; p < 0.001), compared with non-acupuncture-preferred consumers. The logistic regression model revealed that with every additional CAM modality used, the likelihood of deeming acupuncture as one of the three CAM modalities most important to one's health decreased by 39% (odds ratio, 0.61; 95% confidence interval, 0.52-0.71; p < 0.001). Health conditions were not statistically significant predictors. A consumer's preference for acupuncture appeared not to be driven by health conditions but rather was related to sociodemographic factors. This suggests that health education regarding acupuncture may need to be tailored to certain consumer groups, such as those residing in the South, and could provide more information on the comparative effectiveness of acupuncture for various health conditions.

  3. Projection-based motion estimation for cardiac functional analysis with high temporal resolution: a proof-of-concept study with digital phantom experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuki; Fung, George S. K.; Shen, Zeyang; Otake, Yoshito; Lee, Okkyun; Ciuffo, Luisa; Ashikaga, Hiroshi; Sato, Yoshinobu; Taguchi, Katsuyuki

    2017-03-01

    Cardiac motion (or functional) analysis has shown promise not only for non-invasive diagnosis of cardiovascular diseases but also for prediction of cardiac future events. Current imaging modalities has limitations that could degrade the accuracy of the analysis indices. In this paper, we present a projection-based motion estimation method for x-ray CT that estimates cardiac motion with high spatio-temporal resolution using projection data and a reference 3D volume image. The experiment using a synthesized digital phantom showed promising results for motion analysis.

  4. Data analysis techniques used at the Oak Ridge Y-12 plant flywheel evaluation laboratory

    NASA Astrophysics Data System (ADS)

    Steels, R. S., Jr.; Babelay, E. F., Jr.

    1980-07-01

    Some of the more advanced data analysis techniques applied to the problem of experimentally evaluating the performance of high performance composite flywheels are presented. Real time applications include polar plots of runout with interruptions relating to balance and relative motions between parts, radial growth measurements, and temperature of the spinning part. The technique used to measure torque applied to a containment housing during flywheel failure is also presented. The discussion of pre and post test analysis techniques includes resonant frequency determination with modal analysis, waterfall charts, and runout signals at failure.

  5. Qualitative task analysis to enhance sports characterization: a surfing case study.

    PubMed

    Moreira, Miguel; Peixoto, César

    2014-09-29

    The aim of this study was to develop a Matrix of Analysis for Sports Tasks (MAST), regardless of the sports activity, based on practice classification and task analysis. Being this a qualitative research our main question was: in assessing sports' structure is it possible to make the characterization of any discipline through context and individuals' behaviours? The sample was within a surf discipline in a competition flowing having 5 of the top 16 Portuguese surfers training together. Based on a qualitative method, studying the surf as the main activity was an interpretative study case. The MAST was applied in four phases: taxonomy; tasks and context description; task analysis; teaching and performance strategies. Its application allowed the activities' characterization through the observation, surfer's opinions and bibliographical support. The triangulation of the data was used as an information data treatment. The elements were classified by the challenges proposed to the practitioners and the taxonomy was constituted by the sport activities, group, modality and discipline. Surf is a discipline of surfing which is a sliding sport modality, therefore, a nature sport. In the context description, we had the wave's components and constraints and the surfboards' qualities. Through task analysis we obtained a taxonomy of surf manoeuvres. The structural and functional analysis allowed finding solutions for learning of surf techniques with trampoline and skateboards because these fit in sliding sports. MAST makes possible the development of strategies that benefit teaching and performance intervention.

  6. Qualitative Task Analysis to Enhance Sports Characterization: A Surfing Case Study

    PubMed Central

    Moreira, Miguel; Peixoto, César

    2014-01-01

    The aim of this study was to develop a Matrix of Analysis for Sports Tasks (MAST), regardless of the sports activity, based on practice classification and task analysis. Being this a qualitative research our main question was: in assessing sports’ structure is it possible to make the characterization of any discipline through context and individuals’ behaviours? The sample was within a surf discipline in a competition flowing having 5 of the top 16 Portuguese surfers training together. Based on a qualitative method, studying the surf as the main activity was an interpretative study case. The MAST was applied in four phases: taxonomy; tasks and context description; task analysis; teaching and performance strategies. Its application allowed the activities’ characterization through the observation, surfer’s opinions and bibliographical support. The triangulation of the data was used as an information data treatment. The elements were classified by the challenges proposed to the practitioners and the taxonomy was constituted by the sport activities, group, modality and discipline. Surf is a discipline of surfing which is a sliding sport modality, therefore, a nature sport. In the context description, we had the wave’s components and constraints and the surfboards’ qualities. Through task analysis we obtained a taxonomy of surf manoeuvres. The structural and functional analysis allowed finding solutions for learning of surf techniques with trampoline and skateboards because these fit in sliding sports. MAST makes possible the development of strategies that benefit teaching and performance intervention. PMID:25414757

  7. NASTRAN level 16 user's manual updates for aeroelastic analysis of bladed discs

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Gallo, A. M.

    1980-01-01

    The NASTRAN aeroelastic and flutter capability was extended to solve a class of problems associated with axial flow turbomachines. The capabilities of the program are briefly discussed. The aerodynamic data pertaining to the bladed disc sector, the associated aerodynamic modeling, the steady aerothermoelastic 'design/analysis' formulations, and the modal, flutter, and subcritical roots analyses are described. Sample problems and their solutions are included.

  8. Statistical correlation of structural mode shapes from test measurements and NASTRAN analytical values

    NASA Technical Reports Server (NTRS)

    Purves, L.; Strang, R. F.; Dube, M. P.; Alea, P.; Ferragut, N.; Hershfeld, D.

    1983-01-01

    The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data.

  9. Non-modal analysis of the diocotron instability: Cylindrical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, V. V.; Lee, Hae June; Mikhailenko, V. S.

    2013-04-15

    The temporal evolution of the linear diocotron instability of the cylindrical annular plasma column is investigated by employing the extension of the shearing modes methodology to the cylindrical geometry. It was obtained that the spatial time-dependent distortion of the electron density initial perturbations by shear flows leads to the non-modal evolution of the potential, which was referred to as the manifestation of the continuous spectrum. The evolution process leads toward the convergence to the phase-locking configuration of the mutually growing normal modes.

  10. KRAS mutation analysis of washing fluid from endoscopic ultrasound-guided fine needle aspiration improves cytologic diagnosis of pancreatic ductal adenocarcinoma.

    PubMed

    Park, Joo Kyung; Lee, Yoon Jung; Lee, Jong Kyun; Lee, Kyu Taek; Choi, Yoon-La; Lee, Kwang Hyuck

    2017-01-10

    EUS-FNA becomes one of the most important diagnostic modalities for PDACs. However, acquired tissue specimens were sometimes insufficient to make a definite cytological diagnosis. On the other hand, KRAS mutation is the most frequently acquired genetic alteration found more than 90% of PDACs. To investigate the way to improve diagnostic accuracy for PDACs using both cytological examination and KRAS mutation analysis would be a great help. Therefore, the aims of this study were to evaluate usefulness of conventional cytological examination combined with KRAS mutation analysis with modified PCR technology to improve the sensitivity and the accuracy. We enrolled 43 patients with solid pancreatic masses and 86 EUS-FNA specimens were obtained. During the EUS-FNA, the needle catheter was flushed with 2 cc of saline and the washed fluid was collected for KRAS mutation analysis for the first 2 passes; PNAClamp™ KRAS Mutation Detection Kit. There were 46 specimens from the 23 PDACs and 40 specimens from the 20 other pancreatic diseases. The sensitivity, specificity and accuracy were as follows; conventional cytopathologic examination: 63%, 100% and 80%; combination of cytopathologic examination and K-ras mutation analysis: 87%, 100% and 93%. Furthermore, KRAS mutation was detected 11 out of 17 PDAC samples whose cytopathology results were inconclusive. KRAS mutation analysis with PNAClamp™ technique using washing fluid from EUS-FNA along with cytological examination may not only improve the diagnostic accuracy of PDACs, but also establish the platform using genetic analysis which would be helpful as diagnostic modality for PDACs.

  11. A generic interface between COSMIC/NASTRAN and PATRAN (R)

    NASA Technical Reports Server (NTRS)

    Roschke, Paul N.; Premthamkorn, Prakit; Maxwell, James C.

    1990-01-01

    Despite its powerful analytical capabilities, COSMIC/NASTRAN lacks adequate post-processing adroitness. PATRAN, on the other hand is widely accepted for its graphical capabilities. A nonproprietary, public domain code mnemonically titled CPI (for COSMIC/NASTRAN-PATRAN Interface) is designed to manipulate a large number of files rapidly and efficiently between the two parent codes. In addition to PATRAN's results file preparation, CPI also prepares PATRAN's P/PLOT data files for xy plotting. The user is prompted for necessary information during an interactive session. Current implementation supports NASTRAN's displacement approach including the following rigid formats: (1) static analysis, (2) normal modal analysis, (3) direct transient response, and (4) modal transient response. A wide variety of data blocks are also supported. Error trapping is given special consideration. A sample session with CPI illustrates its simplicity and ease of use.

  12. Specialized Diagnostic Investigations to Assess Ocular Status in Hypertensive Diseases of Pregnancy.

    PubMed

    Bakhda, Rahul Navinchandra

    2016-04-22

    This review describes specialized diagnostic investigations to assess ocular status in hypertensive diseases of pregnancy. Ocular assessment can aid in early detection for prompt multidisciplinary treatment, obstetric intervention and follow-up. The investigations accurately predict the possible causes of blindness in hypertensive diseases of pregnancy. The investigations include fluorescein angiography, ophthalmodynamometry, fluorophotometry, imaging modalities, OCT, ultrasonography, doppler velocimetry and blood chemistry analysis. The review includes a summary of imaging techniques and related recent developments to assess the neuro-ophthalmic aspects of the disease. The imaging modalities have been instrumental in understanding the complex neuropathophysiological mechanisms of eclamptic seizures. The importance of blood chemistry analysis in hypertensive diseases of pregnancy has been emphasized. The investigations have made a significant contribution in improving the standards of antenatal care and reducing maternal and fetal morbidity and mortality.

  13. Specialized Diagnostic Investigations to Assess Ocular Status in Hypertensive Diseases of Pregnancy

    PubMed Central

    Bakhda, Rahul Navinchandra

    2016-01-01

    This review describes specialized diagnostic investigations to assess ocular status in hypertensive diseases of pregnancy. Ocular assessment can aid in early detection for prompt multidisciplinary treatment, obstetric intervention and follow-up. The investigations accurately predict the possible causes of blindness in hypertensive diseases of pregnancy. The investigations include fluorescein angiography, ophthalmodynamometry, fluorophotometry, imaging modalities, OCT, ultrasonography, doppler velocimetry and blood chemistry analysis. The review includes a summary of imaging techniques and related recent developments to assess the neuro-ophthalmic aspects of the disease. The imaging modalities have been instrumental in understanding the complex neuropathophysiological mechanisms of eclamptic seizures. The importance of blood chemistry analysis in hypertensive diseases of pregnancy has been emphasized. The investigations have made a significant contribution in improving the standards of antenatal care and reducing maternal and fetal morbidity and mortality. PMID:28933399

  14. Experimental investigation on frequency shifting of imperfect adhesively bonded pipe joints

    NASA Astrophysics Data System (ADS)

    Haiyam, F. N.; Hilmy, I.; Sulaeman, E.; Firdaus, T.; Adesta, E. Y. T.

    2018-01-01

    Inspection tests for any manufactured structure are compulsory in order to detect the existence of damage.It is to ensure the product integrity, reliability and to avoid further catastrophic failure. In this research, modal analysis was utilized to detect structural damage as one of the Non Destructive Testing (NDT) methods. Comparing the vibration signal of a healthy structure with a non-healthy signal was performed. A modal analysis of an adhesively bonded pipe joint was investigated with a healthy joint as a reference. The damage joint was engineered by inserting a nylon fiber, which act as an impurity at adhesive region. The impact test using hammer was utilized in this research. Identification of shifting frequency of a free supported and clamped pipe joint was performed.It was found that shifting frequency occurred to the lower side by 5%.

  15. Optimal disturbances in boundary layers subject to streamwise pressure gradient

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Tumin, Anatoli

    2003-01-01

    An analysis of the optimal non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Scan profiles indicate that a favorable pressure gradient decreases the non-modal growth, while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point.

  16. Improvements to the fastex flutter analysis computer code

    NASA Technical Reports Server (NTRS)

    Taylor, Ronald F.

    1987-01-01

    Modifications to the FASTEX flutter analysis computer code (UDFASTEX) are described. The objectives were to increase the problem size capacity of FASTEX, reduce run times by modification of the modal interpolation procedure, and to add new user features. All modifications to the program are operable on the VAX 11/700 series computers under the VAX operating system. Interfaces were provided to aid in the inclusion of alternate aerodynamic and flutter eigenvalue calculations. Plots can be made of the flutter velocity, display and frequency data. A preliminary capability was also developed to plot contours of unsteady pressure amplitude and phase. The relevant equations of motion, modal interpolation procedures, and control system considerations are described and software developments are summarized. Additional information documenting input instructions, procedures, and details of the plate spline algorithm is found in the appendices.

  17. Efficient finite element modelling for the investigation of the dynamic behaviour of a structure with bolted joints

    NASA Astrophysics Data System (ADS)

    Omar, R.; Rani, M. N. Abdul; Yunus, M. A.; Mirza, W. I. I. Wan Iskandar; Zin, M. S. Mohd

    2018-04-01

    A simple structure with bolted joints consists of the structural components, bolts and nuts. There are several methods to model the structures with bolted joints, however there is no reliable, efficient and economic modelling methods that can accurately predict its dynamics behaviour. Explained in this paper is an investigation that was conducted to obtain an appropriate modelling method for bolted joints. This was carried out by evaluating four different finite element (FE) models of the assembled plates and bolts namely the solid plates-bolts model, plates without bolt model, hybrid plates-bolts model and simplified plates-bolts model. FE modal analysis was conducted for all four initial FE models of the bolted joints. Results of the FE modal analysis were compared with the experimental modal analysis (EMA) results. EMA was performed to extract the natural frequencies and mode shapes of the test physical structure with bolted joints. Evaluation was made by comparing the number of nodes, number of elements, elapsed computer processing unit (CPU) time, and the total percentage of errors of each initial FE model when compared with EMA result. The evaluation showed that the simplified plates-bolts model could most accurately predict the dynamic behaviour of the structure with bolted joints. This study proved that the reliable, efficient and economic modelling of bolted joints, mainly the representation of the bolting, has played a crucial element in ensuring the accuracy of the dynamic behaviour prediction.

  18. Scaling of mode shapes from operational modal analysis using harmonic forces

    NASA Astrophysics Data System (ADS)

    Brandt, A.; Berardengo, M.; Manzoni, S.; Cigada, A.

    2017-10-01

    This paper presents a new method for scaling mode shapes obtained by means of operational modal analysis. The method is capable of scaling mode shapes on any structure, also structures with closely coupled modes, and the method can be used in the presence of ambient vibration from traffic or wind loads, etc. Harmonic excitation can be relatively easily accomplished by using general-purpose actuators, also for force levels necessary for driving large structures such as bridges and highrise buildings. The signal processing necessary for mode shape scaling by the proposed method is simple and the method can easily be implemented in most measurement systems capable of generating a sine wave output. The tests necessary to scale the modes are short compared to typical operational modal analysis test time. The proposed method is thus easy to apply and inexpensive relative to some other methods for scaling mode shapes that are available in literature. Although it is not necessary per se, we propose to excite the structure at, or close to, the eigenfrequencies of the modes to be scaled, since this provides better signal-to-noise ratio in the response sensors, thus permitting the use of smaller actuators. An extensive experimental activity on a real structure was carried out and the results reported demonstrate the feasibility and accuracy of the proposed method. Since the method utilizes harmonic excitation for the mode shape scaling, we propose to call the method OMAH.

  19. Modalities of Thinking: State and Trait Effects on Cross-Frequency Functional Independent Brain Networks.

    PubMed

    Milz, Patricia; Pascual-Marqui, Roberto D; Lehmann, Dietrich; Faber, Pascal L

    2016-05-01

    Functional states of the brain are constituted by the temporally attuned activity of spatially distributed neural networks. Such networks can be identified by independent component analysis (ICA) applied to frequency-dependent source-localized EEG data. This methodology allows the identification of networks at high temporal resolution in frequency bands of established location-specific physiological functions. EEG measurements are sensitive to neural activity changes in cortical areas of modality-specific processing. We tested effects of modality-specific processing on functional brain networks. Phasic modality-specific processing was induced via tasks (state effects) and tonic processing was assessed via modality-specific person parameters (trait effects). Modality-specific person parameters and 64-channel EEG were obtained from 70 male, right-handed students. Person parameters were obtained using cognitive style questionnaires, cognitive tests, and thinking modality self-reports. EEG was recorded during four conditions: spatial visualization, object visualization, verbalization, and resting. Twelve cross-frequency networks were extracted from source-localized EEG across six frequency bands using ICA. RMANOVAs, Pearson correlations, and path modelling examined effects of tasks and person parameters on networks. Results identified distinct state- and trait-dependent functional networks. State-dependent networks were characterized by decreased, trait-dependent networks by increased alpha activity in sub-regions of modality-specific pathways. Pathways of competing modalities showed opposing alpha changes. State- and trait-dependent alpha were associated with inhibitory and automated processing, respectively. Antagonistic alpha modulations in areas of competing modalities likely prevent intruding effects of modality-irrelevant processing. Considerable research suggested alpha modulations related to modality-specific states and traits. This study identified the distinct electrophysiological cortical frequency-dependent networks within which they operate.

  20. Modal parameters of space structures in 1 G and 0 G

    NASA Technical Reports Server (NTRS)

    Bicos, Andrew S.; Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett

    1993-01-01

    Analytic and experimental results are presented from a study of the changes in the modal parameters of space structural test articles from one- to zero-gravity. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, which were made on a spring-wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, reassembly, shipset, suspension, and ambient gravity level.

  1. Volume curtaining: a focus+context effect for multimodal volume visualization

    NASA Astrophysics Data System (ADS)

    Fairfield, Adam J.; Plasencia, Jonathan; Jang, Yun; Theodore, Nicholas; Crawford, Neil R.; Frakes, David H.; Maciejewski, Ross

    2014-03-01

    In surgical preparation, physicians will often utilize multimodal imaging scans to capture complementary information to improve diagnosis and to drive patient-specific treatment. These imaging scans may consist of data from magnetic resonance imaging (MR), computed tomography (CT), or other various sources. The challenge in using these different modalities is that the physician must mentally map the two modalities together during the diagnosis and planning phase. Furthermore, the different imaging modalities will be generated at various resolutions as well as slightly different orientations due to patient placement during scans. In this work, we present an interactive system for multimodal data fusion, analysis and visualization. Developed with partners from neurological clinics, this work discusses initial system requirements and physician feedback at the various stages of component development. Finally, we present a novel focus+context technique for the interactive exploration of coregistered multi-modal data.

  2. Use of the Morlet mother wavelet in the frequency-scale domain decomposition technique for the modal identification of ambient vibration responses

    NASA Astrophysics Data System (ADS)

    Le, Thien-Phu

    2017-10-01

    The frequency-scale domain decomposition technique has recently been proposed for operational modal analysis. The technique is based on the Cauchy mother wavelet. In this paper, the approach is extended to the Morlet mother wavelet, which is very popular in signal processing due to its superior time-frequency localization. Based on the regressive form and an appropriate norm of the Morlet mother wavelet, the continuous wavelet transform of the power spectral density of ambient responses enables modes in the frequency-scale domain to be highlighted. Analytical developments first demonstrate the link between modal parameters and the local maxima of the continuous wavelet transform modulus. The link formula is then used as the foundation of the proposed modal identification method. Its practical procedure, combined with the singular value decomposition algorithm, is presented step by step. The proposition is finally verified using numerical examples and a laboratory test.

  3. Aging and perceived event structure as a function of modality

    PubMed Central

    Magliano, Joseph; Kopp, Kristopher; McNerney, M. Windy; Radvansky, Gabriel A.; Zacks, Jeffrey M.

    2012-01-01

    The majority of research on situation model processing in older adults has focused on narrative texts. Much of this research has shown that many important aspects of constructing a situation model for a text are preserved and may even improve with age. However, narratives need not be text-based, and little is known as to whether these findings generalize to visually-based narratives. The present study assessed the impact of story modality on event segmentation, which is a basic component of event comprehension. Older and younger adults viewed picture stories or read text versions of them and segmented them into events. There was comparable alignment between the segmentation judgments and a theoretically guided analysis of shifts in situational features across modalities for both populations. These results suggest that situation models provide older adults with a stable basis for event comprehension across different modalities of expereinces. PMID:22182344

  4. DataViewer3D: An Open-Source, Cross-Platform Multi-Modal Neuroimaging Data Visualization Tool

    PubMed Central

    Gouws, André; Woods, Will; Millman, Rebecca; Morland, Antony; Green, Gary

    2008-01-01

    Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data within a common, defined coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies. While DV3D is primarily a visualization tool, the package allows an analysis approach where results from one imaging modality can guide comparative analysis of another modality in a single coordinate space. DV3D is built on Python, a dynamic object-oriented programming language with support for integration of modular toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling VTK's low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user's operating system dialogs and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM formats for MRI data display (including statistical data overlay). Formats for other data types are supported. The modularity of DV3D and ease of use of Python allows rapid integration of additional format support and user development. DV3D has been tested on Mac OSX, RedHat Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of tutorial resources and example data. PMID:19352444

  5. Contrast-enhanced [18F] fluorodeoxyglucose-positron emission tomography-computed tomography as an initial imaging modality in patients presenting with metastatic malignancy of undefined primary origin.

    PubMed

    Jain, Avani; Srivastava, Madhur Kumar; Pawaskar, Alok Suresh; Shelley, Simon; Elangovan, Indirani; Jain, Hasmukh; Pandey, Somnath; Kalal, Shilpa; Amalachandran, Jaykanth

    2015-01-01

    To evaluate the advantages of contrast enhanced F-18-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-contrast enhanced CT [CECT]) when used as an initial imaging modality in patients presenting with metastatic malignancy of undefined primary origin (MUO). A total of 243 patients with fine needle aspiration cytology/biopsy proven MUO were included in this prospective study. Patients who were thoroughly evaluated for primary or primary tumor was detected by any other investigation were excluded from the analysis. Totally, 163 patients with pathological diagnosis of malignancy but no apparent sites of the primary tumor were finally selected for analysis. The site of probable primary malignancy suggested by PET-CECT was confirmed by biopsy/follow-up. PET-CECT suggested probable site of primary in 128/163 (78.52%) patients. In 30/35 remaining patients, primary tumor was not detected even after extensive work-up. In 5 patients, where PET-CECT was negative, primary was found on further extensive investigations or follow-up. The sensitivity, specificity, positive predictive value and negative predictive value of the study were 95.76%, 66.67%, 88.28% and 85.71% respectively. F-18 FDG PET-CECT aptly serves the purpose of initial imaging modality owing to high sensitivity, negative and positive predictive value. PET-CECT not only surveys the whole body for the primary malignancy but also stages the disease accurately. Use of contrast improves the diagnostic utility of modality as well as help in staging of the primary tumor. Although benefits of using PET-CECT as initial diagnostic modality are obvious from this study, there is a need for a larger study comparing conventional methods for diagnosing primary in patients with MUO versus PET-CECT.

  6. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 1: Analysis methods

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Schmidt, D. S.

    1985-01-01

    As aircraft become larger and lighter due to design requirements for increased payload and improved fuel efficiency, they will also become more flexible. For highly flexible vehicles, the handling qualities may not be accurately predicted by conventional methods. This study applies two analysis methods to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop model analysis technique. This method considers the effects of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Volume 1 consists of the development and application of the two analysis methods described above.

  7. Assessment of mental stress effects on prefrontal cortical activities using canonical correlation analysis: an fNIRS-EEG study

    PubMed Central

    Al-Shargie, Fares; Tang, Tong Boon; Kiguchi, Masashi

    2017-01-01

    This paper presents an investigation about the effects of mental stress on prefrontal cortex (PFC) subregions using simultaneous measurement of functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) signals. The aim is to explore canonical correlation analysis (CCA) technique to study the relationship among the bi-modality signals in mental stress assessment, and how we could fuse the signals for better accuracy in stress detection. Twenty-five male healthy subjects participated in the study while performing mental arithmetic task under control and stress (under time pressure with negative feedback) conditions. The fusion of brain signals acquired by fNIRS-EEG was performed at feature-level using CCA by maximizing the inter-subject covariance across modalities. The CCA result discovered the associations across the modalities and estimated the components responsible for these associations. The experiment results showed that mental stress experienced by this cohort of subjects is subregion specific and localized to the right ventrolateral PFC subregion. These suggest the right ventrolateral PFC as a suitable candidate region to extract biomarkers as performance indicators of neurofeedback training in stress coping. PMID:28663892

  8. Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis

    NASA Astrophysics Data System (ADS)

    Carpinteri, Alberto; Lacidogna, Giuseppe; Piana, Gianfranco; Bassani, Andrea

    2017-07-01

    The mechanical behaviour of proteins is receiving an increasing attention from the scientific community. Recently it has been suggested that mechanical vibrations play a crucial role in controlling structural configuration changes (folding) which govern proteins biological function. The mechanism behind protein folding is still not completely understood, and many efforts are being made to investigate this phenomenon. Complex molecular dynamics simulations and sophisticated experimental measurements are conducted to investigate protein dynamics and to perform protein structure predictions; however, these are two related, although quite distinct, approaches. Here we investigate mechanical vibrations of lysozyme by Raman spectroscopy and linear normal mode calculations (modal analysis). The input mechanical parameters to the numerical computations are taken from the literature. We first give an estimate of the order of magnitude of protein vibration frequencies by considering both classical wave mechanics and structural dynamics formulas. Afterwards, we perform modal analyses of some relevant chemical groups and of the full lysozyme protein. The numerical results are compared to experimental data, obtained from both in-house and literature Raman measurements. In particular, the attention is focused on a large peak at 0.84 THz (29.3 cm-1) in the Raman spectrum obtained analyzing a lyophilized powder sample.

  9. Statistical analysis of modal properties of a cable-stayed bridge through long-term structural health monitoring with wireless smart sensor networks

    NASA Astrophysics Data System (ADS)

    Asadollahi, Parisa; Li, Jian

    2016-04-01

    Understanding the dynamic behavior of complex structures such as long-span bridges requires dense deployment of sensors. Traditional wired sensor systems are generally expensive and time-consuming to install due to cabling. With wireless communication and on-board computation capabilities, wireless smart sensor networks have the advantages of being low cost, easy to deploy and maintain and therefore facilitate dense instrumentation for structural health monitoring. A long-term monitoring project was recently carried out for a cable-stayed bridge in South Korea with a dense array of 113 smart sensors, which feature the world's largest wireless smart sensor network for civil structural monitoring. This paper presents a comprehensive statistical analysis of the modal properties including natural frequencies, damping ratios and mode shapes of the monitored cable-stayed bridge. Data analyzed in this paper is composed of structural vibration signals monitored during a 12-month period under ambient excitations. The correlation between environmental temperature and the modal frequencies is also investigated. The results showed the long-term statistical structural behavior of the bridge, which serves as the basis for Bayesian statistical updating for the numerical model.

  10. A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2014-01-01

    A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.

  11. The Propagation and Scattering of EM Waves in Electrically Large Ducts

    NASA Astrophysics Data System (ADS)

    Khan, Saeed Mahmood

    The electromagnetic scattering from large arbitrarily shaped ducts with complex termination is studied here by a hybrid technique. The propagation of electromagnetic waves in the duct is analyzed in terms of an approximate modal solution. A finite difference technique is employed for computing the reflection characteristics of the complex terminations. Both solutions are combined using the unimoment method. The analysis here is carried out for monostatic RCS and considers only fields backscattered from inside the cavity. Rim-diffraction has been left out. The procedure offers such advantages as in that it is not necessary to find complicated Green's functions, which may not be readily available, when compared with the integral equation method. Hybridization performed by combining an approximate modal technique with a finite difference one makes the scheme numerically efficient. From a computational EM point of view, it brings together a whole spectrum of techniques associated with high frequency modal analysis, Fourier Methods, Radar Cross Section and Scattering, finite difference solution and the Unimoment Method. The practical application of this technique may range from the study of RCS scattered from jet inlets of radar evasive aircraft to submarine communication waveguides.

  12. SU-E-T-509: Inter-Observer and Inter-Modality Contouring Analysis for Organs at Risk for HDR Gynecological Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi, P; Smith, W; Tom Baker Cancer Centre, Calgary, AB

    2015-06-15

    Purpose This study quantifies errors associated with MR-guided High Dose Rate (HDR) gynecological brachytherapy. Uncertainties in this treatment results from contouring, organ motion between imaging and treatment delivery, dose calculation, and dose delivery. We focus on interobserver and inter-modality variability in contouring and the motion of organs at risk (OARs) in the time span between the MR and CT scans (∼1 hour). We report the change in organ volume and position of center of mass (CM) between the two imaging modalities. Methods A total of 8 patients treated with MR-guided HDR brachytherapy were included in this study. Two observers contouredmore » the bladder and rectum on both MR and CT scans. The change in OAR volume and CM position between the MR and CT imaging sessions on both image sets were calculated. Results The absolute mean bladder volume change between the two imaging modalities is 67.1cc. The absolute mean inter-observer difference in bladder volume is much lower at 15.5cc (MR) and 11.0cc (CT). This higher inter-modality volume difference suggests a real change in the bladder filling between the two imaging sessions. Change in Rectum volume inter-observer standard error of means (SEM) is 3.18cc (MR) and 3.09cc (CT), while the inter-modality SEM is 3.65cc (observer 1), and 2.75cc (observer 2). The SEM for rectum CM position in the superior-inferior direction was approximately three times higher than in other directions for both the inter—observer (0.77 cm, 0.92 cm for observers 1 and 2, respectively) and inter-modality (0.91 cm, 0.95 cm for MR and CT, respectively) variability. Conclusion Bladder contours display good consistency between different observers on both CT and MR images. For rectum contouring the highest inconsistency stems from the observers’ choice of the superior-inferior borders. A complete analysis of a larger patient cohort will enable us to separate the true organ motion from the inter-observer variability.« less

  13. Characterization of identification errors and uses in localization of poor modal correlation

    NASA Astrophysics Data System (ADS)

    Martin, Guillaume; Balmes, Etienne; Chancelier, Thierry

    2017-05-01

    While modal identification is a mature subject, very few studies address the characterization of errors associated with components of a mode shape. This is particularly important in test/analysis correlation procedures, where the Modal Assurance Criterion is used to pair modes and to localize at which sensors discrepancies occur. Poor correlation is usually attributed to modeling errors, but clearly identification errors also occur. In particular with 3D Scanning Laser Doppler Vibrometer measurement, many transfer functions are measured. As a result individual validation of each measurement cannot be performed manually in a reasonable time frame and a notable fraction of measurements is expected to be fairly noisy leading to poor identification of the associated mode shape components. The paper first addresses measurements and introduces multiple criteria. The error measures the difference between test and synthesized transfer functions around each resonance and can be used to localize poorly identified modal components. For intermediate error values, diagnostic of the origin of the error is needed. The level evaluates the transfer function amplitude in the vicinity of a given mode and can be used to eliminate sensors with low responses. A Noise Over Signal indicator, product of error and level, is then shown to be relevant to detect poorly excited modes and errors due to modal property shifts between test batches. Finally, a contribution is introduced to evaluate the visibility of a mode in each transfer. Using tests on a drum brake component, these indicators are shown to provide relevant insight into the quality of measurements. In a second part, test/analysis correlation is addressed with a focus on the localization of sources of poor mode shape correlation. The MACCo algorithm, which sorts sensors by the impact of their removal on a MAC computation, is shown to be particularly relevant. Combined with the error it avoids keeping erroneous modal components. Applied after removal of poor modal components, it provides spatial maps of poor correlation, which help localizing mode shape correlation errors and thus prepare the selection of model changes in updating procedures.

  14. Visual Iconicity Across Sign Languages: Large-Scale Automated Video Analysis of Iconic Articulators and Locations

    PubMed Central

    Östling, Robert; Börstell, Carl; Courtaux, Servane

    2018-01-01

    We use automatic processing of 120,000 sign videos in 31 different sign languages to show a cross-linguistic pattern for two types of iconic form–meaning relationships in the visual modality. First, we demonstrate that the degree of inherent plurality of concepts, based on individual ratings by non-signers, strongly correlates with the number of hands used in the sign forms encoding the same concepts across sign languages. Second, we show that certain concepts are iconically articulated around specific parts of the body, as predicted by the associational intuitions by non-signers. The implications of our results are both theoretical and methodological. With regard to theoretical implications, we corroborate previous research by demonstrating and quantifying, using a much larger material than previously available, the iconic nature of languages in the visual modality. As for the methodological implications, we show how automatic methods are, in fact, useful for performing large-scale analysis of sign language data, to a high level of accuracy, as indicated by our manual error analysis. PMID:29867684

  15. Cortical Signal Analysis and Advances in Functional Near-Infrared Spectroscopy Signal: A Review.

    PubMed

    Kamran, Muhammad A; Mannan, Malik M Naeem; Jeong, Myung Yung

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modality that measures the concentration changes of oxy-hemoglobin (HbO) and de-oxy hemoglobin (HbR) at the same time. It is an emerging cortical imaging modality with a good temporal resolution that is acceptable for brain-computer interface applications. Researchers have developed several methods in last two decades to extract the neuronal activation related waveform from the observed fNIRS time series. But still there is no standard method for analysis of fNIRS data. This article presents a brief review of existing methodologies to model and analyze the activation signal. The purpose of this review article is to give a general overview of variety of existing methodologies to extract useful information from measured fNIRS data including pre-processing steps, effects of differential path length factor (DPF), variations and attributes of hemodynamic response function (HRF), extraction of evoked response, removal of physiological noises, instrumentation, and environmental noises and resting/activation state functional connectivity. Finally, the challenges in the analysis of fNIRS signal are summarized.

  16. Cortical Signal Analysis and Advances in Functional Near-Infrared Spectroscopy Signal: A Review

    PubMed Central

    Kamran, Muhammad A.; Mannan, Malik M. Naeem; Jeong, Myung Yung

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modality that measures the concentration changes of oxy-hemoglobin (HbO) and de-oxy hemoglobin (HbR) at the same time. It is an emerging cortical imaging modality with a good temporal resolution that is acceptable for brain-computer interface applications. Researchers have developed several methods in last two decades to extract the neuronal activation related waveform from the observed fNIRS time series. But still there is no standard method for analysis of fNIRS data. This article presents a brief review of existing methodologies to model and analyze the activation signal. The purpose of this review article is to give a general overview of variety of existing methodologies to extract useful information from measured fNIRS data including pre-processing steps, effects of differential path length factor (DPF), variations and attributes of hemodynamic response function (HRF), extraction of evoked response, removal of physiological noises, instrumentation, and environmental noises and resting/activation state functional connectivity. Finally, the challenges in the analysis of fNIRS signal are summarized. PMID:27375458

  17. Impeller deflection and modal finite element analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options suchmore » as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.« less

  18. Seismic Analysis Capability in NASTRAN

    NASA Technical Reports Server (NTRS)

    Butler, T. G.; Strang, R. F.

    1984-01-01

    Seismic analysis is a technique which pertains to loading described in terms of boundary accelerations. Earthquake shocks to buildings is the type of excitation which usually comes to mind when one hears the word seismic, but this technique also applied to a broad class of acceleration excitations which are applied at the base of a structure such as vibration shaker testing or shocks to machinery foundations. Four different solution paths are available in NASTRAN for seismic analysis. They are: Direct Seismic Frequency Response, Direct Seismic Transient Response, Modal Seismic Frequency Response, and Modal Seismic Transient Response. This capability, at present, is invoked not as separate rigid formats, but as pre-packaged ALTER packets to existing RIGID Formats 8, 9, 11, and 12. These ALTER packets are included with the delivery of the NASTRAN program and are stored on the computer as a library of callable utilities. The user calls one of these utilities and merges it into the Executive Control Section of the data deck to perform any of the four options are invoked by setting parameter values in the bulk data.

  19. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-02-01

    Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little user supervision and calibration. First a multi-scale image processing method is applied on the frames of the video of a vibrating structure to extract the local pixel phases that encode local structural vibration, establishing a full-field spatiotemporal motion matrix. Then a high-spatial dimensional, yet low-modal-dimensional, over-complete model is used to represent the extracted full-field motion matrix using modal superposition, which is physically connected and manipulated by a family of unsupervised learning models and techniques, respectively. Thus, the proposed method is able to blindly extract modal frequencies, damping ratios, and full-field (as many points as the pixel number of the video frame) mode shapes from line of sight video measurements of the structure. The method is validated by laboratory experiments on a bench-scale building structure and a cantilever beam. Its ability for output (video measurements)-only identification and visualization of the weakly-excited mode is demonstrated and several issues with its implementation are discussed.

  20. New Tool for Benefit-Cost Analysis in Evaluating Transportation Alternatives

    DOT National Transportation Integrated Search

    1997-01-01

    The Intermodal Surface Transportation Efficiency Act (ISTEA) emphasizes assessment of multi-modal alternatives and demand management strategies. In 1995, the Federal Highway Administration (FHWA) developed a corridor sketch planning tool called the S...

Top