Sample records for analysis software system

  1. Debugging and Performance Analysis Software Tools for Peregrine System |

    Science.gov Websites

    High-Performance Computing | NREL Debugging and Performance Analysis Software Tools for Peregrine System Debugging and Performance Analysis Software Tools for Peregrine System Learn about debugging and performance analysis software tools available to use with the Peregrine system. Allinea

  2. Inertial Upper Stage (IUS) software analysis

    NASA Technical Reports Server (NTRS)

    Grayson, W. L.; Nickel, C. E.; Rose, P. L.; Singh, R. P.

    1979-01-01

    The Inertial Upper Stage (IUS) System, an extension of the Space Transportation System (STS) operating regime to include higher orbits, orbital plane changes, geosynchronous orbits, and interplanetary trajectories is presented. The IUS software design, the IUS software interfaces with other systems, and the cost effectiveness in software verification are described. Tasks of the IUS discussed include: (1) design analysis; (2) validation requirements analysis; (3) interface analysis; and (4) requirements analysis.

  3. Orbiter subsystem hardware/software interaction analysis. Volume 8: AFT reaction control system, part 2

    NASA Technical Reports Server (NTRS)

    Becker, D. D.

    1980-01-01

    The orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are examined. Potential interaction with the software is examined through an evaluation of the software requirements. The analysis is restricted to flight software requirements and excludes utility/checkout software. The results of the hardware/software interaction analysis for the forward reaction control system are presented.

  4. Fault Tree Analysis Application for Safety and Reliability

    NASA Technical Reports Server (NTRS)

    Wallace, Dolores R.

    2003-01-01

    Many commercial software tools exist for fault tree analysis (FTA), an accepted method for mitigating risk in systems. The method embedded in the tools identifies a root as use in system components, but when software is identified as a root cause, it does not build trees into the software component. No commercial software tools have been built specifically for development and analysis of software fault trees. Research indicates that the methods of FTA could be applied to software, but the method is not practical without automated tool support. With appropriate automated tool support, software fault tree analysis (SFTA) may be a practical technique for identifying the underlying cause of software faults that may lead to critical system failures. We strive to demonstrate that existing commercial tools for FTA can be adapted for use with SFTA, and that applied to a safety-critical system, SFTA can be used to identify serious potential problems long before integrator and system testing.

  5. Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Fulton, Christopher E.

    2011-01-01

    This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual

  6. Engineering Complex Embedded Systems with State Analysis and the Mission Data System

    NASA Technical Reports Server (NTRS)

    Ingham, Michel D.; Rasmussen, Robert D.; Bennett, Matthew B.; Moncada, Alex C.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer s intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using State Analysis and how these requirements inform the design of the system software, using representative spacecraft examples.

  7. RELAP-7 Software Verification and Validation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis L.; Choi, Yong-Joon; Zou, Ling

    This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7. The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is a nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework – MOOSE (Multi-Physics Object-Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty yearsmore » of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s capability and extends the analysis capability for all reactor system simulation scenarios.« less

  8. State analysis requirements database for engineering complex embedded systems

    NASA Technical Reports Server (NTRS)

    Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.

  9. A Reference Model for Software and System Inspections. White Paper

    NASA Technical Reports Server (NTRS)

    He, Lulu; Shull, Forrest

    2009-01-01

    Software Quality Assurance (SQA) is an important component of the software development process. SQA processes provide assurance that the software products and processes in the project life cycle conform to their specified requirements by planning, enacting, and performing a set of activities to provide adequate confidence that quality is being built into the software. Typical techniques include: (1) Testing (2) Simulation (3) Model checking (4) Symbolic execution (5) Management reviews (6) Technical reviews (7) Inspections (8) Walk-throughs (9) Audits (10) Analysis (complexity analysis, control flow analysis, algorithmic analysis) (11) Formal method Our work over the last few years has resulted in substantial knowledge about SQA techniques, especially the areas of technical reviews and inspections. But can we apply the same QA techniques to the system development process? If yes, what kind of tailoring do we need before applying them in the system engineering context? If not, what types of QA techniques are actually used at system level? And, is there any room for improvement.) After a brief examination of the system engineering literature (especially focused on NASA and DoD guidance) we found that: (1) System and software development process interact with each other at different phases through development life cycle (2) Reviews are emphasized in both system and software development. (Figl.3). For some reviews (e.g. SRR, PDR, CDR), there are both system versions and software versions. (3) Analysis techniques are emphasized (e.g. Fault Tree Analysis, Preliminary Hazard Analysis) and some details are given about how to apply them. (4) Reviews are expected to use the outputs of the analysis techniques. In other words, these particular analyses are usually conducted in preparation for (before) reviews. The goal of our work is to explore the interaction between the Quality Assurance (QA) techniques at the system level and the software level.

  10. Using software security analysis to verify the secure socket layer (SSL) protocol

    NASA Technical Reports Server (NTRS)

    Powell, John D.

    2004-01-01

    nal Aeronautics and Space Administration (NASA) have tens of thousands of networked computer systems and applications. Software Security vulnerabilities present risks such as lost or corrupted data, information the3, and unavailability of critical systems. These risks represent potentially enormous costs to NASA. The NASA Code Q research initiative 'Reducing Software Security Risk (RSSR) Trough an Integrated Approach '' offers, among its capabilities, formal verification of software security properties, through the use of model based verification (MBV) to address software security risks. [1,2,3,4,5,6] MBV is a formal approach to software assurance that combines analysis of software, via abstract models, with technology, such as model checkers, that provide automation of the mechanical portions of the analysis process. This paper will discuss: The need for formal analysis to assure software systems with respect to software and why testing alone cannot provide it. The means by which MBV with a Flexible Modeling Framework (FMF) accomplishes the necessary analysis task. An example of FMF style MBV in the verification of properties over the Secure Socket Layer (SSL) communication protocol as a demonstration.

  11. Analysis of a hardware and software fault tolerant processor for critical applications

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne B.

    1993-01-01

    Computer systems for critical applications must be designed to tolerate software faults as well as hardware faults. A unified approach to tolerating hardware and software faults is characterized by classifying faults in terms of duration (transient or permanent) rather than source (hardware or software). Errors arising from transient faults can be handled through masking or voting, but errors arising from permanent faults require system reconfiguration to bypass the failed component. Most errors which are caused by software faults can be considered transient, in that they are input-dependent. Software faults are triggered by a particular set of inputs. Quantitative dependability analysis of systems which exhibit a unified approach to fault tolerance can be performed by a hierarchical combination of fault tree and Markov models. A methodology for analyzing hardware and software fault tolerant systems is applied to the analysis of a hypothetical system, loosely based on the Fault Tolerant Parallel Processor. The models consider both transient and permanent faults, hardware and software faults, independent and related software faults, automatic recovery, and reconfiguration.

  12. ACES: Space shuttle flight software analysis expert system

    NASA Technical Reports Server (NTRS)

    Satterwhite, R. Scott

    1990-01-01

    The Analysis Criteria Evaluation System (ACES) is a knowledge based expert system that automates the final certification of the Space Shuttle onboard flight software. Guidance, navigation and control of the Space Shuttle through all its flight phases are accomplished by a complex onboard flight software system. This software is reconfigured for each flight to allow thousands of mission-specific parameters to be introduced and must therefore be thoroughly certified prior to each flight. This certification is performed in ground simulations by executing the software in the flight computers. Flight trajectories from liftoff to landing, including abort scenarios, are simulated and the results are stored for analysis. The current methodology of performing this analysis is repetitive and requires many man-hours. The ultimate goals of ACES are to capture the knowledge of the current experts and improve the quality and reduce the manpower required to certify the Space Shuttle onboard flight software.

  13. Analysis of Software Systems for Specialized Computers,

    DTIC Science & Technology

    computer) with given computer hardware and software . The object of study is the software system of a computer, designed for solving a fixed complex of...purpose of the analysis is to find parameters that characterize the system and its elements during operation, i.e., when servicing the given requirement flow. (Author)

  14. FASEA: A FPGA Acquisition System and Software Event Analysis for liquid scintillation counting

    NASA Astrophysics Data System (ADS)

    Steele, T.; Mo, L.; Bignell, L.; Smith, M.; Alexiev, D.

    2009-10-01

    The FASEA (FPGA based Acquisition and Software Event Analysis) system has been developed to replace the MAC3 for coincidence pulse processing. The system uses a National Instruments Virtex 5 FPGA card (PXI-7842R) for data acquisition and a purpose developed data analysis software for data analysis. Initial comparisons to the MAC3 unit are included based on measurements of 89Sr and 3H, confirming that the system is able to accurately emulate the behaviour of the MAC3 unit.

  15. Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system

    NASA Technical Reports Server (NTRS)

    Becker, D. D.

    1980-01-01

    The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.

  16. Lessons Learned from Application of System and Software Level RAMS Analysis to a Space Control System

    NASA Astrophysics Data System (ADS)

    Silva, N.; Esper, A.

    2012-01-01

    The work presented in this article represents the results of applying RAMS analysis to a critical space control system, both at system and software levels. The system level RAMS analysis allowed the assignment of criticalities to the high level components, which was further refined by a tailored software level RAMS analysis. The importance of the software level RAMS analysis in the identification of new failure modes and its impact on the system level RAMS analysis is discussed. Recommendations of changes in the software architecture have also been proposed in order to reduce the criticality of the SW components to an acceptable minimum. The dependability analysis was performed in accordance to ECSS-Q-ST-80, which had to be tailored and complemented in some aspects. This tailoring will also be detailed in the article and lessons learned from the application of this tailoring will be shared, stating the importance to space systems safety evaluations. The paper presents the applied techniques, the relevant results obtained, the effort required for performing the tasks and the planned strategy for ROI estimation, as well as the soft skills required and acquired during these activities.

  17. Taking the Observatory to the Astronomer

    NASA Astrophysics Data System (ADS)

    Bisque, T. M.

    1997-05-01

    Since 1992, Software Bisque's Remote Astronomy Software has been used by the Mt. Wilson Institute to allow interactive control of a 24" telescope and digital camera via modem. Software Bisque now introduces a comparable, relatively low-cost observatory system that allows powerful, yet "user-friendly" telescope and CCD camera control via the Internet. Utilizing software developed for the Windows 95/NT operating systems, the system offers point-and-click access to comprehensive celestial databases, extremely accurate telescope pointing, rapid download of digital CCD images by one or many users and flexible image processing software for data reduction and analysis. Our presentation will describe how the power of the personal computer has been leveraged to provide professional-level tools to the amateur astronomer, and include a description of this system's software and hardware components. The system software includes TheSky Astronomy Software?, CCDSoft CCD Astronomy Software?, TPoint Telescope Pointing Analysis System? software, Orchestrate? and, optionally, the RealSky CDs. The system hardware includes the Paramount GT-1100? Robotic Telescope Mount, as well as third party CCD cameras, focusers and optical tube assemblies.

  18. LV software support for supersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Bell, W. A.; Lepicovsky, J.

    1992-01-01

    The software for configuring an LV counter processor system has been developed using structured design. The LV system includes up to three counter processors and a rotary encoder. The software for configuring and testing the LV system has been developed, tested, and included in an overall software package for data acquisition, analysis, and reduction. Error handling routines respond to both operator and instrument errors which often arise in the course of measuring complex, high-speed flows. The use of networking capabilities greatly facilitates the software development process by allowing software development and testing from a remote site. In addition, high-speed transfers allow graphics files or commands to provide viewing of the data from a remote site. Further advances in data analysis require corresponding advances in procedures for statistical and time series analysis of nonuniformly sampled data.

  19. LV software support for supersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Bell, William A.

    1992-01-01

    The software for configuring a Laser Velocimeter (LV) counter processor system was developed using structured design. The LV system includes up to three counter processors and a rotary encoder. The software for configuring and testing the LV system was developed, tested, and included in an overall software package for data acquisition, analysis, and reduction. Error handling routines respond to both operator and instrument errors which often arise in the course of measuring complex, high-speed flows. The use of networking capabilities greatly facilitates the software development process by allowing software development and testing from a remote site. In addition, high-speed transfers allow graphics files or commands to provide viewing of the data from a remote site. Further advances in data analysis require corresponding advances in procedures for statistical and time series analysis of nonuniformly sampled data.

  20. Theoretical and software considerations for nonlinear dynamic analysis

    NASA Technical Reports Server (NTRS)

    Schmidt, R. J.; Dodds, R. H., Jr.

    1983-01-01

    In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.

  1. Software analysis handbook: Software complexity analysis and software reliability estimation and prediction

    NASA Technical Reports Server (NTRS)

    Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron

    1994-01-01

    This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.

  2. Automated daily quality control analysis for mammography in a multi-unit imaging center.

    PubMed

    Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli

    2018-01-01

    Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.

  3. User-driven integrated software lives: ``Paleomag'' paleomagnetics analysis on the Macintosh

    NASA Astrophysics Data System (ADS)

    Jones, Craig H.

    2002-12-01

    "PaleoMag," a paleomagnetics analysis package originally developed for the Macintosh operating system in 1988, allows examination of demagnetization of individual samples and analysis of directional data from collections of samples. Prior to recent reinvigorated development of the software for both Macintosh and Windows, it was widely used despite not running properly on machines and operating systems sold after 1995. This somewhat surprising situation demonstrates that there is a continued need for integrated analysis software within the earth sciences, in addition to well-developed scripting and batch-mode software. One distinct advantage of software like PaleoMag is in the ability to combine quality control with analysis within a unique graphical environment. Because such demands are frequent within the earth sciences, means of nurturing the development of similar software should be found.

  4. Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    Systems analysis of a planetary entry (SAPE), descent, and landing (EDL) is a multidisciplinary activity in nature. SAPE improves the performance of the systems analysis team by automating and streamlining the process, and this improvement can reduce the errors that stem from manual data transfer among discipline experts. SAPE is a multidisciplinary tool for systems analysis of planetary EDL for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. It performs EDL systems analysis for any planet, operates cross-platform (i.e., Windows, Mac, and Linux operating systems), uses existing software components and open-source software to avoid software licensing issues, performs low-fidelity systems analysis in one hour on a computer that is comparable to an average laptop, and keeps discipline experts in the analysis loop. SAPE uses Python, a platform-independent, open-source language, for integration and for the user interface. Development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE currently includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and interface for structural sizing.

  5. Software system safety

    NASA Technical Reports Server (NTRS)

    Uber, James G.

    1988-01-01

    Software itself is not hazardous, but since software and hardware share common interfaces there is an opportunity for software to create hazards. Further, these software systems are complex, and proven methods for the design, analysis, and measurement of software safety are not yet available. Some past software failures, future NASA software trends, software engineering methods, and tools and techniques for various software safety analyses are reviewed. Recommendations to NASA are made based on this review.

  6. Enhancement/upgrade of Engine Structures Technology Best Estimator (EST/BEST) Software System

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    2003-01-01

    This report describes the work performed during the contract period and the capabilities included in the EST/BEST software system. The developed EST/BEST software system includes the integrated NESSUS, IPACS, COBSTRAN, and ALCCA computer codes required to perform the engine cycle mission and component structural analysis. Also, the interactive input generator for NESSUS, IPACS, and COBSTRAN computer codes have been developed and integrated with the EST/BEST software system. The input generator allows the user to create input from scratch as well as edit existing input files interactively. Since it has been integrated with the EST/BEST software system, it enables the user to modify EST/BEST generated files and perform the analysis to evaluate the benefits. Appendix A gives details of how to use the newly added features in the EST/BEST software system.

  7. A Method for Populating the Knowledge Base of AFIT’s Domain-Oriented Application Composition System

    DTIC Science & Technology

    1993-12-01

    Analysis ( FODA ). The approach identifies prominent features (similarities) and distinctive features (differences) of software systems within an... analysis approaches we have summarized, the re- searchers described FODA in sufficient detail to use on large domain analysis projects (ones with...Software Technology Center, July 1991. 18. Kang, Kyo C. and others. Feature-Oriented Domain Analysis ( FODA ) Feasibility Study. Technical Report, Software

  8. Measurement and analysis of operating system fault tolerance

    NASA Technical Reports Server (NTRS)

    Lee, I.; Tang, D.; Iyer, R. K.

    1992-01-01

    This paper demonstrates a methodology to model and evaluate the fault tolerance characteristics of operational software. The methodology is illustrated through case studies on three different operating systems: the Tandem GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Measurements are made on these systems for substantial periods to collect software error and recovery data. In addition to investigating basic dependability characteristics such as major software problems and error distributions, we develop two levels of models to describe error and recovery processes inside an operating system and on multiple instances of an operating system running in a distributed environment. Based on the models, reward analysis is conducted to evaluate the loss of service due to software errors and the effect of the fault-tolerance techniques implemented in the systems. Software error correlation in multicomputer systems is also investigated.

  9. Vehicle management and mission planning systems with shuttle applications

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A preliminary definition of a concept for an automated system is presented that will support the effective management and planning of space shuttle operations. It is called the Vehicle Management and Mission Planning System (VMMPS). In addition to defining the system and its functions, some of the software requirements of the system are identified and a phased and evolutionary method is recommended for software design, development, and implementation. The concept is composed of eight software subsystems supervised by an executive system. These subsystems are mission design and analysis, flight scheduler, launch operations, vehicle operations, payload support operations, crew support, information management, and flight operations support. In addition to presenting the proposed system, a discussion of the evolutionary software development philosophy that the Mission Planning and Analysis Division (MPAD) would propose to use in developing the required supporting software is included. A preliminary software development schedule is also included.

  10. Demonstration of a Safety Analysis on a Complex System

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy; Alfaro, Liliana; Alvarado, Christine; Brown, Molly; Hunt, Earl B.; Jaffe, Matt; Joslyn, Susan; Pinnell, Denise; Reese, Jon; Samarziya, Jeffrey; hide

    1997-01-01

    For the past 17 years, Professor Leveson and her graduate students have been developing a theoretical foundation for safety in complex systems and building a methodology upon that foundation. The methodology includes special management structures and procedures, system hazard analyses, software hazard analysis, requirements modeling and analysis for completeness and safety, special software design techniques including the design of human-machine interaction, verification, operational feedback, and change analysis. The Safeware methodology is based on system safety techniques that are extended to deal with software and human error. Automation is used to enhance our ability to cope with complex systems. Identification, classification, and evaluation of hazards is done using modeling and analysis. To be effective, the models and analysis tools must consider the hardware, software, and human components in these systems. They also need to include a variety of analysis techniques and orthogonal approaches: There exists no single safety analysis or evaluation technique that can handle all aspects of complex systems. Applying only one or two may make us feel satisfied, but will produce limited results. We report here on a demonstration, performed as part of a contract with NASA Langley Research Center, of the Safeware methodology on the Center-TRACON Automation System (CTAS) portion of the air traffic control (ATC) system and procedures currently employed at the Dallas/Fort Worth (DFW) TRACON (Terminal Radar Approach CONtrol). CTAS is an automated system to assist controllers in handling arrival traffic in the DFW area. Safety is a system property, not a component property, so our safety analysis considers the entire system and not simply the automated components. Because safety analysis of a complex system is an interdisciplinary effort, our team included system engineers, software engineers, human factors experts, and cognitive psychologists.

  11. Off-the-shelf Control of Data Analysis Software

    NASA Astrophysics Data System (ADS)

    Wampler, S.

    The Gemini Project must provide convenient access to data analysis facilities to a wide user community. The international nature of this community makes the selection of data analysis software particularly interesting, with staunch advocates of systems such as ADAM and IRAF among the users. Additionally, the continuing trends towards increased use of networked systems and distributed processing impose additional complexity. To meet these needs, the Gemini Project is proposing the novel approach of using low-cost, off-the-shelf software to abstract out both the control and distribution of data analysis from the functionality of the data analysis software. For example, the orthogonal nature of control versus function means that users might select analysis routines from both ADAM and IRAF as appropriate, distributing these routines across a network of machines. It is the belief of the Gemini Project that this approach results in a system that is highly flexible, maintainable, and inexpensive to develop. The Khoros visualization system is presented as an example of control software that is currently available for providing the control and distribution within a data analysis system. The visual programming environment provided with Khoros is also discussed as a means to providing convenient access to this control.

  12. Advanced Traffic Management Systems (ATMS) research analysis database system

    DOT National Transportation Integrated Search

    2001-06-01

    The ATMS Research Analysis Database Systems (ARADS) consists of a Traffic Software Data Dictionary (TSDD) and a Traffic Software Object Model (TSOM) for application to microscopic traffic simulation and signal optimization domains. The purpose of thi...

  13. An overview of the mathematical and statistical analysis component of RICIS

    NASA Technical Reports Server (NTRS)

    Hallum, Cecil R.

    1987-01-01

    Mathematical and statistical analysis components of RICIS (Research Institute for Computing and Information Systems) can be used in the following problem areas: (1) quantification and measurement of software reliability; (2) assessment of changes in software reliability over time (reliability growth); (3) analysis of software-failure data; and (4) decision logic for whether to continue or stop testing software. Other areas of interest to NASA/JSC where mathematical and statistical analysis can be successfully employed include: math modeling of physical systems, simulation, statistical data reduction, evaluation methods, optimization, algorithm development, and mathematical methods in signal processing.

  14. Methodology for object-oriented real-time systems analysis and design: Software engineering

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1991-01-01

    Successful application of software engineering methodologies requires an integrated analysis and design life-cycle in which the various phases flow smoothly 'seamlessly' from analysis through design to implementation. Furthermore, different analysis methodologies often lead to different structuring of the system so that the transition from analysis to design may be awkward depending on the design methodology to be used. This is especially important when object-oriented programming is to be used for implementation when the original specification and perhaps high-level design is non-object oriented. Two approaches to real-time systems analysis which can lead to an object-oriented design are contrasted: (1) modeling the system using structured analysis with real-time extensions which emphasizes data and control flows followed by the abstraction of objects where the operations or methods of the objects correspond to processes in the data flow diagrams and then design in terms of these objects; and (2) modeling the system from the beginning as a set of naturally occurring concurrent entities (objects) each having its own time-behavior defined by a set of states and state-transition rules and seamlessly transforming the analysis models into high-level design models. A new concept of a 'real-time systems-analysis object' is introduced and becomes the basic building block of a series of seamlessly-connected models which progress from the object-oriented real-time systems analysis and design system analysis logical models through the physical architectural models and the high-level design stages. The methodology is appropriate to the overall specification including hardware and software modules. In software modules, the systems analysis objects are transformed into software objects.

  15. Melanie II--a third-generation software package for analysis of two-dimensional electrophoresis images: I. Features and user interface.

    PubMed

    Appel, R D; Palagi, P M; Walther, D; Vargas, J R; Sanchez, J C; Ravier, F; Pasquali, C; Hochstrasser, D F

    1997-12-01

    Although two-dimensional electrophoresis (2-DE) computer analysis software packages have existed ever since 2-DE technology was developed, it is only now that the hardware and software technology allows large-scale studies to be performed on low-cost personal computers or workstations, and that setting up a 2-DE computer analysis system in a small laboratory is no longer considered a luxury. After a first attempt in the seventies and early eighties to develop 2-DE analysis software systems on hardware that had poor or even no graphical capabilities, followed in the late eighties by a wave of innovative software developments that were possible thanks to new graphical interface standards such as XWindows, a third generation of 2-DE analysis software packages has now come to maturity. It can be run on a variety of low-cost, general-purpose personal computers, thus making the purchase of a 2-DE analysis system easily attainable for even the smallest laboratory that is involved in proteome research. Melanie II 2-D PAGE, developed at the University Hospital of Geneva, is such a third-generation software system for 2-DE analysis. Based on unique image processing algorithms, this user-friendly object-oriented software package runs on multiple platforms, including Unix, MS-Windows 95 and NT, and Power Macintosh. It provides efficient spot detection and quantitation, state-of-the-art image comparison, statistical data analysis facilities, and is Internet-ready. Linked to proteome databases such as those available on the World Wide Web, it represents a valuable tool for the "Virtual Lab" of the post-genome area.

  16. A Pedagogical Software for the Analysis of Loudspeaker Systems

    ERIC Educational Resources Information Center

    Pueo, B.; Roma, M.; Escolano, J.; Lopez, J. J.

    2009-01-01

    In this paper, a pedagogical software for the design and analysis of loudspeaker systems is presented, with emphasis on training students in the interaction between system parameters. Loudspeakers are complex electromechanical system, whose behavior is neither intuitive nor easy to understand by inexperienced students. Although commercial…

  17. Development of new vibration energy flow analysis software and its applications to vehicle systems

    NASA Astrophysics Data System (ADS)

    Kim, D.-J.; Hong, S.-Y.; Park, Y.-H.

    2005-09-01

    The Energy flow analysis (EFA) offers very promising results in predicting the noise and vibration responses of system structures in medium-to-high frequency ranges. We have developed the Energy flow finite element method (EFFEM) based software, EFADSC++ R4, for the vibration analysis. The software can analyze the system structures composed of beam, plate, spring-damper, rigid body elements and many other components developed, and has many useful functions in analysis. For convenient use of the software, the main functions of the whole software are modularized into translator, model-converter, and solver. The translator module makes it possible to use finite element (FE) model for the vibration analysis. The model-converter module changes FE model into energy flow finite element (EFFE) model, and generates joint elements to cover the vibrational attenuation in the complex structures composed of various elements and can solve the joint element equations by using the wave tra! nsmission approach very quickly. The solver module supports the various direct and iterative solvers for multi-DOF structures. The predictions of vibration for real vehicles by using the developed software were performed successfully.

  18. Software Systems for Prediction and Immediate Assessment of Emergency Situations on Municipalities Territories

    NASA Astrophysics Data System (ADS)

    Poluyan, L. V.; Syutkina, E. V.; Guryev, E. S.

    2017-11-01

    The comparative analysis of key features of the software systems TOXI+Risk and ALOHA is presented. The authors made a comparison of domestic (TOXI+Risk) and foreign (ALOHA) software systems allowing to give the quantitative assessment of impact areas (pressure, thermal, toxic) in case of hypothetical emergencies in potentially hazardous objects of the oil, gas, chemical, petrochemical and oil-processing industry. Both software systems use different mathematical models for assessment of the release rate of a chemically hazardous substance from a storage tank and its evaporation. The comparison of the accuracy of definition of impact areas made by both software systems to verify the examples shows good convergence of both products. The analysis results showed that the ALOHA software can be actively used for forecasting and immediate assessment of emergency situations, assessment of damage as a result of emergencies on the territories of municipalities.

  19. Combining analysis with optimization at Langley Research Center. An evolutionary process

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.

    1982-01-01

    The evolutionary process of combining analysis and optimization codes was traced with a view toward providing insight into the long term goal of developing the methodology for an integrated, multidisciplinary software system for the concurrent analysis and optimization of aerospace structures. It was traced along the lines of strength sizing, concurrent strength and flutter sizing, and general optimization to define a near-term goal for combining analysis and optimization codes. Development of a modular software system combining general-purpose, state-of-the-art, production-level analysis computer programs for structures, aerodynamics, and aeroelasticity with a state-of-the-art optimization program is required. Incorporation of a modular and flexible structural optimization software system into a state-of-the-art finite element analysis computer program will facilitate this effort. This effort results in the software system used that is controlled with a special-purpose language, communicates with a data management system, and is easily modified for adding new programs and capabilities. A 337 degree-of-freedom finite element model is used in verifying the accuracy of this system.

  20. Infusing Reliability Techniques into Software Safety Analysis

    NASA Technical Reports Server (NTRS)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  1. State Analysis Database Tool

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert; Bennett, Matthew

    2006-01-01

    The State Analysis Database Tool software establishes a productive environment for collaboration among software and system engineers engaged in the development of complex interacting systems. The tool embodies State Analysis, a model-based system engineering methodology founded on a state-based control architecture (see figure). A state represents a momentary condition of an evolving system, and a model may describe how a state evolves and is affected by other states. The State Analysis methodology is a process for capturing system and software requirements in the form of explicit models and states, and defining goal-based operational plans consistent with the models. Requirements, models, and operational concerns have traditionally been documented in a variety of system engineering artifacts that address different aspects of a mission s lifecycle. In State Analysis, requirements, models, and operations information are State Analysis artifacts that are consistent and stored in a State Analysis Database. The tool includes a back-end database, a multi-platform front-end client, and Web-based administrative functions. The tool is structured to prompt an engineer to follow the State Analysis methodology, to encourage state discovery and model description, and to make software requirements and operations plans consistent with model descriptions.

  2. AN EVALUATION OF FIVE COMMERCIAL IMMUNOASSAY DATA ANALYSIS SOFTWARE SYSTEMS

    EPA Science Inventory

    An evaluation of five commercial software systems used for immunoassay data analysis revealed numerous deficiencies. Often, the utility of statistical output was compromised by poor documentation. Several data sets were run through each system using a four-parameter calibration f...

  3. Reliability Validation and Improvement Framework

    DTIC Science & Technology

    2012-11-01

    systems . Steps in that direction include the use of the Architec- ture Tradeoff Analysis Method ® (ATAM®) developed at the Carnegie Mellon...embedded software • cyber - physical systems (CPSs) to indicate that the embedded software interacts with, manag - es, and controls a physical system [Lee...the use of formal static analysis methods to increase our confidence in system operation beyond testing. However, analysis results

  4. Testing of Safety-Critical Software Embedded in an Artificial Heart

    NASA Astrophysics Data System (ADS)

    Cha, Sungdeok; Jeong, Sehun; Yoo, Junbeom; Kim, Young-Gab

    Software is being used more frequently to control medical devices such as artificial heart or robotic surgery system. While much of software safety issues in such systems are similar to other safety-critical systems (e.g., nuclear power plants), domain-specific properties may warrant development of customized techniques to demonstrate fitness of the system on patients. In this paper, we report results of a preliminary analysis done on software controlling a Hybrid Ventricular Assist Device (H-VAD) developed by Korea Artificial Organ Centre (KAOC). It is a state-of-the-art artificial heart which completed animal testing phase. We performed software testing in in-vitro experiments and animal experiments. An abnormal behaviour, never detected during extensive in-vitro analysis and animal testing, was found.

  5. A Requirements Analysis Model for Selection of Personal Computer (PC) software in Air Force Organizations

    DTIC Science & Technology

    1988-09-01

    Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Systems Management Dexter R... management system software Diag/Prob Diagnosis and problem solving or problem finding GR Graphics software Int/Transp Interoperability and...language software Plan/D.S. Planning and decision support or decision making PM Program management software SC Systems for Command, Control, Communications

  6. A UML Profile for State Analysis

    NASA Technical Reports Server (NTRS)

    Murray, Alex; Rasmussen, Robert

    2010-01-01

    State Analysis is a systems engineering methodology for the specification and design of control systems, developed at the Jet Propulsion Laboratory. The methodology emphasizes an analysis of the system under control in terms of States and their properties and behaviors and their effects on each other, a clear separation of the control system from the controlled system, cognizance in the control system of the controlled system's State, goal-based control built on constraining the controlled system's States, and disciplined techniques for State discovery and characterization. State Analysis (SA) introduces two key diagram types: State Effects and Goal Network diagrams. The team at JPL developed a tool for performing State Analysis. The tool includes a drawing capability, backed by a database that supports the diagram types and the organization of the elements of the SA models. But the tool does not support the usual activities of software engineering and design - a disadvantage, since systems to which State Analysis can be applied tend to be very software-intensive. This motivated the work described in this paper: the development of a preliminary Unified Modeling Language (UML) profile for State Analysis. Having this profile would enable systems engineers to specify a system using the methods and graphical language of State Analysis, which is easily linked with a larger system model in SysML (Systems Modeling Language), while also giving software engineers engaged in implementing the specified control system immediate access to and use of the SA model, in the same language, UML, used for other software design. That is, a State Analysis profile would serve as a shared modeling bridge between system and software models for the behavior aspects of the system. This paper begins with an overview of State Analysis and its underpinnings, followed by an overview of the mapping of SA constructs to the UML metamodel. It then delves into the details of these mappings and the constraints associated with them. Finally, we give an example of the use of the profile for expressing an example SA model.

  7. GOATS Image Projection Component

    NASA Technical Reports Server (NTRS)

    Haber, Benjamin M.; Green, Joseph J.

    2011-01-01

    When doing mission analysis and design of an imaging system in orbit around the Earth, answering the fundamental question of imaging performance requires an understanding of the image products that will be produced by the imaging system. GOATS software represents a series of MATLAB functions to provide for geometric image projections. Unique features of the software include function modularity, a standard MATLAB interface, easy-to-understand first-principles-based analysis, and the ability to perform geometric image projections of framing type imaging systems. The software modules are created for maximum analysis utility, and can all be used independently for many varied analysis tasks, or used in conjunction with other orbit analysis tools.

  8. Software for quantitative analysis of radiotherapy: overview, requirement analysis and design solutions.

    PubMed

    Zhang, Lanlan; Hub, Martina; Mang, Sarah; Thieke, Christian; Nix, Oliver; Karger, Christian P; Floca, Ralf O

    2013-06-01

    Radiotherapy is a fast-developing discipline which plays a major role in cancer care. Quantitative analysis of radiotherapy data can improve the success of the treatment and support the prediction of outcome. In this paper, we first identify functional, conceptional and general requirements on a software system for quantitative analysis of radiotherapy. Further we present an overview of existing radiotherapy analysis software tools and check them against the stated requirements. As none of them could meet all of the demands presented herein, we analyzed possible conceptional problems and present software design solutions and recommendations to meet the stated requirements (e.g. algorithmic decoupling via dose iterator pattern; analysis database design). As a proof of concept we developed a software library "RTToolbox" following the presented design principles. The RTToolbox is available as open source library and has already been tested in a larger-scale software system for different use cases. These examples demonstrate the benefit of the presented design principles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Hybrid PV/diesel solar power system design using multi-level factor analysis optimization

    NASA Astrophysics Data System (ADS)

    Drake, Joshua P.

    Solar power systems represent a large area of interest across a spectrum of organizations at a global level. It was determined that a clear understanding of current state of the art software and design methods, as well as optimization methods, could be used to improve the design methodology. Solar power design literature was researched for an in depth understanding of solar power system design methods and algorithms. Multiple software packages for the design and optimization of solar power systems were analyzed for a critical understanding of their design workflow. In addition, several methods of optimization were studied, including brute force, Pareto analysis, Monte Carlo, linear and nonlinear programming, and multi-way factor analysis. Factor analysis was selected as the most efficient optimization method for engineering design as it applied to solar power system design. The solar power design algorithms, software work flow analysis, and factor analysis optimization were combined to develop a solar power system design optimization software package called FireDrake. This software was used for the design of multiple solar power systems in conjunction with an energy audit case study performed in seven Tibetan refugee camps located in Mainpat, India. A report of solar system designs for the camps, as well as a proposed schedule for future installations was generated. It was determined that there were several improvements that could be made to the state of the art in modern solar power system design, though the complexity of current applications is significant.

  10. Source Code Analysis Laboratory (SCALe) for Energy Delivery Systems

    DTIC Science & Technology

    2010-12-01

    the software for reevaluation. Once the ree- valuation process is completed, CERT provides the client a report detailing the software’s con - formance...Flagged Nonconformities (FNC) Software System TP/FNC Ratio Mozilla Firefox version 2.0 6/12 50% Linux kernel version 2.6.15 10/126 8% Wine...inappropriately tuned for analysis of the Linux kernel, which has anomalous results. Customizing SCALe to work with energy system software will help

  11. Description of the GMAO OSSE for Weather Analysis Software Package: Version 3

    NASA Technical Reports Server (NTRS)

    Koster, Randal D. (Editor); Errico, Ronald M.; Prive, Nikki C.; Carvalho, David; Sienkiewicz, Meta; El Akkraoui, Amal; Guo, Jing; Todling, Ricardo; McCarty, Will; Putman, William M.; hide

    2017-01-01

    The Global Modeling and Assimilation Office (GMAO) at the NASA Goddard Space Flight Center has developed software and products for conducting observing system simulation experiments (OSSEs) for weather analysis applications. Such applications include estimations of potential effects of new observing instruments or data assimilation techniques on improving weather analysis and forecasts. The GMAO software creates simulated observations from nature run (NR) data sets and adds simulated errors to those observations. The algorithms employed are much more sophisticated, adding a much greater degree of realism, compared with OSSE systems currently available elsewhere. The algorithms employed, software designs, and validation procedures are described in this document. Instructions for using the software are also provided.

  12. An Incremental Life-cycle Assurance Strategy for Critical System Certification

    DTIC Science & Technology

    2014-11-04

    for Safe Aircraft Operation Embedded software systems introduce a new class of problems not addressed by traditional system modeling & analysis...Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency jitter affects control behavior...do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software system as major source of

  13. For operation of the Computer Software Management and Information Center (COSMIC)

    NASA Technical Reports Server (NTRS)

    Carmon, J. L.

    1983-01-01

    Computer programs for large systems of normal equations, an interactive digital signal process, structural analysis of cylindrical thrust chambers, swirling turbulent axisymmetric recirculating flows in practical isothermal combustor geometrics, computation of three dimensional combustor performance, a thermal radiation analysis system, transient response analysis, and a software design analysis are summarized.

  14. Information Extraction for System-Software Safety Analysis: Calendar Year 2007 Year-End Report

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2008-01-01

    This annual report describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis on the models to identify possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations; 4) perform discrete-time-based simulation on the models to investigate scenarios where these paths may play a role in failures and mishaps; and 5) identify resulting candidate scenarios for software integration testing. This paper describes new challenges in a NASA abort system case, and enhancements made to develop the integrated tool set.

  15. An Assessmant of a Beofulf System for a Wide Class of Analysis and Design Software

    NASA Technical Reports Server (NTRS)

    Katz, D. S.; Cwik, T.; Kwan, B. H.; Lou, J. Z.; Springer, P. L.; Sterling, T. L.; Wang, P.

    1997-01-01

    This paper discusses Beowulf systems, focusing on Hyglac, the Beowulf system installed at the Jet Propulsion Laboratory. The purpose of the paper is to assess how a system of this type will perform while running a variety of scientific and engineering analysis and design software.

  16. How Safe Is Control Software

    NASA Technical Reports Server (NTRS)

    Dunn, William R.; Corliss, Lloyd D.

    1991-01-01

    Paper examines issue of software safety. Presents four case histories of software-safety analysis. Concludes that, to be safe, software, for all practical purposes, must be free of errors. Backup systems still needed to prevent catastrophic software failures.

  17. GEOSTATISTICS FOR WASTE MANAGEMENT: A USER'S MANUAL FOR THE GEOPACK (VERSION 1.0) GEOSTATISTICAL SOFTWARE SYSTEM

    EPA Science Inventory

    GEOPACK, a comprehensive user-friendly geostatistical software system, was developed to help in the analysis of spatially correlated data. The software system was developed to be used by scientists, engineers, regulators, etc., with little experience in geostatistical techniques...

  18. The Role and Quality of Software Safety in the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Layman, Lucas; Basili, Victor R.; Zelkowitz, Marvin V.

    2010-01-01

    In this study, we examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Obtaining an accurate, program-wide picture of software safety risk is difficult across multiple, independently-developing systems. We leverage one source of safety information, hazard analysis, to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. The goal of this research is two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to quantify the level of risk presented by software in the hazard analysis. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. To quantify the importance of software, we collected metrics based on the number of software-related causes and controls of hazardous conditions. To quantify the level of risk presented by software, we created a metric scheme to measure the specificity of these software causes. We found that from 49-70% of hazardous conditions in the three systems could be caused by software or software was involved in the prevention of the hazardous condition. We also found that 12-17% of the 2013 hazard causes involved software, and that 23-29% of all causes had a software control. Furthermore, 10-12% of all controls were software-based. There is potential for inaccuracy in these counts, however, as software causes are not consistently scoped, and the presence of software in a cause or control is not always clear. The application of our software specificity metrics also identified risks in the hazard reporting process. In particular, we found a number of traceability risks in the hazard reports may impede verification of software and system safety.

  19. Mission Operations and Navigation Toolkit Environment

    NASA Technical Reports Server (NTRS)

    Sunseri, Richard F.; Wu, Hsi-Cheng; Hanna, Robert A.; Mossey, Michael P.; Duncan, Courtney B.; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.; Martin Mur, Tomas J.; hide

    2009-01-01

    MONTE (Mission Operations and Navigation Toolkit Environment) Release 7.3 is an extensible software system designed to support trajectory and navigation analysis/design for space missions. MONTE is intended to replace the current navigation and trajectory analysis software systems, which, at the time of this reporting, are used by JPL's Navigation and Mission Design section. The software provides an integrated, simplified, and flexible system that can be easily maintained to serve the needs of future missions in need of navigation services.

  20. Software dependability in the Tandem GUARDIAN system

    NASA Technical Reports Server (NTRS)

    Lee, Inhwan; Iyer, Ravishankar K.

    1995-01-01

    Based on extensive field failure data for Tandem's GUARDIAN operating system this paper discusses evaluation of the dependability of operational software. Software faults considered are major defects that result in processor failures and invoke backup processes to take over. The paper categorizes the underlying causes of software failures and evaluates the effectiveness of the process pair technique in tolerating software faults. A model to describe the impact of software faults on the reliability of an overall system is proposed. The model is used to evaluate the significance of key factors that determine software dependability and to identify areas for improvement. An analysis of the data shows that about 77% of processor failures that are initially considered due to software are confirmed as software problems. The analysis shows that the use of process pairs to provide checkpointing and restart (originally intended for tolerating hardware faults) allows the system to tolerate about 75% of reported software faults that result in processor failures. The loose coupling between processors, which results in the backup execution (the processor state and the sequence of events) being different from the original execution, is a major reason for the measured software fault tolerance. Over two-thirds (72%) of measured software failures are recurrences of previously reported faults. Modeling, based on the data, shows that, in addition to reducing the number of software faults, software dependability can be enhanced by reducing the recurrence rate.

  1. Using Combined SFTA and SFMECA Techniques for Space Critical Software

    NASA Astrophysics Data System (ADS)

    Nicodemos, F. G.; Lahoz, C. H. N.; Abdala, M. A. D.; Saotome, O.

    2012-01-01

    This work addresses the combined Software Fault Tree Analysis (SFTA) and Software Failure Modes, Effects and Criticality Analysis (SFMECA) techniques applied to space critical software of satellite launch vehicles. The combined approach is under research as part of the Verification and Validation (V&V) efforts to increase software dependability and as future application in other projects under development at Instituto de Aeronáutica e Espaço (IAE). The applicability of such approach was conducted on system software specification and applied to a case study based on the Brazilian Satellite Launcher (VLS). The main goal is to identify possible failure causes and obtain compensating provisions that lead to inclusion of new functional and non-functional system software requirements.

  2. PIV/HPIV Film Analysis Software Package

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    A PIV/HPIV film analysis software system was developed that calculates the 2-dimensional spatial autocorrelations of subregions of Particle Image Velocimetry (PIV) or Holographic Particle Image Velocimetry (HPIV) film recordings. The software controls three hardware subsystems including (1) a Kodak Megaplus 1.4 camera and EPIX 4MEG framegrabber subsystem, (2) an IEEE/Unidex 11 precision motion control subsystem, and (3) an Alacron I860 array processor subsystem. The software runs on an IBM PC/AT host computer running either the Microsoft Windows 3.1 or Windows 95 operating system. It is capable of processing five PIV or HPIV displacement vectors per second, and is completely automated with the exception of user input to a configuration file prior to analysis execution for update of various system parameters.

  3. A Comparison and Evaluation of Real-Time Software Systems Modeling Languages

    NASA Technical Reports Server (NTRS)

    Evensen, Kenneth D.; Weiss, Kathryn Anne

    2010-01-01

    A model-driven approach to real-time software systems development enables the conceptualization of software, fostering a more thorough understanding of its often complex architecture and behavior while promoting the documentation and analysis of concerns common to real-time embedded systems such as scheduling, resource allocation, and performance. Several modeling languages have been developed to assist in the model-driven software engineering effort for real-time systems, and these languages are beginning to gain traction with practitioners throughout the aerospace industry. This paper presents a survey of several real-time software system modeling languages, namely the Architectural Analysis and Design Language (AADL), the Unified Modeling Language (UML), Systems Modeling Language (SysML), the Modeling and Analysis of Real-Time Embedded Systems (MARTE) UML profile, and the AADL for UML profile. Each language has its advantages and disadvantages, and in order to adequately describe a real-time software system's architecture, a complementary use of multiple languages is almost certainly necessary. This paper aims to explore these languages in the context of understanding the value each brings to the model-driven software engineering effort and to determine if it is feasible and practical to combine aspects of the various modeling languages to achieve more complete coverage in architectural descriptions. To this end, each language is evaluated with respect to a set of criteria such as scope, formalisms, and architectural coverage. An example is used to help illustrate the capabilities of the various languages.

  4. Extreme Ultraviolet Imaging Telescope (EIT)

    NASA Technical Reports Server (NTRS)

    Lemen, J. R.; Freeland, S. L.

    1997-01-01

    Efforts concentrated on development and implementation of the SolarSoft (SSW) data analysis system. From an EIT analysis perspective, this system was designed to facilitate efficient reuse and conversion of software developed for Yohkoh/SXT and to take advantage of a large existing body of software developed by the SDAC, Yohkoh, and SOHO instrument teams. Another strong motivation for this system was to provide an EIT analysis environment which permits coordinated analysis of EIT data in conjunction with data from important supporting instruments, including Yohkoh/SXT and the other SOHO coronal instruments; CDS, SUMER, and LASCO. In addition, the SSW system will support coordinated EIT/TRACE analysis (by design) when TRACE data is available; TRACE launch is currently planned for March 1998. Working with Jeff Newmark, the Chianti software package (K.P. Dere et al) and UV /EUV data base was fully integrated into the SSW system to facilitate EIT temperature and emission analysis.

  5. Facilitating Constructive Alignment in Power Systems Engineering Education Using Free and Open-Source Software

    ERIC Educational Resources Information Center

    Vanfretti, L.; Milano, F.

    2012-01-01

    This paper describes how the use of free and open-source software (FOSS) can facilitate the application of constructive alignment theory in power systems engineering education by enabling the deep learning approach in power system analysis courses. With this aim, this paper describes the authors' approach in using the Power System Analysis Toolbox…

  6. Study of fault tolerant software technology for dynamic systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Zacharias, G. L.

    1985-01-01

    The major aim of this study is to investigate the feasibility of using systems-based failure detection isolation and compensation (FDIC) techniques in building fault-tolerant software and extending them, whenever possible, to the domain of software fault tolerance. First, it is shown that systems-based FDIC methods can be extended to develop software error detection techniques by using system models for software modules. In particular, it is demonstrated that systems-based FDIC techniques can yield consistency checks that are easier to implement than acceptance tests based on software specifications. Next, it is shown that systems-based failure compensation techniques can be generalized to the domain of software fault tolerance in developing software error recovery procedures. Finally, the feasibility of using fault-tolerant software in flight software is investigated. In particular, possible system and version instabilities, and functional performance degradation that may occur in N-Version programming applications to flight software are illustrated. Finally, a comparative analysis of N-Version and recovery block techniques in the context of generic blocks in flight software is presented.

  7. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, volume 2, part 1. Appendix A: Software documentation

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.

    1982-01-01

    Documentation of the preliminary software developed as a framework for a generalized integrated robotic system simulation is presented. The program structure is composed of three major functions controlled by a program executive. The three major functions are: system definition, analysis tools, and post processing. The system definition function handles user input of system parameters and definition of the manipulator configuration. The analysis tools function handles the computational requirements of the program. The post processing function allows for more detailed study of the results of analysis tool function executions. Also documented is the manipulator joint model software to be used as the basis of the manipulator simulation which will be part of the analysis tools capability.

  8. Detailed requirements document for the integrated structural analysis system, phase B

    NASA Technical Reports Server (NTRS)

    Rainey, J. A.

    1976-01-01

    The requirements are defined for a software system entitled integrated Structural Analysis System (ISAS) Phase B which is being developed to provide the user with a tool by which a complete and detailed analysis of a complex structural system can be performed. This software system will allow for automated interface with numerous structural analysis batch programs and for user interaction in the creation, selection, and validation of data. This system will include modifications to the 4 functions developed for ISAS, and the development of 25 new functions. The new functions are described.

  9. Using CASE Software to Teach Undergraduates Systems Analysis and Design.

    ERIC Educational Resources Information Center

    Wilcox, Russell E.

    1988-01-01

    Describes the design and delivery of a college course for information system students utilizing a Computer-Aided Software Engineering program. Discusses class assignments, cooperative learning, student attitudes, and the advantages of using this software in the course. (CW)

  10. Incremental Upgrade of Legacy Systems (IULS)

    DTIC Science & Technology

    2001-04-01

    analysis task employed SEI’s Feature-Oriented Domain Analysis methodology (see FODA reference) and included several phases: • Context Analysis • Establish...Legacy, new Host and upgrade system and software. The Feature Oriented Domain Analysis approach ( FODA , see SUM References) was used for this step...Feature-Oriented Domain Analysis ( FODA ) Feasibility Study (CMU/SEI-90-TR- 21, ESD-90-TR-222); Software Engineering Institute, Carnegie Mellon University

  11. A Scalable Analysis Toolkit

    NASA Technical Reports Server (NTRS)

    Aiken, Alexander

    2001-01-01

    The Scalable Analysis Toolkit (SAT) project aimed to demonstrate that it is feasible and useful to statically detect software bugs in very large systems. The technical focus of the project was on a relatively new class of constraint-based techniques for analysis software, where the desired facts about programs (e.g., the presence of a particular bug) are phrased as constraint problems to be solved. At the beginning of this project, the most successful forms of formal software analysis were limited forms of automatic theorem proving (as exemplified by the analyses used in language type systems and optimizing compilers), semi-automatic theorem proving for full verification, and model checking. With a few notable exceptions these approaches had not been demonstrated to scale to software systems of even 50,000 lines of code. Realistic approaches to large-scale software analysis cannot hope to make every conceivable formal method scale. Thus, the SAT approach is to mix different methods in one application by using coarse and fast but still adequate methods at the largest scales, and reserving the use of more precise but also more expensive methods at smaller scales for critical aspects (that is, aspects critical to the analysis problem under consideration) of a software system. The principled method proposed for combining a heterogeneous collection of formal systems with different scalability characteristics is mixed constraints. This idea had been used previously in small-scale applications with encouraging results: using mostly coarse methods and narrowly targeted precise methods, useful information (meaning the discovery of bugs in real programs) was obtained with excellent scalability.

  12. Integrated multidisciplinary analysis tool IMAT users' guide

    NASA Technical Reports Server (NTRS)

    Meissner, Frances T. (Editor)

    1988-01-01

    The Integrated Multidisciplinary Analysis Tool (IMAT) is a computer software system developed at Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite controls systems influenced by structural dynamics. Using a menu-driven executive system, IMAT leads the user through the program options. IMAT links a relational database manager to commercial and in-house structural and controls analysis codes. This paper describes the IMAT software system and how to use it.

  13. Computer Sciences and Data Systems, volume 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: software engineering; university grants; institutes; concurrent processing; sparse distributed memory; distributed operating systems; intelligent data management processes; expert system for image analysis; fault tolerant software; and architecture research.

  14. Probabilistic structural analysis methods for select space propulsion system components

    NASA Technical Reports Server (NTRS)

    Millwater, H. R.; Cruse, T. A.

    1989-01-01

    The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.

  15. Space station data system analysis/architecture study. Task 3: Trade studies, DR-5, volume 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of Task 3 is to provide additional analysis and insight necessary to support key design/programmatic decision for options quantification and selection for system definition. This includes: (1) the identification of key trade study topics; (2) the definition of a trade study procedure for each topic (issues to be resolved, key inputs, criteria/weighting, methodology); (3) conduct tradeoff and sensitivity analysis; and (4) the review/verification of results within the context of evolving system design and definition. The trade study topics addressed in this volume include space autonomy and function automation, software transportability, system network topology, communications standardization, onboard local area networking, distributed operating system, software configuration management, and the software development environment facility.

  16. Software Management for the NOνAExperiment

    NASA Astrophysics Data System (ADS)

    Davies, G. S.; Davies, J. P.; C Group; Rebel, B.; Sachdev, K.; Zirnstein, J.

    2015-12-01

    The NOvAsoftware (NOνASoft) is written in C++, and built on the Fermilab Computing Division's art framework that uses ROOT analysis software. NOνASoftmakes use of more than 50 external software packages, is developed by more than 50 developers and is used by more than 100 physicists from over 30 universities and laboratories in 3 continents. The software builds are handled by Fermilab's custom version of Software Release Tools (SRT), a UNIX based software management system for large, collaborative projects that is used by several experiments at Fermilab. The system provides software version control with SVN configured in a client-server mode and is based on the code originally developed by the BaBar collaboration. In this paper, we present efforts towards distributing the NOvA software via the CernVM File System distributed file system. We will also describe our recent work to use a CMake build system and Jenkins, the open source continuous integration system, for NOνASoft.

  17. Implementing Software Safety in the NASA Environment

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha S.; Radley, Charles F.

    1994-01-01

    Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space missions. (For example. software is now planned to control most of the operational functions of the International Space Station.) Thus the need for systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be designed into software up front, not tested into the software after the fact. 'Cost of Quality' studies have statistics and metrics to prove the value of building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most safety engineers are not software experts. Software written to specifications which have not been safety analyzed is a major source of computer related accidents. Safer software is achieved step by step throughout the system and software life cycle. It is a process that includes requirements definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis (PHA) during the concept and planning phase of a project. This determines the overall hazard potential of the system to be built. Shortly thereafter, as the system requirements are being defined, the second iteration of hazard analyses takes place, the systems hazard analysis (SHA). During the systems requirements phase, decisions are made as to what functions of the system will be the responsibility of software. This is the most critical time to affect the safety of the software. From this point, software safety analyses as well as software engineering practices are the main focus for assuring safe software. While many of the steps proposed in this paper seem like just sound engineering practices, they are the best technical and most cost effective means to assure safe software within a safe system.

  18. A new ImageJ plug-in "ActogramJ" for chronobiological analyses.

    PubMed

    Schmid, Benjamin; Helfrich-Förster, Charlotte; Yoshii, Taishi

    2011-10-01

    While the rapid development of personal computers and high-throughput recording systems for circadian rhythms allow chronobiologists to produce huge amounts of data, the software to analyze them often lags behind. Here, we announce newly developed chronobiology software that is easy to use, compatible with many different systems, and freely available. Our system can perform the most frequently used analyses: actogram drawing, periodogram analysis, and waveform analysis. The software is distributed as a pure Java plug-in for ImageJ and so works on the 3 main operating systems: Linux, Macintosh, and Windows. We believe that this free software raises the speed of data analyses and makes studying chronobiology accessible to newcomers. © 2011 The Author(s)

  19. Advanced Automation for Ion Trap Mass Spectrometry-New Opportunities for Real-Time Autonomous Analysis

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Wong, C. M.; Salmonson, J. D.; Yost, R. A.; Griffin, T. P.; Yates, N. A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    The utility of MS/MS for both target compound analysis and the structure elucidation of unknowns has been described in a number of references. A broader acceptance of this technique has not yet been realized as it requires large, complex, and costly instrumentation which has not been competitive with more conventional techniques. Recent advancements in ion trap mass spectrometry promise to change this situation. Although the ion trap's small size, sensitivity, and ability to perform multiple stages of mass spectrometry have made it eminently suitable for on-line, real-time monitoring applications, advance automation techniques are required to make these capabilities more accessible to non-experts. Towards this end we have developed custom software for the design and implementation of MS/MS experiments. This software allows the user to take full advantage of the ion trap's versatility with respect to ionization techniques, scan proxies, and ion accumulation/ejection methods. Additionally, expert system software has been developed for autonomous target compound analysis. This software has been linked to ion trap control software and a commercial data system to bring all of the steps in the analysis cycle under control of the expert system. These software development efforts and their utilization for a number of trace analysis applications will be described.

  20. Mesoscale and severe storms (Mass) data management and analysis system

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.; Karitani, S.; Dickerson, M.

    1984-01-01

    Progress on the Mesoscale and Severe Storms (MASS) data management and analysis system is described. An interactive atmospheric data base management software package to convert four types of data (Sounding, Single Level, Grid, Image) into standard random access formats is implemented and integrated with the MASS AVE80 Series general purpose plotting and graphics display data analysis software package. An interactive analysis and display graphics software package (AVE80) to analyze large volumes of conventional and satellite derived meteorological data is enhanced to provide imaging/color graphics display utilizing color video hardware integrated into the MASS computer system. Local and remote smart-terminal capability is provided by installing APPLE III computer systems within individual scientist offices and integrated with the MASS system, thus providing color video display, graphics, and characters display of the four data types.

  1. Software Engineering Improvement Activities/Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.

  2. Space station operating system study

    NASA Technical Reports Server (NTRS)

    Horn, Albert E.; Harwell, Morris C.

    1988-01-01

    The current phase of the Space Station Operating System study is based on the analysis, evaluation, and comparison of the operating systems implemented on the computer systems and workstations in the software development laboratory. Primary emphasis has been placed on the DEC MicroVMS operating system as implemented on the MicroVax II computer, with comparative analysis of the SUN UNIX system on the SUN 3/260 workstation computer, and to a limited extent, the IBM PC/AT microcomputer running PC-DOS. Some benchmark development and testing was also done for the Motorola MC68010 (VM03 system) before the system was taken from the laboratory. These systems were studied with the objective of determining their capability to support Space Station software development requirements, specifically for multi-tasking and real-time applications. The methodology utilized consisted of development, execution, and analysis of benchmark programs and test software, and the experimentation and analysis of specific features of the system or compilers in the study.

  3. Managing Variation in Services in a Software Product Line Context

    DTIC Science & Technology

    2010-05-01

    Oriented Domain Analysis ( FODA ) Feasibility Study (CMU/SEI-90-TR-021, ADA235785). Software Engineering Institute, Carnegie Mellon University, 1990...the systems in the product line, and a plan for building the systems. Product line scope and product line analysis define the boundaries and...systems, as well as expected ways in which they may vary. Product line analysis applies established modeling techniques to engineer the common and

  4. The software application and classification algorithms for welds radiograms analysis

    NASA Astrophysics Data System (ADS)

    Sikora, R.; Chady, T.; Baniukiewicz, P.; Grzywacz, B.; Lopato, P.; Misztal, L.; Napierała, L.; Piekarczyk, B.; Pietrusewicz, T.; Psuj, G.

    2013-01-01

    The paper presents a software implementation of an Intelligent System for Radiogram Analysis (ISAR). The system has to support radiologists in welds quality inspection. The image processing part of software with a graphical user interface and a welds classification part are described with selected classification results. Classification was based on a few algorithms: an artificial neural network, a k-means clustering, a simplified k-means and a rough sets theory.

  5. Engine Structures Modeling Software System (ESMOSS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.

  6. A Method for Populating the Knowledge Base of APTAS, a Domain-Oriented Application Composition System

    DTIC Science & Technology

    1993-12-01

    proposed a domain analysis approach called Feature-Oriented Domain Analysis ( FODA ). The approach identifies prominent features (similarities) and...characteristics of software systems in the domain. Unlike the other domain analysis approaches we have summarized, the re- searchers described FODA in...Domain Analysis ( FODA ) Feasibility Study. Technical Report, Software Engineering Institute, Carnegie Mellon University, Novem- ber 1990. 19. Lee, Kenneth

  7. The Design and Development of a Web-Interface for the Software Engineering Automation System

    DTIC Science & Technology

    2001-09-01

    application on the Internet. 14. SUBJECT TERMS Computer Aided Prototyping, Real Time Systems , Java 15. NUMBER OF...difficult. Developing the entire system only to find it does not meet the customer’s needs is a tremendous waste of time. Real - time systems need a...software prototyping is an iterative software development methodology utilized to improve the analysis and design of real - time systems [2]. One

  8. IMCS reflight certification requirements and design specifications

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The requirements for reflight certification are established. Software requirements encompass the software programs that are resident in the PCC, DEP, PDSS, EC, or any related GSE. A design approach for the reflight software packages is recommended. These designs will be of sufficient detail to permit the implementation of reflight software. The PDSS/IMC Reflight Certification system provides the tools and mechanisms for the user to perform the reflight certification test procedures, test data capture, test data display, and test data analysis. The system as defined will be structured to permit maximum automation of reflight certification procedures and test data analysis.

  9. The Environment for Application Software Integration and Execution (EASIE) version 1.0. Volume 1: Executive overview

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Davis, John S.

    1989-01-01

    The Environment for Application Software Integration and Execution (EASIE) provides a methodology and a set of software utility programs to ease the task of coordinating engineering design and analysis codes. EASIE was designed to meet the needs of conceptual design engineers that face the task of integrating many stand-alone engineering analysis programs. Using EASIE, programs are integrated through a relational database management system. Volume 1, Executive Overview, gives an overview of the functions provided by EASIE and describes their use. Three operational design systems based upon the EASIE software are briefly described.

  10. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    NASA Technical Reports Server (NTRS)

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  11. Interactive system for geomagnetic data analysis

    NASA Astrophysics Data System (ADS)

    Solovev, Igor

    2017-10-01

    The paper suggests the methods for analyzing geomagnetic field variations, which are implemented in "Aurora" software system for complex analysis of geophysical parameters. The software system allows one to perform a detailed magnetic data analysis. The methods allow one to estimate the intensity of geomagnetic perturbations and to allocate increased geomagnetic activity periods. The software system is publicly available (http://aurorasa.ikir.ru:8580, http://www.ikir.ru:8280/lsaserver/MagneticPage.jsp). This research was supported by the Russian Science Foundation (Project No. 14-11-00194).

  12. GEOSTATISTICS FOR WASTE MANAGEMENT: A USER'S MANUEL FOR THE GEOPACK (VERSION 1.0) GEOSTATISTICAL SOFTWARE SYSTEM

    EPA Science Inventory

    A comprehensive, user-friendly geostatistical software system called GEOPACk has been developed. The purpose of this software is to make available the programs necessary to undertake a geostatistical analysis of spatially correlated data. The programs were written so that they ...

  13. The advanced software development workstation project

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest M., III; Pitman, Charles L.

    1991-01-01

    The Advanced Software Development Workstation (ASDW) task is researching and developing the technologies required to support Computer Aided Software Engineering (CASE) with the emphasis on those advanced methods, tools, and processes that will be of benefit to support all NASA programs. Immediate goals are to provide research and prototype tools that will increase productivity, in the near term, in projects such as the Software Support Environment (SSE), the Space Station Control Center (SSCC), and the Flight Analysis and Design System (FADS) which will be used to support the Space Shuttle and Space Station Freedom. Goals also include providing technology for development, evolution, maintenance, and operations. The technologies under research and development in the ASDW project are targeted to provide productivity enhancements during the software life cycle phase of enterprise and information system modeling, requirements generation and analysis, system design and coding, and system use and maintenance. On-line user's guides will assist users in operating the developed information system with knowledge base expert assistance.

  14. Program Aids Design Of Fluid-Circulating Systems

    NASA Technical Reports Server (NTRS)

    Bacskay, Allen; Dalee, Robert

    1992-01-01

    Computer Aided Systems Engineering and Analysis (CASE/A) program is interactive software tool for trade study and analysis, designed to increase productivity during all phases of systems engineering. Graphics-based command-driven software package provides user-friendly computing environment in which engineer analyzes performance and interface characteristics of ECLS/ATC system. Useful during all phases of spacecraft-design program, from initial conceptual design trade studies to actual flight, including pre-flight prediction and in-flight analysis of anomalies. Written in FORTRAN 77.

  15. IMAT (Integrated Multidisciplinary Analysis Tool) user's guide for the VAX/VMS computer

    NASA Technical Reports Server (NTRS)

    Meissner, Frances T. (Editor)

    1988-01-01

    The Integrated Multidisciplinary Analysis Tool (IMAT) is a computer software system for the VAX/VMS computer developed at the Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite control systems influenced by structural dynamics. Using a menu-driven executive system, IMAT leads the user through the program options. IMAT links a relational database manager to commercial and in-house structural and controls analysis codes. This paper describes the IMAT software system and how to use it.

  16. Low-cost data analysis systems for processing multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Whitely, S. L.

    1976-01-01

    The basic hardware and software requirements are described for four low cost analysis systems for computer generated land use maps. The data analysis systems consist of an image display system, a small digital computer, and an output recording device. Software is described together with some of the display and recording devices, and typical costs are cited. Computer requirements are given, and two approaches are described for converting black-white film and electrostatic printer output to inexpensive color output products. Examples of output products are shown.

  17. Operational Analysis of Time-Optimal Maneuvering for Imaging Spacecraft

    DTIC Science & Technology

    2013-03-01

    imaging spacecraft. The analysis is facilitated through the use of AGI’s Systems Tool Kit ( STK ) software. An Analytic Hierarchy Process (AHP)-based...the Singapore-developed X-SAT imaging spacecraft. The analysis is facilitated through the use of AGI’s Systems Tool Kit ( STK ) software. An Analytic...89  B.  FUTURE WORK................................................................................. 90  APPENDIX A. STK DATA AND BENEFIT

  18. Application and design of solar photovoltaic system

    NASA Astrophysics Data System (ADS)

    Tianze, Li; Hengwei, Lu; Chuan, Jiang; Luan, Hou; Xia, Zhang

    2011-02-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  19. Phobos lander coding system: Software and analysis

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Pollara, F.

    1988-01-01

    The software developed for the decoding system used in the telemetry link of the Phobos Lander mission is described. Encoders and decoders are provided to cover the three possible telemetry configurations. The software can be used to decode actual data or to simulate the performance of the telemetry system. The theoretical properties of the codes chosen for this mission are analyzed and discussed.

  20. Toward Baseline Software Anomalies in NASA Missions

    NASA Technical Reports Server (NTRS)

    Layman, Lucas; Zelkowitz, Marvin; Basili, Victor; Nikora, Allen P.

    2012-01-01

    In this fast abstract, we provide preliminary findings an analysis of 14,500 spacecraft anomalies from unmanned NASA missions. We provide some baselines for the distributions of software vs. non-software anomalies in spaceflight systems, the risk ratings of software anomalies, and the corrective actions associated with software anomalies.

  1. SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool

    PubMed Central

    Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda

    2008-01-01

    Background It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. Results This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. Conclusion SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes. PMID:18706080

  2. SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool.

    PubMed

    Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda

    2008-08-15

    It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes.

  3. Precision Attitude Determination System (PADS) design and analysis. Two-axis gimbal star tracker

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Development of the Precision Attitude Determination System (PADS) focused chiefly on the two-axis gimballed star tracker and electronics design improved from that of Precision Pointing Control System (PPCS), and application of the improved tracker for PADS at geosynchronous altitude. System design, system analysis, software design, and hardware design activities are reported. The system design encompasses the PADS configuration, system performance characteristics, component design summaries, and interface considerations. The PADS design and performance analysis includes error analysis, performance analysis via attitude determination simulation, and star tracker servo design analysis. The design of the star tracker and electronics are discussed. Sensor electronics schematics are included. A detailed characterization of the application software algorithms and computer requirements is provided.

  4. The Design of Software for Three-Phase Induction Motor Test System

    NASA Astrophysics Data System (ADS)

    Haixiang, Xu; Fengqi, Wu; Jiai, Xue

    2017-11-01

    The design and development of control system software is important to three-phase induction motor test equipment, which needs to be completely familiar with the test process and the control procedure of test equipment. In this paper, the software is developed according to the national standard (GB/T1032-2005) about three-phase induction motor test method by VB language. The control system and data analysis software and the implement about motor test system are described individually, which has the advantages of high automation and high accuracy.

  5. Software safety - A user's practical perspective

    NASA Technical Reports Server (NTRS)

    Dunn, William R.; Corliss, Lloyd D.

    1990-01-01

    Software safety assurance philosophy and practices at the NASA Ames are discussed. It is shown that, to be safe, software must be error-free. Software developments on two digital flight control systems and two ground facility systems are examined, including the overall system and software organization and function, the software-safety issues, and their resolution. The effectiveness of safety assurance methods is discussed, including conventional life-cycle practices, verification and validation testing, software safety analysis, and formal design methods. It is concluded (1) that a practical software safety technology does not yet exist, (2) that it is unlikely that a set of general-purpose analytical techniques can be developed for proving that software is safe, and (3) that successful software safety-assurance practices will have to take into account the detailed design processes employed and show that the software will execute correctly under all possible conditions.

  6. Defect measurement and analysis of JPL ground software: a case study

    NASA Technical Reports Server (NTRS)

    Powell, John D.; Spagnuolo, John N., Jr.

    2004-01-01

    Ground software systems at JPL must meet high assurance standards while remaining on schedule due to relatively immovable launch dates for spacecraft that will be controlled by such systems. Toward this end, the Software Quality Improvement (SQI) project's Measurement and Benchmarking (M&B) team is collecting and analyzing defect data of JPL ground system software projects to build software defect prediction models. The aim of these models is to improve predictability with regard to software quality activities. Predictive models will quantitatively define typical trends for JPL ground systems as well as Critical Discriminators (CDs) to provide explanations for atypical deviations from the norm at JPL. CDs are software characteristics that can be estimated or foreseen early in a software project's planning. Thus, these CDs will assist in planning for the predicted degree to which software quality activities for a project are likely to deviation from the normal JPL ground system based on pasted experience across the lab.

  7. Customer Avionics Interface Development and Analysis (CAIDA): Software Developer for Avionics Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Sherry L.

    2018-01-01

    The Customer Avionics Interface Development and Analysis (CAIDA) supports the testing of the Launch Control System (LCS), NASA's command and control system for the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and ground support equipment. The objective of the semester-long internship was to support day-to-day operations of CAIDA and help prepare for verification and validation of CAIDA software.

  8. New technologies for supporting real-time on-board software development

    NASA Astrophysics Data System (ADS)

    Kerridge, D.

    1995-03-01

    The next generation of on-board data management systems will be significantly more complex than current designs, and will be required to perform more complex and demanding tasks in software. Improved hardware technology, in the form of the MA31750 radiation hard processor, is one key component in addressing the needs of future embedded systems. However, to complement these hardware advances, improved support for the design and implementation of real-time data management software is now needed. This will help to control the cost and risk assoicated with developing data management software development as it becomes an increasingly significant element within embedded systems. One particular problem with developing embedded software is managing the non-functional requirements in a systematic way. This paper identifies how Logica has exploited recent developments in hard real-time theory to address this problem through the use of new hard real-time analysis and design methods which can be supported by specialized tools. The first stage in transferring this technology from the research domain to industrial application has already been completed. The MA37150 Hard Real-Time Embedded Software Support Environment (HESSE) is a loosely integrated set of hardware and software tools which directly support the process of hard real-time analysis for software targeting the MA31750 processor. With further development, this HESSE promises to provide embedded system developers with software tools which can reduce the risks associated with developing complex hard real-time software. Supported in this way by more sophisticated software methods and tools, it is foreseen that MA31750 based embedded systems can meet the processing needs for the next generation of on-board data management systems.

  9. The analysis of the statistical and historical information gathered during the development of the Shuttle Orbiter Primary Flight Software

    NASA Technical Reports Server (NTRS)

    Simmons, D. B.; Marchbanks, M. P., Jr.; Quick, M. J.

    1982-01-01

    The results of an effort to thoroughly and objectively analyze the statistical and historical information gathered during the development of the Shuttle Orbiter Primary Flight Software are given. The particular areas of interest include cost of the software, reliability of the software, requirements for the software and how the requirements changed during development of the system. Data related to the current version of the software system produced some interesting results. Suggestions are made for the saving of additional data which will allow additional investigation.

  10. State-of-the-Art Resources (SOAR) for Software Vulnerability Detection, Test, and Evaluation

    DTIC Science & Technology

    2014-07-01

    preclude in-depth analysis, and widespread use of a Software -as-a- Service ( SaaS ) model that limits data availability and application to DoD systems...provide mobile application analysis using a Software - as-a- Service ( SaaS ) model. In this case, any software to be analyzed must be sent to the...tools are only available through a SaaS model. The widespread use of a Software -as-a- Service ( SaaS ) model as a sole evaluation model limits data

  11. Real time computer data system for the 40 x 80 ft wind tunnel facility at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Cambra, J. M.; Tolari, G. P.

    1974-01-01

    The wind tunnel realtime computer system is a distributed data gathering system that features a master computer subsystem, a high speed data gathering subsystem, a quick look dynamic analysis and vibration control subsystem, an analog recording back-up subsystem, a pulse code modulation (PCM) on-board subsystem, a communications subsystem, and a transducer excitation and calibration subsystem. The subsystems are married to the master computer through an executive software system and standard hardware and FORTRAN software interfaces. The executive software system has four basic software routines. These are the playback, setup, record, and monitor routines. The standard hardware interfaces along with the software interfaces provide the system with the capability of adapting to new environments.

  12. Research of processes of reception and analysis of dynamic digital medical images in hardware/software complexes used for diagnostics and treatment of cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Karmazikov, Y. V.; Fainberg, E. M.

    2005-06-01

    Work with DICOM compatible equipment integrated into hardware and software systems for medical purposes has been considered. Structures of process of reception and translormation of the data are resulted by the example of digital rentgenography and angiography systems, included in hardware-software complex DIMOL-IK. Algorithms of reception and the analysis of the data are offered. Questions of the further processing and storage of the received data are considered.

  13. NASA software specification and evaluation system design, part 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A survey and analysis of the existing methods, tools and techniques employed in the development of software are presented along with recommendations for the construction of reliable software. Functional designs for software specification language, and the data base verifier are presented.

  14. Tools for Embedded Computing Systems Software

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A workshop was held to assess the state of tools for embedded systems software and to determine directions for tool development. A synopsis of the talk and the key figures of each workshop presentation, together with chairmen summaries, are presented. The presentations covered four major areas: (1) tools and the software environment (development and testing); (2) tools and software requirements, design, and specification; (3) tools and language processors; and (4) tools and verification and validation (analysis and testing). The utility and contribution of existing tools and research results for the development and testing of embedded computing systems software are described and assessed.

  15. CRAX. Cassandra Exoskeleton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, D.G.; Eubanks, L.

    1998-03-01

    This software assists the engineering designer in characterizing the statistical uncertainty in the performance of complex systems as a result of variations in manufacturing processes, material properties, system geometry or operating environment. The software is composed of a graphical user interface that provides the user with easy access to Cassandra uncertainty analysis routines. Together this interface and the Cassandra routines are referred to as CRAX (CassandRA eXoskeleton). The software is flexible enough, that with minor modification, it is able to interface with large modeling and analysis codes such as heat transfer or finite element analysis software. The current version permitsmore » the user to manually input a performance function, the number of random variables and their associated statistical characteristics: density function, mean, coefficients of variation. Additional uncertainity analysis modules are continuously being added to the Cassandra core.« less

  16. Cassandra Exoskeleton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robiinson, David G.

    1999-02-20

    This software assists the engineering designer in characterizing the statistical uncertainty in the performance of complex systems as a result of variations in manufacturing processes, material properties, system geometry or operating environment. The software is composed of a graphical user interface that provides the user with easy access to Cassandra uncertainty analysis routines. Together this interface and the Cassandra routines are referred to as CRAX (CassandRA eXoskeleton). The software is flexible enough, that with minor modification, it is able to interface with large modeling and analysis codes such as heat transfer or finite element analysis software. The current version permitsmore » the user to manually input a performance function, the number of random variables and their associated statistical characteristics: density function, mean, coefficients of variation. Additional uncertainity analysis modules are continuously being added to the Cassandra core.« less

  17. Software Dependability and Safety Evaluations ESA's Initiative

    NASA Astrophysics Data System (ADS)

    Hernek, M.

    ESA has allocated funds for an initiative to evaluate Dependability and Safety methods of Software. The objectives of this initiative are; · More extensive validation of Safety and Dependability techniques for Software · Provide valuable results to improve the quality of the Software thus promoting the application of Dependability and Safety methods and techniques. ESA space systems are being developed according to defined PA requirement specifications. These requirements may be implemented through various design concepts, e.g. redundancy, diversity etc. varying from project to project. Analysis methods (FMECA. FTA, HA, etc) are frequently used during requirements analysis and design activities to assure the correct implementation of system PA requirements. The criticality level of failures, functions and systems is determined and by doing that the critical sub-systems are identified, on which dependability and safety techniques are to be applied during development. Proper performance of the software development requires the development of a technical specification for the products at the beginning of the life cycle. Such technical specification comprises both functional and non-functional requirements. These non-functional requirements address characteristics of the product such as quality, dependability, safety and maintainability. Software in space systems is more and more used in critical functions. Also the trend towards more frequent use of COTS and reusable components pose new difficulties in terms of assuring reliable and safe systems. Because of this, its dependability and safety must be carefully analysed. ESA identified and documented techniques, methods and procedures to ensure that software dependability and safety requirements are specified and taken into account during the design and development of a software system and to verify/validate that the implemented software systems comply with these requirements [R1].

  18. RAD-ADAPT: Software for modelling clonogenic assay data in radiation biology.

    PubMed

    Zhang, Yaping; Hu, Kaiqiang; Beumer, Jan H; Bakkenist, Christopher J; D'Argenio, David Z

    2017-04-01

    We present a comprehensive software program, RAD-ADAPT, for the quantitative analysis of clonogenic assays in radiation biology. Two commonly used models for clonogenic assay analysis, the linear-quadratic model and single-hit multi-target model, are included in the software. RAD-ADAPT uses maximum likelihood estimation method to obtain parameter estimates with the assumption that cell colony count data follow a Poisson distribution. The program has an intuitive interface, generates model prediction plots, tabulates model parameter estimates, and allows automatic statistical comparison of parameters between different groups. The RAD-ADAPT interface is written using the statistical software R and the underlying computations are accomplished by the ADAPT software system for pharmacokinetic/pharmacodynamic systems analysis. The use of RAD-ADAPT is demonstrated using an example that examines the impact of pharmacologic ATM and ATR kinase inhibition on human lung cancer cell line A549 after ionizing radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Usability study of clinical exome analysis software: top lessons learned and recommendations.

    PubMed

    Shyr, Casper; Kushniruk, Andre; Wasserman, Wyeth W

    2014-10-01

    New DNA sequencing technologies have revolutionized the search for genetic disruptions. Targeted sequencing of all protein coding regions of the genome, called exome analysis, is actively used in research-oriented genetics clinics, with the transition to exomes as a standard procedure underway. This transition is challenging; identification of potentially causal mutation(s) amongst ∼10(6) variants requires specialized computation in combination with expert assessment. This study analyzes the usability of user interfaces for clinical exome analysis software. There are two study objectives: (1) To ascertain the key features of successful user interfaces for clinical exome analysis software based on the perspective of expert clinical geneticists, (2) To assess user-system interactions in order to reveal strengths and weaknesses of existing software, inform future design, and accelerate the clinical uptake of exome analysis. Surveys, interviews, and cognitive task analysis were performed for the assessment of two next-generation exome sequence analysis software packages. The subjects included ten clinical geneticists who interacted with the software packages using the "think aloud" method. Subjects' interactions with the software were recorded in their clinical office within an urban research and teaching hospital. All major user interface events (from the user interactions with the packages) were time-stamped and annotated with coding categories to identify usability issues in order to characterize desired features and deficiencies in the user experience. We detected 193 usability issues, the majority of which concern interface layout and navigation, and the resolution of reports. Our study highlights gaps in specific software features typical within exome analysis. The clinicians perform best when the flow of the system is structured into well-defined yet customizable layers for incorporation within the clinical workflow. The results highlight opportunities to dramatically accelerate clinician analysis and interpretation of patient genomic data. We present the first application of usability methods to evaluate software interfaces in the context of exome analysis. Our results highlight how the study of user responses can lead to identification of usability issues and challenges and reveal software reengineering opportunities for improving clinical next-generation sequencing analysis. While the evaluation focused on two distinctive software tools, the results are general and should inform active and future software development for genome analysis software. As large-scale genome analysis becomes increasingly common in healthcare, it is critical that efficient and effective software interfaces are provided to accelerate clinical adoption of the technology. Implications for improved design of such applications are discussed. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Maintaining the Health of Software Monitors

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Rungta, Neha

    2013-01-01

    Software health management (SWHM) techniques complement the rigorous verification and validation processes that are applied to safety-critical systems prior to their deployment. These techniques are used to monitor deployed software in its execution environment, serving as the last line of defense against the effects of a critical fault. SWHM monitors use information from the specification and implementation of the monitored software to detect violations, predict possible failures, and help the system recover from faults. Changes to the monitored software, such as adding new functionality or fixing defects, therefore, have the potential to impact the correctness of both the monitored software and the SWHM monitor. In this work, we describe how the results of a software change impact analysis technique, Directed Incremental Symbolic Execution (DiSE), can be applied to monitored software to identify the potential impact of the changes on the SWHM monitor software. The results of DiSE can then be used by other analysis techniques, e.g., testing, debugging, to help preserve and improve the integrity of the SWHM monitor as the monitored software evolves.

  1. Software Intensive Systems Data Quality and Estimation Research in Support of Future Defense Cost Analysis

    DTIC Science & Technology

    2012-03-13

    Legacy Maintenance and Brownfield Development 6.6.6 Agile and Kanban Development 6.6.7 Putting It All Together at the Large-Project or Enterprise Level...NDI)-intensive systems Ultrahigh software system assurance; Legacy maintenance and brownfield development; and Agile and kanban development. This...be furnished by NDI components or may need to be developed for special systems. Legacy Maintenance and Brownfield Development Fewer and fewer software

  2. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    NASA Technical Reports Server (NTRS)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  3. Software reliability models for fault-tolerant avionics computers and related topics

    NASA Technical Reports Server (NTRS)

    Miller, Douglas R.

    1987-01-01

    Software reliability research is briefly described. General research topics are reliability growth models, quality of software reliability prediction, the complete monotonicity property of reliability growth, conceptual modelling of software failure behavior, assurance of ultrahigh reliability, and analysis techniques for fault-tolerant systems.

  4. Theoretical and software considerations for general dynamic analysis using multilevel substructured models

    NASA Technical Reports Server (NTRS)

    Schmidt, R. J.; Dodds, R. H., Jr.

    1985-01-01

    The dynamic analysis of complex structural systems using the finite element method and multilevel substructured models is presented. The fixed-interface method is selected for substructure reduction because of its efficiency, accuracy, and adaptability to restart and reanalysis. This method is extended to reduction of substructures which are themselves composed of reduced substructures. The implementation and performance of the method in a general purpose software system is emphasized. Solution algorithms consistent with the chosen data structures are presented. It is demonstrated that successful finite element software requires the use of software executives to supplement the algorithmic language. The complexity of the implementation of restart and reanalysis porcedures illustrates the need for executive systems to support the noncomputational aspects of the software. It is shown that significant computational efficiencies can be achieved through proper use of substructuring and reduction technbiques without sacrificing solution accuracy. The restart and reanalysis capabilities and the flexible procedures for multilevel substructured modeling gives economical yet accurate analyses of complex structural systems.

  5. Analysis of Variance: What Is Your Statistical Software Actually Doing?

    ERIC Educational Resources Information Center

    Li, Jian; Lomax, Richard G.

    2011-01-01

    Users assume statistical software packages produce accurate results. In this article, the authors systematically examined Statistical Package for the Social Sciences (SPSS) and Statistical Analysis System (SAS) for 3 analysis of variance (ANOVA) designs, mixed-effects ANOVA, fixed-effects analysis of covariance (ANCOVA), and nested ANOVA. For each…

  6. Development of a New VLBI Data Analysis Software

    NASA Technical Reports Server (NTRS)

    Bolotin, Sergei; Gipson, John M.; MacMillan, Daniel S.

    2010-01-01

    We present an overview of a new VLBI analysis software under development at NASA GSFC. The new software will replace CALC/SOLVE and many related utility programs. It will have the capabilities of the current system as well as incorporate new models and data analysis techniques. In this paper we give a conceptual overview of the new software. We formulate the main goals of the software. The software should be flexible and modular to implement models and estimation techniques that currently exist or will appear in future. On the other hand it should be reliable and possess production quality for processing standard VLBI sessions. Also, it needs to be capable of processing observations from a fully deployed network of VLBI2010 stations in a reasonable time. We describe the software development process and outline the software architecture.

  7. A Software Tool for Integrated Optical Design Analysis

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)

    2001-01-01

    Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.

  8. A measurement system for large, complex software programs

    NASA Technical Reports Server (NTRS)

    Rone, Kyle Y.; Olson, Kitty M.; Davis, Nathan E.

    1994-01-01

    This paper describes measurement systems required to forecast, measure, and control activities for large, complex software development and support programs. Initial software cost and quality analysis provides the foundation for meaningful management decisions as a project evolves. In modeling the cost and quality of software systems, the relationship between the functionality, quality, cost, and schedule of the product must be considered. This explicit relationship is dictated by the criticality of the software being developed. This balance between cost and quality is a viable software engineering trade-off throughout the life cycle. Therefore, the ability to accurately estimate the cost and quality of software systems is essential to providing reliable software on time and within budget. Software cost models relate the product error rate to the percent of the project labor that is required for independent verification and validation. The criticality of the software determines which cost model is used to estimate the labor required to develop the software. Software quality models yield an expected error discovery rate based on the software size, criticality, software development environment, and the level of competence of the project and developers with respect to the processes being employed.

  9. Selection of software for mechanical engineering undergraduates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheah, C. T.; Yin, C. S.; Halim, T.

    A major problem with the undergraduate mechanical course is the limited exposure of students to software packages coupled with the long learning curve on the existing software packages. This work proposes the use of appropriate software packages for the entire mechanical engineering curriculum to ensure students get sufficient exposure real life design problems. A variety of software packages are highlighted as being suitable for undergraduate work in mechanical engineering, e.g. simultaneous non-linear equations; uncertainty analysis; 3-D modeling software with the FEA; analysis tools for the solution of problems in thermodynamics, fluid mechanics, mechanical system design, and solid mechanics.

  10. FAILSAFE Health Management for Embedded Systems

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory A.; Wagner, David A.; Wen, Hui Ying; Barry, Matthew

    2010-01-01

    The FAILSAFE project is developing concepts and prototype implementations for software health management in mission- critical, real-time embedded systems. The project unites features of the industry-standard ARINC 653 Avionics Application Software Standard Interface and JPL s Mission Data System (MDS) technology (see figure). The ARINC 653 standard establishes requirements for the services provided by partitioned, real-time operating systems. The MDS technology provides a state analysis method, canonical architecture, and software framework that facilitates the design and implementation of software-intensive complex systems. The MDS technology has been used to provide the health management function for an ARINC 653 application implementation. In particular, the focus is on showing how this combination enables reasoning about, and recovering from, application software problems.

  11. A CAMAC-VME-Macintosh data acquisition system for nuclear experiments

    NASA Astrophysics Data System (ADS)

    Anzalone, A.; Giustolisi, F.

    1989-10-01

    A multiprocessor system for data acquisition and analysis in low-energy nuclear physics has been realized. The system is built around CAMAC, the VMEbus, and the Macintosh PC. Multiprocessor software has been developed, using RTF, MACsys, and CERN cross-software. The execution of several programs that run on several VME CPUs and on an external PC is coordinated by a mailbox protocol. No operating system is used on the VME CPUs. The hardware, software, and system performance are described.

  12. A system for automatic evaluation of simulation software

    NASA Technical Reports Server (NTRS)

    Ryan, J. P.; Hodges, B. C.

    1976-01-01

    Within the field of computer software, simulation and verification are complementary processes. Simulation methods can be used to verify software by performing variable range analysis. More general verification procedures, such as those described in this paper, can be implicitly, viewed as attempts at modeling the end-product software. From software requirement methodology, each component of the verification system has some element of simulation to it. Conversely, general verification procedures can be used to analyze simulation software. A dynamic analyzer is described which can be used to obtain properly scaled variables for an analog simulation, which is first digitally simulated. In a similar way, it is thought that the other system components and indeed the whole system itself have the potential of being effectively used in a simulation environment.

  13. Creating and Manipulating Formalized Software Architectures to Support a Domain-Oriented Application Composition System

    DTIC Science & Technology

    1992-12-01

    OOD) Paradigm ...... .... 2-7 2.4.3 Feature-Oriented Domain Analysis ( FODA ) ..... 2-7 2.4.4 Hierarchical Software Systems .................. 2-7...domain analysis ( FODA ) is one approach to domain analysis whose primary goal is to make domain products reusable (20:47). A domain model describes 2-5...7), among others. 2.4.3 Feature-Oriented Domain Analysis ( FODA ) Kang and others used the com- plete FODA methodology to successfully develop a window

  14. RT 6 - Software Intensive Systems Data Quality and Estimation Research in Support of Future Defense Cost Analysis

    DTIC Science & Technology

    2012-03-13

    Brownfield Development 6.6.6 Agile and Kanban Development 6.6.7 Putting It All Together at the Large-Project or Enterprise Level 6.7 References 7...Ultrahigh software system assurance; Legacy maintenance and brownfield development; and Agile and kanban development. This chapter summarizes each...components or may need to be developed for special systems. Legacy Maintenance and Brownfield Development Fewer and fewer software-intensive systems have

  15. A near-infrared fluorescence-based surgical navigation system imaging software for sentinel lymph node detection

    NASA Astrophysics Data System (ADS)

    Ye, Jinzuo; Chi, Chongwei; Zhang, Shuang; Ma, Xibo; Tian, Jie

    2014-02-01

    Sentinel lymph node (SLN) in vivo detection is vital in breast cancer surgery. A new near-infrared fluorescence-based surgical navigation system (SNS) imaging software, which has been developed by our research group, is presented for SLN detection surgery in this paper. The software is based on the fluorescence-based surgical navigation hardware system (SNHS) which has been developed in our lab, and is designed specifically for intraoperative imaging and postoperative data analysis. The surgical navigation imaging software consists of the following software modules, which mainly include the control module, the image grabbing module, the real-time display module, the data saving module and the image processing module. And some algorithms have been designed to achieve the performance of the software, for example, the image registration algorithm based on correlation matching. Some of the key features of the software include: setting the control parameters of the SNS; acquiring, display and storing the intraoperative imaging data in real-time automatically; analysis and processing of the saved image data. The developed software has been used to successfully detect the SLNs in 21 cases of breast cancer patients. In the near future, we plan to improve the software performance and it will be extensively used for clinical purpose.

  16. Enhancing requirements engineering for patient registry software systems with evidence-based components.

    PubMed

    Lindoerfer, Doris; Mansmann, Ulrich

    2017-07-01

    Patient registries are instrumental for medical research. Often their structures are complex and their implementations use composite software systems to meet the wide spectrum of challenges. Commercial and open-source systems are available for registry implementation, but many research groups develop their own systems. Methodological approaches in the selection of software as well as the construction of proprietary systems are needed. We propose an evidence-based checklist, summarizing essential items for patient registry software systems (CIPROS), to accelerate the requirements engineering process. Requirements engineering activities for software systems follow traditional software requirements elicitation methods, general software requirements specification (SRS) templates, and standards. We performed a multistep procedure to develop a specific evidence-based CIPROS checklist: (1) A systematic literature review to build a comprehensive collection of technical concepts, (2) a qualitative content analysis to define a catalogue of relevant criteria, and (3) a checklist to construct a minimal appraisal standard. CIPROS is based on 64 publications and covers twelve sections with a total of 72 items. CIPROS also defines software requirements. Comparing CIPROS with traditional software requirements elicitation methods, SRS templates and standards show a broad consensus but differences in issues regarding registry-specific aspects. Using an evidence-based approach to requirements engineering for registry software adds aspects to the traditional methods and accelerates the software engineering process for registry software. The method we used to construct CIPROS serves as a potential template for creating evidence-based checklists in other fields. The CIPROS list supports developers in assessing requirements for existing systems and formulating requirements for their own systems, while strengthening the reporting of patient registry software system descriptions. It may be a first step to create standards for patient registry software system assessments. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Software Fault Tolerance: A Tutorial

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2000-01-01

    Because of our present inability to produce error-free software, software fault tolerance is and will continue to be an important consideration in software systems. The root cause of software design errors is the complexity of the systems. Compounding the problems in building correct software is the difficulty in assessing the correctness of software for highly complex systems. After a brief overview of the software development processes, we note how hard-to-detect design faults are likely to be introduced during development and how software faults tend to be state-dependent and activated by particular input sequences. Although component reliability is an important quality measure for system level analysis, software reliability is hard to characterize and the use of post-verification reliability estimates remains a controversial issue. For some applications software safety is more important than reliability, and fault tolerance techniques used in those applications are aimed at preventing catastrophes. Single version software fault tolerance techniques discussed include system structuring and closure, atomic actions, inline fault detection, exception handling, and others. Multiversion techniques are based on the assumption that software built differently should fail differently and thus, if one of the redundant versions fails, it is expected that at least one of the other versions will provide an acceptable output. Recovery blocks, N-version programming, and other multiversion techniques are reviewed.

  18. Software For Graphical Representation Of A Network

    NASA Technical Reports Server (NTRS)

    Mcallister, R. William; Mclellan, James P.

    1993-01-01

    System Visualization Tool (SVT) computer program developed to provide systems engineers with means of graphically representing networks. Generates diagrams illustrating structures and states of networks defined by users. Provides systems engineers powerful tool simplifing analysis of requirements and testing and maintenance of complex software-controlled systems. Employs visual models supporting analysis of chronological sequences of requirements, simulation data, and related software functions. Applied to pneumatic, hydraulic, and propellant-distribution networks. Used to define and view arbitrary configurations of such major hardware components of system as propellant tanks, valves, propellant lines, and engines. Also graphically displays status of each component. Advantage of SVT: utilizes visual cues to represent configuration of each component within network. Written in Turbo Pascal(R), version 5.0.

  19. Development of a 32-bit UNIX-based ELAS workstation

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A.; Pearson, Ronnie W.; Cheng, Thomas D.

    1987-01-01

    A mini/microcomputer UNIX-based image analysis workstation has been designed and is being implemented to use the Earth Resources Laboratory Applications Software (ELAS). The hardware system includes a MASSCOMP 5600 computer, which is a 32-bit UNIX-based system (compatible with AT&T System V and Berkeley 4.2 BSD operating system), a floating point accelerator, a 474-megabyte fixed disk, a tri-density magnetic tape drive, and an 1152 by 910 by 12-plane color graphics/image interface. The software conversion includes reconfiguring the ELAs driver Master Task, recompiling and then testing the converted application modules. This hardware and software configuration is a self-sufficient image analysis workstation which can be used as a stand-alone system, or networked with other compatible workstations.

  20. Kubios HRV--heart rate variability analysis software.

    PubMed

    Tarvainen, Mika P; Niskanen, Juha-Pekka; Lipponen, Jukka A; Ranta-Aho, Perttu O; Karjalainen, Pasi A

    2014-01-01

    Kubios HRV is an advanced and easy to use software for heart rate variability (HRV) analysis. The software supports several input data formats for electrocardiogram (ECG) data and beat-to-beat RR interval data. It includes an adaptive QRS detection algorithm and tools for artifact correction, trend removal and analysis sample selection. The software computes all the commonly used time-domain and frequency-domain HRV parameters and several nonlinear parameters. There are several adjustable analysis settings through which the analysis methods can be optimized for different data. The ECG derived respiratory frequency is also computed, which is important for reliable interpretation of the analysis results. The analysis results can be saved as an ASCII text file (easy to import into MS Excel or SPSS), Matlab MAT-file, or as a PDF report. The software is easy to use through its compact graphical user interface. The software is available free of charge for Windows and Linux operating systems at http://kubios.uef.fi. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Ground Systems Development Environment (GSDE) interface requirements analysis

    NASA Technical Reports Server (NTRS)

    Church, Victor E.; Philips, John; Hartenstein, Ray; Bassman, Mitchell; Ruskin, Leslie; Perez-Davila, Alfredo

    1991-01-01

    A set of procedural and functional requirements are presented for the interface between software development environments and software integration and test systems used for space station ground systems software. The requirements focus on the need for centralized configuration management of software as it is transitioned from development to formal, target based testing. This concludes the GSDE Interface Requirements study. A summary is presented of findings concerning the interface itself, possible interface and prototyping directions for further study, and results of the investigation of the Cronus distributed applications environment.

  2. System software for the finite element machine

    NASA Technical Reports Server (NTRS)

    Crockett, T. W.; Knott, J. D.

    1985-01-01

    The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested.

  3. The TAME Project: Towards improvement-oriented software environments

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Rombach, H. Dieter

    1988-01-01

    Experience from a dozen years of analyzing software engineering processes and products is summarized as a set of software engineering and measurement principles that argue for software engineering process models that integrate sound planning and analysis into the construction process. In the TAME (Tailoring A Measurement Environment) project at the University of Maryland, such an improvement-oriented software engineering process model was developed that uses the goal/question/metric paradigm to integrate the constructive and analytic aspects of software development. The model provides a mechanism for formalizing the characterization and planning tasks, controlling and improving projects based on quantitative analysis, learning in a deeper and more systematic way about the software process and product, and feeding the appropriate experience back into the current and future projects. The TAME system is an instantiation of the TAME software engineering process model as an ISEE (integrated software engineering environment). The first in a series of TAME system prototypes has been developed. An assessment of experience with this first limited prototype is presented including a reassessment of its initial architecture.

  4. Impact of new computing systems on computational mechanics and flight-vehicle structures technology

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Storaasli, O. O.; Fulton, R. E.

    1984-01-01

    Advances in computer technology which may have an impact on computational mechanics and flight vehicle structures technology were reviewed. The characteristics of supersystems, highly parallel systems, and small systems are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario for future hardware/software environment and engineering analysis systems is presented. Research areas with potential for improving the effectiveness of analysis methods in the new environment are identified.

  5. Acoustic Emission Analysis Applet (AEAA) Software

    NASA Technical Reports Server (NTRS)

    Nichols, Charles T.; Roth, Don J.

    2013-01-01

    NASA Glenn Research and NASA White Sands Test Facility have developed software supporting an automated pressure vessel structural health monitoring (SHM) system based on acoustic emissions (AE). The software, referred to as the Acoustic Emission Analysis Applet (AEAA), provides analysts with a tool that can interrogate data collected on Digital Wave Corp. and Physical Acoustics Corp. software using a wide spectrum of powerful filters and charts. This software can be made to work with any data once the data format is known. The applet will compute basic AE statistics, and statistics as a function of time and pressure (see figure). AEAA provides value added beyond the analysis provided by the respective vendors' analysis software. The software can handle data sets of unlimited size. A wide variety of government and commercial applications could benefit from this technology, notably requalification and usage tests for compressed gas and hydrogen-fueled vehicles. Future enhancements will add features similar to a "check engine" light on a vehicle. Once installed, the system will ultimately be used to alert International Space Station crewmembers to critical structural instabilities, but will have little impact to missions otherwise. Diagnostic information could then be transmitted to experienced technicians on the ground in a timely manner to determine whether pressure vessels have been impacted, are structurally unsound, or can be safely used to complete the mission.

  6. Software Reliability, Measurement, and Testing. Volume 2. Guidebook for Software Reliability Measurement and Testing

    DTIC Science & Technology

    1992-04-01

    contractor’s existing data collection, analysis and corrective action system shall be utilized, with modification only as necessary to meet the...either from test or from analysis of field data . The procedures of MIL-STD-756B assume that the reliability of a 18 DEFINE IDENTIFY SOFTWARE LIFE CYCLE...to generate sufficient data to report a statistically valid reliability figure for a class of software. Casual data gathering accumulates data more

  7. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  8. On Quality and Measures in Software Engineering

    ERIC Educational Resources Information Center

    Bucur, Ion I.

    2006-01-01

    Complexity measures are mainly used to estimate vital information about reliability and maintainability of software systems from regular analysis of the source code. Such measures also provide constant feedback during a software project to assist the control of the development procedure. There exist several models to classify a software product's…

  9. Software Project Management and Measurement on the World-Wide-Web (WWW)

    NASA Technical Reports Server (NTRS)

    Callahan, John; Ramakrishnan, Sudhaka

    1996-01-01

    We briefly describe a system for forms-based, work-flow management that helps members of a software development team overcome geographical barriers to collaboration. Our system, called the Web Integrated Software Environment (WISE), is implemented as a World-Wide-Web service that allows for management and measurement of software development projects based on dynamic analysis of change activity in the workflow. WISE tracks issues in a software development process, provides informal communication between the users with different roles, supports to-do lists, and helps in software process improvement. WISE minimizes the time devoted to metrics collection and analysis by providing implicit delivery of messages between users based on the content of project documents. The use of a database in WISE is hidden from the users who view WISE as maintaining a personal 'to-do list' of tasks related to the many projects on which they may play different roles.

  10. ESSAA: Embedded system safety analysis assistant

    NASA Technical Reports Server (NTRS)

    Wallace, Peter; Holzer, Joseph; Guarro, Sergio; Hyatt, Larry

    1987-01-01

    The Embedded System Safety Analysis Assistant (ESSAA) is a knowledge-based tool that can assist in identifying disaster scenarios. Imbedded software issues hazardous control commands to the surrounding hardware. ESSAA is intended to work from outputs to inputs, as a complement to simulation and verification methods. Rather than treating the software in isolation, it examines the context in which the software is to be deployed. Given a specified disasterous outcome, ESSAA works from a qualitative, abstract model of the complete system to infer sets of environmental conditions and/or failures that could cause a disasterous outcome. The scenarios can then be examined in depth for plausibility using existing techniques.

  11. Space Station communications and tracking systems modeling and RF link simulation

    NASA Technical Reports Server (NTRS)

    Tsang, Chit-Sang; Chie, Chak M.; Lindsey, William C.

    1986-01-01

    In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort.

  12. Reuseable Objects Software Environment (ROSE): Introduction to Air Force Software Reuse Workshop

    NASA Technical Reports Server (NTRS)

    Cottrell, William L.

    1994-01-01

    The Reusable Objects Software Environment (ROSE) is a common, consistent, consolidated implementation of software functionality using modern object oriented software engineering including designed-in reuse and adaptable requirements. ROSE is designed to minimize abstraction and reduce complexity. A planning model for the reverse engineering of selected objects through object oriented analysis is depicted. Dynamic and functional modeling are used to develop a system design, the object design, the language, and a database management system. The return on investment for a ROSE pilot program and timelines are charted.

  13. Army-NASA aircrew/aircraft integration program: Phase 4 A(3)I Man-Machine Integration Design and Analysis System (MIDAS) software detailed design document

    NASA Technical Reports Server (NTRS)

    Banda, Carolyn; Bushnell, David; Chen, Scott; Chiu, Alex; Constantine, Betsy; Murray, Jerry; Neukom, Christian; Prevost, Michael; Shankar, Renuka; Staveland, Lowell

    1991-01-01

    The Man-Machine Integration Design and Analysis System (MIDAS) is an integrated suite of software components that constitutes a prototype workstation to aid designers in applying human factors principles to the design of complex human-machine systems. MIDAS is intended to be used at the very early stages of conceptual design to provide an environment wherein designers can use computational representations of the crew station and operator, instead of hardware simulators and man-in-the-loop studies, to discover problems and ask 'what if' questions regarding the projected mission, equipment, and environment. This document is the Software Product Specification for MIDAS. Introductory descriptions of the processing requirements, hardware/software environment, structure, I/O, and control are given in the main body of the document for the overall MIDAS system, with detailed discussion of the individual modules included in Annexes A-J.

  14. Risk-Significant Adverse Condition Awareness Strengthens Assurance of Fault Management Systems

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda

    2017-01-01

    As spaceflight systems increase in complexity, Fault Management (FM) systems are ranked high in risk-based assessment of software criticality, emphasizing the importance of establishing highly competent domain expertise to provide assurance. Adverse conditions (ACs) and specific vulnerabilities encountered by safety- and mission-critical software systems have been identified through efforts to reduce the risk posture of software-intensive NASA missions. Acknowledgement of potential off-nominal conditions and analysis to determine software system resiliency are important aspects of hazard analysis and FM. A key component of assuring FM is an assessment of how well software addresses susceptibility to failure through consideration of ACs. Focus on significant risk predicted through experienced analysis conducted at the NASA Independent Verification & Validation (IV&V) Program enables the scoping of effective assurance strategies with regard to overall asset protection of complex spaceflight as well as ground systems. Research efforts sponsored by NASAs Office of Safety and Mission Assurance (OSMA) defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs and allowing queries based on project, mission type, domain/component, causal fault, and other key characteristics. Vulnerability in off-nominal situations, architectural design weaknesses, and unexpected or undesirable system behaviors in reaction to faults are curtailed with the awareness of ACs and risk-significant scenarios modeled for analysts through this database. Integration within the Enterprise Architecture at NASA IV&V enables interfacing with other tools and datasets, technical support, and accessibility across the Agency. This paper discusses the development of an improved workflow process utilizing this database for adaptive, risk-informed FM assurance that critical software systems will safely and securely protect against faults and respond to ACs in order to achieve successful missions.

  15. Risk-Significant Adverse Condition Awareness Strengthens Assurance of Fault Management Systems

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda

    2017-01-01

    As spaceflight systems increase in complexity, Fault Management (FM) systems are ranked high in risk-based assessment of software criticality, emphasizing the importance of establishing highly competent domain expertise to provide assurance. Adverse conditions (ACs) and specific vulnerabilities encountered by safety- and mission-critical software systems have been identified through efforts to reduce the risk posture of software-intensive NASA missions. Acknowledgement of potential off-nominal conditions and analysis to determine software system resiliency are important aspects of hazard analysis and FM. A key component of assuring FM is an assessment of how well software addresses susceptibility to failure through consideration of ACs. Focus on significant risk predicted through experienced analysis conducted at the NASA Independent Verification Validation (IVV) Program enables the scoping of effective assurance strategies with regard to overall asset protection of complex spaceflight as well as ground systems. Research efforts sponsored by NASA's Office of Safety and Mission Assurance defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs and allowing queries based on project, mission type, domaincomponent, causal fault, and other key characteristics. Vulnerability in off-nominal situations, architectural design weaknesses, and unexpected or undesirable system behaviors in reaction to faults are curtailed with the awareness of ACs and risk-significant scenarios modeled for analysts through this database. Integration within the Enterprise Architecture at NASA IVV enables interfacing with other tools and datasets, technical support, and accessibility across the Agency. This paper discusses the development of an improved workflow process utilizing this database for adaptive, risk-informed FM assurance that critical software systems will safely and securely protect against faults and respond to ACs in order to achieve successful missions.

  16. Development of the Free-space Optical Communications Analysis Software (FOCAS)

    NASA Technical Reports Server (NTRS)

    Jeganathan, M.; Mecherle, G.; Lesh, J.

    1998-01-01

    The Free-space Optical Communications Analysis Software (FOCAS) was developed at the Jet Propulsion Laboratory (JPL) to provide mission planners, systems engineers and communications engineers with an easy to use tool to analyze optical communications link.

  17. ETICS: the international software engineering service for the grid

    NASA Astrophysics Data System (ADS)

    Meglio, A. D.; Bégin, M.-E.; Couvares, P.; Ronchieri, E.; Takacs, E.

    2008-07-01

    The ETICS system is a distributed software configuration, build and test system designed to fulfil the needs of improving the quality, reliability and interoperability of distributed software in general and grid software in particular. The ETICS project is a consortium of five partners (CERN, INFN, Engineering Ingegneria Informatica, 4D Soft and the University of Wisconsin-Madison). The ETICS service consists of a build and test job execution system based on the Metronome software and an integrated set of web services and software engineering tools to design, maintain and control build and test scenarios. The ETICS system allows taking into account complex dependencies among applications and middleware components and provides a rich environment to perform static and dynamic analysis of the software and execute deployment, system and interoperability tests. This paper gives an overview of the system architecture and functionality set and then describes how the EC-funded EGEE, DILIGENT and OMII-Europe projects are using the software engineering services to build, validate and distribute their software. Finally a number of significant use and test cases will be described to show how ETICS can be used in particular to perform interoperability tests of grid middleware using the grid itself.

  18. Integrating automated structured analysis and design with Ada programming support environments

    NASA Technical Reports Server (NTRS)

    Hecht, Alan; Simmons, Andy

    1986-01-01

    Ada Programming Support Environments (APSE) include many powerful tools that address the implementation of Ada code. These tools do not address the entire software development process. Structured analysis is a methodology that addresses the creation of complete and accurate system specifications. Structured design takes a specification and derives a plan to decompose the system subcomponents, and provides heuristics to optimize the software design to minimize errors and maintenance. It can also produce the creation of useable modules. Studies have shown that most software errors result from poor system specifications, and that these errors also become more expensive to fix as the development process continues. Structured analysis and design help to uncover error in the early stages of development. The APSE tools help to insure that the code produced is correct, and aid in finding obscure coding errors. However, they do not have the capability to detect errors in specifications or to detect poor designs. An automated system for structured analysis and design TEAMWORK, which can be integrated with an APSE to support software systems development from specification through implementation is described. These tools completement each other to help developers improve quality and productivity, as well as to reduce development and maintenance costs. Complete system documentation and reusable code also resultss from the use of these tools. Integrating an APSE with automated tools for structured analysis and design provide capabilities and advantages beyond those realized with any of these systems used by themselves.

  19. Reliability, Safety and Error Recovery for Advanced Control Software

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2003-01-01

    For long-duration automated operation of regenerative life support systems in space environments, there is a need for advanced integration and control systems that are significantly more reliable and safe, and that support error recovery and minimization of operational failures. This presentation outlines some challenges of hazardous space environments and complex system interactions that can lead to system accidents. It discusses approaches to hazard analysis and error recovery for control software and challenges of supporting effective intervention by safety software and the crew.

  20. Software For Design Of Life-Support Systems

    NASA Technical Reports Server (NTRS)

    Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.

    1991-01-01

    Design Assistant Workstation (DAWN) computer program is prototype of expert software system for analysis and design of regenerative, physical/chemical life-support systems that revitalize air, reclaim water, produce food, and treat waste. Incorporates both conventional software for quantitative mathematical modeling of physical, chemical, and biological processes and expert system offering user stored knowledge about materials and processes. Constructs task tree as it leads user through simulated process, offers alternatives, and indicates where alternative not feasible. Also enables user to jump from one design level to another.

  1. Technology Transition Pull: A Case Study of Rate Monotonic Analysis (Part 2).

    DTIC Science & Technology

    1995-04-01

    met in software-intensive real - time systems . RMA allows engineers to under- stand and predict the timing behavior of real-time software to a degree...not previously possible. The Rate Monotonic Analysis for Real - Time Systems (RMARTS) Project at the SEI has dem- onstrated how to design, implement...troubleshoot, and maintain real - time systems using RMA. From 1987-1992, the project worked to develop the technology and encourage its widespread

  2. Space shuttle orbiter avionics software: Post review report for the entry FACI (First Article Configuration Inspection). [including orbital flight tests integrated system

    NASA Technical Reports Server (NTRS)

    Markos, H.

    1978-01-01

    Status of the computer programs dealing with space shuttle orbiter avionics is reported. Specific topics covered include: delivery status; SSW software; SM software; DL software; GNC software; level 3/4 testing; level 5 testing; performance analysis, SDL readiness for entry first article configuration inspection; and verification assessment.

  3. WISE: Automated support for software project management and measurement. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Sudhakar

    1995-01-01

    One important aspect of software development and IV&V is measurement. Unless a software development effort is measured in some way, it is difficult to judge the effectiveness of current efforts and predict future performances. Collection of metrics and adherence to a process are difficult tasks in a software project. Change activity is a powerful indicator of project status. Automated systems that can handle change requests, issues, and other process documents provide an excellent platform for tracking the status of the project. A World Wide Web based architecture is developed for (a) making metrics collection an implicit part of the software process, (b) providing metric analysis dynamically, (c) supporting automated tools that can complement current practices of in-process improvement, and (d) overcoming geographical barrier. An operational system (WISE) instantiates this architecture allowing for the improvement of software process in a realistic environment. The tool tracks issues in software development process, provides informal communication between the users with different roles, supports to-do lists (TDL), and helps in software process improvement. WISE minimizes the time devoted to metrics collection, analysis, and captures software change data. Automated tools like WISE focus on understanding and managing the software process. The goal is improvement through measurement.

  4. Second Annual Conference on Astronomical Data Analysis Software and Systems. Abstracts

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Abstracts from the conference are presented. The topics covered include the following: next generation software systems and languages; databases, catalogs, and archives; user interfaces/visualization; real-time data acquisition/scheduling; and IRAF/STSDAS/PROS status reports.

  5. Designing Real-Time Systems in Ada (Trademark).

    DTIC Science & Technology

    1986-01-01

    e a. T * .K Ada .e 6 4J (FINAL REPORT) Real - Time Systems in Ada* Abstract Real-time software differs from other kinds of software in the sense that it...1-2 1.2.2 Functional Focus ...... ................ 1-2 1.3 ROLE OF ADA IN REAL - TIME SYSTEMS DESIGN. ..... 1-3 1.4 SCOPE OF THIS...MODELS OF REAL TIME SYSTEMS 8.1 REQUIREMENTS FOR TEMPORAL BEHAVIOR ANALYSIS . 8-1 8.2 METHODS OF TEMPORAL BEHAVIOR ANALYSIS.... ....... 8-4 8.3

  6. Information Extraction for System-Software Safety Analysis: Calendar Year 2008 Year-End Report

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2009-01-01

    This annual report describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.

  7. LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.

    2017-08-01

    MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.

  8. Development of MATLAB software to control data acquisition from a multichannel systems multi-electrode array.

    PubMed

    Messier, Erik

    2016-08-01

    A Multichannel Systems (MCS) microelectrode array data acquisition (DAQ) unit is used to collect multichannel electrograms (EGM) from a Langendorff perfused rabbit heart system to study sudden cardiac death (SCD). MCS provides software through which data being processed by the DAQ unit can be displayed and saved, but this software's combined utility with MATLAB is not very effective. MCSs software stores recorded EGM data in a MathCad (MCD) format, which is then converted to a text file format. These text files are very large, and it is therefore very time consuming to import the EGM data into MATLAB for real-time analysis. Therefore, customized MATLAB software was developed to control the acquisition of data from the MCS DAQ unit, and provide specific laboratory accommodations for this study of SCD. The developed DAQ unit control software will be able to accurately: provide real time display of EGM signals; record and save EGM signals in MATLAB in a desired format; and produce real time analysis of the EGM signals; all through an intuitive GUI.

  9. Generalized Support Software: Domain Analysis and Implementation

    NASA Technical Reports Server (NTRS)

    Stark, Mike; Seidewitz, Ed

    1995-01-01

    For the past five years, the Flight Dynamics Division (FDD) at NASA's Goddard Space Flight Center has been carrying out a detailed domain analysis effort and is now beginning to implement Generalized Support Software (GSS) based on this analysis. GSS is part of the larger Flight Dynamics Distributed System (FDDS), and is designed to run under the FDDS User Interface / Executive (UIX). The FDD is transitioning from a mainframe based environment to systems running on engineering workstations. The GSS will be a library of highly reusable components that may be configured within the standard FDDS architecture to quickly produce low-cost satellite ground support systems. The estimates for the first release is that this library will contain approximately 200,000 lines of code. The main driver for developing generalized software is development cost and schedule improvement. The goal is to ultimately have at least 80 percent of all software required for a spacecraft mission (within the domain supported by the GSS) to be configured from the generalized components.

  10. Software Design Improvements. Part 1; Software Benefits and Limitations

    NASA Technical Reports Server (NTRS)

    Lalli, Vincent R.; Packard, Michael H.; Ziemianski, Tom

    1997-01-01

    Computer hardware and associated software have been used for many years to process accounting information, to analyze test data and to perform engineering analysis. Now computers and software also control everything from automobiles to washing machines and the number and type of applications are growing at an exponential rate. The size of individual program has shown similar growth. Furthermore, software and hardware are used to monitor and/or control potentially dangerous products and safety-critical systems. These uses include everything from airplanes and braking systems to medical devices and nuclear plants. The question is: how can this hardware and software be made more reliable? Also, how can software quality be improved? What methodology needs to be provided on large and small software products to improve the design and how can software be verified?

  11. [Development of Hospital Equipment Maintenance Information System].

    PubMed

    Zhou, Zhixin

    2015-11-01

    Hospital equipment maintenance information system plays an important role in improving medical treatment quality and efficiency. By requirement analysis of hospital equipment maintenance, the system function diagram is drawed. According to analysis of input and output data, tables and reports in connection with equipment maintenance process, relationships between entity and attribute is found out, and E-R diagram is drawed and relational database table is established. Software development should meet actual process requirement of maintenance and have a friendly user interface and flexible operation. The software can analyze failure cause by statistical analysis.

  12. Experience with case tools in the design of process-oriented software

    NASA Astrophysics Data System (ADS)

    Novakov, Ognian; Sicard, Claude-Henri

    1994-12-01

    In Accelerator systems such as the CERN PS complex, process equipment has a life time which may exceed the typical life cycle of its related software. Taking into account the variety of such equipment, it is important to keep the analysis and design of the software in a system-independent form. This paper discusses the experience gathered in using commercial CASE tools for analysis, design and reverse engineering of different process-oriented software modules, with a principal emphasis on maintaining the initial analysis in a standardized form. Such tools have been in existence for several years, but this paper shows that they are not fully adapted to our needs. In particular, the paper stresses the problems of integrating such a tool into an existing data-base-dependent development chain, the lack of real-time simulation tools and of Object-Oriented concepts in existing commercial packages. Finally, the paper gives a broader view of software engineering needs in our particular context.

  13. ISS Propulsion Module Crew Systems Interface Analysis in the Intelligent Synthesis Environment

    NASA Technical Reports Server (NTRS)

    Chen, Di-Wen

    1999-01-01

    ERGO, a human modeling software for ergonomic assessment and task analysis, was used for the crew systems interface analysis of the International Space Station (ISS) Propulsion Module (PM). The objective of analysis was to alleviate passageway size concerns. Three basic passageway configuration concepts: (1) 45" clear passageway without centerline offset (2) 50" clear passageway, 12" centerline offset, (3) 50" clear passageway, no centerline offset, and were reviewed. 95 percentile male and female models which were provided by the software performed crew system analysis from an anthropometric point of view. Four scenarios in which the crew floats in microgravity through a 50" no-offset passageway as they carry a 16" x 20" x 30" avionics box were simulated in the 10-weeks of intensive study. From the results of the analysis, concept (3) was the preferred option. A full scale, three-dimensional virtual model of the ISS Propulsion Module was created to experience the sense of the Intelligent Synthesis Environment and to evaluate the usability and applicability of the software.

  14. Student project of optical system analysis API-library development

    NASA Astrophysics Data System (ADS)

    Ivanova, Tatiana; Zhukova, Tatiana; Dantcaranov, Ruslan; Romanova, Maria; Zhadin, Alexander; Ivanov, Vyacheslav; Kalinkina, Olga

    2017-08-01

    In the paper API-library software developed by students of Applied and Computer Optics Department (ITMO University) for optical system design is presented. The library performs paraxial and real ray tracing, calculates 3d order (Seidel) aberration and real ray aberration of axis and non-axis beams (wave, lateral, longitudinal, coma, distortion etc.) and finally, approximate wave aberration by Zernike polynomials. Real aperture can be calculated by considering of real rays tracing failure on each surface. So far we assume optical system is centered, with spherical or 2d order aspherical surfaces. Optical glasses can be set directly by refraction index or by dispersion coefficients. The library can be used for education or research purposes in optical system design area. It provides ready to use software functions for optical system simulation and analysis that developer can simply plug into their software development for different purposes, for example for some specific synthesis tasks or investigation of new optimization modes. In the paper we present an example of using the library for development of cemented doublet synthesis software based on Slusarev's methodology. The library is used in optical system optimization recipes course for deep studying of optimization model and its application for optical system design. Development of such software is an excellent experience for students and help to understanding optical image modeling and quality analysis. This development is organized as student group joint project. We try to organize it as a group in real research and development project, so each student has his own role in the project and then use whole library functionality in his own master or bachelor thesis. Working in such group gives students useful experience and opportunity to work as research and development engineer of scientific software in the future.

  15. Mapping analysis and planning system for the John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Hall, C. R.; Barkaszi, M. J.; Provancha, M. J.; Reddick, N. A.; Hinkle, C. R.; Engel, B. A.; Summerfield, B. R.

    1994-01-01

    Environmental management, impact assessment, research and monitoring are multidisciplinary activities which are ideally suited to incorporate a multi-media approach to environmental problem solving. Geographic information systems (GIS), simulation models, neural networks and expert-system software are some of the advancing technologies being used for data management, query, analysis and display. At the 140,000 acre John F. Kennedy Space Center, the Advanced Software Technology group has been supporting development and implementation of a program that integrates these and other rapidly evolving hardware and software capabilities into a comprehensive Mapping, Analysis and Planning System (MAPS) based in a workstation/local are network environment. An expert-system shell is being developed to link the various databases to guide users through the numerous stages of a facility siting and environmental assessment. The expert-system shell approach is appealing for its ease of data access by management-level decision makers while maintaining the involvement of the data specialists. This, as well as increased efficiency and accuracy in data analysis and report preparation, can benefit any organization involved in natural resources management.

  16. Modeling and analysis of selected space station communications and tracking subsystems

    NASA Technical Reports Server (NTRS)

    Richmond, Elmer Raydean

    1993-01-01

    The Communications and Tracking System on board Space Station Freedom (SSF) provides space-to-ground, space-to-space, audio, and video communications, as well as tracking data reception and processing services. Each major category of service is provided by a communications subsystem which is controlled and monitored by software. Among these subsystems, the Assembly/Contingency Subsystem (ACS) and the Space-to-Ground Subsystem (SGS) provide communications with the ground via the Tracking and Data Relay Satellite (TDRS) System. The ACS is effectively SSF's command link, while the SGS is primarily intended as the data link for SSF payloads. The research activities of this project focused on the ACS and SGS antenna management algorithms identified in the Flight System Software Requirements (FSSR) documentation, including: (1) software modeling and evaluation of antenna management (positioning) algorithms; and (2) analysis and investigation of selected variables and parameters of these antenna management algorithms i.e., descriptions and definitions of ranges, scopes, and dimensions. In a related activity, to assist those responsible for monitoring the development of this flight system software, a brief summary of software metrics concepts, terms, measures, and uses was prepared.

  17. Design requirements for SRB production control system. Volume 3: Package evaluation, modification and hardware

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The software package evaluation was designed to analyze commercially available, field-proven, production control or manufacturing resource planning management technology and software package. The analysis was conducted by comparing SRB production control software requirements and conceptual system design to software package capabilities. The methodology of evaluation and the findings at each stage of evaluation are described. Topics covered include: vendor listing; request for information (RFI) document; RFI response rate and quality; RFI evaluation process; and capabilities versus requirements.

  18. NASA software specification and evaluation system design, part 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The research to develop methods for reducing the effort expended in software and verification is reported. The development of a formal software requirements methodology, a formal specifications language, a programming language, a language preprocessor, and code analysis tools are discussed.

  19. [Design and Realization of Personalized Corneal Analysis Software Based on Corneal Topography System].

    PubMed

    Huang, Xueping; Xie, Zhonghao; Cen, Qin; Zheng, Suilian

    2016-08-01

    As the most important refraction part in the optical system,cornea possesses characteristics which are important parameters in ophthalmology clinical surgery.During the measurement of the cornea in our study,we acquired the corneal data of Orbscan Ⅱ corneal topographer in real time using the Hook technology under Windows,and then took the data into the corneal analysis software.We then further analyzed and calculated the data to obtain individual Q-value of overall corneal 360semi-meridian.The corneal analysis software took Visual C++ 6.0as development environment,used OpenGL graphics technology to draw three-dimensional individual corneal morphological map and the distribution curve of the Q-value,and achieved real-time corneal data query.It could be concluded that the analysis would further extend the function of the corneal topography system,and provide a solid foundation for the further study of automatic screening of corneal diseases.

  20. Expert system development for commonality analysis in space programs

    NASA Technical Reports Server (NTRS)

    Yeager, Dorian P.

    1987-01-01

    This report is a combination of foundational mathematics and software design. A mathematical model of the Commonality Analysis problem was developed and some important properties discovered. The complexity of the problem is described herein and techniques, both deterministic and heuristic, for reducing that complexity are presented. Weaknesses are pointed out in the existing software (System Commonality Analysis Tool) and several improvements are recommended. It is recommended that: (1) an expert system for guiding the design of new databases be developed; (2) a distributed knowledge base be created and maintained for the purpose of encoding the commonality relationships between design items in commonality databases; (3) a software module be produced which automatically generates commonality alternative sets from commonality databases using the knowledge associated with those databases; and (4) a more complete commonality analysis module be written which is capable of generating any type of feasible solution.

  1. Optical analysis of electro-optical systems by MTF calculus

    NASA Astrophysics Data System (ADS)

    Barbarini, Elisa Signoreto; Dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fátima Maria Mitsue; Castro Neto, Jarbas C.; Rodrigues, Evandro Luís Linhari

    2011-08-01

    One of the widely used methods for performance analysis of an optical system is the determination of the Modulation Transfer Function (MTF). The MTF represents a quantitative and direct measure of image quality, and, besides being an objective test, it can be used on concatenated optical system. This paper presents the application of software called SMTF (software modulation transfer function), built in C++ and Open CV platforms for MTF calculation on electro-optical system. Through this technique, it is possible to develop specific method to measure the real time performance of a digital fundus camera, an infrared sensor and an ophthalmological surgery microscope. Each optical instrument mentioned has a particular device to measure the MTF response, which is being developed. Then the MTF information assists the analysis of the optical system alignment, and also defines its resolution limit by the MTF graphic. The result obtained from the implemented software is compared with the theoretical MTF curve from the analyzed systems.

  2. MIDAS - A microcomputer-based image display and analysis system with full Landsat frame processing capabilities

    NASA Technical Reports Server (NTRS)

    Hofman, L. B.; Erickson, W. K.; Donovan, W. E.

    1984-01-01

    Image Display and Analysis Systems (MIDAS) developed at NASA/Ames for the analysis of Landsat MSS images is described. The MIDAS computer power and memory, graphics, resource-sharing, expansion and upgrade, environment and maintenance, and software/user-interface requirements are outlined; the implementation hardware (including 32-bit microprocessor, 512K error-correcting RAM, 70 or 140-Mbyte formatted disk drive, 512 x 512 x 24 color frame buffer, and local-area-network transceiver) and applications software (ELAS, CIE, and P-EDITOR) are characterized; and implementation problems, performance data, and costs are examined. Planned improvements in MIDAS hardware and design goals and areas of exploration for MIDAS software are discussed.

  3. Software Framework for Development of Web-GIS Systems for Analysis of Georeferenced Geophysical Data

    NASA Astrophysics Data System (ADS)

    Okladnikov, I.; Gordov, E. P.; Titov, A. G.

    2011-12-01

    Georeferenced datasets (meteorological databases, modeling and reanalysis results, remote sensing products, etc.) are currently actively used in numerous applications including modeling, interpretation and forecast of climatic and ecosystem changes for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their size which might constitute up to tens terabytes for a single dataset at present studies in the area of climate and environmental change require a special software support. A dedicated software framework for rapid development of providing such support information-computational systems based on Web-GIS technologies has been created. The software framework consists of 3 basic parts: computational kernel developed using ITTVIS Interactive Data Language (IDL), a set of PHP-controllers run within specialized web portal, and JavaScript class library for development of typical components of web mapping application graphical user interface (GUI) based on AJAX technology. Computational kernel comprise of number of modules for datasets access, mathematical and statistical data analysis and visualization of results. Specialized web-portal consists of web-server Apache, complying OGC standards Geoserver software which is used as a base for presenting cartographical information over the Web, and a set of PHP-controllers implementing web-mapping application logic and governing computational kernel. JavaScript library aiming at graphical user interface development is based on GeoExt library combining ExtJS Framework and OpenLayers software. Based on the software framework an information-computational system for complex analysis of large georeferenced data archives was developed. Structured environmental datasets available for processing now include two editions of NCEP/NCAR Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, meteorological observational data for the territory of the former USSR for the 20th century, and others. Current version of the system is already involved into a scientific research process. Particularly, recently the system was successfully used for analysis of Siberia climate changes and its impact in the region. The software framework presented allows rapid development of Web-GIS systems for geophysical data analysis thus providing specialists involved into multidisciplinary research projects with reliable and practical instruments for complex analysis of climate and ecosystems changes on global and regional scales. This work is partially supported by RFBR grants #10-07-00547, #11-05-01190, and SB RAS projects 4.31.1.5, 4.31.2.7, 4, 8, 9, 50 and 66.

  4. Reengineering legacy software to object-oriented systems

    NASA Technical Reports Server (NTRS)

    Pitman, C.; Braley, D.; Fridge, E.; Plumb, A.; Izygon, M.; Mears, B.

    1994-01-01

    NASA has a legacy of complex software systems that are becoming increasingly expensive to maintain. Reengineering is one approach to modemizing these systems. Object-oriented technology, other modem software engineering principles, and automated tools can be used to reengineer the systems and will help to keep maintenance costs of the modemized systems down. The Software Technology Branch at the NASA/Johnson Space Center has been developing and testing reengineering methods and tools for several years. The Software Technology Branch is currently providing training and consulting support to several large reengineering projects at JSC, including the Reusable Objects Software Environment (ROSE) project, which is reengineering the flight analysis and design system (over 2 million lines of FORTRAN code) into object-oriented C++. Many important lessons have been learned during the past years; one of these is that the design must never be allowed to diverge from the code during maintenance and enhancement. Future work on open, integrated environments to support reengineering is being actively planned.

  5. Research in nonlinear structural and solid mechanics

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)

    1981-01-01

    Recent and projected advances in applied mechanics, numerical analysis, computer hardware and engineering software, and their impact on modeling and solution techniques in nonlinear structural and solid mechanics are discussed. The fields covered are rapidly changing and are strongly impacted by current and projected advances in computer hardware. To foster effective development of the technology perceptions on computing systems and nonlinear analysis software systems are presented.

  6. INTERFACING SAS TO ORACLE IN THE UNIX ENVIRONMENT

    EPA Science Inventory

    SAS is an EPA standard data and statistical analysis software package while ORACLE is EPA's standard data base management system software package. RACLE has the advantage over SAS in data retrieval and storage capabilities but has limited data and statistical analysis capability....

  7. Spatio-temporally resolved spectral measurements of laser-produced plasma and semiautomated spectral measurement-control and analysis software

    NASA Astrophysics Data System (ADS)

    Cao, S. Q.; Su, M. G.; Min, Q.; Sun, D. X.; O'Sullivan, G.; Dong, C. Z.

    2018-02-01

    A spatio-temporally resolved spectral measurement system of highly charged ions from laser-produced plasmas is presented. Corresponding semiautomated computer software for measurement control and spectral analysis has been written to achieve the best synchronicity possible among the instruments. This avoids the tedious comparative processes between experimental and theoretical results. To demonstrate the capabilities of this system, a series of spatio-temporally resolved experiments of laser-produced Al plasmas have been performed and applied to benchmark the software. The system is a useful tool for studying the spectral structures of highly charged ions and for evaluating the spatio-temporal evolution of laser-produced plasmas.

  8. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research.

    PubMed

    Tang, Qi-Yi; Zhang, Chuan-Xi

    2013-04-01

    A comprehensive but simple-to-use software package called DPS (Data Processing System) has been developed to execute a range of standard numerical analyses and operations used in experimental design, statistics and data mining. This program runs on standard Windows computers. Many of the functions are specific to entomological and other biological research and are not found in standard statistical software. This paper presents applications of DPS to experimental design, statistical analysis and data mining in entomology. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.

  9. The VLBI Data Analysis Software νSolve: Development Progress and Plans for the Future

    NASA Astrophysics Data System (ADS)

    Bolotin, S.; Baver, K.; Gipson, J.; Gordon, D.; MacMillan, D.

    2014-12-01

    The program νSolve is a part of the CALC/SOLVE VLBI data analysis system. It is a replacement for interactive SOLVE, the part of CALC/SOLVE that is used for preliminary data analysis of new VLBI sessions. νSolve is completely new software. It is written in C++ and has a modern graphical user interface. In this article we present the capabilities of the software, its current status, and our plans for future development.

  10. Software Technology for Adaptable, Reliable Systems (STARS). Software Architecture Seminar Report: Central Archive for Reusable Defense Software (CARDS)

    DTIC Science & Technology

    1994-01-29

    other processes, but that he arrived at his results in a different manner. Batory didn’t start with idioms; he performed a domain analysis and...abstracted idioms. Through domain analysis and domain modeling, new idioms can be found and the form of architecture can be the same. It was also questioned...Programming 5. Consensus Definition of Architecture 6. Inductive Analysis of Current Exemplars 7. VHDL (Bailor) 8. Ontological Structuring 3.3.3

  11. Freud: a software suite for high-throughput simulation analysis

    NASA Astrophysics Data System (ADS)

    Harper, Eric; Spellings, Matthew; Anderson, Joshua; Glotzer, Sharon

    Computer simulation is an indispensable tool for the study of a wide variety of systems. As simulations scale to fill petascale and exascale supercomputing clusters, so too does the size of the data produced, as well as the difficulty in analyzing these data. We present Freud, an analysis software suite for efficient analysis of simulation data. Freud makes no assumptions about the system being analyzed, allowing for general analysis methods to be applied to nearly any type of simulation. Freud includes standard analysis methods such as the radial distribution function, as well as new methods including the potential of mean force and torque and local crystal environment analysis. Freud combines a Python interface with fast, parallel C + + analysis routines to run efficiently on laptops, workstations, and supercomputing clusters. Data analysis on clusters reduces data transfer requirements, a prohibitive cost for petascale computing. Used in conjunction with simulation software, Freud allows for smart simulations that adapt to the current state of the system, enabling the study of phenomena such as nucleation and growth, intelligent investigation of phases and phase transitions, and determination of effective pair potentials.

  12. Web-based spatial analysis with the ILWIS open source GIS software and satellite images from GEONETCast

    NASA Astrophysics Data System (ADS)

    Lemmens, R.; Maathuis, B.; Mannaerts, C.; Foerster, T.; Schaeffer, B.; Wytzisk, A.

    2009-12-01

    This paper involves easy accessible integrated web-based analysis of satellite images with a plug-in based open source software. The paper is targeted to both users and developers of geospatial software. Guided by a use case scenario, we describe the ILWIS software and its toolbox to access satellite images through the GEONETCast broadcasting system. The last two decades have shown a major shift from stand-alone software systems to networked ones, often client/server applications using distributed geo-(web-)services. This allows organisations to combine without much effort their own data with remotely available data and processing functionality. Key to this integrated spatial data analysis is a low-cost access to data from within a user-friendly and flexible software. Web-based open source software solutions are more often a powerful option for developing countries. The Integrated Land and Water Information System (ILWIS) is a PC-based GIS & Remote Sensing software, comprising a complete package of image processing, spatial analysis and digital mapping and was developed as commercial software from the early nineties onwards. Recent project efforts have migrated ILWIS into a modular, plug-in-based open source software, and provide web-service support for OGC-based web mapping and processing. The core objective of the ILWIS Open source project is to provide a maintainable framework for researchers and software developers to implement training components, scientific toolboxes and (web-) services. The latest plug-ins have been developed for multi-criteria decision making, water resources analysis and spatial statistics analysis. The development of this framework is done since 2007 in the context of 52°North, which is an open initiative that advances the development of cutting edge open source geospatial software, using the GPL license. GEONETCast, as part of the emerging Global Earth Observation System of Systems (GEOSS), puts essential environmental data at the fingertips of users around the globe. This user-friendly and low-cost information dissemination provides global information as a basis for decision-making in a number of critical areas, including public health, energy, agriculture, weather, water, climate, natural disasters and ecosystems. GEONETCast makes available satellite images via Digital Video Broadcast (DVB) technology. An OGC WMS interface and plug-ins which convert GEONETCast data streams allow an ILWIS user to integrate various distributed data sources with data locally stored on his machine. Our paper describes a use case in which ILWIS is used with GEONETCast satellite imagery for decision making processes in Ghana. We also explain how the ILWIS software can be extended with additional functionality by means of building plug-ins and unfold our plans to implement other OGC standards, such as WCS and WPS in the same context. Especially, the latter one can be seen as a major step forward in terms of moving well-proven desktop based processing functionality to the web. This enables the embedding of ILWIS functionality in Spatial Data Infrastructures or even the execution in scalable and on-demand cloud computing environments.

  13. A Case Study of Measuring Process Risk for Early Insights into Software Safety

    NASA Technical Reports Server (NTRS)

    Layman, Lucas; Basili, Victor; Zelkowitz, Marvin V.; Fisher, Karen L.

    2011-01-01

    In this case study, we examine software safety risk in three flight hardware systems in NASA's Constellation spaceflight program. We applied our Technical and Process Risk Measurement (TPRM) methodology to the Constellation hazard analysis process to quantify the technical and process risks involving software safety in the early design phase of these projects. We analyzed 154 hazard reports and collected metrics to measure the prevalence of software in hazards and the specificity of descriptions of software causes of hazardous conditions. We found that 49-70% of 154 hazardous conditions could be caused by software or software was involved in the prevention of the hazardous condition. We also found that 12-17% of the 2013 hazard causes involved software, and that 23-29% of all causes had a software control. The application of the TPRM methodology identified process risks in the application of the hazard analysis process itself that may lead to software safety risk.

  14. VideoHacking: Automated Tracking and Quantification of Locomotor Behavior with Open Source Software and Off-the-Shelf Video Equipment.

    PubMed

    Conklin, Emily E; Lee, Kathyann L; Schlabach, Sadie A; Woods, Ian G

    2015-01-01

    Differences in nervous system function can result in differences in behavioral output. Measurements of animal locomotion enable the quantification of these differences. Automated tracking of animal movement is less labor-intensive and bias-prone than direct observation, and allows for simultaneous analysis of multiple animals, high spatial and temporal resolution, and data collection over extended periods of time. Here, we present a new video-tracking system built on Python-based software that is free, open source, and cross-platform, and that can analyze video input from widely available video capture devices such as smartphone cameras and webcams. We validated this software through four tests on a variety of animal species, including larval and adult zebrafish (Danio rerio), Siberian dwarf hamsters (Phodopus sungorus), and wild birds. These tests highlight the capacity of our software for long-term data acquisition, parallel analysis of multiple animals, and application to animal species of different sizes and movement patterns. We applied the software to an analysis of the effects of ethanol on thigmotaxis (wall-hugging) behavior on adult zebrafish, and found that acute ethanol treatment decreased thigmotaxis behaviors without affecting overall amounts of motion. The open source nature of our software enables flexibility, customization, and scalability in behavioral analyses. Moreover, our system presents a free alternative to commercial video-tracking systems and is thus broadly applicable to a wide variety of educational settings and research programs.

  15. From proteomics to systems biology: MAPA, MASS WESTERN, PROMEX, and COVAIN as a user-oriented platform.

    PubMed

    Weckwerth, Wolfram; Wienkoop, Stefanie; Hoehenwarter, Wolfgang; Egelhofer, Volker; Sun, Xiaoliang

    2014-01-01

    Genome sequencing and systems biology are revolutionizing life sciences. Proteomics emerged as a fundamental technique of this novel research area as it is the basis for gene function analysis and modeling of dynamic protein networks. Here a complete proteomics platform suited for functional genomics and systems biology is presented. The strategy includes MAPA (mass accuracy precursor alignment; http://www.univie.ac.at/mosys/software.html ) as a rapid exploratory analysis step; MASS WESTERN for targeted proteomics; COVAIN ( http://www.univie.ac.at/mosys/software.html ) for multivariate statistical analysis, data integration, and data mining; and PROMEX ( http://www.univie.ac.at/mosys/databases.html ) as a database module for proteogenomics and proteotypic peptides for targeted analysis. Moreover, the presented platform can also be utilized to integrate metabolomics and transcriptomics data for the analysis of metabolite-protein-transcript correlations and time course analysis using COVAIN. Examples for the integration of MAPA and MASS WESTERN data, proteogenomic and metabolic modeling approaches for functional genomics, phosphoproteomics by integration of MOAC (metal-oxide affinity chromatography) with MAPA, and the integration of metabolomics, transcriptomics, proteomics, and physiological data using this platform are presented. All software and step-by-step tutorials for data processing and data mining can be downloaded from http://www.univie.ac.at/mosys/software.html.

  16. User's guide to noise data acquisition and analysis programs for HP9845: Nicolet analyzers

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    A software interface package was written for use with a desktop computer and two models of single channel Fast Fourier analyzers. This software features a portable measurement and analysis system with several options. Two types of interface hardware can alternately be used in conjunction with the software. Either an IEEE-488 Bus interface or a 16-bit parallel system may be used. Two types of storage medium, either tape cartridge or floppy disc can be used with the software. Five types of data may be stored, plotted, and/or printed. The data types include time histories, narrow band power spectra, and narrow band, one-third octave band, or octave band sound pressure level. The data acquisition programming includes a front panel remote control option for the FFT analyzers. Data analysis options include choice of line type and pen color for plotting.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.; Kempner, L. Jr.; Mueller, W. III

    The concept of an Expert System is not new. It has been around since the days of the early computers when scientists had dreams of robot automation to do everything from washing windows to automobile design. This paper discusses an application of an expert system and addresses software development issues and various levels of expert system development form a structural engineering viewpoint. An expert system designed to aid the structural engineer in first order inelastic analysis of latticed steel transmission powers is presented. The utilization of expert systems with large numerical analysis programs is discussed along with the software developmentmore » of such a system.« less

  18. Information system analysis of an e-learning system used for dental restorations simulation.

    PubMed

    Bogdan, Crenguţa M; Popovici, Dorin M

    2012-09-01

    The goal of using virtual and augmented reality technologies in therapeutic interventions simulation, in the fixed prosthodontics (VirDenT) project, is to increase the quality of the educational process in dental faculties, by assisting students in learning how to prepare teeth for all-ceramic restorations. Its main component is an e-learning virtual reality-based software system that will be used for the developing skills in grinding teeth, needed in all-ceramic restorations. The complexity of the domain problem that the software system dealt with made the analysis of the information system supported by VirDenT necessary. The analysis contains the following activities: identification and classification of the system stakeholders, description of the business processes, formulation of the business rules, and modelling of business objects. During this stage, we constructed the context diagram, the business use case diagram, the activity diagrams and the class diagram of the domain model. These models are useful for the further development of the software system that implements the VirDenT information system. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. GiA Roots: software for the high throughput analysis of plant root system architecture.

    PubMed

    Galkovskyi, Taras; Mileyko, Yuriy; Bucksch, Alexander; Moore, Brad; Symonova, Olga; Price, Charles A; Topp, Christopher N; Iyer-Pascuzzi, Anjali S; Zurek, Paul R; Fang, Suqin; Harer, John; Benfey, Philip N; Weitz, Joshua S

    2012-07-26

    Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.

  20. A LabVIEW®-based software for the control of the AUTORAD platform: a fully automated multisequential flow injection analysis Lab-on-Valve (MSFIA-LOV) system for radiochemical analysis.

    PubMed

    Barbesi, Donato; Vicente Vilas, Víctor; Millet, Sylvain; Sandow, Miguel; Colle, Jean-Yves; Aldave de Las Heras, Laura

    2017-01-01

    A LabVIEW ® -based software for the control of the fully automated multi-sequential flow injection analysis Lab-on-Valve (MSFIA-LOV) platform AutoRAD performing radiochemical analysis is described. The analytical platform interfaces an Arduino ® -based device triggering multiple detectors providing a flexible and fit for purpose choice of detection systems. The different analytical devices are interfaced to the PC running LabVIEW ® VI software using USB and RS232 interfaces, both for sending commands and receiving confirmation or error responses. The AUTORAD platform has been successfully applied for the chemical separation and determination of Sr, an important fission product pertinent to nuclear waste.

  1. Extended System Operations Studies for Automated Guideway Transit Systems : Procedure for the Analysis of Representative AGT Deployments

    DOT National Transportation Integrated Search

    1981-12-01

    The purpose of this report is to present a general procedure for using the SOS software to analyze AGT systems. Data to aid the analyst in specifying input information, required as input to the software, are summarized in the appendices. The data are...

  2. Semi-automatic computerized approach to radiological quantification in rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Steiner, Wolfgang; Schoeffmann, Sylvia; Prommegger, Andrea; Boegl, Karl; Klinger, Thomas; Peloschek, Philipp; Kainberger, Franz

    2004-04-01

    Rheumatoid Arthritis (RA) is a common systemic disease predominantly involving the joints. Precise diagnosis and follow-up therapy requires objective quantification. For this purpose, radiological analyses using standardized scoring systems are considered to be the most appropriate method. The aim of our study is to develop a semi-automatic image analysis software, especially applicable for scoring of joints in rheumatic disorders. The X-Ray RheumaCoach software delivers various scoring systems (Larsen-Score and Ratingen-Rau-Score) which can be applied by the scorer. In addition to the qualitative assessment of joints performed by the radiologist, a semi-automatic image analysis for joint detection and measurements of bone diameters and swollen tissue supports the image assessment process. More than 3000 radiographs from hands and feet of more than 200 RA patients were collected, analyzed, and statistically evaluated. Radiographs were quantified using conventional paper-based Larsen score and the X-Ray RheumaCoach software. The use of the software shortened the scoring time by about 25 percent and reduced the rate of erroneous scorings in all our studies. Compared to paper-based scoring methods, the X-Ray RheumaCoach software offers several advantages: (i) Structured data analysis and input that minimizes variance by standardization, (ii) faster and more precise calculation of sum scores and indices, (iii) permanent data storing and fast access to the software"s database, (iv) the possibility of cross-calculation to other scores, (v) semi-automatic assessment of images, and (vii) reliable documentation of results in the form of graphical printouts.

  3. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.; Olariu, Stephen

    1995-01-01

    The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.

  4. Information systems analysis approach in hospitals: a national survey.

    PubMed

    Wong, B K; Sellaro, C L; Monaco, J A

    1995-03-01

    A survey of 216 hospitals reveals that some hospitals do not conduct cost-benefit analyses or analyze possible adverse effects in feasibility studies. In determining and analyzing system requirements, external factors that initiate the transaction are not examined, and computer-aided software engineering (CASE) tools are seldom used. Some hospitals do not investigate the advantages and disadvantages of using in-house-developed software versus purchased software packages in the evaluation of alternatives. The survey finds that, overall, most hospitals follow the traditional systems development life cycle (SDLC) approach in analyzing information systems.

  5. Object-oriented productivity metrics

    NASA Technical Reports Server (NTRS)

    Connell, John L.; Eller, Nancy

    1992-01-01

    Software productivity metrics are useful for sizing and costing proposed software and for measuring development productivity. Estimating and measuring source lines of code (SLOC) has proven to be a bad idea because it encourages writing more lines of code and using lower level languages. Function Point Analysis is an improved software metric system, but it is not compatible with newer rapid prototyping and object-oriented approaches to software development. A process is presented here for counting object-oriented effort points, based on a preliminary object-oriented analysis. It is proposed that this approach is compatible with object-oriented analysis, design, programming, and rapid prototyping. Statistics gathered on actual projects are presented to validate the approach.

  6. Precise and Scalable Static Program Analysis of NASA Flight Software

    NASA Technical Reports Server (NTRS)

    Brat, G.; Venet, A.

    2005-01-01

    Recent NASA mission failures (e.g., Mars Polar Lander and Mars Orbiter) illustrate the importance of having an efficient verification and validation process for such systems. One software error, as simple as it may be, can cause the loss of an expensive mission, or lead to budget overruns and crunched schedules. Unfortunately, traditional verification methods cannot guarantee the absence of errors in software systems. Therefore, we have developed the CGS static program analysis tool, which can exhaustively analyze large C programs. CGS analyzes the source code and identifies statements in which arrays are accessed out of bounds, or, pointers are used outside the memory region they should address. This paper gives a high-level description of CGS and its theoretical foundations. It also reports on the use of CGS on real NASA software systems used in Mars missions (from Mars PathFinder to Mars Exploration Rover) and on the International Space Station.

  7. Automated Software Vulnerability Analysis

    NASA Astrophysics Data System (ADS)

    Sezer, Emre C.; Kil, Chongkyung; Ning, Peng

    Despite decades of research, software continues to have vulnerabilities. Successful exploitations of these vulnerabilities by attackers cost millions of dollars to businesses and individuals. Unfortunately, most effective defensive measures, such as patching and intrusion prevention systems, require an intimate knowledge of the vulnerabilities. Many systems for detecting attacks have been proposed. However, the analysis of the exploited vulnerabilities is left to security experts and programmers. Both the human effortinvolved and the slow analysis process are unfavorable for timely defensive measure to be deployed. The problem is exacerbated by zero-day attacks.

  8. Computational System For Rapid CFD Analysis In Engineering

    NASA Technical Reports Server (NTRS)

    Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.

    1995-01-01

    Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.

  9. Structural Analysis Using NX Nastran 9.0

    NASA Technical Reports Server (NTRS)

    Rolewicz, Benjamin M.

    2014-01-01

    NX Nastran is a powerful Finite Element Analysis (FEA) software package used to solve linear and non-linear models for structural and thermal systems. The software, which consists of both a solver and user interface, breaks down analysis into four files, each of which are important to the end results of the analysis. The software offers capabilities for a variety of types of analysis, and also contains a respectable modeling program. Over the course of ten weeks, I was trained to effectively implement NX Nastran into structural analysis and refinement for parts of two missions at NASA's Kennedy Space Center, the Restore mission and the Orion mission.

  10. The integration of automated knowledge acquisition with computer-aided software engineering for space shuttle expert systems

    NASA Technical Reports Server (NTRS)

    Modesitt, Kenneth L.

    1990-01-01

    A prediction was made that the terms expert systems and knowledge acquisition would begin to disappear over the next several years. This is not because they are falling into disuse; it is rather that practitioners are realizing that they are valuable adjuncts to software engineering, in terms of problem domains addressed, user acceptance, and in development methodologies. A specific problem was discussed, that of constructing an automated test analysis system for the Space Shuttle Main Engine. In this domain, knowledge acquisition was part of requirements systems analysis, and was performed with the aid of a powerful inductive ESBT in conjunction with a computer aided software engineering (CASE) tool. The original prediction is not a very risky one -- it has already been accomplished.

  11. Integrated optomechanical analysis and testing software development at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Stoeckel, Gerhard P.; Doyle, Keith B.

    2013-09-01

    Advanced analytical software capabilities are being developed to advance the design of prototypical hardware in the Engineering Division at MIT Lincoln Laboratory. The current effort is focused on the integration of analysis tools tailored to the work flow, organizational structure, and current technology demands. These tools are being designed to provide superior insight into the interdisciplinary behavior of optical systems and enable rapid assessment and execution of design trades to optimize the design of optomechanical systems. The custom software architecture is designed to exploit and enhance the functionality of existing industry standard commercial software, provide a framework for centralizing internally developed tools, and deliver greater efficiency, productivity, and accuracy through standardization, automation, and integration. Specific efforts have included the development of a feature-rich software package for Structural-Thermal-Optical Performance (STOP) modeling, advanced Line Of Sight (LOS) jitter simulations, and improved integration of dynamic testing and structural modeling.

  12. Core Logistics Capability Policy Applied to USAF Combat Aircraft Avionics Software: A Systems Engineering Analysis

    DTIC Science & Technology

    2010-06-01

    cannot make a distinction between software maintenance and development” (Sharma, 2004). ISO /IEC 12207 Software Lifecycle Processes offers a guide to...synopsis of ISO /IEC 12207 , Raghu Singh of the Federal Aviation Administration states “Whenever a software product needs modifications, the development...Corporation. Singh, R. (1998). International Standard ISO /IEC 12207 Software Life Cycle Processes. Washington: Federal Aviation Administration. The Joint

  13. Real-time solar magnetograph operation system software design and user's guide

    NASA Technical Reports Server (NTRS)

    Wang, C.

    1984-01-01

    The Real Time Solar Magnetograph (RTSM) Operation system software design on PDP11/23+ is presented along with the User's Guide. The RTSM operation software is for real time instrumentation control, data collection and data management. The data is used for vector analysis, plotting or graphics display. The processed data is then easily compared with solar data from other sources, such as the Solar Maximum Mission (SMM).

  14. Development of modular control software for construction 3D-printer

    NASA Astrophysics Data System (ADS)

    Bazhanov, A.; Yudin, D.; Porkhalo, V.

    2018-03-01

    This article discusses the approach to developing modular software for real-time control of an industrial construction 3D printer. The proposed structure of a two-level software solution is implemented for a robotic system that moves in a Cartesian coordinate system with multi-axis interpolation. An algorithm for the formation and analysis of a path is considered to enable the most effective control of printing through dynamic programming.

  15. Ascent/Descent Software

    NASA Technical Reports Server (NTRS)

    Brown, Charles; Andrew, Robert; Roe, Scott; Frye, Ronald; Harvey, Michael; Vu, Tuan; Balachandran, Krishnaiyer; Bly, Ben

    2012-01-01

    The Ascent/Descent Software Suite has been used to support a variety of NASA Shuttle Program mission planning and analysis activities, such as range safety, on the Integrated Planning System (IPS) platform. The Ascent/Descent Software Suite, containing Ascent Flight Design (ASC)/Descent Flight Design (DESC) Configuration items (Cis), lifecycle documents, and data files used for shuttle ascent and entry modeling analysis and mission design, resides on IPS/Linux workstations. A list of tools in Navigation (NAV)/Prop Software Suite represents tool versions established during or after the IPS Equipment Rehost-3 project.

  16. Software Coherence in Multiprocessor Memory Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bolosky, William Joseph

    1993-01-01

    Processors are becoming faster and multiprocessor memory interconnection systems are not keeping up. Therefore, it is necessary to have threads and the memory they access as near one another as possible. Typically, this involves putting memory or caches with the processors, which gives rise to the problem of coherence: if one processor writes an address, any other processor reading that address must see the new value. This coherence can be maintained by the hardware or with software intervention. Systems of both types have been built in the past; the hardware-based systems tended to outperform the software ones. However, the ratio of processor to interconnect speed is now so high that the extra overhead of the software systems may no longer be significant. This issue is explored both by implementing a software maintained system and by introducing and using the technique of offline optimal analysis of memory reference traces. It finds that in properly built systems, software maintained coherence can perform comparably to or even better than hardware maintained coherence. The architectural features necessary for efficient software coherence to be profitable include a small page size, a fast trap mechanism, and the ability to execute instructions while remote memory references are outstanding.

  17. Software Tools for Developing and Simulating the NASA LaRC CMF Motion Base

    NASA Technical Reports Server (NTRS)

    Bryant, Richard B., Jr.; Carrelli, David J.

    2006-01-01

    The NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base has provided many design and analysis challenges. In the process of addressing these challenges, a comprehensive suite of software tools was developed. The software tools development began with a detailed MATLAB/Simulink model of the motion base which was used primarily for safety loads prediction, design of the closed loop compensator and development of the motion base safety systems1. A Simulink model of the digital control law, from which a portion of the embedded code is directly generated, was later added to this model to form a closed loop system model. Concurrently, software that runs on a PC was created to display and record motion base parameters. It includes a user interface for controlling time history displays, strip chart displays, data storage, and initializing of function generators used during motion base testing. Finally, a software tool was developed for kinematic analysis and prediction of mechanical clearances for the motion system. These tools work together in an integrated package to support normal operations of the motion base, simulate the end to end operation of the motion base system providing facilities for software-in-the-loop testing, mechanical geometry and sensor data visualizations, and function generator setup and evaluation.

  18. Student Development of Educational Software: Spin-Offs from Classroom Use of DIAS.

    ERIC Educational Resources Information Center

    Harrington, John A., Jr.; And Others

    1988-01-01

    Describes several college courses which encourage students to develop computer software programs in the areas of remote sensing and geographic information systems. A microcomputer-based tutorial package, the Digital Image Analysis System (DAIS), teaches the principles of digital processing. (LS)

  19. Demonstration of the Dynamic Flowgraph Methodology using the Titan 2 Space Launch Vehicle Digital Flight Control System

    NASA Technical Reports Server (NTRS)

    Yau, M.; Guarro, S.; Apostolakis, G.

    1993-01-01

    Dynamic Flowgraph Methodology (DFM) is a new approach developed to integrate the modeling and analysis of the hardware and software components of an embedded system. The objective is to complement the traditional approaches which generally follow the philosophy of separating out the hardware and software portions of the assurance analysis. In this paper, the DFM approach is demonstrated using the Titan 2 Space Launch Vehicle Digital Flight Control System. The hardware and software portions of this embedded system are modeled in an integrated framework. In addition, the time dependent behavior and the switching logic can be captured by this DFM model. In the modeling process, it is found that constructing decision tables for software subroutines is very time consuming. A possible solution is suggested. This approach makes use of a well-known numerical method, the Newton-Raphson method, to solve the equations implemented in the subroutines in reverse. Convergence can be achieved in a few steps.

  20. Evaluating foodservice software: a suggested approach.

    PubMed

    Fowler, K D

    1986-09-01

    In an era of cost containment, the computer has become a viable management tool. Its use in health care has demonstrated accelerated growth in recent years, and a literature review supports an increased trend in this direction. Foodservice, which is a major cost center, is no exception to this predicted trend. Because software has proliferated, foodservice managers and dietitians are experiencing growing concern about how to evaluate the numerous software packages from which to choose. A suggested approach to evaluating software is offered to dietitians and managers alike to lessen the confusion in software selection and to improve the system satisfaction level post-purchase. Steps of the software evaluatory approach include: delineation of goals, assessment of needs, assignment of value weight factors, development of a vendor checklist, survey of vendors by means of the vendor checklist and elimination of inappropriate systems, thorough development of the request for proposal (RFP) for submission to the selected vendors, an analysis of the returned RFPs in terms of system features and cost factors, and selection of the system(s) for implementation.

  1. Development of Data Processing Software for NBI Spectroscopic Analysis System

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodan; Hu, Chundong; Sheng, Peng; Zhao, Yuanzhe; Wu, Deyun; Cui, Qinglong

    2015-04-01

    A set of data processing software is presented in this paper for processing NBI spectroscopic data. For better and more scientific managment and querying these data, they are managed uniformly by the NBI data server. The data processing software offers the functions of uploading beam spectral original and analytic data to the data server manually and automatically, querying and downloading all the NBI data, as well as dealing with local LZO data. The set software is composed of a server program and a client program. The server software is programmed in C/C++ under a CentOS development environment. The client software is developed under a VC 6.0 platform, which offers convenient operational human interfaces. The network communications between the server and the client are based on TCP. With the help of this set software, the NBI spectroscopic analysis system realizes the unattended automatic operation, and the clear interface also makes it much more convenient to offer beam intensity distribution data and beam power data to operators for operation decision-making. supported by National Natural Science Foundation of China (No. 11075183), the Chinese Academy of Sciences Knowledge Innovation

  2. Welding process modelling and control

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.; Adenwala, Jinen A.

    1993-01-01

    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.

  3. Digital PIV (DPIV) Software Analysis System

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    A software package was developed to provide a Digital PIV (DPIV) capability for NASA LaRC. The system provides an automated image capture, test correlation, and autocorrelation analysis capability for the Kodak Megaplus 1.4 digital camera system for PIV measurements. The package includes three separate programs that, when used together with the PIV data validation algorithm, constitutes a complete DPIV analysis capability. The programs are run on an IBM PC/AT host computer running either Microsoft Windows 3.1 or Windows 95 using a 'quickwin' format that allows simple user interface and output capabilities to the windows environment.

  4. Software Design for Real-Time Systems on Parallel Computers: Formal Specifications.

    DTIC Science & Technology

    1996-04-01

    This research investigated the important issues related to the analysis and design of real - time systems targeted to parallel architectures. In...particular, the software specification models for real - time systems on parallel architectures were evaluated. A survey of current formal methods for...uniprocessor real - time systems specifications was conducted to determine their extensibility in specifying real - time systems on parallel architectures. In

  5. Lin4Neuro: a customized Linux distribution ready for neuroimaging analysis

    PubMed Central

    2011-01-01

    Background A variety of neuroimaging software packages have been released from various laboratories worldwide, and many researchers use these packages in combination. Though most of these software packages are freely available, some people find them difficult to install and configure because they are mostly based on UNIX-like operating systems. We developed a live USB-bootable Linux package named "Lin4Neuro." This system includes popular neuroimaging analysis tools. The user interface is customized so that even Windows users can use it intuitively. Results The boot time of this system was only around 40 seconds. We performed a benchmark test of inhomogeneity correction on 10 subjects of three-dimensional T1-weighted MRI scans. The processing speed of USB-booted Lin4Neuro was as fast as that of the package installed on the hard disk drive. We also installed Lin4Neuro on a virtualization software package that emulates the Linux environment on a Windows-based operation system. Although the processing speed was slower than that under other conditions, it remained comparable. Conclusions With Lin4Neuro in one's hand, one can access neuroimaging software packages easily, and immediately focus on analyzing data. Lin4Neuro can be a good primer for beginners of neuroimaging analysis or students who are interested in neuroimaging analysis. It also provides a practical means of sharing analysis environments across sites. PMID:21266047

  6. Lin4Neuro: a customized Linux distribution ready for neuroimaging analysis.

    PubMed

    Nemoto, Kiyotaka; Dan, Ippeita; Rorden, Christopher; Ohnishi, Takashi; Tsuzuki, Daisuke; Okamoto, Masako; Yamashita, Fumio; Asada, Takashi

    2011-01-25

    A variety of neuroimaging software packages have been released from various laboratories worldwide, and many researchers use these packages in combination. Though most of these software packages are freely available, some people find them difficult to install and configure because they are mostly based on UNIX-like operating systems. We developed a live USB-bootable Linux package named "Lin4Neuro." This system includes popular neuroimaging analysis tools. The user interface is customized so that even Windows users can use it intuitively. The boot time of this system was only around 40 seconds. We performed a benchmark test of inhomogeneity correction on 10 subjects of three-dimensional T1-weighted MRI scans. The processing speed of USB-booted Lin4Neuro was as fast as that of the package installed on the hard disk drive. We also installed Lin4Neuro on a virtualization software package that emulates the Linux environment on a Windows-based operation system. Although the processing speed was slower than that under other conditions, it remained comparable. With Lin4Neuro in one's hand, one can access neuroimaging software packages easily, and immediately focus on analyzing data. Lin4Neuro can be a good primer for beginners of neuroimaging analysis or students who are interested in neuroimaging analysis. It also provides a practical means of sharing analysis environments across sites.

  7. Onboard utilization of ground control points for image correction. Volume 3: Ground control point simulation software design

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The software developed to simulate the ground control point navigation system is described. The Ground Control Point Simulation Program (GCPSIM) is designed as an analysis tool to predict the performance of the navigation system. The system consists of two star trackers, a global positioning system receiver, a gyro package, and a landmark tracker.

  8. The information protection level assessment system implementation

    NASA Astrophysics Data System (ADS)

    Trapeznikov, E. V.

    2018-04-01

    Currently, the threat of various attacks increases significantly as automated systems become more widespread. On the basis of the conducted analysis the information protection level assessment system establishing objective was identified. The paper presents the information protection level assessment software implementation in the information system by applying the programming language C #. In conclusions the software features are identified and experimental results are represented.

  9. ImagePy: an open-source, Python-based and platform-independent software package for boimage analysis.

    PubMed

    Wang, Anliang; Yan, Xiaolong; Wei, Zhijun

    2018-04-27

    This note presents the design of a scalable software package named ImagePy for analysing biological images. Our contribution is concentrated on facilitating extensibility and interoperability of the software through decoupling the data model from the user interface. Especially with assistance from the Python ecosystem, this software framework makes modern computer algorithms easier to be applied in bioimage analysis. ImagePy is free and open source software, with documentation and code available at https://github.com/Image-Py/imagepy under the BSD license. It has been tested on the Windows, Mac and Linux operating systems. wzjdlut@dlut.edu.cn or yxdragon@imagepy.org.

  10. NASA Workshop on Computational Structural Mechanics 1987, part 3

    NASA Technical Reports Server (NTRS)

    Sykes, Nancy P. (Editor)

    1989-01-01

    Computational Structural Mechanics (CSM) topics are explored. Algorithms and software for nonlinear structural dynamics, concurrent algorithms for transient finite element analysis, computational methods and software systems for dynamics and control of large space structures, and the use of multi-grid for structural analysis are discussed.

  11. NASA Tech Briefs, December 1997. Volume 21, No. 12

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topics: Design and Analysis Software; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Software; Mechanics; Manufacturing/Fabrication; Mathematics and Information Sciences; Books and Reports.

  12. Design of Control Software for a High-Speed Coherent Doppler Lidar System for CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Vanvalkenburg, Randal L.; Beyon, Jeffrey Y.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Kavaya, Michael J.

    2010-01-01

    The design of the software for a 2-micron coherent high-speed Doppler lidar system for CO2 measurement at NASA Langley Research Center is discussed in this paper. The specific strategy and design topology to meet the requirements of the system are reviewed. In order to attain the high-speed digitization of the different types of signals to be sampled on multiple channels, a carefully planned design of the control software is imperative. Samples of digitized data from each channel and their roles in data analysis post processing are also presented. Several challenges of extremely-fast, high volume data acquisition are discussed. The software must check the validity of each lidar return as well as other monitoring channel data in real-time. For such high-speed data acquisition systems, the software is a key component that enables the entire scope of CO2 measurement studies using commercially available system components.

  13. Error Free Software

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A mathematical theory for development of "higher order" software to catch computer mistakes resulted from a Johnson Space Center contract for Apollo spacecraft navigation. Two women who were involved in the project formed Higher Order Software, Inc. to develop and market the system of error analysis and correction. They designed software which is logically error-free, which, in one instance, was found to increase productivity by 600%. USE.IT defines its objectives using AXES -- a user can write in English and the system converts to computer languages. It is employed by several large corporations.

  14. New software for 3D fracture network analysis and visualization

    NASA Astrophysics Data System (ADS)

    Song, J.; Noh, Y.; Choi, Y.; Um, J.; Hwang, S.

    2013-12-01

    This study presents new software to perform analysis and visualization of the fracture network system in 3D. The developed software modules for the analysis and visualization, such as BOUNDARY, DISK3D, FNTWK3D, CSECT and BDM, have been developed using Microsoft Visual Basic.NET and Visualization TookKit (VTK) open-source library. Two case studies revealed that each module plays a role in construction of analysis domain, visualization of fracture geometry in 3D, calculation of equivalent pipes, production of cross-section map and management of borehole data, respectively. The developed software for analysis and visualization of the 3D fractured rock mass can be used to tackle the geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

  15. Cooperation on Improved Isotopic Identification and Analysis Software for Portable, Electrically Cooled High-Resolution Gamma Spectrometry Systems Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreyer, Jonathan G.; Wang, Tzu-Fang; Vo, Duc T.

    Under a 2006 agreement between the Department of Energy (DOE) of the United States of America and the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) of France, the National Nuclear Security Administration (NNSA) within DOE and IRSN initiated a collaboration to improve isotopic identification and analysis of nuclear material [i.e., plutonium (Pu) and uranium (U)]. The specific aim of the collaborative project was to develop new versions of two types of isotopic identification and analysis software: (1) the fixed-energy response-function analysis for multiple energies (FRAM) codes and (2) multi-group analysis (MGA) codes. The project is entitled Action Sheet 4more » – Cooperation on Improved Isotopic Identification and Analysis Software for Portable, Electrically Cooled, High-Resolution Gamma Spectrometry Systems (Action Sheet 4). FRAM and MGA/U235HI are software codes used to analyze isotopic ratios of U and Pu. FRAM is an application that uses parameter sets for the analysis of U or Pu. MGA and U235HI are two separate applications that analyze Pu or U, respectively. They have traditionally been used by safeguards practitioners to analyze gamma spectra acquired with high-resolution gamma spectrometry (HRGS) systems that are cooled by liquid nitrogen. However, it was discovered that these analysis programs were not as accurate when used on spectra acquired with a newer generation of more portable, electrically cooled HRGS (ECHRGS) systems. In response to this need, DOE/NNSA and IRSN collaborated to update the FRAM and U235HI codes to improve their performance with newer ECHRGS systems. Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL) performed this work for DOE/NNSA.« less

  16. The software product assurance metrics study: JPL's software systems quality and productivity

    NASA Technical Reports Server (NTRS)

    Bush, Marilyn W.

    1989-01-01

    The findings are reported of the Jet Propulsion Laboratory (JPL)/Software Product Assurance (SPA) Metrics Study, conducted as part of a larger JPL effort to improve software quality and productivity. Until recently, no comprehensive data had been assembled on how JPL manages and develops software-intensive systems. The first objective was to collect data on software development from as many projects and for as many years as possible. Results from five projects are discussed. These results reflect 15 years of JPL software development, representing over 100 data points (systems and subsystems), over a third of a billion dollars, over four million lines of code and 28,000 person months. Analysis of this data provides a benchmark for gauging the effectiveness of past, present and future software development work. In addition, the study is meant to encourage projects to record existing metrics data and to gather future data. The SPA long term goal is to integrate the collection of historical data and ongoing project data with future project estimations.

  17. 76 FR 28819 - NUREG/CR-XXXX, Development of Quantitative Software Reliability Models for Digital Protection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0109] NUREG/CR-XXXX, Development of Quantitative Software..., ``Development of Quantitative Software Reliability Models for Digital Protection Systems of Nuclear Power Plants... of Risk Analysis, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission...

  18. An Integrated Research Program for the Modeling, Analysis and Control of Aerospace Systems

    DTIC Science & Technology

    1992-03-03

    Fabiano, Jr. - Brown University Mitchell Feigenbaum - Rockefeller University Elena Fernandez - Institudo de Desarrollo Techologico, para la Industria...system. The system runs under DEC Ultrix; we have installed the GKS graphics system and language compilers (FORTRAN and C). The DELIGHT.MIMO software ...which links a sophisticated non-smooth optimization package to some linear system software , is on the system. The package was kindly furnished by

  19. PIPER: Performance Insight for Programmers and Exascale Runtimes: Guiding the Development of the Exascale Software Stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellor-Crummey, John

    The PIPER project set out to develop methodologies and software for measurement, analysis, attribution, and presentation of performance data for extreme-scale systems. Goals of the project were to support analysis of massive multi-scale parallelism, heterogeneous architectures, multi-faceted performance concerns, and to support both post-mortem performance analysis to identify program features that contribute to problematic performance and on-line performance analysis to drive adaptation. This final report summarizes the research and development activity at Rice University as part of the PIPER project. Producing a complete suite of performance tools for exascale platforms during the course of this project was impossible since bothmore » hardware and software for exascale systems is still a moving target. For that reason, the project focused broadly on the development of new techniques for measurement and analysis of performance on modern parallel architectures, enhancements to HPCToolkit’s software infrastructure to support our research goals or use on sophisticated applications, engaging developers of multithreaded runtimes to explore how support for tools should be integrated into their designs, engaging operating system developers with feature requests for enhanced monitoring support, engaging vendors with requests that they add hardware measure- ment capabilities and software interfaces needed by tools as they design new components of HPC platforms including processors, accelerators and networks, and finally collaborations with partners interested in using HPCToolkit to analyze and tune scalable parallel applications.« less

  20. TLM-Tracker: software for cell segmentation, tracking and lineage analysis in time-lapse microscopy movies.

    PubMed

    Klein, Johannes; Leupold, Stefan; Biegler, Ilona; Biedendieck, Rebekka; Münch, Richard; Jahn, Dieter

    2012-09-01

    Time-lapse imaging in combination with fluorescence microscopy techniques enable the investigation of gene regulatory circuits and uncovered phenomena like culture heterogeneity. In this context, computational image processing for the analysis of single cell behaviour plays an increasing role in systems biology and mathematical modelling approaches. Consequently, we developed a software package with graphical user interface for the analysis of single bacterial cell behaviour. A new software called TLM-Tracker allows for the flexible and user-friendly interpretation for the segmentation, tracking and lineage analysis of microbial cells in time-lapse movies. The software package, including manual, tutorial video and examples, is available as Matlab code or executable binaries at http://www.tlmtracker.tu-bs.de.

  1. C4 Software Technology Reference Guide - A Prototype.

    DTIC Science & Technology

    1997-01-10

    domain analysis methods include • Feature-oriented domain analysis ( FODA ) (see pg. 185), a domain analysis method based upon identifying the... Analysis ( FODA ) Feasibility Study (CMU/SEI-90-TR-21, ADA 235785). Pittsburgh, PA: Software En- gineering Institute, Carnegie Mellon University, 1990. 178...domain analysis ( FODA ) (see pg. 185), in which a feature is a user-visible aspect or char- acteristic of the domain [Kang 90].) The features in a system

  2. OEXP Analysis Tools Workshop

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Wright, Robert L.; Badi, Deborah; Findlay, John T.

    1988-01-01

    This publication summarizes the software needs and available analysis tools presented at the OEXP Analysis Tools Workshop held at the NASA Langley Research Center, Hampton, Virginia on June 21 to 22, 1988. The objective of the workshop was to identify available spacecraft system (and subsystem) analysis and engineering design tools, and mission planning and analysis software that could be used for various NASA Office of Exploration (code Z) studies, specifically lunar and Mars missions.

  3. Performance analysis and optimization of an advanced pharmaceutical wastewater treatment plant through a visual basic software tool (PWWT.VB).

    PubMed

    Pal, Parimal; Thakura, Ritwik; Chakrabortty, Sankha

    2016-05-01

    A user-friendly, menu-driven simulation software tool has been developed for the first time to optimize and analyze the system performance of an advanced continuous membrane-integrated pharmaceutical wastewater treatment plant. The software allows pre-analysis and manipulation of input data which helps in optimization and shows the software performance visually on a graphical platform. Moreover, the software helps the user to "visualize" the effects of the operating parameters through its model-predicted output profiles. The software is based on a dynamic mathematical model, developed for a systematically integrated forward osmosis-nanofiltration process for removal of toxic organic compounds from pharmaceutical wastewater. The model-predicted values have been observed to corroborate well with the extensive experimental investigations which were found to be consistent under varying operating conditions like operating pressure, operating flow rate, and draw solute concentration. Low values of the relative error (RE = 0.09) and high values of Willmott-d-index (d will = 0.981) reflected a high degree of accuracy and reliability of the software. This software is likely to be a very efficient tool for system design or simulation of an advanced membrane-integrated treatment plant for hazardous wastewater.

  4. Development of a fully automated software system for rapid analysis/processing of the falling weight deflectometer data.

    DOT National Transportation Integrated Search

    2009-02-01

    The Office of Special Investigations at Iowa Department of Transportation (DOT) collects FWD data on regular basis to evaluate pavement structural conditions. The primary objective of this study was to develop a fully-automated software system for ra...

  5. FPA Depot - Web Application

    NASA Technical Reports Server (NTRS)

    Avila, Edwin M. Martinez; Muniz, Ricardo; Szafran, Jamie; Dalton, Adam

    2011-01-01

    Lines of code (LOC) analysis is one of the methods used to measure programmer productivity and estimate schedules of programming projects. The Launch Control System (LCS) had previously used this method to estimate the amount of work and to plan development efforts. The disadvantage of using LOC as a measure of effort is that one can only measure 30% to 35% of the total effort of software projects involves coding [8]. In the application, instead of using the LOC we are using function point for a better estimation of hours in each software to develop. Because of these disadvantages, Jamie Szafran of the System Software Branch of Control And Data Systems (NE-C3) at Kennedy Space Canter developed a web application called Function Point Analysis (FPA) Depot. The objective of this web application is that the LCS software architecture team can use the data to more accurately estimate the effort required to implement customer requirements. This paper describes the evolution of the domain model used for function point analysis as project managers continually strive to generate more accurate estimates.

  6. Getting started on metrics - Jet Propulsion Laboratory productivity and quality

    NASA Technical Reports Server (NTRS)

    Bush, M. W.

    1990-01-01

    A review is presented to describe the effort and difficulties of reconstructing fifteen years of JPL software history. In 1987 the collection and analysis of project data were started with the objective of creating laboratory-wide measures of quality and productivity for software development. As a result of this two-year Software Product Assurance metrics study, a rough measurement foundation for software productivity and software quality, and an order-of-magnitude quantitative baseline for software systems and subsystems are now available.

  7. Software Tools on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    Debugger or performance analysis Tool for understanding the behavior of MPI applications. Intel VTune environment for statistical computing and graphics. VirtualGL/TurboVNC Visualization and analytics Remote Tools on the Peregrine System Software Tools on the Peregrine System NREL has a variety of

  8. Pedagogical Approach to the Modeling and Simulation of Oscillating Chemical Systems with Modern Software: The Brusselator Model

    ERIC Educational Resources Information Center

    Lozano-Parada, Jaime H.; Burnham, Helen; Martinez, Fiderman Machuca

    2018-01-01

    A classical nonlinear system, the "Brusselator", was used to illustrate the modeling and simulation of oscillating chemical systems using stability analysis techniques with modern software tools such as Comsol Multiphysics, Matlab, and Excel. A systematic approach is proposed in order to establish a regime of parametric conditions that…

  9. GPS Software Packages Deliver Positioning Solutions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "To determine a spacecraft s position, the Jet Propulsion Laboratory (JPL) developed an innovative software program called the GPS (global positioning system)-Inferred Positioning System and Orbit Analysis Simulation Software, abbreviated as GIPSY-OASIS, and also developed Real-Time GIPSY (RTG) for certain time-critical applications. First featured in Spinoff 1999, JPL has released hundreds of licenses for GIPSY and RTG, including to Longmont, Colorado-based DigitalGlobe. Using the technology, DigitalGlobe produces satellite imagery with highly precise latitude and longitude coordinates and then supplies it for uses within defense and intelligence, civil agencies, mapping and analysis, environmental monitoring, oil and gas exploration, infrastructure management, Internet portals, and navigation technology."

  10. Advanced Diagnostic and Prognostic Testbed (ADAPT) Testability Analysis Report

    NASA Technical Reports Server (NTRS)

    Ossenfort, John

    2008-01-01

    As system designs become more complex, determining the best locations to add sensors and test points for the purpose of testing and monitoring these designs becomes more difficult. Not only must the designer take into consideration all real and potential faults of the system, he or she must also find efficient ways of detecting and isolating those faults. Because sensors and cabling take up valuable space and weight on a system, and given constraints on bandwidth and power, it is even more difficult to add sensors into these complex designs after the design has been completed. As a result, a number of software tools have been developed to assist the system designer in proper placement of these sensors during the system design phase of a project. One of the key functions provided by many of these software programs is a testability analysis of the system essentially an evaluation of how observable the system behavior is using available tests. During the design phase, testability metrics can help guide the designer in improving the inherent testability of the design. This may include adding, removing, or modifying tests; breaking up feedback loops, or changing the system to reduce fault propagation. Given a set of test requirements, the analysis can also help to verify that the system will meet those requirements. Of course, a testability analysis requires that a software model of the physical system is available. For the analysis to be most effective in guiding system design, this model should ideally be constructed in parallel with these efforts. The purpose of this paper is to present the final testability results of the Advanced Diagnostic and Prognostic Testbed (ADAPT) after the system model was completed. The tool chosen to build the model and to perform the testability analysis with is the Testability Engineering and Maintenance System Designer (TEAMS-Designer). The TEAMS toolset is intended to be a solution to span all phases of the system, from design and development through health management and maintenance. TEAMS-Designer is the model-building and testability analysis software in that suite.

  11. An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency

    NASA Astrophysics Data System (ADS)

    Phillips, Dewanne Marie

    Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software architecture framework and acquisition methodology to improve the resiliency of space systems from a software perspective with an emphasis on the early phases of the systems engineering life cycle. This methodology involves seven steps: 1) Define technical resiliency requirements, 1a) Identify standards/policy for software resiliency, 2) Develop a request for proposal (RFP)/statement of work (SOW) for resilient space systems software, 3) Define software resiliency goals for space systems, 4) Establish software resiliency quality attributes, 5) Perform architectural tradeoffs and identify risks, 6) Conduct architecture assessments as part of the procurement process, and 7) Ascertain space system software architecture resiliency metrics. Data illustrates that software vulnerabilities can lead to opportunities for malicious cyber activities, which could degrade the space mission capability for the user community. Reducing the number of vulnerabilities by improving architecture and software system engineering practices can contribute to making space systems more resilient. Since cyber-attacks are enabled by shortfalls in software, robust software engineering practices and an architectural design are foundational to resiliency, which is a quality that allows the system to "take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". To achieve software resiliency for space systems, acquirers and suppliers must identify relevant factors and systems engineering practices to apply across the lifecycle, in software requirements analysis, architecture development, design, implementation, verification and validation, and maintenance phases.

  12. Waste management facility accident analysis (WASTE ACC) system: software for analysis of waste management alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohout, E.F.; Folga, S.; Mueller, C.

    1996-03-01

    This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure willmore » allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.« less

  13. A Visual Basic simulation software tool for performance analysis of a membrane-based advanced water treatment plant.

    PubMed

    Pal, P; Kumar, R; Srivastava, N; Chaudhuri, J

    2014-02-01

    A Visual Basic simulation software (WATTPPA) has been developed to analyse the performance of an advanced wastewater treatment plant. This user-friendly and menu-driven software is based on the dynamic mathematical model for an industrial wastewater treatment scheme that integrates chemical, biological and membrane-based unit operations. The software-predicted results corroborate very well with the experimental findings as indicated in the overall correlation coefficient of the order of 0.99. The software permits pre-analysis and manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. It allows quick performance analysis of the whole system as well as the individual units. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for hazardous wastewater.

  14. Future Directions for Astronomical Image Display

    NASA Technical Reports Server (NTRS)

    Mandel, Eric

    2000-01-01

    In the "Future Directions for Astronomical Image Displav" project, the Smithsonian Astrophysical Observatory (SAO) and the National Optical Astronomy Observatories (NOAO) evolved our existing image display program into fully extensible. cross-platform image display software. We also devised messaging software to support integration of image display into astronomical analysis systems. Finally, we migrated our software from reliance on Unix and the X Window System to a platform-independent architecture that utilizes the cross-platform Tcl/Tk technology.

  15. Atmosphere Explorer control system software (version 1.0)

    NASA Technical Reports Server (NTRS)

    Villasenor, A.

    1972-01-01

    The basic design is described of the Atmosphere Explorer Control System (AECS) software used in the testing, integration, and flight contol of the AE spacecraft and experiments. The software performs several vital functions, such as issuing commands to the spacecraft and experiments, receiving and processing telemetry data, and allowing for extensive data processing by experiment analysis programs. The major processing sections are: executive control section, telemetry decommutation section, command generation section, and utility section.

  16. Evaluating Games-Based Learning

    ERIC Educational Resources Information Center

    Hainey, Thomas; Connolly, Thomas

    2010-01-01

    A highly important part of software engineering education is requirements collection and analysis, one of the initial stages of the Software Development Lifecycle. No other conceptual work is as difficult to rectify at a later stage or as damaging to the overall system if performed incorrectly. As software engineering is a field with a reputation…

  17. Learning from examples - Generation and evaluation of decision trees for software resource analysis

    NASA Technical Reports Server (NTRS)

    Selby, Richard W.; Porter, Adam A.

    1988-01-01

    A general solution method for the automatic generation of decision (or classification) trees is investigated. The approach is to provide insights through in-depth empirical characterization and evaluation of decision trees for software resource data analysis. The trees identify classes of objects (software modules) that had high development effort. Sixteen software systems ranging from 3,000 to 112,000 source lines were selected for analysis from a NASA production environment. The collection and analysis of 74 attributes (or metrics), for over 4,700 objects, captured information about the development effort, faults, changes, design style, and implementation style. A total of 9,600 decision trees were automatically generated and evaluated. The trees correctly identified 79.3 percent of the software modules that had high development effort or faults, and the trees generated from the best parameter combinations correctly identified 88.4 percent of the modules on the average.

  18. Benefits of Matching Domain Structure for Planning Software: The Right Stuff

    NASA Technical Reports Server (NTRS)

    Billman, Dorrit Owen; Arsintescu, Lucica; Feary, Michael S.; Lee, Jessica Chia-Rong; Smith, Asha Halima; Tiwary, Rachna

    2011-01-01

    We investigated the role of domain structure in software design. We compared 2 planning applications, for a Mission Control group (International Space Station), and measured users speed and accuracy. Based on our needs analysis, we identified domain structure and used this to develop new prototype software that matched domain structure better than the legacy system. We took a high-fidelity analog of the natural task into the laboratory and found (large) periformance differences, favoring the system that matched domain structure. Our task design enabled us to attribute better periormance to better match of domain structure. We ran through the whole development cycle, in miniature, from needs analysis through design, development, and evaluation. Doing so enabled inferences not just about the particular systems compared, but also provided evidence for the viability of the design process (particularly needs analysis) that we are exploring.

  19. A digital acquisition and elaboration system for nuclear fast pulse detection

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Riva, M.; Marocco, D.; Kaschuck, Y.

    2007-03-01

    A new digital acquisition and elaboration system has been developed and assembled in ENEA-Frascati for the direct sampling of fast pulses from nuclear detectors such as scintillators and diamond detectors. The system is capable of performing the digital sampling of the pulses (200 MSamples/s, 14-bit) and the simultaneous (compressed) data transfer for further storage and software elaboration. The design (FPGA-based) is oriented to real-time applications and has been developed in order to allow acquisition with no loss of pulses and data storage for long-time intervals (tens of s at MHz pulse count rates) without the need of large on-board memory. A dedicated pulse analysis software, written in LabVIEWTM, performs the treatment of the acquired pulses, including pulse recognition, pile-up rejection, baseline removal, pulse shape particle separation and pulse height spectra analysis. The acquisition and pre-elaboration programs have been fully integrated with the analysis software.

  20. Sandia Engineering Analysis Code Access System v. 2.0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjaardema, Gregory D.

    The Sandia Engineering Analysis Code Access System (SEACAS) is a suite of preprocessing, post processing, translation, visualization, and utility applications supporting finite element analysis software using the Exodus database file format.

  1. A Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing (SAPE)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2009-01-01

    SAPE is a Python-based multidisciplinary analysis tool for systems analysis of planetary entry, descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. The purpose of SAPE is to provide a variable-fidelity capability for conceptual and preliminary analysis within the same framework. SAPE includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and structural sizing. SAPE uses the Python language-a platform-independent open-source software for integration and for the user interface. The development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE runs on Microsoft Windows and Apple Mac OS X and has been partially tested on Linux.

  2. Free software for performing physical analysis of systems for digital radiography and mammography.

    PubMed

    Donini, Bruno; Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco

    2014-05-01

    In this paper, the authors present a free software for assisting users in achieving the physical characterization of x-ray digital systems and image quality checks. The program was developed as a plugin of a well-known public-domain suite ImageJ. The software can assist users in calculating various physical parameters such as the response curve (also termed signal transfer property), modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE). It also includes the computation of some image quality checks: defective pixel analysis, uniformity, dark analysis, and lag. The software was made available in 2009 and has been used during the last couple of years by many users who gave us valuable feedback for improving its usability. It was tested for achieving the physical characterization of several clinical systems for digital radiography and mammography. Various published papers made use of the outcomes of the plugin. This software is potentially beneficial to a variety of users: physicists working in hospitals, staff working in radiological departments, such as medical physicists, physicians, engineers. The plugin, together with a brief user manual, are freely available and can be found online (www.medphys.it/downloads.htm). With our plugin users can estimate all three most important parameters used for physical characterization (MTF, NPS, and also DQE). The plugin can run on any operating system equipped with ImageJ suite. The authors validated the software by comparing MTF and NPS curves on a common set of images with those obtained with other dedicated programs, achieving a very good agreement.

  3. The open-source movement: an introduction for forestry professionals

    Treesearch

    Patrick Proctor; Paul C. Van Deusen; Linda S. Heath; Jeffrey H. Gove

    2005-01-01

    In recent years, the open-source movement has yielded a generous and powerful suite of software and utilities that rivals those developed by many commercial software companies. Open-source programs are available for many scientific needs: operating systems, databases, statistical analysis, Geographic Information System applications, and object-oriented programming....

  4. Effect of system workload on operating system reliability - A study on IBM 3081

    NASA Technical Reports Server (NTRS)

    Iyer, R. K.; Rossetti, D. J.

    1985-01-01

    This paper presents an analysis of operating system failures on an IBM 3081 running VM/SP. Three broad categories of software failures are found: error handling, program control or logic, and hardware related; it is found that more than 25 percent of software failures occur in the hardware/software interface. Measurements show that results on software reliability cannot be considered representative unless the system workload is taken into account. The overall CPU execution rate, although measured to be close to 100 percent most of the time, is not found to correlate strongly with the occurrence of failures. Possible reasons for the observed workload failure dependency, based on detailed investigations of the failure data, are discussed.

  5. Are Earth System model software engineering practices fit for purpose? A case study.

    NASA Astrophysics Data System (ADS)

    Easterbrook, S. M.; Johns, T. C.

    2009-04-01

    We present some analysis and conclusions from a case study of the culture and practices of scientists at the Met Office and Hadley Centre working on the development of software for climate and Earth System models using the MetUM infrastructure. The study examined how scientists think about software correctness, prioritize their requirements in making changes, and develop a shared understanding of the resulting models. We conclude that highly customized techniques driven strongly by scientific research goals have evolved for verification and validation of such models. In a formal software engineering context these represents costly, but invaluable, software integration tests with considerable benefits. The software engineering practices seen also exhibit recognisable features of both agile and open source software development projects - self-organisation of teams consistent with a meritocracy rather than top-down organisation, extensive use of informal communication channels, and software developers who are generally also users and science domain experts. We draw some general conclusions on whether these practices work well, and what new software engineering challenges may lie ahead as Earth System models become ever more complex and petascale computing becomes the norm.

  6. Systems Engineering and Integration (SE and I)

    NASA Technical Reports Server (NTRS)

    Chevers, ED; Haley, Sam

    1990-01-01

    The issue of technology advancement and future space transportation vehicles is addressed. The challenge is to develop systems which can be evolved and improved in small incremental steps where each increment reduces present cost, improves, reliability, or does neither but sets the stage for a second incremental upgrade that does. Future requirements are interface standards for commercial off the shelf products to aid in the development of integrated facilities; enhanced automated code generation system slightly coupled to specification and design documentation; modeling tools that support data flow analysis; and shared project data bases consisting of technical characteristics cast information, measurement parameters, and reusable software programs. Topics addressed include: advanced avionics development strategy; risk analysis and management; tool quality management; low cost avionics; cost estimation and benefits; computer aided software engineering; computer systems and software safety; system testability; and advanced avionics laboratories - and rapid prototyping. This presentation is represented by viewgraphs only.

  7. Computer-aided system design

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.

    1991-01-01

    A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.

  8. Evaluation of an expert system for fault detection, isolation, and recovery in the manned maneuvering unit

    NASA Technical Reports Server (NTRS)

    Rushby, John; Crow, Judith

    1990-01-01

    The authors explore issues in the specification, verification, and validation of artificial intelligence (AI) based software, using a prototype fault detection, isolation and recovery (FDIR) system for the Manned Maneuvering Unit (MMU). They use this system as a vehicle for exploring issues in the semantics of C-Language Integrated Production System (CLIPS)-style rule-based languages, the verification of properties relating to safety and reliability, and the static and dynamic analysis of knowledge based systems. This analysis reveals errors and shortcomings in the MMU FDIR system and raises a number of issues concerning software engineering in CLIPs. The authors came to realize that the MMU FDIR system does not conform to conventional definitions of AI software, despite the fact that it was intended and indeed presented as an AI system. The authors discuss this apparent disparity and related questions such as the role of AI techniques in space and aircraft operations and the suitability of CLIPS for critical applications.

  9. Automation for System Safety Analysis

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Fleming, Land; Throop, David; Thronesbery, Carroll; Flores, Joshua; Bennett, Ted; Wennberg, Paul

    2009-01-01

    This presentation describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.

  10. Tool Support for Parametric Analysis of Large Software Simulation Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Gundy-Burlet, Karen; Pasareanu, Corina; Menzies, Tim; Barrett, Tony

    2008-01-01

    The analysis of large and complex parameterized software systems, e.g., systems simulation in aerospace, is very complicated and time-consuming due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such an analysis with a tool to support envelope assessment: we utilize a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. Additional test-cases, automatically generated from models (e.g., UML, Simulink, Stateflow) improve the coverage. The distributed test runs of the software system produce vast amounts of data, making manual analysis impossible. Our tool automatically analyzes the generated data through a combination of unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. The tool has been developed around the Trick simulation environment, which is widely used within NASA. We will present this tool with a GN&C (Guidance, Navigation and Control) simulation of a small satellite system.

  11. Spreadsheets for Analyzing and Optimizing Space Missions

    NASA Technical Reports Server (NTRS)

    Some, Raphael R.; Agrawal, Anil K.; Czikmantory, Akos J.; Weisbin, Charles R.; Hua, Hook; Neff, Jon M.; Cowdin, Mark A.; Lewis, Brian S.; Iroz, Juana; Ross, Rick

    2009-01-01

    XCALIBR (XML Capability Analysis LIBRary) is a set of Extensible Markup Language (XML) database and spreadsheet- based analysis software tools designed to assist in technology-return-on-investment analysis and optimization of technology portfolios pertaining to outer-space missions. XCALIBR is also being examined for use in planning, tracking, and documentation of projects. An XCALIBR database contains information on mission requirements and technological capabilities, which are related by use of an XML taxonomy. XCALIBR incorporates a standardized interface for exporting data and analysis templates to an Excel spreadsheet. Unique features of XCALIBR include the following: It is inherently hierarchical by virtue of its XML basis. The XML taxonomy codifies a comprehensive data structure and data dictionary that includes performance metrics for spacecraft, sensors, and spacecraft systems other than sensors. The taxonomy contains >700 nodes representing all levels, from system through subsystem to individual parts. All entries are searchable and machine readable. There is an intuitive Web-based user interface. The software automatically matches technologies to mission requirements. The software automatically generates, and makes the required entries in, an Excel return-on-investment analysis software tool. The results of an analysis are presented in both tabular and graphical displays.

  12. Federal Emergency Management Information System (FEMIS) system administration guide. Version 1.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burford, M.J.; Burnett, R.A.; Downing, T.R.

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that was developed by the (Pacific Northwest National Laboratory) (PNNL) under the direction of the U.S. Army Chemical Biological Defense Command. The FEMIS System Administration Guide defines FEMIS hardware and software requirements and gives instructions for installing the FEMIS software package. 91 This document also contains information on the following: software installation for the FEMIS data servers, communication server, mail server, and the emergency management workstations; distribution media loading and FEMIS installation validation and troubleshooting; and system management of FEMIS users, login, privileges, and usage.more » The system administration utilities (tools), available in the FEMIS client software, are described for user accounts and site profile. This document also describes the installation and use of system and database administration utilities that will assist in keeping the FEMIS system running in an operational environment.« less

  13. Digital image processing of bone - Problems and potentials

    NASA Technical Reports Server (NTRS)

    Morey, E. R.; Wronski, T. J.

    1980-01-01

    The development of a digital image processing system for bone histomorphometry and fluorescent marker monitoring is discussed. The system in question is capable of making measurements of UV or light microscope features on a video screen with either video or computer-generated images, and comprises a microscope, low-light-level video camera, video digitizer and display terminal, color monitor, and PDP 11/34 computer. Capabilities demonstrated in the analysis of an undecalcified rat tibia include the measurement of perimeter and total bone area, and the generation of microscope images, false color images, digitized images and contoured images for further analysis. Software development will be based on an existing software library, specifically the mini-VICAR system developed at JPL. It is noted that the potentials of the system in terms of speed and reliability far exceed any problems associated with hardware and software development.

  14. Fusing Symbolic and Numerical Diagnostic Computations

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    X-2000 Anomaly Detection Language denotes a developmental computing language, and the software that establishes and utilizes the language, for fusing two diagnostic computer programs, one implementing a numerical analysis method, the other implementing a symbolic analysis method into a unified event-based decision analysis software system for realtime detection of events (e.g., failures) in a spacecraft, aircraft, or other complex engineering system. The numerical analysis method is performed by beacon-based exception analysis for multi-missions (BEAMs), which has been discussed in several previous NASA Tech Briefs articles. The symbolic analysis method is, more specifically, an artificial-intelligence method of the knowledge-based, inference engine type, and its implementation is exemplified by the Spacecraft Health Inference Engine (SHINE) software. The goal in developing the capability to fuse numerical and symbolic diagnostic components is to increase the depth of analysis beyond that previously attainable, thereby increasing the degree of confidence in the computed results. In practical terms, the sought improvement is to enable detection of all or most events, with no or few false alarms.

  15. System Re-engineering Project Executive Summary

    DTIC Science & Technology

    1991-11-01

    Management Information System (STAMIS) application. This project involved reverse engineering, evaluation of structured design and object-oriented design, and re- implementation of the system in Ada. This executive summary presents the approach to re-engineering the system, the lessons learned while going through the process, and issues to be considered in future tasks of this nature.... Computer-Aided Software Engineering (CASE), Distributed Software, Ada, COBOL, Systems Analysis, Systems Design, Life Cycle Development, Functional Decomposition, Object-Oriented

  16. Expert system verification and validation study: ES V/V Workshop

    NASA Technical Reports Server (NTRS)

    French, Scott; Hamilton, David

    1992-01-01

    The primary purpose of this document is to build a foundation for applying principles of verification and validation (V&V) of expert systems. To achieve this, some V&V as applied to conventionally implemented software is required. Part one will discuss the background of V&V from the perspective of (1) what is V&V of software and (2) V&V's role in developing software. Part one will also overview some common analysis techniques that are applied when performing V&V of software. All of these materials will be presented based on the assumption that the reader has little or no background in V&V or in developing procedural software. The primary purpose of part two is to explain the major techniques that have been developed for V&V of expert systems.

  17. AOIPS 3 User's guide. Volume 1: Overview and software utilization

    NASA Technical Reports Server (NTRS)

    Schotz, S. S.; Negri, A. J.; Robinson, W.

    1989-01-01

    This is Volume I of the Atmospheric and Oceanographic Information Processing System (AOIPS) User's Guide. AOIPS 3 is the version of the AOIPS software as of April 1989. The AOIPS software was developed jointly by the Goddard Space Flight Center and General Sciences Corporation. Volume 1 is intended to provide the user with an overall guide to the AOIPS system. It introduces the user to AOIPS system concepts, explains how programs are related and the necessary order of program execution, and provides brief descriptions derived from on-line help for every AOIPS program. It is intended to serve as a reference for information such as: program function, inmput/output variable descriptions, program limitations, etc. AOIPS is an interactive meteorological processing system with capabilities to ingest and analyze the many types of meteorological data. AOIPS includes several applications in areas of relevance to meteorological research. AOIPS is partitioned into four applications components: satellite data analysis, radar data analysis, aircraft data analysis, and utilities.

  18. Modeling and Hazard Analysis Using STPA

    NASA Astrophysics Data System (ADS)

    Ishimatsu, Takuto; Leveson, Nancy; Thomas, John; Katahira, Masa; Miyamoto, Yuko; Nakao, Haruka

    2010-09-01

    A joint research project between MIT and JAXA/JAMSS is investigating the application of a new hazard analysis to the system and software in the HTV. Traditional hazard analysis focuses on component failures but software does not fail in this way. Software most often contributes to accidents by commanding the spacecraft into an unsafe state(e.g., turning off the descent engines prematurely) or by not issuing required commands. That makes the standard hazard analysis techniques of limited usefulness on software-intensive systems, which describes most spacecraft built today. STPA is a new hazard analysis technique based on systems theory rather than reliability theory. It treats safety as a control problem rather than a failure problem. The goal of STPA, which is to create a set of scenarios that can lead to a hazard, is the same as FTA but STPA includes a broader set of potential scenarios including those in which no failures occur but the problems arise due to unsafe and unintended interactions among the system components. STPA also provides more guidance to the analysts that traditional fault tree analysis. Functional control diagrams are used to guide the analysis. In addition, JAXA uses a model-based system engineering development environment(created originally by Leveson and called SpecTRM) which also assists in the hazard analysis. One of the advantages of STPA is that it can be applied early in the system engineering and development process in a safety-driven design process where hazard analysis drives the design decisions rather than waiting until reviews identify problems that are then costly or difficult to fix. It can also be applied in an after-the-fact analysis and hazard assessment, which is what we did in this case study. This paper describes the experimental application of STPA to the JAXA HTV in order to determine the feasibility and usefulness of the new hazard analysis technique. Because the HTV was originally developed using fault tree analysis and following the NASA standards for safety-critical systems, the results of our experimental application of STPA can be compared with these more traditional safety engineering approaches in terms of the problems identified and the resources required to use it.

  19. The COMPTEL Processing and Analysis Software system (COMPASS)

    NASA Astrophysics Data System (ADS)

    de Vries, C. P.; COMPTEL Collaboration

    The data analysis system of the gamma-ray Compton Telescope (COMPTEL) onboard the Compton-GRO spacecraft is described. A continous stream of data of the order of 1 kbytes per second is generated by the instrument. The data processing and analysis software is build around a relational database managment system (RDBMS) in order to be able to trace heritage and processing status of all data in the processing pipeline. Four institutes cooperate in this effort requiring procedures to keep local RDBMS contents identical between the sites and swift exchange of data using network facilities. Lately, there has been a gradual move of the system from central processing facilities towards clusters of workstations.

  20. Development of a Software Safety Process and a Case Study of Its Use

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1996-01-01

    Research in the year covered by this reporting period has been primarily directed toward: continued development of mock-ups of computer screens for operator of a digital reactor control system; development of a reactor simulation to permit testing of various elements of the control system; formal specification of user interfaces; fault-tree analysis including software; evaluation of formal verification techniques; and continued development of a software documentation system. Technical results relating to this grant and the remainder of the principal investigator's research program are contained in various reports and papers.

  1. Adaptive optics system for the IRSOL solar observatory

    NASA Astrophysics Data System (ADS)

    Ramelli, Renzo; Bucher, Roberto; Rossini, Leopoldo; Bianda, Michele; Balemi, Silvano

    2010-07-01

    We present a low cost adaptive optics system developed for the solar observatory at Istituto Ricerche Solari Locarno (IRSOL), Switzerland. The Shack-Hartmann Wavefront Sensor is based on a Dalsa CCD camera with 256 pixels × 256 pixels working at 1kHz. The wavefront compensation is obtained by a deformable mirror with 37 actuators and a Tip-Tilt mirror. A real time control software has been developed on a RTAI-Linux PC. Scicos/Scilab based software has been realized for an online analysis of the system behavior. The software is completely open source.

  2. Toward domain-specific design environments: Some representation ideas from the telecommunications domain

    NASA Technical Reports Server (NTRS)

    Greenspan, Sol; Feblowitz, Mark

    1992-01-01

    ACME is an experimental environment for investigating new approaches to modeling and analysis of system requirements and designs. ACME is built on and extends object-oriented conceptual modeling techniques and knowledge representation and reasoning (KRR) tools. The most immediate intended use for ACME is to help represent, understand, and communicate system designs during the early stages of system planning and requirements engineering. While our research is ostensibly aimed at software systems in general, we are particularly motivated to make an impact in the telecommunications domain, especially in the area referred to as Intelligent Networks (IN's). IN systems contain the software to provide services to users of a telecommunications network (e.g., call processing services, information services, etc.) as well as the software that provides the internal infrastructure for providing the services (e.g., resource management, billing, etc.). The software includes not only systems developed by the network proprietors but also by a growing group of independent service software providers.

  3. 29 CFR 541.401 - Computer manufacture and repair.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...

  4. 29 CFR 541.401 - Computer manufacture and repair.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...

  5. 29 CFR 541.401 - Computer manufacture and repair.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...

  6. 29 CFR 541.401 - Computer manufacture and repair.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...

  7. For operation of the Computer Software Management and Information Center (COSMIC)

    NASA Technical Reports Server (NTRS)

    Carmon, J. L.

    1983-01-01

    Computer programs for relational information management data base systems, spherical roller bearing analysis, a generalized pseudoinverse of a rectangular matrix, and software design and documentation language are summarized.

  8. Development of automation software for neutron activation analysis process in Malaysian nuclear agency

    NASA Astrophysics Data System (ADS)

    Yussup, N.; Rahman, N. A. A.; Ibrahim, M. M.; Mokhtar, M.; Salim, N. A. A.; Soh@Shaari, S. C.; Azman, A.

    2017-01-01

    Neutron Activation Analysis (NAA) process has been established in Malaysian Nuclear Agency (Nuclear Malaysia) since 1980s. Most of the procedures established especially from sample registration to sample analysis are performed manually. These manual procedures carried out by the NAA laboratory personnel are time consuming and inefficient. Hence, a software to support the system automation is developed to provide an effective method to replace redundant manual data entries and produce faster sample analysis and calculation process. This paper describes the design and development of automation software for NAA process which consists of three sub-programs. The sub-programs are sample registration, hardware control and data acquisition; and sample analysis. The data flow and connection between the sub-programs will be explained. The software is developed by using National Instrument LabView development package.

  9. Development of Land Analysis System display modules

    NASA Technical Reports Server (NTRS)

    Gordon, Douglas; Hollaren, Douglas; Huewe, Laurie

    1986-01-01

    The Land Analysis System (LAS) display modules were developed to allow a user to interactively display, manipulate, and store image and image related data. To help accomplish this task, these modules utilize the Transportable Applications Executive and the Display Management System software to interact with the user and the display device. The basic characteristics of a display are outlined and some of the major modifications and additions made to the display management software are discussed. Finally, all available LAS display modules are listed along with a short description of each.

  10. The ASSIST: Bringing Information and Software Together for Scientists

    NASA Technical Reports Server (NTRS)

    Mandel, Eric

    1997-01-01

    The ASSIST was developed as a step toward overcoming the problems faced by researchers when trying to utilize complex and often conflicting astronomical data analysis systems. It implements a uniform graphical interface to analysis systems, documentation, data, and organizational memory. It is layered on top of the Answer Garden Substrate (AGS), a system specially designed to facilitate the collection and dissemination of organizational memory. Under the AISRP program, we further developed the ASSIST to make it even easier for researchers to overcome the difficulties of accessing software and information in a complex computer environment.

  11. Experience report: Using formal methods for requirements analysis of critical spacecraft software

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.; Ampo, Yoko

    1994-01-01

    Formal specification and analysis of requirements continues to gain support as a method for producing more reliable software. However, the introduction of formal methods to a large software project is difficult, due in part to the unfamiliarity of the specification languages and the lack of graphics. This paper reports results of an investigation into the effectiveness of formal methods as an aid to the requirements analysis of critical, system-level fault-protection software on a spacecraft currently under development. Our experience indicates that formal specification and analysis can enhance the accuracy of the requirements and add assurance prior to design development in this domain. The work described here is part of a larger, NASA-funded research project whose purpose is to use formal-methods techniques to improve the quality of software in space applications. The demonstration project described here is part of the effort to evaluate experimentally the effectiveness of supplementing traditional engineering approaches to requirements specification with the more rigorous specification and analysis available with formal methods.

  12. OIPAV: an integrated software system for ophthalmic image processing, analysis and visualization

    NASA Astrophysics Data System (ADS)

    Zhang, Lichun; Xiang, Dehui; Jin, Chao; Shi, Fei; Yu, Kai; Chen, Xinjian

    2018-03-01

    OIPAV (Ophthalmic Images Processing, Analysis and Visualization) is a cross-platform software which is specially oriented to ophthalmic images. It provides a wide range of functionalities including data I/O, image processing, interaction, ophthalmic diseases detection, data analysis and visualization to help researchers and clinicians deal with various ophthalmic images such as optical coherence tomography (OCT) images and color photo of fundus, etc. It enables users to easily access to different ophthalmic image data manufactured from different imaging devices, facilitate workflows of processing ophthalmic images and improve quantitative evaluations. In this paper, we will present the system design and functional modules of the platform and demonstrate various applications. With a satisfying function scalability and expandability, we believe that the software can be widely applied in ophthalmology field.

  13. FAST: A multi-processed environment for visualization of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin

    1991-01-01

    Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed.

  14. UFMulti: A new parallel processing software system for HEP

    NASA Astrophysics Data System (ADS)

    Avery, Paul; White, Andrew

    1989-12-01

    UFMulti is a multiprocessing software package designed for general purpose high energy physics applications, including physics and detector simulation, data reduction and DST physics analysis. The system is particularly well suited for installations where several workstation or computers are connected through a local area network (LAN). The initial configuration of the software is currently running on VAX/VMS machines with a planned extension to ULTRIX, using the new RISC CPUs from Digital, in the near future.

  15. ATLAS tile calorimeter cesium calibration control and analysis software

    NASA Astrophysics Data System (ADS)

    Solovyanov, O.; Solodkov, A.; Starchenko, E.; Karyukhin, A.; Isaev, A.; Shalanda, N.

    2008-07-01

    An online control system to calibrate and monitor ATLAS Barrel hadronic calorimeter (TileCal) with a movable radioactive source, driven by liquid flow, is described. To read out and control the system an online software has been developed, using ATLAS TDAQ components like DVS (Diagnostic and Verification System) to verify the hardware before running, IS (Information Server) for data and status exchange between networked computers, and other components like DDC (DCS to DAQ Connection), to connect to PVSS-based slow control systems of Tile Calorimeter, high voltage and low voltage. A system of scripting facilities, based on Python language, is used to handle all the calibration and monitoring processes from hardware perspective to final data storage, including various abnormal situations. A QT based graphical user interface to display the status of the calibration system during the cesium source scan is described. The software for analysis of the detector response, using online data, is discussed. Performance of the system and first experience from the ATLAS pit are presented.

  16. Software system for data management and distributed processing of multichannel biomedical signals.

    PubMed

    Franaszczuk, P J; Jouny, C C

    2004-01-01

    The presented software is designed for efficient utilization of cluster of PC computers for signal analysis of multichannel physiological data. The system consists of three main components: 1) a library of input and output procedures, 2) a database storing additional information about location in a storage system, 3) a user interface for selecting data for analysis, choosing programs for analysis, and distributing computing and output data on cluster nodes. The system allows for processing multichannel time series data in multiple binary formats. The description of data format, channels and time of recording are included in separate text files. Definition and selection of multiple channel montages is possible. Epochs for analysis can be selected both manually and automatically. Implementation of a new signal processing procedures is possible with a minimal programming overhead for the input/output processing and user interface. The number of nodes in cluster used for computations and amount of storage can be changed with no major modification to software. Current implementations include the time-frequency analysis of multiday, multichannel recordings of intracranial EEG of epileptic patients as well as evoked response analyses of repeated cognitive tasks.

  17. Using Business Analysis Software in a Business Intelligence Course

    ERIC Educational Resources Information Center

    Elizondo, Juan; Parzinger, Monica J.; Welch, Orion J.

    2011-01-01

    This paper presents an example of a project used in an undergraduate business intelligence class which integrates concepts from statistics, marketing, and information systems disciplines. SAS Enterprise Miner software is used as the foundation for predictive analysis and data mining. The course culminates with a competition and the project is used…

  18. Generic Space Science Visualization in 2D/3D using SDDAS

    NASA Astrophysics Data System (ADS)

    Mukherjee, J.; Murphy, Z. B.; Gonzalez, C. A.; Muller, M.; Ybarra, S.

    2017-12-01

    The Southwest Data Display and Analysis System (SDDAS) is a flexible multi-mission / multi-instrument software system intended to support space physics data analysis, and has been in active development for over 20 years. For the Magnetospheric Multi-Scale (MMS), Juno, Cluster, and Mars Express missions, we have modified these generic tools for visualizing data in two and three dimensions. The SDDAS software is open source and makes use of various other open source packages, including VTK and Qwt. The software offers interactive plotting as well as a Python and Lua module to modify the data before plotting. In theory, by writing a Lua or Python module to read the data, any data could be used. Currently, the software can natively read data in IDFS, CEF, CDF, FITS, SEG-Y, ASCII, and XLS formats. We have integrated the software with other Python packages such as SPICE and SpacePy. Included with the visualization software is a database application and other utilities for managing data that can retrieve data from the Cluster Active Archive and Space Physics Data Facility at Goddard, as well as other local archives. Line plots, spectrograms, geographic, volume plots, strip charts, etc. are just some of the types of plots one can generate with SDDAS. Furthermore, due to the design, output is not limited to strictly visualization as SDDAS can also be used to generate stand-alone IDL or Python visualization code.. Lastly, SDDAS has been successfully used as a backend for several web based analysis systems as well.

  19. Automated data acquisition technology development:Automated modeling and control development

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1995-01-01

    This report documents the completion of, and improvements made to, the software developed for automated data acquisition and automated modeling and control development on the Texas Micro rackmounted PC's. This research was initiated because a need was identified by the Metal Processing Branch of NASA Marshall Space Flight Center for a mobile data acquisition and data analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC based system was chosen. The Welding Measurement System (WMS), is a dedicated instrument strickly for use of data acquisition and data analysis. In addition to the data acquisition functions described in this thesis, WMS also supports many functions associated with process control. The hardware and software requirements for an automated acquisition system for welding process parameters, welding equipment checkout, and welding process modeling were determined in 1992. From these recommendations, NASA purchased the necessary hardware and software. The new welding acquisition system is designed to collect welding parameter data and perform analysis to determine the voltage versus current arc-length relationship for VPPA welding. Once the results of this analysis are obtained, they can then be used to develop a RAIL function to control welding startup and shutdown without torch crashing.

  20. Introducing a New Software for Geodetic Analysis

    NASA Astrophysics Data System (ADS)

    Hjelle, G. A.; Dähnn, M.; Fausk, I.; Kirkvik, A. S.; Mysen, E.

    2016-12-01

    At the Norwegian Mapping Authority, we are currently developing Where, a newsoftware for geodetic analysis. Where is built on our experiences with theGeosat software, and will be able to analyse and combine data from VLBI, SLR,GNSS and DORIS. The software is mainly written in Python which has proved veryfruitful. The code is quick to write and the architecture is easily extendableand maintainable. The Python community provides a rich eco-system of tools fordoing data-analysis, including effective data storage and powerfulvisualization. Python interfaces well with other languages so that we can easilyreuse existing, well-tested code like the SOFA and IERS libraries. This presentation will show some of the current capabilities of Where,including benchmarks against other software packages. In addition we will reporton some simple investigations we have done using the software, and outline ourplans for further progress.

  1. Object-oriented design of medical imaging software.

    PubMed

    Ligier, Y; Ratib, O; Logean, M; Girard, C; Perrier, R; Scherrer, J R

    1994-01-01

    A special software package for interactive display and manipulation of medical images was developed at the University Hospital of Geneva, as part of a hospital wide Picture Archiving and Communication System (PACS). This software package, called Osiris, was especially designed to be easily usable and adaptable to the needs of noncomputer-oriented physicians. The Osiris software has been developed to allow the visualization of medical images obtained from any imaging modality. It provides generic manipulation tools, processing tools, and analysis tools more specific to clinical applications. This software, based on an object-oriented paradigm, is portable and extensible. Osiris is available on two different operating systems: the Unix X-11/OSF-Motif based workstations, and the Macintosh family.

  2. Introduction to the computational structural mechanics testbed

    NASA Technical Reports Server (NTRS)

    Lotts, C. G.; Greene, W. H.; Mccleary, S. L.; Knight, N. F., Jr.; Paulson, S. S.; Gillian, R. E.

    1987-01-01

    The Computational Structural Mechanics (CSM) testbed software system based on the SPAR finite element code and the NICE system is described. This software is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Lockheed and Engineering Information Systems, Inc. It includes many complementary structural analysis, thermal analysis, utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with a SPAR computational modules.

  3. Modular Analytical Multicomponent Analysis in Gas Sensor Aarrays

    PubMed Central

    Chaiyboun, Ali; Traute, Rüdiger; Kiesewetter, Olaf; Ahlers, Simon; Müller, Gerhard; Doll, Theodor

    2006-01-01

    A multi-sensor system is a chemical sensor system which quantitatively and qualitatively records gases with a combination of cross-sensitive gas sensor arrays and pattern recognition software. This paper addresses the issue of data analysis for identification of gases in a gas sensor array. We introduce a software tool for gas sensor array configuration and simulation. It concerns thereby about a modular software package for the acquisition of data of different sensors. A signal evaluation algorithm referred to as matrix method was used specifically for the software tool. This matrix method computes the gas concentrations from the signals of a sensor array. The software tool was used for the simulation of an array of five sensors to determine gas concentration of CH4, NH3, H2, CO and C2H5OH. The results of the present simulated sensor array indicate that the software tool is capable of the following: (a) identify a gas independently of its concentration; (b) estimate the concentration of the gas, even if the system was not previously exposed to this concentration; (c) tell when a gas concentration exceeds a certain value. A gas sensor data base was build for the configuration of the software. With the data base one can create, generate and manage scenarios and source files for the simulation. With the gas sensor data base and the simulation software an on-line Web-based version was developed, with which the user can configure and simulate sensor arrays on-line.

  4. Transformation Systems at NASA Ames

    NASA Technical Reports Server (NTRS)

    Buntine, Wray; Fischer, Bernd; Havelund, Klaus; Lowry, Michael; Pressburger, TOm; Roach, Steve; Robinson, Peter; VanBaalen, Jeffrey

    1999-01-01

    In this paper, we describe the experiences of the Automated Software Engineering Group at the NASA Ames Research Center in the development and application of three different transformation systems. The systems span the entire technology range, from deductive synthesis, to logic-based transformation, to almost compiler-like source-to-source transformation. These systems also span a range of NASA applications, including solving solar system geometry problems, generating data analysis software, and analyzing multi-threaded Java code.

  5. A coverage and slicing dependencies analysis for seeking software security defects.

    PubMed

    He, Hui; Zhang, Dongyan; Liu, Min; Zhang, Weizhe; Gao, Dongmin

    2014-01-01

    Software security defects have a serious impact on the software quality and reliability. It is a major hidden danger for the operation of a system that a software system has some security flaws. When the scale of the software increases, its vulnerability has becoming much more difficult to find out. Once these vulnerabilities are exploited, it may lead to great loss. In this situation, the concept of Software Assurance is carried out by some experts. And the automated fault localization technique is a part of the research of Software Assurance. Currently, automated fault localization method includes coverage based fault localization (CBFL) and program slicing. Both of the methods have their own location advantages and defects. In this paper, we have put forward a new method, named Reverse Data Dependence Analysis Model, which integrates the two methods by analyzing the program structure. On this basis, we finally proposed a new automated fault localization method. This method not only is automation lossless but also changes the basic location unit into single sentence, which makes the location effect more accurate. Through several experiments, we proved that our method is more effective. Furthermore, we analyzed the effectiveness among these existing methods and different faults.

  6. An Integrated Research Program for the Modeling, Analysis and Control of Aerospace Systems

    DTIC Science & Technology

    1992-03-03

    Mitchell Feigenbaum - Rockefeller University Elena Fernandez - Institudo de Desarrollo Techologico, para la Industria Quimica Wilfred M. Greenlee...Ultrix; we have installed the GKS graphics system and language compilers (FORTRAN and C). The DELIGHT.MIMO software , which links a sophisticated non...smooth optimization package to some linear system software , is on the system. The package was kindly furnished by Professor E. Polak, Electrical and

  7. The IUE Science Operations Ground System

    NASA Technical Reports Server (NTRS)

    Pitts, Ronald E.; Arquilla, Richard

    1994-01-01

    The International Ultraviolet Explorer (IUE) Science Operations System provides full realtime operations capabilities and support to the operations staff and astronomer users. The components of this very diverse and extremely flexible hardware and software system have played a major role in maintaining the scientific efficiency and productivity of the IUE. The software provides the staff and user with all the tools necessary for pre-visit and real-time planning and operations analysis for any day of the year. Examples of such tools include the effects of spacecraft constraints on target availability, maneuver times between targets, availability of guide stars, target identification, coordinate transforms, e-mail transfer of Observatory forms and messages, and quick-look analysis of image data. Most of this extensive software package can also be accessed remotely by individual users for information, scheduling of shifts, pre-visit planning, and actual observing program execution. Astronomers, with a modest investment in hardware and software, may establish remote observing sites. We currently have over 20 such sites in our remote observers' network.

  8. Probabilistic Design and Analysis Framework

    NASA Technical Reports Server (NTRS)

    Strack, William C.; Nagpal, Vinod K.

    2010-01-01

    PRODAF is a software package designed to aid analysts and designers in conducting probabilistic analysis of components and systems. PRODAF can integrate multiple analysis programs to ease the tedious process of conducting a complex analysis process that requires the use of multiple software packages. The work uses a commercial finite element analysis (FEA) program with modules from NESSUS to conduct a probabilistic analysis of a hypothetical turbine blade, disk, and shaft model. PRODAF applies the response surface method, at the component level, and extrapolates the component-level responses to the system level. Hypothetical components of a gas turbine engine are first deterministically modeled using FEA. Variations in selected geometrical dimensions and loading conditions are analyzed to determine the effects of the stress state within each component. Geometric variations include the cord length and height for the blade, inner radius, outer radius, and thickness, which are varied for the disk. Probabilistic analysis is carried out using developing software packages like System Uncertainty Analysis (SUA) and PRODAF. PRODAF was used with a commercial deterministic FEA program in conjunction with modules from the probabilistic analysis program, NESTEM, to perturb loads and geometries to provide a reliability and sensitivity analysis. PRODAF simplified the handling of data among the various programs involved, and will work with many commercial and opensource deterministic programs, probabilistic programs, or modules.

  9. Integrated Assessment and Improvement of the Quality Assurance System for the Cosworth Casting Process

    NASA Astrophysics Data System (ADS)

    Yousif, Dilon

    The purpose of this study was to improve the Quality Assurance (QA) System at the Nemak Windsor Aluminum Plant (WAP). The project used Six Sigma method based on Define, Measure, Analyze, Improve, and Control (DMAIC). Analysis of in process melt at WAP was based on chemical, thermal, and mechanical testing. The control limits for the W319 Al Alloy were statistically recalculated using the composition measured under stable conditions. The "Chemistry Viewer" software was developed for statistical analysis of alloy composition. This software features the Silicon Equivalency (SiBQ) developed by the IRC. The Melt Sampling Device (MSD) was designed and evaluated at WAP to overcome traditional sampling limitations. The Thermal Analysis "Filters" software was developed for cooling curve analysis of the 3XX Al Alloy(s) using IRC techniques. The impact of low melting point impurities on the start of melting was evaluated using the Universal Metallurgical Simulator and Analyzer (UMSA).

  10. Framework for Risk Analysis in Multimedia Environmental Systems: Modeling Individual Steps of a Risk Assessment Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Anuj; Castleton, Karl J.; Hoopes, Bonnie L.

    2004-06-01

    The study of the release and effects of chemicals in the environment and their associated risks to humans is central to public and private decision making. FRAMES 1.X, Framework for Risk Analysis in Multimedia Environmental Systems, is a systems modeling software platform, developed by PNNL, Pacific Northwest National Laboratory, that helps scientists study the release and effects of chemicals on a source to outcome basis, create environmental models for similar risk assessment and management problems. The unique aspect of FRAMES is to dynamically introduce software modules representing individual components of a risk assessment (e.g., source release of contaminants, fate andmore » transport in various environmental media, exposure, etc.) within a software framework, manipulate their attributes and run simulations to obtain results. This paper outlines the fundamental constituents of FRAMES 2.X, an enhanced version of FRAMES 1.X, that greatly improve the ability of the module developers to “plug” their self-developed software modules into the system. The basic design, the underlying principles and a discussion of the guidelines for module developers are presented.« less

  11. Using SFOC to fly the Magellan Venus mapping mission

    NASA Technical Reports Server (NTRS)

    Bucher, Allen W.; Leonard, Robert E., Jr.; Short, Owen G.

    1993-01-01

    Traditionally, spacecraft flight operations at the Jet Propulsion Laboratory (JPL) have been performed by teams of spacecraft experts utilizing ground software designed specifically for the current mission. The Jet Propulsion Laboratory set out to reduce the cost of spacecraft mission operations by designing ground data processing software that could be used by multiple spacecraft missions, either sequentially or concurrently. The Space Flight Operations Center (SFOC) System was developed to provide the ground data system capabilities needed to monitor several spacecraft simultaneously and provide enough flexibility to meet the specific needs of individual projects. The Magellan Spacecraft Team utilizes the SFOC hardware and software designed for engineering telemetry analysis, both real-time and non-real-time. The flexibility of the SFOC System has allowed the spacecraft team to integrate their own tools with SFOC tools to perform the tasks required to operate a spacecraft mission. This paper describes how the Magellan Spacecraft Team is utilizing the SFOC System in conjunction with their own software tools to perform the required tasks of spacecraft event monitoring as well as engineering data analysis and trending.

  12. Rate Monotonic Analysis for Real-Time Systems

    DTIC Science & Technology

    1991-03-01

    The essential goal of the Rate Monotonic Analysis (RMA) for Real - Time Systems Project at the Software Engineering Institute is to catalyze...improvement in the practice of real time systems engineering, specifically by increasing the use of rate monotonic analysis and scheduling algorithms. In this

  13. Transportation systems safety hazard analysis tool (SafetyHAT) user guide (version 1.0)

    DOT National Transportation Integrated Search

    2014-03-24

    This is a user guide for the transportation system Safety Hazard Analysis Tool (SafetyHAT) Version 1.0. SafetyHAT is a software tool that facilitates System Theoretic Process Analysis (STPA.) This user guide provides instructions on how to download, ...

  14. 75 FR 35457 - Draft of the 2010 Causal Analysis/Diagnosis Decision Information System (CADDIS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... Causal Analysis/Diagnosis Decision Information System (CADDIS) AGENCY: Environmental Protection Agency... site, ``2010 release of the Causal Analysis/Diagnosis Decision Information System (CADDIS).'' The... analyses, downloadable software tools, and links to outside information sources. II. How to Submit Comments...

  15. Treatment delivery software for a new clinical grade ultrasound system for thermoradiotherapy.

    PubMed

    Novák, Petr; Moros, Eduardo G; Straube, William L; Myerson, Robert J

    2005-11-01

    A detailed description of a clinical grade Scanning Ultrasound Reflector Linear Array System (SURLAS) applicator was given in a previous paper [Med. Phys. 32, 230-240 (2005)]. In this paper we concentrate on the design, development, and testing of the personal computer (PC) based treatment delivery software that runs the therapy system. The SURLAS requires the coordinated interaction between the therapy applicator and several peripheral devices for its proper and safe operation. One of the most important tasks was the coordination of the input power sequences for the elements of two parallel opposed ultrasound arrays (eight 1.5 cm x 2 cm elements/array, array 1 and 2 operate at 1.9 and 4.9 MHz, respectively) in coordination with the position of a dual-face scanning acoustic reflector. To achieve this, the treatment delivery software can divide the applicator's treatment window in up to 64 sectors (minimum size of 2 cm x 2 cm), and control the power to each sector independently by adjusting the power output levels from the channels of a 16-channel radio-frequency generator. The software coordinates the generator outputs with the position of the reflector as it scans back and forth between the arrays. Individual sector control and dual frequency operation allows the SURLAS to adjust power deposition in three dimensions to superficial targets coupled to its treatment window. The treatment delivery software also monitors and logs several parameters such as temperatures acquired using a 16-channel thermocouple thermometry unit. Safety (in particular to patients) was the paramount concern and design criterion. Failure mode and effects analysis (FMEA) was applied to the applicator as well as to the entire therapy system in order to identify safety issues and rank their relative importance. This analysis led to the implementation of several safety mechanisms and a software structure where each device communicates with the controlling PC independently of the others. In case of a malfunction in any part of the system or a violation of a user-defined safety criterion based on temperature readings, the software terminates treatment immediately and the user is notified. The software development process consisting of problem analysis, design, implementation, and testing is presented in this paper. Once the software was finished and integrated with the hardware, the therapy system was extensively tested. Results demonstrated that the software operates the SURLAS as intended with minimum risk to future patients.

  16. Incorporating Manual and Autonomous Code Generation

    NASA Technical Reports Server (NTRS)

    McComas, David

    1998-01-01

    Code can be generated manually or using code-generated software tools, but how do you interpret the two? This article looks at a design methodology that combines object-oriented design with autonomic code generation for attitude control flight software. Recent improvements in space flight computers are allowing software engineers to spend more time engineering the applications software. The application developed was the attitude control flight software for an astronomical satellite called the Microwave Anisotropy Probe (MAP). The MAP flight system is being designed, developed, and integrated at NASA's Goddard Space Flight Center. The MAP controls engineers are using Integrated Systems Inc.'s MATRIXx for their controls analysis. In addition to providing a graphical analysis for an environment, MATRIXx includes an autonomic code generation facility called AutoCode. This article examines the forces that shaped the final design and describes three highlights of the design process: (1) Defining the manual to autonomic code interface; (2) Applying object-oriented design to the manual flight code; (3) Implementing the object-oriented design in C.

  17. Requirements for guidelines systems: implementation challenges and lessons from existing software-engineering efforts.

    PubMed

    Shah, Hemant; Allard, Raymond D; Enberg, Robert; Krishnan, Ganesh; Williams, Patricia; Nadkarni, Prakash M

    2012-03-09

    A large body of work in the clinical guidelines field has identified requirements for guideline systems, but there are formidable challenges in translating such requirements into production-quality systems that can be used in routine patient care. Detailed analysis of requirements from an implementation perspective can be useful in helping define sub-requirements to the point where they are implementable. Further, additional requirements emerge as a result of such analysis. During such an analysis, study of examples of existing, software-engineering efforts in non-biomedical fields can provide useful signposts to the implementer of a clinical guideline system. In addition to requirements described by guideline-system authors, comparative reviews of such systems, and publications discussing information needs for guideline systems and clinical decision support systems in general, we have incorporated additional requirements related to production-system robustness and functionality from publications in the business workflow domain, in addition to drawing on our own experience in the development of the Proteus guideline system (http://proteme.org). The sub-requirements are discussed by conveniently grouping them into the categories used by the review of Isern and Moreno 2008. We cite previous work under each category and then provide sub-requirements under each category, and provide example of similar work in software-engineering efforts that have addressed a similar problem in a non-biomedical context. When analyzing requirements from the implementation viewpoint, knowledge of successes and failures in related software-engineering efforts can guide implementers in the choice of effective design and development strategies.

  18. Requirements for guidelines systems: implementation challenges and lessons from existing software-engineering efforts

    PubMed Central

    2012-01-01

    Background A large body of work in the clinical guidelines field has identified requirements for guideline systems, but there are formidable challenges in translating such requirements into production-quality systems that can be used in routine patient care. Detailed analysis of requirements from an implementation perspective can be useful in helping define sub-requirements to the point where they are implementable. Further, additional requirements emerge as a result of such analysis. During such an analysis, study of examples of existing, software-engineering efforts in non-biomedical fields can provide useful signposts to the implementer of a clinical guideline system. Methods In addition to requirements described by guideline-system authors, comparative reviews of such systems, and publications discussing information needs for guideline systems and clinical decision support systems in general, we have incorporated additional requirements related to production-system robustness and functionality from publications in the business workflow domain, in addition to drawing on our own experience in the development of the Proteus guideline system (http://proteme.org). Results The sub-requirements are discussed by conveniently grouping them into the categories used by the review of Isern and Moreno 2008. We cite previous work under each category and then provide sub-requirements under each category, and provide example of similar work in software-engineering efforts that have addressed a similar problem in a non-biomedical context. Conclusions When analyzing requirements from the implementation viewpoint, knowledge of successes and failures in related software-engineering efforts can guide implementers in the choice of effective design and development strategies. PMID:22405400

  19. Fiji: an open-source platform for biological-image analysis.

    PubMed

    Schindelin, Johannes; Arganda-Carreras, Ignacio; Frise, Erwin; Kaynig, Verena; Longair, Mark; Pietzsch, Tobias; Preibisch, Stephan; Rueden, Curtis; Saalfeld, Stephan; Schmid, Benjamin; Tinevez, Jean-Yves; White, Daniel James; Hartenstein, Volker; Eliceiri, Kevin; Tomancak, Pavel; Cardona, Albert

    2012-06-28

    Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.

  20. Debris Examination Using Ballistic and Radar Integrated Software

    NASA Technical Reports Server (NTRS)

    Griffith, Anthony; Schottel, Matthew; Lee, David; Scully, Robert; Hamilton, Joseph; Kent, Brian; Thomas, Christopher; Benson, Jonathan; Branch, Eric; Hardman, Paul; hide

    2012-01-01

    The Debris Examination Using Ballistic and Radar Integrated Software (DEBRIS) program was developed to provide rapid and accurate analysis of debris observed by the NASA Debris Radar (NDR). This software provides a greatly improved analysis capacity over earlier manual processes, allowing for up to four times as much data to be analyzed by one-quarter of the personnel required by earlier methods. There are two applications that comprise the DEBRIS system: the Automated Radar Debris Examination Tool (ARDENT) and the primary DEBRIS tool.

  1. Rapid Prototyping of Robotic Systems

    DTIC Science & Technology

    2007-06-01

    Nowak, S. Peterson, “Feature Oriented Domain Analysis ( FODA ) Feasibility Study,” Technical Report, CMU/SEI-90-TR-21, Software Engineering Institute...32 3. Embedded System Control Language..............................................33 viii 4. Architecture Analysis and Design Language...41 5. Analysis

  2. A digital flight control system verification laboratory

    NASA Technical Reports Server (NTRS)

    De Feo, P.; Saib, S.

    1982-01-01

    A NASA/FAA program has been established for the verification and validation of digital flight control systems (DFCS), with the primary objective being the development and analysis of automated verification tools. In order to enhance the capabilities, effectiveness, and ease of using the test environment, software verification tools can be applied. Tool design includes a static analyzer, an assertion generator, a symbolic executor, a dynamic analysis instrument, and an automated documentation generator. Static and dynamic tools are integrated with error detection capabilities, resulting in a facility which analyzes a representative testbed of DFCS software. Future investigations will ensue particularly in the areas of increase in the number of software test tools, and a cost effectiveness assessment.

  3. Large Scale Software Building with CMake in ATLAS

    NASA Astrophysics Data System (ADS)

    Elmsheuser, J.; Krasznahorkay, A.; Obreshkov, E.; Undrus, A.; ATLAS Collaboration

    2017-10-01

    The offline software of the ATLAS experiment at the Large Hadron Collider (LHC) serves as the platform for detector data reconstruction, simulation and analysis. It is also used in the detector’s trigger system to select LHC collision events during data taking. The ATLAS offline software consists of several million lines of C++ and Python code organized in a modular design of more than 2000 specialized packages. Because of different workflows, many stable numbered releases are in parallel production use. To accommodate specific workflow requests, software patches with modified libraries are distributed on top of existing software releases on a daily basis. The different ATLAS software applications also require a flexible build system that strongly supports unit and integration tests. Within the last year this build system was migrated to CMake. A CMake configuration has been developed that allows one to easily set up and build the above mentioned software packages. This also makes it possible to develop and test new and modified packages on top of existing releases. The system also allows one to detect and execute partial rebuilds of the release based on single package changes. The build system makes use of CPack for building RPM packages out of the software releases, and CTest for running unit and integration tests. We report on the migration and integration of the ATLAS software to CMake and show working examples of this large scale project in production.

  4. Computer-aided modelling and analysis of PV systems: a comparative study.

    PubMed

    Koukouvaos, Charalambos; Kandris, Dionisis; Samarakou, Maria

    2014-01-01

    Modern scientific advances have enabled remarkable efficacy for photovoltaic systems with regard to the exploitation of solar energy, boosting them into having a rapidly growing position among the systems developed for the production of renewable energy. However, in many cases the design, analysis, and control of photovoltaic systems are tasks which are quite complex and thus difficult to be carried out. In order to cope with this kind of problems, appropriate software tools have been developed either as standalone products or parts of general purpose software platforms used to model and simulate the generation, transmission, and distribution of solar energy. The utilization of this kind of software tools may be extremely helpful to the successful performance evaluation of energy systems with maximum accuracy and minimum cost in time and effort. The work presented in this paper aims on a first level at the performance analysis of various configurations of photovoltaic systems through computer-aided modelling. On a second level, it provides a comparative evaluation of the credibility of two of the most advanced graphical programming environments, namely, Simulink and LabVIEW, with regard to their application in photovoltaic systems.

  5. Computer-Aided Modelling and Analysis of PV Systems: A Comparative Study

    PubMed Central

    Koukouvaos, Charalambos

    2014-01-01

    Modern scientific advances have enabled remarkable efficacy for photovoltaic systems with regard to the exploitation of solar energy, boosting them into having a rapidly growing position among the systems developed for the production of renewable energy. However, in many cases the design, analysis, and control of photovoltaic systems are tasks which are quite complex and thus difficult to be carried out. In order to cope with this kind of problems, appropriate software tools have been developed either as standalone products or parts of general purpose software platforms used to model and simulate the generation, transmission, and distribution of solar energy. The utilization of this kind of software tools may be extremely helpful to the successful performance evaluation of energy systems with maximum accuracy and minimum cost in time and effort. The work presented in this paper aims on a first level at the performance analysis of various configurations of photovoltaic systems through computer-aided modelling. On a second level, it provides a comparative evaluation of the credibility of two of the most advanced graphical programming environments, namely, Simulink and LabVIEW, with regard to their application in photovoltaic systems. PMID:24772007

  6. Proceedings of the Annual Ada Software Engineering Education and Training Symposium (3rd) Held in Denver, Colorado on June 14-16, 1988

    DTIC Science & Technology

    1988-06-01

    Based Software Engineering Project Course .............. 83 SSoftware Engineering, Software Engineering Concepts: The Importance of Object-Based...quality assurance, and independent system testing . The Chief Programmer is responsible for all software development activities, including prototyping...during the Requirements Analysis phase, the Preliminary Design, the Detailed Design, Coding and Unit Testing , CSC Integration and Testing , and informal

  7. Quantitative method of medication system interface evaluation.

    PubMed

    Pingenot, Alleene Anne; Shanteau, James; Pingenot, James D F

    2007-01-01

    The objective of this study was to develop a quantitative method of evaluating the user interface for medication system software. A detailed task analysis provided a description of user goals and essential activity. A structural fault analysis was used to develop a detailed description of the system interface. Nurses experienced with use of the system under evaluation provided estimates of failure rates for each point in this simplified fault tree. Means of estimated failure rates provided quantitative data for fault analysis. Authors note that, although failures of steps in the program were frequent, participants reported numerous methods of working around these failures so that overall system failure was rare. However, frequent process failure can affect the time required for processing medications, making a system inefficient. This method of interface analysis, called Software Efficiency Evaluation and Fault Identification Method, provides quantitative information with which prototypes can be compared and problems within an interface identified.

  8. A General Water Resources Regulation Software System in China

    NASA Astrophysics Data System (ADS)

    LEI, X.

    2017-12-01

    To avoid iterative development of core modules in water resource normal regulation and emergency regulation and improve the capability of maintenance and optimization upgrading of regulation models and business logics, a general water resources regulation software framework was developed based on the collection and analysis of common demands for water resources regulation and emergency management. It can provide a customizable, secondary developed and extensible software framework for the three-level platform "MWR-Basin-Province". Meanwhile, this general software system can realize business collaboration and information sharing of water resources regulation schemes among the three-level platforms, so as to improve the decision-making ability of national water resources regulation. There are four main modules involved in the general software system: 1) A complete set of general water resources regulation modules allows secondary developer to custom-develop water resources regulation decision-making systems; 2) A complete set of model base and model computing software released in the form of Cloud services; 3) A complete set of tools to build the concept map and model system of basin water resources regulation, as well as a model management system to calibrate and configure model parameters; 4) A database which satisfies business functions and functional requirements of general water resources regulation software can finally provide technical support for building basin or regional water resources regulation models.

  9. Software technology testbed softpanel prototype

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The following subject areas are covered: analysis of using Ada for the development of real-time control systems for the Space Station; analysis of the functionality of the Application Generator; analysis of the User Support Environment criteria; analysis of the SSE tools and procedures which are to be used for the development of ground/flight software for the Space Station; analysis if the CBATS tutorial (an Ada tutorial package); analysis of Interleaf; analysis of the Integration, Test and Verification process of the Space Station; analysis of the DMS on-orbit flight architecture; analysis of the simulation architecture.

  10. Application of thermoluminescence for detection of cascade shower 1: Hardware and software of reader system

    NASA Technical Reports Server (NTRS)

    Akashi, M.; Kawaguchi, S.; Watanabe, Z.; Misaki, A.; Niwa, M.; Okamoto, Y.; Fujinaga, T.; Ichimura, M.; Shibata, T.; Dake, S.

    1985-01-01

    A reader system for the detection of cascade showers via luminescence induced by heating sensitive material (BaSO4:Eu) is developed. The reader system is composed of following six instruments: (1) heater, (2) light guide, (3) image intensifier, (4) CCD camera, (5) image processor, (6) microcomputer. The efficiency of these apparatuses and software application for image analysis is reported.

  11. Software-Based Safety Systems in Space - Learning from other Domains

    NASA Astrophysics Data System (ADS)

    Klicker, M.; Putzer, H.

    2012-01-01

    Increasing complexity and new emerging capabilities for manned and unmanned missions have been the hallmark of the past decades of space exploration. One of the drivers in this process was the ever increasing use of software and software-intensive systems to implement system functions necessary to the capabilities needed. The course of technological evolution suggests that this development will continue well into the future with a number of challenges for the safety community some of which shall be discussed in this paper. The current state of the art reveals a number of problems with developing and assessing safety critical software which explains the reluctance of the space community to rely on software-based safety measures to mitigate hazards. Among others, usually lack of trustworthy evidence of software integrity in all foreseeable situations and the difficulties to integrate software in the traditional safety analysis framework are cited. Experience from other domains and recent developments in modern software development methodologies and verification techniques are analysed for the suitability for space systems and an avionics architectural framework (see STANAG 4626) for the implementation of safety critical software is proposed. This is shown to create among other features the possibility of numerous degradation modes enhancing overall system safety and interoperability of computerized space systems. It also potentially simplifies international cooperation on a technical level by introducing a higher degree of compatibility. As software safety cannot be tested or argued into a system in hindsight, the development process and especially the architecture chosen are essential to establish safety properties for the software used to implement safety functions. The core of the safety argument revolves around the separation of different functions and software modules from each other by minimal coupling of functions and credible separation mechanisms in the architecture combined with rigorous development methodologies for the software itself.

  12. Real-time development of data acquisition and analysis software for hands-on physiology education in neuroscience: G-PRIME.

    PubMed

    Lott, Gus K; Johnson, Bruce R; Bonow, Robert H; Land, Bruce R; Hoy, Ronald R

    2009-01-01

    We report on the real-time creation of an application for hands-on neurophysiology in an advanced undergraduate teaching laboratory. Enabled by the rapid software development tools included in the Matlab technical computing environment (The Mathworks, Natick, MA), a team, consisting of a neurophysiology educator and a biophysicist trained as an electrical engineer, interfaced to a course of approximately 15 students from engineering and biology backgrounds. The result is the powerful freeware data acquisition and analysis environment, "g-PRIME." The software was developed from week to week in response to curriculum demands, and student feedback. The program evolved from a simple software oscilloscope, enabling RC circuit analysis, to a suite of tools supporting analysis of neuronal excitability and synaptic transmission analysis in invertebrate model systems. The program has subsequently expanded in application to university courses, research, and high school projects in the US and abroad as free courseware.

  13. Applying formal methods and object-oriented analysis to existing flight software

    NASA Technical Reports Server (NTRS)

    Cheng, Betty H. C.; Auernheimer, Brent

    1993-01-01

    Correctness is paramount for safety-critical software control systems. Critical software failures in medical radiation treatment, communications, and defense are familiar to the public. The significant quantity of software malfunctions regularly reported to the software engineering community, the laws concerning liability, and a recent NRC Aeronautics and Space Engineering Board report additionally motivate the use of error-reducing and defect detection software development techniques. The benefits of formal methods in requirements driven software development ('forward engineering') is well documented. One advantage of rigorously engineering software is that formal notations are precise, verifiable, and facilitate automated processing. This paper describes the application of formal methods to reverse engineering, where formal specifications are developed for a portion of the shuttle on-orbit digital autopilot (DAP). Three objectives of the project were to: demonstrate the use of formal methods on a shuttle application, facilitate the incorporation and validation of new requirements for the system, and verify the safety-critical properties to be exhibited by the software.

  14. PLUS: open-source toolkit for ultrasound-guided intervention systems.

    PubMed

    Lasso, Andras; Heffter, Tamas; Rankin, Adam; Pinter, Csaba; Ungi, Tamas; Fichtinger, Gabor

    2014-10-01

    A variety of advanced image analysis methods have been under the development for ultrasound-guided interventions. Unfortunately, the transition from an image analysis algorithm to clinical feasibility trials as part of an intervention system requires integration of many components, such as imaging and tracking devices, data processing algorithms, and visualization software. The objective of our paper is to provide a freely available open-source software platform-PLUS: Public software Library for Ultrasound-to facilitate rapid prototyping of ultrasound-guided intervention systems for translational clinical research. PLUS provides a variety of methods for interventional tool pose and ultrasound image acquisition from a wide range of tracking and imaging devices, spatial and temporal calibration, volume reconstruction, simulated image generation, and recording and live streaming of the acquired data. This paper introduces PLUS, explains its functionality and architecture, and presents typical uses and performance in ultrasound-guided intervention systems. PLUS fulfills the essential requirements for the development of ultrasound-guided intervention systems and it aspires to become a widely used translational research prototyping platform. PLUS is freely available as open source software under BSD license and can be downloaded from http://www.plustoolkit.org.

  15. Software and Algorithms for Biomedical Image Data Processing and Visualization

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Lambert, James; Lam, Raymond

    2004-01-01

    A new software equipped with novel image processing algorithms and graphical-user-interface (GUI) tools has been designed for automated analysis and processing of large amounts of biomedical image data. The software, called PlaqTrak, has been specifically used for analysis of plaque on teeth of patients. New algorithms have been developed and implemented to segment teeth of interest from surrounding gum, and a real-time image-based morphing procedure is used to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The PlaqTrak system integrates these components into a single software suite with an easy-to-use GUI (see Figure 1) that allows users to do an end-to-end run of a patient s record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image. The automated and accurate processing of the captured images to segment each tooth [see Figure 2(a)] and then detect plaque on a tooth-by-tooth basis is a critical component of the PlaqTrak system to do clinical trials and analysis with minimal human intervention. These features offer distinct advantages over other competing systems that analyze groups of teeth or synthetic teeth. PlaqTrak divides each segmented tooth into eight regions using an advanced graphics morphing procedure [see results on a chipped tooth in Figure 2(b)], and a pattern recognition classifier is then used to locate plaque [red regions in Figure 2(d)] and enamel regions. The morphing allows analysis within regions of teeth, thereby facilitating detailed statistical analysis such as the amount of plaque present on the biting surfaces on teeth. This software system is applicable to a host of biomedical applications, such as cell analysis and life detection, or robotic applications, such as product inspection or assembly of parts in space and industry.

  16. Data Link Test and Analysis System/ATCRBS Transponder Test System Technical Reference

    DOT National Transportation Integrated Search

    1990-05-01

    This document references material for personnel using or making software changes : to the Data Link Test and Analysis System (DATAS) for Air Traffic Control Radar : Beacon System (ATCRBS) transponder testing and data collection. This is one of : a se...

  17. Database integration for investigative data visualization with the Temporal Analysis System

    NASA Astrophysics Data System (ADS)

    Barth, Stephen W.

    1997-02-01

    This paper describes an effort to provide mechanisms for integration of existing law enforcement databases with the temporal analysis system (TAS) -- an application for analysis and visualization of military intelligence data. Such integration mechanisms are essential for bringing advanced military intelligence data handling software applications to bear on the analysis of data used in criminal investigations. Our approach involved applying a software application for intelligence message handling to the problem of data base conversion. This application provides mechanisms for distributed processing and delivery of converted data records to an end-user application. It also provides a flexible graphic user interface for development and customization in the field.

  18. EXPOSURE ANALYSIS MODELING SYSTEM (EXAMS): USER MANUAL AND SYSTEM DOCUMENTATION

    EPA Science Inventory

    The Exposure Analysis Modeling System, first published in 1982 (EPA-600/3-82-023), provides interactive computer software for formulating aquatic ecosystem models and rapidly evaluating the fate, transport, and exposure concentrations of synthetic organic chemicals - pesticides, ...

  19. The contaminant analysis automation robot implementation for the automated laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younkin, J.R.; Igou, R.E.; Urenda, T.D.

    1995-12-31

    The Contaminant Analysis Automation (CAA) project defines the automated laboratory as a series of standard laboratory modules (SLM) serviced by a robotic standard support module (SSM). These SLMs are designed to allow plug-and-play integration into automated systems that perform standard analysis methods (SAM). While the SLMs are autonomous in the execution of their particular chemical processing task, the SAM concept relies on a high-level task sequence controller (TSC) to coordinate the robotic delivery of materials requisite for SLM operations, initiate an SLM operation with the chemical method dependent operating parameters, and coordinate the robotic removal of materials from the SLMmore » when its commands and events has been established to allow ready them for transport operations as well as performing the Supervisor and Subsystems (GENISAS) software governs events from the SLMs and robot. The Intelligent System Operating Environment (ISOE) enables the inter-process communications used by GENISAS. CAA selected the Hewlett-Packard Optimized Robot for Chemical Analysis (ORCA) and its associated Windows based Methods Development Software (MDS) as the robot SSM. The MDS software is used to teach the robot each SLM position and required material port motions. To allow the TSC to command these SLM motions, a hardware and software implementation was required that allowed message passing between different operating systems. This implementation involved the use of a Virtual Memory Extended (VME) rack with a Force CPU-30 computer running VxWorks; a real-time multitasking operating system, and a Radiuses PC compatible VME computer running MDS. A GENISAS server on The Force computer accepts a transport command from the TSC, a GENISAS supervisor, over Ethernet and notifies software on the RadiSys PC of the pending command through VMEbus shared memory. The command is then delivered to the MDS robot control software using a Windows Dynamic Data Exchange conversation.« less

  20. Electronic Health Record for Intensive Care based on Usual Windows Based Software.

    PubMed

    Reper, Arnaud; Reper, Pascal

    2015-08-01

    In Intensive Care Units, the amount of data to be processed for patients care, the turn over of the patients, the necessity for reliability and for review processes indicate the use of Patient Data Management Systems (PDMS) and electronic health records (EHR). To respond to the needs of an Intensive Care Unit and not to be locked with proprietary software, we developed an EHR based on usual software and components. The software was designed as a client-server architecture running on the Windows operating system and powered by the access data base system. The client software was developed using Visual Basic interface library. The application offers to the users the following functions: medical notes captures, observations and treatments, nursing charts with administration of medications, scoring systems for classification, and possibilities to encode medical activities for billing processes. Since his deployment in September 2004, the EHR was used to care more than five thousands patients with the expected software reliability and facilitated data management and review processes. Communications with other medical software were not developed from the start, and are realized by the use of basic functionalities communication engine. Further upgrade of the system will include multi-platform support, use of typed language with static analysis, and configurable interface. The developed system based on usual software components was able to respond to the medical needs of the local ICU environment. The use of Windows for development allowed us to customize the software to the preexisting organization and contributed to the acceptability of the whole system.

  1. IFDOTMETER: A New Software Application for Automated Immunofluorescence Analysis.

    PubMed

    Rodríguez-Arribas, Mario; Pizarro-Estrella, Elisa; Gómez-Sánchez, Rubén; Yakhine-Diop, S M S; Gragera-Hidalgo, Antonio; Cristo, Alejandro; Bravo-San Pedro, Jose M; González-Polo, Rosa A; Fuentes, José M

    2016-04-01

    Most laboratories interested in autophagy use different imaging software for managing and analyzing heterogeneous parameters in immunofluorescence experiments (e.g., LC3-puncta quantification and determination of the number and size of lysosomes). One solution would be software that works on a user's laptop or workstation that can access all image settings and provide quick and easy-to-use analysis of data. Thus, we have designed and implemented an application called IFDOTMETER, which can run on all major operating systems because it has been programmed using JAVA (Sun Microsystems). Briefly, IFDOTMETER software has been created to quantify a variety of biological hallmarks, including mitochondrial morphology and nuclear condensation. The program interface is intuitive and user-friendly, making it useful for users not familiar with computer handling. By setting previously defined parameters, the software can automatically analyze a large number of images without the supervision of the researcher. Once analysis is complete, the results are stored in a spreadsheet. Using software for high-throughput cell image analysis offers researchers the possibility of performing comprehensive and precise analysis of a high number of images in an automated manner, making this routine task easier. © 2015 Society for Laboratory Automation and Screening.

  2. Software reliability through fault-avoidance and fault-tolerance

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.

    1993-01-01

    Strategies and tools for the testing, risk assessment and risk control of dependable software-based systems were developed. Part of this project consists of studies to enable the transfer of technology to industry, for example the risk management techniques for safety-concious systems. Theoretical investigations of Boolean and Relational Operator (BRO) testing strategy were conducted for condition-based testing. The Basic Graph Generation and Analysis tool (BGG) was extended to fully incorporate several variants of the BRO metric. Single- and multi-phase risk, coverage and time-based models are being developed to provide additional theoretical and empirical basis for estimation of the reliability and availability of large, highly dependable software. A model for software process and risk management was developed. The use of cause-effect graphing for software specification and validation was investigated. Lastly, advanced software fault-tolerance models were studied to provide alternatives and improvements in situations where simple software fault-tolerance strategies break down.

  3. Experimental analysis of computer system dependability

    NASA Technical Reports Server (NTRS)

    Iyer, Ravishankar, K.; Tang, Dong

    1993-01-01

    This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance.

  4. Automatic documentation system extension to multi-manufacturers' computers and to measure, improve, and predict software reliability

    NASA Technical Reports Server (NTRS)

    Simmons, D. B.

    1975-01-01

    The DOMONIC system has been modified to run on the Univac 1108 and the CDC 6600 as well as the IBM 370 computer system. The DOMONIC monitor system has been implemented to gather data which can be used to optimize the DOMONIC system and to predict the reliability of software developed using DOMONIC. The areas of quality metrics, error characterization, program complexity, program testing, validation and verification are analyzed. A software reliability model for estimating program completion levels and one on which to base system acceptance have been developed. The DAVE system which performs flow analysis and error detection has been converted from the University of Colorado CDC 6400/6600 computer to the IBM 360/370 computer system for use with the DOMONIC system.

  5. Comparing direct and iterative equation solvers in a large structural analysis software system

    NASA Technical Reports Server (NTRS)

    Poole, E. L.

    1991-01-01

    Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.

  6. Design analysis and computer-aided performance evaluation of shuttle orbiter electrical power system. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Studies were conducted to develop appropriate space shuttle electrical power distribution and control (EPDC) subsystem simulation models and to apply the computer simulations to systems analysis of the EPDC. A previously developed software program (SYSTID) was adapted for this purpose. The following objectives were attained: (1) significant enhancement of the SYSTID time domain simulation software, (2) generation of functionally useful shuttle EPDC element models, and (3) illustrative simulation results in the analysis of EPDC performance, under the conditions of fault, current pulse injection due to lightning, and circuit protection sizing and reaction times.

  7. EHR Improvement Using Incident Reports.

    PubMed

    Teame, Tesfay; Stålhane, Tor; Nytrø, Øystein

    2017-01-01

    This paper discusses reactive improvement of clinical software using methods for incident analysis. We used the "Five Whys" method because we had only descriptive data and depended on a domain expert for the analysis. The analysis showed that there are two major root causes for EHR software failure, and that they are related to human and organizational errors. A main identified improvement is allocating more resources to system maintenance and user training.

  8. Source Code Analysis Laboratory (SCALe)

    DTIC Science & Technology

    2012-04-01

    Versus Flagged Nonconformities (FNC) Software System TP/FNC Ratio Mozilla Firefox version 2.0 6/12 50% Linux kernel version 2.6.15 10/126 8...is inappropriately tuned for analysis of the Linux kernel, which has anomalous results. Customizing SCALe to work with software for a particular...servers support a collection of virtual machines (VMs) that can be configured to support analysis in various environments, such as Windows XP and Linux . A

  9. Demonstrating High-Accuracy Orbital Access Using Open-Source Tools

    NASA Technical Reports Server (NTRS)

    Gilbertson, Christian; Welch, Bryan

    2017-01-01

    Orbit propagation is fundamental to almost every space-based analysis. Currently, many system analysts use commercial software to predict the future positions of orbiting satellites. This is one of many capabilities that can replicated, with great accuracy, without using expensive, proprietary software. NASAs SCaN (Space Communication and Navigation) Center for Engineering, Networks, Integration, and Communications (SCENIC) project plans to provide its analysis capabilities using a combination of internal and open-source software, allowing for a much greater measure of customization and flexibility, while reducing recurring software license costs. MATLAB and the open-source Orbit Determination Toolbox created by Goddard Space Flight Center (GSFC) were utilized to develop tools with the capability to propagate orbits, perform line-of-sight (LOS) availability analyses, and visualize the results. The developed programs are modular and can be applied for mission planning and viability analysis in a variety of Solar System applications. The tools can perform 2 and N-body orbit propagation, find inter-satellite and satellite to ground station LOS access (accounting for intermediate oblate spheroid body blocking, geometric restrictions of the antenna field-of-view (FOV), and relativistic corrections), and create animations of planetary movement, satellite orbits, and LOS accesses. The code is the basis for SCENICs broad analysis capabilities including dynamic link analysis, dilution-of-precision navigation analysis, and orbital availability calculations.

  10. Validation of a Video Analysis Software Package for Quantifying Movement Velocity in Resistance Exercises.

    PubMed

    Sañudo, Borja; Rueda, David; Pozo-Cruz, Borja Del; de Hoyo, Moisés; Carrasco, Luis

    2016-10-01

    Sañudo, B, Rueda, D, del Pozo-Cruz, B, de Hoyo, M, and Carrasco, L. Validation of a video analysis software package for quantifying movement velocity in resistance exercises. J Strength Cond Res 30(10): 2934-2941, 2016-The aim of this study was to establish the validity of a video analysis software package in measuring mean propulsive velocity (MPV) and the maximal velocity during bench press. Twenty-one healthy males (21 ± 1 year) with weight training experience were recruited, and the MPV and the maximal velocity of the concentric phase (Vmax) were compared with a linear position transducer system during a standard bench press exercise. Participants performed a 1 repetition maximum test using the supine bench press exercise. The testing procedures involved the simultaneous assessment of bench press propulsive velocity using 2 kinematic (linear position transducer and semi-automated tracking software) systems. High Pearson's correlation coefficients for MPV and Vmax between both devices (r = 0.473 to 0.993) were observed. The intraclass correlation coefficients for barbell velocity data and the kinematic data obtained from video analysis were high (>0.79). In addition, the low coefficients of variation indicate that measurements had low variability. Finally, Bland-Altman plots with the limits of agreement of the MPV and Vmax with different loads showed a negative trend, which indicated that the video analysis had higher values than the linear transducer. In conclusion, this study has demonstrated that the software used for the video analysis was an easy to use and cost-effective tool with a very high degree of concurrent validity. This software can be used to evaluate changes in velocity of training load in resistance training, which may be important for the prescription and monitoring of training programmes.

  11. HALOE test and evaluation software

    NASA Technical Reports Server (NTRS)

    Edmonds, W.; Natarajan, S.

    1987-01-01

    Computer programming, system development and analysis efforts during this contract were carried out in support of the Halogen Occultation Experiment (HALOE) at NASA/Langley. Support in the major areas of data acquisition and monitoring, data reduction and system development are described along with a brief explanation of the HALOE project. Documented listings of major software are located in the appendix.

  12. Systems design and comparative analysis of large antenna concepts

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.; Ferebee, M. J., Jr.

    1983-01-01

    Conceptual designs are evaluated and comparative analyses conducted for several large antenna spacecraft for Land Mobile Satellite System (LMSS) communications missions. Structural configurations include trusses, hoop and column and radial rib. The study was conducted using the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system. The current capabilities, development status, and near-term plans for the IDEAS system are reviewed. Overall capabilities are highlighted. IDEAS is an integrated system of computer-aided design and analysis software used to rapidly evaluate system concepts and technology needs for future advanced spacecraft such as large antennas, platforms, and space stations. The system was developed at Langley to meet a need for rapid, cost-effective, labor-saving approaches to the design and analysis of numerous missions and total spacecraft system options under consideration. IDEAS consists of about 40 technical modules efficient executive, data-base and file management software, and interactive graphics display capabilities.

  13. Energy loss analysis of an integrated space power distribution system

    NASA Technical Reports Server (NTRS)

    Kankam, M. D.; Ribeiro, P. F.

    1992-01-01

    The results of studies related to conceptual topologies of an integrated utility-like space power system are described. The system topologies are comparatively analyzed by considering their transmission energy losses as functions of mainly distribution voltage level and load composition. The analysis is expedited by use of a Distribution System Analysis and Simulation (DSAS) software. This recently developed computer program by the Electric Power Research Institute (EPRI) uses improved load models to solve the power flow within the system. However, present shortcomings of the software with regard to space applications, and incompletely defined characteristics of a space power system make the results applicable to only the fundamental trends of energy losses of the topologies studied. Accountability, such as included, for the effects of the various parameters on the system performance can constitute part of a planning tool for a space power distribution system.

  14. Validation of highly reliable, real-time knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.

    1988-01-01

    Knowledge-based systems have the potential to greatly increase the capabilities of future aircraft and spacecraft and to significantly reduce support manpower needed for the space station and other space missions. However, a credible validation methodology must be developed before knowledge-based systems can be used for life- or mission-critical applications. Experience with conventional software has shown that the use of good software engineering techniques and static analysis tools can greatly reduce the time needed for testing and simulation of a system. Since exhaustive testing is infeasible, reliability must be built into the software during the design and implementation phases. Unfortunately, many of the software engineering techniques and tools used for conventional software are of little use in the development of knowledge-based systems. Therefore, research at Langley is focused on developing a set of guidelines, methods, and prototype validation tools for building highly reliable, knowledge-based systems. The use of a comprehensive methodology for building highly reliable, knowledge-based systems should significantly decrease the time needed for testing and simulation. A proven record of delivering reliable systems at the beginning of the highly visible testing and simulation phases is crucial to the acceptance of knowledge-based systems in critical applications.

  15. A novel method about detecting missing holes on the motor carling

    NASA Astrophysics Data System (ADS)

    Xu, Hongsheng; Tan, Hao; Li, Guirong

    2018-03-01

    After a deep analysis on how to use an image processing system to detect the missing holes on the motor carling, we design the whole system combined with the actual production conditions of the motor carling. Afterwards we explain the whole system's hardware and software in detail. We introduce the general functions for the system's hardware and software. Analyzed these general functions, we discuss the modules of the system's hardware and software and the theory to design these modules in detail. The measurement to confirm the area to image processing, edge detection, randomized Hough transform to circle detecting is explained in detail. Finally, the system result tested in the laboratory and in the factory is given out.

  16. A technique for incorporating the NASA spacelab payload dedicated experiment processor software into the simulation system for the payload crew training complex

    NASA Technical Reports Server (NTRS)

    Bremmer, D. A.

    1986-01-01

    The feasibility of some off-the-shelf microprocessors and state-of-art software is assessed (1) as a development system for the principle investigator (pi) in the design of the experiment model, (2) as an example of available technology application for future PI's experiments, (3) as a system capable of being interactive in the PCTC's simulation of the dedicated experiment processor (DEP), preferably by bringing the PI's DEP software directly into the simulation model, (4) as a system having bus compatibility with host VAX simulation computers, (5) as a system readily interfaced with mock-up panels and information displays, and (6) as a functional system for post mission data analysis.

  17. Model Transformation for a System of Systems Dependability Safety Case

    NASA Technical Reports Server (NTRS)

    Murphy, Judy; Driskell, Stephen B.

    2010-01-01

    Software plays an increasingly larger role in all aspects of NASA's science missions. This has been extended to the identification, management and control of faults which affect safety-critical functions and by default, the overall success of the mission. Traditionally, the analysis of fault identification, management and control are hardware based. Due to the increasing complexity of system, there has been a corresponding increase in the complexity in fault management software. The NASA Independent Validation & Verification (IV&V) program is creating processes and procedures to identify, and incorporate safety-critical software requirements along with corresponding software faults so that potential hazards may be mitigated. This Specific to Generic ... A Case for Reuse paper describes the phases of a dependability and safety study which identifies a new, process to create a foundation for reusable assets. These assets support the identification and management of specific software faults and, their transformation from specific to generic software faults. This approach also has applications to other systems outside of the NASA environment. This paper addresses how a mission specific dependability and safety case is being transformed to a generic dependability and safety case which can be reused for any type of space mission with an emphasis on software fault conditions.

  18. Orbiter Flying Qualities (OFQ) Workstation user's guide

    NASA Technical Reports Server (NTRS)

    Myers, Thomas T.; Parseghian, Zareh; Hogue, Jeffrey R.

    1988-01-01

    This project was devoted to the development of a software package, called the Orbiter Flying Qualities (OFQ) Workstation, for working with the OFQ Archives which are specially selected sets of space shuttle entry flight data relevant to flight control and flying qualities. The basic approach to creation of the workstation software was to federate and extend commercial software products to create a low cost package that operates on personal computers. Provision was made to link the workstation to large computers, but the OFQ Archive files were also converted to personal computer diskettes and can be stored on workstation hard disk drives. The primary element of the workstation developed in the project is the Interactive Data Handler (IDH) which allows the user to select data subsets from the archives and pass them to specialized analysis programs. The IDH was developed as an application in a relational database management system product. The specialized analysis programs linked to the workstation include a spreadsheet program, FREDA for spectral analysis, MFP for frequency domain system identification, and NIPIP for pilot-vehicle system parameter identification. The workstation also includes capability for ensemble analysis over groups of missions.

  19. Electrophoresis gel image processing and analysis using the KODAK 1D software.

    PubMed

    Pizzonia, J

    2001-06-01

    The present article reports on the performance of the KODAK 1D Image Analysis Software for the acquisition of information from electrophoresis experiments and highlights the utility of several mathematical functions for subsequent image processing, analysis, and presentation. Digital images of Coomassie-stained polyacrylamide protein gels containing molecular weight standards and ethidium bromide stained agarose gels containing DNA mass standards are acquired using the KODAK Electrophoresis Documentation and Analysis System 290 (EDAS 290). The KODAK 1D software is used to optimize lane and band identification using features such as isomolecular weight lines. Mathematical functions for mass standard representation are presented, and two methods for estimation of unknown band mass are compared. Given the progressive transition of electrophoresis data acquisition and daily reporting in peer-reviewed journals to digital formats ranging from 8-bit systems such as EDAS 290 to more expensive 16-bit systems, the utility of algorithms such as Gaussian modeling, which can correct geometric aberrations such as clipping due to signal saturation common at lower bit depth levels, is discussed. Finally, image-processing tools that can facilitate image preparation for presentation are demonstrated.

  20. Interactive Image Analysis System Design,

    DTIC Science & Technology

    1982-12-01

    This report describes a design for an interactive image analysis system (IIAS), which implements terrain data extraction techniques. The design... analysis system. Additionally, the system is fully capable of supporting many generic types of image analysis and data processing, and is modularly...employs commercially available, state of the art minicomputers and image display devices with proven software to achieve a cost effective, reliable image

  1. Intelligent Hardware-Enabled Sensor and Software Safety and Health Management for Autonomous UAS

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Schumann, Johann; Ippolito, Corey

    2015-01-01

    Unmanned Aerial Systems (UAS) can only be deployed if they can effectively complete their mission and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. We propose to design a real-time, onboard system health management (SHM) capability to continuously monitor essential system components such as sensors, software, and hardware systems for detection and diagnosis of failures and violations of safety or performance rules during the ight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the- y temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power hardware realization using Field Programmable Gate Arrays (FPGAs) in order to avoid overburdening limited computing resources or costly re-certi cation of ight software due to instrumentation. No currently available SHM capabilities (or combinations of currently existing SHM capabilities) come anywhere close to satisfying these three criteria yet NASA will require such intelligent, hardwareenabled sensor and software safety and health management for introducing autonomous UAS into the National Airspace System (NAS). We propose a novel approach of creating modular building blocks for combining responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. Our proposed research program includes both developing this novel approach and demonstrating its capabilities using the NASA Swift UAS as a demonstration platform.

  2. Generalized implementation of software safety policies

    NASA Technical Reports Server (NTRS)

    Knight, John C.; Wika, Kevin G.

    1994-01-01

    As part of a research program in the engineering of software for safety-critical systems, we are performing two case studies. The first case study, which is well underway, is a safety-critical medical application. The second, which is just starting, is a digital control system for a nuclear research reactor. Our goal is to use these case studies to permit us to obtain a better understanding of the issues facing developers of safety-critical systems, and to provide a vehicle for the assessment of research ideas. The case studies are not based on the analysis of existing software development by others. Instead, we are attempting to create software for new and novel systems in a process that ultimately will involve all phases of the software lifecycle. In this abstract, we summarize our results to date in a small part of this project, namely the determination and classification of policies related to software safety that must be enforced to ensure safe operation. We hypothesize that this classification will permit a general approach to the implementation of a policy enforcement mechanism.

  3. Pilot Study of an Open-source Image Analysis Software for Automated Screening of Conventional Cervical Smears.

    PubMed

    Sanyal, Parikshit; Ganguli, Prosenjit; Barui, Sanghita; Deb, Prabal

    2018-01-01

    The Pap stained cervical smear is a screening tool for cervical cancer. Commercial systems are used for automated screening of liquid based cervical smears. However, there is no image analysis software used for conventional cervical smears. The aim of this study was to develop and test the diagnostic accuracy of a software for analysis of conventional smears. The software was developed using Python programming language and open source libraries. It was standardized with images from Bethesda Interobserver Reproducibility Project. One hundred and thirty images from smears which were reported Negative for Intraepithelial Lesion or Malignancy (NILM), and 45 images where some abnormality has been reported, were collected from the archives of the hospital. The software was then tested on the images. The software was able to segregate images based on overall nuclear: cytoplasmic ratio, coefficient of variation (CV) in nuclear size, nuclear membrane irregularity, and clustering. 68.88% of abnormal images were flagged by the software, as well as 19.23% of NILM images. The major difficulties faced were segmentation of overlapping cell clusters and separation of neutrophils. The software shows potential as a screening tool for conventional cervical smears; however, further refinement in technique is required.

  4. Definition and testing of the hydrologic component of the pilot land data system

    NASA Technical Reports Server (NTRS)

    Ragan, Robert M.; Sircar, Jayanta K.

    1987-01-01

    The specific aim was to develop within the Pilot Land Data System (PLDS) software design environment, an easily implementable and user friendly geometric correction procedure to readily enable the georeferencing of imagery data from the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA series spacecraft. A software subsystem was developed within the guidelines set by the PLDS development environment utilizing NASA Goddard Space Flight Center (GSFC) Image Analysis Facility's (IAF's) Land Analysis Software (LAS) coding standards. The IAS current program development environment, the Transportable Applications Executive (TAE), operates under a VAX VMS operating system and was used as the user interface. A brief overview of the ICARUS algorithm that was implemented in the set of functions developed, is provided. The functional specifications decription is provided, and a list of the individual programs and directory names containing the source and executables installed in the IAF system are listed. A user guide is provided for the LAS system documentation format for the three functions developed.

  5. Logic flowgraph methodology - A tool for modeling embedded systems

    NASA Technical Reports Server (NTRS)

    Muthukumar, C. T.; Guarro, S. B.; Apostolakis, G. E.

    1991-01-01

    The logic flowgraph methodology (LFM), a method for modeling hardware in terms of its process parameters, has been extended to form an analytical tool for the analysis of integrated (hardware/software) embedded systems. In the software part of a given embedded system model, timing and the control flow among different software components are modeled by augmenting LFM with modified Petrinet structures. The objective of the use of such an augmented LFM model is to uncover possible errors and the potential for unanticipated software/hardware interactions. This is done by backtracking through the augmented LFM mode according to established procedures which allow the semiautomated construction of fault trees for any chosen state of the embedded system (top event). These fault trees, in turn, produce the possible combinations of lower-level states (events) that may lead to the top event.

  6. Performing Verification and Validation in Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1999-01-01

    The implementation of reuse-based software engineering not only introduces new activities to the software development process, such as domain analysis and domain modeling, it also impacts other aspects of software engineering. Other areas of software engineering that are affected include Configuration Management, Testing, Quality Control, and Verification and Validation (V&V). Activities in each of these areas must be adapted to address the entire domain or product line rather than a specific application system. This paper discusses changes and enhancements to the V&V process, in order to adapt V&V to reuse-based software engineering.

  7. FluxPyt: a Python-based free and open-source software for 13C-metabolic flux analyses.

    PubMed

    Desai, Trunil S; Srivastava, Shireesh

    2018-01-01

    13 C-Metabolic flux analysis (MFA) is a powerful approach to estimate intracellular reaction rates which could be used in strain analysis and design. Processing and analysis of labeling data for calculation of fluxes and associated statistics is an essential part of MFA. However, various software currently available for data analysis employ proprietary platforms and thus limit accessibility. We developed FluxPyt, a Python-based truly open-source software package for conducting stationary 13 C-MFA data analysis. The software is based on the efficient elementary metabolite unit framework. The standard deviations in the calculated fluxes are estimated using the Monte-Carlo analysis. FluxPyt also automatically creates flux maps based on a template for visualization of the MFA results. The flux distributions calculated by FluxPyt for two separate models: a small tricarboxylic acid cycle model and a larger Corynebacterium glutamicum model, were found to be in good agreement with those calculated by a previously published software. FluxPyt was tested in Microsoft™ Windows 7 and 10, as well as in Linux Mint 18.2. The availability of a free and open 13 C-MFA software that works in various operating systems will enable more researchers to perform 13 C-MFA and to further modify and develop the package.

  8. FluxPyt: a Python-based free and open-source software for 13C-metabolic flux analyses

    PubMed Central

    Desai, Trunil S.

    2018-01-01

    13C-Metabolic flux analysis (MFA) is a powerful approach to estimate intracellular reaction rates which could be used in strain analysis and design. Processing and analysis of labeling data for calculation of fluxes and associated statistics is an essential part of MFA. However, various software currently available for data analysis employ proprietary platforms and thus limit accessibility. We developed FluxPyt, a Python-based truly open-source software package for conducting stationary 13C-MFA data analysis. The software is based on the efficient elementary metabolite unit framework. The standard deviations in the calculated fluxes are estimated using the Monte-Carlo analysis. FluxPyt also automatically creates flux maps based on a template for visualization of the MFA results. The flux distributions calculated by FluxPyt for two separate models: a small tricarboxylic acid cycle model and a larger Corynebacterium glutamicum model, were found to be in good agreement with those calculated by a previously published software. FluxPyt was tested in Microsoft™ Windows 7 and 10, as well as in Linux Mint 18.2. The availability of a free and open 13C-MFA software that works in various operating systems will enable more researchers to perform 13C-MFA and to further modify and develop the package. PMID:29736347

  9. Open source electronic health record and patient data management system for intensive care.

    PubMed

    Massaut, Jacques; Reper, Pascal

    2008-01-01

    In Intensive Care Units, the amount of data to be processed for patients care, the turn over of the patients, the necessity for reliability and for review processes indicate the use of Patient Data Management Systems (PDMS) and electronic health records (EHR). To respond to the needs of an Intensive Care Unit and not to be locked with proprietary software, we developed a PDMS and EHR based on open source software and components. The software was designed as a client-server architecture running on the Linux operating system and powered by the PostgreSQL data base system. The client software was developed in C using GTK interface library. The application offers to the users the following functions: medical notes captures, observations and treatments, nursing charts with administration of medications, scoring systems for classification, and possibilities to encode medical activities for billing processes. Since his deployment in February 2004, the PDMS was used to care more than three thousands patients with the expected software reliability and facilitated data management and review processes. Communications with other medical software were not developed from the start, and are realized by the use of the Mirth HL7 communication engine. Further upgrade of the system will include multi-platform support, use of typed language with static analysis, and configurable interface. The developed system based on open source software components was able to respond to the medical needs of the local ICU environment. The use of OSS for development allowed us to customize the software to the preexisting organization and contributed to the acceptability of the whole system.

  10. Automating Structural Analysis of Spacecraft Vehicles

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2004-01-01

    A major effort within NASA's vehicle analysis discipline has been to automate structural analysis and sizing optimization during conceptual design studies of advanced spacecraft. Traditional spacecraft structural sizing has involved detailed finite element analysis (FEA) requiring large degree-of-freedom (DOF) finite element models (FEM). Creation and analysis of these models can be time consuming and limit model size during conceptual designs. The goal is to find an optimal design that meets the mission requirements but produces the lightest structure. A structural sizing tool called HyperSizer has been successfully used in the conceptual design phase of a reusable launch vehicle and planetary exploration spacecraft. The program couples with FEA to enable system level performance assessments and weight predictions including design optimization of material selections and sizing of spacecraft members. The software's analysis capabilities are based on established aerospace structural methods for strength, stability and stiffness that produce adequately sized members and reliable structural weight estimates. The software also helps to identify potential structural deficiencies early in the conceptual design so changes can be made without wasted time. HyperSizer's automated analysis and sizing optimization increases productivity and brings standardization to a systems study. These benefits will be illustrated in examining two different types of conceptual spacecraft designed using the software. A hypersonic air breathing, single stage to orbit (SSTO), reusable launch vehicle (RLV) will be highlighted as well as an aeroshell for a planetary exploration vehicle used for aerocapture at Mars. By showing the two different types of vehicles, the software's flexibility will be demonstrated with an emphasis on reducing aeroshell structural weight. Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.

  11. Re-Engineering JPL's Mission Planning Ground System Architecture for Cost Efficient Operations in the 21st Century

    NASA Technical Reports Server (NTRS)

    Fordyce, Jess

    1996-01-01

    Work carried out to re-engineer the mission analysis segment of JPL's mission planning ground system architecture is reported on. The aim is to transform the existing software tools, originally developed for specific missions on different support environments, into an integrated, general purpose, multi-mission tool set. The issues considered are: the development of a partnership between software developers and users; the definition of key mission analysis functions; the development of a consensus based architecture; the move towards evolutionary change instead of revolutionary replacement; software reusability, and the minimization of future maintenance costs. The current status and aims of new developments are discussed and specific examples of cost savings and improved productivity are presented.

  12. Reliability Analysis and Optimal Release Problem Considering Maintenance Time of Software Components for an Embedded OSS Porting Phase

    NASA Astrophysics Data System (ADS)

    Tamura, Yoshinobu; Yamada, Shigeru

    OSS (open source software) systems which serve as key components of critical infrastructures in our social life are still ever-expanding now. Especially, embedded OSS systems have been gaining a lot of attention in the embedded system area, i.e., Android, BusyBox, TRON, etc. However, the poor handling of quality problem and customer support prohibit the progress of embedded OSS. Also, it is difficult for developers to assess the reliability and portability of embedded OSS on a single-board computer. In this paper, we propose a method of software reliability assessment based on flexible hazard rates for the embedded OSS. Also, we analyze actual data of software failure-occurrence time-intervals to show numerical examples of software reliability assessment for the embedded OSS. Moreover, we compare the proposed hazard rate model for the embedded OSS with the typical conventional hazard rate models by using the comparison criteria of goodness-of-fit. Furthermore, we discuss the optimal software release problem for the porting-phase based on the total expected software maintenance cost.

  13. A proven approach for more effective software development and maintenance

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose; Hall, Dana; Sinclair, Craig

    1994-01-01

    Modern space flight mission operations and associated ground data systems are increasingly dependent upon reliable, quality software. Critical functions such as command load preparation, health and status monitoring, communications link scheduling and conflict resolution, and transparent gateway protocol conversion are routinely performed by software. Given budget constraints and the ever increasing capabilities of processor technology, the next generation of control centers and data systems will be even more dependent upon software across all aspects of performance. A key challenge now is to implement improved engineering, management, and assurance processes for the development and maintenance of that software; processes that cost less, yield higher quality products, and that self-correct for continual improvement evolution. The NASA Goddard Space Flight Center has a unique experience base that can be readily tapped to help solve the software challenge. Over the past eighteen years, the Software Engineering Laboratory within the code 500 Flight Dynamics Division has evolved a software development and maintenance methodology that accommodates the unique characteristics of an organization while optimizing and continually improving the organization's software capabilities. This methodology relies upon measurement, analysis, and feedback much analogous to that of control loop systems. It is an approach with a time-tested track record proven through repeated applications across a broad range of operational software development and maintenance projects. This paper describes the software improvement methodology employed by the Software Engineering Laboratory, and how it has been exploited within the Flight Dynamics Division with GSFC Code 500. Examples of specific improvement in the software itself and its processes are presented to illustrate the effectiveness of the methodology. Finally, the initial findings are given when this methodology was applied across the mission operations and ground data systems software domains throughout Code 500.

  14. Hierarchical Simulation to Assess Hardware and Software Dependability

    NASA Technical Reports Server (NTRS)

    Ries, Gregory Lawrence

    1997-01-01

    This thesis presents a method for conducting hierarchical simulations to assess system hardware and software dependability. The method is intended to model embedded microprocessor systems. A key contribution of the thesis is the idea of using fault dictionaries to propagate fault effects upward from the level of abstraction where a fault model is assumed to the system level where the ultimate impact of the fault is observed. A second important contribution is the analysis of the software behavior under faults as well as the hardware behavior. The simulation method is demonstrated and validated in four case studies analyzing Myrinet, a commercial, high-speed networking system. One key result from the case studies shows that the simulation method predicts the same fault impact 87.5% of the time as is obtained by similar fault injections into a real Myrinet system. Reasons for the remaining discrepancy are examined in the thesis. A second key result shows the reduction in the number of simulations needed due to the fault dictionary method. In one case study, 500 faults were injected at the chip level, but only 255 propagated to the system level. Of these 255 faults, 110 shared identical fault dictionary entries at the system level and so did not need to be resimulated. The necessary number of system-level simulations was therefore reduced from 500 to 145. Finally, the case studies show how the simulation method can be used to improve the dependability of the target system. The simulation analysis was used to add recovery to the target software for the most common fault propagation mechanisms that would cause the software to hang. After the modification, the number of hangs was reduced by 60% for fault injections into the real system.

  15. Study of application of space telescope science operations software for SIRTF use

    NASA Technical Reports Server (NTRS)

    Dignam, F.; Stetson, E.; Allendoerfer, W.

    1985-01-01

    The design and development of the Space Telescope Science Operations Ground System (ST SOGS) was evaluated to compile a history of lessons learned that would benefit NASA's Space Infrared Telescope Facility (SIRTF). Forty-nine specific recommendations resulted and were categorized as follows: (1) requirements: a discussion of the content, timeliness and proper allocation of the system and segment requirements and the resulting impact on SOGS development; (2) science instruments: a consideration of the impact of the Science Instrument design and data streams on SOGS software; and (3) contract phasing: an analysis of the impact of beginning the various ST program segments at different times. Approximately half of the software design and source code might be useable for SIRTF. Transportability of this software requires, at minimum, a compatible DEC VAX-based architecture and VMS operating system, system support software similar to that developed for SOGS, and continued evolution of the SIRTF operations concept and requirements such that they remain compatible with ST SOGS operation.

  16. The Environmental Control and Life Support System (ECLSS) advanced automation project

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.; Carnes, Ray

    1990-01-01

    The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.

  17. Adaptive System Modeling for Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Thomas, Justin

    2011-01-01

    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  18. Prediction of ball and roller bearing thermal and kinematic performance by computer analysis

    NASA Technical Reports Server (NTRS)

    Pirvics, J.; Kleckner, R. J.

    1983-01-01

    Characteristics of good computerized analysis software are suggested. These general remarks and an overview of representative software precede a more detailed discussion of load support system analysis program structure. Particular attention is directed at a recent cylindrical roller bearing analysis as an example of the available design tools. Selected software modules are then examined to reveal the detail inherent in contemporary analysis. This leads to a brief section on current design computation which seeks to suggest when and why computerized analysis is warranted. An example concludes the argument offered for such design methodology. Finally, remarks are made concerning needs for model development to address effects which are now considered to be secondary but are anticipated to emerge to primary status in the near future.

  19. The environmental control and life support system advanced automation project. Phase 1: Application evaluation

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1990-01-01

    The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to advanced automation primarily due to the comparatively large reaction times of its subsystem processes. This allows longer contemplation times in which to form a more intelligent control strategy and to detect or prevent faults. The objective of the ECLSS Advanced Automation Project is to reduce the flight and ground manpower needed to support the initial and evolutionary ECLS system. The approach is to search out and make apparent those processes in the baseline system which are in need of more automatic control and fault detection strategies, to influence the ECLSS design by suggesting software hooks and hardware scars which will allow easy adaptation to advanced algorithms, and to develop complex software prototypes which fit into the ECLSS software architecture and will be shown in an ECLSS hardware testbed to increase the autonomy of the system. Covered here are the preliminary investigation and evaluation process, aimed at searching the ECLSS for candidate functions for automation and providing a software hooks and hardware scars analysis. This analysis shows changes needed in the baselined system for easy accommodation of knowledge-based or other complex implementations which, when integrated in flight or ground sustaining engineering architectures, will produce a more autonomous and fault tolerant Environmental Control and Life Support System.

  20. Quantification of protein expression in cells and cellular subcompartments on immunohistochemical sections using a computer supported image analysis system.

    PubMed

    Braun, Martin; Kirsten, Robert; Rupp, Niels J; Moch, Holger; Fend, Falko; Wernert, Nicolas; Kristiansen, Glen; Perner, Sven

    2013-05-01

    Quantification of protein expression based on immunohistochemistry (IHC) is an important step for translational research and clinical routine. Several manual ('eyeballing') scoring systems are used in order to semi-quantify protein expression based on chromogenic intensities and distribution patterns. However, manual scoring systems are time-consuming and subject to significant intra- and interobserver variability. The aim of our study was to explore, whether new image analysis software proves to be sufficient as an alternative tool to quantify protein expression. For IHC experiments, one nucleus specific marker (i.e., ERG antibody), one cytoplasmic specific marker (i.e., SLC45A3 antibody), and one marker expressed in both compartments (i.e., TMPRSS2 antibody) were chosen. Stainings were applied on TMAs, containing tumor material of 630 prostate cancer patients. A pathologist visually quantified all IHC stainings in a blinded manner, applying a four-step scoring system. For digital quantification, image analysis software (Tissue Studio v.2.1, Definiens AG, Munich, Germany) was applied to obtain a continuous spectrum of average staining intensity. For each of the three antibodies we found a strong correlation of the manual protein expression score and the score of the image analysis software. Spearman's rank correlation coefficient was 0.94, 0.92, and 0.90 for ERG, SLC45A3, and TMPRSS2, respectively (p⟨0.01). Our data suggest that the image analysis software Tissue Studio is a powerful tool for quantification of protein expression in IHC stainings. Further, since the digital analysis is precise and reproducible, computer supported protein quantification might help to overcome intra- and interobserver variability and increase objectivity of IHC based protein assessment.

  1. Incorporating Multi-criteria Optimization and Uncertainty Analysis in the Model-Based Systems Engineering of an Autonomous Surface Craft

    DTIC Science & Technology

    2009-09-01

    SAS Statistical Analysis Software SE Systems Engineering SEP Systems Engineering Process SHP Shaft Horsepower SIGINT Signals Intelligence......management occurs (OSD 2002). The Systems Engineering Process (SEP), displayed in Figure 2, is a comprehensive , iterative and recursive problem

  2. A medical software system for volumetric analysis of cerebral pathologies in magnetic resonance imaging (MRI) data.

    PubMed

    Egger, Jan; Kappus, Christoph; Freisleben, Bernd; Nimsky, Christopher

    2012-08-01

    In this contribution, a medical software system for volumetric analysis of different cerebral pathologies in magnetic resonance imaging (MRI) data is presented. The software system is based on a semi-automatic segmentation algorithm and helps to overcome the time-consuming process of volume determination during monitoring of a patient. After imaging, the parameter settings-including a seed point-are set up in the system and an automatic segmentation is performed by a novel graph-based approach. Manually reviewing the result leads to reseeding, adding seed points or an automatic surface mesh generation. The mesh is saved for monitoring the patient and for comparisons with follow-up scans. Based on the mesh, the system performs a voxelization and volume calculation, which leads to diagnosis and therefore further treatment decisions. The overall system has been tested with different cerebral pathologies-glioblastoma multiforme, pituitary adenomas and cerebral aneurysms- and evaluated against manual expert segmentations using the Dice Similarity Coefficient (DSC). Additionally, intra-physician segmentations have been performed to provide a quality measure for the presented system.

  3. An Analysis of Botnet Vulnerabilities

    DTIC Science & Technology

    2007-06-01

    Definition Currently, the primary defense against botnets is prompt patching of vulnerable systems and antivirus software . Network monitoring can identify...IRCd software , none were identified during this effort. AFIT iv For my wife, for her caring and support throughout the course of this...are software agents designed to automatically perform tasks. Examples include web-spiders that catalog the Internet and bots found in popular online

  4. Gendermetrics.NET: a novel software for analyzing the gender representation in scientific authoring.

    PubMed

    Bendels, Michael H K; Brüggmann, Dörthe; Schöffel, Norman; Groneberg, David A

    2016-01-01

    Imbalances in female career promotion are believed to be strong in the field of academic science. A primary parameter to analyze gender inequalities is the gender authoring in scientific publications. Since the presently available data on gender distribution is largely limited to underpowered studies, we here develop a new approach to analyze authors' genders in large bibliometric databases. A SQL-Server based multiuser software suite was developed that serves as an integrative tool for analyzing bibliometric data with a special emphasis on gender and topographical analysis. The presented system allows seamless integration, inspection, modification, evaluation and visualization of bibliometric data. By providing an adaptive and almost fully automatic integration and analysis process, the inter-individual variability of analysis is kept at a low level. Depending on the scientific question, the system enables the user to perform a scientometric analysis including its visualization within a short period of time. In summary, a new software suite for analyzing gender representations in scientific articles was established. The system is suitable for the comparative analysis of scientific structures on the level of continents, countries, cities, city regions, institutions, research fields and journals.

  5. Biometric Attendance and Big Data Analysis for Optimizing Work Processes.

    PubMed

    Verma, Neetu; Xavier, Teenu; Agrawal, Deepak

    2016-01-01

    Although biometric attendance management is available, large healthcare organizations have difficulty in big data analysis for optimization of work processes. The aim of this project was to assess the implementation of a biometric attendance system and its utility following big data analysis. In this prospective study the implementation of biometric system was evaluated over 3 month period at our institution. Software integration with other existing systems for data analysis was also evaluated. Implementation of the biometric system could be successfully done over a two month period with enrollment of 10,000 employees into the system. However generating reports and taking action this large number of staff was a challenge. For this purpose software was made for capturing the duty roster of each employee and integrating it with the biometric system and adding an SMS gateway. This helped in automating the process of sending SMSs to each employee who had not signed in. Standalone biometric systems have limited functionality in large organizations unless it is meshed with employee duty roster.

  6. The spectra program library: A PC based system for gamma-ray spectra analysis and INAA data reduction

    USGS Publications Warehouse

    Baedecker, P.A.; Grossman, J.N.

    1995-01-01

    A PC based system has been developed for the analysis of gamma-ray spectra and for the complete reduction of data from INAA experiments, including software to average the results from mulitple lines and multiple countings and to produce a final report of analysis. Graphics algorithms may be called for the analysis of complex spectral features, to compare the data from alternate photopeaks and to evaluate detector performance during a given counting cycle. A database of results for control samples can be used to prepare quality control charts to evaluate long term precision and to search for systemic variations in data on reference samples as a function of time. The entire software library can be accessed through a user-friendly menu interface with internal help.

  7. On-Line Pattern Analysis and Recognition System. OLPARS VI. Software Reference Manual,

    DTIC Science & Technology

    1982-06-18

    Discriminant Analysis Data Transformation, Feature Extraction, Feature Evaluation Cluster Analysis, Classification Computer Software 20Z. ABSTRACT... cluster /scatter cut-off value, (2) change the one-space bin factor, (3) change from long prompts to short prompts or vice versa, (4) change the...value, a cluster plot is displayed, otherwise a scatter plot is shown. if option 1 is selected, the program requests that a new value be input

  8. Study on Network Error Analysis and Locating based on Integrated Information Decision System

    NASA Astrophysics Data System (ADS)

    Yang, F.; Dong, Z. H.

    2017-10-01

    Integrated information decision system (IIDS) integrates multiple sub-system developed by many facilities, including almost hundred kinds of software, which provides with various services, such as email, short messages, drawing and sharing. Because the under-layer protocols are different, user standards are not unified, many errors are occurred during the stages of setup, configuration, and operation, which seriously affect the usage. Because the errors are various, which may be happened in different operation phases, stages, TCP/IP communication protocol layers, sub-system software, it is necessary to design a network error analysis and locating tool for IIDS to solve the above problems. This paper studies on network error analysis and locating based on IIDS, which provides strong theory and technology supports for the running and communicating of IIDS.

  9. Computer program for design and performance analysis of navigation-aid power systems. Program documentation. Volume 1: Software requirements document

    NASA Technical Reports Server (NTRS)

    Goltz, G.; Kaiser, L. M.; Weiner, H.

    1977-01-01

    A computer program has been developed for designing and analyzing the performance of solar array/battery power systems for the U.S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions. This document establishes the software requirements for the DSPA computer program, discusses the processing that occurs within the program, and defines the necessary interfaces for operation.

  10. Development of Cross-Platform Software for Well Logging Data Visualization

    NASA Astrophysics Data System (ADS)

    Akhmadulin, R. K.; Miraev, A. I.

    2017-07-01

    Well logging data processing is one of the main sources of information in the oil-gas field analysis and is of great importance in the process of its development and operation. Therefore, it is important to have the software which would accurately and clearly provide the user with processed data in the form of well logs. In this work, there have been developed a software product which not only has the basic functionality for this task (loading data from .las files, well log curves display, etc.), but can be run in different operating systems and on different devices. In the article a subject field analysis and task formulation have been performed, and the software design stage has been considered. At the end of the work the resulting software product interface has been described.

  11. Software Construction and Analysis Tools for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Lowry, Michael R.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    NASA and its international partners will increasingly depend on software-based systems to implement advanced functions for future space missions, such as Martian rovers that autonomously navigate long distances exploring geographic features formed by surface water early in the planet's history. The software-based functions for these missions will need to be robust and highly reliable, raising significant challenges in the context of recent Mars mission failures attributed to software faults. After reviewing these challenges, this paper describes tools that have been developed at NASA Ames that could contribute to meeting these challenges; 1) Program synthesis tools based on automated inference that generate documentation for manual review and annotations for automated certification. 2) Model-checking tools for concurrent object-oriented software that achieve memorability through synergy with program abstraction and static analysis tools.

  12. Data link test and analysis system/TCAS monitor user's guide

    NASA Astrophysics Data System (ADS)

    Vandongen, John; Wapelhorst, Leo

    1991-02-01

    This document is a user's guide for the Data Link Test and Analysis System (DATAS) Traffic Alert and Collision Avoidance System (TCAS) monitor. It provides a brief overall hardware description of DATAS configured as a TCAS monitor, and the applications software.

  13. Generic trending and analysis system

    NASA Technical Reports Server (NTRS)

    Keehan, Lori; Reese, Jay

    1994-01-01

    The Generic Trending and Analysis System (GTAS) is a generic spacecraft performance monitoring tool developed by NASA Code 511 and Loral Aerosys. It is designed to facilitate quick anomaly resolution and trend analysis. Traditionally, the job of off-line analysis has been performed using hardware and software systems developed for real-time spacecraft contacts; then, the systems were supplemented with a collection of tools developed by Flight Operations Team (FOT) members. Since the number of upcoming missions is increasing, NASA can no longer afford to operate in this manner. GTAS improves control center productivity and effectiveness because it provides a generic solution across multiple missions. Thus, GTAS eliminates the need for each individual mission to develop duplicate capabilities. It also allows for more sophisticated tools to be developed because it draws resources from several projects. In addition, the GTAS software system incorporates commercial off-the-shelf tools software (COTS) packages and reuses components of other NASA-developed systems wherever possible. GTAS has incorporated lessons learned from previous missions by involving the users early in the development process. GTAS users took a proactive role in requirements analysis, design, development, and testing. Because of user involvement, several special tools were designed and are now being developed. GTAS users expressed considerable interest in facilitating data collection for long term trending and analysis. As a result, GTAS provides easy access to large volumes of processed telemetry data directly in the control center. The GTAS archival and retrieval capabilities are supported by the integration of optical disk technology and a COTS relational database management system.

  14. Development of datamining software for the city water supply company

    NASA Astrophysics Data System (ADS)

    Orlinskaya, O. G.; Boiko, E. V.

    2018-05-01

    The article considers issues of datamining software development for city water supply enterprises. Main stages of OLAP and datamining systems development are proposed. The system will allow water supply companies analyse accumulated data. Accordingly, improving the quality of data analysis would improve the manageability of the company and help to make the right managerial decisions by executives of various levels.

  15. A specialized plug-in software module for computer-aided quantitative measurement of medical images.

    PubMed

    Wang, Q; Zeng, Y J; Huo, P; Hu, J L; Zhang, J H

    2003-12-01

    This paper presents a specialized system for quantitative measurement of medical images. Using Visual C++, we developed a computer-aided software based on Image-Pro Plus (IPP), a software development platform. When transferred to the hard disk of a computer by an MVPCI-V3A frame grabber, medical images can be automatically processed by our own IPP plug-in for immunohistochemical analysis, cytomorphological measurement and blood vessel segmentation. In 34 clinical studies, the system has shown its high stability, reliability and ease of utility.

  16. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1986-01-01

    Multiversion or N-version programming was proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. Specific topics addressed are: failure probabilities in N-version systems, consistent comparison in N-version systems, descriptions of the faults found in the Knight and Leveson experiment, analytic models of comparison testing, characteristics of the input regions that trigger faults, fault tolerance through data diversity, and the relationship between failures caused by automatically seeded faults.

  17. JSATS Detector Field Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Eric Y.; Flory, Adam E.; Lamarche, Brian L.

    2014-06-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software.more » The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values« less

  18. Towards Real-time, On-board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Rozier, Kristin Y.; Reinbacher, Thomas; Mengshoel, Ole J.; Mbaya, Timmy; Ippolito, Corey

    2013-01-01

    Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft.

  19. Spectrum analysis on quality requirements consideration in software design documents.

    PubMed

    Kaiya, Haruhiko; Umemura, Masahiro; Ogata, Shinpei; Kaijiri, Kenji

    2013-12-01

    Software quality requirements defined in the requirements analysis stage should be implemented in the final products, such as source codes and system deployment. To guarantee this meta-requirement, quality requirements should be considered in the intermediate stages, such as the design stage or the architectural definition stage. We propose a novel method for checking whether quality requirements are considered in the design stage. In this method, a technique called "spectrum analysis for quality requirements" is applied not only to requirements specifications but also to design documents. The technique enables us to derive the spectrum of a document, and quality requirements considerations in the document are numerically represented in the spectrum. We can thus objectively identify whether the considerations of quality requirements in a requirements document are adapted to its design document. To validate the method, we applied it to commercial software systems with the help of a supporting tool, and we confirmed that the method worked well.

  20. Optomechanical design software for segmented mirrors

    NASA Astrophysics Data System (ADS)

    Marrero, Juan

    2016-08-01

    The software package presented in this paper, still under development, was born to help analyzing the influence of the many parameters involved in the design of a large segmented mirror telescope. In summary, it is a set of tools which were added to a common framework as they were needed. Great emphasis has been made on the graphical presentation, as scientific visualization nowadays cannot be conceived without the use of a helpful 3d environment, showing the analyzed system as close to reality as possible. Use of third party software packages is limited to ANSYS, which should be available in the system only if the FEM results are needed. Among the various functionalities of the software, the next ones are worth mentioning here: automatic 3d model construction of a segmented mirror from a set of parameters, geometric ray tracing, automatic 3d model construction of a telescope structure around the defined mirrors from a set of parameters, segmented mirror human access assessment, analysis of integration tolerances, assessment of segments collision, structural deformation under gravity and thermal variation, mirror support system analysis including warping harness mechanisms, etc.

  1. An interactive environment for the analysis of large Earth observation and model data sets

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.

    1993-01-01

    We propose to develop an interactive environment for the analysis of large Earth science observation and model data sets. We will use a standard scientific data storage format and a large capacity (greater than 20 GB) optical disk system for data management; develop libraries for coordinate transformation and regridding of data sets; modify the NCSA X Image and X DataSlice software for typical Earth observation data sets by including map transformations and missing data handling; develop analysis tools for common mathematical and statistical operations; integrate the components described above into a system for the analysis and comparison of observations and model results; and distribute software and documentation to the scientific community.

  2. An interactive environment for the analysis of large Earth observation and model data sets

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.

    1992-01-01

    We propose to develop an interactive environment for the analysis of large Earth science observation and model data sets. We will use a standard scientific data storage format and a large capacity (greater than 20 GB) optical disk system for data management; develop libraries for coordinate transformation and regridding of data sets; modify the NCSA X Image and X Data Slice software for typical Earth observation data sets by including map transformations and missing data handling; develop analysis tools for common mathematical and statistical operations; integrate the components described above into a system for the analysis and comparison of observations and model results; and distribute software and documentation to the scientific community.

  3. Automatic sample changer control software for automation of neutron activation analysis process in Malaysian Nuclear Agency

    NASA Astrophysics Data System (ADS)

    Yussup, N.; Ibrahim, M. M.; Rahman, N. A. A.; Mokhtar, M.; Salim, N. A. A.; Soh@Shaari, S. C.; Azman, A.; Lombigit, L.; Azman, A.; Omar, S. A.

    2018-01-01

    Most of the procedures in neutron activation analysis (NAA) process that has been established in Malaysian Nuclear Agency (Nuclear Malaysia) since 1980s were performed manually. These manual procedures carried out by the NAA laboratory personnel are time consuming and inefficient especially for sample counting and measurement process. The sample needs to be changed and the measurement software needs to be setup for every one hour counting time. Both of these procedures are performed manually for every sample. Hence, an automatic sample changer system (ASC) that consists of hardware and software is developed to automate sample counting process for up to 30 samples consecutively. This paper describes the ASC control software for NAA process which is designed and developed to control the ASC hardware and call GammaVision software for sample measurement. The software is developed by using National Instrument LabVIEW development package.

  4. State Analysis: A Control Architecture View of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert D.

    2005-01-01

    A viewgraph presentation on the state analysis process is shown. The topics include: 1) Issues with growing complexity; 2) Limits of common practice; 3) Exploiting a control point of view; 4) A glimpse at the State Analysis process; 5) Synergy with model-based systems engineering; and 6) Bridging the systems to software gap.

  5. BATSE spectroscopy analysis system

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Bansal, Sandhia; Basu, Anju; Brisco, Phil; Cline, Thomas L.; Friend, Elliott; Laubenthal, Nancy; Panduranga, E. S.; Parkar, Nuru; Rust, Brad

    1992-01-01

    The Burst and Transient Source Experiment (BATSE) Spectroscopy Analysis System (BSAS) is the software system which is the primary tool for the analysis of spectral data from BATSE. As such, Guest Investigators and the community as a whole need to know its basic properties and characteristics. Described here are the characteristics of the BATSE spectroscopy detectors and the BSAS.

  6. Extended Testability Analysis Tool

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin; Maul, William A.; Fulton, Christopher

    2012-01-01

    The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.

  7. Decision Engines for Software Analysis Using Satisfiability Modulo Theories Solvers

    NASA Technical Reports Server (NTRS)

    Bjorner, Nikolaj

    2010-01-01

    The area of software analysis, testing and verification is now undergoing a revolution thanks to the use of automated and scalable support for logical methods. A well-recognized premise is that at the core of software analysis engines is invariably a component using logical formulas for describing states and transformations between system states. The process of using this information for discovering and checking program properties (including such important properties as safety and security) amounts to automatic theorem proving. In particular, theorem provers that directly support common software constructs offer a compelling basis. Such provers are commonly called satisfiability modulo theories (SMT) solvers. Z3 is a state-of-the-art SMT solver. It is developed at Microsoft Research. It can be used to check the satisfiability of logical formulas over one or more theories such as arithmetic, bit-vectors, lists, records and arrays. The talk describes some of the technology behind modern SMT solvers, including the solver Z3. Z3 is currently mainly targeted at solving problems that arise in software analysis and verification. It has been applied to various contexts, such as systems for dynamic symbolic simulation (Pex, SAGE, Vigilante), for program verification and extended static checking (Spec#/Boggie, VCC, HAVOC), for software model checking (Yogi, SLAM), model-based design (FORMULA), security protocol code (F7), program run-time analysis and invariant generation (VS3). We will describe how it integrates support for a variety of theories that arise naturally in the context of the applications. There are several new promising avenues and the talk will touch on some of these and the challenges related to SMT solvers. Proceedings

  8. The software architecture to control the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Oya, I.; Füßling, M.; Antonino, P. O.; Conforti, V.; Hagge, L.; Melkumyan, D.; Morgenstern, A.; Tosti, G.; Schwanke, U.; Schwarz, J.; Wegner, P.; Colomé, J.; Lyard, E.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project is an initiative to build two large arrays of Cherenkov gamma- ray telescopes. CTA will be deployed as two installations, one in the northern and the other in the southern hemisphere, containing dozens of telescopes of different sizes. CTA is a big step forward in the field of ground- based gamma-ray astronomy, not only because of the expected scientific return, but also due to the order-of- magnitude larger scale of the instrument to be controlled. The performance requirements associated with such a large and distributed astronomical installation require a thoughtful analysis to determine the best software solutions. The array control and data acquisition (ACTL) work-package within the CTA initiative will deliver the software to control and acquire the data from the CTA instrumentation. In this contribution we present the current status of the formal ACTL system decomposition into software building blocks and the relationships among them. The system is modelled via the Systems Modelling Language (SysML) formalism. To cope with the complexity of the system, this architecture model is sub-divided into different perspectives. The relationships with the stakeholders and external systems are used to create the first perspective, the context of the ACTL software system. Use cases are employed to describe the interaction of those external elements with the ACTL system and are traced to a hierarchy of functionalities (abstract system functions) describing the internal structure of the ACTL system. These functions are then traced to fully specified logical elements (software components), the deployment of which as technical elements, is also described. This modelling approach allows us to decompose the ACTL software in elements to be created and the ow of information within the system, providing us with a clear way to identify sub-system interdependencies. This architectural approach allows us to build the ACTL system model and trace requirements to deliverables (source code, documentation, etc.), and permits the implementation of a flexible use-case driven software development approach thanks to the traceability from use cases to the logical software elements. The Alma Common Software (ACS) container/component framework, used for the control of the Atacama Large Millimeter/submillimeter Array (ALMA) is the basis for the ACTL software and as such it is considered as an integral part of the software architecture.

  9. IMAT graphics manual

    NASA Technical Reports Server (NTRS)

    Stockwell, Alan E.; Cooper, Paul A.

    1991-01-01

    The Integrated Multidisciplinary Analysis Tool (IMAT) consists of a menu driven executive system coupled with a relational database which links commercial structures, structural dynamics and control codes. The IMAT graphics system, a key element of the software, provides a common interface for storing, retrieving, and displaying graphical information. The IMAT Graphics Manual shows users of commercial analysis codes (MATRIXx, MSC/NASTRAN and I-DEAS) how to use the IMAT graphics system to obtain high quality graphical output using familiar plotting procedures. The manual explains the key features of the IMAT graphics system, illustrates their use with simple step-by-step examples, and provides a reference for users who wish to take advantage of the flexibility of the software to customize their own applications.

  10. Final Technical Report on Quantifying Dependability Attributes of Software Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smidts, Carol; Huang, Funqun; Li, Boyuan

    With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems’ characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be amore » significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory uncertainty -- measures and methods are needed to assess dependability attributes early on, as well as throughout the life-cycle process of software development. In this research, extensive expert opinion elicitation is used to identify the measures and methods for assessing software dependability. Semi-structured questionnaires were designed to elicit expert knowledge. A new notation system, Causal Mechanism Graphing, was developed to extract and represent such knowledge. The Causal Mechanism Graphs were merged, thus, obtaining the consensus knowledge shared by the domain experts. In this report, we focus on how software contributes to dependability. However, software dependability is not discussed separately from the context of systems or socio-technical systems. Specifically, this report focuses on software dependability, reliability, safety, security, availability, and maintainability. Our research was conducted in the sequence of stages found below. Each stage is further examined in its corresponding chapter. Stage 1 (Chapter 2): Elicitation of causal maps describing the dependencies between dependability attributes. These causal maps were constructed using expert opinion elicitation. This chapter describes the expert opinion elicitation process, the questionnaire design, the causal map construction method and the causal maps obtained. Stage 2 (Chapter 3): Elicitation of the causal map describing the occurrence of the event of interest for each dependability attribute. The causal mechanisms for the “event of interest” were extracted for each of the software dependability attributes. The “event of interest” for a dependability attribute is generally considered to be the “attribute failure”, e.g. security failure. The extraction was based on the analysis of expert elicitation results obtained in Stage 1. Stage 3 (Chapter 4): Identification of relevant measurements. Measures for the “events of interest” and their causal mechanisms were obtained from expert opinion elicitation for each of the software dependability attributes. The measures extracted are presented in this chapter. Stage 4 (Chapter 5): Assessment of the coverage of the causal maps via measures. Coverage was assessed to determine whether the measures obtained were sufficient to quantify software dependability, and what measures are further required. Stage 5 (Chapter 6): Identification of “missing” measures and measurement approaches for concepts not covered. New measures, for concepts that had not been covered sufficiently as determined in Stage 4, were identified using supplementary expert opinion elicitation as well as literature reviews. Stage 6 (Chapter 7): Building of a detailed quantification model based on the causal maps and measurements obtained. Ability to derive such a quantification model shows that the causal models and measurements derived from the previous stages (Stage 1 to Stage 5) can form the technical basis for developing dependability quantification models. Scope restrictions have led us to prioritize this demonstration effort. The demonstration was focused on a critical system, i.e. the reactor protection system. For this system, a ranking of the software dependability attributes by nuclear stakeholders was developed. As expected for this application, the stakeholder ranking identified safety as the most critical attribute to be quantified. A safety quantification model limited to the requirements phase of development was built. Two case studies were conducted for verification. A preliminary control gate for software safety for the requirements stage was proposed and applied to the first case study. The control gate allows a cost effective selection of the duration of the requirements phase.« less

  11. Reliability Analysis for AFTI-F16 SRFCS Using ASSIST and SURE

    NASA Technical Reports Server (NTRS)

    Wu, N. Eva

    2001-01-01

    This paper reports the results of a study on reliability analysis of an AFTI-16 Self-Repairing Flight Control System (SRFCS) using software tools SURE (Semi-Markov Unreliability Range Evaluator and ASSIST (Abstract Semi-Markov Specification Interface to the SURE Tool). The purpose of the study is to investigate the potential utility of the software tools in the ongoing effort of the NASA Aviation Safety Program, where the class of systems must be extended beyond the originally intended serving class of electronic digital processors. The study concludes that SURE and ASSIST are applicable to reliability, analysis of flight control systems. They are especially efficient for sensitivity analysis that quantifies the dependence of system reliability on model parameters. The study also confirms an earlier finding on the dominant role of a parameter called a failure coverage. The paper will remark on issues related to the improvement of coverage and the optimization of redundancy level.

  12. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps

  13. Integrated software health management for aerospace guidance, navigation, and control systems: A probabilistic reasoning approach

    NASA Astrophysics Data System (ADS)

    Mbaya, Timmy

    Embedded Aerospace Systems have to perform safety and mission critical operations in a real-time environment where timing and functional correctness are extremely important. Guidance, Navigation, and Control (GN&C) systems substantially rely on complex software interfacing with hardware in real-time; any faults in software or hardware, or their interaction could result in fatal consequences. Integrated Software Health Management (ISWHM) provides an approach for detection and diagnosis of software failures while the software is in operation. The ISWHM approach is based on probabilistic modeling of software and hardware sensors using a Bayesian network. To meet memory and timing constraints of real-time embedded execution, the Bayesian network is compiled into an Arithmetic Circuit, which is used for on-line monitoring. This type of system monitoring, using an ISWHM, provides automated reasoning capabilities that compute diagnoses in a timely manner when failures occur. This reasoning capability enables time-critical mitigating decisions and relieves the human agent from the time-consuming and arduous task of foraging through a multitude of isolated---and often contradictory---diagnosis data. For the purpose of demonstrating the relevance of ISWHM, modeling and reasoning is performed on a simple simulated aerospace system running on a real-time operating system emulator, the OSEK/Trampoline platform. Models for a small satellite and an F-16 fighter jet GN&C (Guidance, Navigation, and Control) system have been implemented. Analysis of the ISWHM is then performed by injecting faults and analyzing the ISWHM's diagnoses.

  14. Automated Test Environment for a Real-Time Control System

    NASA Technical Reports Server (NTRS)

    Hall, Ronald O.

    1994-01-01

    An automated environment with hardware-in-the-loop has been developed by Rocketdyne Huntsville for test of a real-time control system. The target system of application is the man-rated real-time system which controls the Space Shuttle Main Engines (SSME). The primary use of the environment is software verification and validation, but it is also useful for evaluation and analysis of SSME avionics hardware and mathematical engine models. It provides a test bed for the integration of software and hardware. The principles and skills upon which it operates may be applied to other target systems, such as those requiring hardware-in-the-loop simulation and control system development. Potential applications are in problem domains demanding highly reliable software systems requiring testing to formal requirements and verifying successful transition to/from off-nominal system states.

  15. Analysis and visualization of intracardiac electrograms in diagnosis and research: Concept and application of KaPAVIE.

    PubMed

    Oesterlein, Tobias Georg; Schmid, Jochen; Bauer, Silvio; Jadidi, Amir; Schmitt, Claus; Dössel, Olaf; Luik, Armin

    2016-04-01

    Progress in biomedical engineering has improved the hardware available for diagnosis and treatment of cardiac arrhythmias. But although huge amounts of intracardiac electrograms (EGMs) can be acquired during electrophysiological examinations, there is still a lack of software aiding diagnosis. The development of novel algorithms for the automated analysis of EGMs has proven difficult, due to the highly interdisciplinary nature of this task and hampered data access in clinical systems. Thus we developed a software platform, which allows rapid implementation of new algorithms, verification of their functionality and suitable visualization for discussion in the clinical environment. A software for visualization was developed in Qt5 and C++ utilizing the class library of VTK. The algorithms for signal analysis were implemented in MATLAB. Clinical data for analysis was exported from electroanatomical mapping systems. The visualization software KaPAVIE (Karlsruhe Platform for Analysis and Visualization of Intracardiac Electrograms) was implemented and tested on several clinical datasets. Both common and novel algorithms were implemented which address important clinical questions in diagnosis of different arrhythmias. It proved useful in discussions with clinicians due to its interactive and user-friendly design. Time after export from the clinical mapping system to visualization is below 5min. KaPAVIE(2) is a powerful platform for the development of novel algorithms in the clinical environment. Simultaneous and interactive visualization of measured EGM data and the results of analysis will aid diagnosis and help understanding the underlying mechanisms of complex arrhythmias like atrial fibrillation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. The CUORE slow monitoring systems

    NASA Astrophysics Data System (ADS)

    Gladstone, L.; Biare, D.; Cappelli, L.; Cushman, J. S.; Del Corso, F.; Fujikawa, B. K.; Hickerson, K. P.; Moggi, N.; Pagliarone, C. E.; Schmidt, B.; Wagaarachchi, S. L.; Welliver, B.; Winslow, L. A.

    2017-09-01

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay in 130Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.

  17. Lewis hybrid computing system, users manual

    NASA Technical Reports Server (NTRS)

    Bruton, W. M.; Cwynar, D. S.

    1979-01-01

    The Lewis Research Center's Hybrid Simulation Lab contains a collection of analog, digital, and hybrid (combined analog and digital) computing equipment suitable for the dynamic simulation and analysis of complex systems. This report is intended as a guide to users of these computing systems. The report describes the available equipment' and outlines procedures for its use. Particular is given to the operation of the PACER 100 digital processor. System software to accomplish the usual digital tasks such as compiling, editing, etc. and Lewis-developed special purpose software are described.

  18. GPS-based system for satellite tracking and geodesy

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy I.; Thornton, Catherine L.

    1989-01-01

    High-performance receivers and data processing systems developed for GPS are reviewed. The GPS Inferred Positioning System (GIPSY) and the Orbiter Analysis and Simulation Software (OASIS) are described. The OASIS software is used to assess GPS system performance using GIPSY for data processing. Consideration is given to parameter estimation for multiday arcs, orbit repeatability, orbit prediction, daily baseline repeatability, agreement with VLBI, and ambiguity resolution. Also, the dual-frequency Rogue receiver, which can track up to eight GPS satellites simultaneously, is discussed.

  19. Ada (Trade Name) Foundation Technology. Volume 4. Software Requirements for WIS (WWMCCS (World Wide Military Command and Control System) Information System) Text Processing Prototypes

    DTIC Science & Technology

    1986-12-01

    graphics : The package allows a character set which can be defined by users giving the picture for a character by designating its pixels. Such characters...type lonts and gsei-oriented "help" messages tailored to the operations being performed and user expertise In general, critical design issues...other volumes include command language, software design , description and analysis tools, database management system operating systems; planning and

  20. Scrutinizing UML Activity Diagrams

    NASA Astrophysics Data System (ADS)

    Al-Fedaghi, Sabah

    Building an information system involves two processes: conceptual modeling of the “real world domain” and designing the software system. Object-oriented methods and languages (e.g., UML) are typically used for describing the software system. For the system analysis process that produces the conceptual description, object-oriented techniques or semantics extensions are utilized. Specifically, UML activity diagrams are the “flow charts” of object-oriented conceptualization tools. This chapter proposes an alternative to UML activity diagrams through the development of a conceptual modeling methodology based on the notion of flow.

  1. Software for occupational health and safety risk analysis based on a fuzzy model.

    PubMed

    Stefanovic, Miladin; Tadic, Danijela; Djapan, Marko; Macuzic, Ivan

    2012-01-01

    Risk and safety management are very important issues in healthcare systems. Those are complex systems with many entities, hazards and uncertainties. In such an environment, it is very hard to introduce a system for evaluating and simulating significant hazards. In this paper, we analyzed different types of hazards in healthcare systems and we introduced a new fuzzy model for evaluating and ranking hazards. Finally, we presented a developed software solution, based on the suggested fuzzy model for evaluating and monitoring risk.

  2. Ffuzz: Towards full system high coverage fuzz testing on binary executables.

    PubMed

    Zhang, Bin; Ye, Jiaxi; Bi, Xing; Feng, Chao; Tang, Chaojing

    2018-01-01

    Bugs and vulnerabilities in binary executables threaten cyber security. Current discovery methods, like fuzz testing, symbolic execution and manual analysis, both have advantages and disadvantages when exercising the deeper code area in binary executables to find more bugs. In this paper, we designed and implemented a hybrid automatic bug finding tool-Ffuzz-on top of fuzz testing and selective symbolic execution. It targets full system software stack testing including both the user space and kernel space. Combining these two mainstream techniques enables us to achieve higher coverage and avoid getting stuck both in fuzz testing and symbolic execution. We also proposed two key optimizations to improve the efficiency of full system testing. We evaluated the efficiency and effectiveness of our method on real-world binary software and 844 memory corruption vulnerable programs in the Juliet test suite. The results show that Ffuzz can discover software bugs in the full system software stack effectively and efficiently.

  3. Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer

    NASA Technical Reports Server (NTRS)

    Goldberg, J.; Kautz, W. H.; Melliar-Smith, P. M.; Green, M. W.; Levitt, K. N.; Schwartz, R. L.; Weinstock, C. B.

    1984-01-01

    SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness.

  4. Dependability modeling and assessment in UML-based software development.

    PubMed

    Bernardi, Simona; Merseguer, José; Petriu, Dorina C

    2012-01-01

    Assessment of software nonfunctional properties (NFP) is an important problem in software development. In the context of model-driven development, an emerging approach for the analysis of different NFPs consists of the following steps: (a) to extend the software models with annotations describing the NFP of interest; (b) to transform automatically the annotated software model to the formalism chosen for NFP analysis; (c) to analyze the formal model using existing solvers; (d) to assess the software based on the results and give feedback to designers. Such a modeling→analysis→assessment approach can be applied to any software modeling language, be it general purpose or domain specific. In this paper, we focus on UML-based development and on the dependability NFP, which encompasses reliability, availability, safety, integrity, and maintainability. The paper presents the profile used to extend UML with dependability information, the model transformation to generate a DSPN formal model, and the assessment of the system properties based on the DSPN results.

  5. Dependability Modeling and Assessment in UML-Based Software Development

    PubMed Central

    Bernardi, Simona; Merseguer, José; Petriu, Dorina C.

    2012-01-01

    Assessment of software nonfunctional properties (NFP) is an important problem in software development. In the context of model-driven development, an emerging approach for the analysis of different NFPs consists of the following steps: (a) to extend the software models with annotations describing the NFP of interest; (b) to transform automatically the annotated software model to the formalism chosen for NFP analysis; (c) to analyze the formal model using existing solvers; (d) to assess the software based on the results and give feedback to designers. Such a modeling→analysis→assessment approach can be applied to any software modeling language, be it general purpose or domain specific. In this paper, we focus on UML-based development and on the dependability NFP, which encompasses reliability, availability, safety, integrity, and maintainability. The paper presents the profile used to extend UML with dependability information, the model transformation to generate a DSPN formal model, and the assessment of the system properties based on the DSPN results. PMID:22988428

  6. A model-based approach for automated in vitro cell tracking and chemotaxis analyses.

    PubMed

    Debeir, Olivier; Camby, Isabelle; Kiss, Robert; Van Ham, Philippe; Decaestecker, Christine

    2004-07-01

    Chemotaxis may be studied in two main ways: 1) counting cells passing through an insert (e.g., using Boyden chambers), and 2) directly observing cell cultures (e.g., using Dunn chambers), both in response to stationary concentration gradients. This article promotes the use of Dunn chambers and in vitro cell-tracking, achieved by video microscopy coupled with automatic image analysis software, in order to extract quantitative and qualitative measurements characterizing the response of cells to a diffusible chemical agent. Previously, we set up a videomicroscopy system coupled with image analysis software that was able to compute cell trajectories from in vitro cell cultures. In the present study, we are introducing a new software increasing the application field of this system to chemotaxis studies. This software is based on an adapted version of the active contour methodology, enabling each cell to be efficiently tracked for hours and resulting in detailed descriptions of individual cell trajectories. The major advantages of this method come from an improved robustness with respect to variability in cell morphologies between different cell lines and dynamical changes in cell shape during cell migration. Moreover, the software includes a very small number of parameters which do not require overly sensitive tuning. Finally, the running time of the software is very short, allowing improved possibilities in acquisition frequency and, consequently, improved descriptions of complex cell trajectories, i.e. trajectories including cell division and cell crossing. We validated this software on several artificial and real cell culture experiments in Dunn chambers also including comparisons with manual (human-controlled) analyses. We developed new software and data analysis tools for automated cell tracking which enable cell chemotaxis to be efficiently analyzed. Copyright 2004 Wiley-Liss, Inc.

  7. Land surface Verification Toolkit (LVT)

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.

    2017-01-01

    LVT is a framework developed to provide an automated, consolidated environment for systematic land surface model evaluation Includes support for a range of in-situ, remote-sensing and other model and reanalysis products. Supports the analysis of outputs from various LIS subsystems, including LIS-DA, LIS-OPT, LIS-UE. Note: The Land Information System Verification Toolkit (LVT) is a NASA software tool designed to enable the evaluation, analysis and comparison of outputs generated by the Land Information System (LIS). The LVT software is released under the terms and conditions of the NASA Open Source Agreement (NOSA) Version 1.1 or later. Land Information System Verification Toolkit (LVT) NOSA.

  8. Use of the MATRIXx Integrated Toolkit on the Microwave Anisotropy Probe Attitude Control System

    NASA Technical Reports Server (NTRS)

    Ward, David K.; Andrews, Stephen F.; McComas, David C.; ODonnell, James R., Jr.

    1999-01-01

    Recent advances in analytical software tools allow the analysis, simulation, flight code, and documentation of an algorithm to be generated from a single source, all within one integrated analytical design package. NASA's Microwave Anisotropy Probe project has used one such package, Integrated Systems' MATRIXx suite, in the design of the spacecraft's Attitude Control System. The project's experience with the linear analysis, simulation, code generation, and documentation tools will be presented and compared with more traditional development tools. In particular, the quality of the flight software generated will be examined in detail. Finally, lessons learned on each of the tools will be shared.

  9. Standards guide for space and earth sciences computer software

    NASA Technical Reports Server (NTRS)

    Mason, G.; Chapman, R.; Klinglesmith, D.; Linnekin, J.; Putney, W.; Shaffer, F.; Dapice, R.

    1972-01-01

    Guidelines for the preparation of systems analysis and programming work statements are presented. The data is geared toward the efficient administration of available monetary and equipment resources. Language standards and the application of good management techniques to software development are emphasized.

  10. 29 CFR 541.401 - Computer manufacture and repair.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DEFINING AND DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND OUTSIDE..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...

  11. An exchange format for use-cases of hospital information systems.

    PubMed

    Masuda, G; Sakamoto, N; Sakai, R; Yamamoto, R

    2001-01-01

    Object-oriented software development is a powerful methodology for development of large hospital information systems. We think use-case driven approach is particularly useful for the development. In the use-cases driven approach, use-cases are documented at the first stage in the software development process and they are used through the whole steps in a variety of ways. Therefore, it is important to exchange and share the use-cases and make effective use of them through the overall lifecycle of a development process. In this paper, we propose a method of sharing and exchanging use-case models between applications, developers, and projects. We design an XML based exchange format for use-cases. We then discuss an application of the exchange format to support several software development activities. We preliminarily implemented a support system for object-oriented analysis based on the exchange format. The result shows that using the structural and semantic information in the exchange format enables the support system to assist the object-oriented analysis successfully.

  12. Software Tools to Support the Assessment of System Health

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2013-01-01

    This presentation provides an overview of three software tools that were developed by the NASA Glenn Research Center to support the assessment of system health: the Propulsion Diagnostic Method Evaluation Strategy (ProDIMES), the Systematic Sensor Selection Strategy (S4), and the Extended Testability Analysis (ETA) tool. Originally developed to support specific NASA projects in aeronautics and space, these software tools are currently available to U.S. citizens through the NASA Glenn Software Catalog. The ProDiMES software tool was developed to support a uniform comparison of propulsion gas path diagnostic methods. Methods published in the open literature are typically applied to dissimilar platforms with different levels of complexity. They often address different diagnostic problems and use inconsistent metrics for evaluating performance. As a result, it is difficult to perform a one ]to ]one comparison of the various diagnostic methods. ProDIMES solves this problem by serving as a theme problem to aid in propulsion gas path diagnostic technology development and evaluation. The overall goal is to provide a tool that will serve as an industry standard, and will truly facilitate the development and evaluation of significant Engine Health Management (EHM) capabilities. ProDiMES has been developed under a collaborative project of The Technical Cooperation Program (TTCP) based on feedback provided by individuals within the aircraft engine health management community. The S4 software tool provides a framework that supports the optimal selection of sensors for health management assessments. S4 is structured to accommodate user ]defined applications, diagnostic systems, search techniques, and system requirements/constraints. One or more sensor suites that maximize this performance while meeting other user ]defined system requirements that are presumed to exist. S4 provides a systematic approach for evaluating combinations of sensors to determine the set or sets of sensors that optimally meet the performance goals and the constraints. It identifies optimal sensor suite solutions by utilizing a merit (i.e., cost) function with one of several available optimization approaches. As part of its analysis, S4 can expose fault conditions that are difficult to diagnose due to an incomplete diagnostic philosophy and/or a lack of sensors. S4 was originally developed and applied to liquid rocket engines. It was subsequently used to study the optimized selection of sensors for a simulation ]based aircraft engine diagnostic system. The ETA Tool is a software ]based analysis tool that augments the testability analysis and reporting capabilities of a commercial ]off ]the ]shelf (COTS) package. An initial diagnostic assessment is performed by the COTS software using a user ]developed, qualitative, directed ]graph model of the system being analyzed. The ETA Tool accesses system design information captured within the model and the associated testability analysis output to create a series of six reports for various system engineering needs. These reports are highlighted in the presentation. The ETA Tool was developed by NASA to support the verification of fault management requirements early in the Launch Vehicle process. Due to their early development during the design process, the TEAMS ]based diagnostic model and the ETA Tool were able to positively influence the system design by highlighting gaps in failure detection, fault isolation, and failure recovery.

  13. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.

    PubMed

    McGibbon, Robert T; Beauchamp, Kyle A; Harrigan, Matthew P; Klein, Christoph; Swails, Jason M; Hernández, Carlos X; Schwantes, Christian R; Wang, Lee-Ping; Lane, Thomas J; Pande, Vijay S

    2015-10-20

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories

    PubMed Central

    McGibbon, Robert T.; Beauchamp, Kyle A.; Harrigan, Matthew P.; Klein, Christoph; Swails, Jason M.; Hernández, Carlos X.; Schwantes, Christian R.; Wang, Lee-Ping; Lane, Thomas J.; Pande, Vijay S.

    2015-01-01

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. PMID:26488642

  15. Developing Cost Accounting and Decision Support Software for Comprehensive Community-Based Support Systems: An Analysis of Needs, Interest, and Readiness in the Field.

    ERIC Educational Resources Information Center

    Harrington, Robert; Jenkins, Peter; Marzke, Carolyn; Cohen, Carol

    Prominent among the new models of social service delivery are organizations providing comprehensive, community-based supports and services (CCBSS) to children and their families. A needs analysis explored CCBSS sites' interest in and readiness to use a software tool designed to help them make more effective internal resource allocation decisions…

  16. Logic Model Checking of Unintended Acceleration Claims in the 2005 Toyota Camry Electronic Throttle Control System

    NASA Technical Reports Server (NTRS)

    Gamble, Ed; Holzmann, Gerard

    2011-01-01

    Part of the US DOT investigation of Toyota SUA involved analysis of the throttle control software. JPL LaRS applied several techniques, including static analysis and logic model checking, to the software. A handful of logic models were built. Some weaknesses were identified; however, no cause for SUA was found. The full NASA report includes numerous other analyses

  17. Proceedings of the Second NASA Formal Methods Symposium

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar (Editor)

    2010-01-01

    This publication contains the proceedings of the Second NASA Formal Methods Symposium sponsored by the National Aeronautics and Space Administration and held in Washington D.C. April 13-15, 2010. Topics covered include: Decision Engines for Software Analysis using Satisfiability Modulo Theories Solvers; Verification and Validation of Flight-Critical Systems; Formal Methods at Intel -- An Overview; Automatic Review of Abstract State Machines by Meta Property Verification; Hardware-independent Proofs of Numerical Programs; Slice-based Formal Specification Measures -- Mapping Coupling and Cohesion Measures to Formal Z; How Formal Methods Impels Discovery: A Short History of an Air Traffic Management Project; A Machine-Checked Proof of A State-Space Construction Algorithm; Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications; Modeling Regular Replacement for String Constraint Solving; Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol; Can Regulatory Bodies Expect Efficient Help from Formal Methods?; Synthesis of Greedy Algorithms Using Dominance Relations; A New Method for Incremental Testing of Finite State Machines; Verification of Faulty Message Passing Systems with Continuous State Space in PVS; Phase Two Feasibility Study for Software Safety Requirements Analysis Using Model Checking; A Prototype Embedding of Bluespec System Verilog in the PVS Theorem Prover; SimCheck: An Expressive Type System for Simulink; Coverage Metrics for Requirements-Based Testing: Evaluation of Effectiveness; Software Model Checking of ARINC-653 Flight Code with MCP; Evaluation of a Guideline by Formal Modelling of Cruise Control System in Event-B; Formal Verification of Large Software Systems; Symbolic Computation of Strongly Connected Components Using Saturation; Towards the Formal Verification of a Distributed Real-Time Automotive System; Slicing AADL Specifications for Model Checking; Model Checking with Edge-valued Decision Diagrams; and Data-flow based Model Analysis.

  18. Self-conscious robotic system design process--from analysis to implementation.

    PubMed

    Chella, Antonio; Cossentino, Massimo; Seidita, Valeria

    2011-01-01

    Developing robotic systems endowed with self-conscious capabilities means realizing complex sub-systems needing ad-hoc software engineering techniques for their modelling, analysis and implementation. In this chapter the whole process (from analysis to implementation) to model the development of self-conscious robotic systems is presented and the new created design process, PASSIC, supporting each part of it, is fully illustrated.

  19. Architecture of the software for LAMOST fiber positioning subsystem

    NASA Astrophysics Data System (ADS)

    Peng, Xiaobo; Xing, Xiaozheng; Hu, Hongzhuan; Zhai, Chao; Li, Weimin

    2004-09-01

    The architecture of the software which controls the LAMOST fiber positioning sub-system is described. The software is composed of two parts as follows: a main control program in a computer and a unit controller program in a MCS51 single chip microcomputer ROM. And the function of the software includes: Client/Server model establishment, observation planning, collision handling, data transmission, pulse generation, CCD control, image capture and processing, and data analysis etc. Particular attention is paid to the ways in which different parts of the software can communicate. Also software techniques for multi threads, SOCKET programming, Microsoft Windows message response, and serial communications are discussed.

  20. Natural Resource Information System, design analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The computer-based system stores, processes, and displays map data relating to natural resources. The system was designed on the basis of requirements established in a user survey and an analysis of decision flow. The design analysis effort is described, and the rationale behind major design decisions, including map processing, cell vs. polygon, choice of classification systems, mapping accuracy, system hardware, and software language is summarized.

  1. Robotics On-Board Trainer (ROBoT)

    NASA Technical Reports Server (NTRS)

    Johnson, Genevieve; Alexander, Greg

    2013-01-01

    ROBoT is an on-orbit version of the ground-based Dynamics Skills Trainer (DST) that astronauts use for training on a frequent basis. This software consists of two primary software groups. The first series of components is responsible for displaying the graphical scenes. The remaining components are responsible for simulating the Mobile Servicing System (MSS), the Japanese Experiment Module Remote Manipulator System (JEMRMS), and the H-II Transfer Vehicle (HTV) Free Flyer Robotics Operations. The MSS simulation software includes: Robotic Workstation (RWS) simulation, a simulation of the Space Station Remote Manipulator System (SSRMS), a simulation of the ISS Command and Control System (CCS), and a portion of the Portable Computer System (PCS) software necessary for MSS operations. These components all run under the CentOS4.5 Linux operating system. The JEMRMS simulation software includes real-time, HIL, dynamics, manipulator multi-body dynamics, and a moving object contact model with Tricks discrete time scheduling. The JEMRMS DST will be used as a functional proficiency and skills trainer for flight crews. The HTV Free Flyer Robotics Operations simulation software adds a functional simulation of HTV vehicle controllers, sensors, and data to the MSS simulation software. These components are intended to support HTV ISS visiting vehicle analysis and training. The scene generation software will use DOUG (Dynamic On-orbit Ubiquitous Graphics) to render the graphical scenes. DOUG runs on a laptop running the CentOS4.5 Linux operating system. DOUG is an Open GL-based 3D computer graphics rendering package. It uses pre-built three-dimensional models of on-orbit ISS and space shuttle systems elements, and provides realtime views of various station and shuttle configurations.

  2. Software for analysis of chemical mixtures--composition, occurrence, distribution, and possible toxicity

    USGS Publications Warehouse

    Scott, Jonathon C.; Skach, Kenneth A.; Toccalino, Patricia L.

    2013-01-01

    The composition, occurrence, distribution, and possible toxicity of chemical mixtures in the environment are research concerns of the U.S. Geological Survey and others. The presence of specific chemical mixtures may serve as indicators of natural phenomena or human-caused events. Chemical mixtures may also have ecological, industrial, geochemical, or toxicological effects. Chemical-mixture occurrences vary by analyte composition and concentration. Four related computer programs have been developed by the National Water-Quality Assessment Program of the U.S. Geological Survey for research of chemical-mixture compositions, occurrences, distributions, and possible toxicities. The compositions and occurrences are identified for the user-supplied data, and therefore the resultant counts are constrained by the user’s choices for the selection of chemicals, reporting limits for the analytical methods, spatial coverage, and time span for the data supplied. The distribution of chemical mixtures may be spatial, temporal, and (or) related to some other variable, such as chemical usage. Possible toxicities optionally are estimated from user-supplied benchmark data. The software for the analysis of chemical mixtures described in this report is designed to work with chemical-analysis data files retrieved from the U.S. Geological Survey National Water Information System but can also be used with appropriately formatted data from other sources. Installation and usage of the mixture software are documented. This mixture software was designed to function with minimal changes on a variety of computer-operating systems. To obtain the software described herein and other U.S. Geological Survey software, visit http://water.usgs.gov/software/.

  3. CIAO: A Modern Data Analysis System for X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Fruscione, Antonella

    2017-08-01

    It is now eighteen years after launch and Chandra continues to produce spectacular results!A portion of the success is to be attributed to the data analysis software CIAO (Chandra Interactive Analysis of Observations) that the Chandra X-Ray Center (CXC) continues to improve and release year after year.CIAO is downloaded more than 1200 times a year and it is used by a wide variety of users around the world: from novice to experienced X-ray astronomers, high school, undergraduate and graduate students, archival users (many new to X-ray or Chandra data), users with extensive resources and others from smaller countries and institutions.The scientific goals and kinds of datasets and analysis cover a wide range: observations spanning from days to years, different instrument configurations and different kinds of targets, from pointlike stars and quasars, to fuzzy galaxies and clusters, to moving solar objects. These different needs and goals require a variety of specialized software and careful and detailed documentation which is what the CIAO software provides. In general, we strive to build a software system which is easy for beginners, yet powerful for advanced users.The complexity of the Chandra data require a flexible data analysis system which provides an environment where the users can apply our tools, but can also explore and construct their own applications. The main purpose of this talk is to present CIAO as a modern data analysis system for X-ray data analysis.CIAO has grown tremendously over the years and we will highlight (a) the most recent advancements with a particular emphasis on the newly developed high-level scripts which simplify the analysis steps for the most common cases making CIAO more accessible to all users - including beginners and users who are not X-ray astronomy specialists, (b) the python-based Sherpa modelling and fitting application and the new stand-alone version openly developed and distributed on Github and (c) progress on methods to characterize the Chandra PSF.

  4. Towards a Methodology for Identifying Program Constraints During Requirements Analysis

    NASA Technical Reports Server (NTRS)

    Romo, Lilly; Gates, Ann Q.; Della-Piana, Connie Kubo

    1997-01-01

    Requirements analysis is the activity that involves determining the needs of the customer, identifying the services that the software system should provide and understanding the constraints on the solution. The result of this activity is a natural language document, typically referred to as the requirements definition document. Some of the problems that exist in defining requirements in large scale software projects includes synthesizing knowledge from various domain experts and communicating this information across multiple levels of personnel. One approach that addresses part of this problem is called context monitoring and involves identifying the properties of and relationships between objects that the system will manipulate. This paper examines several software development methodologies, discusses the support that each provide for eliciting such information from experts and specifying the information, and suggests refinements to these methodologies.

  5. Modal Analysis for Grid Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANGO software is to provide a solution for improving small signal stability of power systems through adjusting operator-controllable variables using PMU measurement. System oscillation problems are one of the major threats to the grid stability and reliability in California and the Western Interconnection. These problems result in power fluctuations, lower grid operation efficiency, and may even lead to large-scale grid breakup and outages. This MANGO software aims to solve this problem by automatically generating recommended operation procedures termed Modal Analysis for Grid Operation (MANGO) to improve damping of inter-area oscillation modes. The MANGO procedure includes three steps: recognizing small signalmore » stability problems, implementing operating point adjustment using modal sensitivity, and evaluating the effectiveness of the adjustment. The MANGO software package is designed to help implement the MANGO procedure.« less

  6. Designing for Change: Minimizing the Impact of Changing Requirements in the Later Stages of a Spaceflight Software Project

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette

    1998-01-01

    In the traditional 'waterfall' model of the software project life cycle, the Requirements Phase ends and flows into the Design Phase, which ends and flows into the Development Phase. Unfortunately, the process rarely, if ever, works so smoothly in practice. Instead, software developers often receive new requirements, or modifications to the original requirements, well after the earlier project phases have been completed. In particular, projects with shorter than ideal schedules are highly susceptible to frequent requirements changes, as the software requirements analysis phase is often forced to begin before the overall system requirements and top-level design are complete. This results in later modifications to the software requirements, even though the software design and development phases may be complete. Requirements changes received in the later stages of a software project inevitably lead to modification of existing developed software. Presented here is a series of software design techniques that can greatly reduce the impact of last-minute requirements changes. These techniques were successfully used to add built-in flexibility to two complex software systems in which the requirements were expected to (and did) change frequently. These large, real-time systems were developed at NASA Langley Research Center (LaRC) to test and control the Lidar In-Space Technology Experiment (LITE) instrument which flew aboard the space shuttle Discovery as the primary payload on the STS-64 mission.

  7. Space Shuttle Main Engine Quantitative Risk Assessment: Illustrating Modeling of a Complex System with a New QRA Software Package

    NASA Technical Reports Server (NTRS)

    Smart, Christian

    1998-01-01

    During 1997, a team from Hernandez Engineering, MSFC, Rocketdyne, Thiokol, Pratt & Whitney, and USBI completed the first phase of a two year Quantitative Risk Assessment (QRA) of the Space Shuttle. The models for the Shuttle systems were entered and analyzed by a new QRA software package. This system, termed the Quantitative Risk Assessment System(QRAS), was designed by NASA and programmed by the University of Maryland. The software is a groundbreaking PC-based risk assessment package that allows the user to model complex systems in a hierarchical fashion. Features of the software include the ability to easily select quantifications of failure modes, draw Event Sequence Diagrams(ESDs) interactively, perform uncertainty and sensitivity analysis, and document the modeling. This paper illustrates both the approach used in modeling and the particular features of the software package. The software is general and can be used in a QRA of any complex engineered system. The author is the project lead for the modeling of the Space Shuttle Main Engines (SSMEs), and this paper focuses on the modeling completed for the SSMEs during 1997. In particular, the groundrules for the study, the databases used, the way in which ESDs were used to model catastrophic failure of the SSMES, the methods used to quantify the failure rates, and how QRAS was used in the modeling effort are discussed. Groundrules were necessary to limit the scope of such a complex study, especially with regard to a liquid rocket engine such as the SSME, which can be shut down after ignition either on the pad or in flight. The SSME was divided into its constituent components and subsystems. These were ranked on the basis of the possibility of being upgraded and risk of catastrophic failure. Once this was done the Shuttle program Hazard Analysis and Failure Modes and Effects Analysis (FMEA) were used to create a list of potential failure modes to be modeled. The groundrules and other criteria were used to screen out the many failure modes that did not contribute significantly to the catastrophic risk. The Hazard Analysis and FMEA for the SSME were also used to build ESDs that show the chain of events leading from the failure mode occurence to one of the following end states: catastrophic failure, engine shutdown, or siccessful operation( successful with respect to the failure mode under consideration).

  8. Accounting for Uncertainties in Strengths of SiC MEMS Parts

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel; Evans, Laura; Beheim, Glen; Trapp, Mark; Jadaan, Osama; Sharpe, William N., Jr.

    2007-01-01

    A methodology has been devised for accounting for uncertainties in the strengths of silicon carbide structural components of microelectromechanical systems (MEMS). The methodology enables prediction of the probabilistic strengths of complexly shaped MEMS parts using data from tests of simple specimens. This methodology is intended to serve as a part of a rational basis for designing SiC MEMS, supplementing methodologies that have been borrowed from the art of designing macroscopic brittle material structures. The need for this or a similar methodology arises as a consequence of the fundamental nature of MEMS and the brittle silicon-based materials of which they are typically fabricated. When tested to fracture, MEMS and structural components thereof show wide part-to-part scatter in strength. The methodology involves the use of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) software in conjunction with the ANSYS Probabilistic Design System (PDS) software to simulate or predict the strength responses of brittle material components while simultaneously accounting for the effects of variability of geometrical features on the strength responses. As such, the methodology involves the use of an extended version of the ANSYS/CARES/PDS software system described in Probabilistic Prediction of Lifetimes of Ceramic Parts (LEW-17682-1/4-1), Software Tech Briefs supplement to NASA Tech Briefs, Vol. 30, No. 9 (September 2006), page 10. The ANSYS PDS software enables the ANSYS finite-element-analysis program to account for uncertainty in the design-and analysis process. The ANSYS PDS software accounts for uncertainty in material properties, dimensions, and loading by assigning probabilistic distributions to user-specified model parameters and performing simulations using various sampling techniques.

  9. Automated ultrasound edge-tracking software comparable to established semi-automated reference software for carotid intima-media thickness analysis.

    PubMed

    Shenouda, Ninette; Proudfoot, Nicole A; Currie, Katharine D; Timmons, Brian W; MacDonald, Maureen J

    2018-05-01

    Many commercial ultrasound systems are now including automated analysis packages for the determination of carotid intima-media thickness (cIMT); however, details regarding their algorithms and methodology are not published. Few studies have compared their accuracy and reliability with previously established automated software, and those that have were in asymptomatic adults. Therefore, this study compared cIMT measures from a fully automated ultrasound edge-tracking software (EchoPAC PC, Version 110.0.2; GE Medical Systems, Horten, Norway) to an established semi-automated reference software (Artery Measurement System (AMS) II, Version 1.141; Gothenburg, Sweden) in 30 healthy preschool children (ages 3-5 years) and 27 adults with coronary artery disease (CAD; ages 48-81 years). For both groups, Bland-Altman plots revealed good agreement with a negligible mean cIMT difference of -0·03 mm. Software differences were statistically, but not clinically, significant for preschool images (P = 0·001) and were not significant for CAD images (P = 0·09). Intra- and interoperator repeatability was high and comparable between software for preschool images (ICC, 0·90-0·96; CV, 1·3-2·5%), but slightly higher with the automated ultrasound than the semi-automated reference software for CAD images (ICC, 0·98-0·99; CV, 1·4-2·0% versus ICC, 0·84-0·89; CV, 5·6-6·8%). These findings suggest that the automated ultrasound software produces valid cIMT values in healthy preschool children and adults with CAD. Automated ultrasound software may be useful for ensuring consistency among multisite research initiatives or large cohort studies involving repeated cIMT measures, particularly in adults with documented CAD. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  10. A theoretical basis for the analysis of redundant software subject to coincident errors

    NASA Technical Reports Server (NTRS)

    Eckhardt, D. E., Jr.; Lee, L. D.

    1985-01-01

    Fundamental to the development of redundant software techniques fault-tolerant software, is an understanding of the impact of multiple-joint occurrences of coincident errors. A theoretical basis for the study of redundant software is developed which provides a probabilistic framework for empirically evaluating the effectiveness of the general (N-Version) strategy when component versions are subject to coincident errors, and permits an analytical study of the effects of these errors. The basic assumptions of the model are: (1) independently designed software components are chosen in a random sample; and (2) in the user environment, the system is required to execute on a stationary input series. The intensity of coincident errors, has a central role in the model. This function describes the propensity to introduce design faults in such a way that software components fail together when executing in the user environment. The model is used to give conditions under which an N-Version system is a better strategy for reducing system failure probability than relying on a single version of software. A condition which limits the effectiveness of a fault-tolerant strategy is studied, and it is posted whether system failure probability varies monotonically with increasing N or whether an optimal choice of N exists.

  11. Discovering objects in a blood recipient information system.

    PubMed

    Qiu, D; Junghans, G; Marquardt, K; Kroll, H; Mueller-Eckhardt, C; Dudeck, J

    1995-01-01

    Application of object-oriented (OO) methodologies has been generally considered as a solution to the problem of improving the software development process and managing the so-called software crisis. Among them, object-oriented analysis (OOA) is the most essential and is a vital prerequisite for the successful use of other OO methodologies. Though there are already a good deal of OOA methods published, the most important aspect common to all these methods: discovering objects classes truly relevant to the given problem domain, has remained a subject to be intensively researched. In this paper, using the successful development of a blood recipient information system as an example, we present our approach which is based on the conceptual framework of responsibility-driven OOA. In the discussion, we also suggest that it may be inadequate to simply attribute the software crisis to the waterfall model of the software development life-cycle. We are convinced that the real causes for the failure of some software and information systems should be sought in the methodologies used in some crucial phases of the software development process. Furthermore, a software system can also fail if object classes essential to the problem domain are not discovered, implemented and visualized, so that the real-world situation cannot be faithfully traced by it.

  12. 75 FR 58374 - 2010 Release of CADDIS (Causal Analysis/Diagnosis Decision Information System)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... 2010 version of the Causal Analysis/Diagnosis Decision Information System (CADDIS). This Web site was... methods; information on basic and advanced data analyses; downloadable software tools; and an online... ENVIRONMENTAL PROTECTION AGENCY [FRL-9206-7] 2010 Release of CADDIS (Causal Analysis/Diagnosis...

  13. A new practice-driven approach to develop software in a cyber-physical system environment

    NASA Astrophysics Data System (ADS)

    Jiang, Yiping; Chen, C. L. Philip; Duan, Junwei

    2016-02-01

    Cyber-physical system (CPS) is an emerging area, which cannot work efficiently without proper software handling of the data and business logic. Software and middleware is the soul of the CPS. The software development of CPS is a critical issue because of its complicity in a large scale realistic system. Furthermore, object-oriented approach (OOA) is often used to develop CPS software, which needs some improvements according to the characteristics of CPS. To develop software in a CPS environment, a new systematic approach is proposed in this paper. It comes from practice, and has been evolved from software companies. It consists of (A) Requirement analysis in event-oriented way, (B) architecture design in data-oriented way, (C) detailed design and coding in object-oriented way and (D) testing in event-oriented way. It is a new approach based on OOA; the difference when compared with OOA is that the proposed approach has different emphases and measures in every stage. It is more accord with the characteristics of event-driven CPS. In CPS software development, one should focus on the events more than the functions or objects. A case study of a smart home system is designed to reveal the effectiveness of the approach. It shows that the approach is also easy to be operated in the practice owing to some simplifications. The running result illustrates the validity of this approach.

  14. Software to Control and Monitor Gas Streams

    NASA Technical Reports Server (NTRS)

    Arkin, C.; Curley, Charles; Gore, Eric; Floyd, David; Lucas, Damion

    2012-01-01

    This software package interfaces with various gas stream devices such as pressure transducers, flow meters, flow controllers, valves, and analyzers such as a mass spectrometer. The software provides excellent user interfacing with various windows that provide time-domain graphs, valve state buttons, priority- colored messages, and warning icons. The user can configure the software to save as much or as little data as needed to a comma-delimited file. The software also includes an intuitive scripting language for automated processing. The configuration allows for the assignment of measured values or calibration so that raw signals can be viewed as usable pressures, flows, or concentrations in real time. The software is based on those used in two safety systems for shuttle processing and one volcanic gas analysis system. Mass analyzers typically have very unique applications and vary from job to job. As such, software available on the market is usually inadequate or targeted on a specific application (such as EPA methods). The goal was to develop powerful software that could be used with prototype systems. The key problem was to generalize the software to be easily and quickly reconfigurable. At Kennedy Space Center (KSC), the prior art consists of two primary methods. The first method was to utilize Lab- VIEW and a commercial data acquisition system. This method required rewriting code for each different application and only provided raw data. To obtain data in engineering units, manual calculations were required. The second method was to utilize one of the embedded computer systems developed for another system. This second method had the benefit of providing data in engineering units, but was limited in the number of control parameters.

  15. Assurance of Fault Management: Risk-Significant Adverse Condition Awareness

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda

    2016-01-01

    Fault Management (FM) systems are ranked high in risk-based assessment of criticality within flight software, emphasizing the importance of establishing highly competent domain expertise to provide assurance for NASA projects, especially as spaceflight systems continue to increase in complexity. Insight into specific characteristics of FM architectures seen embedded within safety- and mission-critical software systems analyzed by the NASA Independent Verification Validation (IVV) Program has been enhanced with an FM Technical Reference (TR) suite. Benefits are aimed beyond the IVV community to those that seek ways to efficiently and effectively provide software assurance to reduce the FM risk posture of NASA and other space missions. The identification of particular FM architectures, visibility, and associated IVV techniques provides a TR suite that enables greater assurance that critical software systems will adequately protect against faults and respond to adverse conditions. The role FM has with regard to overall asset protection of flight software systems is being addressed with the development of an adverse condition (AC) database encompassing flight software vulnerabilities.Identification of potential off-nominal conditions and analysis to determine how a system responds to these conditions are important aspects of hazard analysis and fault management. Understanding what ACs the mission may face, and ensuring they are prevented or addressed is the responsibility of the assurance team, which necessarily should have insight into ACs beyond those defined by the project itself. Research efforts sponsored by NASAs Office of Safety and Mission Assurance defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs, and allowing queries based on project, mission type, domain component, causal fault, and other key characteristics. The repository has a firm structure, initial collection of data, and an interface established for informational queries, with plans for integration within the Enterprise Architecture at NASA IVV, enabling support and accessibility across the Agency. The development of an improved workflow process for adaptive, risk-informed FM assurance is currently underway.

  16. Automation of the Environmental Control and Life Support System

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.; Carnes, J. Ray

    1990-01-01

    The objective of the Environmental Control and Life Support System (ECLSS) Advanced Automation Project is to recommend and develop advanced software for the initial and evolutionary Space Station Freedom (SSF) ECLS system which will minimize the crew and ground manpower needed for operations. Another objective includes capturing ECLSS design and development knowledge for future missions. This report summarizes our results from Phase I, the ECLSS domain analysis phase, which we broke down into three steps: 1) Analyze and document the baselined ECLS system, 2) envision as our goal an evolution to a fully automated regenerative life support system, built upon an augmented baseline, and 3) document the augmentations (hooks and scars) and advanced software systems which we see as necessary in achieving minimal manpower support for ECLSS operations. In addition, Phase I included development of an advanced software life cycle testing tools will be used in the development of the software. In this way, we plan in preparation for phase II and III, the development and integration phases, respectively. Automated knowledge acquisition, engineering, verification, and can capture ECLSS development knowledge for future use, develop more robust and complex software, provide feedback to the KBS tool community, and insure proper visibility of our efforts.

  17. NASA Tech Briefs, March 2012

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The topics include: 1) Spectral Profiler Probe for In Situ Snow Grain Size and Composition Stratigraphy; 2) Portable Fourier Transform Spectroscopy for Analysis of Surface Contamination and Quality Control; 3) In Situ Geochemical Analysis and Age Dating of Rocks Using Laser Ablation-Miniature Mass Spectrometer; 4) Physics Mining of Multi-Source Data Sets; 5) Photogrammetry Tool for Forensic Analysis; 6) Connect Global Positioning System RF Module; 7) Simple Cell Balance Circuit; 8) Miniature EVA Software Defined Radio; 9) Remotely Accessible Testbed for Software Defined Radio Development; 10) System-of-Systems Technology-Portfolio-Analysis Tool; 11) VESGEN Software for Mapping and Quantification of Vascular Regulators; 12) Constructing a Database From Multiple 2D Images for Camera Pose Estimation and Robot Localization; 13) Adaption of G-TAG Software for Validating Touch and Go Asteroid Sample Return Design Methodology; 14) 3D Visualization for Phoenix Mars Lander Science Operations; 15) RxGen General Optical Model Prescription Generator; 16) Carbon Nanotube Bonding Strength Enhancement Using Metal Wicking Process; 17) Multi-Layer Far-Infrared Component Technology; 18) Germanium Lift-Off Masks for Thin Metal Film Patterning; 19) Sealing Materials for Use in Vacuum at High Temperatures; 20) Radiation Shielding System Using a Composite of Carbon Nanotubes Loaded With Electropolymers; 21) Nano Sponges for Drug Delivery and Medicinal Applications; 22) Molecular Technique to Understand Deep Microbial Diversity; 23) Methods and Compositions Based on Culturing Microorganisms in Low Sedimental Fluid Shear Conditions; 24) Secure Peer-to-Peer Networks for Scientific Information Sharing; 25) Multiplexer/Demultiplexer Loading Tool (MDMLT); 26) High-Rate Data-Capture for an Airborne Lidar System; 27) Wavefront Sensing Analysis of Grazing Incidence Optical Systems; 28) Foam-on-Tile Damage Model; 29) Instrument Package Manipulation Through the Generation and Use of an Attenuated-Fluent Gas Fold; 30) Multicolor Detectors for Ultrasensitive Long-Wave Imaging Cameras; 31) Lunar Reconnaissance Orbiter (LRO) Command and Data Handling Flight Electronics Subsystem; and 32) Electro-Optic Segment-Segment Sensors for Radio and Optical Telescopes.

  18. Certification of COTS Software in NASA Human Rated Flight Systems

    NASA Technical Reports Server (NTRS)

    Goforth, Andre

    2012-01-01

    Adoption of commercial off-the-shelf (COTS) products in safety critical systems has been seen as a promising acquisition strategy to improve mission affordability and, yet, has come with significant barriers and challenges. Attempts to integrate COTS software components into NASA human rated flight systems have been, for the most part, complicated by verification and validation (V&V) requirements necessary for flight certification per NASA s own standards. For software that is from COTS sources, and, in general from 3rd party sources, either commercial, government, modified or open source, the expectation is that it meets the same certification criteria as those used for in-house and that it does so as if it were built in-house. The latter is a critical and hidden issue. This paper examines the longstanding barriers and challenges in the use of 3rd party software in safety critical systems and cover recent efforts to use COTS software in NASA s Multi-Purpose Crew Vehicle (MPCV) project. It identifies some core artifacts that without them, the use of COTS and 3rd party software is, for all practical purposes, a nonstarter for affordable and timely insertion into flight critical systems. The paper covers the first use in a flight critical system by NASA of COTS software that has prior FAA certification heritage, which was shown to meet the RTCA-DO-178B standard, and how this certification may, in some cases, be leveraged to allow the use of analysis in lieu of testing. Finally, the paper proposes the establishment of an open source forum for development of safety critical 3rd party software.

  19. LEGOS: Object-based software components for mission-critical systems. Final report, June 1, 1995--December 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-08-01

    An estimated 85% of the installed base of software is a custom application with a production quantity of one. In practice, almost 100% of military software systems are custom software. Paradoxically, the marginal costs of producing additional units are near zero. So why hasn`t the software market, a market with high design costs and low productions costs evolved like other similar custom widget industries, such as automobiles and hardware chips? The military software industry seems immune to market pressures that have motivated a multilevel supply chain structure in other widget industries: design cost recovery, improve quality through specialization, and enablemore » rapid assembly from purchased components. The primary goal of the ComponentWare Consortium (CWC) technology plan was to overcome barriers to building and deploying mission-critical information systems by using verified, reusable software components (Component Ware). The adoption of the ComponentWare infrastructure is predicated upon a critical mass of the leading platform vendors` inevitable adoption of adopting emerging, object-based, distributed computing frameworks--initially CORBA and COM/OLE. The long-range goal of this work is to build and deploy military systems from verified reusable architectures. The promise of component-based applications is to enable developers to snap together new applications by mixing and matching prefabricated software components. A key result of this effort is the concept of reusable software architectures. A second important contribution is the notion that a software architecture is something that can be captured in a formal language and reused across multiple applications. The formalization and reuse of software architectures provide major cost and schedule improvements. The Unified Modeling Language (UML) is fast becoming the industry standard for object-oriented analysis and design notation for object-based systems. However, the lack of a standard real-time distributed object operating system, lack of a standard Computer-Aided Software Environment (CASE) tool notation and lack of a standard CASE tool repository has limited the realization of component software. The approach to fulfilling this need is the software component factory innovation. The factory approach takes advantage of emerging standards such as UML, CORBA, Java and the Internet. The key technical innovation of the software component factory is the ability to assemble and test new system configurations as well as assemble new tools on demand from existing tools and architecture design repositories.« less

  20. CONTIN XPCS: software for inverse transform analysis of X-ray photon correlation spectroscopy dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) reveal materials dynamics using coherent scattering, with XPCS permitting the investigation of dynamics in a more diverse array of materials than DLS. Heterogeneous dynamics occur in many material systems. The authors' recent work has shown how classic tools employed in the DLS analysis of heterogeneous dynamics can be extended to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. The present work describes the software implementation of inverse transform analysis of XPCS data. This software, calledCONTIN XPCS, is an extension of traditionalCONTINanalysis and accommodates the various dynamics encountered inmore » equilibrium XPCS measurements.« less

  1. CONTIN XPCS: software for inverse transform analysis of X-ray photon correlation spectroscopy dynamics

    DOE PAGES

    Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; ...

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) reveal materials dynamics using coherent scattering, with XPCS permitting the investigation of dynamics in a more diverse array of materials than DLS. Heterogeneous dynamics occur in many material systems. The authors' recent work has shown how classic tools employed in the DLS analysis of heterogeneous dynamics can be extended to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. The present work describes the software implementation of inverse transform analysis of XPCS data. This software, calledCONTIN XPCS, is an extension of traditionalCONTINanalysis and accommodates the various dynamics encountered inmore » equilibrium XPCS measurements.« less

  2. A data acquisition and storage system for the ion auxiliary propulsion system cyclic thruster test

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    1989-01-01

    A nine-track tape drive interfaced to a standard personal computer was used to transport data from a remote test site to the NASA Lewis mainframe computer for analysis. The Cyclic Ground Test of the Ion Auxiliary Propulsion System (IAPS), which successfully achieved its goal of 2557 cycles and 7057 hr of thrusting beam on time generated several megabytes of test data over many months of continuous testing. A flight-like controller and power supply were used to control the thruster and acquire data. Thruster data was converted to RS232 format and transmitted to a personal computer, which stored the raw digital data on the nine-track tape. The tape format was such that with minor modifications, mainframe flight data analysis software could be used to analyze the Cyclic Ground Test data. The personal computer also converted the digital data to engineering units and displayed real time thruster parameters. Hardcopy data was printed at a rate dependent on thruster operating conditions. The tape drive provided a convenient means to transport the data to the mainframe for analysis, and avoided a development effort for new data analysis software for the Cyclic test. This paper describes the data system, interfacing and software requirements.

  3. Process and information integration via hypermedia

    NASA Technical Reports Server (NTRS)

    Hammen, David G.; Labasse, Daniel L.; Myers, Robert M.

    1990-01-01

    Success stories for advanced automation prototypes abound in the literature but the deployments of practical large systems are few in number. There are several factors that militate against the maturation of such prototypes into products. Here, the integration of advanced automation software into large systems is discussed. Advanced automation systems tend to be specific applications that need to be integrated and aggregated into larger systems. Systems integration can be achieved by providing expert user-developers with verified tools to efficiently create small systems that interface to large systems through standard interfaces. The use of hypermedia as such a tool in the context of the ground control centers that support Shuttle and space station operations is explored. Hypermedia can be an integrating platform for data, conventional software, and advanced automation software, enabling data integration through the display of diverse types of information and through the creation of associative links between chunks of information. Further, hypermedia enables process integration through graphical invoking of system functions. Through analysis and examples, researchers illustrate how diverse information and processing paradigms can be integrated into a single software platform.

  4. Development of a Visual System Interface to Support a Domain-Oriented Application Composition System

    DTIC Science & Technology

    1993-03-23

    Austin Texas, 1990. 25. Kang, Kyo C. and others. Feature-Oriented Domain Analysis ( FODA ) Feasibility Study. Tech- nical Report CMU/SEI-90-TR-21, Software...Validation and Analysis of the Architect Visual System. .. .. .. .. .... ....... 5-1 5.1 Validation Domain...5-2 5.3 Analysis .. .. .. .. .. .. .... .. .... .... .. .... .... .. ....... 5-2 5.3.1 The REFINE Environment

  5. Distributed software framework and continuous integration in hydroinformatics systems

    NASA Astrophysics Data System (ADS)

    Zhou, Jianzhong; Zhang, Wei; Xie, Mengfei; Lu, Chengwei; Chen, Xiao

    2017-08-01

    When encountering multiple and complicated models, multisource structured and unstructured data, complex requirements analysis, the platform design and integration of hydroinformatics systems become a challenge. To properly solve these problems, we describe a distributed software framework and it’s continuous integration process in hydroinformatics systems. This distributed framework mainly consists of server cluster for models, distributed database, GIS (Geographic Information System) servers, master node and clients. Based on it, a GIS - based decision support system for joint regulating of water quantity and water quality of group lakes in Wuhan China is established.

  6. Formal Modeling and Analysis of a Preliminary Small Aircraft Transportation System (SATS)Concept

    NASA Technical Reports Server (NTRS)

    Carrreno, Victor A.; Gottliebsen, Hanne; Butler, Ricky; Kalvala, Sara

    2004-01-01

    New concepts for automating air traffic management functions at small non-towered airports raise serious safety issues associated with the software implementations and their underlying key algorithms. The criticality of such software systems necessitates that strong guarantees of the safety be developed for them. In this paper we present a formal method for modeling and verifying such systems using the PVS theorem proving system. The method is demonstrated on a preliminary concept of operation for the Small Aircraft Transportation System (SATS) project at NASA Langley.

  7. Quantitative assessment of human motion using video motion analysis

    NASA Technical Reports Server (NTRS)

    Probe, John D.

    1993-01-01

    In the study of the dynamics and kinematics of the human body a wide variety of technologies has been developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development, coupled with recent advances in video technology, have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System (APAS) to develop data on shirtsleeved and space-suited human performance in order to plan efficient on-orbit intravehicular and extravehicular activities. APAS is a fully integrated system of hardware and software for biomechanics and the analysis of human performance and generalized motion measurement. Major components of the complete system include the video system, the AT compatible computer, and the proprietary software.

  8. Goddard Space Flight Center's Structural Dynamics Data Acquisition System

    NASA Technical Reports Server (NTRS)

    McLeod, Christopher

    2004-01-01

    Turnkey Commercial Off The Shelf (COTS) data acquisition systems typically perform well and meet most of the objectives of the manufacturer. The problem is that they seldom meet most of the objectives of the end user. The analysis software, if any, is unlikely to be tailored to the end users specific application; and there is seldom the chance of incorporating preferred algorithms to solve unique problems. Purchasing a customized system allows the end user to get a system tailored to the actual application, but the cost can be prohibitive. Once the system has been accepted, future changes come with a cost and response time that's often not workable. When it came time to replace the primary digital data acquisition system used in the Goddard Space Flight Center's Structural Dynamics Test Section, the decision was made to use a combination of COTS hardware and in-house developed software. The COTS hardware used is the DataMAX II Instrumentation Recorder built by R.C. Electronics Inc. and a desktop Pentium 4 computer system. The in-house software was developed using MATLAB from The MathWorks. This paper will describe the design and development of the new data acquisition and analysis system.

  9. Goddard Space Flight Center's Structural Dynamics Data Acquisition System

    NASA Technical Reports Server (NTRS)

    McLeod, Christopher

    2004-01-01

    Turnkey Commercial Off The Shelf (COTS) data acquisition systems typically perform well and meet most of the objectives of the manufacturer. The problem is that they seldom meet most of the objectives of the end user. The analysis software, if any, is unlikely to be tailored to the end users specific application; and there is seldom the chance of incorporating preferred algorithms to solve unique problems. Purchasing a customized system allows the end user to get a system tailored to the actual application, but the cost can be prohibitive. Once the system has been accepted, future changes come with a cost and response time that's often not workable. When it came time to replace the primary digital data acquisition system used in the Goddard Space Flight Center's Structural Dynamics Test Section, the decision was made to use a combination of COTS hardware and in-house developed software. The COTS hardware used is the DataMAX II Instrumentation Recorder built by R.C. Electronics Inc. and a desktop Pentium 4 computer system. The in-house software was developed using MATLAF3 from The Mathworks. This paper will describe the design and development of the new data acquisition and analysis system.

  10. Wall adjustment strategy software for use with the NASA Langley 0.3-meter transonic cryogenic tunnel adaptive wall test section

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1988-01-01

    The Wall Adjustment Strategy (WAS) software provides successful on-line control of the 2-D flexible walled test section of the Langley 0.3-m Transonic Cryogenic Tunnel. This software package allows the level of operator intervention to be regulated as necessary for research and production type 2-D testing using and Adaptive Wall Test Section (AWTS). The software is designed to accept modification for future requirements, such as 3-D testing, with a minimum of complexity. The WAS software described is an attempt to provide a user friendly package which could be used to control any flexible walled AWTS. Control system constraints influence the details of data transfer, not the data type. Then this entire software package could be used in different control systems, if suitable interface software is available. A complete overview of the software highlights the data flow paths, the modular architecture of the software and the various operating and analysis modes available. A detailed description of the software modules includes listings of the code. A user's manual is provided to explain task generation, operating environment, user options and what to expect at execution.

  11. MTF measurements on real time for performance analysis of electro-optical systems

    NASA Astrophysics Data System (ADS)

    Stuchi, Jose Augusto; Signoreto Barbarini, Elisa; Vieira, Flavio Pascoal; dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fatima Maria Mitsue; Castro Neto, Jarbas C.; Linhari Rodrigues, Evandro Luis

    2012-06-01

    The need of methods and tools that assist in determining the performance of optical systems is actually increasing. One of the most used methods to perform analysis of optical systems is to measure the Modulation Transfer Function (MTF). The MTF represents a direct and quantitative verification of the image quality. This paper presents the implementation of the software, in order to calculate the MTF of electro-optical systems. The software was used for calculating the MTF of Digital Fundus Camera, Thermal Imager and Ophthalmologic Surgery Microscope. The MTF information aids the analysis of alignment and measurement of optical quality, and also defines the limit resolution of optical systems. The results obtained with the Fundus Camera and Thermal Imager was compared with the theoretical values. For the Microscope, the results were compared with MTF measured of Microscope Zeiss model, which is the quality standard of ophthalmological microscope.

  12. FPGA-Based Efficient Hardware/Software Co-Design for Industrial Systems with Consideration of Output Selection

    NASA Astrophysics Data System (ADS)

    Deliparaschos, Kyriakos M.; Michail, Konstantinos; Zolotas, Argyrios C.; Tzafestas, Spyros G.

    2016-05-01

    This work presents a field programmable gate array (FPGA)-based embedded software platform coupled with a software-based plant, forming a hardware-in-the-loop (HIL) that is used to validate a systematic sensor selection framework. The systematic sensor selection framework combines multi-objective optimization, linear-quadratic-Gaussian (LQG)-type control, and the nonlinear model of a maglev suspension. A robustness analysis of the closed-loop is followed (prior to implementation) supporting the appropriateness of the solution under parametric variation. The analysis also shows that quantization is robust under different controller gains. While the LQG controller is implemented on an FPGA, the physical process is realized in a high-level system modeling environment. FPGA technology enables rapid evaluation of the algorithms and test designs under realistic scenarios avoiding heavy time penalty associated with hardware description language (HDL) simulators. The HIL technique facilitates significant speed-up in the required execution time when compared to its software-based counterpart model.

  13. Offline software for the DAMPE experiment

    NASA Astrophysics Data System (ADS)

    Wang, Chi; Liu, Dong; Wei, Yifeng; Zhang, Zhiyong; Zhang, Yunlong; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun; Tykhonov, Andrii; Wu, Xin; Zang, Jingjing; Liu, Yang; Jiang, Wei; Wen, Sicheng; Wu, Jian; Chang, Jin

    2017-10-01

    A software system has been developed for the DArk Matter Particle Explorer (DAMPE) mission, a satellite-based experiment. The DAMPE software is mainly written in C++ and steered using a Python script. This article presents an overview of the DAMPE offline software, including the major architecture design and specific implementation for simulation, calibration and reconstruction. The whole system has been successfully applied to DAMPE data analysis. Some results obtained using the system, from simulation and beam test experiments, are presented. Supported by Chinese 973 Program (2010CB833002), the Strategic Priority Research Program on Space Science of the Chinese Academy of Science (CAS) (XDA04040202-4), the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC) and CAS (U1531126) and 100 Talents Program of the Chinese Academy of Science

  14. Application of Artificial Intelligence technology to the analysis and synthesis of reliable software systems

    NASA Technical Reports Server (NTRS)

    Wild, Christian; Eckhardt, Dave

    1987-01-01

    The development of a methodology for the production of highly reliable software is one of the greatest challenges facing the computer industry. Meeting this challenge will undoubtably involve the integration of many technologies. This paper describes the use of Artificial Intelligence technologies in the automated analysis of the formal algebraic specifications of abstract data types. These technologies include symbolic execution of specifications using techniques of automated deduction and machine learning through the use of examples. On-going research into the role of knowledge representation and problem solving in the process of developing software is also discussed.

  15. Hybrid Energy System Design of Micro Hydro-PV-biogas Based Micro-grid

    NASA Astrophysics Data System (ADS)

    Nishrina; Abdullah, A. G.; Risdiyanto, A.; Nandiyanto, ABD

    2017-03-01

    Hybrid renewable energy system is an arrangement of one or more sources of renewable energy and also conventional energy. This paper describes a simulation results of hybrid renewable power system based on the available potential in an educational institution in Indonesia. HOMER software was used to simulate and analyse both in terms of optimization and economic terms. This software was developed through 3 main principles; simulation, optimization, and sensitivity analysis. Generally, the presented results show that the software can demonstrate a feasible hybrid power system as well to be realized. The entire demand in case study area can be supplied by the system configuration and can be met by ¾ of electricity production. So, there are ¼ of generated energy became an excess electricity.

  16. Network-Based Analysis of Software Change Propagation

    PubMed Central

    Wang, Rongcun; Qu, Binbin

    2014-01-01

    The object-oriented software systems frequently evolve to meet new change requirements. Understanding the characteristics of changes aids testers and system designers to improve the quality of softwares. Identifying important modules becomes a key issue in the process of evolution. In this context, a novel network-based approach is proposed to comprehensively investigate change distributions and the correlation between centrality measures and the scope of change propagation. First, software dependency networks are constructed at class level. And then, the number of times of cochanges among classes is minded from software repositories. According to the dependency relationships and the number of times of cochanges among classes, the scope of change propagation is calculated. Using Spearman rank correlation analyzes the correlation between centrality measures and the scope of change propagation. Three case studies on java open source software projects Findbugs, Hibernate, and Spring are conducted to research the characteristics of change propagation. Experimental results show that (i) change distribution is very uneven; (ii) PageRank, Degree, and CIRank are significantly correlated to the scope of change propagation. Particularly, CIRank shows higher correlation coefficient, which suggests it can be a more useful indicator for measuring the scope of change propagation of classes in object-oriented software system. PMID:24790557

  17. Network-based analysis of software change propagation.

    PubMed

    Wang, Rongcun; Huang, Rubing; Qu, Binbin

    2014-01-01

    The object-oriented software systems frequently evolve to meet new change requirements. Understanding the characteristics of changes aids testers and system designers to improve the quality of softwares. Identifying important modules becomes a key issue in the process of evolution. In this context, a novel network-based approach is proposed to comprehensively investigate change distributions and the correlation between centrality measures and the scope of change propagation. First, software dependency networks are constructed at class level. And then, the number of times of cochanges among classes is minded from software repositories. According to the dependency relationships and the number of times of cochanges among classes, the scope of change propagation is calculated. Using Spearman rank correlation analyzes the correlation between centrality measures and the scope of change propagation. Three case studies on java open source software projects Findbugs, Hibernate, and Spring are conducted to research the characteristics of change propagation. Experimental results show that (i) change distribution is very uneven; (ii) PageRank, Degree, and CIRank are significantly correlated to the scope of change propagation. Particularly, CIRank shows higher correlation coefficient, which suggests it can be a more useful indicator for measuring the scope of change propagation of classes in object-oriented software system.

  18. QuantWorm: a comprehensive software package for Caenorhabditis elegans phenotypic assays.

    PubMed

    Jung, Sang-Kyu; Aleman-Meza, Boanerges; Riepe, Celeste; Zhong, Weiwei

    2014-01-01

    Phenotypic assays are crucial in genetics; however, traditional methods that rely on human observation are unsuitable for quantitative, large-scale experiments. Furthermore, there is an increasing need for comprehensive analyses of multiple phenotypes to provide multidimensional information. Here we developed an automated, high-throughput computer imaging system for quantifying multiple Caenorhabditis elegans phenotypes. Our imaging system is composed of a microscope equipped with a digital camera and a motorized stage connected to a computer running the QuantWorm software package. Currently, the software package contains one data acquisition module and four image analysis programs: WormLifespan, WormLocomotion, WormLength, and WormEgg. The data acquisition module collects images and videos. The WormLifespan software counts the number of moving worms by using two time-lapse images; the WormLocomotion software computes the velocity of moving worms; the WormLength software measures worm body size; and the WormEgg software counts the number of eggs. To evaluate the performance of our software, we compared the results of our software with manual measurements. We then demonstrated the application of the QuantWorm software in a drug assay and a genetic assay. Overall, the QuantWorm software provided accurate measurements at a high speed. Software source code, executable programs, and sample images are available at www.quantworm.org. Our software package has several advantages over current imaging systems for C. elegans. It is an all-in-one package for quantifying multiple phenotypes. The QuantWorm software is written in Java and its source code is freely available, so it does not require use of commercial software or libraries. It can be run on multiple platforms and easily customized to cope with new methods and requirements.

  19. Federal Emergency Management Information System (FEMIS) system administration guide. Version 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burford, M.J.; Burnett, R.A.; Curtis, L.M.

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that is being developed under the direction of the US Army Chemical biological Defense Command. The FEMIS System Administration Guide defines FEMIS hardware and software requirements and gives instructions for installing the FEMIS system package. System administrators, database administrators, and general users can use this guide to install, configure, and maintain the FEMIS client software package. This document provides a description of the FEMIS environment; distribution media; data, communications, and electronic mail servers; user workstations; and system management.

  20. [The development of a computer model in the quantitative assessment of thallium-201 myocardial scintigraphy].

    PubMed

    Raineri, M; Traina, M; Rotolo, A; Candela, B; Lombardo, R M; Raineri, A A

    1993-05-01

    Thallium-201 scintigraphy is a widely used noninvasive procedure for the detection and prognostic assessment of patients with suspected or proven coronary artery disease. Thallium uptake can be evaluated by a visual analysis or by a quantitative interpretation. Quantitative scintigraphy enhances disease detection in individual coronary arteries, provides a more precise estimate of the amount of ischemic myocardium, distinguishing scar from hypoperfused tissue. Due to the great deal of data, analysis, interpretation and comparison of thallium uptake can be very complex. We designed a computer-based system for the interpretation of quantitative thallium-201 scintigraphy data uptake. We used a database (DataEase 4.2-DataEase Italia). Our software has the following functions: data storage; calculation; conversion of numerical data into different definitions classifying myocardial perfusion; uptake data comparison; automatic conclusion; comparison of different scintigrams for the same patient. Our software is made up by 4 sections: numeric analysis, descriptive analysis, automatic conclusion, clinical remarks. We introduced in the computer system appropriate information, "logical paths", that use the "IF ... THEN" rules. The software executes these rules in order to analyze the myocardial regions in the 3 phases of scintigraphic analysis (stress, redistribution, re-injection), in the 3 projections (LAO 45 degrees, LAT,ANT), considering our uptake cutoff, obtaining, finally, the automatic conclusions. For these reasons, our computer-based system could be considered a real "expert system".

  1. Porting and redesign of Geotool software system to Qt

    NASA Astrophysics Data System (ADS)

    Miljanovic Tamarit, V.; Carneiro, L.; Henson, I. H.; Tomuta, E.

    2016-12-01

    Geotool is a software system that allows a user to interactively display and process seismoacoustic data from International Monitoring System (IMS) station. Geotool can be used to perform a number of analysis and review tasks, including data I/O, waveform filtering, quality control, component rotation, amplitude and arrival measurement and review, array beamforming, correlation, Fourier analysis, FK analysis, event review and location, particle motion visualization, polarization analysis, instrument response convolution/deconvolution, real-time display, signal to noise measurement, spectrogram, and travel time model display. The Geotool program was originally written in C using the X11/Xt/Motif libraries for graphics. It was later ported to C++. Now the program is being ported to the Qt graphics system to be more compatible with the other software in the International Data Centre (IDC). Along with this port, a redesign of the architecture is underway to achieve a separation between user interface, control, and data model elements, in line with design patterns such as Model-View-Controller. Qt is a cross-platform application framework that will allow geotool to easily run on Linux, Mac, and Windows. The Qt environment includes modern libraries and user interfaces for standard utilities such as file and database access, printing, and inter-process communications. The Qt Widgets for Technical Applications library (QWT) provides tools for displaying standard data analysis graphics.

  2. Man-machine Integration Design and Analysis System (MIDAS) Task Loading Model (TLM) experimental and software detailed design report

    NASA Technical Reports Server (NTRS)

    Staveland, Lowell

    1994-01-01

    This is the experimental and software detailed design report for the prototype task loading model (TLM) developed as part of the man-machine integration design and analysis system (MIDAS), as implemented and tested in phase 6 of the Army-NASA Aircrew/Aircraft Integration (A3I) Program. The A3I program is an exploratory development effort to advance the capabilities and use of computational representations of human performance and behavior in the design, synthesis, and analysis of manned systems. The MIDAS TLM computationally models the demands designs impose on operators to aide engineers in the conceptual design of aircraft crewstations. This report describes TLM and the results of a series of experiments which were run this phase to test its capabilities as a predictive task demand modeling tool. Specifically, it includes discussions of: the inputs and outputs of TLM, the theories underlying it, the results of the test experiments, the use of the TLM as both stand alone tool and part of a complete human operator simulation, and a brief introduction to the TLM software design.

  3. Automated Software Acceleration in Programmable Logic for an Efficient NFFT Algorithm Implementation: A Case Study.

    PubMed

    Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian

    2017-03-28

    Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation.

  4. Automated Software Acceleration in Programmable Logic for an Efficient NFFT Algorithm Implementation: A Case Study

    PubMed Central

    Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian

    2017-01-01

    Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation. PMID:28350358

  5. Helios: History and Anatomy of a Successful In-House Enterprise High-Throughput Screening and Profiling Data Analysis System.

    PubMed

    Gubler, Hanspeter; Clare, Nicholas; Galafassi, Laurent; Geissler, Uwe; Girod, Michel; Herr, Guy

    2018-06-01

    We describe the main characteristics of the Novartis Helios data analysis software system (Novartis, Basel, Switzerland) for plate-based screening and profiling assays, which was designed and built about 11 years ago. It has been in productive use for more than 10 years and is one of the important standard software applications running for a large user community at all Novartis Institutes for BioMedical Research sites globally. A high degree of automation is reached by embedding the data analysis capabilities into a software ecosystem that deals with the management of samples, plates, and result data files, including automated data loading. The application provides a series of analytical procedures, ranging from very simple to advanced, which can easily be assembled by users in very flexible ways. This also includes the automatic derivation of a large set of quality control (QC) characteristics at every step. Any of the raw, intermediate, and final results and QC-relevant quantities can be easily explored through linked visualizations. Links to global assay metadata management, data warehouses, and an electronic lab notebook system are in place. Automated transfer of relevant data to data warehouses and electronic lab notebook systems are also implemented.

  6. CFD research and systems in Kawasaki Heavy Industries and its future prospects

    NASA Astrophysics Data System (ADS)

    Hiraoka, Koichi

    1990-09-01

    KHI Computational Fluid Dynamics (CFD) system is composed of VP100 computer and 2-D and 3-D Euler and/or Navier-Stokes (NS) analysis softwares. For KHI, this system has become a very powerful aerodynamic tool together with the Kawasaki 1 m Transonic Wind Tunnel. The 2-D Euler/NS software, developed in-house, is fully automated, requires no special skill, and was successfully applied to the design of YXX high lift devices and SST supersonic inlet, etc. The 3-D Euler/NS software, developed under joint research with NAL, has an interactively operated Multi-Block type grid generator and can effectively generate grids around complex airplane shapes. Due to the main memory size limitation, 3-D analysis of relatively simple shape, such as SST wing-body, was computed in-house on VP100, otherwise, such as detailed 3-D analyses of ASUKA and HOPE, were computed on NAL VP400, which is 10 times more powerful than VP100, under KHI-NAL joint research. These analysis results have very good correlation with experimental results. However, the present CFD system is less productive than wind tunnel and has applicability limitations.

  7. Air Data Report Improves Flight Safety

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Aviation Safety Program in the NASA Aeronautics Research Mission Directorate, which seeks to make aviation safer by developing tools for flight data analysis and interpretation and then by transferring these tools to the aviation industry, sponsored the development of Morning Report software. The software, created at Ames Research Center with the assistance of the Pacific Northwest National Laboratory, seeks to detect atypicalities without any predefined parameters-it spots deviations and highlights them. In 2004, Sagem Avionics Inc. entered a licensing agreement with NASA for the commercialization of the Morning Report software, and also licensed the NASA Aviation Data Integration System (ADIS) tool, which allows for the integration of data from disparate sources into the flight data analysis process. Sagem Avionics incorporated the Morning Report tool into its AGS product, a comprehensive flight operations monitoring system that helps users detect irregular or divergent practices, technical flaws, and problems that might develop when aircraft operate outside of normal procedures. Sagem developed AGS in collaboration with airlines, so that the system takes into account their technical evolutions and needs, and each airline is able to easily perform specific treatments and to build its own flight data analysis system. Further, the AGS is designed to support any aircraft and flight data recorders.

  8. Scalable Performance Environments for Parallel Systems

    NASA Technical Reports Server (NTRS)

    Reed, Daniel A.; Olson, Robert D.; Aydt, Ruth A.; Madhyastha, Tara M.; Birkett, Thomas; Jensen, David W.; Nazief, Bobby A. A.; Totty, Brian K.

    1991-01-01

    As parallel systems expand in size and complexity, the absence of performance tools for these parallel systems exacerbates the already difficult problems of application program and system software performance tuning. Moreover, given the pace of technological change, we can no longer afford to develop ad hoc, one-of-a-kind performance instrumentation software; we need scalable, portable performance analysis tools. We describe an environment prototype based on the lessons learned from two previous generations of performance data analysis software. Our environment prototype contains a set of performance data transformation modules that can be interconnected in user-specified ways. It is the responsibility of the environment infrastructure to hide details of module interconnection and data sharing. The environment is written in C++ with the graphical displays based on X windows and the Motif toolkit. It allows users to interconnect and configure modules graphically to form an acyclic, directed data analysis graph. Performance trace data are represented in a self-documenting stream format that includes internal definitions of data types, sizes, and names. The environment prototype supports the use of head-mounted displays and sonic data presentation in addition to the traditional use of visual techniques.

  9. The symbolic computation and automatic analysis of trajectories

    NASA Technical Reports Server (NTRS)

    Grossman, Robert

    1991-01-01

    Research was generally done on computation of trajectories of dynamical systems, especially control systems. Algorithms were further developed for rewriting expressions involving differential operators. The differential operators involved arise in the local analysis of nonlinear control systems. An initial design was completed of the system architecture for software to analyze nonlinear control systems using data base computing.

  10. Magnetic Field Experiment Data Analysis System

    NASA Technical Reports Server (NTRS)

    Holland, D. B.; Zanetti, L. J.; Suther, L. L.; Potemra, T. A.; Anderson, B. J.

    1995-01-01

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) Magnetic Field Experiment Data Analysis System (MFEDAS) has been developed to process and analyze satellite magnetic field experiment data from the TRIAD, MAGSAT, AMPTE/CCE, Viking, Polar BEAR, DMSP, HILAT, UARS, and Freja satellites. The MFEDAS provides extensive data management and analysis capabilities. The system is based on standard data structures and a standard user interface. The MFEDAS has two major elements: (1) a set of satellite unique telemetry processing programs for uniform and rapid conversion of the raw data to a standard format and (2) the program Magplot which has file handling, data analysis, and data display sections. This system is an example of software reuse, allowing new data sets and software extensions to be added in a cost effective and timely manner. Future additions to the system will include the addition of standard format file import routines, modification of the display routines to use a commercial graphics package based on X-Window protocols, and a generic utility for telemetry data access and conversion.

  11. Volumetric neuroimage analysis extensions for the MIPAV software package.

    PubMed

    Bazin, Pierre-Louis; Cuzzocreo, Jennifer L; Yassa, Michael A; Gandler, William; McAuliffe, Matthew J; Bassett, Susan S; Pham, Dzung L

    2007-09-15

    We describe a new collection of publicly available software tools for performing quantitative neuroimage analysis. The tools perform semi-automatic brain extraction, tissue classification, Talairach alignment, and atlas-based measurements within a user-friendly graphical environment. They are implemented as plug-ins for MIPAV, a freely available medical image processing software package from the National Institutes of Health. Because the plug-ins and MIPAV are implemented in Java, both can be utilized on nearly any operating system platform. In addition to the software plug-ins, we have also released a digital version of the Talairach atlas that can be used to perform regional volumetric analyses. Several studies are conducted applying the new tools to simulated and real neuroimaging data sets.

  12. External Dependencies-Driven Architecture Discovery and Analysis of Implemented Systems

    NASA Technical Reports Server (NTRS)

    Ganesan, Dharmalingam; Lindvall, Mikael; Ron, Monica

    2014-01-01

    A method for architecture discovery and analysis of implemented systems (AIS) is disclosed. The premise of the method is that architecture decisions are inspired and influenced by the external entities that the software system makes use of. Examples of such external entities are COTS components, frameworks, and ultimately even the programming language itself and its libraries. Traces of these architecture decisions can thus be found in the implemented software and is manifested in the way software systems use such external entities. While this fact is often ignored in contemporary reverse engineering methods, the AIS method actively leverages and makes use of the dependencies to external entities as a starting point for the architecture discovery. The AIS method is demonstrated using the NASA's Space Network Access System (SNAS). The results show that, with abundant evidence, the method offers reusable and repeatable guidelines for discovering the architecture and locating potential risks (e.g. low testability, decreased performance) that are hidden deep in the implementation. The analysis is conducted by using external dependencies to identify, classify and review a minimal set of key source code files. Given the benefits of analyzing external dependencies as a way to discover architectures, it is argued that external dependencies deserve to be treated as first-class citizens during reverse engineering. The current structure of a knowledge base of external entities and analysis questions with strategies for getting answers is also discussed.

  13. Failure analysis and modeling of a multicomputer system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Subramani, Sujatha Srinivasan

    1990-01-01

    This thesis describes the results of an extensive measurement-based analysis of real error data collected from a 7-machine DEC VaxCluster multicomputer system. In addition to evaluating basic system error and failure characteristics, we develop reward models to analyze the impact of failures and errors on the system. The results show that, although 98 percent of errors in the shared resources recover, they result in 48 percent of all system failures. The analysis of rewards shows that the expected reward rate for the VaxCluster decreases to 0.5 in 100 days for a 3 out of 7 model, which is well over a 100 times that for a 7-out-of-7 model. A comparison of the reward rates for a range of k-out-of-n models indicates that the maximum increase in reward rate (0.25) occurs in going from the 6-out-of-7 model to the 5-out-of-7 model. The analysis also shows that software errors have the lowest reward (0.2 vs. 0.91 for network errors). The large loss in reward rate for software errors is due to the fact that a large proportion (94 percent) of software errors lead to failure. In comparison, the high reward rate for network errors is due to fast recovery from a majority of these errors (median recovery duration is 0 seconds).

  14. Integrated computer-aided design using minicomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.

    1980-01-01

    Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.

  15. DAISY: a new software tool to test global identifiability of biological and physiological systems.

    PubMed

    Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D'Angiò, Leontina

    2007-10-01

    A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/.

  16. A Software Designed For STP Data Plot and Analysis Based on Object-oriented Methodology

    NASA Astrophysics Data System (ADS)

    Lina, L.; Murata, K.

    2006-12-01

    In the present study, we design a system that is named "STARS (Solar-Terrestrial data Analysis and Reference System)". The STARS provides a research environment that researchers can refer to and analyse a variety of data with single software. This software design is based on the OMT (Object Modeling Technique). The OMT is one of the object-oriented techniques, which has an advantage in maintenance improvement, reuse and long time development of a system. At the Center for Information Technology, Ehime University, after our designing of the STARS, we have already started implementing the STARS. The latest version of the STARS, the STARS5, was released in 2006. Any user can download the system from our WWW site (http:// www.infonet.cite.ehime-u.ac.jp/STARS). The present paper is mainly devoted to the design of a data analysis software system. Through our designing, we paid attention so that the design is flexible and applicable when other developers design software for the similar purpose. If our model is so particular only for our own purpose, it would be useless for other developers. Through our design of the domain object model, we carefully removed the parts, which depend on the system resources, e.g. hardware and software. We put the dependent parts into the application object model. In the present design, therefore, the domain object model and the utility object model are independent of computer resource. This helps anther developer to construct his/her own system based the present design. They simply modify their own application object models according to their system resource. This division of the design between dependent and independent part into three object models is one of the advantages in the OMT. If the design of software is completely done along with the OMT, implementation is rather simple and automatic: developers simply map their designs on our programs. If one creates "ganother STARS" with other programming language such as Java, the programmer simply follows the present system as long as the language is object-oriented language. Researchers would want to add their data into the STARS. In this case, they simply add their own data class in the domain object model. It is because any satellite data has properties such as time or date, which are inherited from the upper class. In this way, their effort is less than in other old methodologies. In the OMT, description format of the system is rather strictly standardized. When new developers take part in STARS project, they have only to understand each model to obtain the overview of the STARS. Then they follow this designs and documents to implement the system. The OMT makes a new comer easy to join into the project already running.

  17. Influence of standardization on the precision (reproducibility) of dental cast analysis with virtual 3-dimensional models.

    PubMed

    Hayashi, Kazuo; Chung, Onejune; Park, Seojung; Lee, Seung-Pyo; Sachdeva, Rohit C L; Mizoguchi, Itaru

    2015-03-01

    Virtual 3-dimensional (3D) models obtained by scanning of physical casts have become an alternative to conventional dental cast analysis in orthodontic treatment. If the precision (reproducibility) of virtual 3D model analysis can be further improved, digital orthodontics could be even more widely accepted. The purpose of this study was to clarify the influence of "standardization" of the target points for dental cast analysis using virtual 3D models. Physical plaster models were also measured to obtain additional information. Five sets of dental casts were used. The dental casts were scanned with R700 (3Shape, Copenhagen, Denmark) and REXCAN DS2 3D (Solutionix, Seoul, Korea) scanners. In this study, 3 system and software packages were used: SureSmile (OraMetrix, Richardson, Tex), Rapidform (Inus, Seoul, Korea), and I-DEAS (SDRC, Milford, Conn). Without standardization, the maximum differences were observed between the SureSmile software and the Rapidform software (0.39 mm ± 0.07). With standardization, the maximum differences were observed between the SureSmile software and measurements with a digital caliper (0.099 mm ± 0.01), and this difference was significantly greater (P <0.05) than the 2 other mean difference values. Furthermore, the results of this study showed that the mean differences "WITH" standardization were significantly lower than those "WITHOUT" standardization for all systems, software packages, or methods. The results showed that elimination of the influence of usability or habituation is important for improving the reproducibility of dental cast analysis. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  18. Data and Analysis Center for Software.

    DTIC Science & Technology

    1980-06-01

    can make use of it in their day- to -day activities of developing, maintaining, and managing software. The biblio- graphic collection is composed of...which refer to development, design, or programming approaches whicn view a software system component, or module in terms of its required or intended... practices " are also included In this group. PROCEDURES (I keyword) Procedures is a term used ambiguously in the literature to refer to functions

  19. LV software support for supersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Bell, William A.

    1991-01-01

    During 1991, the software developed allowed an operator to configure and checkout the TSI, Inc. laser velocimeter (LV) system prior to a run. This setup procedure established the operating conditions for the TSI MI-990 multichannel interface and the RMR-1989 rotating machinery resolver. In addition to initializing the instruments, the software package provides a means of specifying LV calibration constants, controlling the sampling process, and identifying the test parameters.

  20. Image Processing Software

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Ames digital image velocimetry technology has been incorporated in a commercially available image processing software package that allows motion measurement of images on a PC alone. The software, manufactured by Werner Frei Associates, is IMAGELAB FFT. IMAGELAB FFT is a general purpose image processing system with a variety of other applications, among them image enhancement of fingerprints and use by banks and law enforcement agencies for analysis of videos run during robberies.

Top