Yoon, Tae-Lim; Park, Kyung-Mi; Choi, Sil-Ah; Lee, Ji-Hyun; Jeong, Hyo-Jung; Cynn, Heon-Seock
2014-04-01
A wide range of intra- and inter-rater reliabilities of the trochanteric prominence angle test (TPAT) has been reported. We introduced the transcondylar angle test (TCAT) as an alternative to the TPAT and using a smartphone as a reliable measurement tool for femoral neck anteversion (FNA) measurement. The reliabilities of the TPAT and the TCAT, the reliability of using a smartphone as a clinical measurement tool, and the correlation between the difference value of medial knee joint space (KJS) between rest and tested positions and the difference value between the TPAT and TCAT were assessed. Two physical therapists independently determined the reliabilities of the TPAT with a digital inclinometer, the TCAT with a digital inclinometer, and the TCAT with a smartphone in 19 hips of 10 healthy subjects (5 male and 5 female, 22.2 ± 1.69 years). The medial KJS in rest and the tested position were assessed using a sonography. The intra-class correlation coefficients (ICC) for the intra-rater reliabilities of TPAT with a digital inclinometer (ICC = 0.92), TCAT with a digital inclinometer (ICC = 0.94) and a smartphone (ICC = 0.95) in both testers were substantial. The inter-rater reliability of TPAT with a digital inclinometer was fair (ICC = 0.48) while TCAT with a digital inclinometer (ICC = 0.89) and a smartphone (ICC = 0.85) were substantial. The correlation between the difference value of medial KJS between rest and tested positions and the difference value between TPAT and TCAT was low and statistically non-significant (r = 0.114; p = 0.325). The TCAT would be more reliable than the TPAT in inter-rater test. Using a smartphone is a clinically comparable measuring tool to a digital inclinometer. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Olds, John R.; Izon, Stephen James
2002-01-01
The Thermal Calculation Analysis Tool (TCAT), originally developed for the Space Systems Design Lab at the Georgia Institute of Technology, is a conceptual design tool capable of integrating aeroheating analysis into conceptual reusable launch vehicle design. It provides Thermal Protection System (TPS) unit thicknesses and acreage percentages based on the geometry of the vehicle and a reference trajectory to be used in calculation of the total cost and weight of the vehicle design. TCAT has proven to be reasonably accurate at calculating the TPS unit weights for in-flight trajectories; however, it does not have the capability of sizing TPS materials above cryogenic fuel tanks for ground hold operations. During ground hold operations, the vehicle is held for a brief period (generally about two hours) during which heat transfer from the TPS materials to the cryogenic fuel occurs. If too much heat is extracted from the TPS material, the surface temperature may fall below the freezing point of water, thereby freezing any condensation that may be present at the surface of the TPS. Condensation or ice on the surface of the vehicle is potentially hazardous to the mission and can also damage the TPS. It is questionable whether or not the TPS thicknesses provided by the aeroheating analysis would be sufficiently thick to insulate the surface of the TPS from the heat transfer to the fuel. Therefore, a design tool has been developed that is capable of sizing TPS materials at these cryogenic fuel tank locations to augment TCAT's TPS sizing capabilities.
Treatment Cost Analysis Tool (TCAT) for Estimating Costs of Outpatient Treatment Services
Flynn, Patrick M.; Broome, Kirk M.; Beaston-Blaakman, Aaron; Knight, Danica K.; Horgan, Constance M.; Shepard, Donald S.
2009-01-01
A Microsoft® Excel-based workbook designed for research analysts to use in a national study was retooled for treatment program directors and financial officers to allocate, analyze, and estimate outpatient treatment costs in the U.S. This instrument can also be used as a planning and management tool to optimize resources and forecast the impact of future changes in staffing, client flow, program design, and other resources. The Treatment Cost Analysis Tool (TCAT) automatically provides feedback and generates summaries and charts using comparative data from a national sample of non-methadone outpatient providers. TCAT is being used by program staff to capture and allocate both economic and accounting costs, and outpatient service costs are reported for a sample of 70 programs. Costs for an episode of treatment in regular, intensive, and mixed types of outpatient treatment types were $882, $1,310, and $1,381 respectively (based on 20% trimmed means and 2006 dollars). An hour of counseling cost $64 in regular, $85 intensive, and $86 mixed. Group counseling hourly costs per client were $8, $11, and $10 respectively for regular, intensive, and mixed. Future directions include use of a web-based interview version, much like some of the commercially available tax preparation software tools, and extensions for use in other modalities of treatment. PMID:19004576
Treatment Cost Analysis Tool (TCAT) for estimating costs of outpatient treatment services.
Flynn, Patrick M; Broome, Kirk M; Beaston-Blaakman, Aaron; Knight, Danica K; Horgan, Constance M; Shepard, Donald S
2009-02-01
A Microsoft Excel-based workbook designed for research analysts to use in a national study was retooled for treatment program directors and financial officers to allocate, analyze, and estimate outpatient treatment costs in the U.S. This instrument can also be used as a planning and management tool to optimize resources and forecast the impact of future changes in staffing, client flow, program design, and other resources. The Treatment Cost Analysis Tool (TCAT) automatically provides feedback and generates summaries and charts using comparative data from a national sample of non-methadone outpatient providers. TCAT is being used by program staff to capture and allocate both economic and accounting costs, and outpatient service costs are reported for a sample of 70 programs. Costs for an episode of treatment in regular, intensive, and mixed types of outpatient treatment were $882, $1310, and $1381 respectively (based on 20% trimmed means and 2006 dollars). An hour of counseling cost $64 in regular, $85 intensive, and $86 mixed. Group counseling hourly costs per client were $8, $11, and $10 respectively for regular, intensive, and mixed. Future directions include use of a web-based interview version, much like some of the commercially available tax preparation software tools, and extensions for use in other modalities of treatment.
Evaluation of Advanced Thermal Protection Techniques for Future Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Olds, John R.; Cowart, Kris
2001-01-01
A method for integrating Aeroheating analysis into conceptual reusable launch vehicle RLV design is presented in this thesis. This process allows for faster turn-around time to converge a RLV design through the advent of designing an optimized thermal protection system (TPS). It consists of the coupling and automation of four computer software packages: MINIVER, TPSX, TCAT and ADS. MINIVER is an Aeroheating code that produces centerline radiation equilibrium temperatures, convective heating rates, and heat loads over simplified vehicle geometries. These include flat plates and swept cylinders that model wings and leading edges, respectively. TPSX is a NASA Ames material properties database that is available on the World Wide Web. The newly developed Thermal Calculation Analysis Tool (TCAT) uses finite difference methods to carry out a transient in-depth I-D conduction analysis over the center mold line of the vehicle. This is used along with the Automated Design Synthesis (ADS) code to correctly size the vehicle's thermal protection system JPS). The numerical optimizer ADS uses algorithms that solve constrained and unconstrained design problems. The resulting outputs for this process are TPS material types, unit thicknesses, and acreage percentages. TCAT was developed for several purposes. First, it provides a means to calculate the transient in-depth conduction seen by the surface of the TPS material that protects a vehicle during ascent and reentry. Along with the in-depth conduction, radiation from the surface of the material is calculated along with the temperatures at the backface and interior parts of the TPS material. Secondly, TCAT contributes added speed and automation to the overall design process. Another motivation in the development of TCAT is optimization.
NASA Technical Reports Server (NTRS)
Olds, John R.; Cowart, Kris
2001-01-01
A method for integrating Aeroheating analysis into conceptual reusable launch vehicle (RLV) design is presented in this thesis. This process allows for faster turn-around time to converge a RLV design through the advent of designing an optimized thermal protection system (TPS). It consists of the coupling and automation of four computer software packages: MINIVER, TPSX, TCAT, and ADS. MINIVER is an Aeroheating code that produces centerline radiation equilibrium temperatures, convective heating rates, and heat loads over simplified vehicle geometries. These include flat plates and swept cylinders that model wings and leading edges, respectively. TPSX is a NASA Ames material properties database that is available on the World Wide Web. The newly developed Thermal Calculation Analysis Tool (TCAT) uses finite difference methods to carry out a transient in-depth 1-D conduction analysis over the center mold line of the vehicle. This is used along with the Automated Design Synthesis (ADS) code to correctly size the vehicle's thermal protection system (TPS). The numerical optimizer ADS uses algorithms that solve constrained and unconstrained design problems. The resulting outputs for this process are TPS material types, unit thicknesses, and acreage percentages. TCAT was developed for several purposes. First, it provides a means to calculate the transient in-depth conduction seen by the surface of the TPS material that protects a vehicle during ascent and reentry. Along with the in-depth conduction, radiation from the surface of the material is calculated along with the temperatures at the backface and interior parts of the TPS material. Secondly, TCAT contributes added speed and automation to the overall design process. Another motivation in the development of TCAT is optimization. In some vehicles, the TPS accounts for a high percentage of the overall vehicle dry weight. Optimizing the weight of the TPS will thereby lower the percentage of the dry weight accounted for by the TPS. Also, this will lower the cost of the TPS and the overall cost of the vehicle.
Evaluation of Proteus as a Tool for the Rapid Development of Models of Hydrologic Systems
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Farthing, M. W.; Kees, C. E.; Miller, C. T.
2013-12-01
Models of modern hydrologic systems can be complex and involve a variety of operators with varying character. The goal is to implement approximations of such models that are both efficient for the developer and computationally efficient, which is a set of naturally competing objectives. Proteus is a Python-based toolbox that supports prototyping of model formulations as well as a wide variety of modern numerical methods and parallel computing. We used Proteus to develop numerical approximations for three models: Richards' equation, a brine flow model derived using the Thermodynamically Constrained Averaging Theory (TCAT), and a multiphase TCAT-based tumor growth model. For Richards' equation, we investigated discontinuous Galerkin solutions with higher order time integration based on the backward difference formulas. The TCAT brine flow model was implemented using Proteus and a variety of numerical methods were compared to hand coded solutions. Finally, an existing tumor growth model was implemented in Proteus to introduce more advanced numerics and allow the code to be run in parallel. From these three example models, Proteus was found to be an attractive open-source option for rapidly developing high quality code for solving existing and evolving computational science models.
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Miller, C. T.; Dye, A. L.; Gray, W. G.; McClure, J. E.; Rybak, I.
2015-12-01
The thermodynamically constrained averaging theory (TCAT) has been usedto formulate general classes of porous medium models, including newmodels for two-fluid-phase flow. The TCAT approach provides advantagesthat include a firm connection between the microscale, or pore scale,and the macroscale; a thermodynamically consistent basis; explicitinclusion of factors such as interfacial areas, contact angles,interfacial tension, and curvatures; and dynamics of interface movementand relaxation to an equilibrium state. In order to render the TCATmodel solvable, certain closure relations are needed to relate fluidpressure, interfacial areas, curvatures, and relaxation rates. In thiswork, we formulate and solve a TCAT-based two-fluid-phase flow model. We detail the formulation of the model, which is a specific instancefrom a hierarchy of two-fluid-phase flow models that emerge from thetheory. We show the closure problem that must be solved. Using recentresults from high-resolution microscale simulations, we advance a set ofclosure relations that produce a closed model. Lastly, we solve the model using a locally conservative numerical scheme and compare the TCAT model to the traditional model.
Modeling of Density-Dependent Flow based on the Thermodynamically Constrained Averaging Theory
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Schultz, P. B.; Kelley, C. T.; Miller, C. T.; Gray, W. G.
2016-12-01
The thermodynamically constrained averaging theory (TCAT) has been used to formulate general classes of porous medium models, including new models for density-dependent flow. The TCAT approach provides advantages that include a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; explicit inclusion of factors such as a diffusion that arises from gradients associated with pressure and activity and the ability to describe both high and low concentration displacement. The TCAT model is presented and closure relations for the TCAT model are postulated based on microscale averages and a parameter estimation is performed on a subset of the experimental data. Due to the sharpness of the fronts, an adaptive moving mesh technique was used to ensure grid independent solutions within the run time constraints. The optimized parameters are then used for forward simulations and compared to the set of experimental data not used for the parameter estimation.
Technology Combination Analysis Tool (TCAT) for Active Debris Removal
NASA Astrophysics Data System (ADS)
Chamot, B.; Richard, M.; Salmon, T.; Pisseloup, A.; Cougnet, C.; Axthelm, R.; Saunder, C.; Dupont, C.; Lequette, L.
2013-08-01
This paper present the work of the Swiss Space Center EPFL within the CNES-funded OTV-2 study. In order to find the most performant Active Debris Removal (ADR) mission architectures and technologies, a tool was developed in order to design and compare ADR spacecraft, and to plan ADR campaigns to remove large debris. Two types of architectures are considered to be efficient: the Chaser (single-debris spacecraft), the Mothership/ Kits (multiple-debris spacecraft). Both are able to perform controlled re-entry. The tool includes modules to optimise the launch dates and the order of capture, to design missions and spacecraft, and to select launch vehicles. The propulsion, power and structure subsystems are sized by the tool thanks to high-level parametric models whilst the other ones are defined by their mass and power consumption. Final results are still under investigation by the consortium but two concrete examples of the tool's outputs are presented in the paper.
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Harrison, E.; Miller, C. T.
2017-12-01
A thermodynamically constrained averaging theory (TCAT) model has been developed to simulate non-dilute flow and species transport in porous media. This model has the advantages of a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; the explicit inclusion of dissipative terms that arise from spatial gradients in pressure and chemical activity; and the ability to describe both high and low concentration displacement. The TCAT model has previously been shown to provide excellent agreement for a set of laboratory data and outperformed existing macroscale models that have been used for non-dilute flow and transport. The examined experimental dataset consisted of stable brine displacements for a large range of fluid properties. This dataset however only examined one type of porous media and had a fixed flow rate for all experiments. In this work, the TCAT model is applied to a dataset that consists of two different porous media types, constant head and flow rate conditions, varying resident fluid concentrations, and internal probes that measured the pressure and salt mass fraction. Parameter estimation is performed on a subset of the experimental data for the TCAT model as well as other existing non-dilute flow and transport models. The optimized parameters are then used for forward simulations and the accuracy of the models is compared.
Simulation of Two-Phase Flow Based on a Thermodynamically Constrained Averaging Theory Flow Model
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Dye, A. L.; McClure, J. E.; Farthing, M. W.; Gray, W. G.; Miller, C. T.
2014-12-01
The thermodynamically constrained averaging theory (TCAT) has been used to formulate general classes of porous medium models, including new models for two-fluid-phase flow. The TCAT approach provides advantages that include a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; explicit inclusion of factors such as interfacial areas, contact angles, interfacial tension, and curvatures; and dynamics of interface movement and relaxation to an equilibrium state. In order to render the TCAT model solvable, certain closure relations are needed to relate fluid pressure, interfacial areas, curvatures, and relaxation rates. In this work, we formulate and solve a TCAT-based two-fluid-phase flow model. We detail the formulation of the model, which is a specific instance from a hierarchy of two-fluid-phase flow models that emerge from the theory. We show the closure problem that must be solved. Using recent results from high-resolution microscale simulations, we advance a set of closure relations that produce a closed model. Lastly, we use locally conservative spatial discretization and higher order temporal discretization methods to approximate the solution to this new model and compare the solution to the traditional model.
On the consistency of scale among experiments, theory, and simulation
McClure, James E.; Dye, Amanda L.; Miller, Cass T.; ...
2017-02-20
As a tool for addressing problems of scale, we consider an evolving approach known as the thermodynamically constrained averaging theory (TCAT), which has broad applicability to hydrology. We consider the case of modeling of two-fluid-phase flow in porous media, and we focus on issues of scale as they relate to various measures of pressure, capillary pressure, and state equations needed to produce solvable models. We apply TCAT to perform physics-based data assimilation to understand how the internal behavior influences the macroscale state of two-fluid porous medium systems. A microfluidic experimental method and a lattice Boltzmann simulation method are used to examinemore » a key deficiency associated with standard approaches. In a hydrologic process such as evaporation, the water content will ultimately be reduced below the irreducible wetting-phase saturation determined from experiments. This is problematic since the derived closure relationships cannot predict the associated capillary pressures for these states. Here, we demonstrate that the irreducible wetting-phase saturation is an artifact of the experimental design, caused by the fact that the boundary pressure difference does not approximate the true capillary pressure. Using averaging methods, we compute the true capillary pressure for fluid configurations at and below the irreducible wetting-phase saturation. Results of our analysis include a state function for the capillary pressure expressed as a function of fluid saturation and interfacial area.« less
On the consistency of scale among experiments, theory, and simulation
NASA Astrophysics Data System (ADS)
McClure, James E.; Dye, Amanda L.; Miller, Cass T.; Gray, William G.
2017-02-01
As a tool for addressing problems of scale, we consider an evolving approach known as the thermodynamically constrained averaging theory (TCAT), which has broad applicability to hydrology. We consider the case of modeling of two-fluid-phase flow in porous media, and we focus on issues of scale as they relate to various measures of pressure, capillary pressure, and state equations needed to produce solvable models. We apply TCAT to perform physics-based data assimilation to understand how the internal behavior influences the macroscale state of two-fluid porous medium systems. A microfluidic experimental method and a lattice Boltzmann simulation method are used to examine a key deficiency associated with standard approaches. In a hydrologic process such as evaporation, the water content will ultimately be reduced below the irreducible wetting-phase saturation determined from experiments. This is problematic since the derived closure relationships cannot predict the associated capillary pressures for these states. We demonstrate that the irreducible wetting-phase saturation is an artifact of the experimental design, caused by the fact that the boundary pressure difference does not approximate the true capillary pressure. Using averaging methods, we compute the true capillary pressure for fluid configurations at and below the irreducible wetting-phase saturation. Results of our analysis include a state function for the capillary pressure expressed as a function of fluid saturation and interfacial area.
NASA Astrophysics Data System (ADS)
Valdes-Parada, F. J.; Ostvar, S.; Wood, B. D.; Miller, C. T.
2017-12-01
Modeling of hierarchical systems such as porous media can be performed by different approaches that bridge microscale physics to the macroscale. Among the several alternatives available in the literature, the thermodynamically constrained averaging theory (TCAT) has emerged as a robust modeling approach that provides macroscale models that are consistent across scales. For specific closure relation forms, TCAT models are expressed in terms of parameters that depend upon the physical system under study. These parameters are usually obtained from inverse modeling based upon either experimental data or direct numerical simulation at the pore scale. Other upscaling approaches, such as the method of volume averaging, involve an a priori scheme for parameter estimation for certain microscale and transport conditions. In this work, we show how such a predictive scheme can be implemented in TCAT by studying the simple problem of single-phase passive diffusion in rigid and homogeneous porous media. The components of the effective diffusivity tensor are predicted for several porous media by solving ancillary boundary-value problems in periodic unit cells. The results are validated through a comparison with data from direct numerical simulation. This extension of TCAT constitutes a useful advance for certain classes of problems amenable to this estimation approach.
Modeling and Design Analysis Methodology for Tailoring of Aircraft Structures with Composites
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.
2004-01-01
Composite materials provide design flexibility in that fiber placement and orientation can be specified and a variety of material forms and manufacturing processes are available. It is possible, therefore, to 'tailor' the structure to a high degree in order to meet specific design requirements in an optimum manner. Common industrial practices, however, have limited the choices designers make. One of the reasons for this is that there is a dearth of conceptual/preliminary design analysis tools specifically devoted to identifying structural concepts for composite airframe structures. Large scale finite element simulations are not suitable for such purposes. The present project has been devoted to creating modeling and design analysis methodology for use in the tailoring process of aircraft structures. Emphasis has been given to creating bend-twist elastic coupling in high aspect ratio wings or other lifting surfaces. The direction of our work was in concert with the overall NASA effort Twenty- First Century Aircraft Technology (TCAT). A multi-disciplinary team was assembled by Dr. Damodar Ambur to work on wing technology, which included our project.
Data of 10 SSR markers for genomes of homo sapiens and monkeys.
Reddy, K K V V V S; Raju, S Viswanadha; Someswara Rao, Chinta
2017-06-01
In this data, we present 10 Simple Sequence Repeat(SSR) markers TAGA, TCAT, GAAT, AGAT, AGAA, GATA, TATC, CTTT, TCTG and TCTA which are extracted from the genomes of homo sapiens and monkeys using string matching mechanism [1]. All loci showed 4 Base Pair(bp) in allele size, indicating that there are some polymorphisms between individuals correlating to the number of SSR repeats that maybe useful for the detection of similarity among the genotypes. Collectively, these data show that the SSR extraction is a valuable method to illustrate genetic variation of genomes.
XCALIBUR: a Vertical Takeoff TSTO RLV Concept with a HEDM Upperstage and a Scram-Rocket Booster
NASA Astrophysics Data System (ADS)
Bradford, J.
2002-01-01
A new 3rd generation, two-stage-to-orbit (TSTO) reusable launch vehicle (RLV) has been designed. The Xcalibur concept represents a novel approach due to its integration method for the upperstage element of the system. The vertical-takeoff booster, which is powered by rocket-based combined-cycle (RBCC) engines, carries the upperstage internally in the aft section of the airframe to a Mach 15 staging condition. The upperstage is released from the booster and carries the 6,820 kg of payload to low earth orbit (LEO) using its high energy density matter (HEDM) propulsion system. The booster element is capable of returning to the original launch site in a ramjet-cruise propulsion mode. Both the booster and the upperstage utilize advanced technologies including: graphite-epoxy tanks, metal-matrix composites, UHTC TPS materials, electro- mechanical actuators (EMAs), and lightweight subsystems (avionics, power distribution, etc.). The booster system is enabled main propulsion system which utilizes four RBCC engines. These engines operate in four distinct modes: air- augmented rocket (AAR), ramjet, scram-rocket, and all-rocket. The booster operates in AAR mode from takeoff to Mach 3, with ramjet mode operation from Mach 3 to Mach 6. The rocket re-ignition for scram-rocket mode occurs at Mach 6, with all-rocket mode from Mach 14 to the staging condition. The extended utilization of the scram-rocket mode greatly improves vehicle performance by providing superior vehicle acceleration when compared to the scramjet mode performance over the same flight region. Results indicate that the specific impulse penalty due to the scram-rocket mode operation is outweighed by the reduced flight time, smaller vehicle size due to increased mixture ratio, and lower allowable maximum dynamic pressure. A complete vehicle system life-cycle analysis was performed in an automated, multi-disciplinary design environment. Automated disciplinary performance analysis tools include: trajectory (POST), propulsion (SCCREAM), aeroheating (TCAT II), and an Excel spreadsheet for component weight estimation. These tools were automated using `file wrappers' in Phoenix Integration's ModelCenter collaborative design environment. Performance tools utilized for the analysis, but not requiring automation included IDEAS for solid modeling and APAS for the aerodynamic analysis. The paper describes the vehicle concept and operation, discussing the types of technologies used and the nominal flight scenario. A brief discussion explaining the decision-making process for the vehicle configuration is included. For cost predictions, NAFCOM-derived cost estimating relationships were used. Economic predictions were developed using a number of codes, including CABAM (financials), AATe (operations), and GTSafetyII (safety and reliability).
Enantiospecific recognition of DNA sequences by a proflavine Tröger base.
Bailly, C; Laine, W; Demeunynck, M; Lhomme, J
2000-07-05
The DNA interaction of a chiral Tröger base derived from proflavine was investigated by DNA melting temperature measurements and complementary biochemical assays. DNase I footprinting experiments demonstrate that the binding of the proflavine-based Tröger base is both enantio- and sequence-specific. The (+)-isomer poorly interacts with DNA in a non-sequence-selective fashion. In sharp contrast, the corresponding (-)-isomer recognizes preferentially certain DNA sequences containing both A. T and G. C base pairs, such as the motifs 5'-GTT. AAC and 5'-ATGA. TCAT. This is the first experimental demonstration that acridine-type Tröger bases can be used for enantiospecific recognition of DNA sequences. Copyright 2000 Academic Press.
A Contribution For The Understanding of The Deformation Pattern Across The Terceira Axis
NASA Astrophysics Data System (ADS)
Navarro, A.; Catalão, J.; Miranda, J. M.
In spite of several geodynamics studies performed in the Azores region, little is known about the deformation pattern of the tectonically more active sector around the Ter- ceira Axis. GPS campaigns performed in the area, in the last few years, were mainly concerned to the study of the relative motions between the Eurasian, African and North-American plates. This study, developed in the scope of the STAMINA project, has as main purpose the establishment of a dense GPS network to study the crustal deformation pattern in the area between the North Hirondelle basin and the East Gra- ciosa basin. The GPS network consists of 20 stations uniformly distributed throughout the island. The first GPS survey was carried out during days 90 to 98 of 2001. TERC and TCAT stations were used as reference stations, recording continuously throughout the survey. All the other stations were occupied for at least three sessions, except for cases of receiver malfunction, each session has a duration of 12 to 24 hours. The GPS data processing approach consisted of three main steps: (1) first, all sessions were processed separately using GAMIT in order to obtain a daily solution for two local sites (TERC and TCAT) and six global tracking stations (CCV3, RABT, SAV1, SFER, STJO and WSRT) using precise orbits from the IGS; (2) then, all stations of the local network are processed together and (3) finally, all station, including the global tracking ones, are reprocessed again. Precise orbits from the IGS were used in the processing. In each step a compensation program was used to compute a least squares network adjusted solution for the campaign, where all sessions are combined to yield estimates of improved station coordinates. The final solution achieved with the described methodology is documented in this paper. Further geodetic observations are needed in order to estimate the stations ve- locities and displacements and consequently to determine the rate of deformation of the island.
Dynamic Displays for Tactical Planning. Volume I. User-Oriented Description
1980-04-01
0 co z 0 0 ca> LI )) 0- C0 C C) C c)) - Q.) 0 ’’a 0 C Qa) 03 Un C U C c -C c w0 Q0 (D 3 -T-C Q 4 C - - CL - 0a U0.- "-4 CD -i -i ro (v : C...8217(, 4 A[)(NANO’J L) I HIj A4 T IN: t)AM3-4(Jm I i~iu TCAT4 TFCHNICAl. ClbMI-(Y I Q) r H IE F, M U A \\11 NL SU U HL. S I V LL U P NiN I AV I lis 4ADCiJ...E-IINIV SKMI\\A, O NL O~L I lIS LLFCTHONIC Pk)vIt(, INUOND ATTN., 5ItEFN.MI-b I )A,A (ILIA) DEP’iI y FUR bCILNCE AlNU T C.HNOILUIY I (LEG OF NAVA’L
Starrett, Gabriel J; Luengas, Elizabeth M; McCann, Jennifer L; Ebrahimi, Diako; Temiz, Nuri A; Love, Robin P; Feng, Yuqing; Adolph, Madison B; Chelico, Linda; Law, Emily K; Carpenter, Michael A; Harris, Reuben S
2016-09-21
Cytosine mutations within TCA/T motifs are common in cancer. A likely cause is the DNA cytosine deaminase APOBEC3B (A3B). However, A3B-null breast tumours still have this mutational bias. Here we show that APOBEC3H haplotype I (A3H-I) provides a likely solution to this paradox. A3B-null tumours with this mutational bias have at least one copy of A3H-I despite little genetic linkage between these genes. Although deemed inactive previously, A3H-I has robust activity in biochemical and cellular assays, similar to A3H-II after compensation for lower protein expression levels. Gly105 in A3H-I (versus Arg105 in A3H-II) results in lower protein expression levels and increased nuclear localization, providing a mechanism for accessing genomic DNA. A3H-I also associates with clonal TCA/T-biased mutations in lung adenocarcinoma suggesting this enzyme makes broader contributions to cancer mutagenesis. These studies combine to suggest that A3B and A3H-I, together, explain the bulk of 'APOBEC signature' mutations in cancer.
Snapshot of Active Flow Control Research at NASA Langley
NASA Technical Reports Server (NTRS)
Washburn, A. E.; Gorton, S. Althoff; Anders, S. G.
2002-01-01
NASA Langley is aggressively investigating the potential advantages of active flow control as opposed to more traditional aerodynamic techniques. Many of these techniques will be blended with advanced materials and structures to further enhance payoff. Therefore a multi-disciplinary approach to technology development is being attempted that includes researchers from the more historical disciplines of fluid mechanics. acoustics, material science, structural mechanics, and control theory. The overall goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids rather than on specific engineering problems. An organizational view of current research activities at NASA Langley in active flow control as supported by several programs such as the Morphing Project under Breakthrough Vehicle Technologies Program (BVT). the Ultra-Efficient Engine Technology Program (UEET), and the 21st Century Aircraft Technology Program (TCAT) is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research, as part of the fundamental NASA R and D (research and development) program. will be demonstrated as either bench-top experiments, wind-tunnel investigations, or in flight tests. Later they will be transferred to more applied research programs within NASA, DOD (Department of Defense), and U.S. industry.
Delusional disorder: molecular genetic evidence for dopamine psychosis.
Morimoto, Kiyoshi; Miyatake, Ryosuke; Nakamura, Mitsuo; Watanabe, Takemi; Hirao, Toru; Suwaki, Hiroshi
2002-06-01
Since delusional disorder is characterized by mono-symptomatic paranoid symptoms, it can be a good clinical model for investigating the dopaminergic mechanism responsible for paranoid symptoms. We examined neuroleptic responses, plasma homovanillic acid (pHVA) and genes of the dopamine receptor (DR) and its synthesizing enzyme (tyrosine hydroxylase: TH) in patients with delusional disorder and compared them with those of schizophrenic patients and healthy controls. (1) A relatively small dose of haloperidol was more effective for delusional disorder than for schizophrenia. (2) The pretreatment level of pHVA was higher in patients with persecution-type, but not in those with jealousy-type delusional disorder, compared with age- and sex-matched controls. This increased pHVA level was decreased eight weeks after successful haloperidol treatment. (3) The genotype frequency of the DRD2 gene Ser311Cys was significantly higher in patients with persecution-type delusional disorder (21%), compared with schizophrenic patients (6%) or controls (6%). (4) Patients homozygous for the DRD3 gene Ser9Ser had higher pretreatment levels of pHVA than those heterozygous for Ser9Gly. (v) A significant positive correlation was found between the polymorphic (TCAT)(n) repeat in the first intron of the TH gene and pretreatment levels of pHVA in delusional disorder. We suggest that delusional disorder, especially the persecution-type, includes a "dopamine psychosis," and that polymorphism of the DRD2, DRD3 and/or TH gene is part of the genetic basis underlying the hyperdopaminergic state that produces paranoid symptoms. Further studies on a large sample size are required.
Data and Tools | Energy Analysis | NREL
and Tools Energy Analysis Data and Tools NREL develops energy analysis data and tools to assess collections. Data Products Technology and Performance Analysis Tools Energy Systems Analysis Tools Economic and Financial Analysis Tools
Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database.
Zappia, Luke; Phipson, Belinda; Oshlack, Alicia
2018-06-25
As single-cell RNA-sequencing (scRNA-seq) datasets have become more widespread the number of tools designed to analyse these data has dramatically increased. Navigating the vast sea of tools now available is becoming increasingly challenging for researchers. In order to better facilitate selection of appropriate analysis tools we have created the scRNA-tools database (www.scRNA-tools.org) to catalogue and curate analysis tools as they become available. Our database collects a range of information on each scRNA-seq analysis tool and categorises them according to the analysis tasks they perform. Exploration of this database gives insights into the areas of rapid development of analysis methods for scRNA-seq data. We see that many tools perform tasks specific to scRNA-seq analysis, particularly clustering and ordering of cells. We also find that the scRNA-seq community embraces an open-source and open-science approach, with most tools available under open-source licenses and preprints being extensively used as a means to describe methods. The scRNA-tools database provides a valuable resource for researchers embarking on scRNA-seq analysis and records the growth of the field over time.
Channel CAT: A Tactical Link Analysis Tool
1997-09-01
NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS CHANNEL CAT : A TACTICAL LINK ANALYSIS TOOL by Michael Glenn Coleman September 1997 Thesis...REPORT TYPE AND DATES COVERED September 1997 Master’s Thesis 4. TITLE AND SUBTITLE CHANNEL CAT : A TACTICAL LINK ANALYSIS TOOL 5. FUNDING NUMBERS 6...tool, the Channel Capacity Analysis Tool (Channel CAT ), designed to provide an automated tool for the anlysis of design decisions in developing client
Debugging and Performance Analysis Software Tools for Peregrine System |
High-Performance Computing | NREL Debugging and Performance Analysis Software Tools for Peregrine System Debugging and Performance Analysis Software Tools for Peregrine System Learn about debugging and performance analysis software tools available to use with the Peregrine system. Allinea
Oscillation Baselining and Analysis Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).
Rapid SAW Sensor Development Tools
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2007-01-01
The lack of integrated design tools for Surface Acoustic Wave (SAW) devices has led us to develop tools for the design, modeling, analysis, and automatic layout generation of SAW devices. These tools enable rapid development of wireless SAW sensors. The tools developed have been designed to integrate into existing Electronic Design Automation (EDA) tools to take advantage of existing 3D modeling, and Finite Element Analysis (FEA). This paper presents the SAW design, modeling, analysis, and automated layout generation tools.
Economic and Financial Analysis Tools | Energy Analysis | NREL
Economic and Financial Analysis Tools Economic and Financial Analysis Tools Use these economic and . Job and Economic Development Impact (JEDI) Model Use these easy-to-use, spreadsheet-based tools to analyze the economic impacts of constructing and operating power generation and biofuel plants at the
Distributed and Collaborative Software Analysis
NASA Astrophysics Data System (ADS)
Ghezzi, Giacomo; Gall, Harald C.
Throughout the years software engineers have come up with a myriad of specialized tools and techniques that focus on a certain type of
NASA Technical Reports Server (NTRS)
Garrett, L. Bernard; Wright, Robert L.; Badi, Deborah; Findlay, John T.
1988-01-01
This publication summarizes the software needs and available analysis tools presented at the OEXP Analysis Tools Workshop held at the NASA Langley Research Center, Hampton, Virginia on June 21 to 22, 1988. The objective of the workshop was to identify available spacecraft system (and subsystem) analysis and engineering design tools, and mission planning and analysis software that could be used for various NASA Office of Exploration (code Z) studies, specifically lunar and Mars missions.
Analysis and design of friction stir welding tool
NASA Astrophysics Data System (ADS)
Jagadeesha, C. B.
2016-12-01
Since its inception no one has done analysis and design of FSW tool. Initial dimensions of FSW tool are decided by educated guess. Optimum stresses on tool pin have been determined at optimized parameters for bead on plate welding on AZ31B-O Mg alloy plate. Fatigue analysis showed that the chosen FSW tool for the welding experiment has not ∞ life and it has determined that the life of FSW tool is 2.66×105 cycles or revolutions. So one can conclude that any arbitrarily decided FSW tool generally has finite life and cannot be used for ∞ life. In general, one can determine the suitability of tool and its material to be used in FSW of the given workpiece materials in advance by this analysis in terms of fatigue life of the tool.
Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S>
2007-01-01
In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments. In addition, the tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.
Logistics Process Analysis ToolProcess Analysis Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
2008-03-31
LPAT is the resulting integrated system between ANL-developed Enhanced Logistics Intra Theater Support Tool (ELIST) sponsored by SDDC-TEA and the Fort Future Virtual Installation Tool (sponsored by CERL). The Fort Future Simulation Engine was an application written in the ANL Repast Simphony framework and used as the basis for the process Anlysis Tool (PAT) which evolved into a stand=-along tool for detailed process analysis at a location. Combined with ELIST, an inter-installation logistics component was added to enable users to define large logistical agent-based models without having to program. PAT is the evolution of an ANL-developed software system called Fortmore » Future Virtual Installation Tool (sponsored by CERL). The Fort Future Simulation Engine was an application written in the ANL Repast Simphony framework and used as the basis for the Process Analysis Tool(PAT) which evolved into a stand-alone tool for detailed process analysis at a location (sponsored by the SDDC-TEA).« less
Supporting Scientific Analysis within Collaborative Problem Solving Environments
NASA Technical Reports Server (NTRS)
Watson, Velvin R.; Kwak, Dochan (Technical Monitor)
2000-01-01
Collaborative problem solving environments for scientists should contain the analysis tools the scientists require in addition to the remote collaboration tools used for general communication. Unfortunately, most scientific analysis tools have been designed for a "stand-alone mode" and cannot be easily modified to work well in a collaborative environment. This paper addresses the questions, "What features are desired in a scientific analysis tool contained within a collaborative environment?", "What are the tool design criteria needed to provide these features?", and "What support is required from the architecture to support these design criteria?." First, the features of scientific analysis tools that are important for effective analysis in collaborative environments are listed. Next, several design criteria for developing analysis tools that will provide these features are presented. Then requirements for the architecture to support these design criteria are listed. Sonic proposed architectures for collaborative problem solving environments are reviewed and their capabilities to support the specified design criteria are discussed. A deficiency in the most popular architecture for remote application sharing, the ITU T. 120 architecture, prevents it from supporting highly interactive, dynamic, high resolution graphics. To illustrate that the specified design criteria can provide a highly effective analysis tool within a collaborative problem solving environment, a scientific analysis tool that contains the specified design criteria has been integrated into a collaborative environment and tested for effectiveness. The tests were conducted in collaborations between remote sites in the US and between remote sites on different continents. The tests showed that the tool (a tool for the visual analysis of computer simulations of physics) was highly effective for both synchronous and asynchronous collaborative analyses. The important features provided by the tool (and made possible by the specified design criteria) are: 1. The tool provides highly interactive, dynamic, high resolution, 3D graphics. 2. All remote scientists can view the same dynamic, high resolution, 3D scenes of the analysis as the analysis is being conducted. 3. The responsiveness of the tool is nearly identical to the responsiveness of the tool in a stand-alone mode. 4. The scientists can transfer control of the analysis between themselves. 5. Any analysis session or segment of an analysis session, whether done individually or collaboratively, can be recorded and posted on the Web for other scientists or students to download and play in either a collaborative or individual mode. 6. The scientist or student who downloaded the session can, individually or collaboratively, modify or extend the session with his/her own "what if" analysis of the data and post his/her version of the analysis back onto the Web. 7. The peak network bandwidth used in the collaborative sessions is only 1K bit/second even though the scientists at all sites are viewing high resolution (1280 x 1024 pixels), dynamic, 3D scenes of the analysis. The links between the specified design criteria and these performance features are presented.
Analysis Tools for CFD Multigrid Solvers
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Thomas, James L.; Diskin, Boris
2004-01-01
Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.
Page, Grier P; Coulibaly, Issa
2008-01-01
Microarrays are a very powerful tool for quantifying the amount of RNA in samples; however, their ability to query essentially every gene in a genome, which can number in the tens of thousands, presents analytical and interpretative problems. As a result, a variety of software and web-based tools have been developed to help with these issues. This article highlights and reviews some of the tools for the first steps in the analysis of a microarray study. We have tried for a balance between free and commercial systems. We have organized the tools by topics including image processing tools (Section 2), power analysis tools (Section 3), image analysis tools (Section 4), database tools (Section 5), databases of functional information (Section 6), annotation tools (Section 7), statistical and data mining tools (Section 8), and dissemination tools (Section 9).
The dynamic analysis of drum roll lathe for machining of rollers
NASA Astrophysics Data System (ADS)
Qiao, Zheng; Wu, Dongxu; Wang, Bo; Li, Guo; Wang, Huiming; Ding, Fei
2014-08-01
An ultra-precision machine tool for machining of the roller has been designed and assembled, and due to the obvious impact which dynamic characteristic of machine tool has on the quality of microstructures on the roller surface, the dynamic characteristic of the existing machine tool is analyzed in this paper, so is the influence of circumstance that a large scale and slender roller is fixed in the machine on dynamic characteristic of the machine tool. At first, finite element model of the machine tool is built and simplified, and based on that, the paper carries on with the finite element mode analysis and gets the natural frequency and shaking type of four steps of the machine tool. According to the above model analysis results, the weak stiffness systems of machine tool can be further improved and the reasonable bandwidth of control system of the machine tool can be designed. In the end, considering the shock which is caused by Z axis as a result of fast positioning frequently to feeding system and cutting tool, transient analysis is conducted by means of ANSYS analysis in this paper. Based on the results of transient analysis, the vibration regularity of key components of machine tool and its impact on cutting process are explored respectively.
Integrating Reliability Analysis with a Performance Tool
NASA Technical Reports Server (NTRS)
Nicol, David M.; Palumbo, Daniel L.; Ulrey, Michael
1995-01-01
A large number of commercial simulation tools support performance oriented studies of complex computer and communication systems. Reliability of these systems, when desired, must be obtained by remodeling the system in a different tool. This has obvious drawbacks: (1) substantial extra effort is required to create the reliability model; (2) through modeling error the reliability model may not reflect precisely the same system as the performance model; (3) as the performance model evolves one must continuously reevaluate the validity of assumptions made in that model. In this paper we describe an approach, and a tool that implements this approach, for integrating a reliability analysis engine into a production quality simulation based performance modeling tool, and for modeling within such an integrated tool. The integrated tool allows one to use the same modeling formalisms to conduct both performance and reliability studies. We describe how the reliability analysis engine is integrated into the performance tool, describe the extensions made to the performance tool to support the reliability analysis, and consider the tool's performance.
Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report. Version 1.0
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S.; Kramer White, Julie; Labbe, Steve G.; Rotter, Hank A.
2005-01-01
In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments, and real-time on-orbit assessments. The tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.
Navigating freely-available software tools for metabolomics analysis.
Spicer, Rachel; Salek, Reza M; Moreno, Pablo; Cañueto, Daniel; Steinbeck, Christoph
2017-01-01
The field of metabolomics has expanded greatly over the past two decades, both as an experimental science with applications in many areas, as well as in regards to data standards and bioinformatics software tools. The diversity of experimental designs and instrumental technologies used for metabolomics has led to the need for distinct data analysis methods and the development of many software tools. To compile a comprehensive list of the most widely used freely available software and tools that are used primarily in metabolomics. The most widely used tools were selected for inclusion in the review by either ≥ 50 citations on Web of Science (as of 08/09/16) or the use of the tool being reported in the recent Metabolomics Society survey. Tools were then categorised by the type of instrumental data (i.e. LC-MS, GC-MS or NMR) and the functionality (i.e. pre- and post-processing, statistical analysis, workflow and other functions) they are designed for. A comprehensive list of the most used tools was compiled. Each tool is discussed within the context of its application domain and in relation to comparable tools of the same domain. An extended list including additional tools is available at https://github.com/RASpicer/MetabolomicsTools which is classified and searchable via a simple controlled vocabulary. This review presents the most widely used tools for metabolomics analysis, categorised based on their main functionality. As future work, we suggest a direct comparison of tools' abilities to perform specific data analysis tasks e.g. peak picking.
Palese, Alvisa; Marini, Eva; Guarnier, Annamaria; Barelli, Paolo; Zambiasi, Paola; Allegrini, Elisabetta; Bazoli, Letizia; Casson, Paola; Marin, Meri; Padovan, Marisa; Picogna, Michele; Taddia, Patrizia; Chiari, Paolo; Salmaso, Daniele; Marognolli, Oliva; Canzan, Federica; Ambrosi, Elisa; Saiani, Luisa; Grassetti, Luca
2016-10-01
There is growing interest in validating tools aimed at supporting the clinical decision-making process and research. However, an increased bureaucratization of clinical practice and redundancies in the measures collected have been reported by clinicians. Redundancies in clinical assessments affect negatively both patients and nurses. To validate a meta-tool measuring the risks/problems currently estimated by multiple tools used in daily practice. A secondary analysis of a database was performed, using a cross-validation and a longitudinal study designs. In total, 1464 patients admitted to 12 medical units in 2012 were assessed at admission with the Brass, Barthel, Conley and Braden tools. Pertinent outcomes such as the occurrence of post-discharge need for resources and functional decline at discharge, as well as falls and pressure sores, were measured. Explorative factor analysis of each tool, inter-tool correlations and a conceptual evaluation of the redundant/similar items across tools were performed. Therefore, the validation of the meta-tool was performed through explorative factor analysis, confirmatory factor analysis and the structural equation model to establish the ability of the meta-tool to predict the outcomes estimated by the original tools. High correlations between the tools have emerged (from r 0.428 to 0.867) with a common variance from 18.3% to 75.1%. Through a conceptual evaluation and explorative factor analysis, the items were reduced from 42 to 20, and the three factors that emerged were confirmed by confirmatory factor analysis. According to the structural equation model results, two out of three emerged factors predicted the outcomes. From the initial 42 items, the meta-tool is composed of 20 items capable of predicting the outcomes as with the original tools. © 2016 John Wiley & Sons, Ltd.
An Integrated Tool for System Analysis of Sample Return Vehicles
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.
2012-01-01
The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.
Multi-mission space vehicle subsystem analysis tools
NASA Technical Reports Server (NTRS)
Kordon, M.; Wood, E.
2003-01-01
Spacecraft engineers often rely on specialized simulation tools to facilitate the analysis, design and operation of space systems. Unfortunately these tools are often designed for one phase of a single mission and cannot be easily adapted to other phases or other misions. The Multi-Mission Pace Vehicle Susbsystem Analysis Tools are designed to provide a solution to this problem.
A survey of tools for the analysis of quantitative PCR (qPCR) data.
Pabinger, Stephan; Rödiger, Stefan; Kriegner, Albert; Vierlinger, Klemens; Weinhäusel, Andreas
2014-09-01
Real-time quantitative polymerase-chain-reaction (qPCR) is a standard technique in most laboratories used for various applications in basic research. Analysis of qPCR data is a crucial part of the entire experiment, which has led to the development of a plethora of methods. The released tools either cover specific parts of the workflow or provide complete analysis solutions. Here, we surveyed 27 open-access software packages and tools for the analysis of qPCR data. The survey includes 8 Microsoft Windows, 5 web-based, 9 R-based and 5 tools from other platforms. Reviewed packages and tools support the analysis of different qPCR applications, such as RNA quantification, DNA methylation, genotyping, identification of copy number variations, and digital PCR. We report an overview of the functionality, features and specific requirements of the individual software tools, such as data exchange formats, availability of a graphical user interface, included procedures for graphical data presentation, and offered statistical methods. In addition, we provide an overview about quantification strategies, and report various applications of qPCR. Our comprehensive survey showed that most tools use their own file format and only a fraction of the currently existing tools support the standardized data exchange format RDML. To allow a more streamlined and comparable analysis of qPCR data, more vendors and tools need to adapt the standardized format to encourage the exchange of data between instrument software, analysis tools, and researchers.
A Comparison of Satellite Conjunction Analysis Screening Tools
2011-09-01
visualization tool. Version 13.1.4 for Linux was tested. The SOAP conjunction analysis function does not have the capacity to perform the large...was examined by SOAP to confirm the conjunction. STK Advanced CAT STK Advanced CAT (Conjunction Analysis Tools) is an add-on module for the STK ...run with each tool. When attempting to perform the seven day all vs all analysis with STK Advanced CAT, the program consistently crashed during report
Evaluating Learning Technology Content with Discourse Analysis
ERIC Educational Resources Information Center
Duvall, Matthew
2016-01-01
The researcher combined qualitative media analysis with tools for discourse analysis to review Blackboard Collaborate™, a tool often used in online education. Technology design references Discourses which dictate how and why these tools should be used. The analysis showed Collaborate™ uses sign systems and knowledge, along with politics, to…
Spacecraft Electrical Power System (EPS) generic analysis tools and techniques
NASA Technical Reports Server (NTRS)
Morris, Gladys M.; Sheppard, Mark A.
1992-01-01
An overview is provided of the analysis tools and techiques used in modeling the Space Station Freedom electrical power system, as well as future space vehicle power systems. The analysis capabilities of the Electrical Power System (EPS) are described and the EPS analysis tools are surveyed.
Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool
NASA Technical Reports Server (NTRS)
Maul, William A.; Fulton, Christopher E.
2011-01-01
This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual
Survey of visualization and analysis tools
NASA Technical Reports Server (NTRS)
Meyer, P. J.
1994-01-01
A large number of commercially available visualization and analysis tools are available to the researcher. Some of the strengths and limitations of some of these tools, from the viewpoint of the earth sciences discipline, are discussed. Visualization and analysis tools fall into one of two categories: those that are designed to a specific purpose and are non-extensive and those that are generic visual programming tools that are extensible. Most of the extensible packages examined incorporate a data flow paradigm.
Mirel, Barbara
2009-02-13
Current usability studies of bioinformatics tools suggest that tools for exploratory analysis support some tasks related to finding relationships of interest but not the deep causal insights necessary for formulating plausible and credible hypotheses. To better understand design requirements for gaining these causal insights in systems biology analyses a longitudinal field study of 15 biomedical researchers was conducted. Researchers interacted with the same protein-protein interaction tools to discover possible disease mechanisms for further experimentation. Findings reveal patterns in scientists' exploratory and explanatory analysis and reveal that tools positively supported a number of well-structured query and analysis tasks. But for several of scientists' more complex, higher order ways of knowing and reasoning the tools did not offer adequate support. Results show that for a better fit with scientists' cognition for exploratory analysis systems biology tools need to better match scientists' processes for validating, for making a transition from classification to model-based reasoning, and for engaging in causal mental modelling. As the next great frontier in bioinformatics usability, tool designs for exploratory systems biology analysis need to move beyond the successes already achieved in supporting formulaic query and analysis tasks and now reduce current mismatches with several of scientists' higher order analytical practices. The implications of results for tool designs are discussed.
Designing an Exploratory Text Analysis Tool for Humanities and Social Sciences Research
ERIC Educational Resources Information Center
Shrikumar, Aditi
2013-01-01
This dissertation presents a new tool for exploratory text analysis that attempts to improve the experience of navigating and exploring text and its metadata. The design of the tool was motivated by the unmet need for text analysis tools in the humanities and social sciences. In these fields, it is common for scholars to have hundreds or thousands…
Kim, Min-Uk; Moon, Kyong Whan; Sohn, Jong-Ryeul; Byeon, Sang-Hoon
2018-05-18
We studied sensitive weather variables for consequence analysis, in the case of chemical leaks on the user side of offsite consequence analysis (OCA) tools. We used OCA tools Korea Offsite Risk Assessment (KORA) and Areal Location of Hazardous Atmospheres (ALOHA) in South Korea and the United States, respectively. The chemicals used for this analysis were 28% ammonia (NH₃), 35% hydrogen chloride (HCl), 50% hydrofluoric acid (HF), and 69% nitric acid (HNO₃). The accident scenarios were based on leakage accidents in storage tanks. The weather variables were air temperature, wind speed, humidity, and atmospheric stability. Sensitivity analysis was performed using the Statistical Package for the Social Sciences (SPSS) program for dummy regression analysis. Sensitivity analysis showed that impact distance was not sensitive to humidity. Impact distance was most sensitive to atmospheric stability, and was also more sensitive to air temperature than wind speed, according to both the KORA and ALOHA tools. Moreover, the weather variables were more sensitive in rural conditions than in urban conditions, with the ALOHA tool being more influenced by weather variables than the KORA tool. Therefore, if using the ALOHA tool instead of the KORA tool in rural conditions, users should be careful not to cause any differences in impact distance due to input errors of weather variables, with the most sensitive one being atmospheric stability.
Gene Ontology-Based Analysis of Zebrafish Omics Data Using the Web Tool Comparative Gene Ontology.
Ebrahimie, Esmaeil; Fruzangohar, Mario; Moussavi Nik, Seyyed Hani; Newman, Morgan
2017-10-01
Gene Ontology (GO) analysis is a powerful tool in systems biology, which uses a defined nomenclature to annotate genes/proteins within three categories: "Molecular Function," "Biological Process," and "Cellular Component." GO analysis can assist in revealing functional mechanisms underlying observed patterns in transcriptomic, genomic, and proteomic data. The already extensive and increasing use of zebrafish for modeling genetic and other diseases highlights the need to develop a GO analytical tool for this organism. The web tool Comparative GO was originally developed for GO analysis of bacterial data in 2013 ( www.comparativego.com ). We have now upgraded and elaborated this web tool for analysis of zebrafish genetic data using GOs and annotations from the Gene Ontology Consortium.
The environment power system analysis tool development program
NASA Technical Reports Server (NTRS)
Jongeward, Gary A.; Kuharski, Robert A.; Kennedy, Eric M.; Stevens, N. John; Putnam, Rand M.; Roche, James C.; Wilcox, Katherine G.
1990-01-01
The Environment Power System Analysis Tool (EPSAT) is being developed to provide space power system design engineers with an analysis tool for determining system performance of power systems in both naturally occurring and self-induced environments. The program is producing an easy to use computer aided engineering (CAE) tool general enough to provide a vehicle for technology transfer from space scientists and engineers to power system design engineers. The results of the project after two years of a three year development program are given. The EPSAT approach separates the CAE tool into three distinct functional units: a modern user interface to present information, a data dictionary interpreter to coordinate analysis; and a data base for storing system designs and results of analysis.
Topography-guided treatment of irregular astigmatism with the wavelight excimer laser.
Jankov, Mirko R; Panagopoulou, Sophia I; Tsiklis, Nikolaos S; Hajitanasis, Georgos C; Aslanides, loannis M; Pallikaris, loannis G
2006-04-01
To evaluate the feasibility, safety, and predictability of correcting high irregular astigmatism in symptomatic eyes with the use of topography-guided photoablation. In a prospective, non-comparative case series, 16 consecutive symptomatic eyes of 11 patients with small hyperopic and myopic excimer laser optical zones, decentered and irregular ablation after corneal graft, and corneal scars were operated. Uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest and cycloplegic refraction, and corneal topography, with asphericity and regularity, were analyzed. LASIK (n = 10) and photorefractive keratectomy (n = 6) were performed using the ALLEGRETTO WAVE excimer laser and T-CAT software (Topography-guided Customized Ablation Treatment; WaveLight Laser Technologie AG, Erlangen, Germany). In the LASIK group, UCVA improved from 0.81 +/- 0.68 IogMAR (20/130) (range: 0.2 to 2.0) to 0.29 +/- 0.21 logMAR (20/39) (range: 0.1 to 0.7) at 6 months. In the PRK group, mean UCVA improved from 0.89 +/- 0.87 IogMAR (20/157) (range: 0.1 to 2.0) to 0.42 +/- 0.35 logMAR (20/53) (range: 0.1 to 1.0) at 6 months. Best spectacle-corrected visual acuity did not change significantly in either group. One PRK patient lost one line of BSCVA. Refractive cylinder for the LASIK group improved from -2.53 +/- 1.71 diopters (D) (range: -0.75 to -5.75 D) to -1.28 +/- 0.99 D (range: 0 to -2.50 D) at 6 months. Refractive cylinder in the PRK group improved from -2.21 +/- 2.11 D (range: -0.25 to -5.50 D) to -1.10 +/- 0.42 D (range: -0.50 to -1.50 D). Index of surface irregularity showed a decrease from 60 +/- 12 (range: 46 to 89) to 50 +/- 9 (range: 32 to 63) at 6 months in the LASIK group whereas no significant change was noted in the PRK group. Subjective symptoms, such as glare, halos, ghost images, starbursts, and monocular diplopia, were not present postoperatively. Topography-guided LASIK and PRK resulted in a significant reduction of refractive cylinder and increase of UCVA, without a significant loss of BSCVA.
van Rhee, Henk; Hak, Tony
2017-01-01
We present a new tool for meta‐analysis, Meta‐Essentials, which is free of charge and easy to use. In this paper, we introduce the tool and compare its features to other tools for meta‐analysis. We also provide detailed information on the validation of the tool. Although free of charge and simple, Meta‐Essentials automatically calculates effect sizes from a wide range of statistics and can be used for a wide range of meta‐analysis applications, including subgroup analysis, moderator analysis, and publication bias analyses. The confidence interval of the overall effect is automatically based on the Knapp‐Hartung adjustment of the DerSimonian‐Laird estimator. However, more advanced meta‐analysis methods such as meta‐analytical structural equation modelling and meta‐regression with multiple covariates are not available. In summary, Meta‐Essentials may prove a valuable resource for meta‐analysts, including researchers, teachers, and students. PMID:28801932
DIY Solar Market Analysis Webinar Series: Top Solar Tools | State, Local,
and Tribal Governments | NREL DIY Solar Market Analysis Webinar Series: Top Solar Tools DIY Solar Market Analysis Webinar Series: Top Solar Tools Wednesday, May 14, 2014 As part of a Do-It -Yourself Solar Market Analysis summer series, NREL's Solar Technical Assistance Team (STAT) presented a
Transportation systems safety hazard analysis tool (SafetyHAT) user guide (version 1.0)
DOT National Transportation Integrated Search
2014-03-24
This is a user guide for the transportation system Safety Hazard Analysis Tool (SafetyHAT) Version 1.0. SafetyHAT is a software tool that facilitates System Theoretic Process Analysis (STPA.) This user guide provides instructions on how to download, ...
NASA Astrophysics Data System (ADS)
Zhang, G. Q.; To, S.
2014-08-01
Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.
Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys
2011-01-01
tool material (AISI H13 tool steel ) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process...threads/m; (b) tool 598 material = AISI H13 tool steel ; (c) workpiece material = 599 AA5059; (d) tool rotation speed = 500 rpm; (e) tool travel 600 speed...the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13
High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis.
Simonyan, Vahan; Mazumder, Raja
2014-09-30
The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis.
High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis
Simonyan, Vahan; Mazumder, Raja
2014-01-01
The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis. PMID:25271953
Simulation Tools for Forest Health Analysis: An Application in the Red River Watershed, Idaho
Andrew J. McMahan; Eric L. Smith
2006-01-01
Software tools for landscape analyses--including FVS model extensions, and a number of FVS-related pre- and post-processing âtoolsâ--are presented, using an analysis in the Red River Watershed, Nez Perce National Forest as an example. We present (1) a discussion of pre-simulation data analysis; (2) the Physiographic Information Extraction System (PIES), a tool that can...
Overview of the Development for a Suite of Low-Thrust Trajectory Analysis Tools
NASA Technical Reports Server (NTRS)
Kos, Larry D.; Polsgrove, Tara; Hopkins, Randall; Thomas, Dan; Sims, Jon A.
2006-01-01
A NASA intercenter team has developed a suite of low-thrust trajectory analysis tools to make a significant improvement in three major facets of low-thrust trajectory and mission analysis. These are: 1) ease of use, 2) ability to more robustly converge to solutions, and 3) higher fidelity modeling and accuracy of results. Due mostly to the short duration of the development, the team concluded that a suite of tools was preferred over having one integrated tool. This tool-suite, their characteristics, and their applicability will be described. Trajectory analysts can read this paper and determine which tool is most appropriate for their problem.
Active controls: A look at analytical methods and associated tools
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Adams, W. M., Jr.; Mukhopadhyay, V.; Tiffany, S. H.; Abel, I.
1984-01-01
A review of analytical methods and associated tools for active controls analysis and design problems is presented. Approaches employed to develop mathematical models suitable for control system analysis and/or design are discussed. Significant efforts have been expended to develop tools to generate the models from the standpoint of control system designers' needs and develop the tools necessary to analyze and design active control systems. Representative examples of these tools are discussed. Examples where results from the methods and tools have been compared with experimental data are also presented. Finally, a perspective on future trends in analysis and design methods is presented.
CMS Configuration Editor: GUI based application for user analysis job
NASA Astrophysics Data System (ADS)
de Cosa, A.
2011-12-01
We present the user interface and the software architecture of the Configuration Editor for the CMS experiment. The analysis workflow is organized in a modular way integrated within the CMS framework that organizes in a flexible way user analysis code. The Python scripting language is adopted to define the job configuration that drives the analysis workflow. It could be a challenging task for users, especially for newcomers, to develop analysis jobs managing the configuration of many required modules. For this reason a graphical tool has been conceived in order to edit and inspect configuration files. A set of common analysis tools defined in the CMS Physics Analysis Toolkit (PAT) can be steered and configured using the Config Editor. A user-defined analysis workflow can be produced starting from a standard configuration file, applying and configuring PAT tools according to the specific user requirements. CMS users can adopt this tool, the Config Editor, to create their analysis visualizing in real time which are the effects of their actions. They can visualize the structure of their configuration, look at the modules included in the workflow, inspect the dependences existing among the modules and check the data flow. They can visualize at which values parameters are set and change them according to what is required by their analysis task. The integration of common tools in the GUI needed to adopt an object-oriented structure in the Python definition of the PAT tools and the definition of a layer of abstraction from which all PAT tools inherit.
Vehicle Technology Simulation and Analysis Tools | Transportation Research
| NREL Vehicle Technology Simulation and Analysis Tools Vehicle Technology Simulation and vehicle technologies with the potential to achieve significant fuel savings and emission reductions. NREL : Automotive Deployment Options Projection Tool The ADOPT modeling tool estimates vehicle technology
BiNChE: a web tool and library for chemical enrichment analysis based on the ChEBI ontology.
Moreno, Pablo; Beisken, Stephan; Harsha, Bhavana; Muthukrishnan, Venkatesh; Tudose, Ilinca; Dekker, Adriano; Dornfeldt, Stefanie; Taruttis, Franziska; Grosse, Ivo; Hastings, Janna; Neumann, Steffen; Steinbeck, Christoph
2015-02-21
Ontology-based enrichment analysis aids in the interpretation and understanding of large-scale biological data. Ontologies are hierarchies of biologically relevant groupings. Using ontology annotations, which link ontology classes to biological entities, enrichment analysis methods assess whether there is a significant over or under representation of entities for ontology classes. While many tools exist that run enrichment analysis for protein sets annotated with the Gene Ontology, there are only a few that can be used for small molecules enrichment analysis. We describe BiNChE, an enrichment analysis tool for small molecules based on the ChEBI Ontology. BiNChE displays an interactive graph that can be exported as a high-resolution image or in network formats. The tool provides plain, weighted and fragment analysis based on either the ChEBI Role Ontology or the ChEBI Structural Ontology. BiNChE aids in the exploration of large sets of small molecules produced within Metabolomics or other Systems Biology research contexts. The open-source tool provides easy and highly interactive web access to enrichment analysis with the ChEBI ontology tool and is additionally available as a standalone library.
General Mission Analysis Tool (GMAT) User's Guide (Draft)
NASA Technical Reports Server (NTRS)
Hughes, Steven P.
2007-01-01
4The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system. This document is a draft of the users guide for the tool. Included in the guide is information about Configuring Objects/Resources, Object Fields: Quick Look-up Tables, and Commands and Events.
Cross-Cutting Interoperability in an Earth Science Collaboratory
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Ramachandran, Rahul; Kuo, Kuo-Sen
2011-01-01
An Earth Science Collaboratory is: A rich data analysis environment with: (1) Access to a wide spectrum of Earth Science data, (3) A diverse set of science analysis services and tools, (4) A means to collaborate on data, tools and analysis, and (5)Supports sharing of data, tools, results and knowledge
MetaboTools: A comprehensive toolbox for analysis of genome-scale metabolic models
Aurich, Maike K.; Fleming, Ronan M. T.; Thiele, Ines
2016-08-03
Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Previous work, by us and others, revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. With the MetaboTools, we make our methods available to the broader scientific community. The MetaboTools consist of a protocol, a toolbox, and tutorials of two use cases. The protocol describes, in a step-wise manner, the workflow of data integration, and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorialsmore » explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, the MetaboTools constitute a comprehensive guide to the intra-model analysis of extracellular metabolomic data from microbial, plant, or human cells. In conclusion, this computational modeling resource offers a broad set of computational analysis tools for a wide biomedical and non-biomedical research community.« less
Modeling and Analysis of Space Based Transceivers
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Liebetreu, John; Moore, Michael S.; Price, Jeremy C.; Abbott, Ben
2005-01-01
This paper presents the tool chain, methodology, and initial results of a study to provide a thorough, objective, and quantitative analysis of the design alternatives for space Software Defined Radio (SDR) transceivers. The approach taken was to develop a set of models and tools for describing communications requirements, the algorithm resource requirements, the available hardware, and the alternative software architectures, and generate analysis data necessary to compare alternative designs. The Space Transceiver Analysis Tool (STAT) was developed to help users identify and select representative designs, calculate the analysis data, and perform a comparative analysis of the representative designs. The tool allows the design space to be searched quickly while permitting incremental refinement in regions of higher payoff.
Modeling and Analysis of Space Based Transceivers
NASA Technical Reports Server (NTRS)
Moore, Michael S.; Price, Jeremy C.; Abbott, Ben; Liebetreu, John; Reinhart, Richard C.; Kacpura, Thomas J.
2007-01-01
This paper presents the tool chain, methodology, and initial results of a study to provide a thorough, objective, and quantitative analysis of the design alternatives for space Software Defined Radio (SDR) transceivers. The approach taken was to develop a set of models and tools for describing communications requirements, the algorithm resource requirements, the available hardware, and the alternative software architectures, and generate analysis data necessary to compare alternative designs. The Space Transceiver Analysis Tool (STAT) was developed to help users identify and select representative designs, calculate the analysis data, and perform a comparative analysis of the representative designs. The tool allows the design space to be searched quickly while permitting incremental refinement in regions of higher payoff.
New Tools for Sea Ice Data Analysis and Visualization: NSIDC's Arctic Sea Ice News and Analysis
NASA Astrophysics Data System (ADS)
Vizcarra, N.; Stroeve, J.; Beam, K.; Beitler, J.; Brandt, M.; Kovarik, J.; Savoie, M. H.; Skaug, M.; Stafford, T.
2017-12-01
Arctic sea ice has long been recognized as a sensitive climate indicator and has undergone a dramatic decline over the past thirty years. Antarctic sea ice continues to be an intriguing and active field of research. The National Snow and Ice Data Center's Arctic Sea Ice News & Analysis (ASINA) offers researchers and the public a transparent view of sea ice data and analysis. We have released a new set of tools for sea ice analysis and visualization. In addition to Charctic, our interactive sea ice extent graph, the new Sea Ice Data and Analysis Tools page provides access to Arctic and Antarctic sea ice data organized in seven different data workbooks, updated daily or monthly. An interactive tool lets scientists, or the public, quickly compare changes in ice extent and location. Another tool allows users to map trends, anomalies, and means for user-defined time periods. Animations of September Arctic and Antarctic monthly average sea ice extent and concentration may also be accessed from this page. Our tools help the NSIDC scientists monitor and understand sea ice conditions in near real time. They also allow the public to easily interact with and explore sea ice data. Technical innovations in our data center helped NSIDC quickly build these tools and more easily maintain them. The tools were made publicly accessible to meet the desire from the public and members of the media to access the numbers and calculations that power our visualizations and analysis. This poster explores these tools and how other researchers, the media, and the general public are using them.
Using Kepler for Tool Integration in Microarray Analysis Workflows.
Gan, Zhuohui; Stowe, Jennifer C; Altintas, Ilkay; McCulloch, Andrew D; Zambon, Alexander C
Increasing numbers of genomic technologies are leading to massive amounts of genomic data, all of which requires complex analysis. More and more bioinformatics analysis tools are being developed by scientist to simplify these analyses. However, different pipelines have been developed using different software environments. This makes integrations of these diverse bioinformatics tools difficult. Kepler provides an open source environment to integrate these disparate packages. Using Kepler, we integrated several external tools including Bioconductor packages, AltAnalyze, a python-based open source tool, and R-based comparison tool to build an automated workflow to meta-analyze both online and local microarray data. The automated workflow connects the integrated tools seamlessly, delivers data flow between the tools smoothly, and hence improves efficiency and accuracy of complex data analyses. Our workflow exemplifies the usage of Kepler as a scientific workflow platform for bioinformatics pipelines.
Analysis Tools in Geant4 10.2 and 10.3
NASA Astrophysics Data System (ADS)
Hřivnáčová, I.; Barrand, G.
2017-10-01
A new analysis category based on g4tools was added in Geant4 release 9.5 (2011). The aim was to provide users with a lightweight analysis tool available as part of the Geant4 installation without the need to link to an external analysis package. It has progressively been included in all Geant4 examples. Frequent questions in the Geant4 users forum show its increasing popularity in the Geant4 users community. In this presentation, we will give a brief overview of g4tools and the analysis category. We report on new developments since our CHEP 2013 contribution as well as mention upcoming new features.
Tsou, Christina; Haynes, Emma; Warner, Wayne D; Gray, Gordon; Thompson, Sandra C
2015-04-23
The need for better partnerships between Aboriginal organisations and mainstream agencies demands attention on process and relational elements of these partnerships, and improving partnership functioning through transformative or iterative evaluation procedures. This paper presents the findings of a literature review which examines the usefulness of existing partnership tools to the Australian Aboriginal-mainstream partnership (AMP) context. Three sets of best practice principles for successful AMP were selected based on authors' knowledge and experience. Items in each set of principles were separated into process and relational elements and used to guide the analysis of partnership assessment tools. The review and analysis of partnership assessment tools were conducted in three distinct but related parts. Part 1- identify and select reviews of partnership tools; part 2 - identify and select partnership self-assessment tool; part 3 - analysis of selected tools using AMP principles. The focus on relational and process elements in the partnership tools reviewed is consistent with the focus of Australian AMP principles by reconciliation advocates; however, historical context, lived experience, cultural context and approaches of Australian Aboriginal people represent key deficiencies in the tools reviewed. The overall assessment indicated that the New York Partnership Self-Assessment Tool and the VicHealth Partnership Analysis Tools reflect the greatest number of AMP principles followed by the Nuffield Partnership Assessment Tool. The New York PSAT has the strongest alignment with the relational elements while VicHealth and Nuffield tools showed greatest alignment with the process elements in the chosen AMP principles. Partnership tools offer opportunities for providing evidence based support to partnership development. The multiplicity of tools in existence and the reported uniqueness of each partnership, mean the development of a generic partnership analysis for AMP may not be a viable option for future effort.
An integrated modeling and design tool for advanced optical spacecraft
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1992-01-01
Consideration is given to the design and status of the Integrated Modeling of Optical Systems (IMOS) tool and to critical design issues. A multidisciplinary spacecraft design and analysis tool with support for structural dynamics, controls, thermal analysis, and optics, IMOS provides rapid and accurate end-to-end performance analysis, simulations, and optimization of advanced space-based optical systems. The requirements for IMOS-supported numerical arrays, user defined data structures, and a hierarchical data base are outlined, and initial experience with the tool is summarized. A simulation of a flexible telescope illustrates the integrated nature of the tools.
Suurmond, Robert; van Rhee, Henk; Hak, Tony
2017-12-01
We present a new tool for meta-analysis, Meta-Essentials, which is free of charge and easy to use. In this paper, we introduce the tool and compare its features to other tools for meta-analysis. We also provide detailed information on the validation of the tool. Although free of charge and simple, Meta-Essentials automatically calculates effect sizes from a wide range of statistics and can be used for a wide range of meta-analysis applications, including subgroup analysis, moderator analysis, and publication bias analyses. The confidence interval of the overall effect is automatically based on the Knapp-Hartung adjustment of the DerSimonian-Laird estimator. However, more advanced meta-analysis methods such as meta-analytical structural equation modelling and meta-regression with multiple covariates are not available. In summary, Meta-Essentials may prove a valuable resource for meta-analysts, including researchers, teachers, and students. © 2017 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.
DIY Solar Market Analysis Webinar Series: Community Solar Scenario Tool |
State, Local, and Tribal Governments | NREL Webinar Series: Community Solar Scenario Tool DIY Solar Market Analysis Webinar Series: Community Solar Scenario Tool Wednesday, August 13, 2014 As part ) presented a live webinar titled, "Community Solar Scenario Tool: Planning for a fruitful solar garden
RSAT: regulatory sequence analysis tools.
Thomas-Chollier, Morgane; Sand, Olivier; Turatsinze, Jean-Valéry; Janky, Rekin's; Defrance, Matthieu; Vervisch, Eric; Brohée, Sylvain; van Helden, Jacques
2008-07-01
The regulatory sequence analysis tools (RSAT, http://rsat.ulb.ac.be/rsat/) is a software suite that integrates a wide collection of modular tools for the detection of cis-regulatory elements in genome sequences. The suite includes programs for sequence retrieval, pattern discovery, phylogenetic footprint detection, pattern matching, genome scanning and feature map drawing. Random controls can be performed with random gene selections or by generating random sequences according to a variety of background models (Bernoulli, Markov). Beyond the original word-based pattern-discovery tools (oligo-analysis and dyad-analysis), we recently added a battery of tools for matrix-based detection of cis-acting elements, with some original features (adaptive background models, Markov-chain estimation of P-values) that do not exist in other matrix-based scanning tools. The web server offers an intuitive interface, where each program can be accessed either separately or connected to the other tools. In addition, the tools are now available as web services, enabling their integration in programmatic workflows. Genomes are regularly updated from various genome repositories (NCBI and EnsEMBL) and 682 organisms are currently supported. Since 1998, the tools have been used by several hundreds of researchers from all over the world. Several predictions made with RSAT were validated experimentally and published.
Rath, Frank
2008-01-01
This article examines the concepts of quality management (QM) and quality assurance (QA), as well as the current state of QM and QA practices in radiotherapy. A systematic approach incorporating a series of industrial engineering-based tools is proposed, which can be applied in health care organizations proactively to improve process outcomes, reduce risk and/or improve patient safety, improve through-put, and reduce cost. This tool set includes process mapping and process flowcharting, failure modes and effects analysis (FMEA), value stream mapping, and fault tree analysis (FTA). Many health care organizations do not have experience in applying these tools and therefore do not understand how and when to use them. As a result there are many misconceptions about how to use these tools, and they are often incorrectly applied. This article describes these industrial engineering-based tools and also how to use them, when they should be used (and not used), and the intended purposes for their use. In addition the strengths and weaknesses of each of these tools are described, and examples are given to demonstrate the application of these tools in health care settings.
msBiodat analysis tool, big data analysis for high-throughput experiments.
Muñoz-Torres, Pau M; Rokć, Filip; Belužic, Robert; Grbeša, Ivana; Vugrek, Oliver
2016-01-01
Mass spectrometry (MS) are a group of a high-throughput techniques used to increase knowledge about biomolecules. They produce a large amount of data which is presented as a list of hundreds or thousands of proteins. Filtering those data efficiently is the first step for extracting biologically relevant information. The filtering may increase interest by merging previous data with the data obtained from public databases, resulting in an accurate list of proteins which meet the predetermined conditions. In this article we present msBiodat Analysis Tool, a web-based application thought to approach proteomics to the big data analysis. With this tool, researchers can easily select the most relevant information from their MS experiments using an easy-to-use web interface. An interesting feature of msBiodat analysis tool is the possibility of selecting proteins by its annotation on Gene Ontology using its Gene Id, ensembl or UniProt codes. The msBiodat analysis tool is a web-based application that allows researchers with any programming experience to deal with efficient database querying advantages. Its versatility and user-friendly interface makes easy to perform fast and accurate data screening by using complex queries. Once the analysis is finished, the result is delivered by e-mail. msBiodat analysis tool is freely available at http://msbiodata.irb.hr.
Interchange Safety Analysis Tool (ISAT) : user manual
DOT National Transportation Integrated Search
2007-06-01
This User Manual describes the usage and operation of the spreadsheet-based Interchange Safety Analysis Tool (ISAT). ISAT provides design and safety engineers with an automated tool for assessing the safety effects of geometric design and traffic con...
Fault Tree Analysis Application for Safety and Reliability
NASA Technical Reports Server (NTRS)
Wallace, Dolores R.
2003-01-01
Many commercial software tools exist for fault tree analysis (FTA), an accepted method for mitigating risk in systems. The method embedded in the tools identifies a root as use in system components, but when software is identified as a root cause, it does not build trees into the software component. No commercial software tools have been built specifically for development and analysis of software fault trees. Research indicates that the methods of FTA could be applied to software, but the method is not practical without automated tool support. With appropriate automated tool support, software fault tree analysis (SFTA) may be a practical technique for identifying the underlying cause of software faults that may lead to critical system failures. We strive to demonstrate that existing commercial tools for FTA can be adapted for use with SFTA, and that applied to a safety-critical system, SFTA can be used to identify serious potential problems long before integrator and system testing.
Dcode.org anthology of comparative genomic tools.
Loots, Gabriela G; Ovcharenko, Ivan
2005-07-01
Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the non-coding encryption of gene regulation across genomes. To facilitate the practical application of comparative sequence analysis to genetics and genomics, we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools, zPicture and Mulan; a phylogenetic shadowing tool, eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools, rVista and multiTF; a tool for extracting cis-regulatory modules governing the expression of co-regulated genes, Creme 2.0; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here, we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ website.
An Integrated Approach to Risk Assessment for Concurrent Design
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Voss, Luke; Feather, Martin; Cornford, Steve
2005-01-01
This paper describes an approach to risk assessment and analysis suited to the early phase, concurrent design of a space mission. The approach integrates an agile, multi-user risk collection tool, a more in-depth risk analysis tool, and repositories of risk information. A JPL developed tool, named RAP, is used for collecting expert opinions about risk from designers involved in the concurrent design of a space mission. Another in-house developed risk assessment tool, named DDP, is used for the analysis.
Multi-mission telecom analysis tool
NASA Technical Reports Server (NTRS)
Hanks, D.; Kordon, M.; Baker, J.
2002-01-01
In the early formulation phase of a mission it is critically important to have fast, easy to use, easy to integrate space vehicle subsystem analysis tools so that engineers can rapidly perform trade studies not only by themselves but in coordination with other subsystem engineers as well. The Multi-Mission Telecom Analysis Tool (MMTAT) is designed for just this purpose.
A Quality Assessment Tool for Non-Specialist Users of Regression Analysis
ERIC Educational Resources Information Center
Argyrous, George
2015-01-01
This paper illustrates the use of a quality assessment tool for regression analysis. It is designed for non-specialist "consumers" of evidence, such as policy makers. The tool provides a series of questions such consumers of evidence can ask to interrogate regression analysis, and is illustrated with reference to a recent study published…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melaina, Marc; Bush, Brian; Penev, Michael
This presentation provides an introduction to the Hydrogen Financial Analysis Scenario Tool (H2FAST) and includes an overview of each of the three versions of H2FAST: the Web tool, the Excel spreadsheet version, and the beta version of the H2FAST Business Case Scenario tool.
Rotorcraft Conceptual Design Environment
2009-10-01
systems engineering design tool sets. The DaVinci Project vision is to develop software architecture and tools specifically for acquisition system...enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described. Introduction...information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION
Photomat: A Mobile Tool for Aiding in Student Construction of Research Questions and Data Analysis
ERIC Educational Resources Information Center
Shelley, Tia Renee; Dasgupta, Chandan; Silva, Alexandra; Lyons, Leilah; Moher, Tom
2015-01-01
This paper presents a new mobile software tool, PhotoMAT (Photo Management and Analysis Tool), and students' experiences with this tool within a scaffolded curricular unit--Neighborhood Safari. PhotoMAT was designed to support learners' investigations of backyard animal behavior and works with image sets obtained using fixed-position field cameras…
ERIC Educational Resources Information Center
Silva, Pedro
2017-01-01
There are several technological tools which aim to support first year students' challenges, especially when it comes to academic writing. This paper analyses one of these tools, Wiley's AssignMentor. The Technological Pedagogical Content Knowledge framework was used to systematise this analysis. The paper showed an alignment between the tools'…
HydroClimATe: hydrologic and climatic analysis toolkit
Dickinson, Jesse; Hanson, Randall T.; Predmore, Steven K.
2014-01-01
The potential consequences of climate variability and climate change have been identified as major issues for the sustainability and availability of the worldwide water resources. Unlike global climate change, climate variability represents deviations from the long-term state of the climate over periods of a few years to several decades. Currently, rich hydrologic time-series data are available, but the combination of data preparation and statistical methods developed by the U.S. Geological Survey as part of the Groundwater Resources Program is relatively unavailable to hydrologists and engineers who could benefit from estimates of climate variability and its effects on periodic recharge and water-resource availability. This report documents HydroClimATe, a computer program for assessing the relations between variable climatic and hydrologic time-series data. HydroClimATe was developed for a Windows operating system. The software includes statistical tools for (1) time-series preprocessing, (2) spectral analysis, (3) spatial and temporal analysis, (4) correlation analysis, and (5) projections. The time-series preprocessing tools include spline fitting, standardization using a normal or gamma distribution, and transformation by a cumulative departure. The spectral analysis tools include discrete Fourier transform, maximum entropy method, and singular spectrum analysis. The spatial and temporal analysis tool is empirical orthogonal function analysis. The correlation analysis tools are linear regression and lag correlation. The projection tools include autoregressive time-series modeling and generation of many realizations. These tools are demonstrated in four examples that use stream-flow discharge data, groundwater-level records, gridded time series of precipitation data, and the Multivariate ENSO Index.
On-line Monitoring for Cutting Tool Wear Condition Based on the Parameters
NASA Astrophysics Data System (ADS)
Han, Fenghua; Xie, Feng
2017-07-01
In the process of cutting tools, it is very important to monitor the working state of the tools. On the basis of acceleration signal acquisition under the constant speed, time domain and frequency domain analysis of relevant indicators monitor the online of tool wear condition. The analysis results show that the method can effectively judge the tool wear condition in the process of machining. It has certain application value.
Guidelines for the analysis of free energy calculations
Klimovich, Pavel V.; Shirts, Michael R.; Mobley, David L.
2015-01-01
Free energy calculations based on molecular dynamics (MD) simulations show considerable promise for applications ranging from drug discovery to prediction of physical properties and structure-function studies. But these calculations are still difficult and tedious to analyze, and best practices for analysis are not well defined or propagated. Essentially, each group analyzing these calculations needs to decide how to conduct the analysis and, usually, develop its own analysis tools. Here, we review and recommend best practices for analysis yielding reliable free energies from molecular simulations. Additionally, we provide a Python tool, alchemical–analysis.py, freely available on GitHub at https://github.com/choderalab/pymbar–examples, that implements the analysis practices reviewed here for several reference simulation packages, which can be adapted to handle data from other packages. Both this review and the tool covers analysis of alchemical calculations generally, including free energy estimates via both thermodynamic integration and free energy perturbation-based estimators. Our Python tool also handles output from multiple types of free energy calculations, including expanded ensemble and Hamiltonian replica exchange, as well as standard fixed ensemble calculations. We also survey a range of statistical and graphical ways of assessing the quality of the data and free energy estimates, and provide prototypes of these in our tool. We hope these tools and discussion will serve as a foundation for more standardization of and agreement on best practices for analysis of free energy calculations. PMID:25808134
Spreadsheet-based engine data analysis tool - user's guide.
DOT National Transportation Integrated Search
2016-07-01
This record refers to both the spreadsheet tool - Fleet Equipment Performance Measurement Preventive Maintenance Model: Spreadsheet-Based Engine Data Analysis Tool, http://ntl.bts.gov/lib/60000/60000/60007/0-6626-P1_Final.xlsm - and its accompanying ...
A Multidimensional Analysis Tool for Visualizing Online Interactions
ERIC Educational Resources Information Center
Kim, Minjeong; Lee, Eunchul
2012-01-01
This study proposes and verifies the performance of an analysis tool for visualizing online interactions. A review of the most widely used methods for analyzing online interactions, including quantitative analysis, content analysis, and social network analysis methods, indicates these analysis methods have some limitations resulting from their…
Design and Analysis Tools for Supersonic Inlets
NASA Technical Reports Server (NTRS)
Slater, John W.; Folk, Thomas C.
2009-01-01
Computational tools are being developed for the design and analysis of supersonic inlets. The objective is to update existing tools and provide design and low-order aerodynamic analysis capability for advanced inlet concepts. The Inlet Tools effort includes aspects of creating an electronic database of inlet design information, a document describing inlet design and analysis methods, a geometry model for describing the shape of inlets, and computer tools that implement the geometry model and methods. The geometry model has a set of basic inlet shapes that include pitot, two-dimensional, axisymmetric, and stream-traced inlet shapes. The inlet model divides the inlet flow field into parts that facilitate the design and analysis methods. The inlet geometry model constructs the inlet surfaces through the generation and transformation of planar entities based on key inlet design factors. Future efforts will focus on developing the inlet geometry model, the inlet design and analysis methods, a Fortran 95 code to implement the model and methods. Other computational platforms, such as Java, will also be explored.
Nutrition screening tools: an analysis of the evidence.
Skipper, Annalynn; Ferguson, Maree; Thompson, Kyle; Castellanos, Victoria H; Porcari, Judy
2012-05-01
In response to questions about tools for nutrition screening, an evidence analysis project was developed to identify the most valid and reliable nutrition screening tools for use in acute care and hospital-based ambulatory care settings. An oversight group defined nutrition screening and literature search criteria. A trained analyst conducted structured searches of the literature for studies of nutrition screening tools according to predetermined criteria. Eleven nutrition screening tools designed to detect undernutrition in patients in acute care and hospital-based ambulatory care were identified. Trained analysts evaluated articles for quality using criteria specified by the American Dietetic Association's Evidence Analysis Library. Members of the oversight group assigned quality grades to the tools based on the quality of the supporting evidence, including reliability and validity data. One tool, the NRS-2002, received a grade I, and 4 tools-the Simple Two-Part Tool, the Mini-Nutritional Assessment-Short Form (MNA-SF), the Malnutrition Screening Tool (MST), and Malnutrition Universal Screening Tool (MUST)-received a grade II. The MST was the only tool shown to be both valid and reliable for identifying undernutrition in the settings studied. Thus, validated nutrition screening tools that are simple and easy to use are available for application in acute care and hospital-based ambulatory care settings.
Tool for Rapid Analysis of Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Restrepo, Carolina; McCall, Kurt E.; Hurtado, John E.
2013-01-01
Designing a spacecraft, or any other complex engineering system, requires extensive simulation and analysis work. Oftentimes, the large amounts of simulation data generated are very difficult and time consuming to analyze, with the added risk of overlooking potentially critical problems in the design. The authors have developed a generic data analysis tool that can quickly sort through large data sets and point an analyst to the areas in the data set that cause specific types of failures. The first version of this tool was a serial code and the current version is a parallel code, which has greatly increased the analysis capabilities. This paper describes the new implementation of this analysis tool on a graphical processing unit, and presents analysis results for NASA's Orion Monte Carlo data to demonstrate its capabilities.
YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia.
Tan, Shi Yang; Dutta, Avirup; Jakubovics, Nicholas S; Ang, Mia Yang; Siow, Cheuk Chuen; Mutha, Naresh Vr; Heydari, Hamed; Wee, Wei Yee; Wong, Guat Jah; Choo, Siew Woh
2015-01-16
Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the preliminary results showed differences in virulence genes found in Yersinia pestis and Yersinia pseudotuberculosis compared to other Yersinia species, and differences between Yersinia enterocolitica subsp. enterocolitica and Yersinia enterocolitica subsp. palearctica. YersiniaBase offers free access to wide range of genomic data and analysis tools for the analysis of Yersinia. YersiniaBase can be accessed at http://yersinia.um.edu.my .
This product is an easy-to-use Excel-based macro analysis tool (MAT) for performing comparisons of air sensor data with reference data and interpreting the results. This tool tackles one of the biggest hurdles in citizen-led community air monitoring projects – working with ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aurich, Maike K.; Fleming, Ronan M. T.; Thiele, Ines
Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Previous work, by us and others, revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. With the MetaboTools, we make our methods available to the broader scientific community. The MetaboTools consist of a protocol, a toolbox, and tutorials of two use cases. The protocol describes, in a step-wise manner, the workflow of data integration, and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorialsmore » explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, the MetaboTools constitute a comprehensive guide to the intra-model analysis of extracellular metabolomic data from microbial, plant, or human cells. In conclusion, this computational modeling resource offers a broad set of computational analysis tools for a wide biomedical and non-biomedical research community.« less
FSSC Science Tools: Pulsar Analysis
NASA Technical Reports Server (NTRS)
Thompson, Dave
2010-01-01
This slide presentation reviews the typical pulsar analysis, giving tips for screening of the data, the use of time series analysis, and utility tools. Specific information about analyzing Vela data is reviewed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... for analysis in the NCUA Low-Income Designation (LID) Tool. The LID Tool is a geocoding software... the member address data are obtained through the examination process and the results of the LID Tool... may send an electronic member address data file for analysis in the LID Tool. If a credit union does...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... analysis in the NCUA Low-Income Designation (LID) Tool. The LID Tool is a geocoding software program which... data are obtained through the examination process and the results of the LID Tool indicate the credit... electronic member address data file for analysis in the LID Tool. If a credit union does not qualify for a...
Modeling Tools for Propulsion Analysis and Computational Fluid Dynamics on the Internet
NASA Technical Reports Server (NTRS)
Muss, J. A.; Johnson, C. W.; Gotchy, M. B.
2000-01-01
The existing RocketWeb(TradeMark) Internet Analysis System (httr)://www.iohnsonrockets.com/rocketweb) provides an integrated set of advanced analysis tools that can be securely accessed over the Internet. Since these tools consist of both batch and interactive analysis codes, the system includes convenient methods for creating input files and evaluating the resulting data. The RocketWeb(TradeMark) system also contains many features that permit data sharing which, when further developed, will facilitate real-time, geographically diverse, collaborative engineering within a designated work group. Adding work group management functionality while simultaneously extending and integrating the system's set of design and analysis tools will create a system providing rigorous, controlled design development, reducing design cycle time and cost.
Thermodynamics of Gas Turbine Cycles with Analytic Derivatives in OpenMDAO
NASA Technical Reports Server (NTRS)
Gray, Justin; Chin, Jeffrey; Hearn, Tristan; Hendricks, Eric; Lavelle, Thomas; Martins, Joaquim R. R. A.
2016-01-01
A new equilibrium thermodynamics analysis tool was built based on the CEA method using the OpenMDAO framework. The new tool provides forward and adjoint analytic derivatives for use with gradient based optimization algorithms. The new tool was validated against the original CEA code to ensure an accurate analysis and the analytic derivatives were validated against finite-difference approximations. Performance comparisons between analytic and finite difference methods showed a significant speed advantage for the analytic methods. To further test the new analysis tool, a sample optimization was performed to find the optimal air-fuel equivalence ratio, , maximizing combustion temperature for a range of different pressures. Collectively, the results demonstrate the viability of the new tool to serve as the thermodynamic backbone for future work on a full propulsion modeling tool.
Hydrogen Financial Analysis Scenario Tool (H2FAST). Web Tool User's Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, B.; Penev, M.; Melaina, M.
The Hydrogen Financial Analysis Scenario Tool (H2FAST) provides a quick and convenient indepth financial analysis for hydrogen fueling stations. This manual describes how to use the H2FAST web tool, which is one of three H2FAST formats developed by the National Renewable Energy Laboratory (NREL). Although all of the formats are based on the same financial computations and conform to generally accepted accounting principles (FASAB 2014, Investopedia 2014), each format provides a different level of complexity and user interactivity.
Full Life Cycle of Data Analysis with Climate Model Diagnostic Analyzer (CMDA)
NASA Astrophysics Data System (ADS)
Lee, S.; Zhai, C.; Pan, L.; Tang, B.; Zhang, J.; Bao, Q.; Malarout, N.
2017-12-01
We have developed a system that supports the full life cycle of a data analysis process, from data discovery, to data customization, to analysis, to reanalysis, to publication, and to reproduction. The system called Climate Model Diagnostic Analyzer (CMDA) is designed to demonstrate that the full life cycle of data analysis can be supported within one integrated system for climate model diagnostic evaluation with global observational and reanalysis datasets. CMDA has four subsystems that are highly integrated to support the analysis life cycle. Data System manages datasets used by CMDA analysis tools, Analysis System manages CMDA analysis tools which are all web services, Provenance System manages the meta data of CMDA datasets and the provenance of CMDA analysis history, and Recommendation System extracts knowledge from CMDA usage history and recommends datasets/analysis tools to users. These four subsystems are not only highly integrated but also easily expandable. New datasets can be easily added to Data System and scanned to be visible to the other subsystems. New analysis tools can be easily registered to be available in the Analysis System and Provenance System. With CMDA, a user can start a data analysis process by discovering datasets of relevance to their research topic using the Recommendation System. Next, the user can customize the discovered datasets for their scientific use (e.g. anomaly calculation, regridding, etc) with tools in the Analysis System. Next, the user can do their analysis with the tools (e.g. conditional sampling, time averaging, spatial averaging) in the Analysis System. Next, the user can reanalyze the datasets based on the previously stored analysis provenance in the Provenance System. Further, they can publish their analysis process and result to the Provenance System to share with other users. Finally, any user can reproduce the published analysis process and results. By supporting the full life cycle of climate data analysis, CMDA improves the research productivity and collaboration level of its user.
Structured Analysis and the Data Flow Diagram: Tools for Library Analysis.
ERIC Educational Resources Information Center
Carlson, David H.
1986-01-01
This article discusses tools developed to aid the systems analysis process (program evaluation and review technique, Gantt charts, organizational charts, decision tables, flowcharts, hierarchy plus input-process-output). Similarities and differences among techniques, library applications of analysis, structured systems analysis, and the data flow…
Surface analysis of stone and bone tools
NASA Astrophysics Data System (ADS)
Stemp, W. James; Watson, Adam S.; Evans, Adrian A.
2016-03-01
Microwear (use-wear) analysis is a powerful method for identifying tool use that archaeologists and anthropologists employ to determine the activities undertaken by both humans and their hominin ancestors. Knowledge of tool use allows for more accurate and detailed reconstructions of past behavior, particularly in relation to subsistence practices, economic activities, conflict and ritual. It can also be used to document changes in these activities over time, in different locations, and by different members of society, in terms of gender and status, for example. Both stone and bone tools have been analyzed using a variety of techniques that focus on the observation, documentation and interpretation of wear traces. Traditionally, microwear analysis relied on the qualitative assessment of wear features using microscopes and often included comparisons between replicated tools used experimentally and the recovered artifacts, as well as functional analogies dependent upon modern implements and those used by indigenous peoples from various places around the world. Determination of tool use has also relied on the recovery and analysis of both organic and inorganic residues of past worked materials that survived in and on artifact surfaces. To determine tool use and better understand the mechanics of wear formation, particularly on stone and bone, archaeologists and anthropologists have increasingly turned to surface metrology and tribology to assist them in their research. This paper provides a history of the development of traditional microwear analysis in archaeology and anthropology and also explores the introduction and adoption of more modern methods and technologies for documenting and identifying wear on stone and bone tools, specifically those developed for the engineering sciences to study surface structures on micro- and nanoscales. The current state of microwear analysis is discussed as are the future directions in the study of microwear on stone and bone tools.
NASA Technical Reports Server (NTRS)
Rasmussen, Robert; Bennett, Matthew
2006-01-01
The State Analysis Database Tool software establishes a productive environment for collaboration among software and system engineers engaged in the development of complex interacting systems. The tool embodies State Analysis, a model-based system engineering methodology founded on a state-based control architecture (see figure). A state represents a momentary condition of an evolving system, and a model may describe how a state evolves and is affected by other states. The State Analysis methodology is a process for capturing system and software requirements in the form of explicit models and states, and defining goal-based operational plans consistent with the models. Requirements, models, and operational concerns have traditionally been documented in a variety of system engineering artifacts that address different aspects of a mission s lifecycle. In State Analysis, requirements, models, and operations information are State Analysis artifacts that are consistent and stored in a State Analysis Database. The tool includes a back-end database, a multi-platform front-end client, and Web-based administrative functions. The tool is structured to prompt an engineer to follow the State Analysis methodology, to encourage state discovery and model description, and to make software requirements and operations plans consistent with model descriptions.
SimHap GUI: an intuitive graphical user interface for genetic association analysis.
Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J
2008-12-25
Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis.
Designed tools for analysis of lithography patterns and nanostructures
NASA Astrophysics Data System (ADS)
Dervillé, Alexandre; Baderot, Julien; Bernard, Guilhem; Foucher, Johann; Grönqvist, Hanna; Labrosse, Aurélien; Martinez, Sergio; Zimmermann, Yann
2017-03-01
We introduce a set of designed tools for the analysis of lithography patterns and nano structures. The classical metrological analysis of these objects has the drawbacks of being time consuming, requiring manual tuning and lacking robustness and user friendliness. With the goal of improving the current situation, we propose new image processing tools at different levels: semi automatic, automatic and machine-learning enhanced tools. The complete set of tools has been integrated into a software platform designed to transform the lab into a virtual fab. The underlying idea is to master nano processes at the research and development level by accelerating the access to knowledge and hence speed up the implementation in product lines.
Data and Tools Data and Tools NREL develops data sets, maps, models, and tools for the analysis of , models, and tools in the alphabetical listing. Popular Resources PVWatts Calculator Geospatial Data
Minimally invasive surgical video analysis: a powerful tool for surgical training and navigation.
Sánchez-González, P; Oropesa, I; Gómez, E J
2013-01-01
Analysis of minimally invasive surgical videos is a powerful tool to drive new solutions for achieving reproducible training programs, objective and transparent assessment systems and navigation tools to assist surgeons and improve patient safety. This paper presents how video analysis contributes to the development of new cognitive and motor training and assessment programs as well as new paradigms for image-guided surgery.
Guidelines for the analysis of free energy calculations.
Klimovich, Pavel V; Shirts, Michael R; Mobley, David L
2015-05-01
Free energy calculations based on molecular dynamics simulations show considerable promise for applications ranging from drug discovery to prediction of physical properties and structure-function studies. But these calculations are still difficult and tedious to analyze, and best practices for analysis are not well defined or propagated. Essentially, each group analyzing these calculations needs to decide how to conduct the analysis and, usually, develop its own analysis tools. Here, we review and recommend best practices for analysis yielding reliable free energies from molecular simulations. Additionally, we provide a Python tool, alchemical-analysis.py, freely available on GitHub as part of the pymbar package (located at http://github.com/choderalab/pymbar), that implements the analysis practices reviewed here for several reference simulation packages, which can be adapted to handle data from other packages. Both this review and the tool covers analysis of alchemical calculations generally, including free energy estimates via both thermodynamic integration and free energy perturbation-based estimators. Our Python tool also handles output from multiple types of free energy calculations, including expanded ensemble and Hamiltonian replica exchange, as well as standard fixed ensemble calculations. We also survey a range of statistical and graphical ways of assessing the quality of the data and free energy estimates, and provide prototypes of these in our tool. We hope this tool and discussion will serve as a foundation for more standardization of and agreement on best practices for analysis of free energy calculations.
Code Analysis and Refactoring with Clang Tools, Version 0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, Timothy M.
2016-12-23
Code Analysis and Refactoring with Clang Tools is a small set of example code that demonstrates techniques for applying tools distributed with the open source Clang compiler. Examples include analyzing where variables are used and replacing old data structures with standard structures.
Capturing district nursing through a knowledge-based electronic caseload analysis tool (eCAT).
Kane, Kay
2014-03-01
The Electronic Caseload Analysis Tool (eCAT) is a knowledge-based software tool to assist the caseload analysis process. The tool provides a wide range of graphical reports, along with an integrated clinical advisor, to assist district nurses, team leaders, operational and strategic managers with caseload analysis by describing, comparing and benchmarking district nursing practice in the context of population need, staff resources, and service structure. District nurses and clinical lead nurses in Northern Ireland developed the tool, along with academic colleagues from the University of Ulster, working in partnership with a leading software company. The aim was to use the eCAT tool to identify the nursing need of local populations, along with the variances in district nursing practice, and match the workforce accordingly. This article reviews the literature, describes the eCAT solution and discusses the impact of eCAT on nursing practice, staff allocation, service delivery and workforce planning, using fictitious exemplars and a post-implementation evaluation from the trusts.
Sadeghi, Samira; Sadeghi, Leyla; Tricot, Nicolas; Mathieu, Luc
2017-12-01
Accident reports are published in order to communicate the information and lessons learned from accidents. An efficient accident recording and analysis system is a necessary step towards improvement of safety. However, currently there is a shortage of efficient tools to support such recording and analysis. In this study we introduce a flexible and customizable tool that allows structuring and analysis of this information. This tool has been implemented under TEEXMA®. We named our prototype TEEXMA®SAFETY. This tool provides an information management system to facilitate data collection, organization, query, analysis and reporting of accidents. A predefined information retrieval module provides ready access to data which allows the user to quickly identify the possible hazards for specific machines and provides information on the source of hazards. The main target audience for this tool includes safety personnel, accident reporters and designers. The proposed data model has been developed by analyzing different accident reports.
GREAT: a web portal for Genome Regulatory Architecture Tools
Bouyioukos, Costas; Bucchini, François; Elati, Mohamed; Képès, François
2016-01-01
GREAT (Genome REgulatory Architecture Tools) is a novel web portal for tools designed to generate user-friendly and biologically useful analysis of genome architecture and regulation. The online tools of GREAT are freely accessible and compatible with essentially any operating system which runs a modern browser. GREAT is based on the analysis of genome layout -defined as the respective positioning of co-functional genes- and its relation with chromosome architecture and gene expression. GREAT tools allow users to systematically detect regular patterns along co-functional genomic features in an automatic way consisting of three individual steps and respective interactive visualizations. In addition to the complete analysis of regularities, GREAT tools enable the use of periodicity and position information for improving the prediction of transcription factor binding sites using a multi-view machine learning approach. The outcome of this integrative approach features a multivariate analysis of the interplay between the location of a gene and its regulatory sequence. GREAT results are plotted in web interactive graphs and are available for download either as individual plots, self-contained interactive pages or as machine readable tables for downstream analysis. The GREAT portal can be reached at the following URL https://absynth.issb.genopole.fr/GREAT and each individual GREAT tool is available for downloading. PMID:27151196
Sustainability Tools Inventory - Initial Gaps Analysis | Science ...
This report identifies a suite of tools that address a comprehensive set of community sustainability concerns. The objective is to discover whether "gaps" exist in the tool suite’s analytic capabilities. These tools address activities that significantly influence resource consumption, waste generation, and hazard generation including air pollution and greenhouse gases. In addition, the tools have been evaluated using four screening criteria: relevance to community decision making, tools in an appropriate developmental stage, tools that may be transferrable to situations useful for communities, and tools with requiring skill levels appropriate to communities. This document provides an initial gap analysis in the area of community sustainability decision support tools. It provides a reference to communities for existing decision support tools, and a set of gaps for those wishing to develop additional needed tools to help communities to achieve sustainability. It contributes to SHC 1.61.4
1988-09-01
analysis phase of the software life cycle (16:1-1). While editing a SADT diagram, the tool should be able to check whether or not structured analysis...diag-ams are valid for the SADT’s syntax, produce error messages, do error recovery, and perform editing suggestions. Thus, this tool must have the...directed editors are editors which use the syn- tax of the programming language while editing a program. While text editors treat programs as text, syntax
RADC SCAT automated sneak circuit analysis tool
NASA Astrophysics Data System (ADS)
Depalma, Edward L.
The sneak circuit analysis tool (SCAT) provides a PC-based system for real-time identification (during the design phase) of sneak paths and design concerns. The tool utilizes an expert system shell to assist the analyst so that prior experience with sneak analysis is not necessary for performance. Both sneak circuits and design concerns are targeted by this tool, with both digital and analog circuits being examined. SCAT focuses the analysis at the assembly level, rather than the entire system, so that most sneak problems can be identified and corrected by the responsible design engineer in a timely manner. The SCAT program identifies the sneak circuits to the designer, who then decides what course of action is necessary.
NASTRAN as an analytical research tool for composite mechanics and composite structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.; Sullivan, T. L.
1976-01-01
Selected examples are described in which NASTRAN is used as an analysis research tool for composite mechanics and for composite structural components. The examples were selected to illustrate the importance of using NASTRAN as an analysis tool in this rapidly advancing field.
Synthesis of research on work zone delays and simplified application of QuickZone analysis tool.
DOT National Transportation Integrated Search
2010-03-01
The objectives of this project were to synthesize the latest information on work zone safety and management and identify case studies in which FHWAs decision support tool QuickZone or other appropriate analysis tools could be applied. The results ...
Interactive Graphics Tools for Analysis of MOLA and Other Data
NASA Technical Reports Server (NTRS)
Frey, H.; Roark, J.; Sakimoto, S.
2000-01-01
We have developed several interactive analysis tools based on the IDL programming language for the analysis of Mars Orbiting Laser Altimeter (MOLA) profile and gridded data which are available to the general community.
Byrska-Bishop, Marta; Wallace, John; Frase, Alexander T; Ritchie, Marylyn D
2018-01-01
Abstract Motivation BioBin is an automated bioinformatics tool for the multi-level biological binning of sequence variants. Herein, we present a significant update to BioBin which expands the software to facilitate a comprehensive rare variant analysis and incorporates novel features and analysis enhancements. Results In BioBin 2.3, we extend our software tool by implementing statistical association testing, updating the binning algorithm, as well as incorporating novel analysis features providing for a robust, highly customizable, and unified rare variant analysis tool. Availability and implementation The BioBin software package is open source and freely available to users at http://www.ritchielab.com/software/biobin-download Contact mdritchie@geisinger.edu Supplementary information Supplementary data are available at Bioinformatics online. PMID:28968757
Advanced Stoichiometric Analysis of Metabolic Networks of Mammalian Systems
Orman, Mehmet A.; Berthiaume, Francois; Androulakis, Ioannis P.; Ierapetritou, Marianthi G.
2013-01-01
Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells. Limited experimental data, complex regulatory mechanisms, and the requirement of more complex nutrient media are some major obstacles in mammalian cell systems. However, mammalian cells have been used to produce therapeutic proteins, to characterize disease states or related abnormal metabolic conditions, and to analyze the toxicological effects of some medicinally important drugs. Therefore, there is a growing need for extending metabolic engineering principles to mammalian cells in order to understand their underlying metabolic functions. In this review article, advanced metabolic engineering tools developed for stoichiometric analysis including MFA, FBA, and MPA are described. Applications of these tools in mammalian cells are discussed in detail, and the challenges and opportunities are highlighted. PMID:22196224
2013-01-01
Background Assessing the risk of bias of randomized controlled trials (RCTs) is crucial to understand how biases affect treatment effect estimates. A number of tools have been developed to evaluate risk of bias of RCTs; however, it is unknown how these tools compare to each other in the items included. The main objective of this study was to describe which individual items are included in RCT quality tools used in general health and physical therapy (PT) research, and how these items compare to those of the Cochrane Risk of Bias (RoB) tool. Methods We used comprehensive literature searches and a systematic approach to identify tools that evaluated the methodological quality or risk of bias of RCTs in general health and PT research. We extracted individual items from all quality tools. We calculated the frequency of quality items used across tools and compared them to those in the RoB tool. Comparisons were made between general health and PT quality tools using Chi-squared tests. Results In addition to the RoB tool, 26 quality tools were identified, with 19 being used in general health and seven in PT research. The total number of quality items included in general health research tools was 130, compared with 48 items across PT tools and seven items in the RoB tool. The most frequently included items in general health research tools (14/19, 74%) were inclusion and exclusion criteria, and appropriate statistical analysis. In contrast, the most frequent items included in PT tools (86%, 6/7) were: baseline comparability, blinding of investigator/assessor, and use of intention-to-treat analysis. Key items of the RoB tool (sequence generation and allocation concealment) were included in 71% (5/7) of PT tools, and 63% (12/19) and 37% (7/19) of general health research tools, respectively. Conclusions There is extensive item variation across tools that evaluate the risk of bias of RCTs in health research. Results call for an in-depth analysis of items that should be used to assess risk of bias of RCTs. Further empirical evidence on the use of individual items and the psychometric properties of risk of bias tools is needed. PMID:24044807
Armijo-Olivo, Susan; Fuentes, Jorge; Ospina, Maria; Saltaji, Humam; Hartling, Lisa
2013-09-17
Assessing the risk of bias of randomized controlled trials (RCTs) is crucial to understand how biases affect treatment effect estimates. A number of tools have been developed to evaluate risk of bias of RCTs; however, it is unknown how these tools compare to each other in the items included. The main objective of this study was to describe which individual items are included in RCT quality tools used in general health and physical therapy (PT) research, and how these items compare to those of the Cochrane Risk of Bias (RoB) tool. We used comprehensive literature searches and a systematic approach to identify tools that evaluated the methodological quality or risk of bias of RCTs in general health and PT research. We extracted individual items from all quality tools. We calculated the frequency of quality items used across tools and compared them to those in the RoB tool. Comparisons were made between general health and PT quality tools using Chi-squared tests. In addition to the RoB tool, 26 quality tools were identified, with 19 being used in general health and seven in PT research. The total number of quality items included in general health research tools was 130, compared with 48 items across PT tools and seven items in the RoB tool. The most frequently included items in general health research tools (14/19, 74%) were inclusion and exclusion criteria, and appropriate statistical analysis. In contrast, the most frequent items included in PT tools (86%, 6/7) were: baseline comparability, blinding of investigator/assessor, and use of intention-to-treat analysis. Key items of the RoB tool (sequence generation and allocation concealment) were included in 71% (5/7) of PT tools, and 63% (12/19) and 37% (7/19) of general health research tools, respectively. There is extensive item variation across tools that evaluate the risk of bias of RCTs in health research. Results call for an in-depth analysis of items that should be used to assess risk of bias of RCTs. Further empirical evidence on the use of individual items and the psychometric properties of risk of bias tools is needed.
A comparative analysis of Patient-Reported Expanded Disability Status Scale tools.
Collins, Christian DE; Ivry, Ben; Bowen, James D; Cheng, Eric M; Dobson, Ruth; Goodin, Douglas S; Lechner-Scott, Jeannette; Kappos, Ludwig; Galea, Ian
2016-09-01
Patient-Reported Expanded Disability Status Scale (PREDSS) tools are an attractive alternative to the Expanded Disability Status Scale (EDSS) during long term or geographically challenging studies, or in pressured clinical service environments. Because the studies reporting these tools have used different metrics to compare the PREDSS and EDSS, we undertook an individual patient data level analysis of all available tools. Spearman's rho and the Bland-Altman method were used to assess correlation and agreement respectively. A systematic search for validated PREDSS tools covering the full EDSS range identified eight such tools. Individual patient data were available for five PREDSS tools. Excellent correlation was observed between EDSS and PREDSS with all tools. A higher level of agreement was observed with increasing levels of disability. In all tools, the 95% limits of agreement were greater than the minimum EDSS difference considered to be clinically significant. However, the intra-class coefficient was greater than that reported for EDSS raters of mixed seniority. The visual functional system was identified as the most significant predictor of the PREDSS-EDSS difference. This analysis will (1) enable researchers and service providers to make an informed choice of PREDSS tool, depending on their individual requirements, and (2) facilitate improvement of current PREDSS tools. © The Author(s), 2015.
Physical Education Curriculum Analysis Tool (PECAT)
ERIC Educational Resources Information Center
Lee, Sarah M.; Wechsler, Howell
2006-01-01
The Physical Education Curriculum Analysis Tool (PECAT) will help school districts conduct a clear, complete, and consistent analysis of written physical education curricula, based upon national physical education standards. The PECAT is customizable to include local standards. The results from the analysis can help school districts enhance…
Understanding and Using the Fermi Science Tools
NASA Astrophysics Data System (ADS)
Asercion, Joseph
2018-01-01
The Fermi Science Support Center (FSSC) provides information, documentation, and tools for the analysis of Fermi science data, including both the Large-Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Source and binary versions of the Fermi Science Tools can be downloaded from the FSSC website, and are supported on multiple platforms. An overview document, the Cicerone, provides details of the Fermi mission, the science instruments and their response functions, the science data preparation and analysis process, and interpretation of the results. Analysis Threads and a reference manual available on the FSSC website provide the user with step-by-step instructions for many different types of data analysis: point source analysis - generating maps, spectra, and light curves, pulsar timing analysis, source identification, and the use of python for scripting customized analysis chains. We present an overview of the structure of the Fermi science tools and documentation, and how to acquire them. We also provide examples of standard analyses, including tips and tricks for improving Fermi science analysis.
VStar: Variable star data visualization and analysis tool
NASA Astrophysics Data System (ADS)
VStar Team
2014-07-01
VStar is a multi-platform, easy-to-use variable star data visualization and analysis tool. Data for a star can be read from the AAVSO (American Association of Variable Star Observers) database or from CSV and TSV files. VStar displays light curves and phase plots, can produce a mean curve, and analyzes time-frequency with Weighted Wavelet Z-Transform. It offers tools for period analysis, filtering, and other functions.
Cloud-Based Orchestration of a Model-Based Power and Data Analysis Toolchain
NASA Technical Reports Server (NTRS)
Post, Ethan; Cole, Bjorn; Dinkel, Kevin; Kim, Hongman; Lee, Erich; Nairouz, Bassem
2016-01-01
The proposed Europa Mission concept contains many engineering and scientific instruments that consume varying amounts of power and produce varying amounts of data throughout the mission. System-level power and data usage must be well understood and analyzed to verify design requirements. Numerous cross-disciplinary tools and analysis models are used to simulate the system-level spacecraft power and data behavior. This paper addresses the problem of orchestrating a consistent set of models, tools, and data in a unified analysis toolchain when ownership is distributed among numerous domain experts. An analysis and simulation environment was developed as a way to manage the complexity of the power and data analysis toolchain and to reduce the simulation turnaround time. A system model data repository is used as the trusted store of high-level inputs and results while other remote servers are used for archival of larger data sets and for analysis tool execution. Simulation data passes through numerous domain-specific analysis tools and end-to-end simulation execution is enabled through a web-based tool. The use of a cloud-based service facilitates coordination among distributed developers and enables scalable computation and storage needs, and ensures a consistent execution environment. Configuration management is emphasized to maintain traceability between current and historical simulation runs and their corresponding versions of models, tools and data.
Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melaina, Marc
This presentation describes the Hydrogen Financial Analysis Scenario Tool, H2FAST, and provides an overview of each of the three H2FAST formats: the H2FAST web tool, the H2FAST Excel spreadsheet, and the H2FAST Business Case Scenario (BCS) tool. Examples are presented to illustrate the types of questions that H2FAST can help answer.
Modes of Learning in Religious Education
ERIC Educational Resources Information Center
Afdal, Geir
2015-01-01
This article is a contribution to the discussion of learning processes in religious education (RE) classrooms. Sociocultural theories of learning, understood here as tool-mediated processes, are used in an analysis of three RE classroom conversations. The analysis focuses on the language tools that are used in conversations; how the tools mediate;…
Paediatric Automatic Phonological Analysis Tools (APAT).
Saraiva, Daniela; Lousada, Marisa; Hall, Andreia; Jesus, Luis M T
2017-12-01
To develop the pediatric Automatic Phonological Analysis Tools (APAT) and to estimate inter and intrajudge reliability, content validity, and concurrent validity. The APAT were constructed using Excel spreadsheets with formulas. The tools were presented to an expert panel for content validation. The corpus used in the Portuguese standardized test Teste Fonético-Fonológico - ALPE produced by 24 children with phonological delay or phonological disorder was recorded, transcribed, and then inserted into the APAT. Reliability and validity of APAT were analyzed. The APAT present strong inter- and intrajudge reliability (>97%). The content validity was also analyzed (ICC = 0.71), and concurrent validity revealed strong correlations between computerized and manual (traditional) methods. The development of these tools contributes to fill existing gaps in clinical practice and research, since previously there were no valid and reliable tools/instruments for automatic phonological analysis, which allowed the analysis of different corpora.
Standardizing Exoplanet Analysis with the Exoplanet Characterization Tool Kit (ExoCTK)
NASA Astrophysics Data System (ADS)
Fowler, Julia; Stevenson, Kevin B.; Lewis, Nikole K.; Fraine, Jonathan D.; Pueyo, Laurent; Bruno, Giovanni; Filippazzo, Joe; Hill, Matthew; Batalha, Natasha; Wakeford, Hannah; Bushra, Rafia
2018-06-01
Exoplanet characterization depends critically on analysis tools, models, and spectral libraries that are constantly under development and have no single source nor sense of unified style or methods. The complexity of spectroscopic analysis and initial time commitment required to become competitive is prohibitive to new researchers entering the field, as well as a remaining obstacle for established groups hoping to contribute in a comparable manner to their peers. As a solution, we are developing an open-source, modular data analysis package in Python and a publicly facing web interface including tools that address atmospheric characterization, transit observation planning with JWST, JWST corongraphy simulations, limb darkening, forward modeling, and data reduction, as well as libraries of stellar, planet, and opacity models. The foundation of these software tools and libraries exist within pockets of the exoplanet community, but our project will gather these seedling tools and grow a robust, uniform, and well-maintained exoplanet characterization toolkit.
Rapid Modeling and Analysis Tools: Evolution, Status, Needs and Directions
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Stone, Thomas J.; Ransom, Jonathan B. (Technical Monitor)
2002-01-01
Advanced aerospace systems are becoming increasingly more complex, and customers are demanding lower cost, higher performance, and high reliability. Increased demands are placed on the design engineers to collaborate and integrate design needs and objectives early in the design process to minimize risks that may occur later in the design development stage. High performance systems require better understanding of system sensitivities much earlier in the design process to meet these goals. The knowledge, skills, intuition, and experience of an individual design engineer will need to be extended significantly for the next generation of aerospace system designs. Then a collaborative effort involving the designer, rapid and reliable analysis tools and virtual experts will result in advanced aerospace systems that are safe, reliable, and efficient. This paper discusses the evolution, status, needs and directions for rapid modeling and analysis tools for structural analysis. First, the evolution of computerized design and analysis tools is briefly described. Next, the status of representative design and analysis tools is described along with a brief statement on their functionality. Then technology advancements to achieve rapid modeling and analysis are identified. Finally, potential future directions including possible prototype configurations are proposed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
..., and the general public; analysis of the role of comparative risk assessment in these evaluations, including decision analysis tools and gap analysis tools; identification, through case study presentations...
Application of Risk Assessment Tools in the Continuous Risk Management (CRM) Process
NASA Technical Reports Server (NTRS)
Ray, Paul S.
2002-01-01
Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) is currently implementing the Continuous Risk Management (CRM) Program developed by the Carnegie Mellon University and recommended by NASA as the Risk Management (RM) implementation approach. The four most frequently used risk assessment tools in the center are: (a) Failure Modes and Effects Analysis (FMEA), Hazard Analysis (HA), Fault Tree Analysis (FTA), and Probabilistic Risk Analysis (PRA). There are some guidelines for selecting the type of risk assessment tools during the project formulation phase of a project, but there is not enough guidance as to how to apply these tools in the Continuous Risk Management process (CRM). But the ways the safety and risk assessment tools are used make a significant difference in the effectiveness in the risk management function. Decisions regarding, what events are to be included in the analysis, to what level of details should the analysis be continued, make significant difference in the effectiveness of risk management program. Tools of risk analysis also depends on the phase of a project e.g. at the initial phase of a project, when not much data are available on hardware, standard FMEA cannot be applied; instead a functional FMEA may be appropriate. This study attempted to provide some directives to alleviate the difficulty in applying FTA, PRA, and FMEA in the CRM process. Hazard Analysis was not included in the scope of the study due to the short duration of the summer research project.
Tool for Rapid Analysis of Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Restrepo, Carolina; McCall, Kurt E.; Hurtado, John E.
2011-01-01
Designing a spacecraft, or any other complex engineering system, requires extensive simulation and analysis work. Oftentimes, the large amounts of simulation data generated are very di cult and time consuming to analyze, with the added risk of overlooking potentially critical problems in the design. The authors have developed a generic data analysis tool that can quickly sort through large data sets and point an analyst to the areas in the data set that cause specific types of failures. The Tool for Rapid Analysis of Monte Carlo simulations (TRAM) has been used in recent design and analysis work for the Orion vehicle, greatly decreasing the time it takes to evaluate performance requirements. A previous version of this tool was developed to automatically identify driving design variables in Monte Carlo data sets. This paper describes a new, parallel version, of TRAM implemented on a graphical processing unit, and presents analysis results for NASA's Orion Monte Carlo data to demonstrate its capabilities.
Object-Oriented Multi-Disciplinary Design, Analysis, and Optimization Tool
NASA Technical Reports Server (NTRS)
Pak, Chan-gi
2011-01-01
An Object-Oriented Optimization (O3) tool was developed that leverages existing tools and practices, and allows the easy integration and adoption of new state-of-the-art software. At the heart of the O3 tool is the Central Executive Module (CEM), which can integrate disparate software packages in a cross platform network environment so as to quickly perform optimization and design tasks in a cohesive, streamlined manner. This object-oriented framework can integrate the analysis codes for multiple disciplines instead of relying on one code to perform the analysis for all disciplines. The CEM was written in FORTRAN and the script commands for each performance index were submitted through the use of the FORTRAN Call System command. In this CEM, the user chooses an optimization methodology, defines objective and constraint functions from performance indices, and provides starting and side constraints for continuous as well as discrete design variables. The structural analysis modules such as computations of the structural weight, stress, deflection, buckling, and flutter and divergence speeds have been developed and incorporated into the O3 tool to build an object-oriented Multidisciplinary Design, Analysis, and Optimization (MDAO) tool.
Arroyo, Adrian; Matsuzawa, Tetsuro; de la Torre, Ignacio
2015-01-01
Stone tool use by wild chimpanzees of West Africa offers a unique opportunity to explore the evolutionary roots of technology during human evolution. However, detailed analyses of chimpanzee stone artifacts are still lacking, thus precluding a comparison with the earliest archaeological record. This paper presents the first systematic study of stone tools used by wild chimpanzees to crack open nuts in Bossou (Guinea-Conakry), and applies pioneering analytical techniques to such artifacts. Automatic morphometric GIS classification enabled to create maps of use wear over the stone tools (anvils, hammers, and hammers/ anvils), which were blind tested with GIS spatial analysis of damage patterns identified visually. Our analysis shows that chimpanzee stone tool use wear can be systematized and specific damage patterns discerned, allowing to discriminate between active and passive pounders in lithic assemblages. In summary, our results demonstrate the heuristic potential of combined suites of GIS techniques for the analysis of battered artifacts, and have enabled creating a referential framework of analysis in which wild chimpanzee battered tools can for the first time be directly compared to the early archaeological record. PMID:25793642
Blattmann, Peter; Heusel, Moritz; Aebersold, Ruedi
2016-01-01
SWATH-MS is an acquisition and analysis technique of targeted proteomics that enables measuring several thousand proteins with high reproducibility and accuracy across many samples. OpenSWATH is popular open-source software for peptide identification and quantification from SWATH-MS data. For downstream statistical and quantitative analysis there exist different tools such as MSstats, mapDIA and aLFQ. However, the transfer of data from OpenSWATH to the downstream statistical tools is currently technically challenging. Here we introduce the R/Bioconductor package SWATH2stats, which allows convenient processing of the data into a format directly readable by the downstream analysis tools. In addition, SWATH2stats allows annotation, analyzing the variation and the reproducibility of the measurements, FDR estimation, and advanced filtering before submitting the processed data to downstream tools. These functionalities are important to quickly analyze the quality of the SWATH-MS data. Hence, SWATH2stats is a new open-source tool that summarizes several practical functionalities for analyzing, processing, and converting SWATH-MS data and thus facilitates the efficient analysis of large-scale SWATH/DIA datasets.
Computational Tools and Facilities for the Next-Generation Analysis and Design Environment
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)
1997-01-01
This document contains presentations from the joint UVA/NASA Workshop on Computational Tools and Facilities for the Next-Generation Analysis and Design Environment held at the Virginia Consortium of Engineering and Science Universities in Hampton, Virginia on September 17-18, 1996. The presentations focused on the computational tools and facilities for analysis and design of engineering systems, including, real-time simulations, immersive systems, collaborative engineering environment, Web-based tools and interactive media for technical training. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the level of maturity of a number of computational tools and facilities and their potential for application to the next-generation integrated design environment.
Mars Reconnaissance Orbiter Uplink Analysis Tool
NASA Technical Reports Server (NTRS)
Khanampompan, Teerapat; Gladden, Roy; Fisher, Forest; Hwang, Pauline
2008-01-01
This software analyzes Mars Reconnaissance Orbiter (MRO) orbital geometry with respect to Mars Exploration Rover (MER) contact windows, and is the first tool of its kind designed specifically to support MRO-MER interface coordination. Prior to this automated tool, this analysis was done manually with Excel and the UNIX command line. In total, the process would take approximately 30 minutes for each analysis. The current automated analysis takes less than 30 seconds. This tool resides on the flight machine and uses a PHP interface that does the entire analysis of the input files and takes into account one-way light time from another input file. Input flies are copied over to the proper directories and are dynamically read into the tool s interface. The user can then choose the corresponding input files based on the time frame desired for analysis. After submission of the Web form, the tool merges the two files into a single, time-ordered listing of events for both spacecraft. The times are converted to the same reference time (Earth Transmit Time) by reading in a light time file and performing the calculations necessary to shift the time formats. The program also has the ability to vary the size of the keep-out window on the main page of the analysis tool by inputting a custom time for padding each MRO event time. The parameters on the form are read in and passed to the second page for analysis. Everything is fully coded in PHP and can be accessed by anyone with access to the machine via Web page. This uplink tool will continue to be used for the duration of the MER mission's needs for X-band uplinks. Future missions also can use the tools to check overflight times as well as potential site observation times. Adaptation of the input files to the proper format, and the window keep-out times, would allow for other analyses. Any operations task that uses the idea of keep-out windows will have a use for this program.
EZ and GOSSIP, two new VO compliant tools for spectral analysis
NASA Astrophysics Data System (ADS)
Franzetti, P.; Garill, B.; Fumana, M.; Paioro, L.; Scodeggio, M.; Paltani, S.; Scaramella, R.
2008-10-01
We present EZ and GOSSIP, two new VO compliant tools dedicated to spectral analysis. EZ is a tool to perform automatic redshift measurement; GOSSIP is a tool created to perform the SED fitting procedure in a simple, user friendly and efficient way. These two tools have been developed by the PANDORA Group at INAF-IASF (Milano); EZ has been developed in collaboration with Osservatorio Monte Porzio (Roma) and Integral Science Data Center (Geneve). EZ is released to the astronomical community; GOSSIP is currently in beta-testing.
SimHap GUI: An intuitive graphical user interface for genetic association analysis
Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J
2008-01-01
Background Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. Results We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. Conclusion SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis. PMID:19109877
General Mission Analysis Tool (GMAT) Mathematical Specifications
NASA Technical Reports Server (NTRS)
Hughes, Steve
2007-01-01
The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system developed by NASA and private industry in the spirit of the NASA Mission. GMAT contains new technology and is a testbed for future technology development.
Computerized power supply analysis: State equation generation and terminal models
NASA Technical Reports Server (NTRS)
Garrett, S. J.
1978-01-01
To aid engineers that design power supply systems two analysis tools that can be used with the state equation analysis package were developed. These tools include integration routines that start with the description of a power supply in state equation form and yield analytical results. The first tool uses a computer program that works with the SUPER SCEPTRE circuit analysis program and prints the state equation for an electrical network. The state equations developed automatically by the computer program are used to develop an algorithm for reducing the number of state variables required to describe an electrical network. In this way a second tool is obtained in which the order of the network is reduced and a simpler terminal model is obtained.
Network Analysis Tools: from biological networks to clusters and pathways.
Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques
2008-01-01
Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutes, Robert G.; Neubauer, Casey C.; Haack, Jereme N.
2015-03-31
The Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of an open-source software tool for analyzing building energy and operational data: OpenEIS (open energy information system). This tool addresses the problems of both owners of building data and developers of tools to analyze this data. Building owners and managers have data but lack the tools to analyze it while tool developers lack data in a common format to ease development of reusable data analysis tools. This document is intended for developers of applications and explains the mechanisms for building analysis applications, accessing data, and displaying datamore » using a visualization from the included library. A brief introduction to the visualizations can be used as a jumping off point for developers familiar with JavaScript to produce their own. Several example applications are included which can be used along with this document to implement algorithms for performing energy data analysis.« less
Learn by Yourself: The Self-Learning Tools for Qualitative Analysis Software Packages
ERIC Educational Resources Information Center
Freitas, Fábio; Ribeiro, Jaime; Brandão, Catarina; Reis, Luís Paulo; de Souza, Francislê Neri; Costa, António Pedro
2017-01-01
Computer Assisted Qualitative Data Analysis Software (CAQDAS) are tools that help researchers to develop qualitative research projects. These software packages help the users with tasks such as transcription analysis, coding and text interpretation, writing and annotation, content search and analysis, recursive abstraction, grounded theory…
GREAT: a web portal for Genome Regulatory Architecture Tools.
Bouyioukos, Costas; Bucchini, François; Elati, Mohamed; Képès, François
2016-07-08
GREAT (Genome REgulatory Architecture Tools) is a novel web portal for tools designed to generate user-friendly and biologically useful analysis of genome architecture and regulation. The online tools of GREAT are freely accessible and compatible with essentially any operating system which runs a modern browser. GREAT is based on the analysis of genome layout -defined as the respective positioning of co-functional genes- and its relation with chromosome architecture and gene expression. GREAT tools allow users to systematically detect regular patterns along co-functional genomic features in an automatic way consisting of three individual steps and respective interactive visualizations. In addition to the complete analysis of regularities, GREAT tools enable the use of periodicity and position information for improving the prediction of transcription factor binding sites using a multi-view machine learning approach. The outcome of this integrative approach features a multivariate analysis of the interplay between the location of a gene and its regulatory sequence. GREAT results are plotted in web interactive graphs and are available for download either as individual plots, self-contained interactive pages or as machine readable tables for downstream analysis. The GREAT portal can be reached at the following URL https://absynth.issb.genopole.fr/GREAT and each individual GREAT tool is available for downloading. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Stochastic Simulation Tool for Aerospace Structural Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F.; Moore, David F.
2006-01-01
Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties into the design analysis model and then determining their influence on the design. A high-level evaluation of one such stochastic simulation tool, the MSC.Robust Design tool by MSC.Software Corporation, has been conducted. This stochastic simulation tool provides structural analysts with a tool to interrogate their structural design based on their mathematical description of the design problem using finite element analysis methods. This tool leverages the analyst's prior investment in finite element model development of a particular design. The original finite element model is treated as the baseline structural analysis model for the stochastic simulations that are to be performed. A Monte Carlo approach is used by MSC.Robust Design to determine the effects of scatter in design input variables on response output parameters. The tool was not designed to provide a probabilistic assessment, but to assist engineers in understanding cause and effect. It is driven by a graphical-user interface and retains the engineer-in-the-loop strategy for design evaluation and improvement. The application problem for the evaluation is chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge panel under re-entry aerodynamic loading. MSC.Robust Design adds value to the analysis effort by rapidly being able to identify design input variables whose variability causes the most influence in response output parameters.
SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool
Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda
2008-01-01
Background It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. Results This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. Conclusion SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes. PMID:18706080
SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool.
Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda
2008-08-15
It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes.
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Mukherjee, S.
2016-09-01
One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.
NRMRL-CIN-1351A Hofstetter**, P., and Hammitt, J. K. Human Health Metrics for Environmental Decision Support Tools: Lessons from Health Economics and Decision Analysis. EPA/600/R-01/104 (NTIS PB2002-102119). Decision makers using environmental decision support tools are often ...
DOT National Transportation Integrated Search
2016-09-01
This report documents use of the NASA Design and Analysis of Rotorcraft (NDARC) helicopter performance software tool in developing data for the FAAs Aviation Environmental Design Tool (AEDT). These data support the Rotorcraft Performance Model (RP...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-30
... tool. The PBP analysis tool is a cash-flow model for evaluating alternative financing arrangements, and... PBP analysis tool is a cash-flow model for evaluating alternative financing arrangements, and is... that reflects adequate consideration to the Government for the improved contractor cash flow...
3D TRUMP - A GBI launch window tool
NASA Astrophysics Data System (ADS)
Karels, Steven N.; Hancock, John; Matchett, Gary
3D TRUMP is a novel GPS and communicatons-link software analysis tool developed for the SDIO's Ground-Based Interceptor (GBI) program. 3D TRUMP uses a computationally efficient analysis tool which provides key GPS-based performance measures for an entire GBI mission's reentry vehicle and interceptor trajectories. Algorithms and sample outputs are presented.
Making Culturally Responsive Mathematics Teaching Explicit: A Lesson Analysis Tool
ERIC Educational Resources Information Center
Aguirre, Julia M.; Zavala, Maria del Rosario
2013-01-01
In the United States, there is a need for pedagogical tools that help teachers develop essential pedagogical content knowledge and practices to meet the mathematical education needs of a growing culturally and linguistically diverse student population. In this article, we introduce an innovative lesson analysis tool that focuses on integrating…
Analysis of Ten Reverse Engineering Tools
NASA Astrophysics Data System (ADS)
Koskinen, Jussi; Lehmonen, Tero
Reverse engineering tools can be used in satisfying the information needs of software maintainers. Especially in case of maintaining large-scale legacy systems tool support is essential. Reverse engineering tools provide various kinds of capabilities to provide the needed information to the tool user. In this paper we analyze the provided capabilities in terms of four aspects: provided data structures, visualization mechanisms, information request specification mechanisms, and navigation features. We provide a compact analysis of ten representative reverse engineering tools for supporting C, C++ or Java: Eclipse Java Development Tools, Wind River Workbench (for C and C++), Understand (for C++), Imagix 4D, Creole, Javadoc, Javasrc, Source Navigator, Doxygen, and HyperSoft. The results of the study supplement the earlier findings in this important area.
Cornwell, MacIntosh; Vangala, Mahesh; Taing, Len; Herbert, Zachary; Köster, Johannes; Li, Bo; Sun, Hanfei; Li, Taiwen; Zhang, Jian; Qiu, Xintao; Pun, Matthew; Jeselsohn, Rinath; Brown, Myles; Liu, X Shirley; Long, Henry W
2018-04-12
RNA sequencing has become a ubiquitous technology used throughout life sciences as an effective method of measuring RNA abundance quantitatively in tissues and cells. The increase in use of RNA-seq technology has led to the continuous development of new tools for every step of analysis from alignment to downstream pathway analysis. However, effectively using these analysis tools in a scalable and reproducible way can be challenging, especially for non-experts. Using the workflow management system Snakemake we have developed a user friendly, fast, efficient, and comprehensive pipeline for RNA-seq analysis. VIPER (Visualization Pipeline for RNA-seq analysis) is an analysis workflow that combines some of the most popular tools to take RNA-seq analysis from raw sequencing data, through alignment and quality control, into downstream differential expression and pathway analysis. VIPER has been created in a modular fashion to allow for the rapid incorporation of new tools to expand the capabilities. This capacity has already been exploited to include very recently developed tools that explore immune infiltrate and T-cell CDR (Complementarity-Determining Regions) reconstruction abilities. The pipeline has been conveniently packaged such that minimal computational skills are required to download and install the dozens of software packages that VIPER uses. VIPER is a comprehensive solution that performs most standard RNA-seq analyses quickly and effectively with a built-in capacity for customization and expansion.
Lakbub, Jude C; Su, Xiaomeng; Zhu, Zhikai; Patabandige, Milani W; Hua, David; Go, Eden P; Desaire, Heather
2017-08-04
The glycopeptide analysis field is tightly constrained by a lack of effective tools that translate mass spectrometry data into meaningful chemical information, and perhaps the most challenging aspect of building effective glycopeptide analysis software is designing an accurate scoring algorithm for MS/MS data. We provide the glycoproteomics community with two tools to address this challenge. The first tool, a curated set of 100 expert-assigned CID spectra of glycopeptides, contains a diverse set of spectra from a variety of glycan types; the second tool, Glycopeptide Decoy Generator, is a new software application that generates glycopeptide decoys de novo. We developed these tools so that emerging methods of assigning glycopeptides' CID spectra could be rigorously tested. Software developers or those interested in developing skills in expert (manual) analysis can use these tools to facilitate their work. We demonstrate the tools' utility in assessing the quality of one particular glycopeptide software package, GlycoPep Grader, which assigns glycopeptides to CID spectra. We first acquired the set of 100 expert assigned CID spectra; then, we used the Decoy Generator (described herein) to generate 20 decoys per target glycopeptide. The assigned spectra and decoys were used to test the accuracy of GlycoPep Grader's scoring algorithm; new strengths and weaknesses were identified in the algorithm using this approach. Both newly developed tools are freely available. The software can be downloaded at http://glycopro.chem.ku.edu/GPJ.jar.
The EMBL-EBI bioinformatics web and programmatic tools framework.
Li, Weizhong; Cowley, Andrew; Uludag, Mahmut; Gur, Tamer; McWilliam, Hamish; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Lopez, Rodrigo
2015-07-01
Since 2009 the EMBL-EBI Job Dispatcher framework has provided free access to a range of mainstream sequence analysis applications. These include sequence similarity search services (https://www.ebi.ac.uk/Tools/sss/) such as BLAST, FASTA and PSI-Search, multiple sequence alignment tools (https://www.ebi.ac.uk/Tools/msa/) such as Clustal Omega, MAFFT and T-Coffee, and other sequence analysis tools (https://www.ebi.ac.uk/Tools/pfa/) such as InterProScan. Through these services users can search mainstream sequence databases such as ENA, UniProt and Ensembl Genomes, utilising a uniform web interface or systematically through Web Services interfaces (https://www.ebi.ac.uk/Tools/webservices/) using common programming languages, and obtain enriched results with novel visualisations. Integration with EBI Search (https://www.ebi.ac.uk/ebisearch/) and the dbfetch retrieval service (https://www.ebi.ac.uk/Tools/dbfetch/) further expands the usefulness of the framework. New tools and updates such as NCBI BLAST+, InterProScan 5 and PfamScan, new categories such as RNA analysis tools (https://www.ebi.ac.uk/Tools/rna/), new databases such as ENA non-coding, WormBase ParaSite, Pfam and Rfam, and new workflow methods, together with the retirement of depreciated services, ensure that the framework remains relevant to today's biological community. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Vines, Aleksander; Hansen, Morten W.; Korosov, Anton
2017-04-01
Existing infrastructure international and Norwegian projects, e.g., NorDataNet, NMDC and NORMAP, provide open data access through the OPeNDAP protocol following the conventions for CF (Climate and Forecast) metadata, designed to promote the processing and sharing of files created with the NetCDF application programming interface (API). This approach is now also being implemented in the Norwegian Sentinel Data Hub (satellittdata.no) to provide satellite EO data to the user community. Simultaneously with providing simplified and unified data access, these projects also seek to use and establish common standards for use and discovery metadata. This then allows development of standardized tools for data search and (subset) streaming over the internet to perform actual scientific analysis. A combinnation of software tools, which we call a Scientific Platform as a Service (SPaaS), will take advantage of these opportunities to harmonize and streamline the search, retrieval and analysis of integrated satellite and auxiliary observations of the oceans in a seamless system. The SPaaS is a cloud solution for integration of analysis tools with scientific datasets via an API. The core part of the SPaaS is a distributed metadata catalog to store granular metadata describing the structure, location and content of available satellite, model, and in situ datasets. The analysis tools include software for visualization (also online), interactive in-depth analysis, and server-based processing chains. The API conveys search requests between system nodes (i.e., interactive and server tools) and provides easy access to the metadata catalog, data repositories, and the tools. The SPaaS components are integrated in virtual machines, of which provisioning and deployment are automatized using existing state-of-the-art open-source tools (e.g., Vagrant, Ansible, Docker). The open-source code for scientific tools and virtual machine configurations is under version control at https://github.com/nansencenter/, and is coupled to an online continuous integration system (e.g., Travis CI).
U.S. Geological Survey ArcMap Sediment Classification tool
O'Malley, John
2007-01-01
The U.S. Geological Survey (USGS) ArcMap Sediment Classification tool is a custom toolbar that extends the Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 9.2 Desktop application to aid in the analysis of seabed sediment classification. The tool uses as input either a point data layer with field attributes containing percentage of gravel, sand, silt, and clay or four raster data layers representing a percentage of sediment (0-100%) for the various sediment grain size analysis: sand, gravel, silt and clay. This tool is designed to analyze the percent of sediment at a given location and classify the sediments according to either the Folk (1954, 1974) or Shepard (1954) as modified by Schlee(1973) classification schemes. The sediment analysis tool is based upon the USGS SEDCLASS program (Poppe, et al. 2004).
NASA Technical Reports Server (NTRS)
ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.
2005-01-01
The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.
SECIMTools: a suite of metabolomics data analysis tools.
Kirpich, Alexander S; Ibarra, Miguel; Moskalenko, Oleksandr; Fear, Justin M; Gerken, Joseph; Mi, Xinlei; Ashrafi, Ali; Morse, Alison M; McIntyre, Lauren M
2018-04-20
Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While technology used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving histories and enabling the sharing workflows among scientists. SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques (hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test), advanced classification methods (random forest, support vector machines), and advanced variable selection tools (least absolute shrinkage and selection operator LASSO and Elastic Net). SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables future data integration for metabolomics studies with other omics data.
Cost/Schedule Control Systems Criteria: A Reference Guide to C/SCSC information
1992-09-01
Smith, Larry A. "Mainframe ARTEMIS: More than a Project Management Tool -- Earned Value Analysis ( PEVA )," Project Management Journal, 19:23-28 (April 1988...A. "Mainframe ARTEMIS: More than a Project Management Tool - Earned Value Analysis ( PEVA )," Project Management Journal, 19:23-28 (April 1988). 14...than a Project Management Tool -- Earned Value Analysis ( PEVA )," Project Management Journal, 19:23-28 (April 1988). 17. Trufant, Thomas M. and Robert
A software tool to analyze clinical workflows from direct observations.
Schweitzer, Marco; Lasierra, Nelia; Hoerbst, Alexander
2015-01-01
Observational data of clinical processes need to be managed in a convenient way, so that process information is reliable, valid and viable for further analysis. However, existing tools for allocating observations fail in systematic data collection of specific workflow recordings. We present a software tool which was developed to facilitate the analysis of clinical process observations. The tool was successfully used in the project OntoHealth, to build, store and analyze observations of diabetes routine consultations.
Interactive Planning under Uncertainty with Casual Modeling and Analysis
2006-01-01
Tool ( CAT ), a system for creating and analyzing causal models similar to Bayes networks. In order to use CAT as a tool for planning, users go through...an iterative process in which they use CAT to create and an- alyze alternative plans. One of the biggest difficulties is that the number of possible...Causal Analysis Tool ( CAT ), which is a tool for representing and analyzing causal networks sim- ilar to Bayesian networks. In order to represent plans
Design and analysis of lifting tool assemblies to lift different engine block
NASA Astrophysics Data System (ADS)
Sawant, Arpana; Deshmukh, Nilaj N.; Chauhan, Santosh; Dabhadkar, Mandar; Deore, Rupali
2017-07-01
Engines block are required to be lifted from one place to another while they are being processed. The human effort required for this purpose is more and also the engine block may get damaged if it is not handled properly. There is a need for designing a proper lifting tool which will be able to conveniently lift the engine block and place it at the desired position without any accident and damage to the engine block. In the present study lifting tool assemblies are designed and analyzed in such way that it may lift different categories of engine blocks. The lifting tool assembly consists of lifting plate, lifting ring, cap screws and washers. A parametric model and assembly of Lifting tool is done in 3D modelling software CREO 2.0 and analysis is carried out in ANSYS Workbench 16.0. A test block of weight equivalent to that of an engine block is considered for the purpose of analysis. In the preliminary study, without washer the stresses obtained on the lifting tool were more than the safety margin. In the present design, washers were used with appropriate dimensions which helps to bring down the stresses on the lifting tool within the safety margin. Analysis is carried out to verify that tool design meets the ASME BTH-1 required safety margin.
Integrated Sensitivity Analysis Workflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman-Hill, Ernest J.; Hoffman, Edward L.; Gibson, Marcus J.
2014-08-01
Sensitivity analysis is a crucial element of rigorous engineering analysis, but performing such an analysis on a complex model is difficult and time consuming. The mission of the DART Workbench team at Sandia National Laboratories is to lower the barriers to adoption of advanced analysis tools through software integration. The integrated environment guides the engineer in the use of these integrated tools and greatly reduces the cycle time for engineering analysis.
Air Traffic Complexity Measurement Environment (ACME): Software User's Guide
NASA Technical Reports Server (NTRS)
1996-01-01
A user's guide for the Air Traffic Complexity Measurement Environment (ACME) software is presented. The ACME consists of two major components, a complexity analysis tool and user interface. The Complexity Analysis Tool (CAT) analyzes complexity off-line, producing data files which may be examined interactively via the Complexity Data Analysis Tool (CDAT). The Complexity Analysis Tool is composed of three independently executing processes that communicate via PVM (Parallel Virtual Machine) and Unix sockets. The Runtime Data Management and Control process (RUNDMC) extracts flight plan and track information from a SAR input file, and sends the information to GARP (Generate Aircraft Routes Process) and CAT (Complexity Analysis Task). GARP in turn generates aircraft trajectories, which are utilized by CAT to calculate sector complexity. CAT writes flight plan, track and complexity data to an output file, which can be examined interactively. The Complexity Data Analysis Tool (CDAT) provides an interactive graphic environment for examining the complexity data produced by the Complexity Analysis Tool (CAT). CDAT can also play back track data extracted from System Analysis Recording (SAR) tapes. The CDAT user interface consists of a primary window, a controls window, and miscellaneous pop-ups. Aircraft track and position data is displayed in the main viewing area of the primary window. The controls window contains miscellaneous control and display items. Complexity data is displayed in pop-up windows. CDAT plays back sector complexity and aircraft track and position data as a function of time. Controls are provided to start and stop playback, adjust the playback rate, and reposition the display to a specified time.
Radiation Mitigation and Power Optimization Design Tools for Reconfigurable Hardware in Orbit
NASA Technical Reports Server (NTRS)
French, Matthew; Graham, Paul; Wirthlin, Michael; Wang, Li; Larchev, Gregory
2005-01-01
The Reconfigurable Hardware in Orbit (RHinO)project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. In the second year of the project, design tools that leverage an established FPGA design environment have been created to visualize and analyze an FPGA circuit for radiation weaknesses and power inefficiencies. For radiation, a single event Upset (SEU) emulator, persistence analysis tool, and a half-latch removal tool for Xilinx/Virtex-II devices have been created. Research is underway on a persistence mitigation tool and multiple bit upsets (MBU) studies. For power, synthesis level dynamic power visualization and analysis tools have been completed. Power optimization tools are under development and preliminary test results are positive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Barton
2014-06-30
Peta-scale computing environments pose significant challenges for both system and application developers and addressing them required more than simply scaling up existing tera-scale solutions. Performance analysis tools play an important role in gaining this understanding, but previous monolithic tools with fixed feature sets have not sufficed. Instead, this project worked on the design, implementation, and evaluation of a general, flexible tool infrastructure supporting the construction of performance tools as “pipelines” of high-quality tool building blocks. These tool building blocks provide common performance tool functionality, and are designed for scalability, lightweight data acquisition and analysis, and interoperability. For this project, wemore » built on Open|SpeedShop, a modular and extensible open source performance analysis tool set. The design and implementation of such a general and reusable infrastructure targeted for petascale systems required us to address several challenging research issues. All components needed to be designed for scale, a task made more difficult by the need to provide general modules. The infrastructure needed to support online data aggregation to cope with the large amounts of performance and debugging data. We needed to be able to map any combination of tool components to each target architecture. And we needed to design interoperable tool APIs and workflows that were concrete enough to support the required functionality, yet provide the necessary flexibility to address a wide range of tools. A major result of this project is the ability to use this scalable infrastructure to quickly create tools that match with a machine architecture and a performance problem that needs to be understood. Another benefit is the ability for application engineers to use the highly scalable, interoperable version of Open|SpeedShop, which are reassembled from the tool building blocks into a flexible, multi-user interface set of tools. This set of tools targeted at Office of Science Leadership Class computer systems and selected Office of Science application codes. We describe the contributions made by the team at the University of Wisconsin. The project built on the efforts in Open|SpeedShop funded by DOE/NNSA and the DOE/NNSA Tri-Lab community, extended Open|Speedshop to the Office of Science Leadership Class Computing Facilities, and addressed new challenges found on these cutting edge systems. Work done under this project at Wisconsin can be divided into two categories, new algorithms and techniques for debugging, and foundation infrastructure work on our Dyninst binary analysis and instrumentation toolkits and MRNet scalability infrastructure.« less
MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB.
Egert, U; Knott, Th; Schwarz, C; Nawrot, M; Brandt, A; Rotter, S; Diesmann, M
2002-05-30
Recent advances in electrophysiological techniques have created new tools for the acquisition and storage of neuronal activity recorded simultaneously with numerous electrodes. These techniques support the analysis of the function as well as the structure of individual electrogenic cells in the context of surrounding neuronal or cardiac network. Commercially available tools for the analysis of such data, however, cannot be easily adapted to newly emerging requirements for data analysis and visualization, and cross compatibility between them is limited. In this report we introduce a free open source toolbox called microelectrode array tools (MEA-Tools) for the analysis of multi-electrode data based on the common data analysis environment MATLAB (version 5.3-6.1, The Mathworks, Natick, MA). The toolbox itself is platform independent. The file interface currently supports files recorded with MCRack (Multi Channel Systems, Reutlingen, Germany) under Microsoft Windows 95, 98, NT, and 2000, but can be adapted to other data acquisition systems. Functions are controlled via command line input and graphical user interfaces, and support common requirements for the analysis of local field potentials, extracellular spike activity, and continuous recordings, in addition to supplementary data acquired by additional instruments, e.g. intracellular amplifiers. Data may be processed as continuous recordings or time windows triggered to some event.
RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.
Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab
2012-01-01
RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.
Research on the Intensity Analysis and Result Visualization of Construction Land in Urban Planning
NASA Astrophysics Data System (ADS)
Cui, J.; Dong, B.; Li, J.; Li, L.
2017-09-01
As a fundamental work of urban planning, the intensity analysis of construction land involves many repetitive data processing works that are prone to cause errors or data precision loss, and the lack of efficient methods and tools to visualizing the analysis results in current urban planning. In the research a portable tool is developed by using the Model Builder technique embedded in ArcGIS to provide automatic data processing and rapid result visualization for the works. A series of basic modules provided by ArcGIS are linked together to shape a whole data processing chain in the tool. Once the required data is imported, the analysis results and related maps and graphs including the intensity values and zoning map, the skyline analysis map etc. are produced automatically. Finally the tool is installation-free and can be dispatched quickly between planning teams.
Chang, Cheng; Xu, Kaikun; Guo, Chaoping; Wang, Jinxia; Yan, Qi; Zhang, Jian; He, Fuchu; Zhu, Yunping
2018-05-22
Compared with the numerous software tools developed for identification and quantification of -omics data, there remains a lack of suitable tools for both downstream analysis and data visualization. To help researchers better understand the biological meanings in their -omics data, we present an easy-to-use tool, named PANDA-view, for both statistical analysis and visualization of quantitative proteomics data and other -omics data. PANDA-view contains various kinds of analysis methods such as normalization, missing value imputation, statistical tests, clustering and principal component analysis, as well as the most commonly-used data visualization methods including an interactive volcano plot. Additionally, it provides user-friendly interfaces for protein-peptide-spectrum representation of the quantitative proteomics data. PANDA-view is freely available at https://sourceforge.net/projects/panda-view/. 1987ccpacer@163.com and zhuyunping@gmail.com. Supplementary data are available at Bioinformatics online.
C++ software quality in the ATLAS experiment: tools and experience
NASA Astrophysics Data System (ADS)
Martin-Haugh, S.; Kluth, S.; Seuster, R.; Snyder, S.; Obreshkov, E.; Roe, S.; Sherwood, P.; Stewart, G. A.
2017-10-01
In this paper we explain how the C++ code quality is managed in ATLAS using a range of tools from compile-time through to run time testing and reflect on the substantial progress made in the last two years largely through the use of static analysis tools such as Coverity®, an industry-standard tool which enables quality comparison with general open source C++ code. Other available code analysis tools are also discussed, as is the role of unit testing with an example of how the GoogleTest framework can be applied to our codebase.
Analysis of the electromagnetic wave resistivity tool in deviated well drilling
NASA Astrophysics Data System (ADS)
Zhang, Yumei; Xu, Lijun; Cao, Zhang
2014-04-01
Electromagnetic wave resistivity (EWR) tools are used to provide real-time measurements of resistivity in the formation around the tool in Logging While Drilling (LWD). In this paper, the acquired resistivity information in the formation is analyzed to extract more information, including dipping angle and azimuth direction of the drill. A finite element (FM) model of EWR tool working in layered earth formations is established. Numerical analysis and FM simulations are employed to analyze the amplitude ratio and phase difference between the voltages measured at the two receivers of the EWR tool in deviated well drilling.
NASA Technical Reports Server (NTRS)
Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.
1982-01-01
Documentation of the preliminary software developed as a framework for a generalized integrated robotic system simulation is presented. The program structure is composed of three major functions controlled by a program executive. The three major functions are: system definition, analysis tools, and post processing. The system definition function handles user input of system parameters and definition of the manipulator configuration. The analysis tools function handles the computational requirements of the program. The post processing function allows for more detailed study of the results of analysis tool function executions. Also documented is the manipulator joint model software to be used as the basis of the manipulator simulation which will be part of the analysis tools capability.
Water Power Data and Tools | Water Power | NREL
computer modeling tools and data with state-of-the-art design and analysis. Photo of a buoy designed around National Wind Technology Center's Information Portal as well as a WEC-Sim fact sheet. WEC Design Response Toolbox The WEC Design Response Toolbox provides extreme response and fatigue analysis tools specifically
RdTools: An Open Source Python Library for PV Degradation Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deceglie, Michael G; Jordan, Dirk; Nag, Ambarish
RdTools is a set of Python tools for analysis of photovoltaic data. In particular, PV production data is evaluated over several years to obtain rates of performance degradation over time. Rdtools can handle both high frequency (hourly or better) or low frequency (daily, weekly, etc.) datasets. Best results are obtained with higher frequency data.
The EPA and USGS have developed a framework to evaluate the relative vulnerability of near-coastal species to impacts of climate change. This framework is implemented in a web-based tool, the Coastal Biogeographic Risk Analysis Tool (CBRAT). We evaluated the vulnerability of the ...
The EPA and USGS have developed a framework to evaluate the relative vulnerability of near-coastal species to impacts of climate change. This framework was implemented in a web-based tool, the Coastal Biogeographic Risk Analysis Tool (CBRAT). We evaluated the vulnerability of the...
Development of a User Interface for a Regression Analysis Software Tool
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred; Volden, Thomas R.
2010-01-01
An easy-to -use user interface was implemented in a highly automated regression analysis tool. The user interface was developed from the start to run on computers that use the Windows, Macintosh, Linux, or UNIX operating system. Many user interface features were specifically designed such that a novice or inexperienced user can apply the regression analysis tool with confidence. Therefore, the user interface s design minimizes interactive input from the user. In addition, reasonable default combinations are assigned to those analysis settings that influence the outcome of the regression analysis. These default combinations will lead to a successful regression analysis result for most experimental data sets. The user interface comes in two versions. The text user interface version is used for the ongoing development of the regression analysis tool. The official release of the regression analysis tool, on the other hand, has a graphical user interface that is more efficient to use. This graphical user interface displays all input file names, output file names, and analysis settings for a specific software application mode on a single screen which makes it easier to generate reliable analysis results and to perform input parameter studies. An object-oriented approach was used for the development of the graphical user interface. This choice keeps future software maintenance costs to a reasonable limit. Examples of both the text user interface and graphical user interface are discussed in order to illustrate the user interface s overall design approach.
Rahman, M Azizur; Rusteberg, Bernd; Gogu, R C; Lobo Ferreira, J P; Sauter, Martin
2012-05-30
This study reports the development of a new spatial multi-criteria decision analysis (SMCDA) software tool for selecting suitable sites for Managed Aquifer Recharge (MAR) systems. The new SMCDA software tool functions based on the combination of existing multi-criteria evaluation methods with modern decision analysis techniques. More specifically, non-compensatory screening, criteria standardization and weighting, and Analytical Hierarchy Process (AHP) have been combined with Weighted Linear Combination (WLC) and Ordered Weighted Averaging (OWA). This SMCDA tool may be implemented with a wide range of decision maker's preferences. The tool's user-friendly interface helps guide the decision maker through the sequential steps for site selection, those steps namely being constraint mapping, criteria hierarchy, criteria standardization and weighting, and criteria overlay. The tool offers some predetermined default criteria and standard methods to increase the trade-off between ease-of-use and efficiency. Integrated into ArcGIS, the tool has the advantage of using GIS tools for spatial analysis, and herein data may be processed and displayed. The tool is non-site specific, adaptive, and comprehensive, and may be applied to any type of site-selection problem. For demonstrating the robustness of the new tool, a case study was planned and executed at Algarve Region, Portugal. The efficiency of the SMCDA tool in the decision making process for selecting suitable sites for MAR was also demonstrated. Specific aspects of the tool such as built-in default criteria, explicit decision steps, and flexibility in choosing different options were key features, which benefited the study. The new SMCDA tool can be augmented by groundwater flow and transport modeling so as to achieve a more comprehensive approach to the selection process for the best locations of the MAR infiltration basins, as well as the locations of recovery wells and areas of groundwater protection. The new spatial multicriteria analysis tool has already been implemented within the GIS based Gabardine decision support system as an innovative MAR planning tool. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bible, Paul W; Kanno, Yuka; Wei, Lai; Brooks, Stephen R; O'Shea, John J; Morasso, Maria I; Loganantharaj, Rasiah; Sun, Hong-Wei
2015-01-01
Comparative co-localization analysis of transcription factors (TFs) and epigenetic marks (EMs) in specific biological contexts is one of the most critical areas of ChIP-Seq data analysis beyond peak calling. Yet there is a significant lack of user-friendly and powerful tools geared towards co-localization analysis based exploratory research. Most tools currently used for co-localization analysis are command line only and require extensive installation procedures and Linux expertise. Online tools partially address the usability issues of command line tools, but slow response times and few customization features make them unsuitable for rapid data-driven interactive exploratory research. We have developed PAPST: Peak Assignment and Profile Search Tool, a user-friendly yet powerful platform with a unique design, which integrates both gene-centric and peak-centric co-localization analysis into a single package. Most of PAPST's functions can be completed in less than five seconds, allowing quick cycles of data-driven hypothesis generation and testing. With PAPST, a researcher with or without computational expertise can perform sophisticated co-localization pattern analysis of multiple TFs and EMs, either against all known genes or a set of genomic regions obtained from public repositories or prior analysis. PAPST is a versatile, efficient, and customizable tool for genome-wide data-driven exploratory research. Creatively used, PAPST can be quickly applied to any genomic data analysis that involves a comparison of two or more sets of genomic coordinate intervals, making it a powerful tool for a wide range of exploratory genomic research. We first present PAPST's general purpose features then apply it to several public ChIP-Seq data sets to demonstrate its rapid execution and potential for cutting-edge research with a case study in enhancer analysis. To our knowledge, PAPST is the first software of its kind to provide efficient and sophisticated post peak-calling ChIP-Seq data analysis as an easy-to-use interactive application. PAPST is available at https://github.com/paulbible/papst and is a public domain work.
Bible, Paul W.; Kanno, Yuka; Wei, Lai; Brooks, Stephen R.; O’Shea, John J.; Morasso, Maria I.; Loganantharaj, Rasiah; Sun, Hong-Wei
2015-01-01
Comparative co-localization analysis of transcription factors (TFs) and epigenetic marks (EMs) in specific biological contexts is one of the most critical areas of ChIP-Seq data analysis beyond peak calling. Yet there is a significant lack of user-friendly and powerful tools geared towards co-localization analysis based exploratory research. Most tools currently used for co-localization analysis are command line only and require extensive installation procedures and Linux expertise. Online tools partially address the usability issues of command line tools, but slow response times and few customization features make them unsuitable for rapid data-driven interactive exploratory research. We have developed PAPST: Peak Assignment and Profile Search Tool, a user-friendly yet powerful platform with a unique design, which integrates both gene-centric and peak-centric co-localization analysis into a single package. Most of PAPST’s functions can be completed in less than five seconds, allowing quick cycles of data-driven hypothesis generation and testing. With PAPST, a researcher with or without computational expertise can perform sophisticated co-localization pattern analysis of multiple TFs and EMs, either against all known genes or a set of genomic regions obtained from public repositories or prior analysis. PAPST is a versatile, efficient, and customizable tool for genome-wide data-driven exploratory research. Creatively used, PAPST can be quickly applied to any genomic data analysis that involves a comparison of two or more sets of genomic coordinate intervals, making it a powerful tool for a wide range of exploratory genomic research. We first present PAPST’s general purpose features then apply it to several public ChIP-Seq data sets to demonstrate its rapid execution and potential for cutting-edge research with a case study in enhancer analysis. To our knowledge, PAPST is the first software of its kind to provide efficient and sophisticated post peak-calling ChIP-Seq data analysis as an easy-to-use interactive application. PAPST is available at https://github.com/paulbible/papst and is a public domain work. PMID:25970601
Analysis Tool Web Services from the EMBL-EBI.
McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo
2013-07-01
Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods.
Analysis Tool Web Services from the EMBL-EBI
McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo
2013-01-01
Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods. PMID:23671338
NASA Technical Reports Server (NTRS)
Meyn, Larry A.
2018-01-01
One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, William R.; Shehabi, Arman; Smith, Sarah
The LIGHTEnUP Analysis Tool (Lifecycle Industry GreenHouse gas, Technology and Energy through the Use Phase) has been developed for The United States Department of Energy’s (U.S. DOE) Advanced Manufacturing Office (AMO) to forecast both the manufacturing sector and product life-cycle energy consumption implications of manufactured products across the U.S. economy. The tool architecture incorporates publicly available historic and projection datasets of U.S. economy-wide energy use including manufacturing, buildings operations, electricity generation and transportation. The tool requires minimal inputs to define alternate scenarios to business-as-usual projection data. The tool is not an optimization or equilibrium model and therefore does not selectmore » technologies or deployment scenarios endogenously. Instead, inputs are developed exogenous to the tool by the user to reflect detailed engineering calculations, future targets and goals, or creative insights. The tool projects the scenario’s energy, CO 2 emissions, and energy expenditure (i.e., economic spending to purchase energy) implications and provides documentation to communicate results. The tool provides a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies. The tool allows the user to create multiple scenarios that can reflect a range of possible future outcomes. However, reasonable scenarios require careful attention to assumptions and details about the future. This tool is part of an emerging set of AMO’s life cycle analysis (LCA) tool such as the Material Flows the Industry (MFI) tool, and the Additive Manufacturing LCA tool.« less
Statistical methods for the forensic analysis of striated tool marks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoeksema, Amy Beth
In forensics, fingerprints can be used to uniquely identify suspects in a crime. Similarly, a tool mark left at a crime scene can be used to identify the tool that was used. However, the current practice of identifying matching tool marks involves visual inspection of marks by forensic experts which can be a very subjective process. As a result, declared matches are often successfully challenged in court, so law enforcement agencies are particularly interested in encouraging research in more objective approaches. Our analysis is based on comparisons of profilometry data, essentially depth contours of a tool mark surface taken alongmore » a linear path. In current practice, for stronger support of a match or non-match, multiple marks are made in the lab under the same conditions by the suspect tool. We propose the use of a likelihood ratio test to analyze the difference between a sample of comparisons of lab tool marks to a field tool mark, against a sample of comparisons of two lab tool marks. Chumbley et al. (2010) point out that the angle of incidence between the tool and the marked surface can have a substantial impact on the tool mark and on the effectiveness of both manual and algorithmic matching procedures. To better address this problem, we describe how the analysis can be enhanced to model the effect of tool angle and allow for angle estimation for a tool mark left at a crime scene. With sufficient development, such methods may lead to more defensible forensic analyses.« less
Addressing multi-label imbalance problem of surgical tool detection using CNN.
Sahu, Manish; Mukhopadhyay, Anirban; Szengel, Angelika; Zachow, Stefan
2017-06-01
A fully automated surgical tool detection framework is proposed for endoscopic video streams. State-of-the-art surgical tool detection methods rely on supervised one-vs-all or multi-class classification techniques, completely ignoring the co-occurrence relationship of the tools and the associated class imbalance. In this paper, we formulate tool detection as a multi-label classification task where tool co-occurrences are treated as separate classes. In addition, imbalance on tool co-occurrences is analyzed and stratification techniques are employed to address the imbalance during convolutional neural network (CNN) training. Moreover, temporal smoothing is introduced as an online post-processing step to enhance runtime prediction. Quantitative analysis is performed on the M2CAI16 tool detection dataset to highlight the importance of stratification, temporal smoothing and the overall framework for tool detection. The analysis on tool imbalance, backed by the empirical results, indicates the need and superiority of the proposed framework over state-of-the-art techniques.
Financing Alternatives Comparison Tool
FACT is a financial analysis tool that helps identify the most cost-effective method to fund a wastewater or drinking water management project. It produces a comprehensive analysis that compares various financing options.
NASA Astrophysics Data System (ADS)
Cannata, Massimiliano; Neumann, Jakob; Cardoso, Mirko; Rossetto, Rudy; Foglia, Laura; Borsi, Iacopo
2017-04-01
In situ time-series are an important aspect of environmental modelling, especially with the advancement of numerical simulation techniques and increased model complexity. In order to make use of the increasing data available through the requirements of the EU Water Framework Directive, the FREEWAT GIS environment incorporates the newly developed Observation Analysis Tool for time-series analysis. The tool is used to import time-series data into QGIS from local CSV files, online sensors using the istSOS service, or MODFLOW model result files and enables visualisation, pre-processing of data for model development, and post-processing of model results. OAT can be used as a pre-processor for calibration observations, integrating the creation of observations for calibration directly from sensor time-series. The tool consists in an expandable Python library of processing methods and an interface integrated in the QGIS FREEWAT plug-in which includes a large number of modelling capabilities, data management tools and calibration capacity.
Dataflow Design Tool: User's Manual
NASA Technical Reports Server (NTRS)
Jones, Robert L., III
1996-01-01
The Dataflow Design Tool is a software tool for selecting a multiprocessor scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. The software tool implements graph-search algorithms and analysis techniques based on the dataflow paradigm. Dataflow analyses provided by the software are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool provides performance optimization through the inclusion of artificial precedence constraints among the schedulable tasks. The user interface and tool capabilities are described. Examples are provided to demonstrate the analysis, scheduling, and optimization functions facilitated by the tool.
Development of a task analysis tool to facilitate user interface design
NASA Technical Reports Server (NTRS)
Scholtz, Jean C.
1992-01-01
A good user interface is one that facilitates the user in carrying out his task. Such interfaces are difficult and costly to produce. The most important aspect in producing a good interface is the ability to communicate to the software designers what the user's task is. The Task Analysis Tool is a system for cooperative task analysis and specification of the user interface requirements. This tool is intended to serve as a guide to development of initial prototypes for user feedback.
Tools4miRs – one place to gather all the tools for miRNA analysis
Lukasik, Anna; Wójcikowski, Maciej; Zielenkiewicz, Piotr
2016-01-01
Summary: MiRNAs are short, non-coding molecules that negatively regulate gene expression and thereby play several important roles in living organisms. Dozens of computational methods for miRNA-related research have been developed, which greatly differ in various aspects. The substantial availability of difficult-to-compare approaches makes it challenging for the user to select a proper tool and prompts the need for a solution that will collect and categorize all the methods. Here, we present tools4miRs, the first platform that gathers currently more than 160 methods for broadly defined miRNA analysis. The collected tools are classified into several general and more detailed categories in which the users can additionally filter the available methods according to their specific research needs, capabilities and preferences. Tools4miRs is also a web-based target prediction meta-server that incorporates user-designated target prediction methods into the analysis of user-provided data. Availability and Implementation: Tools4miRs is implemented in Python using Django and is freely available at tools4mirs.org. Contact: piotr@ibb.waw.pl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153626
Tools4miRs - one place to gather all the tools for miRNA analysis.
Lukasik, Anna; Wójcikowski, Maciej; Zielenkiewicz, Piotr
2016-09-01
MiRNAs are short, non-coding molecules that negatively regulate gene expression and thereby play several important roles in living organisms. Dozens of computational methods for miRNA-related research have been developed, which greatly differ in various aspects. The substantial availability of difficult-to-compare approaches makes it challenging for the user to select a proper tool and prompts the need for a solution that will collect and categorize all the methods. Here, we present tools4miRs, the first platform that gathers currently more than 160 methods for broadly defined miRNA analysis. The collected tools are classified into several general and more detailed categories in which the users can additionally filter the available methods according to their specific research needs, capabilities and preferences. Tools4miRs is also a web-based target prediction meta-server that incorporates user-designated target prediction methods into the analysis of user-provided data. Tools4miRs is implemented in Python using Django and is freely available at tools4mirs.org. piotr@ibb.waw.pl Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
In response to 'Can sugars be produced from fatty acids? A test case for pathway analysis tools'.
Faust, Karoline; Croes, Didier; van Helden, Jacques
2009-12-01
In their article entitled 'Can sugars be produced from fatty acids? A test case for pathway analysis tools' de Figueiredo and co-authors assess the performance of three pathway prediction tools (METATOOL, PathFinding and Pathway Hunter Tool) using the synthesis of glucose-6-phosphate (G6P) from acetyl-CoA in humans as a test case. We think that this article is biased for three reasons: (i) the metabolic networks used as input for the respective tools were of very different sizes; (ii) the 'assessment' is restricted to two study cases; (iii) developers are inherently more skilled to use their own tools than those developed by other people. We extended the analyses led by de Figueiredo and clearly show that the apparent superior performance of their tool (METATOOL) is partly due to the differences in input network sizes. We also see a conceptual problem in the comparison of tools that serve different purposes. In our opinion, metabolic path finding and elementary mode analysis are answering different biological questions, and should be considered as complementary rather than competitive approaches. Supplementary data are available at Bioinformatics online.
Qing, Taiping; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Wen, Li; Shangguan, Jingfang; Mao, Zhengui; Lei, Yanli
2016-04-01
Owing to their highly efficient catalytic effects and substrate specificity, the nucleic acid tool enzymes are applied as 'nano-tools' for manipulating different nucleic acid substrates both in the test-tube and in living organisms. In addition to the function as molecular scissors and molecular glue in genetic engineering, the application of nucleic acid tool enzymes in biochemical analysis has also been extensively developed in the past few decades. Used as amplifying labels for biorecognition events, the nucleic acid tool enzymes are mainly applied in nucleic acids amplification sensing, as well as the amplification sensing of biorelated variations of nucleic acids. With the introduction of aptamers, which can bind different target molecules, the nucleic acid tool enzymes-aided signal amplification strategies can also be used to sense non-nucleic targets (e.g., ions, small molecules, proteins, and cells). This review describes and discusses the amplification strategies of nucleic acid tool enzymes-aided biosensors for biochemical analysis applications. Various analytes, including nucleic acids, ions, small molecules, proteins, and cells, are reviewed briefly. This work also addresses the future trends and outlooks for signal amplification in nucleic acid tool enzymes-aided biosensors.
Tool Efficiency Analysis model research in SEMI industry
NASA Astrophysics Data System (ADS)
Lei, Ma; Nana, Zhang; Zhongqiu, Zhang
2018-06-01
One of the key goals in SEMI industry is to improve equipment through put and ensure equipment production efficiency maximization. This paper is based on SEMI standards in semiconductor equipment control, defines the transaction rules between different tool states, and presents a TEA system model which is to analysis tool performance automatically based on finite state machine. The system was applied to fab tools and verified its effectiveness successfully, and obtained the parameter values used to measure the equipment performance, also including the advices of improvement.
Gray, Benjamin J; Bracken, Richard M; Turner, Daniel; Morgan, Kerry; Thomas, Michael; Williams, Sally P; Williams, Meurig; Rice, Sam; Stephens, Jeffrey W
2015-01-01
Background Use of a validated risk-assessment tool to identify individuals at high risk of developing type 2 diabetes is currently recommended. It is under-reported, however, whether a different risk tool alters the predicted risk of an individual. Aim This study explored any differences between commonly used validated risk-assessment tools for type 2 diabetes. Design and setting Cross-sectional analysis of individuals who participated in a workplace-based risk assessment in Carmarthenshire, South Wales. Method Retrospective analysis of 676 individuals (389 females and 287 males) who participated in a workplace-based diabetes risk-assessment initiative. Ten-year risk of type 2 diabetes was predicted using the validated QDiabetes®, Leicester Risk Assessment (LRA), FINDRISC, and Cambridge Risk Score (CRS) algorithms. Results Differences between the risk-assessment tools were apparent following retrospective analysis of individuals. CRS categorised the highest proportion (13.6%) of individuals at ‘high risk’ followed by FINDRISC (6.6%), QDiabetes (6.1%), and, finally, the LRA was the most conservative risk tool (3.1%). Following further analysis by sex, over one-quarter of males were categorised at high risk using CRS (25.4%), whereas a greater percentage of females were categorised as high risk using FINDRISC (7.8%). Conclusion The adoption of a different valid risk-assessment tool can alter the predicted risk of an individual and caution should be used to identify those individuals who really are at high risk of type 2 diabetes. PMID:26541180
Gray, Benjamin J; Bracken, Richard M; Turner, Daniel; Morgan, Kerry; Thomas, Michael; Williams, Sally P; Williams, Meurig; Rice, Sam; Stephens, Jeffrey W
2015-12-01
Use of a validated risk-assessment tool to identify individuals at high risk of developing type 2 diabetes is currently recommended. It is under-reported, however, whether a different risk tool alters the predicted risk of an individual. This study explored any differences between commonly used validated risk-assessment tools for type 2 diabetes. Cross-sectional analysis of individuals who participated in a workplace-based risk assessment in Carmarthenshire, South Wales. Retrospective analysis of 676 individuals (389 females and 287 males) who participated in a workplace-based diabetes risk-assessment initiative. Ten-year risk of type 2 diabetes was predicted using the validated QDiabetes(®), Leicester Risk Assessment (LRA), FINDRISC, and Cambridge Risk Score (CRS) algorithms. Differences between the risk-assessment tools were apparent following retrospective analysis of individuals. CRS categorised the highest proportion (13.6%) of individuals at 'high risk' followed by FINDRISC (6.6%), QDiabetes (6.1%), and, finally, the LRA was the most conservative risk tool (3.1%). Following further analysis by sex, over one-quarter of males were categorised at high risk using CRS (25.4%), whereas a greater percentage of females were categorised as high risk using FINDRISC (7.8%). The adoption of a different valid risk-assessment tool can alter the predicted risk of an individual and caution should be used to identify those individuals who really are at high risk of type 2 diabetes. © British Journal of General Practice 2015.
Open | SpeedShop: An Open Source Infrastructure for Parallel Performance Analysis
Schulz, Martin; Galarowicz, Jim; Maghrak, Don; ...
2008-01-01
Over the last decades a large number of performance tools has been developed to analyze and optimize high performance applications. Their acceptance by end users, however, has been slow: each tool alone is often limited in scope and comes with widely varying interfaces and workflow constraints, requiring different changes in the often complex build and execution infrastructure of the target application. We started the Open | SpeedShop project about 3 years ago to overcome these limitations and provide efficient, easy to apply, and integrated performance analysis for parallel systems. Open | SpeedShop has two different faces: it provides an interoperable tool set covering themore » most common analysis steps as well as a comprehensive plugin infrastructure for building new tools. In both cases, the tools can be deployed to large scale parallel applications using DPCL/Dyninst for distributed binary instrumentation. Further, all tools developed within or on top of Open | SpeedShop are accessible through multiple fully equivalent interfaces including an easy-to-use GUI as well as an interactive command line interface reducing the usage threshold for those tools.« less
Computing tools for implementing standards for single-case designs.
Chen, Li-Ting; Peng, Chao-Ying Joanne; Chen, Ming-E
2015-11-01
In the single-case design (SCD) literature, five sets of standards have been formulated and distinguished: design standards, assessment standards, analysis standards, reporting standards, and research synthesis standards. This article reviews computing tools that can assist researchers and practitioners in meeting the analysis standards recommended by the What Works Clearinghouse: Procedures and Standards Handbook-the WWC standards. These tools consist of specialized web-based calculators or downloadable software for SCD data, and algorithms or programs written in Excel, SAS procedures, SPSS commands/Macros, or the R programming language. We aligned these tools with the WWC standards and evaluated them for accuracy and treatment of missing data, using two published data sets. All tools were tested to be accurate. When missing data were present, most tools either gave an error message or conducted analysis based on the available data. Only one program used a single imputation method. This article concludes with suggestions for an inclusive computing tool or environment, additional research on the treatment of missing data, and reasonable and flexible interpretations of the WWC standards. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
He, Qiuwei; Lv, Xingming; Wang, Xin; Qu, Xingtian; Zhao, Ji
2017-01-01
Blade is the key component in the energy power equipment of turbine, aircraft engines and so on. Researches on the process and equipment for blade finishing become one of important and difficult point. To control precisely tool system of developed hybrid grinding and polishing machine tool for blade finishing, the tool system with changeable wheel for belt polishing is analyzed in this paper. Firstly, the belt length and wrap angle of each wheel in different position of tension wheel swing angle in the process of changing wheel is analyzed. The reasonable belt length is calculated by using MATLAB, and relationships between wrap angle of each wheel and cylinder expansion amount of contact wheel are obtained. Then, the control system for changeable wheel tool structure is developed. Lastly, the surface roughness of blade finishing is verified by experiments. Theoretical analysis and experimental results show that reasonable belt length and wheel wrap angle can be obtained by proposed analysis method, the changeable wheel tool system can be controlled precisely, and the surface roughness of blade after grinding meets the design requirements.
The Legacy Archive for Microwave Background Data Analysis (LAMBDA)
NASA Astrophysics Data System (ADS)
Miller, Nathan; LAMBDA
2018-01-01
The Legacy Archive for Microwave Background Data Analysis (LAMBDA) provides CMB researchers with archival data for cosmology missions, software tools, and links to other sites of interest. LAMBDA is one-stop shopping for CMB researchers. It hosts data from WMAP along with many suborbital experiments. Over the past year, LAMBDA has acquired new data from SPTpol, SPIDER and ACTPol. In addition to the primary CMB, LAMBDA also provides foreground data.LAMBDA has several ongoing efforts to provide tools for CMB researchers. These tools include a web interface for CAMB and a web interface for a CMB survey footprint database and plotting tool. Additionally, we have recently developed a Docker container with standard CMB analysis tools and demonstrations in the form of Jupyter notebooks. These containers will be publically available through Docker's container repository and the source will be available on github.
Computational Tools for Metabolic Engineering
Copeland, Wilbert B.; Bartley, Bryan A.; Chandran, Deepak; Galdzicki, Michal; Kim, Kyung H.; Sleight, Sean C.; Maranas, Costas D.; Sauro, Herbert M.
2012-01-01
A great variety of software applications are now employed in the metabolic engineering field. These applications have been created to support a wide range of experimental and analysis techniques. Computational tools are utilized throughout the metabolic engineering workflow to extract and interpret relevant information from large data sets, to present complex models in a more manageable form, and to propose efficient network design strategies. In this review, we present a number of tools that can assist in modifying and understanding cellular metabolic networks. The review covers seven areas of relevance to metabolic engineers. These include metabolic reconstruction efforts, network visualization, nucleic acid and protein engineering, metabolic flux analysis, pathway prospecting, post-structural network analysis and culture optimization. The list of available tools is extensive and we can only highlight a small, representative portion of the tools from each area. PMID:22629572
Open source Modeling and optimization tools for Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peles, S.
Open source modeling and optimization tools for planning The existing tools and software used for planning and analysis in California are either expensive, difficult to use, or not generally accessible to a large number of participants. These limitations restrict the availability of participants for larger scale energy and grid studies in the state. The proposed initiative would build upon federal and state investments in open source software, and create and improve open source tools for use in the state planning and analysis activities. Computational analysis and simulation frameworks in development at national labs and universities can be brought forward tomore » complement existing tools. An open source platform would provide a path for novel techniques and strategies to be brought into the larger community and reviewed by a broad set of stakeholders.« less
Tools for Data Analysis in the Middle School Classroom: A Teacher Professional Development Program
NASA Astrophysics Data System (ADS)
Ledley, T. S.; Haddad, N.; McAuliffe, C.; Dahlman, L.
2006-12-01
In order for students to learn how to engage with scientific data to answer questions about the real world, it is imperative that their teachers are 1) comfortable with the data and the tools used to analyze it, and 2) feel prepared to support their students in this complex endeavor. TERC's Tools for Data Analysis in the Middle School Classroom (DataTools) professional development program, funded by NSF's ITEST program, prepares middle school teachers to integrate Web-based scientific data and analysis tools into their existing curricula. This 13-month program supports teachers in using a set of freely or commonly available tools with a wide range of data. It also gives them an opportunity to practice teaching these skills to students before teaching in their own classrooms. The ultimate goal of the program is to increase the number of middle school students who work directly with scientific data, who use the tools of technology to import, manipulate, visualize and analyze the data, who come to understand the power of data-based arguments, and who will consider pursuing a career in technical and scientific fields. In this session, we will describe the elements of the DataTools program and the Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet), a Web-based resource that supports Earth system education for teachers and students in grades 6 through 16. The EET provides essential support to DataTools teachers as they use it to learn to locate and download Web-based data and use data analysis tools. We will also share what we have learned during the first year of this three-year program.
NASA Technical Reports Server (NTRS)
Ling, Lisa
2014-01-01
For the purpose of performing safety analysis and risk assessment for a potential off-nominal atmospheric reentry resulting in vehicle breakup, a synthesis of trajectory propagation coupled with thermal analysis and the evaluation of node failure is required to predict the sequence of events, the timeline, and the progressive demise of spacecraft components. To provide this capability, the Simulation for Prediction of Entry Article Demise (SPEAD) analysis tool was developed. The software and methodology have been validated against actual flights, telemetry data, and validated software, and safety/risk analyses were performed for various programs using SPEAD. This report discusses the capabilities, modeling, validation, and application of the SPEAD analysis tool.
Exploratory Climate Data Visualization and Analysis Using DV3D and UVCDAT
NASA Technical Reports Server (NTRS)
Maxwell, Thomas
2012-01-01
Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, NASA, in collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UVCOAT) consortium, is developing exploratory climate data analysis and visualization tools which provide data analysis capabilities for the Earth System Grid (ESG). This paper describes DV3D, a UV-COAT package that enables exploratory analysis of climate simulation and observation datasets. OV3D provides user-friendly interfaces for visualization and analysis of climate data at a level appropriate for scientists. It features workflow inte rfaces, interactive 40 data exploration, hyperwall and stereo visualization, automated provenance generation, and parallel task execution. DV30's integration with CDAT's climate data management system (COMS) and other climate data analysis tools provides a wide range of high performance climate data analysis operations. DV3D expands the scientists' toolbox by incorporating a suite of rich new exploratory visualization and analysis methods for addressing the complexity of climate datasets.
Trinh, Cong T.; Wlaschin, Aaron; Srienc, Friedrich
2010-01-01
Elementary Mode Analysis is a useful Metabolic Pathway Analysis tool to identify the structure of a metabolic network that links the cellular phenotype to the corresponding genotype. The analysis can decompose the intricate metabolic network comprised of highly interconnected reactions into uniquely organized pathways. These pathways consisting of a minimal set of enzymes that can support steady state operation of cellular metabolism represent independent cellular physiological states. Such pathway definition provides a rigorous basis to systematically characterize cellular phenotypes, metabolic network regulation, robustness, and fragility that facilitate understanding of cell physiology and implementation of metabolic engineering strategies. This mini-review aims to overview the development and application of elementary mode analysis as a metabolic pathway analysis tool in studying cell physiology and as a basis of metabolic engineering. PMID:19015845
Smart roadside initiative macro benefit analysis : user’s guide for the benefit-cost analysis tool.
DOT National Transportation Integrated Search
2015-03-01
Through the Smart Roadside Initiative (SRI), a Benefit-Cost Analysis (BCA) tool was developed for the evaluation of various new transportation technologies at a State level and to provide results that could support technology adoption by a State Depa...
Method for automation of tool preproduction
NASA Astrophysics Data System (ADS)
Rychkov, D. A.; Yanyushkin, A. S.; Lobanov, D. V.; Arkhipov, P. V.
2018-03-01
The primary objective of tool production is a creation or selection of such tool design which could make it possible to secure high process efficiency, tool availability as well as a quality of received surfaces with minimum means and resources spent on it. It takes much time of application people, being engaged in tool preparation, to make a correct selection of the appropriate tool among the set of variants. Program software has been developed to solve the problem, which helps to create, systematize and carry out a comparative analysis of tool design to identify the rational variant under given production conditions. The literature indicates that systematization and selection of the tool rational design has been carried out in accordance with the developed modeling technology and comparative design analysis. Software application makes it possible to reduce the period of design by 80....85% and obtain a significant annual saving.
Modeling and Simulation Tools for Heavy Lift Airships
NASA Technical Reports Server (NTRS)
Hochstetler, Ron; Chachad, Girish; Hardy, Gordon; Blanken, Matthew; Melton, John
2016-01-01
For conventional fixed wing and rotary wing aircraft a variety of modeling and simulation tools have been developed to provide designers the means to thoroughly investigate proposed designs and operational concepts. However, lighter-than-air (LTA) airships, hybrid air vehicles, and aerostats have some important aspects that are different from heavier-than-air (HTA) vehicles. In order to account for these differences, modifications are required to the standard design tools to fully characterize the LTA vehicle design and performance parameters.. To address these LTA design and operational factors, LTA development organizations have created unique proprietary modeling tools, often at their own expense. An expansion of this limited LTA tool set could be accomplished by leveraging existing modeling and simulation capabilities available in the National laboratories and public research centers. Development of an expanded set of publicly available LTA modeling and simulation tools for LTA developers would mitigate the reliance on proprietary LTA design tools in use today. A set of well researched, open source, high fidelity LTA design modeling and simulation tools would advance LTA vehicle development and also provide the analytical basis for accurate LTA operational cost assessments. This paper will present the modeling and analysis tool capabilities required for LTA vehicle design, analysis of operations, and full life-cycle support. A survey of the tools currently available will be assessed to identify the gaps between their capabilities and the LTA industry's needs. Options for development of new modeling and analysis capabilities to supplement contemporary tools will also be presented.
CoryneBase: Corynebacterium Genomic Resources and Analysis Tools at Your Fingertips
Tan, Mui Fern; Jakubovics, Nick S.; Wee, Wei Yee; Mutha, Naresh V. R.; Wong, Guat Jah; Ang, Mia Yang; Yazdi, Amir Hessam; Choo, Siew Woh
2014-01-01
Corynebacteria are used for a wide variety of industrial purposes but some species are associated with human diseases. With increasing number of corynebacterial genomes having been sequenced, comparative analysis of these strains may provide better understanding of their biology, phylogeny, virulence and taxonomy that may lead to the discoveries of beneficial industrial strains or contribute to better management of diseases. To facilitate the ongoing research of corynebacteria, a specialized central repository and analysis platform for the corynebacterial research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. Here we present CoryneBase, a genomic database for Corynebacterium with diverse functionality for the analysis of genomes aimed to provide: (1) annotated genome sequences of Corynebacterium where 165,918 coding sequences and 4,180 RNAs can be found in 27 species; (2) access to comprehensive Corynebacterium data through the use of advanced web technologies for interactive web interfaces; and (3) advanced bioinformatic analysis tools consisting of standard BLAST for homology search, VFDB BLAST for sequence homology search against the Virulence Factor Database (VFDB), Pairwise Genome Comparison (PGC) tool for comparative genomic analysis, and a newly designed Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomic analysis. CoryneBase offers the access of a range of Corynebacterium genomic resources as well as analysis tools for comparative genomics and pathogenomics. It is publicly available at http://corynebacterium.um.edu.my/. PMID:24466021
Control/structure interaction conceptual design tool
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1990-01-01
The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.
Audio signal analysis for tool wear monitoring in sheet metal stamping
NASA Astrophysics Data System (ADS)
Ubhayaratne, Indivarie; Pereira, Michael P.; Xiang, Yong; Rolfe, Bernard F.
2017-02-01
Stamping tool wear can significantly degrade product quality, and hence, online tool condition monitoring is a timely need in many manufacturing industries. Even though a large amount of research has been conducted employing different sensor signals, there is still an unmet demand for a low-cost easy to set up condition monitoring system. Audio signal analysis is a simple method that has the potential to meet this demand, but has not been previously used for stamping process monitoring. Hence, this paper studies the existence and the significance of the correlation between emitted sound signals and the wear state of sheet metal stamping tools. The corrupting sources generated by the tooling of the stamping press and surrounding machinery have higher amplitudes compared to that of the sound emitted by the stamping operation itself. Therefore, a newly developed semi-blind signal extraction technique was employed as a pre-processing technique to mitigate the contribution of these corrupting sources. The spectral analysis results of the raw and extracted signals demonstrate a significant qualitative relationship between wear progression and the emitted sound signature. This study lays the basis for employing low-cost audio signal analysis in the development of a real-time industrial tool condition monitoring system.
PyHLA: tests for the association between HLA alleles and diseases.
Fan, Yanhui; Song, You-Qiang
2017-02-06
Recently, several tools have been designed for human leukocyte antigen (HLA) typing using single nucleotide polymorphism (SNP) array and next-generation sequencing (NGS) data. These tools provide high-throughput and cost-effective approaches for identifying HLA types. Therefore, tools for downstream association analysis are highly desirable. Although several tools have been designed for multi-allelic marker association analysis, they were designed only for microsatellite markers and do not scale well with increasing data volumes, or they were designed for large-scale data but provided a limited number of tests. We have developed a Python package called PyHLA, which implements several methods for HLA association analysis, to fill the gap. PyHLA is a tailor-made, easy to use, and flexible tool designed specifically for the association analysis of the HLA types imputed from genome-wide genotyping and NGS data. PyHLA provides functions for association analysis, zygosity tests, and interaction tests between HLA alleles and diseases. Monte Carlo permutation and several methods for multiple testing corrections have also been implemented. PyHLA provides a convenient and powerful tool for HLA analysis. Existing methods have been integrated and desired methods have been added in PyHLA. Furthermore, PyHLA is applicable to small and large sample sizes and can finish the analysis in a timely manner on a personal computer with different platforms. PyHLA is implemented in Python. PyHLA is a free, open source software distributed under the GPLv2 license. The source code, tutorial, and examples are available at https://github.com/felixfan/PyHLA.
FunRich proteomics software analysis, let the fun begin!
Benito-Martin, Alberto; Peinado, Héctor
2015-08-01
Protein MS analysis is the preferred method for unbiased protein identification. It is normally applied to a large number of both small-scale and high-throughput studies. However, user-friendly computational tools for protein analysis are still needed. In this issue, Mathivanan and colleagues (Proteomics 2015, 15, 2597-2601) report the development of FunRich software, an open-access software that facilitates the analysis of proteomics data, providing tools for functional enrichment and interaction network analysis of genes and proteins. FunRich is a reinterpretation of proteomic software, a standalone tool combining ease of use with customizable databases, free access, and graphical representations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
User Guide for the Financing Alternatives Comparison Tool
FACT is a financial analysis tool that helps identify the most cost-effective method to fund a wastewater or drinking water management project. It creates a comprehensive analysis that compares various financing options.
Post-Flight Data Analysis Tool
NASA Technical Reports Server (NTRS)
George, Marina
2018-01-01
A software tool that facilitates the retrieval and analysis of post-flight data. This allows our team and other teams to effectively and efficiently analyze and evaluate post-flight data in order to certify commercial providers.
A Thermal Management Systems Model for the NASA GTX RBCC Concept
NASA Technical Reports Server (NTRS)
Traci, Richard M.; Farr, John L., Jr.; Laganelli, Tony; Walker, James (Technical Monitor)
2002-01-01
The Vehicle Integrated Thermal Management Analysis Code (VITMAC) was further developed to aid the analysis, design, and optimization of propellant and thermal management concepts for advanced propulsion systems. The computational tool is based on engineering level principles and models. A graphical user interface (GUI) provides a simple and straightforward method to assess and evaluate multiple concepts before undertaking more rigorous analysis of candidate systems. The tool incorporates the Chemical Equilibrium and Applications (CEA) program and the RJPA code to permit heat transfer analysis of both rocket and air breathing propulsion systems. Key parts of the code have been validated with experimental data. The tool was specifically tailored to analyze rocket-based combined-cycle (RBCC) propulsion systems being considered for space transportation applications. This report describes the computational tool and its development and verification for NASA GTX RBCC propulsion system applications.
Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frambati, S.; Frignani, M.
2012-07-01
We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less
Performance Analysis of GYRO: A Tool Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worley, P.; Roth, P.; Candy, J.
2005-06-26
The performance of the Eulerian gyrokinetic-Maxwell solver code GYRO is analyzed on five high performance computing systems. First, a manual approach is taken, using custom scripts to analyze the output of embedded wall clock timers, floating point operation counts collected using hardware performance counters, and traces of user and communication events collected using the profiling interface to Message Passing Interface (MPI) libraries. Parts of the analysis are then repeated or extended using a number of sophisticated performance analysis tools: IPM, KOJAK, SvPablo, TAU, and the PMaC modeling tool suite. The paper briefly discusses what has been discovered via this manualmore » analysis process, what performance analyses are inconvenient or infeasible to attempt manually, and to what extent the tools show promise in accelerating or significantly extending the manual performance analyses.« less
Tools for observational gait analysis in patients with stroke: a systematic review.
Ferrarello, Francesco; Bianchi, Valeria Anna Maria; Baccini, Marco; Rubbieri, Gaia; Mossello, Enrico; Cavallini, Maria Chiara; Marchionni, Niccolò; Di Bari, Mauro
2013-12-01
Stroke severely affects walking ability, and assessment of gait kinematics is important in defining diagnosis, planning treatment, and evaluating interventions in stroke rehabilitation. Although observational gait analysis is the most common approach to evaluate gait kinematics, tools useful for this purpose have received little attention in the scientific literature and have not been thoroughly reviewed. The aims of this systematic review were to identify tools proposed to conduct observational gait analysis in adults with a stroke, to summarize evidence concerning their quality, and to assess their implementation in rehabilitation research and clinical practice. An extensive search was performed of original articles reporting on visual/observational tools developed to investigate gait kinematics in adults with a stroke. Two reviewers independently selected studies, extracted data, assessed quality of the included studies, and scored the metric properties and clinical utility of each tool. Rigor in reporting metric properties and dissemination of the tools also was evaluated. Five tools were identified, not all of which had been tested adequately for their metric properties. Evaluation of content validity was partially satisfactory. Reliability was poorly investigated in all but one tool. Concurrent validity and sensitivity to change were shown for 3 and 2 tools, respectively. Overall, adequate levels of quality were rarely reached. The dissemination of the tools was poor. Based on critical appraisal, the Gait Assessment and Intervention Tool shows a good level of quality, and its use in stroke rehabilitation is recommended. Rigorous studies are needed for the other tools in order to establish their usefulness.
Zeng, Xiantao; Zhang, Yonggang; Kwong, Joey S W; Zhang, Chao; Li, Sheng; Sun, Feng; Niu, Yuming; Du, Liang
2015-02-01
To systematically review the methodological assessment tools for pre-clinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline. We searched PubMed, the Cochrane Handbook for Systematic Reviews of Interventions, Joanna Briggs Institute (JBI) Reviewers Manual, Centre for Reviews and Dissemination, Critical Appraisal Skills Programme (CASP), Scottish Intercollegiate Guidelines Network (SIGN), and the National Institute for Clinical Excellence (NICE) up to May 20th, 2014. Two authors selected studies and extracted data; quantitative analysis was performed to summarize the characteristics of included tools. We included a total of 21 assessment tools for analysis. A number of tools were developed by academic organizations, and some were developed by only a small group of researchers. The JBI developed the highest number of methodological assessment tools, with CASP coming second. Tools for assessing the methodological quality of randomized controlled studies were most abundant. The Cochrane Collaboration's tool for assessing risk of bias is the best available tool for assessing RCTs. For cohort and case-control studies, we recommend the use of the Newcastle-Ottawa Scale. The Methodological Index for Non-Randomized Studies (MINORS) is an excellent tool for assessing non-randomized interventional studies, and the Agency for Healthcare Research and Quality (ARHQ) methodology checklist is applicable for cross-sectional studies. For diagnostic accuracy test studies, the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool is recommended; the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) risk of bias tool is available for assessing animal studies; Assessment of Multiple Systematic Reviews (AMSTAR) is a measurement tool for systematic reviews/meta-analyses; an 18-item tool has been developed for appraising case series studies, and the Appraisal of Guidelines, Research and Evaluation (AGREE)-II instrument is widely used to evaluate clinical practice guidelines. We have successfully identified a variety of methodological assessment tools for different types of study design. However, further efforts in the development of critical appraisal tools are warranted since there is currently a lack of such tools for other fields, e.g. genetic studies, and some existing tools (nested case-control studies and case reports, for example) are in need of updating to be in line with current research practice and rigor. In addition, it is very important that all critical appraisal tools remain subjective and performance bias is effectively avoided. © 2015 Chinese Cochrane Center, West China Hospital of Sichuan University and Wiley Publishing Asia Pty Ltd.
Upgrade of DRAMA-ESA's Space Debris Mitigation Analysis Tool Suite
NASA Astrophysics Data System (ADS)
Gelhaus, Johannes; Sanchez-Ortiz, Noelia; Braun, Vitali; Kebschull, Christopher; de Oliveira, Joaquim Correia; Dominguez-Gonzalez, Raul; Wiedemann, Carsten; Krag, Holger; Vorsmann, Peter
2013-08-01
One decade ago ESA started the dev elopment of the first version of the software tool called DRAMA (Debris Risk Assessment and Mitigation Analysis) to enable ESA space programs to assess their compliance with the recommendations in the European Code of Conduct for Space Debris Mitigation. This tool was maintained, upgraded and extended during the last year and is now a combination of five individual tools, each addressing a different aspect of debris mitigation. This paper gives an overview of the new DRAMA software in general. Both, the main tools ARES, OSCAR, MIDAS, CROC and SARA will be discussed and the environment used by DRAMA will be explained shortly.
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Finch, N.; Clegg, S.; Graff, T.; Morris, R. V.; Laura, J.
2017-06-01
We present a Python-based library and graphical interface for the analysis of point spectra. The tool is being developed with a focus on methods used for ChemCam data, but is flexible enough to handle spectra from other instruments.
Sustainability Tools Inventory Initial Gap Analysis
This report identifies a suite of tools that address a comprehensive set of community sustainability concerns. The objective is to discover whether "gaps" exist in the tool suite’s analytic capabilities. These tools address activities that significantly influence resource consu...
Image edge detection based tool condition monitoring with morphological component analysis.
Yu, Xiaolong; Lin, Xin; Dai, Yiquan; Zhu, Kunpeng
2017-07-01
The measurement and monitoring of tool condition are keys to the product precision in the automated manufacturing. To meet the need, this study proposes a novel tool wear monitoring approach based on the monitored image edge detection. Image edge detection has been a fundamental tool to obtain features of images. This approach extracts the tool edge with morphological component analysis. Through the decomposition of original tool wear image, the approach reduces the influence of texture and noise for edge measurement. Based on the target image sparse representation and edge detection, the approach could accurately extract the tool wear edge with continuous and complete contour, and is convenient in charactering tool conditions. Compared to the celebrated algorithms developed in the literature, this approach improves the integrity and connectivity of edges, and the results have shown that it achieves better geometry accuracy and lower error rate in the estimation of tool conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Comparative analysis and visualization of multiple collinear genomes
2012-01-01
Background Genome browsers are a common tool used by biologists to visualize genomic features including genes, polymorphisms, and many others. However, existing genome browsers and visualization tools are not well-suited to perform meaningful comparative analysis among a large number of genomes. With the increasing quantity and availability of genomic data, there is an increased burden to provide useful visualization and analysis tools for comparison of multiple collinear genomes such as the large panels of model organisms which are the basis for much of the current genetic research. Results We have developed a novel web-based tool for visualizing and analyzing multiple collinear genomes. Our tool illustrates genome-sequence similarity through a mosaic of intervals representing local phylogeny, subspecific origin, and haplotype identity. Comparative analysis is facilitated through reordering and clustering of tracks, which can vary throughout the genome. In addition, we provide local phylogenetic trees as an alternate visualization to assess local variations. Conclusions Unlike previous genome browsers and viewers, ours allows for simultaneous and comparative analysis. Our browser provides intuitive selection and interactive navigation about features of interest. Dynamic visualizations adjust to scale and data content making analysis at variable resolutions and of multiple data sets more informative. We demonstrate our genome browser for an extensive set of genomic data sets composed of almost 200 distinct mouse laboratory strains. PMID:22536897
Radom, Marcin; Rybarczyk, Agnieszka; Szawulak, Bartlomiej; Andrzejewski, Hubert; Chabelski, Piotr; Kozak, Adam; Formanowicz, Piotr
2017-12-01
Model development and its analysis is a fundamental step in systems biology. The theory of Petri nets offers a tool for such a task. Since the rapid development of computer science, a variety of tools for Petri nets emerged, offering various analytical algorithms. From this follows a problem of using different programs to analyse a single model. Many file formats and different representations of results make the analysis much harder. Especially for larger nets the ability to visualize the results in a proper form provides a huge help in the understanding of their significance. We present a new tool for Petri nets development and analysis called Holmes. Our program contains algorithms for model analysis based on different types of Petri nets, e.g. invariant generator, Maximum Common Transitions (MCT) sets and cluster modules, simulation algorithms or knockout analysis tools. A very important feature is the ability to visualize the results of almost all analytical modules. The integration of such modules into one graphical environment allows a researcher to fully devote his or her time to the model building and analysis. Available at http://www.cs.put.poznan.pl/mradom/Holmes/holmes.html. piotr@cs.put.poznan.pl. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
RSAT 2018: regulatory sequence analysis tools 20th anniversary.
Nguyen, Nga Thi Thuy; Contreras-Moreira, Bruno; Castro-Mondragon, Jaime A; Santana-Garcia, Walter; Ossio, Raul; Robles-Espinoza, Carla Daniela; Bahin, Mathieu; Collombet, Samuel; Vincens, Pierre; Thieffry, Denis; van Helden, Jacques; Medina-Rivera, Alejandra; Thomas-Chollier, Morgane
2018-05-02
RSAT (Regulatory Sequence Analysis Tools) is a suite of modular tools for the detection and the analysis of cis-regulatory elements in genome sequences. Its main applications are (i) motif discovery, including from genome-wide datasets like ChIP-seq/ATAC-seq, (ii) motif scanning, (iii) motif analysis (quality assessment, comparisons and clustering), (iv) analysis of regulatory variations, (v) comparative genomics. Six public servers jointly support 10 000 genomes from all kingdoms. Six novel or refactored programs have been added since the 2015 NAR Web Software Issue, including updated programs to analyse regulatory variants (retrieve-variation-seq, variation-scan, convert-variations), along with tools to extract sequences from a list of coordinates (retrieve-seq-bed), to select motifs from motif collections (retrieve-matrix), and to extract orthologs based on Ensembl Compara (get-orthologs-compara). Three use cases illustrate the integration of new and refactored tools to the suite. This Anniversary update gives a 20-year perspective on the software suite. RSAT is well-documented and available through Web sites, SOAP/WSDL (Simple Object Access Protocol/Web Services Description Language) web services, virtual machines and stand-alone programs at http://www.rsat.eu/.
Sreedharan, Vipin T; Schultheiss, Sebastian J; Jean, Géraldine; Kahles, André; Bohnert, Regina; Drewe, Philipp; Mudrakarta, Pramod; Görnitz, Nico; Zeller, Georg; Rätsch, Gunnar
2014-05-01
We present Oqtans, an open-source workbench for quantitative transcriptome analysis, that is integrated in Galaxy. Its distinguishing features include customizable computational workflows and a modular pipeline architecture that facilitates comparative assessment of tool and data quality. Oqtans integrates an assortment of machine learning-powered tools into Galaxy, which show superior or equal performance to state-of-the-art tools. Implemented tools comprise a complete transcriptome analysis workflow: short-read alignment, transcript identification/quantification and differential expression analysis. Oqtans and Galaxy facilitate persistent storage, data exchange and documentation of intermediate results and analysis workflows. We illustrate how Oqtans aids the interpretation of data from different experiments in easy to understand use cases. Users can easily create their own workflows and extend Oqtans by integrating specific tools. Oqtans is available as (i) a cloud machine image with a demo instance at cloud.oqtans.org, (ii) a public Galaxy instance at galaxy.cbio.mskcc.org, (iii) a git repository containing all installed software (oqtans.org/git); most of which is also available from (iv) the Galaxy Toolshed and (v) a share string to use along with Galaxy CloudMan.
Analytical Tools for Affordability Analysis
2015-05-01
function (Womer) Unit cost as a function of learning and rate Learning with forgetting (Benkard) Learning depreciates over time Discretionary...Analytical Tools for Affordability Analysis David Tate Cost Analysis and Research Division Institute for Defense Analyses Report Documentation...ES) Institute for Defense Analyses, Cost Analysis and Research Division,4850 Mark Center Drive,Alexandria,VA,22311-1882 8. PERFORMING ORGANIZATION
Multi-body Dynamic Contact Analysis Tool for Transmission Design
2003-04-01
frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using assumed time domain... modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal format (dataset 55...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by
HEPDOOP: High-Energy Physics Analysis using Hadoop
NASA Astrophysics Data System (ADS)
Bhimji, W.; Bristow, T.; Washbrook, A.
2014-06-01
We perform a LHC data analysis workflow using tools and data formats that are commonly used in the "Big Data" community outside High Energy Physics (HEP). These include Apache Avro for serialisation to binary files, Pig and Hadoop for mass data processing and Python Scikit-Learn for multi-variate analysis. Comparison is made with the same analysis performed with current HEP tools in ROOT.
Clark, Neil R.; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D.; Jones, Matthew R.; Ma’ayan, Avi
2016-01-01
Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community. PMID:26848405
Clark, Neil R; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D; Jones, Matthew R; Ma'ayan, Avi
2015-11-01
Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community.
NASA Astrophysics Data System (ADS)
Barnhart, B. L.; Eichinger, W. E.; Prueger, J. H.
2010-12-01
Hilbert-Huang transform (HHT) is a relatively new data analysis tool which is used to analyze nonstationary and nonlinear time series data. It consists of an algorithm, called empirical mode decomposition (EMD), which extracts the cyclic components embedded within time series data, as well as Hilbert spectral analysis (HSA) which displays the time and frequency dependent energy contributions from each component in the form of a spectrogram. The method can be considered a generalized form of Fourier analysis which can describe the intrinsic cycles of data with basis functions whose amplitudes and phases may vary with time. The HHT will be introduced and compared to current spectral analysis tools such as Fourier analysis, short-time Fourier analysis, wavelet analysis and Wigner-Ville distributions. A number of applications are also presented which demonstrate the strengths and limitations of the tool, including analyzing sunspot number variability and total solar irradiance proxies as well as global averaged temperature and carbon dioxide concentration. Also, near-surface atmospheric quantities such as temperature and wind velocity are analyzed to demonstrate the nonstationarity of the atmosphere.
Data and Tools | Integrated Energy Solutions | NREL
for a research campus eQUEST. Detailed analysis of today's state-of-the-art building design source software tools to support whole building energy modeling and advanced daylight analysis BESTEST-EX
A dynamical framework for integrated corridor management.
DOT National Transportation Integrated Search
2016-01-11
We develop analysis and control synthesis tools for dynamic traffic flow over networks. Our analysis : relies on exploiting monotonicity properties of the dynamics, and on adapting relevant tools from : stochastic queuing networks. We develop proport...
Analysis of Alternatives for Risk Assessment Methodologies and Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nachtigal, Noel M.; Fruetel, Julia A.; Gleason, Nathaniel J.
The purpose of this document is to provide a basic overview and understanding of risk assessment methodologies and tools from the literature and to assess the suitability of these methodologies and tools for cyber risk assessment. Sandia National Laboratories (SNL) performed this review in support of risk modeling activities performed for the Stakeholder Engagement and Cyber Infrastructure Resilience (SECIR) division of the Department of Homeland Security (DHS) Office of Cybersecurity and Communications (CS&C). The set of methodologies and tools covered in this document is not intended to be exhaustive; instead, it focuses on those that are commonly used in themore » risk assessment community. The classification of methodologies and tools was performed by a group of analysts with experience in risk analysis and cybersecurity, and the resulting analysis of alternatives has been tailored to address the needs of a cyber risk assessment.« less
Designing Real-time Decision Support for Trauma Resuscitations
Yadav, Kabir; Chamberlain, James M.; Lewis, Vicki R.; Abts, Natalie; Chawla, Shawn; Hernandez, Angie; Johnson, Justin; Tuveson, Genevieve; Burd, Randall S.
2016-01-01
Background Use of electronic clinical decision support (eCDS) has been recommended to improve implementation of clinical decision rules. Many eCDS tools, however, are designed and implemented without taking into account the context in which clinical work is performed. Implementation of the pediatric traumatic brain injury (TBI) clinical decision rule at one Level I pediatric emergency department includes an electronic questionnaire triggered when ordering a head computed tomography using computerized physician order entry (CPOE). Providers use this CPOE tool in less than 20% of trauma resuscitation cases. A human factors engineering approach could identify the implementation barriers that are limiting the use of this tool. Objectives The objective was to design a pediatric TBI eCDS tool for trauma resuscitation using a human factors approach. The hypothesis was that clinical experts will rate a usability-enhanced eCDS tool better than the existing CPOE tool for user interface design and suitability for clinical use. Methods This mixed-methods study followed usability evaluation principles. Pediatric emergency physicians were surveyed to identify barriers to using the existing eCDS tool. Using standard trauma resuscitation protocols, a hierarchical task analysis of pediatric TBI evaluation was developed. Five clinical experts, all board-certified pediatric emergency medicine faculty members, then iteratively modified the hierarchical task analysis until reaching consensus. The software team developed a prototype eCDS display using the hierarchical task analysis. Three human factors engineers provided feedback on the prototype through a heuristic evaluation, and the software team refined the eCDS tool using a rapid prototyping process. The eCDS tool then underwent iterative usability evaluations by the five clinical experts using video review of 50 trauma resuscitation cases. A final eCDS tool was created based on their feedback, with content analysis of the evaluations performed to ensure all concerns were identified and addressed. Results Among 26 EPs (76% response rate), the main barriers to using the existing tool were that the information displayed is redundant and does not fit clinical workflow. After the prototype eCDS tool was developed based on the trauma resuscitation hierarchical task analysis, the human factors engineers rated it to be better than the CPOE tool for nine of 10 standard user interface design heuristics on a three-point scale. The eCDS tool was also rated better for clinical use on the same scale, in 84% of 50 expert–video pairs, and was rated equivalent in the remainder. Clinical experts also rated barriers to use of the eCDS tool as being low. Conclusions An eCDS tool for diagnostic imaging designed using human factors engineering methods has improved perceived usability among pediatric emergency physicians. PMID:26300010
Mi, Huaiyu; Huang, Xiaosong; Muruganujan, Anushya; Tang, Haiming; Mills, Caitlin; Kang, Diane; Thomas, Paul D
2017-01-04
The PANTHER database (Protein ANalysis THrough Evolutionary Relationships, http://pantherdb.org) contains comprehensive information on the evolution and function of protein-coding genes from 104 completely sequenced genomes. PANTHER software tools allow users to classify new protein sequences, and to analyze gene lists obtained from large-scale genomics experiments. In the past year, major improvements include a large expansion of classification information available in PANTHER, as well as significant enhancements to the analysis tools. Protein subfamily functional classifications have more than doubled due to progress of the Gene Ontology Phylogenetic Annotation Project. For human genes (as well as a few other organisms), PANTHER now also supports enrichment analysis using pathway classifications from the Reactome resource. The gene list enrichment tools include a new 'hierarchical view' of results, enabling users to leverage the structure of the classifications/ontologies; the tools also allow users to upload genetic variant data directly, rather than requiring prior conversion to a gene list. The updated coding single-nucleotide polymorphisms (SNP) scoring tool uses an improved algorithm. The hidden Markov model (HMM) search tools now use HMMER3, dramatically reducing search times and improving accuracy of E-value statistics. Finally, the PANTHER Tree-Attribute Viewer has been implemented in JavaScript, with new views for exploring protein sequence evolution. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Bamidis, P D; Lithari, C; Konstantinidis, S T
2010-01-01
With the number of scientific papers published in journals, conference proceedings, and international literature ever increasing, authors and reviewers are not only facilitated with an abundance of information, but unfortunately continuously confronted with risks associated with the erroneous copy of another's material. In parallel, Information Communication Technology (ICT) tools provide to researchers novel and continuously more effective ways to analyze and present their work. Software tools regarding statistical analysis offer scientists the chance to validate their work and enhance the quality of published papers. Moreover, from the reviewers and the editor's perspective, it is now possible to ensure the (text-content) originality of a scientific article with automated software tools for plagiarism detection. In this paper, we provide a step-bystep demonstration of two categories of tools, namely, statistical analysis and plagiarism detection. The aim is not to come up with a specific tool recommendation, but rather to provide useful guidelines on the proper use and efficiency of either category of tools. In the context of this special issue, this paper offers a useful tutorial to specific problems concerned with scientific writing and review discourse. A specific neuroscience experimental case example is utilized to illustrate the young researcher's statistical analysis burden, while a test scenario is purpose-built using open access journal articles to exemplify the use and comparative outputs of seven plagiarism detection software pieces. PMID:21487489
Bamidis, P D; Lithari, C; Konstantinidis, S T
2010-12-01
With the number of scientific papers published in journals, conference proceedings, and international literature ever increasing, authors and reviewers are not only facilitated with an abundance of information, but unfortunately continuously confronted with risks associated with the erroneous copy of another's material. In parallel, Information Communication Technology (ICT) tools provide to researchers novel and continuously more effective ways to analyze and present their work. Software tools regarding statistical analysis offer scientists the chance to validate their work and enhance the quality of published papers. Moreover, from the reviewers and the editor's perspective, it is now possible to ensure the (text-content) originality of a scientific article with automated software tools for plagiarism detection. In this paper, we provide a step-bystep demonstration of two categories of tools, namely, statistical analysis and plagiarism detection. The aim is not to come up with a specific tool recommendation, but rather to provide useful guidelines on the proper use and efficiency of either category of tools. In the context of this special issue, this paper offers a useful tutorial to specific problems concerned with scientific writing and review discourse. A specific neuroscience experimental case example is utilized to illustrate the young researcher's statistical analysis burden, while a test scenario is purpose-built using open access journal articles to exemplify the use and comparative outputs of seven plagiarism detection software pieces.
Paques, Joseph-Jean; Gauthier, François; Perez, Alejandro
2007-01-01
To assess and plan future risk-analysis research projects, 275 documents describing methods and tools for assessing the risks associated with industrial machines or with other sectors such as the military, and the nuclear and aeronautics industries, etc., were collected. These documents were in the format of published books or papers, standards, technical guides and company procedures collected throughout industry. From the collected documents, 112 documents were selected for analysis; 108 methods applied or potentially applicable for assessing the risks associated with industrial machines were analyzed and classified. This paper presents the main quantitative results of the analysis of the methods and tools.
CloudMan as a platform for tool, data, and analysis distribution.
Afgan, Enis; Chapman, Brad; Taylor, James
2012-11-27
Cloud computing provides an infrastructure that facilitates large scale computational analysis in a scalable, democratized fashion, However, in this context it is difficult to ensure sharing of an analysis environment and associated data in a scalable and precisely reproducible way. CloudMan (usecloudman.org) enables individual researchers to easily deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations. With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud resources, tools, and data to the level of an individual researcher and contributes toward reproducibility and transparency of research solutions.
1988-10-01
overview of the complexity analysis tool ( CAT ), an automated tool which will analyze mission critical computer resources (MCCR) software. CAT is based...84 MAR UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE 19. ABSTRACT: (cont) CAT automates the metric for BASIC (HP-71), ATLAS (EQUATE), Ada (subset...UNIX 5.2). CAT analyzes source code and computes complexity on a module basis. CAT also generates graphic representations of the logic flow paths and
Automated Slicing for a Multi-Axis Metal Deposition System (Preprint)
2006-09-01
experimented with different materials like H13 tool steel to build the part. Following the same slicing and scanning toolpath result, there is a geometric...and analysis tool -centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly computationally...geometry reasoning and analysis tool -centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly
DAnTE: a statistical tool for quantitative analysis of –omics data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polpitiya, Ashoka D.; Qian, Weijun; Jaitly, Navdeep
2008-05-03
DAnTE (Data Analysis Tool Extension) is a statistical tool designed to address challenges unique to quantitative bottom-up, shotgun proteomics data. This tool has also been demonstrated for microarray data and can easily be extended to other high-throughput data types. DAnTE features selected normalization methods, missing value imputation algorithms, peptide to protein rollup methods, an extensive array of plotting functions, and a comprehensive ANOVA scheme that can handle unbalanced data and random effects. The Graphical User Interface (GUI) is designed to be very intuitive and user friendly.
Regulatory sequence analysis tools.
van Helden, Jacques
2003-07-01
The web resource Regulatory Sequence Analysis Tools (RSAT) (http://rsat.ulb.ac.be/rsat) offers a collection of software tools dedicated to the prediction of regulatory sites in non-coding DNA sequences. These tools include sequence retrieval, pattern discovery, pattern matching, genome-scale pattern matching, feature-map drawing, random sequence generation and other utilities. Alternative formats are supported for the representation of regulatory motifs (strings or position-specific scoring matrices) and several algorithms are proposed for pattern discovery. RSAT currently holds >100 fully sequenced genomes and these data are regularly updated from GenBank.
Expert systems tools for Hubble Space Telescope observation scheduling
NASA Technical Reports Server (NTRS)
Miller, Glenn; Rosenthal, Don; Cohen, William; Johnston, Mark
1987-01-01
The utility of expert systems techniques for the Hubble Space Telescope (HST) planning and scheduling is discussed and a plan for development of expert system tools which will augment the existing ground system is described. Additional capabilities provided by these tools will include graphics-oriented plan evaluation, long-range analysis of the observation pool, analysis of optimal scheduling time intervals, constructing sequences of spacecraft activities which minimize operational overhead, and optimization of linkages between observations. Initial prototyping of a scheduler used the Automated Reasoning Tool running on a LISP workstation.
Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Zinnecker, Alicia M.
2014-01-01
The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.
Integrated Data Visualization and Virtual Reality Tool
NASA Technical Reports Server (NTRS)
Dryer, David A.
1998-01-01
The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.
NASA Technical Reports Server (NTRS)
Cirillo, William M.; Earle, Kevin D.; Goodliff, Kandyce E.; Reeves, J. D.; Stromgren, Chel; Andraschko, Mark R.; Merrill, R. Gabe
2008-01-01
NASA s Constellation Program employs a strategic analysis methodology in providing an integrated analysis capability of Lunar exploration scenarios and to support strategic decision-making regarding those scenarios. The strategic analysis methodology integrates the assessment of the major contributors to strategic objective satisfaction performance, affordability, and risk and captures the linkages and feedbacks between all three components. Strategic analysis supports strategic decision making by senior management through comparable analysis of alternative strategies, provision of a consistent set of high level value metrics, and the enabling of cost-benefit analysis. The tools developed to implement the strategic analysis methodology are not element design and sizing tools. Rather, these models evaluate strategic performance using predefined elements, imported into a library from expert-driven design/sizing tools or expert analysis. Specific components of the strategic analysis tool set include scenario definition, requirements generation, mission manifesting, scenario lifecycle costing, crew time analysis, objective satisfaction benefit, risk analysis, and probabilistic evaluation. Results from all components of strategic analysis are evaluated a set of pre-defined figures of merit (FOMs). These FOMs capture the high-level strategic characteristics of all scenarios and facilitate direct comparison of options. The strategic analysis methodology that is described in this paper has previously been applied to the Space Shuttle and International Space Station Programs and is now being used to support the development of the baseline Constellation Program lunar architecture. This paper will present an overview of the strategic analysis methodology and will present sample results from the application of the strategic analysis methodology to the Constellation Program lunar architecture.
Murray-Davis, Beth; McDonald, Helen; Cross-Sudworth, Fiona; Ahmed, Rashid; Simioni, Julia; Dore, Sharon; Marrin, Michael; DeSantis, Judy; Leyland, Nicholas; Gardosi, Jason; Hutton, Eileen; McDonald, Sarah
2015-08-01
Adverse events occur in up to 10% of obstetric cases, and up to one half of these could be prevented. Case reviews and root cause analysis using a structured tool may help health care providers to learn from adverse events and to identify trends and recurring systems issues. We sought to establish the reliability of a root cause analysis computer application called Standardized Clinical Outcome Review (SCOR). We designed a mixed methods study to evaluate the effectiveness of the tool. We conducted qualitative content analysis of five charts reviewed by both the traditional obstetric quality assurance methods and the SCOR tool. We also determined inter-rater reliability by having four health care providers review the same five cases using the SCOR tool. The comparative qualitative review revealed that the traditional quality assurance case review process used inconsistent language and made serious, personalized recommendations for those involved in the case. In contrast, the SCOR review provided a consistent format for recommendations, a list of action points, and highlighted systems issues. The mean percentage agreement between the four reviewers for the five cases was 75%. The different health care providers completed data entry and assessment of the case in a similar way. Missing data from the chart and poor wording of questions were identified as issues affecting percentage agreement. The SCOR tool provides a standardized, objective, obstetric-specific tool for root cause analysis that may improve identification of risk factors and dissemination of action plans to prevent future events.
Community Solar Scenario Tool | Integrated Energy Solutions | NREL
Community Solar Scenario Tool Community Solar Scenario Tool The Community Solar Scenario Tool (CSST ) provides a "first cut" analysis of different community or shared solar program options. NREL sponsoring utility. Community Solar Scenario Tool -Beta Version Available as a Microsoft Excel file, which
Review and Comparison of Electronic Patient-Facing Family Health History Tools.
Welch, Brandon M; Wiley, Kevin; Pflieger, Lance; Achiangia, Rosaline; Baker, Karen; Hughes-Halbert, Chanita; Morrison, Heath; Schiffman, Joshua; Doerr, Megan
2018-04-01
Family health history (FHx) is one of the most important pieces of information available to help genetic counselors and other clinicians identify risk and prevent disease. Unfortunately, the collection of FHx from patients is often too time consuming to be done during a clinical visit. Fortunately, there are many electronic FHx tools designed to help patients gather and organize their own FHx information prior to a clinic visit. We conducted a review and analysis of electronic FHx tools to better understand what tools are available, to compare and contrast to each other, to highlight features of various tools, and to provide a foundation for future evaluation and comparisons across FHx tools. Through our analysis, we included and abstracted 17 patient-facing electronic FHx tools and explored these tools around four axes: organization information, family history collection and display, clinical data collected, and clinical workflow integration. We found a large number of differences among FHx tools, with no two the same. This paper provides a useful review for health care providers, researchers, and patient advocates interested in understanding the differences among the available patient-facing electronic FHx tools.
RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis
Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab
2012-01-01
RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. Availability http://www.cemb.edu.pk/sw.html Abbreviations RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language. PMID:23055611
Hybrid Wing Body Planform Design with Vehicle Sketch Pad
NASA Technical Reports Server (NTRS)
Wells, Douglas P.; Olson, Erik D.
2011-01-01
The objective of this paper was to provide an update on NASA s current tools for design and analysis of hybrid wing body (HWB) aircraft with an emphasis on Vehicle Sketch Pad (VSP). NASA started HWB analysis using the Flight Optimization System (FLOPS). That capability is enhanced using Phoenix Integration's ModelCenter(Registered TradeMark). Model Center enables multifidelity analysis tools to be linked as an integrated structure. Two major components are linked to FLOPS as an example; a planform discretization tool and VSP. The planform discretization tool ensures the planform is smooth and continuous. VSP is used to display the output geometry. This example shows that a smooth & continuous HWB planform can be displayed as a three-dimensional model and rapidly sized and analyzed.
Implementation Analysis of Cutting Tool Carbide with Cast Iron Material S45 C on Universal Lathe
NASA Astrophysics Data System (ADS)
Junaidi; hestukoro, Soni; yanie, Ahmad; Jumadi; Eddy
2017-12-01
Cutting tool is the tools lathe. Cutting process tool CARBIDE with Cast Iron Material Universal Lathe which is commonly found at Analysiscutting Process by some aspects numely Cutting force, Cutting Speed, Cutting Power, Cutting Indication Power, Temperature Zone 1 and Temperatur Zone 2. Purpose of this Study was to determine how big the cutting Speed, Cutting Power, electromotor Power,Temperatur Zone 1 and Temperatur Zone 2 that drives the chisel cutting CARBIDE in the Process of tur ning Cast Iron Material. Cutting force obtained from image analysis relationship between the recommended Component Cuting Force with plane of the cut and Cutting Speed obtained from image analysis of relationships between the recommended Cutting Speed Feed rate.
A Cross-Platform Infrastructure for Scalable Runtime Application Performance Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jack Dongarra; Shirley Moore; Bart Miller, Jeffrey Hollingsworth
2005-03-15
The purpose of this project was to build an extensible cross-platform infrastructure to facilitate the development of accurate and portable performance analysis tools for current and future high performance computing (HPC) architectures. Major accomplishments include tools and techniques for multidimensional performance analysis, as well as improved support for dynamic performance monitoring of multithreaded and multiprocess applications. Previous performance tool development has been limited by the burden of having to re-write a platform-dependent low-level substrate for each architecture/operating system pair in order to obtain the necessary performance data from the system. Manual interpretation of performance data is not scalable for large-scalemore » long-running applications. The infrastructure developed by this project provides a foundation for building portable and scalable performance analysis tools, with the end goal being to provide application developers with the information they need to analyze, understand, and tune the performance of terascale applications on HPC architectures. The backend portion of the infrastructure provides runtime instrumentation capability and access to hardware performance counters, with thread-safety for shared memory environments and a communication substrate to support instrumentation of multiprocess and distributed programs. Front end interfaces provides tool developers with a well-defined, platform-independent set of calls for requesting performance data. End-user tools have been developed that demonstrate runtime data collection, on-line and off-line analysis of performance data, and multidimensional performance analysis. The infrastructure is based on two underlying performance instrumentation technologies. These technologies are the PAPI cross-platform library interface to hardware performance counters and the cross-platform Dyninst library interface for runtime modification of executable images. The Paradyn and KOJAK projects have made use of this infrastructure to build performance measurement and analysis tools that scale to long-running programs on large parallel and distributed systems and that automate much of the search for performance bottlenecks.« less
A Methodology for the Development of RESTful Semantic Web Services for Gene Expression Analysis
Guardia, Gabriela D. A.; Pires, Luís Ferreira; Vêncio, Ricardo Z. N.; Malmegrim, Kelen C. R.; de Farias, Cléver R. G.
2015-01-01
Gene expression studies are generally performed through multi-step analysis processes, which require the integrated use of a number of analysis tools. In order to facilitate tool/data integration, an increasing number of analysis tools have been developed as or adapted to semantic web services. In recent years, some approaches have been defined for the development and semantic annotation of web services created from legacy software tools, but these approaches still present many limitations. In addition, to the best of our knowledge, no suitable approach has been defined for the functional genomics domain. Therefore, this paper aims at defining an integrated methodology for the implementation of RESTful semantic web services created from gene expression analysis tools and the semantic annotation of such services. We have applied our methodology to the development of a number of services to support the analysis of different types of gene expression data, including microarray and RNASeq. All developed services are publicly available in the Gene Expression Analysis Services (GEAS) Repository at http://dcm.ffclrp.usp.br/lssb/geas. Additionally, we have used a number of the developed services to create different integrated analysis scenarios to reproduce parts of two gene expression studies documented in the literature. The first study involves the analysis of one-color microarray data obtained from multiple sclerosis patients and healthy donors. The second study comprises the analysis of RNA-Seq data obtained from melanoma cells to investigate the role of the remodeller BRG1 in the proliferation and morphology of these cells. Our methodology provides concrete guidelines and technical details in order to facilitate the systematic development of semantic web services. Moreover, it encourages the development and reuse of these services for the creation of semantically integrated solutions for gene expression analysis. PMID:26207740
A Methodology for the Development of RESTful Semantic Web Services for Gene Expression Analysis.
Guardia, Gabriela D A; Pires, Luís Ferreira; Vêncio, Ricardo Z N; Malmegrim, Kelen C R; de Farias, Cléver R G
2015-01-01
Gene expression studies are generally performed through multi-step analysis processes, which require the integrated use of a number of analysis tools. In order to facilitate tool/data integration, an increasing number of analysis tools have been developed as or adapted to semantic web services. In recent years, some approaches have been defined for the development and semantic annotation of web services created from legacy software tools, but these approaches still present many limitations. In addition, to the best of our knowledge, no suitable approach has been defined for the functional genomics domain. Therefore, this paper aims at defining an integrated methodology for the implementation of RESTful semantic web services created from gene expression analysis tools and the semantic annotation of such services. We have applied our methodology to the development of a number of services to support the analysis of different types of gene expression data, including microarray and RNASeq. All developed services are publicly available in the Gene Expression Analysis Services (GEAS) Repository at http://dcm.ffclrp.usp.br/lssb/geas. Additionally, we have used a number of the developed services to create different integrated analysis scenarios to reproduce parts of two gene expression studies documented in the literature. The first study involves the analysis of one-color microarray data obtained from multiple sclerosis patients and healthy donors. The second study comprises the analysis of RNA-Seq data obtained from melanoma cells to investigate the role of the remodeller BRG1 in the proliferation and morphology of these cells. Our methodology provides concrete guidelines and technical details in order to facilitate the systematic development of semantic web services. Moreover, it encourages the development and reuse of these services for the creation of semantically integrated solutions for gene expression analysis.
Predicting performance with traffic analysis tools : final report.
DOT National Transportation Integrated Search
2008-03-01
This document provides insights into the common pitfalls and challenges associated with use of traffic analysis tools for predicting future performance of a transportation facility. It provides five in-depth case studies that demonstrate common ways ...
Surface Analysis Cluster Tool | Materials Science | NREL
spectroscopic ellipsometry during film deposition. The cluster tool can be used to study the effect of various prior to analysis. Here we illustrate the surface cleaning effect of an aqueous ammonia treatment on a
Biofuel transportation analysis tool : description, methodology, and demonstration scenarios
DOT National Transportation Integrated Search
2014-01-01
This report describes a Biofuel Transportation Analysis Tool (BTAT), developed by the U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe) in support of the Department of Defense (DOD) Office of Naval Research ...
Improved Data Analysis Tools for the Thermal Emission Spectrometer
NASA Astrophysics Data System (ADS)
Rodriguez, K.; Laura, J.; Fergason, R.; Bogle, R.
2017-06-01
We plan to stand up three different database systems for testing of a new datastore for MGS TES data allowing for more accessible tools supporting high throughput data analysis on the high-dimensionality hyperspectral data set.
A Software Tool for Integrated Optical Design Analysis
NASA Technical Reports Server (NTRS)
Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)
2001-01-01
Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.
Two implementations of the Expert System for the Flight Analysis System (ESFAS) project
NASA Technical Reports Server (NTRS)
Wang, Lui
1988-01-01
A comparison is made between the two most sophisticated expert system building tools, the Automated Reasoning Tool (ART) and the Knowledge Engineering Environment (KEE). The same problem domain (ESFAS) was used in making the comparison. The Expert System for the Flight Analysis System (ESFAS) acts as an intelligent front end for the Flight Analysis System (FAS). FAS is a complex configuration controlled set of interrelated processors (FORTRAN routines) which will be used by the Mission Planning and Analysis Div. (MPAD) to design and analyze Shuttle and potential Space Station missions. Implementations of ESFAS are described. The two versions represent very different programming paradigms; ART uses rules and KEE uses objects. Due to each of the tools philosophical differences, KEE is implemented using a depth first traversal algorithm, whereas ART uses a user directed traversal method. Either tool could be used to solve this particular problem.
A Data Warehouse Architecture for DoD Healthcare Performance Measurements.
1999-09-01
design, develop, implement, and apply statistical analysis and data mining tools to a Data Warehouse of healthcare metrics. With the DoD healthcare...framework, this thesis defines a methodology to design, develop, implement, and apply statistical analysis and data mining tools to a Data Warehouse...21 F. INABILITY TO CONDUCT HELATHCARE ANALYSIS
Patterns of Propaganda and Persuasion.
ERIC Educational Resources Information Center
Rank, Hugh
Because children are exposed to highly professional sales pitches on television and because the old material produced by the Institute of Propaganda Analysis is outdated and in error, a new tool for the analysis of propaganda and persuasion is called for. Such a tool is the intensify/downplay pattern analysis chart, which includes the basic…
Analyzing the Scientific Evolution of Social Work Using Science Mapping
ERIC Educational Resources Information Center
Martínez, Ma Angeles; Cobo, Manuel Jesús; Herrera, Manuel; Herrera-Viedma, Enrique
2015-01-01
Objectives: This article reports the first science mapping analysis of the social work field, which shows its conceptual structure and scientific evolution. Methods: Science Mapping Analysis Software Tool, a bibliometric science mapping tool based on co-word analysis and h-index, is applied using a sample of 18,794 research articles published from…
Systems Analysis and Integration | Transportation Research | NREL
data visualization displayed on a wall. Using a suite of simulation and analysis tools, NREL evaluates savings and reduce emissions. Pictured here, engineers discuss the 3D results of a vehicle simulation vehicles, and other alternative fuel vehicles. Using a suite of simulation and analysis tools, NREL
Retrospective Video Analysis: A Reflective Tool for Teachers and Teacher Educators
ERIC Educational Resources Information Center
Mosley Wetzel, Melissa; Maloch, Beth; Hoffman, James V.
2017-01-01
Teachers may need tools to use video for reflection toward ongoing toward education and teacher leadership. Based on Goodman's (1996) notion of retrospective miscue analysis, a method of reading instruction that revalues the reader and his or her strategies, retrospective video analysis guides teachers in appreciating and understanding their own…
On-line analysis capabilities developed to support the AFW wind-tunnel tests
NASA Technical Reports Server (NTRS)
Wieseman, Carol D.; Hoadley, Sherwood T.; Mcgraw, Sandra M.
1992-01-01
A variety of on-line analysis tools were developed to support two active flexible wing (AFW) wind-tunnel tests. These tools were developed to verify control law execution, to satisfy analysis requirements of the control law designers, to provide measures of system stability in a real-time environment, and to provide project managers with a quantitative measure of controller performance. Descriptions and purposes of the developed capabilities are presented along with examples. Procedures for saving and transferring data for near real-time analysis, and descriptions of the corresponding data interface programs are also presented. The on-line analysis tools worked well before, during, and after the wind tunnel test and proved to be a vital and important part of the entire test effort.
Spec Tool; an online education and research resource
NASA Astrophysics Data System (ADS)
Maman, S.; Shenfeld, A.; Isaacson, S.; Blumberg, D. G.
2016-06-01
Education and public outreach (EPO) activities related to remote sensing, space, planetary and geo-physics sciences have been developed widely in the Earth and Planetary Image Facility (EPIF) at Ben-Gurion University of the Negev, Israel. These programs aim to motivate the learning of geo-scientific and technologic disciplines. For over the past decade, the facility hosts research and outreach activities for researchers, local community, school pupils, students and educators. As software and data are neither available nor affordable, the EPIF Spec tool was created as a web-based resource to assist in initial spectral analysis as a need for researchers and students. The tool is used both in the academic courses and in the outreach education programs and enables a better understanding of the theoretical data of spectroscopy and Imaging Spectroscopy in a 'hands-on' activity. This tool is available online and provides spectra visualization tools and basic analysis algorithms including Spectral plotting, Spectral angle mapping and Linear Unmixing. The tool enables to visualize spectral signatures from the USGS spectral library and additional spectra collected in the EPIF such as of dunes in southern Israel and from Turkmenistan. For researchers and educators, the tool allows loading collected samples locally for further analysis.
Analytical Tools for Space Suit Design
NASA Technical Reports Server (NTRS)
Aitchison, Lindsay
2011-01-01
As indicated by the implementation of multiple small project teams within the agency, NASA is adopting a lean approach to hardware development that emphasizes quick product realization and rapid response to shifting program and agency goals. Over the past two decades, space suit design has been evolutionary in approach with emphasis on building prototypes then testing with the largest practical range of subjects possible. The results of these efforts show continuous improvement but make scaled design and performance predictions almost impossible with limited budgets and little time. Thus, in an effort to start changing the way NASA approaches space suit design and analysis, the Advanced Space Suit group has initiated the development of an integrated design and analysis tool. It is a multi-year-if not decadal-development effort that, when fully implemented, is envisioned to generate analysis of any given space suit architecture or, conversely, predictions of ideal space suit architectures given specific mission parameters. The master tool will exchange information to and from a set of five sub-tool groups in order to generate the desired output. The basic functions of each sub-tool group, the initial relationships between the sub-tools, and a comparison to state of the art software and tools are discussed.
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.
2014-01-01
This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio and number of control surfaces. A doublet lattice approach is taken to compute generalized forces. A rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. Although, all parameters can be easily modified if desired.The focus of this paper is on tool presentation, verification and validation. This process is carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool. Therefore the flutter speed and frequency for a clamped plate are computed using V-g and V-f analysis. The computational results are compared to a previously published computational analysis and wind tunnel results for the same structure. Finally a case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to V-g and V-f analysis. This also includes the analysis of the model in response to a 1-cos gust.
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.
2015-01-01
This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this paper is on tool presentation, verification, and validation. These processes are carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.
2015-01-01
This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.
Extension of an Object-Oriented Optimization Tool: User's Reference Manual
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truong, Samson S.
2015-01-01
The National Aeronautics and Space Administration Armstrong Flight Research Center has developed a cost-effective and flexible object-oriented optimization (O (sup 3)) tool that leverages existing tools and practices and allows easy integration and adoption of new state-of-the-art software. This object-oriented framework can integrate the analysis codes for multiple disciplines, as opposed to relying on one code to perform analysis for all disciplines. Optimization can thus take place within each discipline module, or in a loop between the O (sup 3) tool and the discipline modules, or both. Six different sample mathematical problems are presented to demonstrate the performance of the O (sup 3) tool. Instructions for preparing input data for the O (sup 3) tool are detailed in this user's manual.
New Tools in Orthology Analysis: A Brief Review of Promising Perspectives
Nichio, Bruno T. L.; Marchaukoski, Jeroniza Nunes; Raittz, Roberto Tadeu
2017-01-01
Nowadays defying homology relationships among sequences is essential for biological research. Within homology the analysis of orthologs sequences is of great importance for computational biology, annotation of genomes and for phylogenetic inference. Since 2007, with the increase in the number of new sequences being deposited in large biological databases, researchers have begun to analyse computerized methodologies and tools aimed at selecting the most promising ones in the prediction of orthologous groups. Literature in this field of research describes the problems that the majority of available tools show, such as those encountered in accuracy, time required for analysis (especially in light of the increasing volume of data being submitted, which require faster techniques) and the automatization of the process without requiring manual intervention. Conducting our search through BMC, Google Scholar, NCBI PubMed, and Expasy, we examined more than 600 articles pursuing the most recent techniques and tools developed to solve most the problems still existing in orthology detection. We listed the main computational tools created and developed between 2011 and 2017, taking into consideration the differences in the type of orthology analysis, outlining the main features of each tool and pointing to the problems that each one tries to address. We also observed that several tools still use as their main algorithm the BLAST “all-against-all” methodology, which entails some limitations, such as limited number of queries, computational cost, and high processing time to complete the analysis. However, new promising tools are being developed, like OrthoVenn (which uses the Venn diagram to show the relationship of ortholog groups generated by its algorithm); or proteinOrtho (which improves the accuracy of ortholog groups); or ReMark (tackling the integration of the pipeline to turn the entry process automatic); or OrthAgogue (using algorithms developed to minimize processing time); and proteinOrtho (developed for dealing with large amounts of biological data). We made a comparison among the main features of four tool and tested them using four for prokaryotic genomas. We hope that our review can be useful for researchers and will help them in selecting the most appropriate tool for their work in the field of orthology. PMID:29163633
New Tools in Orthology Analysis: A Brief Review of Promising Perspectives.
Nichio, Bruno T L; Marchaukoski, Jeroniza Nunes; Raittz, Roberto Tadeu
2017-01-01
Nowadays defying homology relationships among sequences is essential for biological research. Within homology the analysis of orthologs sequences is of great importance for computational biology, annotation of genomes and for phylogenetic inference. Since 2007, with the increase in the number of new sequences being deposited in large biological databases, researchers have begun to analyse computerized methodologies and tools aimed at selecting the most promising ones in the prediction of orthologous groups. Literature in this field of research describes the problems that the majority of available tools show, such as those encountered in accuracy, time required for analysis (especially in light of the increasing volume of data being submitted, which require faster techniques) and the automatization of the process without requiring manual intervention. Conducting our search through BMC, Google Scholar, NCBI PubMed, and Expasy, we examined more than 600 articles pursuing the most recent techniques and tools developed to solve most the problems still existing in orthology detection. We listed the main computational tools created and developed between 2011 and 2017, taking into consideration the differences in the type of orthology analysis, outlining the main features of each tool and pointing to the problems that each one tries to address. We also observed that several tools still use as their main algorithm the BLAST "all-against-all" methodology, which entails some limitations, such as limited number of queries, computational cost, and high processing time to complete the analysis. However, new promising tools are being developed, like OrthoVenn (which uses the Venn diagram to show the relationship of ortholog groups generated by its algorithm); or proteinOrtho (which improves the accuracy of ortholog groups); or ReMark (tackling the integration of the pipeline to turn the entry process automatic); or OrthAgogue (using algorithms developed to minimize processing time); and proteinOrtho (developed for dealing with large amounts of biological data). We made a comparison among the main features of four tool and tested them using four for prokaryotic genomas. We hope that our review can be useful for researchers and will help them in selecting the most appropriate tool for their work in the field of orthology.
Romo, Tod D.; Leioatts, Nicholas; Grossfield, Alan
2014-01-01
LOOS (Lightweight Object-Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 120 pre-built tools, including suites of tools for analyzing simulation convergence, 3D histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only 4 core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. PMID:25327784
Romo, Tod D; Leioatts, Nicholas; Grossfield, Alan
2014-12-15
LOOS (Lightweight Object Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 140 prebuilt tools, including suites of tools for analyzing simulation convergence, three-dimensional histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only four core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. © 2014 Wiley Periodicals, Inc.
Multi-Body Dynamic Contact Analysis. Tool for Transmission Design SBIR Phase II Final Report
2003-04-01
shapes and natural frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using...COSMIC NASTRAN via modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by
A digital flight control system verification laboratory
NASA Technical Reports Server (NTRS)
De Feo, P.; Saib, S.
1982-01-01
A NASA/FAA program has been established for the verification and validation of digital flight control systems (DFCS), with the primary objective being the development and analysis of automated verification tools. In order to enhance the capabilities, effectiveness, and ease of using the test environment, software verification tools can be applied. Tool design includes a static analyzer, an assertion generator, a symbolic executor, a dynamic analysis instrument, and an automated documentation generator. Static and dynamic tools are integrated with error detection capabilities, resulting in a facility which analyzes a representative testbed of DFCS software. Future investigations will ensue particularly in the areas of increase in the number of software test tools, and a cost effectiveness assessment.
Semantic integration of gene expression analysis tools and data sources using software connectors
2013-01-01
Background The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heteregeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. Results We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. Conclusions The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data. PMID:24341380
SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
Johnson, Benjamin K; Scholz, Matthew B; Teal, Tracy K; Abramovitch, Robert B
2016-02-04
Many tools exist in the analysis of bacterial RNA sequencing (RNA-seq) transcriptional profiling experiments to identify differentially expressed genes between experimental conditions. Generally, the workflow includes quality control of reads, mapping to a reference, counting transcript abundance, and statistical tests for differentially expressed genes. In spite of the numerous tools developed for each component of an RNA-seq analysis workflow, easy-to-use bacterially oriented workflow applications to combine multiple tools and automate the process are lacking. With many tools to choose from for each step, the task of identifying a specific tool, adapting the input/output options to the specific use-case, and integrating the tools into a coherent analysis pipeline is not a trivial endeavor, particularly for microbiologists with limited bioinformatics experience. To make bacterial RNA-seq data analysis more accessible, we developed a Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis (SPARTA). SPARTA is a reference-based bacterial RNA-seq analysis workflow application for single-end Illumina reads. SPARTA is turnkey software that simplifies the process of analyzing RNA-seq data sets, making bacterial RNA-seq analysis a routine process that can be undertaken on a personal computer or in the classroom. The easy-to-install, complete workflow processes whole transcriptome shotgun sequencing data files by trimming reads and removing adapters, mapping reads to a reference, counting gene features, calculating differential gene expression, and, importantly, checking for potential batch effects within the data set. SPARTA outputs quality analysis reports, gene feature counts and differential gene expression tables and scatterplots. SPARTA provides an easy-to-use bacterial RNA-seq transcriptional profiling workflow to identify differentially expressed genes between experimental conditions. This software will enable microbiologists with limited bioinformatics experience to analyze their data and integrate next generation sequencing (NGS) technologies into the classroom. The SPARTA software and tutorial are available at sparta.readthedocs.org.
Semantic integration of gene expression analysis tools and data sources using software connectors.
Miyazaki, Flávia A; Guardia, Gabriela D A; Vêncio, Ricardo Z N; de Farias, Cléver R G
2013-10-25
The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heterogeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data.
ERIC Educational Resources Information Center
John H. Hinds Area Vocational School, Elwood, IN.
This book contains a task inventory, a task analysis of 150 tasks from that inventory, and a tool list for performance-based welding courses in the state of Indiana. The task inventory and tool list reflect 28 job titles found in Indiana. In the first part of the guide, tasks are listed by these domains: carbon-arc, electron beam, G.M.A.W., gas…
Periodically-Scheduled Controller Analysis using Hybrid Systems Reachability and Continuization
2015-12-01
tools to verify specifications for hybrid automata do not perform well on such periodically scheduled models. This is due to a combination of the large...an additive nondeterministic input. Reachability tools for hybrid automata can better handle such systems. We further improve the analysis by...formally as a hybrid automaton. However, reachability tools to verify specifications for hybrid automata do not perform well on such periodically
2001-07-21
APPENDIX A. ACRONYMS ACCES Attenuating Custom Communication Earpiece System ACEIT Automated Cost estimating Integrated Tools AFSC Air Force...documented in the ACEIT cost estimating tool developed by Tecolote, Inc. The factor used was 14 percent of PMP. 1.3 System Engineering/ Program...The data source is the ASC Aeronautical Engineering Products Cost Factor Handbook which is documented in the ACEIT cost estimating tool developed
Sentiment Analysis of Health Care Tweets: Review of the Methods Used.
Gohil, Sunir; Vuik, Sabine; Darzi, Ara
2018-04-23
Twitter is a microblogging service where users can send and read short 140-character messages called "tweets." There are several unstructured, free-text tweets relating to health care being shared on Twitter, which is becoming a popular area for health care research. Sentiment is a metric commonly used to investigate the positive or negative opinion within these messages. Exploring the methods used for sentiment analysis in Twitter health care research may allow us to better understand the options available for future research in this growing field. The first objective of this study was to understand which tools would be available for sentiment analysis of Twitter health care research, by reviewing existing studies in this area and the methods they used. The second objective was to determine which method would work best in the health care settings, by analyzing how the methods were used to answer specific health care questions, their production, and how their accuracy was analyzed. A review of the literature was conducted pertaining to Twitter and health care research, which used a quantitative method of sentiment analysis for the free-text messages (tweets). The study compared the types of tools used in each case and examined methods for tool production, tool training, and analysis of accuracy. A total of 12 papers studying the quantitative measurement of sentiment in the health care setting were found. More than half of these studies produced tools specifically for their research, 4 used open source tools available freely, and 2 used commercially available software. Moreover, 4 out of the 12 tools were trained using a smaller sample of the study's final data. The sentiment method was trained against, on an average, 0.45% (2816/627,024) of the total sample data. One of the 12 papers commented on the analysis of accuracy of the tool used. Multiple methods are used for sentiment analysis of tweets in the health care setting. These range from self-produced basic categorizations to more complex and expensive commercial software. The open source and commercial methods are developed on product reviews and generic social media messages. None of these methods have been extensively tested against a corpus of health care messages to check their accuracy. This study suggests that there is a need for an accurate and tested tool for sentiment analysis of tweets trained using a health care setting-specific corpus of manually annotated tweets first. ©Sunir Gohil, Sabine Vuik, Ara Darzi. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 23.04.2018.
He, W; Zhao, S; Liu, X; Dong, S; Lv, J; Liu, D; Wang, J; Meng, Z
2013-12-04
Large-scale next-generation sequencing (NGS)-based resequencing detects sequence variations, constructs evolutionary histories, and identifies phenotype-related genotypes. However, NGS-based resequencing studies generate extraordinarily large amounts of data, making computations difficult. Effective use and analysis of these data for NGS-based resequencing studies remains a difficult task for individual researchers. Here, we introduce ReSeqTools, a full-featured toolkit for NGS (Illumina sequencing)-based resequencing analysis, which processes raw data, interprets mapping results, and identifies and annotates sequence variations. ReSeqTools provides abundant scalable functions for routine resequencing analysis in different modules to facilitate customization of the analysis pipeline. ReSeqTools is designed to use compressed data files as input or output to save storage space and facilitates faster and more computationally efficient large-scale resequencing studies in a user-friendly manner. It offers abundant practical functions and generates useful statistics during the analysis pipeline, which significantly simplifies resequencing analysis. Its integrated algorithms and abundant sub-functions provide a solid foundation for special demands in resequencing projects. Users can combine these functions to construct their own pipelines for other purposes.
Data and Tools | Hydrogen and Fuel Cells | NREL
researchers, developers, investors, and others interested in the viability, analysis, and development of , energy use, and emissions. Alternative Fuels Data Center Tools Collection of tools-calculators -makers reduce petroleum use. FASTSim: Future Automotive Systems Technology Simulator Simulation tool that
A drill-soil system modelization for future Mars exploration
NASA Astrophysics Data System (ADS)
Finzi, A. E.; Lavagna, M.; Rocchitelli, G.
2004-01-01
This paper presents a first approach to the problem of modeling a drilling process to be carried on in the space environment by a dedicated payload. Systems devoted to work in space present very strict requirements in many different fields such as thermal response, electric power demand, reliability and so on. Thus, models devoted to the operational behaviour simulation represent a fundamental help in the design phase and give a great improvement in the final product quality. As the required power is the crucial constraint within drilling devices, the tool-soil interaction modelization and simulation are finalized to the computation of the power demand as a function of both the drill and the soil parameters. An accurate study of the tool and the soil separately has been firstly carried on and, secondly their interaction has been analyzed. The Dee-Dri system, designed by Tecnospazio and to be part of the lander components in the NASA's Mars Sample Return Mission, has been taken as the tool reference. The Deep-Drill system is a complex rotary tool devoted to the soil perforation and sample collection; it has to operate in a Martian zone made of rocks similar to the terrestrial basalt, then the modelization is restricted to the interaction analysis between the tool and materials belonging to the rock set. The tool geometric modelization has been faced by a finite element approach with a Langrangian formulation: for the static analysis a refined model is assumed considering both the actual geometry of the head and the rod screws; a simplified model has been used to deal with the dynamic analysis. The soil representation is based on the Mohr-Coulomb crack criterion and an Eulerian approach has been selected to model it. However, software limitations in dealing with the tool-soil interface definition required assuming a Langrangian formulation for the soil too. The interaction between the soil and the tool has been modeled by extending the two-dimensional Nishimatsu's theory for rock cutting for rotating perforation tools. A fine analysis on f.e.m. element choice for each part of the tool is presented together with static analysis results. The dynamic analysis results are limited to the first impact phenomenon between the rock and the tool head. The validity of both the theoretical and numerical models is confirmed by the good agreement between simulation results and data coming from the experiments done within the Tecnospazio facilities.
HISTORICAL ANALYSIS OF ECOLOGICAL EFFECTS: A USEFUL EDUCATIONAL TOOL
An historical analysis that presents the ecological consequences of development can be a valuable educational tool for citizens, students, and environmental managers. In highly impacted areas, the cumulative impacts of multiple stressors can result in complex environmental condit...
DCODE.ORG Anthology of Comparative Genomic Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, G G; Ovcharenko, I
2005-01-11
Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the noncoding encryption of gene regulation across genomes. To facilitate the use of comparative genomics to practical applications in genetics and genomics we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools: zPicture and Mulan; a phylogenetic shadowing tool: eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools: rVista and multiTF; a toolmore » for extracting cis-regulatory modules governing the expression of co-regulated genes, CREME; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ web site.« less
Lazaris, Charalampos; Kelly, Stephen; Ntziachristos, Panagiotis; Aifantis, Iannis; Tsirigos, Aristotelis
2017-01-05
Chromatin conformation capture techniques have evolved rapidly over the last few years and have provided new insights into genome organization at an unprecedented resolution. Analysis of Hi-C data is complex and computationally intensive involving multiple tasks and requiring robust quality assessment. This has led to the development of several tools and methods for processing Hi-C data. However, most of the existing tools do not cover all aspects of the analysis and only offer few quality assessment options. Additionally, availability of a multitude of tools makes scientists wonder how these tools and associated parameters can be optimally used, and how potential discrepancies can be interpreted and resolved. Most importantly, investigators need to be ensured that slight changes in parameters and/or methods do not affect the conclusions of their studies. To address these issues (compare, explore and reproduce), we introduce HiC-bench, a configurable computational platform for comprehensive and reproducible analysis of Hi-C sequencing data. HiC-bench performs all common Hi-C analysis tasks, such as alignment, filtering, contact matrix generation and normalization, identification of topological domains, scoring and annotation of specific interactions using both published tools and our own. We have also embedded various tasks that perform quality assessment and visualization. HiC-bench is implemented as a data flow platform with an emphasis on analysis reproducibility. Additionally, the user can readily perform parameter exploration and comparison of different tools in a combinatorial manner that takes into account all desired parameter settings in each pipeline task. This unique feature facilitates the design and execution of complex benchmark studies that may involve combinations of multiple tool/parameter choices in each step of the analysis. To demonstrate the usefulness of our platform, we performed a comprehensive benchmark of existing and new TAD callers exploring different matrix correction methods, parameter settings and sequencing depths. Users can extend our pipeline by adding more tools as they become available. HiC-bench consists an easy-to-use and extensible platform for comprehensive analysis of Hi-C datasets. We expect that it will facilitate current analyses and help scientists formulate and test new hypotheses in the field of three-dimensional genome organization.
Wear and breakage monitoring of cutting tools by an optical method: theory
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Zhang, Yongqing; Chen, Fangrong; Tian, Zhiren; Wang, Yao
1996-10-01
An essential part of a machining system in the unmanned flexible manufacturing system, is the ability to automatically change out tools that are worn or damaged. An optoelectronic method for in situ monitoring of the flank wear and breakage of cutting tools is presented. A flank wear estimation system is implemented in a laboratory environment, and its performance is evaluated through turning experiments. The flank wear model parameters that need to be known a priori are determined through several preliminary experiments, or from data available in the literature. The resulting cutting conditions are typical of those used in finishing cutting operations. Through time and amplitude domain analysis of the cutting tool wear states and breakage states, it is found that the original signal digital specificity (sigma) 2x and the self correlation coefficient (rho) (m) can reflect the change regularity of the cutting tool wear and break are determined, but which is not enough due to the complexity of the wear and break procedure of cutting tools. Time series analysis and frequency spectrum analysis will be carried out, which will be described in the later papers.
Integrated verification and testing system (IVTS) for HAL/S programs
NASA Technical Reports Server (NTRS)
Senn, E. H.; Ames, K. R.; Smith, K. A.
1983-01-01
The IVTS is a large software system designed to support user-controlled verification analysis and testing activities for programs written in the HAL/S language. The system is composed of a user interface and user command language, analysis tools and an organized data base of host system files. The analysis tools are of four major types: (1) static analysis, (2) symbolic execution, (3) dynamic analysis (testing), and (4) documentation enhancement. The IVTS requires a split HAL/S compiler, divided at the natural separation point between the parser/lexical analyzer phase and the target machine code generator phase. The IVTS uses the internal program form (HALMAT) between these two phases as primary input for the analysis tools. The dynamic analysis component requires some way to 'execute' the object HAL/S program. The execution medium may be an interpretive simulation or an actual host or target machine.
[Factor Analysis: Principles to Evaluate Measurement Tools for Mental Health].
Campo-Arias, Adalberto; Herazo, Edwin; Oviedo, Heidi Celina
2012-09-01
The validation of a measurement tool in mental health is a complex process that usually starts by estimating reliability, to later approach its validity. Factor analysis is a way to know the number of dimensions, domains or factors of a measuring tool, generally related to the construct validity of the scale. The analysis could be exploratory or confirmatory, and helps in the selection of the items with better performance. For an acceptable factor analysis, it is necessary to follow some steps and recommendations, conduct some statistical tests, and rely on a proper sample of participants. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
CloudMan as a platform for tool, data, and analysis distribution
2012-01-01
Background Cloud computing provides an infrastructure that facilitates large scale computational analysis in a scalable, democratized fashion, However, in this context it is difficult to ensure sharing of an analysis environment and associated data in a scalable and precisely reproducible way. Results CloudMan (usecloudman.org) enables individual researchers to easily deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations. Conclusions With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud resources, tools, and data to the level of an individual researcher and contributes toward reproducibility and transparency of research solutions. PMID:23181507
Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh
2017-01-01
Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397
NASA Technical Reports Server (NTRS)
Lee, Nathaniel; Welch, Bryan W.
2018-01-01
NASA's SCENIC project aims to simplify and reduce the cost of space mission planning by replicating the analysis capabilities of commercially licensed software which are integrated with relevant analysis parameters specific to SCaN assets and SCaN supported user missions. SCENIC differs from current tools that perform similar analyses in that it 1) does not require any licensing fees, 2) will provide an all-in-one package for various analysis capabilities that normally requires add-ons or multiple tools to complete. As part of SCENIC's capabilities, the ITACA network loading analysis tool will be responsible for assessing the loading on a given network architecture and generating a network service schedule. ITACA will allow users to evaluate the quality of service of a given network architecture and determine whether or not the architecture will satisfy the mission's requirements. ITACA is currently under development, and the following improvements were made during the fall of 2017: optimization of runtime, augmentation of network asset pre-service configuration time, augmentation of Brent's method of root finding, augmentation of network asset FOV restrictions, augmentation of mission lifetimes, and the integration of a SCaN link budget calculation tool. The improvements resulted in (a) 25% reduction in runtime, (b) more accurate contact window predictions when compared to STK(Registered Trademark) contact window predictions, and (c) increased fidelity through the use of specific SCaN asset parameters.
GARNET--gene set analysis with exploration of annotation relations.
Rho, Kyoohyoung; Kim, Bumjin; Jang, Youngjun; Lee, Sanghyun; Bae, Taejeong; Seo, Jihae; Seo, Chaehwa; Lee, Jihyun; Kang, Hyunjung; Yu, Ungsik; Kim, Sunghoon; Lee, Sanghyuk; Kim, Wan Kyu
2011-02-15
Gene set analysis is a powerful method of deducing biological meaning for an a priori defined set of genes. Numerous tools have been developed to test statistical enrichment or depletion in specific pathways or gene ontology (GO) terms. Major difficulties towards biological interpretation are integrating diverse types of annotation categories and exploring the relationships between annotation terms of similar information. GARNET (Gene Annotation Relationship NEtwork Tools) is an integrative platform for gene set analysis with many novel features. It includes tools for retrieval of genes from annotation database, statistical analysis & visualization of annotation relationships, and managing gene sets. In an effort to allow access to a full spectrum of amassed biological knowledge, we have integrated a variety of annotation data that include the GO, domain, disease, drug, chromosomal location, and custom-defined annotations. Diverse types of molecular networks (pathways, transcription and microRNA regulations, protein-protein interaction) are also included. The pair-wise relationship between annotation gene sets was calculated using kappa statistics. GARNET consists of three modules--gene set manager, gene set analysis and gene set retrieval, which are tightly integrated to provide virtually automatic analysis for gene sets. A dedicated viewer for annotation network has been developed to facilitate exploration of the related annotations. GARNET (gene annotation relationship network tools) is an integrative platform for diverse types of gene set analysis, where complex relationships among gene annotations can be easily explored with an intuitive network visualization tool (http://garnet.isysbio.org/ or http://ercsb.ewha.ac.kr/garnet/).
MatSeis and the GNEM R&E regional seismic anaylsis tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chael, Eric Paul; Hart, Darren M.; Young, Christopher John
2003-08-01
To improve the nuclear event monitoring capability of the U.S., the NNSA Ground-based Nuclear Explosion Monitoring Research & Engineering (GNEM R&E) program has been developing a collection of products known as the Knowledge Base (KB). Though much of the focus for the KB has been on the development of calibration data, we have also developed numerous software tools for various purposes. The Matlab-based MatSeis package and the associated suite of regional seismic analysis tools were developed to aid in the testing and evaluation of some Knowledge Base products for which existing applications were either not available or ill-suited. This presentationmore » will provide brief overviews of MatSeis and each of the tools, emphasizing features added in the last year. MatSeis was begun in 1996 and is now a fairly mature product. It is a highly flexible seismic analysis package that provides interfaces to read data from either flatfiles or an Oracle database. All of the standard seismic analysis tasks are supported (e.g. filtering, 3 component rotation, phase picking, event location, magnitude calculation), as well as a variety of array processing algorithms (beaming, FK, coherency analysis, vespagrams). The simplicity of Matlab coding and the tremendous number of available functions make MatSeis/Matlab an ideal environment for developing new monitoring research tools (see the regional seismic analysis tools below). New MatSeis features include: addition of evid information to events in MatSeis, options to screen picks by author, input and output of origerr information, improved performance in reading flatfiles, improved speed in FK calculations, and significant improvements to Measure Tool (filtering, multiple phase display), Free Plot (filtering, phase display and alignment), Mag Tool (maximum likelihood options), and Infra Tool (improved calculation speed, display of an F statistic stream). Work on the regional seismic analysis tools (CodaMag, EventID, PhaseMatch, and Dendro) began in 1999 and the tools vary in their level of maturity. All rely on MatSeis to provide necessary data (waveforms, arrivals, origins, and travel time curves). CodaMag Tool implements magnitude calculation by scaling to fit the envelope shape of the coda for a selected phase type (Mayeda, 1993; Mayeda and Walter, 1996). New tool features include: calculation of a yield estimate based on the source spectrum, display of a filtered version of the seismogram based on the selected band, and the output of codamag data records for processed events. EventID Tool implements event discrimination using phase ratios of regional arrivals (Hartse et al., 1997; Walter et al., 1999). New features include: bandpass filtering of displayed waveforms, screening of reference events based on SNR, multivariate discriminants, use of libcgi to access correction surfaces, and the output of discrim{_}data records for processed events. PhaseMatch Tool implements match filtering to isolate surface waves (Herrin and Goforth, 1977). New features include: display of the signal's observed dispersion and an option to use a station-based dispersion surface. Dendro Tool implements agglomerative hierarchical clustering using dendrograms to identify similar events based on waveform correlation (Everitt, 1993). New features include: modifications to include arrival information within the tool, and the capability to automatically add/re-pick arrivals based on the picked arrivals for similar events.« less
Systemic safety project selection tool.
DOT National Transportation Integrated Search
2013-07-01
"The Systemic Safety Project Selection Tool presents a process for incorporating systemic safety planning into traditional safety management processes. The Systemic Tool provides a step-by-step process for conducting systemic safety analysis; conside...
Integrating automated structured analysis and design with Ada programming support environments
NASA Technical Reports Server (NTRS)
Hecht, Alan; Simmons, Andy
1986-01-01
Ada Programming Support Environments (APSE) include many powerful tools that address the implementation of Ada code. These tools do not address the entire software development process. Structured analysis is a methodology that addresses the creation of complete and accurate system specifications. Structured design takes a specification and derives a plan to decompose the system subcomponents, and provides heuristics to optimize the software design to minimize errors and maintenance. It can also produce the creation of useable modules. Studies have shown that most software errors result from poor system specifications, and that these errors also become more expensive to fix as the development process continues. Structured analysis and design help to uncover error in the early stages of development. The APSE tools help to insure that the code produced is correct, and aid in finding obscure coding errors. However, they do not have the capability to detect errors in specifications or to detect poor designs. An automated system for structured analysis and design TEAMWORK, which can be integrated with an APSE to support software systems development from specification through implementation is described. These tools completement each other to help developers improve quality and productivity, as well as to reduce development and maintenance costs. Complete system documentation and reusable code also resultss from the use of these tools. Integrating an APSE with automated tools for structured analysis and design provide capabilities and advantages beyond those realized with any of these systems used by themselves.
ERIC Educational Resources Information Center
Moffitt, Kevin Christopher
2011-01-01
The three objectives of this dissertation were to develop a question type model for predicting linguistic features of responses to interview questions, create a tool for linguistic analysis of documents, and use lexical bundle analysis to identify linguistic differences between fraudulent and non-fraudulent financial reports. First, The Moffitt…
NRMRL-CIN-1351 Hofstetter**, P., and Hammitt, J. K. Human Health Metrics for Environmental Decision Support Tools: Lessons from Health Economics and Decision Analysis. Risk Analysis 600/R/01/104, Available: on internet, www.epa.gov/ORD/NRMRL/Pubs/600R01104, [NET]. 03/07/2001 D...
Combining the Bourne-Shell, sed and awk in the UNIX Environment for Language Analysis.
ERIC Educational Resources Information Center
Schmitt, Lothar M.; Christianson, Kiel T.
This document describes how to construct tools for language analysis in research and teaching using the Bourne-shell, sed, and awk, three search tools, in the UNIX operating system. Applications include: searches for words, phrases, grammatical patterns, and phonemic patterns in text; statistical analysis of text in regard to such searches,…
On the blind use of statistical tools in the analysis of globular cluster stars
NASA Astrophysics Data System (ADS)
D'Antona, Francesca; Caloi, Vittoria; Tailo, Marco
2018-04-01
As with most data analysis methods, the Bayesian method must be handled with care. We show that its application to determine stellar evolution parameters within globular clusters can lead to paradoxical results if used without the necessary precautions. This is a cautionary tale on the use of statistical tools for big data analysis.
XMI2USE: A Tool for Transforming XMI to USE Specifications
NASA Astrophysics Data System (ADS)
Sun, Wuliang; Song, Eunjee; Grabow, Paul C.; Simmonds, Devon M.
The UML-based Specification Environment (USE) tool supports syntactic analysis, type checking, consistency checking, and dynamic validation of invariants and pre-/post conditions specified in the Object Constraint Language (OCL). Due to its animation and analysis power, it is useful when checking critical non-functional properties such as security policies. However, the USE tool requires one to specify (i.e., "write") a model using its own textual language and does not allow one to import any model specification files created by other UML modeling tools. Hence, to make the best use of existing UML tools, we often create a model with OCL constraints using a modeling tool such as the IBM Rational Software Architect (RSA) and then use the USE tool for model validation. This approach, however, requires a manual transformation between the specifications of two different tool formats, which is error-prone and diminishes the benefit of automated model-level validations. In this paper, we describe our own implementation of a specification transformation engine that is based on the Model Driven Architecture (MDA) framework and currently supports automatic tool-level transformations from RSA to USE.
Barton, G; Abbott, J; Chiba, N; Huang, DW; Huang, Y; Krznaric, M; Mack-Smith, J; Saleem, A; Sherman, BT; Tiwari, B; Tomlinson, C; Aitman, T; Darlington, J; Game, L; Sternberg, MJE; Butcher, SA
2008-01-01
Background Microarray experimentation requires the application of complex analysis methods as well as the use of non-trivial computer technologies to manage the resultant large data sets. This, together with the proliferation of tools and techniques for microarray data analysis, makes it very challenging for a laboratory scientist to keep up-to-date with the latest developments in this field. Our aim was to develop a distributed e-support system for microarray data analysis and management. Results EMAAS (Extensible MicroArray Analysis System) is a multi-user rich internet application (RIA) providing simple, robust access to up-to-date resources for microarray data storage and analysis, combined with integrated tools to optimise real time user support and training. The system leverages the power of distributed computing to perform microarray analyses, and provides seamless access to resources located at various remote facilities. The EMAAS framework allows users to import microarray data from several sources to an underlying database, to pre-process, quality assess and analyse the data, to perform functional analyses, and to track data analysis steps, all through a single easy to use web portal. This interface offers distance support to users both in the form of video tutorials and via live screen feeds using the web conferencing tool EVO. A number of analysis packages, including R-Bioconductor and Affymetrix Power Tools have been integrated on the server side and are available programmatically through the Postgres-PLR library or on grid compute clusters. Integrated distributed resources include the functional annotation tool DAVID, GeneCards and the microarray data repositories GEO, CELSIUS and MiMiR. EMAAS currently supports analysis of Affymetrix 3' and Exon expression arrays, and the system is extensible to cater for other microarray and transcriptomic platforms. Conclusion EMAAS enables users to track and perform microarray data management and analysis tasks through a single easy-to-use web application. The system architecture is flexible and scalable to allow new array types, analysis algorithms and tools to be added with relative ease and to cope with large increases in data volume. PMID:19032776
Cytoscape: the network visualization tool for GenomeSpace workflows.
Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P
2014-01-01
Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013.
Cytoscape: the network visualization tool for GenomeSpace workflows
Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P.
2014-01-01
Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013. PMID:25165537
Transonic CFD applications at Boeing
NASA Technical Reports Server (NTRS)
Tinoco, E. N.
1989-01-01
The use of computational methods for three dimensional transonic flow design and analysis at the Boeing Company is presented. A range of computational tools consisting of production tools for every day use by project engineers, expert user tools for special applications by computational researchers, and an emerging tool which may see considerable use in the near future are described. These methods include full potential and Euler solvers, some coupled to three dimensional boundary layer analysis methods, for transonic flow analysis about nacelle, wing-body, wing-body-strut-nacelle, and complete aircraft configurations. As the examples presented show, such a toolbox of codes is necessary for the variety of applications typical of an industrial environment. Such a toolbox of codes makes possible aerodynamic advances not previously achievable in a timely manner, if at all.
Playbook Data Analysis Tool: Collecting Interaction Data from Extremely Remote Users
NASA Technical Reports Server (NTRS)
Kanefsky, Bob; Zheng, Jimin; Deliz, Ivonne; Marquez, Jessica J.; Hillenius, Steven
2017-01-01
Typically, user tests for software tools are conducted in person. At NASA, the users may be located at the bottom of the ocean in a pressurized habitat, above the atmosphere in the International Space Station, or in an isolated capsule on a simulated asteroid mission. The Playbook Data Analysis Tool (P-DAT) is a human-computer interaction (HCI) evaluation tool that the NASA Ames HCI Group has developed to record user interactions with Playbook, the group's existing planning-and-execution software application. Once the remotely collected user interaction data makes its way back to Earth, researchers can use P-DAT for in-depth analysis. Since a critical component of the Playbook project is to understand how to develop more intuitive software tools for astronauts to plan in space, P-DAT helps guide us in the development of additional easy-to-use features for Playbook, informing the design of future crew autonomy tools.P-DAT has demonstrated the capability of discreetly capturing usability data in amanner that is transparent to Playbook’s end-users. In our experience, P-DAT data hasalready shown its utility, revealing potential usability patterns, helping diagnose softwarebugs, and identifying metrics and events that are pertinent to Playbook usage aswell as spaceflight operations. As we continue to develop this analysis tool, P-DATmay yet provide a method for long-duration, unobtrusive human performance collectionand evaluation for mission controllers back on Earth and researchers investigatingthe effects and mitigations related to future human spaceflight performance.
Financial Statement Analysis for Colleges and Universities.
ERIC Educational Resources Information Center
Woelfel, Charles J.
1987-01-01
Presents ratio analysis of financial statements as a tool applicable for use by nonprofit institutions for evaluation of financial and operational performance of an institution. It can be used as a screening, forecasting, diagnostic, and evaluative tool for administration and governance. (MD)
Rapid Benefit Indicators (RBI) Spatial Analysis Tools
The Rapid Benefit Indicators (RBI) approach consists of five steps and is outlined in Assessing the Benefits of Wetland Restoration - A Rapid Benefits Indicators Approach for Decision Makers. This spatial analysis tool is intended to be used to analyze existing spatial informatio...
MODA A Framework for Memory Centric Performance Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Sunil; Su, Chun-Yi; White, Amanda M.
2012-06-29
In the age of massive parallelism, the focus of performance analysis has switched from the processor and related structures to the memory and I/O resources. Adapting to this new reality, a performance analysis tool has to provide a way to analyze resource usage to pinpoint existing and potential problems in a given application. This paper provides an overview of the Memory Observant Data Analysis (MODA) tool, a memory-centric tool first implemented on the Cray XMT supercomputer. Throughout the paper, MODA's capabilities have been showcased with experiments done on matrix multiply and Graph-500 application codes.
Interfacing Computer Aided Parallelization and Performance Analysis
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Biegel, Bryan A. (Technical Monitor)
2003-01-01
When porting sequential applications to parallel computer architectures, the program developer will typically go through several cycles of source code optimization and performance analysis. We have started a project to develop an environment where the user can jointly navigate through program structure and performance data information in order to make efficient optimization decisions. In a prototype implementation we have interfaced the CAPO computer aided parallelization tool with the Paraver performance analysis tool. We describe both tools and their interface and give an example for how the interface helps within the program development cycle of a benchmark code.
SMART: A Propositional Logic-Based Trade Analysis and Risk Assessment Tool for a Complex Mission
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Nicholas, Austin; Alibay, Farah; Parrish, Joseph
2015-01-01
This paper introduces a new trade analysis software called the Space Mission Architecture and Risk Analysis Tool (SMART). This tool supports a high-level system trade study on a complex mission, such as a potential Mars Sample Return (MSR) mission, in an intuitive and quantitative manner. In a complex mission, a common approach to increase the probability of success is to have redundancy and prepare backups. Quantitatively evaluating the utility of adding redundancy to a system is important but not straightforward, particularly when the failure of parallel subsystems are correlated.
Implementation of GenePattern within the Stanford Microarray Database.
Hubble, Jeremy; Demeter, Janos; Jin, Heng; Mao, Maria; Nitzberg, Michael; Reddy, T B K; Wymore, Farrell; Zachariah, Zachariah K; Sherlock, Gavin; Ball, Catherine A
2009-01-01
Hundreds of researchers across the world use the Stanford Microarray Database (SMD; http://smd.stanford.edu/) to store, annotate, view, analyze and share microarray data. In addition to providing registered users at Stanford access to their own data, SMD also provides access to public data, and tools with which to analyze those data, to any public user anywhere in the world. Previously, the addition of new microarray data analysis tools to SMD has been limited by available engineering resources, and in addition, the existing suite of tools did not provide a simple way to design, execute and share analysis pipelines, or to document such pipelines for the purposes of publication. To address this, we have incorporated the GenePattern software package directly into SMD, providing access to many new analysis tools, as well as a plug-in architecture that allows users to directly integrate and share additional tools through SMD. In this article, we describe our implementation of the GenePattern microarray analysis software package into the SMD code base. This extension is available with the SMD source code that is fully and freely available to others under an Open Source license, enabling other groups to create a local installation of SMD with an enriched data analysis capability.
Laitinen, Heleena; Kaunonen, Marja; Astedt-Kurki, Päivi
2014-11-01
To give clarity to the analysis of participant observation in nursing when implementing the grounded theory method. Participant observation (PO) is a method of collecting data that reveals the reality of daily life in a specific context. In grounded theory, interviews are the primary method of collecting data but PO gives a distinctive insight, revealing what people are really doing, instead of what they say they are doing. However, more focus is needed on the analysis of PO. An observational study carried out to gain awareness of nursing care and its electronic documentation in four acute care wards in hospitals in Finland. Discussion of using the grounded theory method and PO as a data collection tool. The following methodological tools are discussed: an observational protocol, jotting of notes, microanalysis, the use of questioning, constant comparison, and writing and illustrating. Each tool has specific significance in collecting and analysing data, working in constant interaction. Grounded theory and participant observation supplied rich data and revealed the complexity of the daily reality of acute care. In this study, the methodological tools provided a base for the study at the research sites and outside. The process as a whole was challenging. It was time-consuming and it required rigorous and simultaneous data collection and analysis, including reflective writing. Using these methodological tools helped the researcher stay focused from data collection and analysis to building theory. Using PO as a data collection method in qualitative nursing research provides insights. It is not commonly discussed in nursing research and therefore this study can provide insight, which cannot be seen or revealed by using other data collection methods. Therefore, this paper can produce a useful tool for those who intend to use PO and grounded theory in their nursing research.
Boxwala, A A; Chaney, E L; Fritsch, D S; Friedman, C P; Rosenman, J G
1998-09-01
The purpose of this investigation was to design and implement a prototype physician workstation, called PortFolio, as a platform for developing and evaluating, by means of controlled observer studies, user interfaces and interactive tools for analyzing and managing digital portal images. The first observer study was designed to measure physician acceptance of workstation technology, as an alternative to a view box, for inspection and analysis of portal images for detection of treatment setup errors. The observer study was conducted in a controlled experimental setting to evaluate physician acceptance of the prototype workstation technology exemplified by PortFolio. PortFolio incorporates a windows user interface, a compact kit of carefully selected image analysis tools, and an object-oriented data base infrastructure. The kit evaluated in the observer study included tools for contrast enhancement, registration, and multimodal image visualization. Acceptance was measured in the context of performing portal image analysis in a structured protocol designed to simulate clinical practice. The acceptability and usage patterns were measured from semistructured questionnaires and logs of user interactions. Radiation oncologists, the subjects for this study, perceived the tools in PortFolio to be acceptable clinical aids. Concerns were expressed regarding user efficiency, particularly with respect to the image registration tools. The results of our observer study indicate that workstation technology is acceptable to radiation oncologists as an alternative to a view box for clinical detection of setup errors from digital portal images. Improvements in implementation, including more tools and a greater degree of automation in the image analysis tasks, are needed to make PortFolio more clinically practical.
Language-Agnostic Reproducible Data Analysis Using Literate Programming.
Vassilev, Boris; Louhimo, Riku; Ikonen, Elina; Hautaniemi, Sampsa
2016-01-01
A modern biomedical research project can easily contain hundreds of analysis steps and lack of reproducibility of the analyses has been recognized as a severe issue. While thorough documentation enables reproducibility, the number of analysis programs used can be so large that in reality reproducibility cannot be easily achieved. Literate programming is an approach to present computer programs to human readers. The code is rearranged to follow the logic of the program, and to explain that logic in a natural language. The code executed by the computer is extracted from the literate source code. As such, literate programming is an ideal formalism for systematizing analysis steps in biomedical research. We have developed the reproducible computing tool Lir (literate, reproducible computing) that allows a tool-agnostic approach to biomedical data analysis. We demonstrate the utility of Lir by applying it to a case study. Our aim was to investigate the role of endosomal trafficking regulators to the progression of breast cancer. In this analysis, a variety of tools were combined to interpret the available data: a relational database, standard command-line tools, and a statistical computing environment. The analysis revealed that the lipid transport related genes LAPTM4B and NDRG1 are coamplified in breast cancer patients, and identified genes potentially cooperating with LAPTM4B in breast cancer progression. Our case study demonstrates that with Lir, an array of tools can be combined in the same data analysis to improve efficiency, reproducibility, and ease of understanding. Lir is an open-source software available at github.com/borisvassilev/lir.
Language-Agnostic Reproducible Data Analysis Using Literate Programming
Vassilev, Boris; Louhimo, Riku; Ikonen, Elina; Hautaniemi, Sampsa
2016-01-01
A modern biomedical research project can easily contain hundreds of analysis steps and lack of reproducibility of the analyses has been recognized as a severe issue. While thorough documentation enables reproducibility, the number of analysis programs used can be so large that in reality reproducibility cannot be easily achieved. Literate programming is an approach to present computer programs to human readers. The code is rearranged to follow the logic of the program, and to explain that logic in a natural language. The code executed by the computer is extracted from the literate source code. As such, literate programming is an ideal formalism for systematizing analysis steps in biomedical research. We have developed the reproducible computing tool Lir (literate, reproducible computing) that allows a tool-agnostic approach to biomedical data analysis. We demonstrate the utility of Lir by applying it to a case study. Our aim was to investigate the role of endosomal trafficking regulators to the progression of breast cancer. In this analysis, a variety of tools were combined to interpret the available data: a relational database, standard command-line tools, and a statistical computing environment. The analysis revealed that the lipid transport related genes LAPTM4B and NDRG1 are coamplified in breast cancer patients, and identified genes potentially cooperating with LAPTM4B in breast cancer progression. Our case study demonstrates that with Lir, an array of tools can be combined in the same data analysis to improve efficiency, reproducibility, and ease of understanding. Lir is an open-source software available at github.com/borisvassilev/lir. PMID:27711123
Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars
2016-04-12
A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.
ERIC Educational Resources Information Center
Sheehan, Kathleen M.
2016-01-01
The "TextEvaluator"® text analysis tool is a fully automated text complexity evaluation tool designed to help teachers and other educators select texts that are consistent with the text complexity guidelines specified in the Common Core State Standards (CCSS). This paper provides an overview of the TextEvaluator measurement approach and…
NASA Astrophysics Data System (ADS)
Kudryashov, E. A.; Smirnov, I. M.; Grishin, D. V.; Khizhnyak, N. A.
2018-06-01
The work is aimed at selecting a promising grade of a tool material, whose physical-mechanical characteristics would allow using it for processing the surfaces of discontinuous parts in the presence of shock loads. An analysis of the physical-mechanical characteristics of most common tool materials is performed and the data on a possible provision of the metal-working processes with promising composite grades are presented.
Tool Use in a Psychomotor Task: The Role of Tool and Learner Variables
ERIC Educational Resources Information Center
Juarez-Collazo, Norma A.; Lust, Griet; Elen, Jan; Clarebout, Geraldine
2011-01-01
Research on the use of learning tools has brought to light variables that influence the learner on using or not using the tools. A deeper analysis on the current findings is attempted in this study. It adds a psychomotor task; it assesses the actual functionality of the employed tools, and it further explores learner-related variables that…
Hartman, Amber L; Riddle, Sean; McPhillips, Timothy; Ludäscher, Bertram; Eisen, Jonathan A
2010-06-12
For more than two decades microbiologists have used a highly conserved microbial gene as a phylogenetic marker for bacteria and archaea. The small-subunit ribosomal RNA gene, also known as 16 S rRNA, is encoded by ribosomal DNA, 16 S rDNA, and has provided a powerful comparative tool to microbial ecologists. Over time, the microbial ecology field has matured from small-scale studies in a select number of environments to massive collections of sequence data that are paired with dozens of corresponding collection variables. As the complexity of data and tool sets have grown, the need for flexible automation and maintenance of the core processes of 16 S rDNA sequence analysis has increased correspondingly. We present WATERS, an integrated approach for 16 S rDNA analysis that bundles a suite of publicly available 16 S rDNA analysis software tools into a single software package. The "toolkit" includes sequence alignment, chimera removal, OTU determination, taxonomy assignment, phylogentic tree construction as well as a host of ecological analysis and visualization tools. WATERS employs a flexible, collection-oriented 'workflow' approach using the open-source Kepler system as a platform. By packaging available software tools into a single automated workflow, WATERS simplifies 16 S rDNA analyses, especially for those without specialized bioinformatics, programming expertise. In addition, WATERS, like some of the newer comprehensive rRNA analysis tools, allows researchers to minimize the time dedicated to carrying out tedious informatics steps and to focus their attention instead on the biological interpretation of the results. One advantage of WATERS over other comprehensive tools is that the use of the Kepler workflow system facilitates result interpretation and reproducibility via a data provenance sub-system. Furthermore, new "actors" can be added to the workflow as desired and we see WATERS as an initial seed for a sizeable and growing repository of interoperable, easy-to-combine tools for asking increasingly complex microbial ecology questions.
The Watershed Deposition Tool: A Tool for Incorporating Atmospheric Deposition in Watershed Analysis
The tool for providing the linkage between air and water quality modeling needed for determining the Total Maximum Daily Load (TMDL) and for analyzing related nonpoint-source impacts on watersheds has been developed. The Watershed Deposition Tool (WDT) takes gridded output of at...
Carroll, Adam J; Badger, Murray R; Harvey Millar, A
2010-07-14
Standardization of analytical approaches and reporting methods via community-wide collaboration can work synergistically with web-tool development to result in rapid community-driven expansion of online data repositories suitable for data mining and meta-analysis. In metabolomics, the inter-laboratory reproducibility of gas-chromatography/mass-spectrometry (GC/MS) makes it an obvious target for such development. While a number of web-tools offer access to datasets and/or tools for raw data processing and statistical analysis, none of these systems are currently set up to act as a public repository by easily accepting, processing and presenting publicly submitted GC/MS metabolomics datasets for public re-analysis. Here, we present MetabolomeExpress, a new File Transfer Protocol (FTP) server and web-tool for the online storage, processing, visualisation and statistical re-analysis of publicly submitted GC/MS metabolomics datasets. Users may search a quality-controlled database of metabolite response statistics from publicly submitted datasets by a number of parameters (eg. metabolite, species, organ/biofluid etc.). Users may also perform meta-analysis comparisons of multiple independent experiments or re-analyse public primary datasets via user-friendly tools for t-test, principal components analysis, hierarchical cluster analysis and correlation analysis. They may interact with chromatograms, mass spectra and peak detection results via an integrated raw data viewer. Researchers who register for a free account may upload (via FTP) their own data to the server for online processing via a novel raw data processing pipeline. MetabolomeExpress https://www.metabolome-express.org provides a new opportunity for the general metabolomics community to transparently present online the raw and processed GC/MS data underlying their metabolomics publications. Transparent sharing of these data will allow researchers to assess data quality and draw their own insights from published metabolomics datasets.
Web-based visual analysis for high-throughput genomics
2013-01-01
Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments. PMID:23758618
Scoring Tools for the Analysis of Infant Respiratory Inductive Plethysmography Signals.
Robles-Rubio, Carlos Alejandro; Bertolizio, Gianluca; Brown, Karen A; Kearney, Robert E
2015-01-01
Infants recovering from anesthesia are at risk of life threatening Postoperative Apnea (POA). POA events are rare, and so the study of POA requires the analysis of long cardiorespiratory records. Manual scoring is the preferred method of analysis for these data, but it is limited by low intra- and inter-scorer repeatability. Furthermore, recommended scoring rules do not provide a comprehensive description of the respiratory patterns. This work describes a set of manual scoring tools that address these limitations. These tools include: (i) a set of definitions and scoring rules for 6 mutually exclusive, unique patterns that fully characterize infant respiratory inductive plethysmography (RIP) signals; (ii) RIPScore, a graphical, manual scoring software to apply these rules to infant data; (iii) a library of data segments representing each of the 6 patterns; (iv) a fully automated, interactive formal training protocol to standardize the analysis and establish intra- and inter-scorer repeatability; and (v) a quality control method to monitor scorer ongoing performance over time. To evaluate these tools, three scorers from varied backgrounds were recruited and trained to reach a performance level similar to that of an expert. These scorers used RIPScore to analyze data from infants at risk of POA in two separate, independent instances. Scorers performed with high accuracy and consistency, analyzed data efficiently, had very good intra- and inter-scorer repeatability, and exhibited only minor confusion between patterns. These results indicate that our tools represent an excellent method for the analysis of respiratory patterns in long data records. Although the tools were developed for the study of POA, their use extends to any study of respiratory patterns using RIP (e.g., sleep apnea, extubation readiness). Moreover, by establishing and monitoring scorer repeatability, our tools enable the analysis of large data sets by multiple scorers, which is essential for longitudinal and multicenter studies.
CRCDA—Comprehensive resources for cancer NGS data analysis
Thangam, Manonanthini; Gopal, Ramesh Kumar
2015-01-01
Next generation sequencing (NGS) innovations put a compelling landmark in life science and changed the direction of research in clinical oncology with its productivity to diagnose and treat cancer. The aim of our portal comprehensive resources for cancer NGS data analysis (CRCDA) is to provide a collection of different NGS tools and pipelines under diverse classes with cancer pathways and databases and furthermore, literature information from PubMed. The literature data was constrained to 18 most common cancer types such as breast cancer, colon cancer and other cancers that exhibit in worldwide population. NGS-cancer tools for the convenience have been categorized into cancer genomics, cancer transcriptomics, cancer epigenomics, quality control and visualization. Pipelines for variant detection, quality control and data analysis were listed to provide out-of-the box solution for NGS data analysis, which may help researchers to overcome challenges in selecting and configuring individual tools for analysing exome, whole genome and transcriptome data. An extensive search page was developed that can be queried by using (i) type of data [literature, gene data and sequence read archive (SRA) data] and (ii) type of cancer (selected based on global incidence and accessibility of data). For each category of analysis, variety of tools are available and the biggest challenge is in searching and using the right tool for the right application. The objective of the work is collecting tools in each category available at various places and arranging the tools and other data in a simple and user-friendly manner for biologists and oncologists to find information easier. To the best of our knowledge, we have collected and presented a comprehensive package of most of the resources available in cancer for NGS data analysis. Given these factors, we believe that this website will be an useful resource to the NGS research community working on cancer. Database URL: http://bioinfo.au-kbc.org.in/ngs/ngshome.html. PMID:26450948
The integration of FMEA with other problem solving tools: A review of enhancement opportunities
NASA Astrophysics Data System (ADS)
Ng, W. C.; Teh, S. Y.; Low, H. C.; Teoh, P. C.
2017-09-01
Failure Mode Effect Analysis (FMEA) is one the most effective and accepted problem solving (PS) tools for most of the companies in the world. Since FMEA was first introduced in 1949, practitioners have implemented FMEA in various industries for their quality improvement initiatives. However, studies have shown that there are drawbacks that hinder the effectiveness of FMEA for continuous quality improvement from product design to manufacturing. Therefore, FMEA is integrated with other PS tools such as inventive problem solving methodology (TRIZ), Quality Function Deployment (QFD), Root Cause Analysis (RCA) and seven basic tools of quality to address the drawbacks. This study begins by identifying the drawbacks in FMEA. A comprehensive literature review on the integration of FMEA with other tools is carried out to categorise the integrations based on the drawbacks identified. The three categories are inefficiency of failure analysis, psychological inertia and neglect of customers’ perspective. This study concludes by discussing the gaps and opportunities in the integration for future research.
SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel
Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari
2009-01-01
Background Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. Findings The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Conclusion Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software. PMID:19852806
SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel.
Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari
2009-10-23
Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software.
Automated SEM and TEM sample preparation applied to copper/low k materials
NASA Astrophysics Data System (ADS)
Reyes, R.; Shaapur, F.; Griffiths, D.; Diebold, A. C.; Foran, B.; Raz, E.
2001-01-01
We describe the use of automated microcleaving for preparation of both SEM and TEM samples as done by SELA's new MC500 and TEMstation tools. The MC500 is an automated microcleaving tool that is capable of producing cleaves with 0.25 μm accuracy resulting in SEM-ready samples. The TEMstation is capable of taking a sample output from the MC500 (or from SELA's earlier MC200 tool) and producing a FIB ready slice of 25±5 μm, mounted on a TEM-washer and ready for FIB thinning to electron transparency for TEM analysis. The materials selected for the tool set evaluation mainly included the Cu/TaN/HOSP low-k system. The paper is divided into three sections, experimental approach, SEM preparation and analysis of HOSP low-k, and TEM preparation and analysis of Cu/TaN/HOSP low-k samples. For the samples discussed, data is presented to show the quality of preparation provided by these new automated tools.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
Abbasi, Arash; Berry, Jeffrey C.; Callen, Steven T.; Chavez, Leonardo; Doust, Andrew N.; Feldman, Max J.; Gilbert, Kerrigan B.; Hodge, John G.; Hoyer, J. Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony
2017-01-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning. PMID:29209576
PlantCV v2: Image analysis software for high-throughput plant phenotyping.
Gehan, Malia A; Fahlgren, Noah; Abbasi, Arash; Berry, Jeffrey C; Callen, Steven T; Chavez, Leonardo; Doust, Andrew N; Feldman, Max J; Gilbert, Kerrigan B; Hodge, John G; Hoyer, J Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony
2017-01-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.
NASA Astrophysics Data System (ADS)
Marco Figuera, R.; Pham Huu, B.; Rossi, A. P.; Minin, M.; Flahaut, J.; Halder, A.
2018-01-01
The lack of open-source tools for hyperspectral data visualization and analysis creates a demand for new tools. In this paper we present the new PlanetServer, a set of tools comprising a web Geographic Information System (GIS) and a recently developed Python Application Programming Interface (API) capable of visualizing and analyzing a wide variety of hyperspectral data from different planetary bodies. Current WebGIS open-source tools are evaluated in order to give an overview and contextualize how PlanetServer can help in this matters. The web client is thoroughly described as well as the datasets available in PlanetServer. Also, the Python API is described and exposed the reason of its development. Two different examples of mineral characterization of different hydrosilicates such as chlorites, prehnites and kaolinites in the Nili Fossae area on Mars are presented. As the obtained results show positive outcome in hyperspectral analysis and visualization compared to previous literature, we suggest using the PlanetServer approach for such investigations.
Experience with case tools in the design of process-oriented software
NASA Astrophysics Data System (ADS)
Novakov, Ognian; Sicard, Claude-Henri
1994-12-01
In Accelerator systems such as the CERN PS complex, process equipment has a life time which may exceed the typical life cycle of its related software. Taking into account the variety of such equipment, it is important to keep the analysis and design of the software in a system-independent form. This paper discusses the experience gathered in using commercial CASE tools for analysis, design and reverse engineering of different process-oriented software modules, with a principal emphasis on maintaining the initial analysis in a standardized form. Such tools have been in existence for several years, but this paper shows that they are not fully adapted to our needs. In particular, the paper stresses the problems of integrating such a tool into an existing data-base-dependent development chain, the lack of real-time simulation tools and of Object-Oriented concepts in existing commercial packages. Finally, the paper gives a broader view of software engineering needs in our particular context.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less
PlantCV v2: Image analysis software for high-throughput plant phenotyping
Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash; ...
2017-12-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less
Mavrommatis, Kostas
2017-12-22
DOE JGI's Kostas Mavrommatis, chair of the Scalability of Comparative Analysis, Novel Algorithms and Tools panel, at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.
D. Evan Mercer; Frederick W. Cubbage; Gregory E. Frey
2014-01-01
This chapter provides principles, literature and a case study about the economics of agroforestry. We examine necessary conditions for achieving efficiency in agroforestry system design and economic analysis tools for assessing efficiency and adoptability of agroforestry. The tools presented here (capital budgeting, linear progranuning, production frontier analysis...
Measuring Security Effectiveness and Efficiency at U.S. Commercial Airports
2013-03-01
formative program evaluation and policy analysis to investigate current airport security programs. It identifies innovative public administration and...policy-analysis tools that could provide potential benefits to airport security . These tools will complement the System Based Risk Management framework if
HISTORICAL ANALYSIS, A VALUABLE TOOL IN COMMUNITY-BASED ENVIRONMENTAL PROTECTION
A historical analysis of the ecological consequences of development can be a valuable tool in community-based environmental protection. These studies can engage the public in environmental issues and lead to informed decision making. Historical studies provide an understanding of...
Communications Effects Server (CES) Model for Systems Engineering Research
2012-01-31
Visualization Tool Interface «logical» HLA Tool Interface «logical» DIS Tool Interface «logical» STK Tool Interface «module» Execution Kernels «logical...interoperate with STK when running simulations. GUI Components Architect – The Architect represents the main network design and visualization ...interest» CES «block» Third Party Visualization Tool «block» Third Party Analysis Tool «block» Third Party Text Editor «block» HLA Tools Analyst User Army
Scalability Analysis of Gleipnir: A Memory Tracing and Profiling Tool, on Titan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janjusic, Tommy; Kartsaklis, Christos; Wang, Dali
2013-01-01
Application performance is hindered by a variety of factors but most notably driven by the well know CPU-memory speed gap (also known as the memory wall). Understanding application s memory behavior is key if we are trying to optimize performance. Understanding application performance properties is facilitated with various performance profiling tools. The scope of profiling tools varies in complexity, ease of deployment, profiling performance, and the detail of profiled information. Specifically, using profiling tools for performance analysis is a common task when optimizing and understanding scientific applications on complex and large scale systems such as Cray s XK7. This papermore » describes the performance characteristics of using Gleipnir, a memory tracing tool, on the Titan Cray XK7 system when instrumenting large applications such as the Community Earth System Model. Gleipnir is a memory tracing tool built as a plug-in tool for the Valgrind instrumentation framework. The goal of Gleipnir is to provide fine-grained trace information. The generated traces are a stream of executed memory transactions mapped to internal structures per process, thread, function, and finally the data structure or variable. Our focus was to expose tool performance characteristics when using Gleipnir with a combination of an external tools such as a cache simulator, Gl CSim, to characterize the tool s overall performance. In this paper we describe our experience with deploying Gleipnir on the Titan Cray XK7 system, report on the tool s ease-of-use, and analyze run-time performance characteristics under various workloads. While all performance aspects are important we mainly focus on I/O characteristics analysis due to the emphasis on the tools output which are trace-files. Moreover, the tool is dependent on the run-time system to provide the necessary infrastructure to expose low level system detail; therefore, we also discuss any theoretical benefits that can be achieved if such modules were present.« less
Rodrigues, Ramon Gouveia; das Dores, Rafael Marques; Camilo-Junior, Celso G; Rosa, Thierson Couto
2016-01-01
Cancer is a critical disease that affects millions of people and families around the world. In 2012 about 14.1 million new cases of cancer occurred globally. Because of many reasons like the severity of some cases, the side effects of some treatments and death of other patients, cancer patients tend to be affected by serious emotional disorders, like depression, for instance. Thus, monitoring the mood of the patients is an important part of their treatment. Many cancer patients are users of online social networks and many of them take part in cancer virtual communities where they exchange messages commenting about their treatment or giving support to other patients in the community. Most of these communities are of public access and thus are useful sources of information about the mood of patients. Based on that, Sentiment Analysis methods can be useful to automatically detect positive or negative mood of cancer patients by analyzing their messages in these online communities. The objective of this work is to present a Sentiment Analysis tool, named SentiHealth-Cancer (SHC-pt), that improves the detection of emotional state of patients in Brazilian online cancer communities, by inspecting their posts written in Portuguese language. The SHC-pt is a sentiment analysis tool which is tailored specifically to detect positive, negative or neutral messages of patients in online communities of cancer patients. We conducted a comparative study of the proposed method with a set of general-purpose sentiment analysis tools adapted to this context. Different collections of posts were obtained from two cancer communities in Facebook. Additionally, the posts were analyzed by sentiment analysis tools that support the Portuguese language (Semantria and SentiStrength) and by the tool SHC-pt, developed based on the method proposed in this paper called SentiHealth. Moreover, as a second alternative to analyze the texts in Portuguese, the collected texts were automatically translated into English, and submitted to sentiment analysis tools that do not support the Portuguese language (AlchemyAPI and Textalytics) and also to Semantria and SentiStrength, using the English option of these tools. Six experiments were conducted with some variations and different origins of the collected posts. The results were measured using the following metrics: precision, recall, F1-measure and accuracy The proposed tool SHC-pt reached the best averages for accuracy and F1-measure (harmonic mean between recall and precision) in the three sentiment classes addressed (positive, negative and neutral) in all experimental settings. Moreover, the worst accuracy value (58%) achieved by SHC-pt in any experiment is 11.53% better than the greatest accuracy (52%) presented by other addressed tools. Finally, the worst average F1 (48.46%) reached by SHC-pt in any experiment is 4.14% better than the greatest average F1 (46.53%) achieved by other addressed tools. Thus, even when we compare the SHC-pt results in complex scenario versus others in easier scenario the SHC-pt is better. This paper presents two contributions. First, it proposes the method SentiHealth to detect the mood of cancer patients that are also users of communities of patients in online social networks. Second, it presents an instantiated tool from the method, called SentiHealth-Cancer (SHC-pt), dedicated to automatically analyze posts in communities of cancer patients, based on SentiHealth. This context-tailored tool outperformed other general-purpose sentiment analysis tools at least in the cancer context. This suggests that the SentiHealth method could be instantiated as other disease-based tools during future works, for instance SentiHealth-HIV, SentiHealth-Stroke and SentiHealth-Sclerosis. Copyright © 2015. Published by Elsevier Ireland Ltd.
Terminal Area Conflict Detection and Resolution Tool
NASA Technical Reports Server (NTRS)
Verma, Savita Arora
2011-01-01
This poster will describe analysis of a conflict detection and resolution tool for the terminal area called T-TSAFE. With altitude clearance information, the tool can reduce false alerts to as low as 2 per hour.
MetaMeta: integrating metagenome analysis tools to improve taxonomic profiling.
Piro, Vitor C; Matschkowski, Marcel; Renard, Bernhard Y
2017-08-14
Many metagenome analysis tools are presently available to classify sequences and profile environmental samples. In particular, taxonomic profiling and binning methods are commonly used for such tasks. Tools available among these two categories make use of several techniques, e.g., read mapping, k-mer alignment, and composition analysis. Variations on the construction of the corresponding reference sequence databases are also common. In addition, different tools provide good results in different datasets and configurations. All this variation creates a complicated scenario to researchers to decide which methods to use. Installation, configuration and execution can also be difficult especially when dealing with multiple datasets and tools. We propose MetaMeta: a pipeline to execute and integrate results from metagenome analysis tools. MetaMeta provides an easy workflow to run multiple tools with multiple samples, producing a single enhanced output profile for each sample. MetaMeta includes a database generation, pre-processing, execution, and integration steps, allowing easy execution and parallelization. The integration relies on the co-occurrence of organisms from different methods as the main feature to improve community profiling while accounting for differences in their databases. In a controlled case with simulated and real data, we show that the integrated profiles of MetaMeta overcome the best single profile. Using the same input data, it provides more sensitive and reliable results with the presence of each organism being supported by several methods. MetaMeta uses Snakemake and has six pre-configured tools, all available at BioConda channel for easy installation (conda install -c bioconda metameta). The MetaMeta pipeline is open-source and can be downloaded at: https://gitlab.com/rki_bioinformatics .
IJspeert, Hanna; van Schouwenburg, Pauline A.; van Zessen, David; Pico-Knijnenburg, Ingrid
2017-01-01
Antigen Receptor Galaxy (ARGalaxy) is a Web-based tool for analyses and visualization of TCR and BCR sequencing data of 13 species. ARGalaxy consists of four parts: the demultiplex tool, the international ImMunoGeneTics information system (IMGT) concatenate tool, the immune repertoire pipeline, and the somatic hypermutation (SHM) and class switch recombination (CSR) pipeline. Together they allow the analysis of all different aspects of the immune repertoire. All pipelines can be run independently or combined, depending on the available data and the question of interest. The demultiplex tool allows data trimming and demultiplexing, whereas with the concatenate tool multiple IMGT/HighV-QUEST output files can be merged into a single file. The immune repertoire pipeline is an extended version of our previously published ImmunoGlobulin Galaxy (IGGalaxy) virtual machine that was developed to visualize V(D)J gene usage. It allows analysis of both BCR and TCR rearrangements, visualizes CDR3 characteristics (length and amino acid usage) and junction characteristics, and calculates the diversity of the immune repertoire. Finally, ARGalaxy includes the newly developed SHM and CSR pipeline to analyze SHM and/or CSR in BCR rearrangements. It analyzes the frequency and patterns of SHM, Ag selection (including BASELINe), clonality (Change-O), and CSR. The functionality of the ARGalaxy tool is illustrated in several clinical examples of patients with primary immunodeficiencies. In conclusion, ARGalaxy is a novel tool for the analysis of the complete immune repertoire, which is applicable to many patient groups with disturbances in the immune repertoire such as autoimmune diseases, allergy, and leukemia, but it can also be used to address basic research questions in repertoire formation and selection. PMID:28416602
Multispectral analysis tools can increase utility of RGB color images in histology
NASA Astrophysics Data System (ADS)
Fereidouni, Farzad; Griffin, Croix; Todd, Austin; Levenson, Richard
2018-04-01
Multispectral imaging (MSI) is increasingly finding application in the study and characterization of biological specimens. However, the methods typically used come with challenges on both the acquisition and the analysis front. MSI can be slow and photon-inefficient, leading to long imaging times and possible phototoxicity and photobleaching. The resulting datasets can be large and complex, prompting the development of a number of mathematical approaches for segmentation and signal unmixing. We show that under certain circumstances, just three spectral channels provided by standard color cameras, coupled with multispectral analysis tools, including a more recent spectral phasor approach, can efficiently provide useful insights. These findings are supported with a mathematical model relating spectral bandwidth and spectral channel number to achievable spectral accuracy. The utility of 3-band RGB and MSI analysis tools are demonstrated on images acquired using brightfield and fluorescence techniques, as well as a novel microscopy approach employing UV-surface excitation. Supervised linear unmixing, automated non-negative matrix factorization and phasor analysis tools all provide useful results, with phasors generating particularly helpful spectral display plots for sample exploration.
Lopez-Doriga, Adriana; Feliubadaló, Lídia; Menéndez, Mireia; Lopez-Doriga, Sergio; Morón-Duran, Francisco D; del Valle, Jesús; Tornero, Eva; Montes, Eva; Cuesta, Raquel; Campos, Olga; Gómez, Carolina; Pineda, Marta; González, Sara; Moreno, Victor; Capellá, Gabriel; Lázaro, Conxi
2014-03-01
Next-generation sequencing (NGS) has revolutionized genomic research and is set to have a major impact on genetic diagnostics thanks to the advent of benchtop sequencers and flexible kits for targeted libraries. Among the main hurdles in NGS are the difficulty of performing bioinformatic analysis of the huge volume of data generated and the high number of false positive calls that could be obtained, depending on the NGS technology and the analysis pipeline. Here, we present the development of a free and user-friendly Web data analysis tool that detects and filters sequence variants, provides coverage information, and allows the user to customize some basic parameters. The tool has been developed to provide accurate genetic analysis of targeted sequencing of common high-risk hereditary cancer genes using amplicon libraries run in a GS Junior System. The Web resource is linked to our own mutation database, to assist in the clinical classification of identified variants. We believe that this tool will greatly facilitate the use of the NGS approach in routine laboratories.
Vadigepalli, Rajanikanth; Chakravarthula, Praveen; Zak, Daniel E; Schwaber, James S; Gonye, Gregory E
2003-01-01
We have developed a bioinformatics tool named PAINT that automates the promoter analysis of a given set of genes for the presence of transcription factor binding sites. Based on coincidence of regulatory sites, this tool produces an interaction matrix that represents a candidate transcriptional regulatory network. This tool currently consists of (1) a database of promoter sequences of known or predicted genes in the Ensembl annotated mouse genome database, (2) various modules that can retrieve and process the promoter sequences for binding sites of known transcription factors, and (3) modules for visualization and analysis of the resulting set of candidate network connections. This information provides a substantially pruned list of genes and transcription factors that can be examined in detail in further experimental studies on gene regulation. Also, the candidate network can be incorporated into network identification methods in the form of constraints on feasible structures in order to render the algorithms tractable for large-scale systems. The tool can also produce output in various formats suitable for use in external visualization and analysis software. In this manuscript, PAINT is demonstrated in two case studies involving analysis of differentially regulated genes chosen from two microarray data sets. The first set is from a neuroblastoma N1E-115 cell differentiation experiment, and the second set is from neuroblastoma N1E-115 cells at different time intervals following exposure to neuropeptide angiotensin II. PAINT is available for use as an agent in BioSPICE simulation and analysis framework (www.biospice.org), and can also be accessed via a WWW interface at www.dbi.tju.edu/dbi/tools/paint/.
Ares I-X Flight Test Validation of Control Design Tools in the Frequency-Domain
NASA Technical Reports Server (NTRS)
Johnson, Matthew; Hannan, Mike; Brandon, Jay; Derry, Stephen
2011-01-01
A major motivation of the Ares I-X flight test program was to Design for Data, in order to maximize the usefulness of the data recorded in support of Ares I modeling and validation of design and analysis tools. The Design for Data effort was intended to enable good post-flight characterizations of the flight control system, the vehicle structural dynamics, and also the aerodynamic characteristics of the vehicle. To extract the necessary data from the system during flight, a set of small predetermined Programmed Test Inputs (PTIs) was injected directly into the TVC signal. These PTIs were designed to excite the necessary vehicle dynamics while exhibiting a minimal impact on loads. The method is similar to common approaches in aircraft flight test programs, but with unique launch vehicle challenges due to rapidly changing states, short duration of flight, a tight flight envelope, and an inability to repeat any test. This paper documents the validation effort of the stability analysis tools to the flight data which was performed by comparing the post-flight calculated frequency response of the vehicle to the frequency response calculated by the stability analysis tools used to design and analyze the preflight models during the control design effort. The comparison between flight day frequency response and stability tool analysis for flight of the simulated vehicle shows good agreement and provides a high level of confidence in the stability analysis tools for use in any future program. This is true for both a nominal model as well as for dispersed analysis, which shows that the flight day frequency response is enveloped by the vehicle s preflight uncertainty models.
Extended Testability Analysis Tool
NASA Technical Reports Server (NTRS)
Melcher, Kevin; Maul, William A.; Fulton, Christopher
2012-01-01
The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.
Wavelets, non-linearity and turbulence in fusion plasmas
NASA Astrophysics Data System (ADS)
van Milligen, B. Ph.
Introduction Linear spectral analysis tools Wavelet analysis Wavelet spectra and coherence Joint wavelet phase-frequency spectra Non-linear spectral analysis tools Wavelet bispectra and bicoherence Interpretation of the bicoherence Analysis of computer-generated data Coupled van der Pol oscillators A large eddy simulation model for two-fluid plasma turbulence A long wavelength plasma drift wave model Analysis of plasma edge turbulence from Langmuir probe data Radial coherence observed on the TJ-IU torsatron Bicoherence profile at the L/H transition on CCT Conclusions
NASA Technical Reports Server (NTRS)
Young, Larry A.; Yetter, Jeffrey A.; Guynn, Mark D.
2006-01-01
Maturation of intelligent systems technologies and their incorporation into aerial platforms are dictating the development of new analysis tools and incorporation of such tools into existing system analysis methodologies in order to fully capture the trade-offs of autonomy on vehicle and mission success. A first-order "system analysis of autonomy" methodology is outlined in this paper. Further, this analysis methodology is subsequently applied to notional high-altitude long-endurance (HALE) aerial vehicle missions.
NASA Astrophysics Data System (ADS)
Pascoe, Stephen; Iwi, Alan; kershaw, philip; Stephens, Ag; Lawrence, Bryan
2014-05-01
The advent of large-scale data and the consequential analysis problems have led to two new challenges for the research community: how to share such data to get the maximum value and how to carry out efficient analysis. Solving both challenges require a form of parallelisation: the first is social parallelisation (involving trust and information sharing), the second data parallelisation (involving new algorithms and tools). The JASMIN infrastructure supports both kinds of parallelism by providing a multi-tennent environment with petabyte-scale storage, VM provisioning and batch cluster facilities. The JASMIN Analysis Platform (JAP) is an analysis software layer for JASMIN which emphasises ease of transition from a researcher's local environment to JASMIN. JAP brings together tools traditionally used by multiple communities and configures them to work together, enabling users to move analysis from their local environment to JASMIN without rewriting code. JAP also provides facilities to exploit JASMIN's parallel capabilities whilst maintaining their familiar analysis environment where ever possible. Modern opensource analysis tools typically have multiple dependent packages, increasing the installation burden on system administrators. When you consider a suite of tools, often with both common and conflicting dependencies, analysis pipelines can become locked to a particular installation simply because of the effort required to reconstruct the dependency tree. JAP addresses this problem by providing a consistent suite of RPMs compatible with RedHat Enterprise Linux and CentOS 6.4. Researchers can install JAP locally, either as RPMs or through a pre-built VM image, giving them the confidence to know moving analysis to JASMIN will not disrupt their environment. Analysis parallelisation is in it's infancy in climate sciences, with few tools capable of exploiting any parallel environment beyond manual scripting of the use of multiple processors. JAP begins to bridge this gap through a veriety of higher-level tools for parallelisation and job scheduling such as IPython-parallel and MPI support for interactive analysis languages. We find that enabling even simple parallelisation of workflows, together with the state of the art I/O performance of JASMIN storage, provides many users with the large increases in efficiency they need to scale their analyses to conteporary data volumes and tackly new, previously inaccessible, problems.
Policy Analysis: A Tool for Setting District Computer Use Policy. Paper and Report Series No. 97.
ERIC Educational Resources Information Center
Gray, Peter J.
This report explores the use of policy analysis as a tool for setting computer use policy in a school district by discussing the steps in the policy formation and implementation processes and outlining how policy analysis methods can contribute to the creation of effective policy. Factors related to the adoption and implementation of innovations…
Operational Analysis of Time-Optimal Maneuvering for Imaging Spacecraft
2013-03-01
imaging spacecraft. The analysis is facilitated through the use of AGI’s Systems Tool Kit ( STK ) software. An Analytic Hierarchy Process (AHP)-based...the Singapore-developed X-SAT imaging spacecraft. The analysis is facilitated through the use of AGI’s Systems Tool Kit ( STK ) software. An Analytic...89 B. FUTURE WORK................................................................................. 90 APPENDIX A. STK DATA AND BENEFIT
ERIC Educational Resources Information Center
Snyder, Lawrence
2013-01-01
An analysis of data from the Community College Survey of Student Engagement and multiyear analysis of pretest/posttest scores in introductory criminal justice courses revealed there was a systemic decline in student engagement and achievement. Because of this analysis, a commercial virtual learning tool (CJI) that purported great success in…
Fault Tree Analysis: A Research Tool for Educational Planning. Technical Report No. 1.
ERIC Educational Resources Information Center
Alameda County School Dept., Hayward, CA. PACE Center.
This ESEA Title III report describes fault tree analysis and assesses its applicability to education. Fault tree analysis is an operations research tool which is designed to increase the probability of success in any system by analyzing the most likely modes of failure that could occur. A graphic portrayal, which has the form of a tree, is…
Following the Part I paper that described an application of the U.S. EPA Models-3/Community Multiscale Air Quality (CMAQ) modeling system to the 1999 Southern Oxidants Study episode, this paper presents results from process analysis (PA) using the PA tool embedded in CMAQ and s...
Effects-based strategy development through center of gravity and target system analysis
NASA Astrophysics Data System (ADS)
White, Christopher M.; Prendergast, Michael; Pioch, Nicholas; Jones, Eric K.; Graham, Stephen
2003-09-01
This paper describes an approach to effects-based planning in which a strategic-theater-level mission is refined into operational-level and ultimately tactical-level tasks and desired effects, informed by models of the expected enemy response at each level of abstraction. We describe a strategy development system that implements this approach and supports human-in-the-loop development of an effects-based plan. This system consists of plan authoring tools tightly integrated with a suite of center of gravity (COG) and target system analysis tools. A human planner employs the plan authoring tools to develop a hierarchy of tasks and desired effects. Upon invocation, the target system analysis tools use reduced-order models of enemy centers of gravity to select appropriate target set options for the achievement of desired effects, together with associated indicators for each option. The COG analysis tools also provide explicit models of the causal mechanisms linking tasks and desired effects to one another, and suggest appropriate observable indicators to guide ISR planning, execution monitoring, and campaign assessment. We are currently implementing the system described here as part of the AFRL-sponsored Effects Based Operations program.
Managing complex research datasets using electronic tools: A meta-analysis exemplar
Brown, Sharon A.; Martin, Ellen E.; Garcia, Theresa J.; Winter, Mary A.; García, Alexandra A.; Brown, Adama; Cuevas, Heather E.; Sumlin, Lisa L.
2013-01-01
Meta-analyses of broad scope and complexity require investigators to organize many study documents and manage communication among several research staff. Commercially available electronic tools, e.g., EndNote, Adobe Acrobat Pro, Blackboard, Excel, and IBM SPSS Statistics (SPSS), are useful for organizing and tracking the meta-analytic process, as well as enhancing communication among research team members. The purpose of this paper is to describe the electronic processes we designed, using commercially available software, for an extensive quantitative model-testing meta-analysis we are conducting. Specific electronic tools improved the efficiency of (a) locating and screening studies, (b) screening and organizing studies and other project documents, (c) extracting data from primary studies, (d) checking data accuracy and analyses, and (e) communication among team members. The major limitation in designing and implementing a fully electronic system for meta-analysis was the requisite upfront time to: decide on which electronic tools to use, determine how these tools would be employed, develop clear guidelines for their use, and train members of the research team. The electronic process described here has been useful in streamlining the process of conducting this complex meta-analysis and enhancing communication and sharing documents among research team members. PMID:23681256
Managing complex research datasets using electronic tools: a meta-analysis exemplar.
Brown, Sharon A; Martin, Ellen E; Garcia, Theresa J; Winter, Mary A; García, Alexandra A; Brown, Adama; Cuevas, Heather E; Sumlin, Lisa L
2013-06-01
Meta-analyses of broad scope and complexity require investigators to organize many study documents and manage communication among several research staff. Commercially available electronic tools, for example, EndNote, Adobe Acrobat Pro, Blackboard, Excel, and IBM SPSS Statistics (SPSS), are useful for organizing and tracking the meta-analytic process as well as enhancing communication among research team members. The purpose of this article is to describe the electronic processes designed, using commercially available software, for an extensive, quantitative model-testing meta-analysis. Specific electronic tools improved the efficiency of (a) locating and screening studies, (b) screening and organizing studies and other project documents, (c) extracting data from primary studies, (d) checking data accuracy and analyses, and (e) communication among team members. The major limitation in designing and implementing a fully electronic system for meta-analysis was the requisite upfront time to decide on which electronic tools to use, determine how these tools would be used, develop clear guidelines for their use, and train members of the research team. The electronic process described here has been useful in streamlining the process of conducting this complex meta-analysis and enhancing communication and sharing documents among research team members.
The Development of a Humanitarian Health Ethics Analysis Tool.
Fraser, Veronique; Hunt, Matthew R; de Laat, Sonya; Schwartz, Lisa
2015-08-01
Introduction Health care workers (HCWs) who participate in humanitarian aid work experience a range of ethical challenges in providing care and assistance to communities affected by war, disaster, or extreme poverty. Although there is increasing discussion of ethics in humanitarian health care practice and policy, there are very few resources available for humanitarian workers seeking ethical guidance in the field. To address this knowledge gap, a Humanitarian Health Ethics Analysis Tool (HHEAT) was developed and tested as an action-oriented resource to support humanitarian workers in ethical decision making. While ethical analysis tools increasingly have become prevalent in a variety of practice contexts over the past two decades, very few of these tools have undergone a process of empirical validation to assess their usefulness for practitioners. A qualitative study consisting of a series of six case-analysis sessions with 16 humanitarian HCWs was conducted to evaluate and refine the HHEAT. Participant feedback inspired the creation of a simplified and shortened version of the tool and prompted the development of an accompanying handbook. The study generated preliminary insight into the ethical deliberation processes of humanitarian health workers and highlighted different types of ethics support that humanitarian workers might find helpful in supporting the decision-making process.
Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs
NASA Technical Reports Server (NTRS)
Min, James B.
2005-01-01
The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.
Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization
NASA Technical Reports Server (NTRS)
Gern, Frank H.
2012-01-01
This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.
WebArray: an online platform for microarray data analysis
Xia, Xiaoqin; McClelland, Michael; Wang, Yipeng
2005-01-01
Background Many cutting-edge microarray analysis tools and algorithms, including commonly used limma and affy packages in Bioconductor, need sophisticated knowledge of mathematics, statistics and computer skills for implementation. Commercially available software can provide a user-friendly interface at considerable cost. To facilitate the use of these tools for microarray data analysis on an open platform we developed an online microarray data analysis platform, WebArray, for bench biologists to utilize these tools to explore data from single/dual color microarray experiments. Results The currently implemented functions were based on limma and affy package from Bioconductor, the spacings LOESS histogram (SPLOSH) method, PCA-assisted normalization method and genome mapping method. WebArray incorporates these packages and provides a user-friendly interface for accessing a wide range of key functions of limma and others, such as spot quality weight, background correction, graphical plotting, normalization, linear modeling, empirical bayes statistical analysis, false discovery rate (FDR) estimation, chromosomal mapping for genome comparison. Conclusion WebArray offers a convenient platform for bench biologists to access several cutting-edge microarray data analysis tools. The website is freely available at . It runs on a Linux server with Apache and MySQL. PMID:16371165
Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model
NASA Astrophysics Data System (ADS)
Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming
Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and cloud computing. SSC provides its users with self-service storage and computing resources at the same time.At present, the prototyping of SSC is underway and the platform is expected to be put into trial operation in August 2014. We hope that as SSC develops, our vision of Digital Space may come true someday.
MetaGenyo: a web tool for meta-analysis of genetic association studies.
Martorell-Marugan, Jordi; Toro-Dominguez, Daniel; Alarcon-Riquelme, Marta E; Carmona-Saez, Pedro
2017-12-16
Genetic association studies (GAS) aims to evaluate the association between genetic variants and phenotypes. In the last few years, the number of this type of study has increased exponentially, but the results are not always reproducible due to experimental designs, low sample sizes and other methodological errors. In this field, meta-analysis techniques are becoming very popular tools to combine results across studies to increase statistical power and to resolve discrepancies in genetic association studies. A meta-analysis summarizes research findings, increases statistical power and enables the identification of genuine associations between genotypes and phenotypes. Meta-analysis techniques are increasingly used in GAS, but it is also increasing the amount of published meta-analysis containing different errors. Although there are several software packages that implement meta-analysis, none of them are specifically designed for genetic association studies and in most cases their use requires advanced programming or scripting expertise. We have developed MetaGenyo, a web tool for meta-analysis in GAS. MetaGenyo implements a complete and comprehensive workflow that can be executed in an easy-to-use environment without programming knowledge. MetaGenyo has been developed to guide users through the main steps of a GAS meta-analysis, covering Hardy-Weinberg test, statistical association for different genetic models, analysis of heterogeneity, testing for publication bias, subgroup analysis and robustness testing of the results. MetaGenyo is a useful tool to conduct comprehensive genetic association meta-analysis. The application is freely available at http://bioinfo.genyo.es/metagenyo/ .
EEG and MEG data analysis in SPM8.
Litvak, Vladimir; Mattout, Jérémie; Kiebel, Stefan; Phillips, Christophe; Henson, Richard; Kilner, James; Barnes, Gareth; Oostenveld, Robert; Daunizeau, Jean; Flandin, Guillaume; Penny, Will; Friston, Karl
2011-01-01
SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors; (iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools.
EEG and MEG Data Analysis in SPM8
Litvak, Vladimir; Mattout, Jérémie; Kiebel, Stefan; Phillips, Christophe; Henson, Richard; Kilner, James; Barnes, Gareth; Oostenveld, Robert; Daunizeau, Jean; Flandin, Guillaume; Penny, Will; Friston, Karl
2011-01-01
SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors; (iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools. PMID:21437221
NASA Technical Reports Server (NTRS)
Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim
2012-01-01
Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.
Configuration Analysis Tool (CAT). System Description and users guide (revision 1)
NASA Technical Reports Server (NTRS)
Decker, W.; Taylor, W.; Mcgarry, F. E.; Merwarth, P.
1982-01-01
A system description of, and user's guide for, the Configuration Analysis Tool (CAT) are presented. As a configuration management tool, CAT enhances the control of large software systems by providing a repository for information describing the current status of a project. CAT provides an editing capability to update the information and a reporting capability to present the information. CAT is an interactive program available in versions for the PDP-11/70 and VAX-11/780 computers.
Muir-Paulik, S A; Johnson, L E A; Kennedy, P; Aden, T; Villanueva, J; Reisdorf, E; Humes, R; Moen, A C
2016-01-01
The 2005 International Health Regulations (IHR 2005) emphasized the importance of laboratory capacity to detect emerging diseases including novel influenza viruses. To support IHR 2005 requirements and the need to enhance influenza laboratory surveillance capacity, the Association of Public Health Laboratories (APHL) and the Centers for Disease Control and Prevention (CDC) Influenza Division developed the International Influenza Laboratory Capacity Review (Tool). Data from 37 assessments were reviewed and analyzed to verify that the quantitative analysis results accurately depicted a laboratory's capacity and capabilities. Subject matter experts in influenza and laboratory practice used an iterative approach to develop the Tool incorporating feedback and lessons learnt through piloting and implementation. To systematically analyze assessment data, a quantitative framework for analysis was added to the Tool. The review indicated that changes in scores consistently reflected enhanced or decreased capacity. The review process also validated the utility of adding a quantitative analysis component to the assessments and the benefit of establishing a baseline from which to compare future assessments in a standardized way. Use of the Tool has provided APHL, CDC and each assessed laboratory with a standardized analysis of the laboratory's capacity. The information generated is used to improve laboratory systems for laboratory testing and enhance influenza surveillance globally. We describe the development of the Tool and lessons learnt. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
LaValley, Brian W.; Little, Phillip D.; Walter, Chris J.
2011-01-01
This report documents the capabilities of the EDICT tools for error modeling and error propagation analysis when operating with models defined in the Architecture Analysis & Design Language (AADL). We discuss our experience using the EDICT error analysis capabilities on a model of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER) architecture that uses the Reliable Optical Bus (ROBUS). Based on these experiences we draw some initial conclusions about model based design techniques for error modeling and analysis of highly reliable computing architectures.
Decision Support Methods and Tools
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Alexandrov, Natalia M.; Brown, Sherilyn A.; Cerro, Jeffrey A.; Gumbert, Clyde r.; Sorokach, Michael R.; Burg, Cecile M.
2006-01-01
This paper is one of a set of papers, developed simultaneously and presented within a single conference session, that are intended to highlight systems analysis and design capabilities within the Systems Analysis and Concepts Directorate (SACD) of the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). This paper focuses on the specific capabilities of uncertainty/risk analysis, quantification, propagation, decomposition, and management, robust/reliability design methods, and extensions of these capabilities into decision analysis methods within SACD. These disciplines are discussed together herein under the name of Decision Support Methods and Tools. Several examples are discussed which highlight the application of these methods within current or recent aerospace research at the NASA LaRC. Where applicable, commercially available, or government developed software tools are also discussed
SHRP2 EconWorks : wider economic benefits analysis tools : final report.
DOT National Transportation Integrated Search
2016-01-01
CDM Smith has completed an evaluation of the EconWorks Wider Economic Benefits (W.E.B.) : Analysis Tools for Connecticut Department of Transportation (CTDOT). The intent of this : evaluation was to compare the results of the outputs of this toolkit t...
Water Quality Analysis Tool (WQAT)
The purpose of the Water Quality Analysis Tool (WQAT) software is to provide a means for analyzing and producing useful remotely sensed data products for an entire estuary, a particular point or area of interest (AOI or POI) in estuaries, or water bodies of interest where pre-pro...
Applications of a broad-spectrum tool for conservation and fisheries analysis: aquatic gap analysis
McKenna, James E.; Steen, Paul J.; Lyons, John; Stewart, Jana S.
2009-01-01
Natural resources support all of our social and economic activities, as well as our biological existence. Humans have little control over most of the physical, biological, and sociological conditions dictating the status and capacity of natural resources in any particular area. However, the most rapid and threatening influences on natural resources typically are anthropogenic overuse and degradation. In addition, living natural resources (i.e., organisms) do not respect political boundaries, but are aware of their optimal habitat and environmental conditions. Most organisms have wider spatial ranges than the jurisdictional boundaries of environmental agencies that deal with them; even within those jurisdictions, information is patchy and disconnected. Planning and projecting effects of ecological management are difficult, because many organisms, habitat conditions, and interactions are involved. Conservation and responsible resource use involves wise management and manipulation of the aspects of the environment and biological communities that can be effectively changed. Tools and data sets that provide new insights and analysis capabilities can enhance the ability of resource managers to make wise decisions and plan effective, long-term management strategies. Aquatic gap analysis has been developed to provide those benefits. Gap analysis is more than just the assessment of the match or mis-match (i.e., gaps) between habitats of ecological value and areas with an appropriate level of environmental protection (e.g., refuges, parks, preserves), as the name suggests. Rather, a Gap Analysis project is a process which leads to an organized database of georeferenced information and previously available tools to examine conservation and other ecological issues; it provides a geographic analysis platform that serves as a foundation for aquatic ecological studies. This analytical tool box allows one to conduct assessments of all habitat elements within an area of interest. Aquatic gap analysis naturally focuses on aquatic habitats. The analytical tools are largely based on specification of the species-habitat relations for the system and organism group of interest (Morrison et al. 2003; McKenna et al. 2006; Steen et al. 2006; Sowa et al. 2007). The Great Lakes Regional Aquatic Gap Analysis (GLGap) project focuses primarily on lotic habitat of the U.S. Great Lakes drainage basin and associated states and has been developed to address fish and fisheries issues. These tools are unique because they allow us to address problems at a range of scales from the region to the stream segment and include the ability to predict species specific occurrence or abundance for most of the fish species in the study area. The results and types of questions that can be addressed provide better global understanding of the ecological context within which specific natural resources fit (e.g., neighboring environments and resources, and large and small scale processes). The geographic analysis platform consists of broad and flexible geospatial tools (and associated data) with many potential applications. The objectives of this article are to provide a brief overview of GLGap methods and analysis tools, and demonstrate conservation and planning applications of those data and tools. Although there are many potential applications, we will highlight just three: (1) support for the Eastern Brook Trout Joint Venture (EBTJV), (2) Aquatic Life classification in Wisconsin, and (3) an educational tool that makes use of Google Earth (use of trade or product names does not imply endorsement by the U.S. Government) and Internet accessibility.
Prony Ringdown GUI (CERTS Prony Ringdown, part of the DSI Tool Box)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuffner, Francis; Marinovici, PNNL Laurentiu; Hauer, PNNL John
2014-02-21
The PNNL Prony Ringdown graphical user interface is one analysis tool included in the Dynamic System Identification toolbox (DSI Toolbox). The Dynamic System Identification toolbox is a MATLAB-based collection of tools for parsing and analyzing phasor measurement unit data, especially in regards to small signal stability. It includes tools to read the data, preprocess it, and perform small signal analysis. 5. Method of Solution: The Dynamic System Identification Toolbox (DSI Toolbox) is designed to provide a research environment for examining phasor measurement unit data and performing small signal stability analysis. The software uses a series of text-driven menus to helpmore » guide users and organize the toolbox features. Methods for reading in populate phasor measurement unit data are provided, with appropriate preprocessing options for small-signal-stability analysis. The toolbox includes the Prony Ringdown GUI and basic algorithms to estimate information on oscillatory modes of the system, such as modal frequency and damping ratio.« less
TACIT: An open-source text analysis, crawling, and interpretation tool.
Dehghani, Morteza; Johnson, Kate M; Garten, Justin; Boghrati, Reihane; Hoover, Joe; Balasubramanian, Vijayan; Singh, Anurag; Shankar, Yuvarani; Pulickal, Linda; Rajkumar, Aswin; Parmar, Niki Jitendra
2017-04-01
As human activity and interaction increasingly take place online, the digital residues of these activities provide a valuable window into a range of psychological and social processes. A great deal of progress has been made toward utilizing these opportunities; however, the complexity of managing and analyzing the quantities of data currently available has limited both the types of analysis used and the number of researchers able to make use of these data. Although fields such as computer science have developed a range of techniques and methods for handling these difficulties, making use of those tools has often required specialized knowledge and programming experience. The Text Analysis, Crawling, and Interpretation Tool (TACIT) is designed to bridge this gap by providing an intuitive tool and interface for making use of state-of-the-art methods in text analysis and large-scale data management. Furthermore, TACIT is implemented as an open, extensible, plugin-driven architecture, which will allow other researchers to extend and expand these capabilities as new methods become available.
Grid Stiffened Structure Analysis Tool
NASA Technical Reports Server (NTRS)
1999-01-01
The Grid Stiffened Analysis Tool contract is contract performed by Boeing under NASA purchase order H30249D. The contract calls for a "best effort" study comprised of two tasks: (1) Create documentation for a composite grid-stiffened structure analysis tool, in the form of a Microsoft EXCEL spread sheet, that was developed by originally at Stanford University and later further developed by the Air Force, and (2) Write a program that functions as a NASTRAN pre-processor to generate an FEM code for grid-stiffened structure. In performing this contract, Task 1 was given higher priority because it enables NASA to make efficient use of a unique tool they already have; Task 2 was proposed by Boeing because it also would be beneficial to the analysis of composite grid-stiffened structures, specifically in generating models for preliminary design studies. The contract is now complete, this package includes copies of the user's documentation for Task 1 and a CD ROM & diskette with an electronic copy of the user's documentation and an updated version of the "GRID 99" spreadsheet.
Using Galaxy to Perform Large-Scale Interactive Data Analyses
Hillman-Jackson, Jennifer; Clements, Dave; Blankenberg, Daniel; Taylor, James; Nekrutenko, Anton
2014-01-01
Innovations in biomedical research technologies continue to provide experimental biologists with novel and increasingly large genomic and high-throughput data resources to be analyzed. As creating and obtaining data has become easier, the key decision faced by many researchers is a practical one: where and how should an analysis be performed? Datasets are large and analysis tool set-up and use is riddled with complexities outside of the scope of core research activities. The authors believe that Galaxy provides a powerful solution that simplifies data acquisition and analysis in an intuitive Web application, granting all researchers access to key informatics tools previously only available to computational specialists working in Unix-based environments. We will demonstrate through a series of biomedically relevant protocols how Galaxy specifically brings together (1) data retrieval from public and private sources, for example, UCSC's Eukaryote and Microbial Genome Browsers, (2) custom tools (wrapped Unix functions, format standardization/conversions, interval operations), and 3rd-party analysis tools. PMID:22700312
ASTEC and MODEL: Controls software development at Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Downing, John P.; Bauer, Frank H.; Surber, Jeffrey L.
1993-01-01
The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under development at the Goddard Space Flight Center (GSFC). The design goal is to provide a wide selection of controls analysis tools at the personal computer level, as well as the capability to upload compute-intensive jobs to a mainframe or supercomputer. In the last three years the ASTEC (Analysis and Simulation Tools for Engineering Controls) software has been under development. ASTEC is meant to be an integrated collection of controls analysis tools for use at the desktop level. MODEL (Multi-Optimal Differential Equation Language) is a translator that converts programs written in the MODEL language to FORTRAN. An upgraded version of the MODEL program will be merged into ASTEC. MODEL has not been modified since 1981 and has not kept with changes in computers or user interface techniques. This paper describes the changes made to MODEL in order to make it useful in the 90's and how it relates to ASTEC.
Web-based tools for modelling and analysis of multivariate data: California ozone pollution activity
Dinov, Ivo D.; Christou, Nicolas
2014-01-01
This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges. PMID:24465054
Dinov, Ivo D; Christou, Nicolas
2011-09-01
This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges.
The effective integration of analysis, modeling, and simulation tools.
DOT National Transportation Integrated Search
2013-08-01
The need for model integration arises from the recognition that both transportation decisionmaking and the tools supporting it continue to increase in complexity. Many strategies that agencies evaluate require using tools that are sensitive to supply...
GET SMARTE: DECISION TOOLS TO REVITALIZE BROWNFIELDS
SMARTe (Sustainable Management Approaches and Revitalization Tools-electronic) is an open-source, web-based, decision-support system for developing and evaluating future use scenarios for potentially contaminated sites (i.e., brownfields). It contains resources and analysis tools...
An evaluation of the accuracy and speed of metagenome analysis tools
Lindgreen, Stinus; Adair, Karen L.; Gardner, Paul P.
2016-01-01
Metagenome studies are becoming increasingly widespread, yielding important insights into microbial communities covering diverse environments from terrestrial and aquatic ecosystems to human skin and gut. With the advent of high-throughput sequencing platforms, the use of large scale shotgun sequencing approaches is now commonplace. However, a thorough independent benchmark comparing state-of-the-art metagenome analysis tools is lacking. Here, we present a benchmark where the most widely used tools are tested on complex, realistic data sets. Our results clearly show that the most widely used tools are not necessarily the most accurate, that the most accurate tool is not necessarily the most time consuming, and that there is a high degree of variability between available tools. These findings are important as the conclusions of any metagenomics study are affected by errors in the predicted community composition and functional capacity. Data sets and results are freely available from http://www.ucbioinformatics.org/metabenchmark.html PMID:26778510
Higher Education Faculty Utilization of Online Technological Tools: A Multilevel Analysis
ERIC Educational Resources Information Center
Jackson, Brianne L.
2017-01-01
As online learning and the use of online technological tools in higher education continues to grow exponentially, higher education faculty are expected to incorporate these tools into their instruction. However, many faculty members are reluctant to embrace such tools, for a variety of professional and personal reasons. This study employs survey…
FFI: A software tool for ecological monitoring
Duncan C. Lutes; Nathan C. Benson; MaryBeth Keifer; John F. Caratti; S. Austin Streetman
2009-01-01
A new monitoring tool called FFI (FEAT/FIREMON Integrated) has been developed to assist managers with collection, storage and analysis of ecological information. The tool was developed through the complementary integration of two fire effects monitoring systems commonly used in the United States: FIREMON and the Fire Ecology Assessment Tool. FFI provides software...
Communicative Tools and Modes in Thematic Preschool Work
ERIC Educational Resources Information Center
Ahlskog-Björkman, Eva; Björklund, Camilla
2016-01-01
This study focuses on teachers' ways of mediating meaning through communicative tools and modes in preschool thematic work. A socio-cultural perspective is used for analysis on how tools and modes are provided for children to make use of for communicative purposes. The research questions are: (1) what communicative tools do teachers use in their…
Use of the MATRIXx Integrated Toolkit on the Microwave Anisotropy Probe Attitude Control System
NASA Technical Reports Server (NTRS)
Ward, David K.; Andrews, Stephen F.; McComas, David C.; ODonnell, James R., Jr.
1999-01-01
Recent advances in analytical software tools allow the analysis, simulation, flight code, and documentation of an algorithm to be generated from a single source, all within one integrated analytical design package. NASA's Microwave Anisotropy Probe project has used one such package, Integrated Systems' MATRIXx suite, in the design of the spacecraft's Attitude Control System. The project's experience with the linear analysis, simulation, code generation, and documentation tools will be presented and compared with more traditional development tools. In particular, the quality of the flight software generated will be examined in detail. Finally, lessons learned on each of the tools will be shared.
Cost analysis of objective resident cataract surgery assessments.
Nandigam, Kiran; Soh, Jonathan; Gensheimer, William G; Ghazi, Ahmed; Khalifa, Yousuf M
2015-05-01
To compare 8 ophthalmology resident surgical training tools to determine which is most cost effective. University of Rochester Medical Center, Rochester, New York, USA. Retrospective evaluation of technology. A cost-analysis model was created to compile all relevant costs in running each tool in a medium-sized ophthalmology program. Quantitative cost estimates were obtained based on cost of tools, cost of time in evaluations, and supply and maintenance costs. For wet laboratory simulation, Eyesi was the least expensive cataract surgery simulation method; however, it is only capable of evaluating simulated cataract surgery rehearsal and requires supplementation with other evaluative methods for operating room performance and for noncataract wet lab training and evaluation. The most expensive training tool was the Eye Surgical Skills Assessment Test (ESSAT). The 2 most affordable methods for resident evaluation in operating room performance were the Objective Assessment of Skills in Intraocular Surgery (OASIS) and Global Rating Assessment of Skills in Intraocular Surgery (GRASIS). Cost-based analysis of ophthalmology resident surgical training tools are needed so residency programs can implement tools that are valid, reliable, objective, and cost effective. There is no perfect training system at this time. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
simuwatt - A Tablet Based Electronic Auditing Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macumber, Daniel; Parker, Andrew; Lisell, Lars
2014-05-08
'simuwatt Energy Auditor' (TM) is a new tablet-based electronic auditing tool that is designed to dramatically reduce the time and cost to perform investment-grade audits and improve quality and consistency. The tool uses the U.S. Department of Energy's OpenStudio modeling platform and integrated Building Component Library to automate modeling and analysis. simuwatt's software-guided workflow helps users gather required data, and provides the data in a standard electronic format that is automatically converted to a baseline OpenStudio model for energy analysis. The baseline energy model is calibrated against actual monthly energy use to ASHRAE Standard 14 guidelines. Energy conservation measures frommore » the Building Component Library are then evaluated using OpenStudio's parametric analysis capability. Automated reporting creates audit documents that describe recommended packages of energy conservation measures. The development of this tool was partially funded by the U.S. Department of Defense's Environmental Security Technology Certification Program. As part of this program, the tool is being tested at 13 buildings on 5 Department of Defense sites across the United States. Results of the first simuwatt audit tool demonstration are presented in this paper.« less
NASA Technical Reports Server (NTRS)
Manford, J. S.; Bennett, G. R.
1985-01-01
The Space Station Program will incorporate analysis of operations constraints and considerations in the early design phases to avoid the need for later modifications to the Space Station for operations. The application of modern tools and administrative techniques to minimize the cost of performing effective orbital operations planning and design analysis in the preliminary design phase of the Space Station Program is discussed. Tools and techniques discussed include: approach for rigorous analysis of operations functions, use of the resources of a large computer network, and providing for efficient research and access to information.
Open source tools and toolkits for bioinformatics: significance, and where are we?
Stajich, Jason E; Lapp, Hilmar
2006-09-01
This review summarizes important work in open-source bioinformatics software that has occurred over the past couple of years. The survey is intended to illustrate how programs and toolkits whose source code has been developed or released under an Open Source license have changed informatics-heavy areas of life science research. Rather than creating a comprehensive list of all tools developed over the last 2-3 years, we use a few selected projects encompassing toolkit libraries, analysis tools, data analysis environments and interoperability standards to show how freely available and modifiable open-source software can serve as the foundation for building important applications, analysis workflows and resources.
High-fidelity modeling and impact footprint prediction for vehicle breakup analysis
NASA Astrophysics Data System (ADS)
Ling, Lisa
For decades, vehicle breakup analysis had been performed for space missions that used nuclear heater or power units in order to assess aerospace nuclear safety for potential launch failures leading to inadvertent atmospheric reentry. Such pre-launch risk analysis is imperative to assess possible environmental impacts, obtain launch approval, and for launch contingency planning. In order to accurately perform a vehicle breakup analysis, the analysis tool should include a trajectory propagation algorithm coupled with thermal and structural analyses and influences. Since such a software tool was not available commercially or in the public domain, a basic analysis tool was developed by Dr. Angus McRonald prior to this study. This legacy software consisted of low-fidelity modeling and had the capability to predict vehicle breakup, but did not predict the surface impact point of the nuclear component. Thus the main thrust of this study was to develop and verify the additional dynamics modeling and capabilities for the analysis tool with the objectives to (1) have the capability to predict impact point and footprint, (2) increase the fidelity in the prediction of vehicle breakup, and (3) reduce the effort and time required to complete an analysis. The new functions developed for predicting the impact point and footprint included 3-degrees-of-freedom trajectory propagation, the generation of non-arbitrary entry conditions, sensitivity analysis, and the calculation of impact footprint. The functions to increase the fidelity in the prediction of vehicle breakup included a panel code to calculate the hypersonic aerodynamic coefficients for an arbitrary-shaped body and the modeling of local winds. The function to reduce the effort and time required to complete an analysis included the calculation of node failure criteria. The derivation and development of these new functions are presented in this dissertation, and examples are given to demonstrate the new capabilities and the improvements made, with comparisons between the results obtained from the upgraded analysis tool and the legacy software wherever applicable.
NASA Astrophysics Data System (ADS)
Thau, D.
2017-12-01
For the past seven years, Google has made petabytes of Earth observation data, and the tools to analyze it, freely available to researchers around the world via cloud computing. These data and tools were initially available via Google Earth Engine and are increasingly available on the Google Cloud Platform. We have introduced a number of APIs for both the analysis and presentation of geospatial data that have been successfully used to create impactful datasets and web applications, including studies of global surface water availability, global tree cover change, and crop yield estimation. Each of these projects used the cloud to analyze thousands to millions of Landsat scenes. The APIs support a range of publishing options, from outputting imagery and data for inclusion in papers, to providing tools for full scale web applications that provide analysis tools of their own. Over the course of developing these tools, we have learned a number of lessons about how to build a publicly available cloud platform for geospatial analysis, and about how the characteristics of an API can affect the kinds of impacts a platform can enable. This study will present an overview of how Google Earth Engine works and how Google's geospatial capabilities are extending to Google Cloud Platform. We will provide a number of case studies describing how these platforms, and the data they host, have been leveraged to build impactful decision support tools used by governments, researchers, and other institutions, and we will describe how the available APIs have shaped (or constrained) those tools. [Image Credit: Tyler A. Erickson
LENS: web-based lens for enrichment and network studies of human proteins
2015-01-01
Background Network analysis is a common approach for the study of genetic view of diseases and biological pathways. Typically, when a set of genes are identified to be of interest in relation to a disease, say through a genome wide association study (GWAS) or a different gene expression study, these genes are typically analyzed in the context of their protein-protein interaction (PPI) networks. Further analysis is carried out to compute the enrichment of known pathways and disease-associations in the network. Having tools for such analysis at the fingertips of biologists without the requirement for computer programming or curation of data would accelerate the characterization of genes of interest. Currently available tools do not integrate network and enrichment analysis and their visualizations, and most of them present results in formats not most conducive to human cognition. Results We developed the tool Lens for Enrichment and Network Studies of human proteins (LENS) that performs network and pathway and diseases enrichment analyses on genes of interest to users. The tool creates a visualization of the network, provides easy to read statistics on network connectivity, and displays Venn diagrams with statistical significance values of the network's association with drugs, diseases, pathways, and GWASs. We used the tool to analyze gene sets related to craniofacial development, autism, and schizophrenia. Conclusion LENS is a web-based tool that does not require and download or plugins to use. The tool is free and does not require login for use, and is available at http://severus.dbmi.pitt.edu/LENS. PMID:26680011
Modeling Constellation Virtual Missions Using the Vdot(Trademark) Process Management Tool
NASA Technical Reports Server (NTRS)
Hardy, Roger; ONeil, Daniel; Sturken, Ian; Nix, Michael; Yanez, Damian
2011-01-01
The authors have identified a software tool suite that will support NASA's Virtual Mission (VM) effort. This is accomplished by transforming a spreadsheet database of mission events, task inputs and outputs, timelines, and organizations into process visualization tools and a Vdot process management model that includes embedded analysis software as well as requirements and information related to data manipulation and transfer. This paper describes the progress to date, and the application of the Virtual Mission to not only Constellation but to other architectures, and the pertinence to other aerospace applications. Vdot s intuitive visual interface brings VMs to life by turning static, paper-based processes into active, electronic processes that can be deployed, executed, managed, verified, and continuously improved. A VM can be executed using a computer-based, human-in-the-loop, real-time format, under the direction and control of the NASA VM Manager. Engineers in the various disciplines will not have to be Vdot-proficient but rather can fill out on-line, Excel-type databases with the mission information discussed above. The author s tool suite converts this database into several process visualization tools for review and into Microsoft Project, which can be imported directly into Vdot. Many tools can be embedded directly into Vdot, and when the necessary data/information is received from a preceding task, the analysis can be initiated automatically. Other NASA analysis tools are too complex for this process but Vdot automatically notifies the tool user that the data has been received and analysis can begin. The VM can be simulated from end-to-end using the author s tool suite. The planned approach for the Vdot-based process simulation is to generate the process model from a database; other advantages of this semi-automated approach are the participants can be geographically remote and after refining the process models via the human-in-the-loop simulation, the system can evolve into a process management server for the actual process.
Forkert, N D; Cheng, B; Kemmling, A; Thomalla, G; Fiehler, J
2014-01-01
The objective of this work is to present the software tool ANTONIA, which has been developed to facilitate a quantitative analysis of perfusion-weighted MRI (PWI) datasets in general as well as the subsequent multi-parametric analysis of additional datasets for the specific purpose of acute ischemic stroke patient dataset evaluation. Three different methods for the analysis of DSC or DCE PWI datasets are currently implemented in ANTONIA, which can be case-specifically selected based on the study protocol. These methods comprise a curve fitting method as well as a deconvolution-based and deconvolution-free method integrating a previously defined arterial input function. The perfusion analysis is extended for the purpose of acute ischemic stroke analysis by additional methods that enable an automatic atlas-based selection of the arterial input function, an analysis of the perfusion-diffusion and DWI-FLAIR mismatch as well as segmentation-based volumetric analyses. For reliability evaluation, the described software tool was used by two observers for quantitative analysis of 15 datasets from acute ischemic stroke patients to extract the acute lesion core volume, FLAIR ratio, perfusion-diffusion mismatch volume with manually as well as automatically selected arterial input functions, and follow-up lesion volume. The results of this evaluation revealed that the described software tool leads to highly reproducible results for all parameters if the automatic arterial input function selection method is used. Due to the broad selection of processing methods that are available in the software tool, ANTONIA is especially helpful to support image-based perfusion and acute ischemic stroke research projects.
GeneSCF: a real-time based functional enrichment tool with support for multiple organisms.
Subhash, Santhilal; Kanduri, Chandrasekhar
2016-09-13
High-throughput technologies such as ChIP-sequencing, RNA-sequencing, DNA sequencing and quantitative metabolomics generate a huge volume of data. Researchers often rely on functional enrichment tools to interpret the biological significance of the affected genes from these high-throughput studies. However, currently available functional enrichment tools need to be updated frequently to adapt to new entries from the functional database repositories. Hence there is a need for a simplified tool that can perform functional enrichment analysis by using updated information directly from the source databases such as KEGG, Reactome or Gene Ontology etc. In this study, we focused on designing a command-line tool called GeneSCF (Gene Set Clustering based on Functional annotations), that can predict the functionally relevant biological information for a set of genes in a real-time updated manner. It is designed to handle information from more than 4000 organisms from freely available prominent functional databases like KEGG, Reactome and Gene Ontology. We successfully employed our tool on two of published datasets to predict the biologically relevant functional information. The core features of this tool were tested on Linux machines without the need for installation of more dependencies. GeneSCF is more reliable compared to other enrichment tools because of its ability to use reference functional databases in real-time to perform enrichment analysis. It is an easy-to-integrate tool with other pipelines available for downstream analysis of high-throughput data. More importantly, GeneSCF can run multiple gene lists simultaneously on different organisms thereby saving time for the users. Since the tool is designed to be ready-to-use, there is no need for any complex compilation and installation procedures.
NASA Astrophysics Data System (ADS)
Keika, Kunihiro; Miyoshi, Yoshizumi; Machida, Shinobu; Ieda, Akimasa; Seki, Kanako; Hori, Tomoaki; Miyashita, Yukinaga; Shoji, Masafumi; Shinohara, Iku; Angelopoulos, Vassilis; Lewis, Jim W.; Flores, Aaron
2017-12-01
This paper introduces ISEE_3D, an interactive visualization tool for three-dimensional plasma velocity distribution functions, developed by the Institute for Space-Earth Environmental Research, Nagoya University, Japan. The tool provides a variety of methods to visualize the distribution function of space plasma: scatter, volume, and isosurface modes. The tool also has a wide range of functions, such as displaying magnetic field vectors and two-dimensional slices of distributions to facilitate extensive analysis. The coordinate transformation to the magnetic field coordinates is also implemented in the tool. The source codes of the tool are written as scripts of a widely used data analysis software language, Interactive Data Language, which has been widespread in the field of space physics and solar physics. The current version of the tool can be used for data files of the plasma distribution function from the Geotail satellite mission, which are publicly accessible through the Data Archives and Transmission System of the Institute of Space and Astronautical Science (ISAS)/Japan Aerospace Exploration Agency (JAXA). The tool is also available in the Space Physics Environment Data Analysis Software to visualize plasma data from the Magnetospheric Multiscale and the Time History of Events and Macroscale Interactions during Substorms missions. The tool is planned to be applied to data from other missions, such as Arase (ERG) and Van Allen Probes after replacing or adding data loading plug-ins. This visualization tool helps scientists understand the dynamics of space plasma better, particularly in the regions where the magnetohydrodynamic approximation is not valid, for example, the Earth's inner magnetosphere, magnetopause, bow shock, and plasma sheet.
Dai, Yilin; Guo, Ling; Li, Meng; Chen, Yi-Bu
2012-06-08
Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.
Information Literacy and Office Tool Competencies: A Benchmark Study
ERIC Educational Resources Information Center
Heinrichs, John H.; Lim, Jeen-Su
2010-01-01
Present information science literature recognizes the importance of information technology to achieve information literacy. The authors report the results of a benchmarking student survey regarding perceived functional skills and competencies in word-processing and presentation tools. They used analysis of variance and regression analysis to…
NASA Astrophysics Data System (ADS)
Henderson, Michael
1997-08-01
The Numerical Analysis Objects project (NAO) is a project in the Mathematics Department of IBM's TJ Watson Research Center. While there are plenty of numerical tools available today, it is not an easy task to combine them into a custom application. NAO is directed at the dual problems of building applications from a set of tools, and creating those tools. There are several "reuse" projects, which focus on the problems of identifying and cataloging tools. NAO is directed at the specific context of scientific computing. Because the type of tools is restricted, problems such as tools with incompatible data structures for input and output, and dissimilar interfaces to tools which solve similar problems can be addressed. The approach we've taken is to define interfaces to those objects used in numerical analysis, such as geometries, functions and operators, and to start collecting (and building) a set of tools which use these interfaces. We have written a class library (a set of abstract classes and implementations) in C++ which demonstrates the approach. Besides the classes, the class library includes "stub" routines which allow the library to be used from C or Fortran, and an interface to a Visual Programming Language. The library has been used to build a simulator for petroleum reservoirs, using a set of tools for discretizing nonlinear differential equations that we have written, and includes "wrapped" versions of packages from the Netlib repository. Documentation can be found on the Web at "http://www.research.ibm.com/nao". I will describe the objects and their interfaces, and give examples ranging from mesh generation to solving differential equations.
Irena : tool suite for modeling and analysis of small-angle scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilavsky, J.; Jemian, P.
2009-04-01
Irena, a tool suite for analysis of both X-ray and neutron small-angle scattering (SAS) data within the commercial Igor Pro application, brings together a comprehensive suite of tools useful for investigations in materials science, physics, chemistry, polymer science and other fields. In addition to Guinier and Porod fits, the suite combines a variety of advanced SAS data evaluation tools for the modeling of size distribution in the dilute limit using maximum entropy and other methods, dilute limit small-angle scattering from multiple non-interacting populations of scatterers, the pair-distance distribution function, a unified fit, the Debye-Bueche model, the reflectivity (X-ray and neutron)more » using Parratt's formalism, and small-angle diffraction. There are also a number of support tools, such as a data import/export tool supporting a broad sampling of common data formats, a data modification tool, a presentation-quality graphics tool optimized for small-angle scattering data, and a neutron and X-ray scattering contrast calculator. These tools are brought together into one suite with consistent interfaces and functionality. The suite allows robust automated note recording and saving of parameters during export.« less
STAMPS: Software Tool for Automated MRI Post-processing on a supercomputer.
Bigler, Don C; Aksu, Yaman; Miller, David J; Yang, Qing X
2009-08-01
This paper describes a Software Tool for Automated MRI Post-processing (STAMP) of multiple types of brain MRIs on a workstation and for parallel processing on a supercomputer (STAMPS). This software tool enables the automation of nonlinear registration for a large image set and for multiple MR image types. The tool uses standard brain MRI post-processing tools (such as SPM, FSL, and HAMMER) for multiple MR image types in a pipeline fashion. It also contains novel MRI post-processing features. The STAMP image outputs can be used to perform brain analysis using Statistical Parametric Mapping (SPM) or single-/multi-image modality brain analysis using Support Vector Machines (SVMs). Since STAMPS is PBS-based, the supercomputer may be a multi-node computer cluster or one of the latest multi-core computers.
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Tarasov, S. Yu; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.
2017-01-01
Automatization of engineering processes requires developing relevant mathematical support and a computer software. Analysis of metal cutting kinematics and tool geometry is a necessary key task at the preproduction stage. This paper is focused on developing a procedure for determining the geometry of oblique peakless round-nose tool lathe machining with the use of vector/matrix transformations. Such an approach allows integration into modern mathematical software packages in distinction to the traditional analytic description. Such an advantage is very promising for developing automated control of the preproduction process. A kinematic criterion for the applicable tool geometry has been developed from the results of this study. The effect of tool blade inclination and curvature on the geometry-dependent process parameters was evaluated.
Software Construction and Analysis Tools for Future Space Missions
NASA Technical Reports Server (NTRS)
Lowry, Michael R.; Clancy, Daniel (Technical Monitor)
2002-01-01
NASA and its international partners will increasingly depend on software-based systems to implement advanced functions for future space missions, such as Martian rovers that autonomously navigate long distances exploring geographic features formed by surface water early in the planet's history. The software-based functions for these missions will need to be robust and highly reliable, raising significant challenges in the context of recent Mars mission failures attributed to software faults. After reviewing these challenges, this paper describes tools that have been developed at NASA Ames that could contribute to meeting these challenges; 1) Program synthesis tools based on automated inference that generate documentation for manual review and annotations for automated certification. 2) Model-checking tools for concurrent object-oriented software that achieve memorability through synergy with program abstraction and static analysis tools.
Thermal Insulation System Analysis Tool (TISTool) User's Manual. Version 1.0.0
NASA Technical Reports Server (NTRS)
Johnson, Wesley; Fesmire, James; Leucht, Kurt; Demko, Jonathan
2010-01-01
The Thermal Insulation System Analysis Tool (TISTool) was developed starting in 2004 by Jonathan Demko and James Fesmire. The first edition was written in Excel and Visual BasIc as macros. It included the basic shapes such as a flat plate, cylinder, dished head, and sphere. The data was from several KSC tests that were already in the public literature realm as well as data from NIST and other highly respectable sources. More recently, the tool has been updated with more test data from the Cryogenics Test Laboratory and the tank shape was added. Additionally, the tool was converted to FORTRAN 95 to allow for easier distribution of the material and tool. This document reviews the user instructions for the operation of this system.
A survey of tools for variant analysis of next-generation genome sequencing data
Pabinger, Stephan; Dander, Andreas; Fischer, Maria; Snajder, Rene; Sperk, Michael; Efremova, Mirjana; Krabichler, Birgit; Speicher, Michael R.; Zschocke, Johannes
2014-01-01
Recent advances in genome sequencing technologies provide unprecedented opportunities to characterize individual genomic landscapes and identify mutations relevant for diagnosis and therapy. Specifically, whole-exome sequencing using next-generation sequencing (NGS) technologies is gaining popularity in the human genetics community due to the moderate costs, manageable data amounts and straightforward interpretation of analysis results. While whole-exome and, in the near future, whole-genome sequencing are becoming commodities, data analysis still poses significant challenges and led to the development of a plethora of tools supporting specific parts of the analysis workflow or providing a complete solution. Here, we surveyed 205 tools for whole-genome/whole-exome sequencing data analysis supporting five distinct analytical steps: quality assessment, alignment, variant identification, variant annotation and visualization. We report an overview of the functionality, features and specific requirements of the individual tools. We then selected 32 programs for variant identification, variant annotation and visualization, which were subjected to hands-on evaluation using four data sets: one set of exome data from two patients with a rare disease for testing identification of germline mutations, two cancer data sets for testing variant callers for somatic mutations, copy number variations and structural variations, and one semi-synthetic data set for testing identification of copy number variations. Our comprehensive survey and evaluation of NGS tools provides a valuable guideline for human geneticists working on Mendelian disorders, complex diseases and cancers. PMID:23341494
ZBIT Bioinformatics Toolbox: A Web-Platform for Systems Biology and Expression Data Analysis
Römer, Michael; Eichner, Johannes; Dräger, Andreas; Wrzodek, Clemens; Wrzodek, Finja; Zell, Andreas
2016-01-01
Bioinformatics analysis has become an integral part of research in biology. However, installation and use of scientific software can be difficult and often requires technical expert knowledge. Reasons are dependencies on certain operating systems or required third-party libraries, missing graphical user interfaces and documentation, or nonstandard input and output formats. In order to make bioinformatics software easily accessible to researchers, we here present a web-based platform. The Center for Bioinformatics Tuebingen (ZBIT) Bioinformatics Toolbox provides web-based access to a collection of bioinformatics tools developed for systems biology, protein sequence annotation, and expression data analysis. Currently, the collection encompasses software for conversion and processing of community standards SBML and BioPAX, transcription factor analysis, and analysis of microarray data from transcriptomics and proteomics studies. All tools are hosted on a customized Galaxy instance and run on a dedicated computation cluster. Users only need a web browser and an active internet connection in order to benefit from this service. The web platform is designed to facilitate the usage of the bioinformatics tools for researchers without advanced technical background. Users can combine tools for complex analyses or use predefined, customizable workflows. All results are stored persistently and reproducible. For each tool, we provide documentation, tutorials, and example data to maximize usability. The ZBIT Bioinformatics Toolbox is freely available at https://webservices.cs.uni-tuebingen.de/. PMID:26882475
GIS Toolsets for Planetary Geomorphology and Landing-Site Analysis
NASA Astrophysics Data System (ADS)
Nass, Andrea; van Gasselt, Stephan
2015-04-01
Modern Geographic Information Systems (GIS) allow expert and lay users alike to load and position geographic data and perform simple to highly complex surface analyses. For many applications dedicated and ready-to-use GIS tools are available in standard software systems while other applications require the modular combination of available basic tools to answer more specific questions. This also applies to analyses in modern planetary geomorphology where many of such (basic) tools can be used to build complex analysis tools, e.g. in image- and terrain model analysis. Apart from the simple application of sets of different tools, many complex tasks require a more sophisticated design for storing and accessing data using databases (e.g. ArcHydro for hydrological data analysis). In planetary sciences, complex database-driven models are often required to efficiently analyse potential landings sites or store rover data, but also geologic mapping data can be efficiently stored and accessed using database models rather than stand-alone shapefiles. For landings-site analyses, relief and surface roughness estimates are two common concepts that are of particular interest and for both, a number of different definitions co-exist. We here present an advanced toolset for the analysis of image and terrain-model data with an emphasis on extraction of landing site characteristics using established criteria. We provide working examples and particularly focus on the concepts of terrain roughness as it is interpreted in geomorphology and engineering studies.
Applying Dataflow Architecture and Visualization Tools to In Vitro Pharmacology Data Automation.
Pechter, David; Xu, Serena; Kurtz, Marc; Williams, Steven; Sonatore, Lisa; Villafania, Artjohn; Agrawal, Sony
2016-12-01
The pace and complexity of modern drug discovery places ever-increasing demands on scientists for data analysis and interpretation. Data flow programming and modern visualization tools address these demands directly. Three different requirements-one for allosteric modulator analysis, one for a specialized clotting analysis, and one for enzyme global progress curve analysis-are reviewed, and their execution in a combined data flow/visualization environment is outlined. © 2016 Society for Laboratory Automation and Screening.
Importance and pitfalls of molecular analysis to parasite epidemiology.
Constantine, Clare C
2003-08-01
Molecular tools are increasingly being used to address questions about parasite epidemiology. Parasites represent a diverse group and they might not fit traditional population genetic models. Testing hypotheses depends equally on correct sampling, appropriate tool and/or marker choice, appropriate analysis and careful interpretation. All methods of analysis make assumptions which, if violated, make the results invalid. Some guidelines to avoid common pitfalls are offered here.
Exploring NASA and ESA Atmospheric Data Using GIOVANNI, the Online Visualization and Analysis Tool
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory
2007-01-01
Giovanni, the NASA Goddard online visualization and analysis tool (http://giovanni.gsfc.nasa.gov) allows users explore various atmospheric phenomena without learning remote sensing data formats and downloading voluminous data. Using NASA MODIS (Terra and Aqua) and ESA MERIS (ENVISAT) aerosol data as an example, we demonstrate Giovanni usage for online multi-sensor remote sensing data comparison and analysis.
Temporal Comparisons of Internet Topology
2014-06-01
Number CAIDA Cooperative Association of Internet Data Analysis CDN Content Delivery Network CI Confidence Interval DoS denial of service GMT Greenwich...the CAIDA data. Our methods include analysis of graph theoretical measures as well as complex network and statistical measures that will quantify the...tool that probes the Internet for topology analysis and performance [26]. Scamper uses network diagnostic tools, such as traceroute and ping, to probe
Wagner, Lucas; Schmal, Christoph; Staiger, Dorothee; Danisman, Selahattin
2017-01-01
The analysis of circadian leaf movement rhythms is a simple yet effective method to study effects of treatments or gene mutations on the circadian clock of plants. Currently, leaf movements are analysed using time lapse photography and subsequent bioinformatics analyses of leaf movements. Programs that are used for this purpose either are able to perform one function (i.e. leaf tip detection or rhythm analysis) or their function is limited to specific computational environments. We developed a leaf movement analysis tool-PALMA-that works in command line and combines image extraction with rhythm analysis using Fast Fourier transformation and non-linear least squares fitting. We validated PALMA in both simulated time series and in experiments using the known short period mutant sensitivity to red light reduced 1 ( srr1 - 1 ). We compared PALMA with two established leaf movement analysis tools and found it to perform equally well. Finally, we tested the effect of reduced iron conditions on the leaf movement rhythms of wild type plants. Here, we found that PALMA successfully detected period lengthening under reduced iron conditions. PALMA correctly estimated the period of both simulated and real-life leaf movement experiments. As a platform-independent console-program that unites both functions needed for the analysis of circadian leaf movements it is a valid alternative to existing leaf movement analysis tools.
DOT National Transportation Integrated Search
2017-08-01
The purpose of the Permitted Overweight Truck Corridor Analysis Tool (referred to in this document as the Stage 2 Tool) is to evaluate existing or to create new proposed overweight (OW) truck corridors to estimate the permitted OW truck, pavement, br...
GET SMARTE: DECISION TOOLS TO REVITALIZE COMMUNITIES (MAY 2006)
SMARTe (Sustainable Management Approaches and Revitalization Tools-electronic) is an open-source, web-based, decision-support system for developing and evaluating future use scenarios for potentially contaminated sites (i.e., brownfields). It contains resources and analysis tools...
ADAM: analysis of discrete models of biological systems using computer algebra.
Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard
2011-07-20
Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.
Urquhart, Robin; Porter, Geoffrey A; Sargeant, Joan; Jackson, Lois; Grunfeld, Eva
2014-09-16
The implementation of innovations (i.e., new tools and practices) in healthcare organizations remains a significant challenge. The objective of this study was to examine the key interpersonal, organizational, and system level factors that influenced the implementation and use of synoptic reporting tools in three specific areas of cancer care. Using case study methodology, we studied three cases in Nova Scotia, Canada, wherein synoptic reporting tools were implemented within clinical departments/programs. Synoptic reporting tools capture and present information about a medical or surgical procedure in a structured, checklist-like format and typically report only items critical for understanding the disease and subsequent impacts on patient care. Data were collected through semi-structured interviews with key informants, document analysis, nonparticipant observation, and tool use/examination. Analysis involved production of case histories, in-depth analysis of each case, and a cross-case analysis. Numerous techniques were used during the research design, data collection, and data analysis stages to increase the rigour of this study. The analysis revealed five common factors that were particularly influential to implementation and use of synoptic reporting tools across the three cases: stakeholder involvement, managing the change process (e.g., building demand, communication, training and support), champions and respected colleagues, administrative and managerial support, and innovation attributes (e.g., complexity, compatibility with interests and values). The direction of influence (facilitating or impeding) of each of these factors differed across and within cases. The findings demonstrate the importance of a multi-level contextual analysis to gaining both breadth and depth to our understanding of innovation implementation and use in health care. They also provide new insights into several important issues under-reported in the literature on moving innovations into healthcare practice, including the role of middle managers in implementation efforts and the importance of attending to the interpersonal aspects of implementation.
Tools for Embedded Computing Systems Software
NASA Technical Reports Server (NTRS)
1978-01-01
A workshop was held to assess the state of tools for embedded systems software and to determine directions for tool development. A synopsis of the talk and the key figures of each workshop presentation, together with chairmen summaries, are presented. The presentations covered four major areas: (1) tools and the software environment (development and testing); (2) tools and software requirements, design, and specification; (3) tools and language processors; and (4) tools and verification and validation (analysis and testing). The utility and contribution of existing tools and research results for the development and testing of embedded computing systems software are described and assessed.
A survey of tools and resources for the next generation analyst
NASA Astrophysics Data System (ADS)
Hall, David L.; Graham, Jake; Catherman, Emily
2015-05-01
We have previously argued that a combination of trends in information technology (IT) and changing habits of people using IT provide opportunities for the emergence of a new generation of analysts that can perform effective intelligence, surveillance and reconnaissance (ISR) on a "do it yourself" (DIY) or "armchair" approach (see D.L. Hall and J. Llinas (2014)). Key technology advances include: i) new sensing capabilities including the use of micro-scale sensors and ad hoc deployment platforms such as commercial drones, ii) advanced computing capabilities in mobile devices that allow advanced signal and image processing and modeling, iii) intelligent interconnections due to advances in "web N" capabilities, and iv) global interconnectivity and increasing bandwidth. In addition, the changing habits of the digital natives reflect new ways of collecting and reporting information, sharing information, and collaborating in dynamic teams. This paper provides a survey and assessment of tools and resources to support this emerging analysis approach. The tools range from large-scale commercial tools such as IBM i2 Analyst Notebook, Palantir, and GeoSuite to emerging open source tools such as GeoViz and DECIDE from university research centers. The tools include geospatial visualization tools, social network analysis tools and decision aids. A summary of tools is provided along with links to web sites for tool access.
Diagnosing Chronic Pancreatitis: Comparison and Evaluation of Different Diagnostic Tools.
Issa, Yama; van Santvoort, Hjalmar C; van Dieren, Susan; Besselink, Marc G; Boermeester, Marja A; Ahmed Ali, Usama
2017-10-01
This study aims to compare the M-ANNHEIM, Büchler, and Lüneburg diagnostic tools for chronic pancreatitis (CP). A cross-sectional analysis of the development of CP was performed in a prospectively collected multicenter cohort including 669 patients after a first episode of acute pancreatitis. We compared the individual components of the M-ANNHEIM, Büchler, and Lüneburg tools, the agreement between tools, and estimated diagnostic accuracy using Bayesian latent-class analysis. A total of 669 patients with acute pancreatitis followed-up for a median period of 57 (interquartile range, 42-70) months were included. Chronic pancreatitis was diagnosed in 50 patients (7%), 59 patients (9%), and 61 patients (9%) by the M-ANNHEIM, Lüneburg, and Büchler tools, respectively. The overall agreement between these tools was substantial (κ = 0.75). Differences between the tools regarding the following criteria led to significant changes in the total number of diagnoses of CP: abdominal pain, recurrent pancreatitis, moderate to marked ductal lesions, endocrine and exocrine insufficiency, pancreatic calcifications, and pancreatic pseudocysts. The Büchler tool had the highest sensitivity (94%), followed by the M-ANNHEIM (87%), and finally the Lüneburg tool (81%). Differences between diagnostic tools for CP are mainly attributed to presence of clinical symptoms, endocrine insufficiency, and certain morphological complications.
GeneTools--application for functional annotation and statistical hypothesis testing.
Beisvag, Vidar; Jünge, Frode K R; Bergum, Hallgeir; Jølsum, Lars; Lydersen, Stian; Günther, Clara-Cecilie; Ramampiaro, Heri; Langaas, Mette; Sandvik, Arne K; Laegreid, Astrid
2006-10-24
Modern biology has shifted from "one gene" approaches to methods for genomic-scale analysis like microarray technology, which allow simultaneous measurement of thousands of genes. This has created a need for tools facilitating interpretation of biological data in "batch" mode. However, such tools often leave the investigator with large volumes of apparently unorganized information. To meet this interpretation challenge, gene-set, or cluster testing has become a popular analytical tool. Many gene-set testing methods and software packages are now available, most of which use a variety of statistical tests to assess the genes in a set for biological information. However, the field is still evolving, and there is a great need for "integrated" solutions. GeneTools is a web-service providing access to a database that brings together information from a broad range of resources. The annotation data are updated weekly, guaranteeing that users get data most recently available. Data submitted by the user are stored in the database, where it can easily be updated, shared between users and exported in various formats. GeneTools provides three different tools: i) NMC Annotation Tool, which offers annotations from several databases like UniGene, Entrez Gene, SwissProt and GeneOntology, in both single- and batch search mode. ii) GO Annotator Tool, where users can add new gene ontology (GO) annotations to genes of interest. These user defined GO annotations can be used in further analysis or exported for public distribution. iii) eGOn, a tool for visualization and statistical hypothesis testing of GO category representation. As the first GO tool, eGOn supports hypothesis testing for three different situations (master-target situation, mutually exclusive target-target situation and intersecting target-target situation). An important additional function is an evidence-code filter that allows users, to select the GO annotations for the analysis. GeneTools is the first "all in one" annotation tool, providing users with a rapid extraction of highly relevant gene annotation data for e.g. thousands of genes or clones at once. It allows a user to define and archive new GO annotations and it supports hypothesis testing related to GO category representations. GeneTools is freely available through www.genetools.no
The Adversarial Route Analysis Tool: A Web Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casson, William H. Jr.
2012-08-02
The Adversarial Route Analysis Tool is a type of Google maps for adversaries. It's a web-based Geospatial application similar to Google Maps. It helps the U.S. government plan operations that predict where an adversary might be. It's easily accessible and maintainble and it's simple to use without much training.
Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool (SAE 2013-01-0808)
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by Environmental Protection Agency to evaluate the Greenhouse gas emissions and fuel efficiency from light-duty vehicles. It is a physics-based, forward-looking, full vehicle computer simulator, which is cap...
Using Language Sample Databases
ERIC Educational Resources Information Center
Heilmann, John J.; Miller, Jon F.; Nockerts, Ann
2010-01-01
Purpose: Over the past 50 years, language sample analysis (LSA) has evolved from a powerful research tool that is used to document children's linguistic development into a powerful clinical tool that is used to identify and describe the language skills of children with language impairment. The Systematic Analysis of Language Transcripts (SALT; J.…
An Online Image Analysis Tool for Science Education
ERIC Educational Resources Information Center
Raeside, L.; Busschots, B.; Waddington, S.; Keating, J. G.
2008-01-01
This paper describes an online image analysis tool developed as part of an iterative, user-centered development of an online Virtual Learning Environment (VLE) called the Education through Virtual Experience (EVE) Portal. The VLE provides a Web portal through which schoolchildren and their teachers create scientific proposals, retrieve images and…
On aerodynamic wake analysis and its relation to total aerodynamic drag in a wind tunnel environment
NASA Astrophysics Data System (ADS)
Guterres, Rui M.
The present work was developed with the goal of advancing the state of the art in the application of three-dimensional wake data analysis to the quantification of aerodynamic drag on a body in a low speed wind tunnel environment. Analysis of the existing tools, their strengths and limitations is presented. Improvements to the existing analysis approaches were made. Software tools were developed to integrate the analysis into a practical tool. A comprehensive derivation of the equations needed for drag computations based on three dimensional separated wake data is developed. A set of complete steps ranging from the basic mathematical concept to the applicable engineering equations is presented. An extensive experimental study was conducted. Three representative body types were studied in varying ground effect conditions. A detailed qualitative wake analysis using wake imaging and two and three dimensional flow visualization was performed. Several significant features of the flow were identified and their relation to the total aerodynamic drag established. A comprehensive wake study of this type is shown to be in itself a powerful tool for the analysis of the wake aerodynamics and its relation to body drag. Quantitative wake analysis techniques were developed. Significant post processing and data conditioning tools and precision analysis were developed. The quality of the data is shown to be in direct correlation with the accuracy of the computed aerodynamic drag. Steps are taken to identify the sources of uncertainty. These are quantified when possible and the accuracy of the computed results is seen to significantly improve. When post processing alone does not resolve issues related to precision and accuracy, solutions are proposed. The improved quantitative wake analysis is applied to the wake data obtained. Guidelines are established that will lead to more successful implementation of these tools in future research programs. Close attention is paid to implementation of issues that are of crucial importance for the accuracy of the results and that are not detailed in the literature. The impact of ground effect on the flows in hand is qualitatively and quantitatively studied. Its impact on the accuracy of the computations as well as the wall drag incompatibility with the theoretical model followed are discussed. The newly developed quantitative analysis provides significantly increased accuracy. The aerodynamic drag coefficient is computed within one percent of balance measured value for the best cases.
Software Tools on the Peregrine System | High-Performance Computing | NREL
Debugger or performance analysis Tool for understanding the behavior of MPI applications. Intel VTune environment for statistical computing and graphics. VirtualGL/TurboVNC Visualization and analytics Remote Tools on the Peregrine System Software Tools on the Peregrine System NREL has a variety of
The Papillomavirus Episteme: a central resource for papillomavirus sequence data and analysis.
Van Doorslaer, Koenraad; Tan, Qina; Xirasagar, Sandhya; Bandaru, Sandya; Gopalan, Vivek; Mohamoud, Yasmin; Huyen, Yentram; McBride, Alison A
2013-01-01
The goal of the Papillomavirus Episteme (PaVE) is to provide an integrated resource for the analysis of papillomavirus (PV) genome sequences and related information. The PaVE is a freely accessible, web-based tool (http://pave.niaid.nih.gov) created around a relational database, which enables storage, analysis and exchange of sequence information. From a design perspective, the PaVE adopts an Open Source software approach and stresses the integration and reuse of existing tools. Reference PV genome sequences have been extracted from publicly available databases and reannotated using a custom-created tool. To date, the PaVE contains 241 annotated PV genomes, 2245 genes and regions, 2004 protein sequences and 47 protein structures, which users can explore, analyze or download. The PaVE provides scientists with the data and tools needed to accelerate scientific progress for the study and treatment of diseases caused by PVs.
Scenario analysis and strategic planning: practical applications for radiology practices.
Lexa, Frank James; Chan, Stephen
2010-05-01
Modern business science has many tools that can be of great value to radiologists and their practices. One of the most important and underused is long-term planning. Part of the problem has been the pace of change. Making a 5-year plan makes sense only if your develop robust scenarios of possible future conditions you will face. Scenario analysis is one of many highly regarded tools that can improve your predictive capability. However, as with many tools, it pays to have some training and to get practical tips on how to improve their value. It also helps to learn from other people's mistakes rather than your own. The authors discuss both theoretical and practical issues in using scenario analysis to improve your planning process. They discuss actionable ways this set of tools can be applied in a group meeting or retreat. Copyright (c) 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Whittaker, Kara A.; McShane, Dan
2013-02-01
A large storm event in southwest Washington State triggered over 2500 landslides and provided an opportunity to assess two slope stability screening tools. The statistical analysis conducted demonstrated that both screening tools are effective at predicting where landslides were likely to take place (Whittaker and McShane, 2012). Here we reply to two discussions of this article related to the development of the slope stability screening tools and the accuracy and scale of the spatial data used. Neither of the discussions address our statistical analysis or results. We provide greater detail on our sampling criteria and also elaborate on the policy and management implications of our findings and how they complement those of a separate investigation of landslides resulting from the same storm. The conclusions made in Whittaker and McShane (2012) stand as originally published unless future analysis indicates otherwise.
PySCeSToolbox: a collection of metabolic pathway analysis tools.
Christensen, Carl D; Hofmeyr, Jan-Hendrik S; Rohwer, Johann M
2018-01-01
PySCeSToolbox is an extension to the Python Simulator for Cellular Systems (PySCeS) that includes tools for performing generalized supply-demand analysis, symbolic metabolic control analysis, and a framework for investigating the kinetic and thermodynamic aspects of enzyme-catalyzed reactions. Each tool addresses a different aspect of metabolic behaviour, control, and regulation; the tools complement each other and can be used in conjunction to better understand higher level system behaviour. PySCeSToolbox is available on Linux, Mac OS X and Windows. It is licensed under the BSD 3-clause licence. Code, setup instructions and a link to documentation can be found at https://github.com/PySCeS/PyscesToolbox. jr@sun.ac.za. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Instrument Cost/Schedule Model
NASA Technical Reports Server (NTRS)
Habib-Agahi, Hamid; Mrozinski, Joe; Fox, George
2011-01-01
NASA's Office of Independent Program and Cost Evaluation (IPCE) has established a number of initiatives to improve its cost and schedule estimating capabilities. 12One of these initiatives has resulted in the JPL developed NASA Instrument Cost Model. NICM is a cost and schedule estimator that contains: A system level cost estimation tool; a subsystem level cost estimation tool; a database of cost and technical parameters of over 140 previously flown remote sensing and in-situ instruments; a schedule estimator; a set of rules to estimate cost and schedule by life cycle phases (B/C/D); and a novel tool for developing joint probability distributions for cost and schedule risk (Joint Confidence Level (JCL)). This paper describes the development and use of NICM, including the data normalization processes, data mining methods (cluster analysis, principal components analysis, regression analysis and bootstrap cross validation), the estimating equations themselves and a demonstration of the NICM tool suite.
Methods, Tools and Current Perspectives in Proteogenomics *
Ruggles, Kelly V.; Krug, Karsten; Wang, Xiaojing; Clauser, Karl R.; Wang, Jing; Payne, Samuel H.; Fenyö, David; Zhang, Bing; Mani, D. R.
2017-01-01
With combined technological advancements in high-throughput next-generation sequencing and deep mass spectrometry-based proteomics, proteogenomics, i.e. the integrative analysis of proteomic and genomic data, has emerged as a new research field. Early efforts in the field were focused on improving protein identification using sample-specific genomic and transcriptomic sequencing data. More recently, integrative analysis of quantitative measurements from genomic and proteomic studies have identified novel insights into gene expression regulation, cell signaling, and disease. Many methods and tools have been developed or adapted to enable an array of integrative proteogenomic approaches and in this article, we systematically classify published methods and tools into four major categories, (1) Sequence-centric proteogenomics; (2) Analysis of proteogenomic relationships; (3) Integrative modeling of proteogenomic data; and (4) Data sharing and visualization. We provide a comprehensive review of methods and available tools in each category and highlight their typical applications. PMID:28456751
Process Improvement Through Tool Integration in Aero-Mechanical Design
NASA Technical Reports Server (NTRS)
Briggs, Clark
2010-01-01
Emerging capabilities in commercial design tools promise to significantly improve the multi-disciplinary and inter-disciplinary design and analysis coverage for aerospace mechanical engineers. This paper explores the analysis process for two example problems of a wing and flap mechanical drive system and an aircraft landing gear door panel. The examples begin with the design solid models and include various analysis disciplines such as structural stress and aerodynamic loads. Analytical methods include CFD, multi-body dynamics with flexible bodies and structural analysis. Elements of analysis data management, data visualization and collaboration are also included.
Greenwald, William W; Li, He; Smith, Erin N; Benaglio, Paola; Nariai, Naoki; Frazer, Kelly A
2017-04-07
Genomic interaction studies use next-generation sequencing (NGS) to examine the interactions between two loci on the genome, with subsequent bioinformatics analyses typically including annotation, intersection, and merging of data from multiple experiments. While many file types and analysis tools exist for storing and manipulating single locus NGS data, there is currently no file standard or analysis tool suite for manipulating and storing paired-genomic-loci: the data type resulting from "genomic interaction" studies. As genomic interaction sequencing data are becoming prevalent, a standard file format and tools for working with these data conveniently and efficiently are needed. This article details a file standard and novel software tool suite for working with paired-genomic-loci data. We present the paired-genomic-loci (PGL) file standard for genomic-interactions data, and the accompanying analysis tool suite "pgltools": a cross platform, pypy compatible python package available both as an easy-to-use UNIX package, and as a python module, for integration into pipelines of paired-genomic-loci analyses. Pgltools is a freely available, open source tool suite for manipulating paired-genomic-loci data. Source code, an in-depth manual, and a tutorial are available publicly at www.github.com/billgreenwald/pgltools , and a python module of the operations can be installed from PyPI via the PyGLtools module.
The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.
Lucas, Blake C; Bogovic, John A; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L; Pham, Dzung L; Landman, Bennett A
2010-03-01
Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).
The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software
Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung
2010-01-01
Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162
Development of a self-assessment teamwork tool for use by medical and nursing students.
Gordon, Christopher J; Jorm, Christine; Shulruf, Boaz; Weller, Jennifer; Currie, Jane; Lim, Renee; Osomanski, Adam
2016-08-24
Teamwork training is an essential component of health professional student education. A valid and reliable teamwork self-assessment tool could assist students to identify desirable teamwork behaviours with the potential to promote learning about effective teamwork. The aim of this study was to develop and evaluate a self-assessment teamwork tool for health professional students for use in the context of emergency response to a mass casualty. The authors modified a previously published teamwork instrument designed for experienced critical care teams for use with medical and nursing students involved in mass casualty simulations. The 17-item questionnaire was administered to students immediately following the simulations. These scores were used to explore the psychometric properties of the tool, using Exploratory and Confirmatory Factor Analysis. 202 (128 medical and 74 nursing) students completed the self-assessment teamwork tool for students. Exploratory factor analysis revealed 2 factors (5 items - Teamwork coordination and communication; 4 items - Information sharing and support) and these were justified with confirmatory factor analysis. Internal consistency was 0.823 for Teamwork coordination and communication, and 0.812 for Information sharing and support. These data provide evidence to support the validity and reliability of the self-assessment teamwork tool for students This self-assessment tool could be of value to health professional students following team training activities to help them identify the attributes of effective teamwork.
Dubovenko, Alexey; Nikolsky, Yuri; Rakhmatulin, Eugene; Nikolskaya, Tatiana
2017-01-01
Analysis of NGS and other sequencing data, gene variants, gene expression, proteomics, and other high-throughput (OMICs) data is challenging because of its biological complexity and high level of technical and biological noise. One way to deal with both problems is to perform analysis with a high fidelity annotated knowledgebase of protein interactions, pathways, and functional ontologies. This knowledgebase has to be structured in a computer-readable format and must include software tools for managing experimental data, analysis, and reporting. Here, we present MetaCore™ and Key Pathway Advisor (KPA), an integrated platform for functional data analysis. On the content side, MetaCore and KPA encompass a comprehensive database of molecular interactions of different types, pathways, network models, and ten functional ontologies covering human, mouse, and rat genes. The analytical toolkit includes tools for gene/protein list enrichment analysis, statistical "interactome" tool for the identification of over- and under-connected proteins in the dataset, and a biological network analysis module made up of network generation algorithms and filters. The suite also features Advanced Search, an application for combinatorial search of the database content, as well as a Java-based tool called Pathway Map Creator for drawing and editing custom pathway maps. Applications of MetaCore and KPA include molecular mode of action of disease research, identification of potential biomarkers and drug targets, pathway hypothesis generation, analysis of biological effects for novel small molecule compounds and clinical applications (analysis of large cohorts of patients, and translational and personalized medicine).
Towards early software reliability prediction for computer forensic tools (case study).
Abu Talib, Manar
2016-01-01
Versatility, flexibility and robustness are essential requirements for software forensic tools. Researchers and practitioners need to put more effort into assessing this type of tool. A Markov model is a robust means for analyzing and anticipating the functioning of an advanced component based system. It is used, for instance, to analyze the reliability of the state machines of real time reactive systems. This research extends the architecture-based software reliability prediction model for computer forensic tools, which is based on Markov chains and COSMIC-FFP. Basically, every part of the computer forensic tool is linked to a discrete time Markov chain. If this can be done, then a probabilistic analysis by Markov chains can be performed to analyze the reliability of the components and of the whole tool. The purposes of the proposed reliability assessment method are to evaluate the tool's reliability in the early phases of its development, to improve the reliability assessment process for large computer forensic tools over time, and to compare alternative tool designs. The reliability analysis can assist designers in choosing the most reliable topology for the components, which can maximize the reliability of the tool and meet the expected reliability level specified by the end-user. The approach of assessing component-based tool reliability in the COSMIC-FFP context is illustrated with the Forensic Toolkit Imager case study.
R-based Tool for a Pairwise Structure-activity Relationship Analysis.
Klimenko, Kyrylo
2018-04-01
The Structure-Activity Relationship analysis is a complex process that can be enhanced by computational techniques. This article describes a simple tool for SAR analysis that has a graphic user interface and a flexible approach towards the input of molecular data. The application allows calculating molecular similarity represented by Tanimoto index & Euclid distance, as well as, determining activity cliffs by means of Structure-Activity Landscape Index. The calculation is performed in a pairwise manner either for the reference compound and other compounds or for all possible pairs in the data set. The results of SAR analysis are visualized using two types of plot. The application capability is demonstrated by the analysis of a set of COX2 inhibitors with respect to Isoxicam. This tool is available online: it includes manual and input file examples. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Visual analytics for aviation safety: A collaborative approach to sensemaking
NASA Astrophysics Data System (ADS)
Wade, Andrew
Visual analytics, the "science of analytical reasoning facilitated by interactive visual interfaces", is more than just visualization. Understanding the human reasoning process is essential for designing effective visualization tools and providing correct analyses. This thesis describes the evolution, application and evaluation of a new method for studying analytical reasoning that we have labeled paired analysis. Paired analysis combines subject matter experts (SMEs) and tool experts (TE) in an analytic dyad, here used to investigate aircraft maintenance and safety data. The method was developed and evaluated using interviews, pilot studies and analytic sessions during an internship at the Boeing Company. By enabling a collaborative approach to sensemaking that can be captured by researchers, paired analysis yielded rich data on human analytical reasoning that can be used to support analytic tool development and analyst training. Keywords: visual analytics, paired analysis, sensemaking, boeing, collaborative analysis.
Data Standards for Flow Cytometry
SPIDLEN, JOSEF; GENTLEMAN, ROBERT C.; HAALAND, PERRY D.; LANGILLE, MORGAN; MEUR, NOLWENN LE; OCHS, MICHAEL F.; SCHMITT, CHARLES; SMITH, CLAYTON A.; TREISTER, ADAM S.; BRINKMAN, RYAN R.
2009-01-01
Flow cytometry (FCM) is an analytical tool widely used for cancer and HIV/AIDS research, and treatment, stem cell manipulation and detecting microorganisms in environmental samples. Current data standards do not capture the full scope of FCM experiments and there is a demand for software tools that can assist in the exploration and analysis of large FCM datasets. We are implementing a standardized approach to capturing, analyzing, and disseminating FCM data that will facilitate both more complex analyses and analysis of datasets that could not previously be efficiently studied. Initial work has focused on developing a community-based guideline for recording and reporting the details of FCM experiments. Open source software tools that implement this standard are being created, with an emphasis on facilitating reproducible and extensible data analyses. As well, tools for electronic collaboration will assist the integrated access and comprehension of experiments to empower users to collaborate on FCM analyses. This coordinated, joint development of bioinformatics standards and software tools for FCM data analysis has the potential to greatly facilitate both basic and clinical research—impacting a notably diverse range of medical and environmental research areas. PMID:16901228
A National Solar Digital Observatory
NASA Astrophysics Data System (ADS)
Hill, F.
2000-05-01
The continuing development of the Internet as a research tool, combined with an improving funding climate, has sparked new interest in the development of Internet-linked astronomical data bases and analysis tools. Here I outline a concept for a National Solar Digital Observatory (NSDO), a set of data archives and analysis tools distributed in physical location at sites which already host such systems. A central web site would be implemented from which a user could search all of the component archives, select and download data, and perform analyses. Example components include NSO's Digital Library containing its synoptic and GONG data, and the forthcoming SOLIS archive. Several other archives, in various stages of development, also exist. Potential analysis tools include content-based searches, visualized programming tools, and graphics routines. The existence of an NSDO would greatly facilitate solar physics research, as a user would no longer need to have detailed knowledge of all solar archive sites. It would also improve public outreach efforts. The National Solar Observatory is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation.
Meta-tools for software development and knowledge acquisition
NASA Technical Reports Server (NTRS)
Eriksson, Henrik; Musen, Mark A.
1992-01-01
The effectiveness of tools that provide support for software development is highly dependent on the match between the tools and their task. Knowledge-acquisition (KA) tools constitute a class of development tools targeted at knowledge-based systems. Generally, KA tools that are custom-tailored for particular application domains are more effective than are general KA tools that cover a large class of domains. The high cost of custom-tailoring KA tools manually has encouraged researchers to develop meta-tools for KA tools. Current research issues in meta-tools for knowledge acquisition are the specification styles, or meta-views, for target KA tools used, and the relationships between the specification entered in the meta-tool and other specifications for the target program under development. We examine different types of meta-views and meta-tools. Our current project is to provide meta-tools that produce KA tools from multiple specification sources--for instance, from a task analysis of the target application.
Open Architecture as an Enabler for FORCEnet Cruise Missile Defense
2007-09-01
2007). Step 4 introduces another tool called the Strengths, Weaknesses, Opportunities, and Threats ( SWOT ) analysis. Once the TRO has been identified...the SWOT analysis can be used to help in the pursuit of that objective or mission objective. SWOT is defined as Strengths: attributes of the...overtime. In addition to the SCAN and SWOT , analysis processes also needed are Automated Battle Management Aids (ABMA) tools that are required to
Top-attack modeling and automatic target detection using synthetic FLIR scenery
NASA Astrophysics Data System (ADS)
Weber, Bruce A.; Penn, Joseph A.
2004-09-01
A series of experiments have been performed to verify the utility of algorithmic tools for the modeling and analysis of cold-target signatures in synthetic, top-attack, FLIR video sequences. The tools include: MuSES/CREATION for the creation of synthetic imagery with targets, an ARL target detection algorithm to detect imbedded synthetic targets in scenes, and an ARL scoring algorithm, using Receiver-Operating-Characteristic (ROC) curve analysis, to evaluate detector performance. Cold-target detection variability was examined as a function of target emissivity, surrounding clutter type, and target placement in non-obscuring clutter locations. Detector metrics were also individually scored so as to characterize the effect of signature/clutter variations. Results show that using these tools, a detailed, physically meaningful, target detection analysis is possible and that scenario specific target detectors may be developed by selective choice and/or weighting of detector metrics. However, developing these tools into a reliable predictive capability will require the extension of these results to the modeling and analysis of a large number of data sets configured for a wide range of target and clutter conditions. Finally, these tools should also be useful for the comparison of competitive detection algorithms by providing well defined, and controllable target detection scenarios, as well as for the training and testing of expert human observers.
Tool Support for Parametric Analysis of Large Software Simulation Systems
NASA Technical Reports Server (NTRS)
Schumann, Johann; Gundy-Burlet, Karen; Pasareanu, Corina; Menzies, Tim; Barrett, Tony
2008-01-01
The analysis of large and complex parameterized software systems, e.g., systems simulation in aerospace, is very complicated and time-consuming due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such an analysis with a tool to support envelope assessment: we utilize a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. Additional test-cases, automatically generated from models (e.g., UML, Simulink, Stateflow) improve the coverage. The distributed test runs of the software system produce vast amounts of data, making manual analysis impossible. Our tool automatically analyzes the generated data through a combination of unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. The tool has been developed around the Trick simulation environment, which is widely used within NASA. We will present this tool with a GN&C (Guidance, Navigation and Control) simulation of a small satellite system.
Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments.
Canver, Matthew C; Haeussler, Maximilian; Bauer, Daniel E; Orkin, Stuart H; Sanjana, Neville E; Shalem, Ophir; Yuan, Guo-Cheng; Zhang, Feng; Concordet, Jean-Paul; Pinello, Luca
2018-05-01
CRISPR (clustered regularly interspaced short palindromic repeats) genome-editing experiments offer enormous potential for the evaluation of genomic loci using arrayed single guide RNAs (sgRNAs) or pooled sgRNA libraries. Numerous computational tools are available to help design sgRNAs with optimal on-target efficiency and minimal off-target potential. In addition, computational tools have been developed to analyze deep-sequencing data resulting from genome-editing experiments. However, these tools are typically developed in isolation and oftentimes are not readily translatable into laboratory-based experiments. Here, we present a protocol that describes in detail both the computational and benchtop implementation of an arrayed and/or pooled CRISPR genome-editing experiment. This protocol provides instructions for sgRNA design with CRISPOR (computational tool for the design, evaluation, and cloning of sgRNA sequences), experimental implementation, and analysis of the resulting high-throughput sequencing data with CRISPResso (computational tool for analysis of genome-editing outcomes from deep-sequencing data). This protocol allows for design and execution of arrayed and pooled CRISPR experiments in 4-5 weeks by non-experts, as well as computational data analysis that can be performed in 1-2 d by both computational and noncomputational biologists alike using web-based and/or command-line versions.
Karmakar, Sougata; Pal, Madhu Sudan; Majumdar, Deepti; Majumdar, Dhurjati
2012-01-01
Ergonomic evaluation of visual demands becomes crucial for the operators/users when rapid decision making is needed under extreme time constraint like navigation task of jet aircraft. Research reported here comprises ergonomic evaluation of pilot's vision in a jet aircraft in virtual environment to demonstrate how vision analysis tools of digital human modeling software can be used effectively for such study. Three (03) dynamic digital pilot models, representative of smallest, average and largest Indian pilot population were generated from anthropometric database and interfaced with digital prototype of the cockpit in Jack software for analysis of vision within and outside the cockpit. Vision analysis tools like view cones, eye view windows, blind spot area, obscuration zone, reflection zone etc. were employed during evaluation of visual fields. Vision analysis tool was also used for studying kinematic changes of pilot's body joints during simulated gazing activity. From present study, it can be concluded that vision analysis tool of digital human modeling software was found very effective in evaluation of position and alignment of different displays and controls in the workstation based upon their priorities within the visual fields and anthropometry of the targeted users, long before the development of its physical prototype.
Open source tools for fluorescent imaging.
Hamilton, Nicholas A
2012-01-01
As microscopy becomes increasingly automated and imaging expands in the spatial and time dimensions, quantitative analysis tools for fluorescent imaging are becoming critical to remove both bottlenecks in throughput as well as fully extract and exploit the information contained in the imaging. In recent years there has been a flurry of activity in the development of bio-image analysis tools and methods with the result that there are now many high-quality, well-documented, and well-supported open source bio-image analysis projects with large user bases that cover essentially every aspect from image capture to publication. These open source solutions are now providing a viable alternative to commercial solutions. More importantly, they are forming an interoperable and interconnected network of tools that allow data and analysis methods to be shared between many of the major projects. Just as researchers build on, transmit, and verify knowledge through publication, open source analysis methods and software are creating a foundation that can be built upon, transmitted, and verified. Here we describe many of the major projects, their capabilities, and features. We also give an overview of the current state of open source software for fluorescent microscopy analysis and the many reasons to use and develop open source methods. Copyright © 2012 Elsevier Inc. All rights reserved.
Tools, information sources, and methods used in deciding on drug availability in HMOs.
Barner, J C; Thomas, J
1998-01-01
The use and importance of specific decision-making tools, information sources, and drug-use management methods in determining drug availability and use in HMOs were studied. A questionnaire was sent to 303 randomly selected HMOs. Respondents were asked to rate their use of each of four formal decision-making tools and its relative importance, as well as the use and importance of eight information sources and 11 methods for managing drug availability and use, on a 5-point scale. The survey response rate was 28%. Approximately half of the respondents reported that their HMOs used decision analysis or multiattribute analysis in deciding on drug availability. If used, these tools were rated as very important. There were significant differences in levels of use by HMO type, membership size, and age. Journal articles and reference books were reported most often as information sources. Retrospective drug-use review was used very often and perceived to be very important in managing drug use. Other management methods were used only occasionally, but the importance placed on these tools when used ranged from moderately to very important. Older organizations used most of the management methods more often than did other HMOs. Decision analysis and multiattribute analysis were the most commonly used tools for deciding on which drugs to make available to HMO members, and reference books and journal articles were the most commonly used information sources. Retrospective and prospective drug-use reviews were the most commonly applied methods for managing HMO members' access to drugs.
A population MRI brain template and analysis tools for the macaque.
Seidlitz, Jakob; Sponheim, Caleb; Glen, Daniel; Ye, Frank Q; Saleem, Kadharbatcha S; Leopold, David A; Ungerleider, Leslie; Messinger, Adam
2018-04-15
The use of standard anatomical templates is common in human neuroimaging, as it facilitates data analysis and comparison across subjects and studies. For non-human primates, previous in vivo templates have lacked sufficient contrast to reliably validate known anatomical brain regions and have not provided tools for automated single-subject processing. Here we present the "National Institute of Mental Health Macaque Template", or NMT for short. The NMT is a high-resolution in vivo MRI template of the average macaque brain generated from 31 subjects, as well as a neuroimaging tool for improved data analysis and visualization. From the NMT volume, we generated maps of tissue segmentation and cortical thickness. Surface reconstructions and transformations to previously published digital brain atlases are also provided. We further provide an analysis pipeline using the NMT that automates and standardizes the time-consuming processes of brain extraction, tissue segmentation, and morphometric feature estimation for anatomical scans of individual subjects. The NMT and associated tools thus provide a common platform for precise single-subject data analysis and for characterizations of neuroimaging results across subjects and studies. Copyright © 2017 ElsevierCompany. All rights reserved.
Aeroelastic Ground Wind Loads Analysis Tool for Launch Vehicles
NASA Technical Reports Server (NTRS)
Ivanco, Thomas G.
2016-01-01
Launch vehicles are exposed to ground winds during rollout and on the launch pad that can induce static and dynamic loads. Of particular concern are the dynamic loads caused by vortex shedding from nearly-cylindrical structures. When the frequency of vortex shedding nears that of a lowly-damped structural mode, the dynamic loads can be more than an order of magnitude greater than mean drag loads. Accurately predicting vehicle response to vortex shedding during the design and analysis cycles is difficult and typically exceeds the practical capabilities of modern computational fluid dynamics codes. Therefore, mitigating the ground wind loads risk typically requires wind-tunnel tests of dynamically-scaled models that are time consuming and expensive to conduct. In recent years, NASA has developed a ground wind loads analysis tool for launch vehicles to fill this analytical capability gap in order to provide predictions for prelaunch static and dynamic loads. This paper includes a background of the ground wind loads problem and the current state-of-the-art. It then discusses the history and significance of the analysis tool and the methodology used to develop it. Finally, results of the analysis tool are compared to wind-tunnel and full-scale data of various geometries and Reynolds numbers.
Toxic release consequence analysis tool (TORCAT) for inherently safer design plant.
Shariff, Azmi Mohd; Zaini, Dzulkarnain
2010-10-15
Many major accidents due to toxic release in the past have caused many fatalities such as the tragedy of MIC release in Bhopal, India (1984). One of the approaches is to use inherently safer design technique that utilizes inherent safety principle to eliminate or minimize accidents rather than to control the hazard. This technique is best implemented in preliminary design stage where the consequence of toxic release can be evaluated and necessary design improvements can be implemented to eliminate or minimize the accidents to as low as reasonably practicable (ALARP) without resorting to costly protective system. However, currently there is no commercial tool available that has such capability. This paper reports on the preliminary findings on the development of a prototype tool for consequence analysis and design improvement via inherent safety principle by utilizing an integrated process design simulator with toxic release consequence analysis model. The consequence analysis based on the worst-case scenarios during process flowsheeting stage were conducted as case studies. The preliminary finding shows that toxic release consequences analysis tool (TORCAT) has capability to eliminate or minimize the potential toxic release accidents by adopting the inherent safety principle early in preliminary design stage. 2010 Elsevier B.V. All rights reserved.
The Gender Analysis Tools Applied in Natural Disasters Management: A Systematic Literature Review
Sohrabizadeh, Sanaz; Tourani, Sogand; Khankeh, Hamid Reza
2014-01-01
Background: Although natural disasters have caused considerable damages around the world, and gender analysis can improve community disaster preparedness or mitigation, there is little research about the gendered analytical tools and methods in communities exposed to natural disasters and hazards. These tools evaluate gender vulnerability and capacity in pre-disaster and post-disaster phases of the disaster management cycle. Objectives: Identifying the analytical gender tools and the strengths and limitations of them as well as determining gender analysis studies which had emphasized on the importance of using gender analysis in disasters. Methods: The literature search was conducted in June 2013 using PubMed, Web of Sciences, ProQuest Research Library, World Health Organization Library, Gender and Disaster Network (GDN) archive. All articles, guidelines, fact sheets and other materials that provided an analytical framework for a gender analysis approach in disasters were included and the non-English documents as well as gender studies of non-disasters area were excluded. Analysis of the included studies was done separately by descriptive and thematic analyses. Results: A total of 207 documents were retrieved, of which only nine references were included. Of these, 45% were in form of checklist, 33% case study report, and the remaining 22% were article. All selected papers were published within the period 1994-2012. Conclusions: A focus on women’s vulnerability in the related research and the lack of valid and reliable gender analysis tools were considerable issues identified by the literature review. Although non-English literatures with English abstract were included in the study, the possible exclusion of non-English ones was found as the limitation of this study. PMID:24678441
Rosen, Jacob; Brown, Jeffrey D; Barreca, Marco; Chang, Lily; Hannaford, Blake; Sinanan, Mika
2002-01-01
Minimally invasive surgeiy (MIS) involves a multi-dimensional series of tasks requiring a synthesis between visual information and the kinematics and dynamics of the surgical tools. Analysis of these sources of information is a key step in mastering MIS surgery but may also be used to define objective criteria for characterizing surgical performance. The BIueDRAGON is a new system for acquiring the kinematics and the dynamics of two endoscopic tools along with the visual view of the surgical scene. It includes two four-bar mechanisms equipped with position and force torque sensors for measuring the positions and the orientations (P/O) of two endoscopic tools along with the forces and torques applied by the surgeons hands. The methodology of decomposing the surgical task is based on a fully connected, finite-states (28 states) Markov model where each states corresponded to a fundamental tool/tissue interaction based on the tool kinematics and associated with unique F/T signatures. The experimental protocol included seven MIS tasks performed on an animal model (pig) by 30 surgeons at different levels of their residency training. Preliminary analysis of these data showed that major differences between residents at different skill levels were: (i) the types of tool/tissue interactions being used, (ii) the transitions between tool/tissue interactions being applied by each hand, (iii) time spent while perfonning each tool/tissue interaction, (iv) the overall completion time, and (v) the variable F/T magnitudes being applied by the subjects through the endoscopic tools. Systems like surgical robots or virtual reality simulators that inherently measure the kinematics and the dynamics of the surgical tool may benefit from inclusion of the proposed methodology for analysis of efficacy and objective evaluation of surgical skills during training.
Enhancement of the EPA Stormwater BMP Decision-Support Tool (SUSTAIN)
U.S. Environmental Protection Agency (EPA) has been developing and improving a decision-support tool for placement of stormwater best management practices (BMPs) at strategic locations in urban watersheds. The tool is called the System for Urban Stormwater Treatment and Analysis...
Screening and Evaluation Tool (SET) Users Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pincock, Layne
This document is the users guide to using the Screening and Evaluation Tool (SET). SET is a tool for comparing multiple fuel cycle options against a common set of criteria and metrics. It does this using standard multi-attribute utility decision analysis methods.