Reduction of diffusional defocusing in hydrodynamically focused flows
Affleck, Rhett L.; Demas, James N.; Goodwin, Peter M.; Keller, Richard; Wu, Ming
1998-01-01
An analyte fluid stream with first molecules having relatively low molecular weight and a corresponding high coefficient of diffusion has reduced diffusional defocusing out of an analyte fluid stream. The analyte fluid stream of first molecules is associated with second molecules of relatively high molecular weight having a relatively low coefficient of diffusion and a binding constant effective to associate with the first molecules. A focused analyte fluid stream is maintained since the combined molecular weight of the associated first and second molecules is effective to minimize diffusion of the first molecules out of the analyte fluid stream.
Reduction of diffusional defocusing in hydrodynamically focused flows
Affleck, R.L.; Demas, J.N.; Goodwin, P.M.; Keller, R.; Wu, M.
1998-09-01
An analyte fluid stream with first molecules having relatively low molecular weight and a corresponding high coefficient of diffusion has reduced diffusional defocusing out of an analyte fluid stream. The analyte fluid stream of first molecules is associated with second molecules of relatively high molecular weight having a relatively low coefficient of diffusion and a binding constant effective to associate with the first molecules. A focused analyte fluid stream is maintained since the combined molecular weight of the associated first and second molecules is effective to minimize diffusion of the first molecules out of the analyte fluid stream. 6 figs.
Unsteady Boundary-Layer Flow over Jerked Plate Moving in a Free Stream of Viscoelastic Fluid
Mehmood, Ahmer; Ali, Asif; Saleem, Najma
2014-01-01
This study aims to investigate the unsteady boundary-layer flow of a viscoelastic non-Newtonian fluid over a flat surface. The plate is suddenly jerked to move with uniform velocity in a uniform stream of non-Newtonian fluid. Purely analytic solution to governing nonlinear equation is obtained. The solution is highly accurate and valid for all values of the dimensionless time 0 ≤ τ < ∞. Flow properties of the viscoelastic fluid are discussed through graphs. PMID:24892060
Sampling device for withdrawing a representative sample from single and multi-phase flows
Apley, Walter J.; Cliff, William C.; Creer, James M.
1984-01-01
A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.
Method For Chemical Sensing Using A Microfabricated Teeter-Totter Resonator
Adkins, Douglas Ray; Heller, Edwin J.; Shul, Randy J.
2004-11-30
A method for sensing a chemical analyte in a fluid stream comprises providing a microfabricated teeter-totter resonator that relies upon a Lorentz force to cause oscillation in a paddle, applying a static magnetic field substantially aligned in-plane with the paddle, energizing a current conductor line on a surface of the paddle with an alternating electrical current to generate the Lorentz force, exposing the resonator to the analyte, and detecting the response of the oscillatory motion of the paddle to the chemical analyte. Preferably, a chemically sensitive coating is disposed on at least one surface of the paddle to enhance the sorption of the analyte by the paddle. The concentration of the analyte in a fluid stream can be determined by measuring the change in the resonant frequency or phase of the teeter-totter resonator as the chemical analyte is added to or removed from the paddle.
Bruno, Thomas J; Ott, Lisa S; Lovestead, Tara M; Huber, Marcia L
2010-04-16
The analysis of complex fluids such as crude oils, fuels, vegetable oils and mixed waste streams poses significant challenges arising primarily from the multiplicity of components, the different properties of the components (polarity, polarizability, etc.) and matrix properties. We have recently introduced an analytical strategy that simplifies many of these analyses, and provides the added potential of linking compositional information with physical property information. This aspect can be used to facilitate equation of state development for the complex fluids. In addition to chemical characterization, the approach provides the ability to calculate thermodynamic properties for such complex heterogeneous streams. The technique is based on the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. The analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. By far, the most widely used analytical technique we have used with the ADC is gas chromatography. This has enabled us to study finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this special issue of the Journal of Chromatography, specifically dedicated to extraction technologies, we describe the essential features of the advanced distillation curve metrology as an analytical strategy for complex fluids. Published by Elsevier B.V.
Analytical and numerical performance models of a Heisenberg Vortex Tube
NASA Astrophysics Data System (ADS)
Bunge, C. D.; Cavender, K. A.; Matveev, K. I.; Leachman, J. W.
2017-12-01
Analytical and numerical investigations of a Heisenberg Vortex Tube (HVT) are performed to estimate the cooling potential with cryogenic hydrogen. The Ranque-Hilsch Vortex Tube (RHVT) is a device that tangentially injects a compressed fluid stream into a cylindrical geometry to promote enthalpy streaming and temperature separation between inner and outer flows. The HVT is the result of lining the inside of a RHVT with a hydrogen catalyst. This is the first concept to utilize the endothermic heat of para-orthohydrogen conversion to aid primary cooling. A review of 1st order vortex tube models available in the literature is presented and adapted to accommodate cryogenic hydrogen properties. These first order model predictions are compared with 2-D axisymmetric Computational Fluid Dynamics (CFD) simulations.
Resonant Drag Instability of Grains Streaming in Fluids
NASA Astrophysics Data System (ADS)
Squire, J.; Hopkins, P. F.
2018-03-01
We show that grains streaming through a fluid are generically unstable if their velocity, projected along some direction, matches the phase velocity of a fluid wave (linear oscillation). This can occur whenever grains stream faster than any fluid wave. The wave itself can be quite general—sound waves, magnetosonic waves, epicyclic oscillations, and Brunt–Väisälä oscillations each generate instabilities, for example. We derive a simple expression for the growth rates of these “resonant drag instabilities” (RDI). This expression (i) illustrates why such instabilities are so virulent and generic and (ii) allows for simple analytic computation of RDI growth rates and properties for different fluids. As examples, we introduce several new instabilities, which could see application across a variety of physical systems from atmospheres to protoplanetary disks, the interstellar medium, and galactic outflows. The matrix-based resonance formalism we introduce can also be applied more generally in other (nonfluid) contexts, providing a simple means for calculating and understanding the stability properties of interacting systems.
A simulation of streaming flows associated with acoustic levitators
NASA Astrophysics Data System (ADS)
Rednikov, A.; Riley, N.
2002-04-01
Steady-state acoustic streaming flow patterns have been observed by Trinh and Robey [Phys. Fluids 6, 3567 (1994)], during the operation of a variety of single axis ultrasonic levitators in a gaseous environment. Microstreaming around levitated samples is superimposed on the streaming flow which is observed in the levitator even in the absence of any particle therein. In this paper, by physical arguments, numerical and analytical simulations we provide entirely satisfactory interpretations of the observed flow patterns in both isothermal and nonisothermal situations.
Connection between the two branches of the quantum two-stream instability across the k space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bret, A.; Haas, F.
2010-05-15
The stability of two quantum counterstreaming electron beams is investigated within the quantum plasma fluid equations for arbitrarily oriented wave vectors k. The analysis reveals that the two quantum two-stream unstable branches are indeed connected by a continuum of unstable modes with oblique wave vectors. Using the longitudinal approximation, the stability domain for any k is analytically explained, together with the growth rate.
A study analysis of cable-body systems totally immersed in a fluid stream
NASA Technical Reports Server (NTRS)
Delaurier, J. D.
1972-01-01
A general stability analysis of a cable-body system immersed in a fluid stream is presented. The analytical portion of this analysis treats the system as being essentially a cable problem, with the body dynamics giving the end conditions. The mathematical form of the analysis consists of partial differential wave equations, with the end and auxiliary conditions being determined from the body equations of motion. The equations uncouple to give a lateral problem and a longitudinal problem as in first order airplane dynamics. A series of tests on a tethered wind tunnel model provide a comparison of the theory with experiment.
Practical limitations on the use of diurnal temperature signals to quantify groundwater upwelling
Briggs, Martin A.; Lautz, Laura K.; Buckley, Sean F.; Lane, John W.
2014-01-01
Groundwater upwelling to streams creates unique habitat by influencing stream water quality and temperature; upwelling zones also serve as vectors for contamination when groundwater is degraded. Temperature time series data acquired along vertical profiles in the streambed have been applied to simple analytical models to determine rates of vertical fluid flux. These models are based on the downward propagation characteristics (amplitude attenuation and phase-lag) of the surface diurnal signal. Despite the popularity of these models, there are few published characterizations of moderate-to-strong upwelling. We attribute this limitation to the thermodynamics of upwelling, under which the downward conductive signal transport from the streambed interface occurs opposite the upward advective fluid flux. Governing equations describing the advection–diffusion of heat within the streambed predict that under upwelling conditions, signal amplitude attenuation will increase, but, counterintuitively, phase-lag will decrease. Therefore the extinction (measurable) depth of the diurnal signal is very shallow, but phase lag is also short, yielding low signal to noise ratio and poor model sensitivity. Conversely, amplitude attenuation over similar sensor spacing is strong, yielding greater potential model sensitivity. Here we present streambed thermal time series over a range of moderate to strong upwelling sites in the Quashnet River, Cape Cod, Massachusetts. The predicted inverse relationship between phase-lag and rate of upwelling was observed in the field data over a range of conditions, but the observed phase-lags were consistently shorter than predicted. Analytical solutions for fluid flux based on signal amplitude attenuation return results consistent with numerical models and physical seepage meters, but the phase-lag analytical model results are generally unreasonable. Through numerical modeling we explore reasons why phase-lag may have been over-predicted by the analytical models, and develop guiding relations of diurnal temperature signal extinction depth based on stream diurnal signal amplitude, upwelling magnitude, and streambed thermal properties that will be useful in designing future experiments.
Transverse low frequency wave in a two fluid solar wind. M.S. Thesis
NASA Technical Reports Server (NTRS)
Solodyna, G. V.
1973-01-01
Investigation is made of the properties of low frequency transverse waves in a two-fluid solar wind having a radial magnetic field and radial streaming velocity. In order to examine what effects this streaming medium has on the waves, linearly polarized waves are decomposed into left and right circularly polarized waves. Computation is made of analytic expressions valid to first order for the radial amplitude and phase dependence of these constituent waves. It is shown that after travelling a given distance r, these waves have different amplitudes and phases. The former result causes their superposition to become elliptical rather than linear. The latter causes the axis of the ellipse of polarization to rotate through a well-defined angle. Analytic expressions are obtained for the eccentricity of the ellipse and for the angle of rotation. In analogy with regular Faraday rotation, in which the plane of polarization of a linear polarized wave rotates, the effect is denoted as generalized Faraday rotation.
Fast inertial particle manipulation in oscillating flows
NASA Astrophysics Data System (ADS)
Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha
2017-05-01
It is demonstrated that micron-sized particles suspended in fluid near oscillating interfaces experience strong inertial displacements above and beyond the fluid streaming. Experiments with oscillating bubbles show rectified particle lift over extraordinarily short (millisecond) times. A quantitative model on both the oscillatory and the steady time scales describes the particle displacement relative to the fluid motion. The formalism yields analytical predictions confirming the observed scaling behavior with particle size and experimental control parameters. It applies to a large class of oscillatory flows with applications from particle trapping to size sorting.
Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.
Doinikov, Alexander A; Thibault, Pierre; Marmottant, Philippe
2018-07-01
A mathematical model is derived for acoustic streaming in a microfluidic channel confined between a solid wall and a rigid reflector. Acoustic streaming is produced by two orthogonal ultrasound standing waves of the same frequency that are created by two pairs of counter-propagating leaky surface waves induced in the solid wall. The magnitudes and phases of the standing waves are assumed to be different. Full analytical solutions are found for the equations of acoustic streaming. The obtained solutions are used in numerical simulations to reveal the structure of the acoustic streaming. It is shown that the interaction of two standing waves leads to the appearance of a cross term in the equations of acoustic streaming. If the phase lag between the standing waves is nonzero, the cross term brings about circular vortices with rotation axes perpendicular to the solid wall of the channel. The vortices make fluid particles rotate and move alternately up and down between the solid wall and the reflector. The obtained results are of immediate interest for acoustomicrofluidic applications such as the ultrasonic micromixing of fluids and the manipulation of microparticles. Copyright © 2018 Elsevier B.V. All rights reserved.
Analytical and experimental validation of the Oblique Detonation Wave Engine concept
NASA Technical Reports Server (NTRS)
Adelman, Henry G.; Cambier, Jean-Luc; Menees, Gene P.; Balboni, John A.
1988-01-01
The Oblique Detonation Wave Engine (ODWE) for hypersonic flight has been analytically studied by NASA using the CFD codes which fully couple finite rate chemistry with fluid dynamics. Fuel injector designs investigated included wall and strut injectors, and the in-stream strut injectors were chosen to provide good mixing with minimal stagnation pressure losses. Plans for experimentally validating the ODWE concept in an arc-jet hypersonic wind tunnel are discussed. Measurements of the flow field properties behind the oblique wave will be compared to analytical predictions.
Beyond single-stream with the Schrödinger method
NASA Astrophysics Data System (ADS)
Uhlemann, Cora; Kopp, Michael
2016-10-01
We investigate large scale structure formation of collisionless dark matter in the phase space description based on the Vlasov-Poisson equation. We present the Schrödinger method, originally proposed by \\cite{WK93} as numerical technique based on the Schrödinger Poisson equation, as an analytical tool which is superior to the common standard pressureless fluid model. Whereas the dust model fails and develops singularities at shell crossing the Schrödinger method encompasses multi-streaming and even virialization.
Falkner-Skan Boundary Layer Flow of a Sisko Fluid
NASA Astrophysics Data System (ADS)
Khan, Masood; Shahzad, Azeem
2012-09-01
In this paper, we investigate the steady boundary layer flow of a non-Newtonian fluid, represented by a Sisko fluid, over a wedge in a moving fluid. The equations of motion are derived for boundary layer flow of an incompressible Sisko fluid using appropriate similarity variables. The governing equations are reduced to a single third-order highly nonlinear ordinary differential equation in the dimensionless stream function, which is then solved analytically using the homotopy analysis method. Some important parameters have been discussed by this study, which include the power law index n, the material parameter A, the wedge shape factor b, and the skin friction coefficient Cf. A comprehensive study is made between the results of the Sisko and the power-law fluids.
NASA Technical Reports Server (NTRS)
Sucec, J.
1975-01-01
Solutions for the surface temperature and surface heat flux are found for laminar, constant property, slug flow over a plate convectively cooled from below, when the temperature of the fluid over the plate varies arbitrarily with time at the plate leading edge. A simple technique is presented for handling arbitrary fluid temperature variation with time by approximating it by a sequence of ramps or steps for which exact analytical solutions are available.
Connection between encounter volume and diffusivity in geophysical flows
NASA Astrophysics Data System (ADS)
Rypina, Irina I.; Smith, Stefan G. Llewellyn; Pratt, Larry J.
2018-04-01
Trajectory encounter volume - the volume of fluid that passes close to a reference fluid parcel over some time interval - has been recently introduced as a measure of mixing potential of a flow. Diffusivity is the most commonly used characteristic of turbulent diffusion. We derive the analytical relationship between the encounter volume and diffusivity under the assumption of an isotropic random walk, i.e., diffusive motion, in one and two dimensions. We apply the derived formulas to produce maps of encounter volume and the corresponding diffusivity in the Gulf Stream region of the North Atlantic based on satellite altimetry, and discuss the mixing properties of Gulf Stream rings. Advantages offered by the derived formula for estimating diffusivity from oceanographic data are discussed, as well as applications to other disciplines.
Droplet-Based Segregation and Extraction of Concentrated Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buie, C R; Buckley, P; Hamilton, J
2007-02-23
Microfluidic analysis often requires sample concentration and separation techniques to isolate and detect analytes of interest. Complex or scarce samples may also require an orthogonal separation and detection method or off-chip analysis to confirm results. To perform these additional steps, the concentrated sample plug must be extracted from the primary microfluidic channel with minimal sample loss and dilution. We investigated two extraction techniques; injection of immiscible fluid droplets into the sample stream (''capping'''') and injection of the sample into an immiscible fluid stream (''extraction''). From our results we conclude that capping is the more effective partitioning technique. Furthermore, this functionalitymore » enables additional off-chip post-processing procedures such as DNA/RNA microarray analysis, realtime polymerase chain reaction (RT-PCR), and culture growth to validate chip performance.« less
An analysis of the flow field near the fuel injection location in a gas core reactor.
NASA Technical Reports Server (NTRS)
Weinstein, H.; Murty, B. G. K.; Porter, R. W.
1971-01-01
An analytical study is presented which shows the effects of large energy release and the concurrent high acceleration of inner stream fluid on the coaxial flow field in a gas core reactor. The governing equations include the assumptions of only radial radiative transport of energy represented as an energy diffusion term in the Euler equations. The method of integral relations is used to obtain the numerical solution. Results show that the rapidly accelerating, heat generating inner stream actually shrinks in radius as it expands axially.
Bandopadhyay, Aditya; Chakraborty, Suman
2012-05-01
We investigate a dynamical interplay between interfacial electrokinetics and a combined dissipative and elastic behavior of flow through narrow confinements, in analogy with spatiotemporal hydrodynamics of porous media. In particular, we investigate the effects of streaming potential on the pertinent dynamic responses, by choosing a Maxwell fluid model for representing the consequent electro-hydrodynamic characteristics. We transform the pertinent governing equation to the frequency domain, so that a dynamic generalization of Darcy's law in the presence of streaming potential effects can be effectively realized. We show that the frequencies corresponding to local maxima in the dynamic permeability also correspond to local maxima in the induced streaming potential. We also bring out the effects of Stern layer conductivity on the dynamic permeability. Our analytical estimates do reveal that serious overestimations in the commonly portrayed notion of massive amplifications of dynamic permeability at resonating frequencies may be possible, if interactions between spontaneous electrochemical interfacial phenomena and pulsating pressure-gradient-driven viscoelastic transport are trivially ignored.
Lightweight moving radiators for heat rejection in space
NASA Technical Reports Server (NTRS)
Knapp, K.
1981-01-01
Low temperature droplet stream radiators, using nonmetallic fluids, can be used to radiate large amounts of waste heat from large space facilities. Moving belt radiators are suitable for use on a smaller scale, radiating as few as 10 kW from shuttle related operations. If appropriate seal technology can be developed, moving belt radiators may prove to be important for high temperature systems as well. Droplet stream radiators suitable for operation at peak temperatures near 300 K and 1000 K were studied using both freezing and nonfreezing droplets. Moving belt radiators were also investigated for operation in both temperature ranges. The potential mass and performance characteristics of both concepts were estimated on the basis of parametric variations of analytical point designs. These analyses included all consideration of the equipment required to operate the moving radiator system and take into account the mass of fluid lost by evaporation during mission lifetimes. Preliminary results indicate that low temperature droplet stream radiator appears to offer the greatest potential for improvement over conventional flat plate radiators.
NASA Astrophysics Data System (ADS)
Venugopal Reddy, Kattamreddy; Makinde, Oluwole Daniel; Gnaneswara Reddy, Machireddy
2018-05-01
In this paper, we investigate the combined effects of wall slip, viscous dissipation, and Joule heating on MHD electro-osmotic peristaltic motion of Casson fluid with heat transfer through a rotating asymmetric micro-channel. Using long wavelength and small Reynolds number assumptions, the governing equations of momentum and energy balance are obtained and tackled analytically. The effects of various embedding parameters on the stream function, velocity, temperature, skin friction, Nusselt number and trapping phenomenon are displayed graphically and discussed. It is found that Casson fluid velocity, temperature, and heat transfer rate are enhanced with a boost in electro-osmotic force.
Jian, Yongjun; Li, Fengqin; Liu, Yongbo; Chang, Long; Liu, Quansheng; Yang, Liangui
2017-08-01
In order to conduct extensive investigation of energy harvesting capabilities of nanofluidic devices, we provide analytical solutions for streaming potential and electrokinetic energy conversion (EKEC) efficiency through taking the combined consequences of soft nanochannel, a rigid nanochannel whose surface is covered by charged polyelectrolyte layer, and viscoelastic rheology into account. The viscoelasticity of the fluid is considered by employing the Maxwell constitutive model when the forcing frequency of an oscillatory driving pressure flow matches with the inverse of the relaxation time scale of a typical viscoelastic fluid. We compare the streaming potential and EKEC efficiency with those of a rigid nanochannel, having zeta potential equal to the electrostatic potential at the solid-polyelectrolyte interface of the soft nanochannels. Within the present selected parameter ranges, it is shown that the different peaks of maximal streaming potential and EKEC efficiency for the rigid nanochannel are larger than those for the soft nanochannel when forcing frequencies of the driving pressure gradient are close to resonating frequencies. However, more enhanced streaming potential and EKEC efficiency for a soft nanochannel can be found in most of the regions away from these resonant frequencies. Moreover, the influence of several dimensionless parameters on EKEC efficiency is discussed in detail. Finally, within the given parametric regions, the maximum efficiency at some resonant frequency obtained in present analysis is about 25%. Copyright © 2017 Elsevier B.V. All rights reserved.
Streaming driven by sessile microbubbles: Explaining flow patterns and frequency response
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha
2013-11-01
Ultrasound excitation of bubbles drives powerful steady streaming flows which have found widespread applications in microfluidics, where bubbles are typically of semicircular cross section and attached to walls of the device (sessile). While bubble-driven streaming in bulk fluid is well understood, this practically relevant case presents additional complexity introduced by the wall and contact lines. We develop an asymptotic theory that takes into account the presence of the wall as well as the oscillation dynamics of the bubble, providing a complete description of the streaming flow as a function only of the driving frequency, the bubble size, and the physical properties of the fluid. We show that the coupling between different bubble oscillation modes sustains the experimentally observed streaming flow vortex pattern over a broad range of frequencies, greatly exceeding the widths of individual mode resonances. Above a threshold frequency, we predict, and observe in experiment, reversal of the flow direction. Our analytical theory can be used to guide the design of microfluidic devices, both in situations where robust flow patterns insensitive to parameter changes are desired (e.g. lab-on-a-chip sorters), and in cases where intentional modulation of the flow field appearance is key (e.g. efficient mixers). Current address: Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology.
NASA Astrophysics Data System (ADS)
Babu, R. Suresh; Rushi Kumar, B.
2017-11-01
In this paper, an analytical solution for an unsteady (independent of time), MHD mixed convection, two-dimensional (x and y), laminar, viscous flow of an incompressible fluid through a vertical permeable plate in a porous medium was developed with these assumptions:(i) the suction velocity (which is normal to the plate)and the free stream velocity both fluctuate with respect to time with a fixed mean; (ii) the wall temperature is constant;(iii) difference between the temperature of the plate and the free stream is moderately large due to the free convection currents. Based on the physical configuration of the model, the governing equations are derived and are non-dimensionalize using dimensionless parameters. The resultant nonlinear partial differential equations are solved using double regular perturbation technique analytically. The results are computed numerically to understand the behaviour of the fluid (i.e., effects of MHD, viscosity, body force etc.) for various non-dimensional parameters involving like Grashof number Gr, Prandtl number Pr, Hartmann number M, Eckert number E, the Viscous ratio λ and so on for velocity and temperature. These results are found to be in good agreement with known results available in the literature in the absence of few physical parameters. The numerical values of the above said flow is discussed through graphs on velocity and temperature.
Non-planar chemical preconcentrator
Manginell, Ronald P [Albuquerque, NM; Adkins, Douglas R [Albuquerque, NM; Sokolowski, Sara S [Albuquerque, NM; Lewis, Patrick R [Albuquerque, NM
2006-10-10
A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.
Hunt, A.J.
1983-09-13
The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.
Hunt, Arlon J.
1983-01-01
The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.
Radiant energy collection and conversion apparatus and method
Hunt, Arlon J.
1982-01-01
The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.
Radiant energy collection and conversion apparatus and method
Hunt, A.J.
The apparatus for collecting radiant energy and converting to alternate energy forms includes a housing having an interior space and a radiation transparent window allowing solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past the window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.
An analytical approach to fluid ratcheting in oscillatory boundary layer
NASA Astrophysics Data System (ADS)
Yu, Jie
2013-11-01
It is well known that oscillatory flows close to a rigid or flexible boundary induces a steady streaming due to viscosity. Under progressive motions, this becomes a unidirectional streaming near the boundary (e.g. mass transport or peristaltic pumping in water waves). This mechanism is shared by the phenomenon of ratcheting fluid in a narrow channel by vibrating the channel walls that are lined with asymmetric corrugations (shown by a recent experiment BAPS.2010.DFD.HC.3). A theory is presented here to describe the ratcheting effects in such a channel. A conformal transformation method, developed for waves over arbitrary periodic topographies (Yu & Howard, J. Fluid Mech. 2012), is adapted to deal with large corrugations of the channel walls. Under the assumption that the wall oscillations are of small amplitude, the vorticity dynamics can be analyzed in the mapped plane, obtaining the solution that describes the steady streaming field due to nonlinear convective inertia. The results are discussed, regarding the dependency of the pumping direction on the oscillation frequency of the walls and the effects of the end position relative to the phase of corrugations in the case of a finite length channel. Preliminary experimental data will be presented if time permits. Support by NFS (Grant CBET-0845957) during the period of this work is gratefully acknowledged.
Analytical and experimental investigations of the oblique detonation wave engine concept
NASA Technical Reports Server (NTRS)
Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc
1990-01-01
Wave combustors, which include the oblique detonation wave engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using Computational Fluid Dynamics (CFD) codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being performed in an arc heated hypersonic wind tunnel. Several fuel injection design were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.
Tortuous path chemical preconcentrator
Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.
2010-09-21
A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.
Alizadeh, Amer; Wang, Moran
2017-03-01
Uncovering electroosmosis around an inhomogeneously acquired charge spherical particle in a confined space could provide detailed insights into its broad applications from biology to geology. In the present study, we developed a direct simulation method with the effects of inhomogeneously acquired charges on the particle surface considered, which has been validated by the available analytical and experimental data. Modeling results reveal that the surface charge and zeta potential, which are acquired through chemical interactions, strongly depend on the local solution properties and the particle size. The surface charge and zeta potential of the particle would significantly vary with the tangential positions on the particle surface by increasing the particle radius. Moreover, regarding the streaming potential for a particle-fluid tube system, our results uncover that the streaming potential has a reverse relation with the particle size in a micro or nanotube. To explain this phenomenon, we present a simple relation that bridges the streaming potential with the particle size and tube radius, zeta potential, bulk and surface conductivity. This relation could predict good results specifically for higher ion concentrations and provide deeper understanding of the particle size effects on the streaming potential measurements of the particle fluid tube system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Charles H. Luce; Daniele Tonina; Frank Gariglio; Ralph Applebee
2013-01-01
Work over the last decade has documented methods for estimating fluxes between streams and streambeds from time series of temperature at two depths in the streambed. We present substantial extension to the existing theory and practice of using temperature time series to estimate streambed water fluxes and thermal properties, including (1) a new explicit analytical...
Rotary adsorbers for continuous bulk separations
Baker, Frederick S [Oak Ridge, TN
2011-11-08
A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.
Method for removing impurities from an impurity-containing fluid stream
Ginosar, Daniel M.; Fox, Robert V.
2010-04-06
A method of removing at least one polar component from a fluid stream. The method comprises providing a fluid stream comprising at least one nonpolar component and at least one polar component. The fluid stream is contacted with a supercritical solvent to remove the at least one polar component. The at least one nonpolar component may be a fat or oil and the at least one polar component may be water, dirt, detergents, or mixtures thereof. The supercritical solvent may decrease solubility of the at least one polar component in the fluid stream. The supercritical solvent may function as a solvent or as a gas antisolvent. The supercritical solvent may dissolve the nonpolar components of the fluid stream, such as fats or oils, while the polar components may be substantially insoluble. Alternatively, the supercritical solvent may be used to increase the nonpolarity of the fluid stream.
Engineering fluid flow using sequenced microstructures
NASA Astrophysics Data System (ADS)
Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A.; di Carlo, Dino
2013-05-01
Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.
Optimized open-flow mixing: insights from microbubble streaming
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha
2015-11-01
Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.
High temperature methods for forming oxidizer fuel
Bravo, Jose Luis [Houston, TX
2011-01-11
A method of treating a formation fluid includes providing formation fluid from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes carbon dioxide, hydrogen sulfide, hydrocarbons, hydrogen or mixtures thereof. Molecular oxygen is separated from air to form a molecular oxygen stream comprising molecular oxygen. The first gas stream is combined with the molecular oxygen stream to form a combined stream comprising molecular oxygen and the first gas stream. The combined stream is provided to one or more downhole burners.
Energy Harvesting Systems and Methods of Assembling Same
NASA Technical Reports Server (NTRS)
Cepeda-Rizo, Juan (Inventor); Ganapathi, Gani B. (Inventor)
2013-01-01
A method of assembling an energy harvesting system is provided. The method includes coupling at least one energy storage device in flow communication with at least one apparatus that is configured to generate thermal energy and to transfer the thermal energy into at least one fluid stream. The energy storage device is configured to store the fluid stream. Moreover, the method includes coupling at least one fluid transfer device downstream from the energy storage device. The fluid transfer device receives the fluid stream from the energy storage device. A bladeless turbine is coupled in flow communication with the fluid transfer device, wherein the bladeless turbine receives the fluid stream to generate power.
Infinite stream of Hele--Shaw bubbles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, D.; Tanveer, S.
1991-03-01
Exact solutions are presented for a steady stream of bubbles in a Hele--Shaw cell when the effect of surface tension is neglected. These solutions form a three-parameter family. For specified area and distance between bubbles, the speed of the bubble remains arbitrary when surface tension is neglected. However, numerical and analytical evidence indicates that this arbitrariness is removed by the effect of surface tension. The branch of solutions that corresponds to the McLean--Saffman finger solution were primarily studied. A dramatic increase was observed in bubble speeds when the distance between bubbles is on the order of a bubble diameter, whichmore » may have relevance to experiments done by Maxworthy (J. Fluid Mech. {bold 173}, 95 (1986)).« less
Apparatus for measuring a sorbate dispersed in a fluid stream
NASA Technical Reports Server (NTRS)
Updike, O. L. (Inventor)
1977-01-01
A sensitive, miniature apparatus was designed for measuring low concentrations of a sorbate dispersed in a fluid stream. The device consists of an elongated body having a surface capable of sorbing an amount of the sorbate proportional to the concentration in the fluid stream and propagating acoustic energy along its length. The acoustic energy is converted to an electrical output signal corresponding to the concentration of sorbate in the fluid stream. The device can be designed to exhibit high sensitivity to extremely small amounts of sorbate dispersed in a fluid stream and to exhibit low sensitivity to large amounts of sorbate. Another advantage is that the apparatus may be formed in a microminiature size and at a low cost using bath microfabrication technology.
NASA Astrophysics Data System (ADS)
Kaganovich, Igor D.
2015-11-01
In this paper we study the effects of the two-stream instability on the propagation of intense nonrelativistic ion and electron beams in background plasma. Development of the two-stream instability between the beam ions and plasma electrons leads to beam breakup, a slowing down of the beam particles, acceleration of the plasma particles, and transfer of the beam energy to the plasma particles and wave excitations. Making use of the particle-in-cell codes EDIPIC and LSP, and analytic theory we have simulated the effects of the two-stream instability on beam propagation over a wide range of beam and plasma parameters. Because of the two-stream instability the plasma electrons can be accelerated to velocities as high as twice the beam velocity. The resulting return current of the accelerated electrons may completely change the structure of the beam self - magnetic field, thereby changing its effect on the beam from focusing to defocusing. Therefore, previous theories of beam self-electromagnetic fields that did not take into account the effects of the two-stream instability must be significantly modified. This effect can be observed on the National Drift Compression Experiment-II (NDCX-II) facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma. Particle-in-cell, fluid simulations, and analytical theory also reveal the rich complexity of beam- plasma interaction phenomena: intermittency and multiple regimes of the two-stream instability in dc discharges; band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma and repeated acceleration of electrons in a finite system. In collaboration with E. Tokluoglu, D. Sydorenko, E. A. Startsev, J. Carlsson, and R. C. Davidson. Research supported by the U.S. Department of Energy.
Review of analytical models to stream depletion induced by pumping: Guide to model selection
NASA Astrophysics Data System (ADS)
Huang, Ching-Sheng; Yang, Tao; Yeh, Hund-Der
2018-06-01
Stream depletion due to groundwater extraction by wells may cause impact on aquatic ecosystem in streams, conflict over water rights, and contamination of water from irrigation wells near polluted streams. A variety of studies have been devoted to addressing the issue of stream depletion, but a fundamental framework for analytical modeling developed from aquifer viewpoint has not yet been found. This review shows key differences in existing models regarding the stream depletion problem and provides some guidelines for choosing a proper analytical model in solving the problem of concern. We introduce commonly used models composed of flow equations, boundary conditions, well representations and stream treatments for confined, unconfined, and leaky aquifers. They are briefly evaluated and classified according to six categories of aquifer type, flow dimension, aquifer domain, stream representation, stream channel geometry, and well type. Finally, we recommend promising analytical approaches that can solve stream depletion problem in reality with aquifer heterogeneity and irregular geometry of stream channel. Several unsolved stream depletion problems are also recommended.
Heat transfer rate within non-spherical thick grains
NASA Astrophysics Data System (ADS)
Huchet, Florian; Richard, Patrick; Joniot, Jules; Le Guen, Laurédan
2017-06-01
The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.
A cubic spline approximation for problems in fluid mechanics
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Graves, R. A., Jr.
1975-01-01
A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.
NASA Astrophysics Data System (ADS)
Zhang, Xueling; Zhu, Weiyao; Cai, Qiang; Shi, Yutao; Wu, Xuehong; Jin, Tingxiang; Yang, Lianzhi; Song, Hongqing
2018-06-01
Although nano- and micro-scale phenomena for fluid flows are ubiquitous in tight oil reservoirs or in nano- or micro-sized channels, the mechanisms behind them remain unclear. In this study, we consider the wall-liquid interaction to investigate the flow mechanisms behind a compressible liquid flow in nano- or micro-sized circular tubes. We assume that the liquid is attracted by the wall surface primarily by the Lifshitz-van der Waals (LW) force, whereas electrostatic forces are negligible. The long-range LW force is thus introduced into the Navier-Stokes equations. The nonlinear equations of motion are decoupled by using the hydrodynamic vorticity-stream functions, from which an approximate analytical perturbation solution is obtained. The proposed model considers the LW force and liquid compressibility to obtain the velocity and pressure fields, which are consistent with experimentally observed micro-size effects. A smaller tube radius implies smaller dimensionless velocity, and when the tube radius decreases to a certain radius Rm, a fluid no longer flows, where Rm is the lower limit of the movable-fluid radius. The radius Rm is calculated, and the results are consistent with previous experimental results. These results reveal that micro-size effects are caused by liquid compressibility and wall-liquid interactions, such as the LW force, for a liquid flowing in nano- or micro-sized channels or pores. The attractive LW force enhances the flow's radial resistance, and the liquid compressibility transmits the radial resistance to the streaming direction via volume deformation, thereby decreasing the streaming velocity.
Durham, Michael D.; Stedman, Donald H.; Ebner, Timothy G.; Burkhardt, Mark R.
1991-01-01
A device and method for measuring the concentrations of components of a fluid stream. Preferably, the fluid stream is an in situ gas stream, such as a fossil fuel fired flue gas in a smoke stack. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The need for a reference intensity is eliminated.
Analysis of the injection of a heated turbulent jet into a cross flow
NASA Technical Reports Server (NTRS)
Campbell, J. F.; Schetz, J. A.
1973-01-01
The development of a theoretical model is investigated of the incompressible jet injection process. The discharge of a turbulent jet into a cross flow was mathematically modeled by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the trajectory and flow properties of the jet for a variety of injection conditions. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the jet fluid were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.
Next-generation confirmatory disease diagnostics
NASA Astrophysics Data System (ADS)
Lin, Robert; Gerver, Rachel; Karns, Kelly; Apori, Akwasi A.; Denisin, Aleksandra K.; Herr, Amy E.
2014-06-01
Microfluidic tools are advancing capabilities in screening diagnostics for use in near-patient settings. Here, we review three case studies to illustrate the flexibility and analytical power offered by microanalytical tools. We first overview a near-patient tool for detection of protein markers found in cerebrospinal fluid (CSF), as a means to identify the presence of cerebrospinal fluid in nasal mucous - an indication that CSF is leaking into the nasal cavity. Microfluidic design allowed integration of several up-stream preparatory steps and rapid, specific completion of the human CSF protein assay. Second, we overview a tear fluid based assay for lactoferrin, a protein produced in the lacrimal gland, then secreted into tear fluid. Tear Lf is a putative biomarker for primary SS. A critical contribution of this and related work being measurement of Lf, even in light of well-known and significant matrix interactions and losses during the tear fluid collection and preparation. Lastly, we review a microfluidic barcode platform that enables rapid measurement of multiple infectious disease biomarkers in human sera. The assay presents a new approach to multiplexed biomarker detection, yet in a simple straight microchannel - thus providing a streamlined, simplified microanalytical platform, as is relevant to robust operation in diagnostic settings. We view microfluidic design and analytical chemistry as the basis for emerging, sophisticated assays that will advance not just screening diagnostic technology, but confirmatory assays, sample preparation and handling, and thus introduction and utilization of new biomarkers and assay formats.
NASA Technical Reports Server (NTRS)
Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)
1999-01-01
Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.
Durham, M.D.; Stedman, D.H.; Ebner, T.G.; Burkhardt, M.R.
1991-12-03
A device and method are described for measuring the concentrations of components of a fluid stream. Preferably, the fluid stream is an in-situ gas stream, such as a fossil fuel fired flue gas in a smoke stack. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The need for a reference intensity is eliminated. 15 figures.
Review and assessment of the HOST turbine heat transfer program
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.
1988-01-01
The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena occurring in high-performance gas turbine engines and to assess and improve the analytical methods used to predict the fluid dynamics and heat transfer phenomena. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. Therefore, a building-block approach was utilized, with research ranging from the study of fundamental phenomena and analytical modeling to experiments in simulated real-engine environments. Experimental research accounted for 75 percent of the project, and analytical efforts accounted for approximately 25 percent. Extensive experimental datasets were created depicting the three-dimensional flow field, high free-stream turbulence, boundary-layer transition, blade tip region heat transfer, film cooling effects in a simulated engine environment, rough-wall cooling enhancement in a rotating passage, and rotor-stator interaction effects. In addition, analytical modeling of these phenomena was initiated using boundary-layer assumptions as well as Navier-Stokes solutions.
Stream Lifetimes Against Planetary Encounters
NASA Technical Reports Server (NTRS)
Valsecchi, G. B.; Lega, E.; Froeschle, Cl.
2011-01-01
We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.
Streaming Swarm of Nano Space Probes for Modern Analytical Methods Applied to Planetary Science
NASA Astrophysics Data System (ADS)
Vizi, P. G.; Horvath, A. F.; Berczi, Sz.
2017-11-01
Streaming swarms gives possibilities to collect data from big fields in one time. The whole streaming fleet possible to behave like one big organization and can be realized as a planetary mission solution with stream type analytical methods.
Apparatus and method for rapid separation and detection of hydrocarbon fractions in a fluid stream
Sluder, Charles S.; Storey, John M.; Lewis, Sr., Samuel A.
2013-01-22
An apparatus and method for rapid fractionation of hydrocarbon phases in a sample fluid stream are disclosed. Examples of the disclosed apparatus and method include an assembly of elements in fluid communication with one another including one or more valves and at least one sorbent chamber for removing certain classifications of hydrocarbons and detecting the remaining fractions using a detector. The respective ratios of hydrocarbons are determined by comparison with a non separated fluid stream.
Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.
Keh, Huan J; Ding, Jau M
2003-07-15
An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.
Methods of hydrotreating a liquid stream to remove clogging compounds
Minderhoud, Johannes Kornelis [Amsterdam, NL; Nelson, Richard Gene [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Ryan, Robert Charles [Houston, TX; Nair, Vijay [Katy, TX
2009-09-22
A method includes producing formation fluid from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a gas stream. At least a portion of the liquid stream is provided to a hydrotreating unit. At least a portion of selected in situ heat treatment clogging compositions in the liquid stream are removed to produce a hydrotreated liquid stream by hydrotreating at least a portion of the liquid stream at conditions sufficient to remove the selected in situ heat treatment clogging compositions.
Analytic Strategies of Streaming Data for eHealth.
Yoon, Sunmoo
2016-01-01
New analytic strategies for streaming big data from wearable devices and social media are emerging in ehealth. We face challenges to find meaningful patterns from big data because researchers face difficulties to process big volume of streaming data using traditional processing applications.1 This introductory 180 minutes tutorial offers hand-on instruction on analytics2 (e.g., topic modeling, social network analysis) of streaming data. This tutorial aims to provide practical strategies of information on reducing dimensionality using examples of big data. This tutorial will highlight strategies of incorporating domain experts and a comprehensive approach to streaming social media data.
Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX
2009-09-01
A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.
Electrowinning apparatus and process
Buschmann, Wayne E [Boulder, CO
2012-06-19
Apparatus and processes are disclosed for electrowinning metal from a fluid stream. A representative apparatus comprises at least one spouted bed reactor wherein each said reactor includes an anolyte chamber comprising an anode and configured for containing an anolyte, a catholyte chamber comprising a current collector and configured for containing a particulate cathode bed and a flowing stream of an electrically conductive metal-containing fluid, and a membrane separating said anolyte chamber and said catholyte chamber, an inlet for an electrically conductive metal-containing fluid stream; and a particle bed churning device configured for spouting particle bed particles in the catholyte chamber independently of the flow of said metal-containing fluid stream. In operation, reduced heavy metals or their oxides are recovered from the cathode particles.
Kinde, Tristan F; Lopez, Thomas D; Dutta, Debashis
2015-03-03
While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 μg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis.
Methods of making transportation fuel
Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX
2012-04-10
A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation. The alkylated hydrocarbons may be blended with one or more components to produce transportation fuel.
Treatment of gas from an in situ conversion process
Diaz, Zaida [Katy, TX; Del Paggio, Alan Anthony [Spring, TX; Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX
2011-12-06
A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.
Use of computer programs STLK1 and STWT1 for analysis of stream-aquifer hydraulic interaction
Desimone, Leslie A.; Barlow, Paul M.
1999-01-01
Quantifying the hydraulic interaction of aquifers and streams is important in the analysis of stream base fow, flood-wave effects, and contaminant transport between surface- and ground-water systems. This report describes the use of two computer programs, STLK1 and STWT1, to analyze the hydraulic interaction of streams with confined, leaky, and water-table aquifers during periods of stream-stage fuctuations and uniform, areal recharge. The computer programs are based on analytical solutions to the ground-water-flow equation in stream-aquifer settings and calculate ground-water levels, seepage rates across the stream-aquifer boundary, and bank storage that result from arbitrarily varying stream stage or recharge. Analysis of idealized, hypothetical stream-aquifer systems is used to show how aquifer type, aquifer boundaries, and aquifer and streambank hydraulic properties affect aquifer response to stresses. Published data from alluvial and stratifed-drift aquifers in Kentucky, Massachusetts, and Iowa are used to demonstrate application of the programs to field settings. Analytical models of these three stream-aquifer systems are developed on the basis of available hydrogeologic information. Stream-stage fluctuations and recharge are applied to the systems as hydraulic stresses. The models are calibrated by matching ground-water levels calculated with computer program STLK1 or STWT1 to measured ground-water levels. The analytical models are used to estimate hydraulic properties of the aquifer, aquitard, and streambank; to evaluate hydrologic conditions in the aquifer; and to estimate seepage rates and bank-storage volumes resulting from flood waves and recharge. Analysis of field examples demonstrates the accuracy and limitations of the analytical solutions and programs when applied to actual ground-water systems and the potential uses of the analytical methods as alternatives to numerical modeling for quantifying stream-aquifer interactions.
Analytical and experimental investigations of the oblique detonation wave engine concept
NASA Technical Reports Server (NTRS)
Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc
1991-01-01
Wave combustors, which include the Oblique Detonation Wave Engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which will require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using CFD codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being carried out in an arc heated hypersonic wind tunnel. Several fuel injection designs were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messaris, Gerasimos A. T., E-mail: messaris@upatras.gr; School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras; Hadjinicolaou, Maria
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient inmore » a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions, a factor that may contribute jointly with other pathological factors to the faster aging of the arterial system and the possible malfunction of the aorta.« less
NASA Astrophysics Data System (ADS)
Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.
2016-08-01
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions, a factor that may contribute jointly with other pathological factors to the faster aging of the arterial system and the possible malfunction of the aorta.
Prathama, Aditya Heru; Pantano, Carlos
2017-08-09
Here, we study the inviscid linear stability of a vertical interface separating two fluids of different densities and subject to a gravitational acceleration field parallel to the interface. In this arrangement, the two free streams are constantly accelerated, which means that the linear stability analysis is not amenable to Fourier or Laplace solution in time. Instead, we derive the equations analytically by the initial-value problem method and express the solution in terms of the well-known parabolic cylinder function. The results, which can be classified as an accelerating Kelvin–Helmholtz configuration, show that even in the presence of surface tension, the interfacemore » is unconditionally unstable at all wavemodes. This is a consequence of the ever increasing momentum of the free streams, as gravity accelerates them indefinitely. The instability can be shown to grow as the exponential of a quadratic function of time.« less
Matisse: A Visual Analytics System for Exploring Emotion Trends in Social Media Text Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Drouhard, Margaret MEG G; Beaver, Justin M
Dynamically mining textual information streams to gain real-time situational awareness is especially challenging with social media systems where throughput and velocity properties push the limits of a static analytical approach. In this paper, we describe an interactive visual analytics system, called Matisse, that aids with the discovery and investigation of trends in streaming text. Matisse addresses the challenges inherent to text stream mining through the following technical contributions: (1) robust stream data management, (2) automated sentiment/emotion analytics, (3) interactive coordinated visualizations, and (4) a flexible drill-down interaction scheme that accesses multiple levels of detail. In addition to positive/negative sentiment prediction,more » Matisse provides fine-grained emotion classification based on Valence, Arousal, and Dominance dimensions and a novel machine learning process. Information from the sentiment/emotion analytics are fused with raw data and summary information to feed temporal, geospatial, term frequency, and scatterplot visualizations using a multi-scale, coordinated interaction model. After describing these techniques, we conclude with a practical case study focused on analyzing the Twitter sample stream during the week of the 2013 Boston Marathon bombings. The case study demonstrates the effectiveness of Matisse at providing guided situational awareness of significant trends in social media streams by orchestrating computational power and human cognition.« less
Trace level detection of analytes using artificial olfactometry
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor); Severin, Erik J. (Inventor); Wong, Bernard (Inventor)
2002-01-01
The present invention provides a device for detecting the presence of an analyte, such as for example, a lightweight device, including: a sample chamber having a fluid inlet port for the influx of the analyte; a fluid concentrator in flow communication with the sample chamber wherein the fluid concentrator has an absorbent material capable of absorbing the analyte and capable of desorbing a concentrated analyte; and an array of sensors in fluid communication with the concentrated analyte to be released from the fluid concentrator.
VAST Challenge 2016: Streaming Visual Analytics
2016-10-25
understand rapidly evolving situations. To support such tasks, visual analytics solutions must move well beyond systems that simply provide real-time...received. Mini-Challenge 1: Design Challenge Mini-Challenge 1 focused on systems to support security and operational analytics at the Euybia...Challenge 1 was to solicit novel approaches for streaming visual analytics that push the boundaries for what constitutes a visual analytics system , and to
Reducing or stopping the uncontrolled flow of fluid such as oil from a well
Hermes, Robert E
2014-02-18
The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.
Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream
Cochran, Jr., Henry D.
1978-04-11
This invention relates to an improved method of monitoring the mass flow rate of a substance entering a cocurrent fluid stream. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance.
Fluid dynamic mechanisms and interactions within separated flows
NASA Astrophysics Data System (ADS)
Dutton, J. C.; Addy, A. L.
1990-02-01
The significant results of a joint research effort investigating the fundamental fluid dynamic mechanisms and interactions within high-speed separated flows are presented in detail. The results have obtained through analytical and numerical approaches, but with primary emphasis on experimental investigations of missile and projectile base flow-related configurations. The objectives of the research program focus on understanding the component mechanisms and interactions which establish and maintain high-speed separated flow regions. The analytical and numerical efforts have centered on unsteady plume-wall interactions in rocket launch tubes and on predictions of the effects of base bleed on transonic and supersonic base flowfields. The experimental efforts have considered the development and use of a state-of-the-art two component laser Doppler velocimeter (LDV) system for experiments with planar, two-dimensional, small-scale models in supersonic flows. The LDV experiments have yielded high quality, well documented mean and turbulence velocity data for a variety of high-speed separated flows including initial shear layer development, recompression/reattachment processes for two supersonic shear layers, oblique shock wave/turbulent boundary layer interactions in a compression corner, and two-stream, supersonic, near-wake flow behind a finite-thickness base.
Shielded fluid stream injector for particle bed reactor
Notestein, John E.
1993-01-01
A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an in-line reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.
A reference web architecture and patterns for real-time visual analytics on large streaming data
NASA Astrophysics Data System (ADS)
Kandogan, Eser; Soroker, Danny; Rohall, Steven; Bak, Peter; van Ham, Frank; Lu, Jie; Ship, Harold-Jeffrey; Wang, Chun-Fu; Lai, Jennifer
2013-12-01
Monitoring and analysis of streaming data, such as social media, sensors, and news feeds, has become increasingly important for business and government. The volume and velocity of incoming data are key challenges. To effectively support monitoring and analysis, statistical and visual analytics techniques need to be seamlessly integrated; analytic techniques for a variety of data types (e.g., text, numerical) and scope (e.g., incremental, rolling-window, global) must be properly accommodated; interaction, collaboration, and coordination among several visualizations must be supported in an efficient manner; and the system should support the use of different analytics techniques in a pluggable manner. Especially in web-based environments, these requirements pose restrictions on the basic visual analytics architecture for streaming data. In this paper we report on our experience of building a reference web architecture for real-time visual analytics of streaming data, identify and discuss architectural patterns that address these challenges, and report on applying the reference architecture for real-time Twitter monitoring and analysis.
Stream-power model of meander cutoff in gravel beds
NASA Astrophysics Data System (ADS)
Pannone, M.; De Vincenzo, A.
2016-12-01
In the present study we propose a one-dimensional model for the prediction of the large-time evolution of river meanders (pre-cutoff conditions) characterized by gravel bed and negligible suspended load. Due to its relatively simple structure, it may be a fast and easy tool to forecast the time evolution of a bend when the symptoms of an incipient instability suggest quantifying the time left for river exploitation as a naturalistic or a commercial resource and timely planning, if needed, the site management and restoration. Most of the previous research on meandering rivers focused on linearized theories that apply to very small bend amplitudes and very large radii of curvature. The dynamics of meander growth and cutoff was typically afforded by case-sensitive numerical simulations or by descriptive methods aimed at deriving purely empirical laws relating the hydraulics to some geomorphological parameters. The present approach combines the immediacy of a general analytical model with the accuracy of a fluid-mechanical background. The model focuses on energetic principles and interprets the mechanism of meander cutoff as the achievement of limit conditions in terms of river stream power. The corresponding analytical solution, which consists in a 1-D deterministic integro-differential equation governing the meander pre-cutoff phase, accounts for the influence of the morphological and sedimentological parameters by the downstream migration rate and the radius of the meander osculating circle. The results, expressed in terms of instable meander lifetime, are in good agreement with the data obtained from a number of field surveys documented in literature. Additionally, the proposed fluid-mechanical model allows identifying the physical mechanisms responsible for some peculiarities of large-time meander evolution like the decreasing skewness and asymmetry.
Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keicher, David M.; Cook, Adam W.
The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capabilitymore » in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.« less
NASA Astrophysics Data System (ADS)
Liu, Ya; Ma, Yongting; Bhattacharya, Amitabh; Kuksenok, Olga; He, Ximin; Aizenberg, Joanna; Balazs, Anna
2013-11-01
In biomimetics, designing an effective ``catch and release'' device for the selective removal of target species from the surrounding solution is critical for developing autonomous sensors and sorters. Using computational simulation, we model an array of oscillating fins that are tethered on the floor of a microchannel and immersed in a binary-fluid stream. During the oscillation, the fins with the specific chemical wetting reach the upper fluid when they are upright and are entirely within the lower stream when they are tilted. We introduce specific adhesive interactions between the fins and particulates in the solution and determine conditions where the oscillating fins can selectively bind (``catch'') target nanoparticles within the upper fluid stream and then release these particles into the lower stream. We isolate the effects of chemical wetting on the fins (e.g., wetting contact angle between fins and fluid) and mechanical parameters (e.g., frequency of fins' oscillations) that lead to the efficient extraction of target species from the upper stream and placement into the lower fluid. Our understanding provides fundamental insights into the system's complex dynamics and mechanism for detection, separation, and purification of multi-component mixtures.
NASA Astrophysics Data System (ADS)
Liu, Ya; Kuksenok, Olga; Bhattacharya, Amitabh; Ma, Yongting; He, Ximin; Aizenberg4, Joanna; Balazs, Anna
2014-03-01
In biomimetics, designing an effective ``catch and release'' device for the selective removal of target species from the surrounding solution is critical for developing autonomous sensors and sorters. Using computer simulations, we model an array of oscillating fins that are tethered on the floor of a microchannel and immersed in a mixture of binary fluid stream and binary nanoparticles. During the oscillation, the fins with the specific chemical wetting reach the upper fluid when they are upright and are entirely immersed within the lower stream when they are tilted. We introduce specific interaction between the fins and particulates in the solution and determine conditions where the oscillating fins can selectively ?catch? target nanoparticles within the upper fluid stream and then release these particles into the lower stream. We isolate the effects of wetting contact angle between fins and fluid and the mode of fins' oscillations that lead to the efficient extraction of target species from the upper stream and their placement into the lower fluid. These studies provide fundamental insights into the system's complex dynamics and mechanism for detection, separation, and purification of multi-component mixtures.
Apparatus for removing a contaminant from a fluid stream
Brewster, M.D.; Posa, R.P.
1998-12-22
A device for removing a contaminant from a fluid stream flowing within a conduit is disclosed. The device includes a container and a barrier. The container has a first wall generated about an axis and a second wall generated about the same axis. The first wall defines a first volume therewithin, while the first and second walls define an annular second volume therebetween. Both the first and second volumes are sealed at one end of the device, while at the other end of the device the second volume only is sealed. A filter material occupies the second volume. The first and second walls are permeable to the fluid stream and are capable of retaining the filter material in the second volume. The barrier is impermeable to the fluid stream and creates a seal between the second wall and the conduit wall. The barrier is positioned adjacent the other end of the device such that when the other end of the device is the upstream end, the fluid stream must sequentially pass into the first volume, through the first wall, into the second volume and through the filter material, and through the second wall. 4 figs.
Yuan, Dan; Zhang, Jun; Yan, Sheng; Peng, Gangrou; Zhao, Qianbin; Alici, Gursel; Du, Hejun; Li, Weihua
2016-08-01
In this work, particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid was experimentally investigated. The 4.8-μm micro-particles were dispersed in a polyethylene oxide (PEO) viscoelastic solution, and then the solution was injected into a straight rectangular channel with a deionised (DI) water Newtonian sheath flow. Micro-particles suspended in PEO solution migrated laterally to a DI water stream, but migration in the opposite direction from a DI water stream to a PEO solution stream or from one DI water stream to another DI water stream could not be achieved. The lateral migration of particles depends on the viscoelastic properties of the sample fluids. Furthermore, the effects of channel length, flow rate, and PEO concentration were studied. By using viscoelastic sample flow and Newtonian sheath flow, a selective particle lateral migration can be achieved in a simple straight channel, without any external force fields. This particle lateral migration technique could be potentially used in solution exchange fields such as automated cell staining and washing in microfluidic platforms, and holds numerous biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Apparatus for removing a contaminant from a fluid stream
Brewster, Michael D.; Posa, Richard P.
1998-01-01
A device for removing a contaminant from a fluid stream flowing within a conduit is disclosed. The device includes a container and a barrier. The container has a first wall generated about an axis and a second wall generated about the same axis. The first wall defines a first volume therewithin, while the first and second walls define an annular second volume therebetween. Both the first and second volumes are sealed at one end of the device, while at the other end of the device the second volume only is sealed. A filter material occupies the second volume. The first and second walls are permeable to the fluid stream and are capable of retaining the filter material in the second volume. The barrier is impermeable to the fluid stream and creates a seal between the second wall and the conduit wall. The barrier is positioned adjacent the other end of the device such that when the other end of the device is the upstream end, the fluid stream must sequentially pass into the first volume, through the first wall, into the second volume and through the filter material, and through the second wall.
Human Factors in Streaming Data Analysis: Challenges and Opportunities for Information Visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Aritra; Arendt, Dustin L.; Franklin, Lyndsey
State-of-the-art visual analytics models and frameworks mostly assume a static snapshot of the data, while in many cases it is a stream with constant updates and changes. Exploration of streaming data poses unique challenges as machine-level computations and abstractions need to be synchronized with the visual representation of the data and the temporally evolving human insights. In the visual analytics literature, we lack a thorough characterization of streaming data and analysis of the challenges associated with task abstraction, visualization design, and adaptation of the role of human-in-the-loop for exploration of data streams. We aim to fill this gap by conductingmore » a survey of the state-of-the-art in visual analytics of streaming data for systematically describing the contributions and shortcomings of current techniques and analyzing the research gaps that need to be addressed in the future. Our contributions are: i) problem characterization for identifying challenges that are unique to streaming data analysis tasks, ii) a survey and analysis of the state-of-the-art in streaming data visualization research with a focus on the visualization design space for dynamic data and the role of the human-in-the-loop, and iii) reflections on the design-trade-offs for streaming visual analytics techniques and their practical applicability in real-world application scenarios.« less
Fluid aspects of electron streaming instability in electron-ion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jao, C.-S.; Hau, L.-N.; Department of Physics, National Central University, Jhongli, Taiwan
2014-02-15
Electrons streaming in a background electron and ion plasma may lead to the formation of electrostatic solitary wave (ESW) and hole structure which have been observed in various space plasma environments. Past studies on the formation of ESW are mostly based on the particle simulations due to the necessity of incorporating particle's trapping effects. In this study, the fluid aspects and thermodynamics of streaming instabilities in electron-ion plasmas including bi-streaming and bump-on-tail instabilities are addressed based on the comparison between fluid theory and the results from particle-in-cell simulations. The energy closure adopted in the fluid model is the polytropic lawmore » of d(pρ{sup −γ})/dt=0 with γ being a free parameter. Two unstable modes are identified for the bump-on-tail instability and the growth rates as well as the dispersion relation of the streaming instabilities derived from the linear theory are found to be in good agreement with the particle simulations for both bi-streaming and bump-on-tail instabilities. At the nonlinear saturation, 70% of the electrons are trapped inside the potential well for the drift velocity being 20 times of the thermal velocity and the pρ{sup −γ} value is significantly increased. Effects of ion to electron mass ratio on the linear fluid theory and nonlinear simulations are also examined.« less
A microflow cytometer on a chip
NASA Astrophysics Data System (ADS)
Golden, Joel P.; Kim, Jason; Anderson, George P.; Hashemi, Nastaran; Howell, Peter J.; Ligler, Frances S.
2010-02-01
A rapid, automated, multi-analyte Microflow Cytometer is being developed as a portable, field-deployable sensor for onsite diagnosis of biothreat agent exposure and environmental monitoring. The technology relies on a unique method for ensheathing a sample stream in continuous flow past an interrogation region where optical fibers provide excitation and collect emission. This approach efficiently focuses particles in the interrogation region of the fluidic channel, avoids clogging and provides for subsequent separation of the core and sheath fluids in order to capture the target for confirmatory assays and recycling of the sheath fluid. Fluorescently coded microspheres provide the capability for highly multiplexed assays. Optical analysis at four different wavelengths identified six sets of the coded microspheres recognizing Escherichia coli, Listeria, and Salmonella as well as cholera toxin, staphylococcal enterotoxin B (SEB), and ricin, and assay results were compared with those of a commercial Luminex analysis system.
NASA Technical Reports Server (NTRS)
Mularz, Edward J.; Sockol, Peter M.
1987-01-01
Future aerospace propulsion concepts involve the combination of liquid or gaseous fuels in a highly turbulent internal air stream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at Lewis to better understand chemical reacting flows with the long term goal of establishing these reliable computer codes. The approach to understanding chemical reacting flows is to look at separate simple parts of this complex phenomena as well as to study the full turbulent reacting flow process. As a result research on the fluid mechanics associated with chemical reacting flows was initiated. The chemistry of fuel-air combustion is also being studied. Finally, the phenomena of turbulence-combustion interaction is being investigated. This presentation will highlight research, both experimental and analytical, in each of these three major areas.
A New Method of Obtaining High-Resolution Paleoclimate Records from Speleothem Fluid Inclusions
NASA Astrophysics Data System (ADS)
Logan, A. J.; Horton, T. W.
2010-12-01
We present a new method for stable hydrogen and oxygen isotope analysis of ancient drip water trapped within cave speleothems. Our method improves on existing fluid inclusion isotopic analytical techniques in that it decreases the sample size by a factor of ten or more, dramatically improving the spatial and temporal precision of fluid inclusion-based paleoclimatology. Published thermal extraction methods require large samples (c. 150 mg) and temperatures high enough (c. 500-900°C) to cause calcite decomposition, which is also associated with isotopic fractionation of the trapped fluids. Extraction by crushing faces similar challenges, where the failure to extract all the trapped fluid can result in isotopic fractionation, and samples in excess of 500 mg are required. Our new method combines the strengths of these published thermal and crushing methods using continuous-flow isotope ratio analytical techniques. Our method combines relatively low-temperature (~250°C) thermal decrepitation with cryogenic trapping across a switching valve sample loop. In brief, ~20 mg carbonate samples are dried (75°C for >1 hour) and heated (250°C for >1 hour) in a quartz sample chamber under a continuously flowing stream of ultra-high purity helium. Heating of the sample chamber is achieved by use of a tube furnace. Fluids released during the heating step are trapped in a coiled stainless steel cold trap (~ -98°C) serving as the sample loop in a 6-way switching valve. Trapped fluids are subsequently injected into a high-temperature conversion elemental analyzer by switching the valve and rapidly thawing the trap. This approach yielded accurate and precise measurements of injected liquid water IAEA reference materials (GISP; SMOW2; SLAP2) for both hydrogen and oxygen isotopic compositions. Blanking tests performed on the extraction line demonstrate extremely low line-blank peak heights (<50mv). Our tests also demonstrate that complete recovery of liquid water is possible and that a minimum quantity of ~100nL water was required. In contrast to liquid water analyses, carbonate inclusion waters gave highly variable results. As plenty of signal was produced from relatively small sample sizes (~20 mg), the observed isotopic variation most likely reflects fractionation during fluid extraction, or natural isotopic variability. Additional tests and modifications to the extraction procedure are in progress, using a recently collected New Zealand stalagmite from a West Coast cave (DOC collection permit WC-27462-GEO). U-Th age data will accompany a paleoclimate record from this stalagmite obtained using standard carbonate analytical techniques, and compared to the results from our new fluid inclusion analyses.
Probe systems for measuring static pressure and turbulence intensity in fluid streams
NASA Technical Reports Server (NTRS)
Rossow, Vernon J. (Inventor)
1993-01-01
A method and an apparatus for measuring time-averaged static or ambient pressure and turbulence intensity in a turbulent stream are discussed. The procedure involves placing a plurality of probes in the stream. Each probe responds in a different manner to characteristics of the fluid stream, preferably as a result of having varying cross sections. The responses from the probes are used to eliminate unwanted components in the measured quantities for accurate determination of selected characteristics.
Method and apparatus for separation of heavy and tritiated water
Lee, Myung W.
2001-01-01
The present invention is a bi-thermal membrane process for separating and recovering hydrogen isotopes from a fluid containing hydrogen isotopes, such as water and hydrogen gas. The process in accordance with the present invention provides counter-current cold and hot streams of the fluid separated with a thermally insulating and chemically transparent proton exchange membrane (PEM). The two streams exchange hydrogen isotopes through the membrane: the heavier isotopes migrate into the cold stream, while the lighter isotopes migrate into the hot stream. The heavy and light isotopes are continuously withdrawn from the cold and hot streams respectively.
System for adding sulfur to a fuel cell stack system for improved fuel cell stability
Mukerjee, Subhasish [Pittsford, NY; Haltiner, Jr., Karl J; Weissman, Jeffrey G [West Henrietta, NY
2012-03-06
A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.
Electroosmotic flow of biorheological micropolar fluids through microfluidic channels
NASA Astrophysics Data System (ADS)
Chaube, Mithilesh Kumar; Yadav, Ashu; Tripathi, Dharmendra; Bég, O. Anwar
2018-05-01
An analytical analysis is presented in this work to assess the influence of micropolar nature of fluids in fully developed flow induced by electrokinetically driven peristaltic pumping through a parallel plate microchannel. The walls of the channel are assumed as sinusoidal wavy to analyze the peristaltic flow nature. We consider that the wavelength of the wall motion is much larger as compared to the channel width to validate the lubrication theory. To simplify the Poisson Boltzmann equation, we also use the Debye-Hückel linearization. We consider governing equation for micropolar fluid in absence of body force and couple effects however external electric field is employed. The solutions for axial velocity, spin velocity, flow rate, pressure rise, and stream functions subjected to given physical boundary conditions are computed. The effects of pertinent parameters like Debye length and Helmholtz-Smoluchowski velocity which characterize the EDL phenomenon and external electric field, coupling number and micropolar parameter which characterize the micropolar fluid behavior, on peristaltic pumping are discussed through the illustrations. The results show that peristaltic pumping may alter by applying external electric fields. This model can be used to design and engineer the peristalsis-lab-on-chip and micro peristaltic syringe pumps for biomedical applications.
Noise reducing screen devices for in-flow pressure sensors
NASA Technical Reports Server (NTRS)
Schmitz, Fredric (Inventor); Liu, Sandy (Inventor); Jaeger, Stephen (Inventor); Horne, W. Clifton (Inventor)
1997-01-01
An acoustic sensor assembly is provided for sensing acoustic signals in a moving fluid such as high speed fluid stream. The assembly includes one or more acoustic sensors and a porous, acoustically transparent screen supported between the moving fluid stream and the sensor and having a major surface disposed so as to be tangent to the moving fluid. A layer of reduced velocity fluid separating the sensor from the porous screen. This reduced velocity fluid can comprise substantially still air. A foam filler material attenuates acoustic signals arriving at the assembly from other than a predetermined range of incident angles.
Isotope-ratio-monitoring gas chromatography-mass spectrometry: methods for isotopic calibration
NASA Technical Reports Server (NTRS)
Merritt, D. A.; Brand, W. A.; Hayes, J. M.
1994-01-01
In trial analyses of a series of n-alkanes, precise determinations of 13C contents were based on isotopic standards introduced by five different techniques and results were compared. Specifically, organic-compound standards were coinjected with the analytes and carried through chromatography and combustion with them; or CO2 was supplied from a conventional inlet and mixed with the analyte in the ion source, or CO2 was supplied from an auxiliary mixing volume and transmitted to the source without interruption of the analyte stream. Additionally, two techniques were investigated in which the analyte stream was diverted and CO2 standards were placed on a near-zero background. All methods provided accurate results. Where applicable, methods not involving interruption of the analyte stream provided the highest performance (sigma = 0.00006 at.% 13C or 0.06% for 250 pmol C as CO2 reaching the ion source), but great care was required. Techniques involving diversion of the analyte stream were immune to interference from coeluting sample components and still provided high precision (0.0001 < or = sigma < or = 0.0002 at.% or 0.1 < or = sigma < or = 0.2%).
Cascaded recompression closed brayton cycle system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasch, James J.
The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.
Gas powered fluid gun with recoil mitigation
Grubelich, Mark C; Yonas, Gerold
2013-11-12
A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.
Gas powered fluid gun with recoil mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubelich, Mark C.; Yonas, Gerold
A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.
Cascaded recompression closed Brayton cycle system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasch, James Jay
The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.
Boundary layer streaming in viscoelastic fluids
NASA Astrophysics Data System (ADS)
Bahrani, Seyed Amir; Costalanga, Maxime; Royon, Laurent; Brunet, Philippe; DSHE Team; Energy Team
2017-11-01
Oscillations of bodies immersed in fluids are known to generate secondary steady flows (streaming). These flows have strong similarities with acoustic streaming induced by sound and ultrasound waves. A typical situation, investigated here, is that of a cylinder oscillating perpendicular to its axis, generating two pairs of counter-rotating steady vortices due to the transfer of vorticity from an inner boundary layer. While most studies so far investigated the situation of newtonian fluids, here, we consider the situation of a viscoelastic fluid. By using Particle Image Velocimetry, we carry out an experimental study of the flow structure and magnitude over a range of amplitude (A up to 2.5 mm, nearly half the cylinder diameter) and frequency (f between 5 and 100 Hz). We observe unprecedented behaviors at higher frequency (f >50 Hz) : at high enough amplitude, the usual flow with 2 pairs of vortices is replaced by a more complex flow where 4 pairs of vortices are observed. At smaller frequency, we observe reversal large scale vortices that replace the usual inner and outer ones in Newtonian fluids. The main intention of this work is to understand the influence of the complex and nonlinear rheology on the mechanism of streaming flow. In this way, another source of purely rheological nonlinearity is expected, competing with hydrodynamic nonlinearity. We evidence the effect of elasticity in streaming.
Block, Darci R; Algeciras-Schimnich, Alicia
2013-01-01
Requests for testing various analytes in serous fluids (e.g., pleural, peritoneal, pericardial effusions) are submitted daily to clinical laboratories. Testing of these fluids deviates from assay manufacturers' specifications, as most laboratory assays are optimized for testing blood or urine specimens. These requests add a burden to clinical laboratories, which need to validate assay performance characteristics in these fluids to exclude matrix interferences (given the different composition of body fluids) while maintaining regulatory compliance. Body fluid testing for a number of analytes has been reported in the literature; however, understanding the clinical utility of these analytes is critical because laboratories must address the analytic and clinical validation requirements, while educating clinicians on proper test utilization. In this article, we review the published data to evaluate the clinical utility of testing for numerous analytes in body fluid specimens. We also highlight the pre-analytic and analytic variables that need to be considered when reviewing published studies in body fluid testing. Finally, we provide guidance on how published studies might (or might not) guide interpretation of test results in today's clinical laboratories.
Methods of use for sensor based fluid detection devices
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor)
2001-01-01
Methods of use and devices for detecting analyte in fluid. A system for detecting an analyte in a fluid is described comprising a substrate having a sensor comprising a first organic material and a second organic material where the sensor has a response to permeation by an analyte. A detector is operatively associated with the sensor. Further, a fluid delivery appliance is operatively associated with the sensor. The sensor device has information storage and processing equipment, which is operably connected with the device. This device compares a response from the detector with a stored ideal response to detect the presence of analyte. An integrated system for detecting an analyte in a fluid is also described where the sensing device, detector, information storage and processing device, and fluid delivery device are incorporated in a substrate. Methods for use for the above system are also described where the first organic material and a second organic material are sensed and the analyte is detected with a detector operatively associated with the sensor. The method provides for a device, which delivers fluid to the sensor and measures the response of the sensor with the detector. Further, the response is compared to a stored ideal response for the analyte to determine the presence of the analyte. In different embodiments, the fluid measured may be a gaseous fluid, a liquid, or a fluid extracted from a solid. Methods of fluid delivery for each embodiment are accordingly provided.
Adjustable steam producing flexible orifice independent of fluid pressure
NASA Technical Reports Server (NTRS)
Morrison, Andrew D. (Inventor)
1992-01-01
A self-adjusting choke for a fluids nozzle includes a membrane constructed of a single piece of flexible or elastic material. This flexible material is shaped to fit into the outlet of a nozzle. The body of the membrane has at least two flow channels, from one face to the other, which directs two streams of water to cross at the opening of the nozzle or at some point beyond. The elasticity and thickness of the membrane is selected to match the range of expected pressures and fluid velocities. The choke may have more than two flow channels, as long as they are aligned adjacent to one another and directed towards each other at the exit face. In a three orifice embodiment, one is directed upward, one is directed downward, and the one in the middle is directed forward. In this embodiment all three fluid streams intersect at some point past the nozzle opening. Under increased pressure the membrane will deform causing the orifices to realign in a more forward direction, causing the streams to intersect at a smaller angle. This reduces the force with which the separate streams impact each other, still allowing the separate streams to unify into a single stable spiralling stream in spite of the increased pressure.
Capacitance probe for fluid flow and volume measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1995-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Capacitance Probe for Fluid Flow and Volume Measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Hasan, Nusair; Farouk, Bakhtier
2015-10-01
Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.
The general dispersion relation of induced streaming instabilities in quantum outflow systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehdian, H., E-mail: mehdian@khu.ac.ir; Hajisharifi, K.; Hasanbeigi, A.
2015-11-15
In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts,more » the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.« less
The general dispersion relation of induced streaming instabilities in quantum outflow systems
NASA Astrophysics Data System (ADS)
Mehdian, H.; Hajisharifi, K.; Hasanbeigi, A.
2015-11-01
In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.
Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream
Jacobson, Stephen C [Knoxville, TN; Ramsey, J Michael [Knoxville, TN
2008-09-09
A microfluidic device and method for forming and dispensing minute volume segments of a material are described. In accordance with the present invention, a microfluidic device and method are provided for spatially confining the material in a focusing element. The device is also adapted for segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.
Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream
Jacobson, Stephen C.; Ramsey, J. Michael
2004-09-14
A microfluidic device for forming and/or dispensing minute volume segments of a material is described. In accordance with one aspect of the present invention, a microfluidic device and method is provided for spatially confining the material in a focusing element. The device is also capable of segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.
Milky Way mass and potential recovery using tidal streams in a realistic halo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonaca, Ana; Geha, Marla; Küpper, Andreas H. W.
2014-11-01
We present a new method for determining the Galactic gravitational potential based on forward modeling of tidal stellar streams. We use this method to test the performance of smooth and static analytic potentials in representing realistic dark matter halos, which have substructure and are continually evolving by accretion. Our FAST-FORWARD method uses a Markov Chain Monte Carlo algorithm to compare, in six-dimensional phase space, an 'observed' stream to models created in trial analytic potentials. We analyze a large sample of streams that evolved in the Via Lactea II (VL2) simulation, which represents a realistic Galactic halo potential. The recovered potentialmore » parameters are in agreement with the best fit to the global, present-day VL2 potential. However, merely assuming an analytic potential limits the dark matter halo mass measurement to an accuracy of 5%-20%, depending on the choice of analytic parameterization. Collectively, the mass estimates using streams from our sample reach this fundamental limit, but individually they can be highly biased. Individual streams can both under- and overestimate the mass, and the bias is progressively worse for those with smaller perigalacticons, motivating the search for tidal streams at galactocentric distances larger than 70 kpc. We estimate that the assumption of a static and smooth dark matter potential in modeling of the GD-1- and Pal5-like streams introduces an error of up to 50% in the Milky Way mass estimates.« less
Surface Tension Driven Instability in the Regime of Stokes Flow
NASA Astrophysics Data System (ADS)
Yao, Zhenwei; Bowick, Mark; Xing, Xiangjun
2010-03-01
A cylinder of liquid inside another liquid is unstable towards droplet formation. This instability is driven by minimization of surface tension energy and was analyzed first by [1,2] and then by [3]. We revisit this problem in the limit of small Laplace number, where the inertial of liquids can be completely ignored. The stream function is found to obey biharmonic equation, and its analytic solutions are found. We rederive Tomotika's main results, and also obtain many new analytic results about the velocity fields. We also apply our formalism to study the recent experiment on toroidal liquid droplet[4]. Our framework shall have many applications in micro-fluidics. [1] L.Rayleigh, On The Instability of A Cylinder of Viscous Liquid Under Capillary Force, Scientific Papers, Cambridge, Vol.III, 1902. [2] L.Rayleigh, On The Instability of Cylindrical Fluid Surfaces, Scientific Papers, Cambridge, Vol.III, 1902. [3] S.Tomotika, On the Instability of a Cylindrical Thread of a Viscous Liquid surround by Another Viscous Fluid, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Volume 150, Issue 870, pp. 322-337. [4] E.Pairam and A.Fern'andez-Nieves, Generation and Stability of Toroidal Droplets in a Viscous Liquid, Physical Review Letters 102, 234501 (2009).
Apparatus for continuously referenced analysis of reactive components in solution
Bostick, William D.; Denton, Mark S.; Dinsmore, Stanley R.
1981-01-01
A continuously referenced apparatus for measuring the concentration of a reactive chemical species in solution comprises in combination conduit means for introducing a sample solution, means for introducing one or more reactants into a sample solution, a reaction zone in fluid communication with said conduit means wherein a first chemical reaction occurs between said species and reactants, and a stream separator disposed within the conduit means for separating the sample solution into a sample stream and a reference stream. An enzymatic reactor is disposed in fluid communication with only the sample stream wherein a second reaction takes place between the said reactants, species, and reactor enzymes causing the consumption or production of an indicator species in just the sample stream. Measurement means such as a photometric system are disposed in communication with the sample and reference streams, and the outputs of the measurement means are compared to provide a blanked measurement of the concentration of indicator species. A peristaltic pump is provided to equalize flow through the apparatus by evacuation. The apparatus is particularly suitable for measurement of isoenzymes in body tissues or fluids.
Position sensitive radioactivity detection for gas and liquid chromatography
Cochran, Joseph L.; McCarthy, John F.; Palumbo, Anthony V.; Phelps, Tommy J.
2001-01-01
A method and apparatus are provided for the position sensitive detection of radioactivity in a fluid stream, particularly in the effluent fluid stream from a gas or liquid chromatographic instrument. The invention represents a significant advance in efficiency and cost reduction compared with current efforts.
Magnetic separator having a multilayer matrix, method and apparatus
Kelland, David R.
1980-01-01
A magnetic separator having multiple staggered layers of porous magnetic material positioned to intercept a fluid stream carrying magnetic particles and so placed that a bypass of each layer is effected as the pores of the layer become filled with material extracted from the fluid stream.
Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids
Lewis, Nathan S.; Freund, Michael S.; Briglin, Shawn M.; Tokumaru, Phil; Martin, Charles R.; Mitchell, David T.
2006-10-17
Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.
Spatiotemporal and geometric optimization of sensor arrays for detecting analytes in fluids
Lewis, Nathan S [La Canada, CA; Freund, Michael S [Winnipeg, CA; Briglin, Shawn S [Chittenango, NY; Tokumaru, Phillip [Moorpark, CA; Martin, Charles R [Gainesville, FL; Mitchell, David [Newtown, PA
2009-09-29
Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.
Marcelo Ardon; Catherine M. Pringle; Susan L. Eggert
2009-01-01
Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to...
Magnetic transit-time flowmeter
Forster, George A.
1976-07-06
The flow rate of a conducting fluid in a stream is determined by disposing two permanent-magnet flowmeters in the stream, one downstream of the other. Flow of the conducting fluid causes the generation of both d-c and a-c electrical signals, the a-c comprising flow noise. Measurement of the time delay between similarities in the a-c signals by cross-correlation methods provides a measure of the rate of flow of the fluid.
Fuel cell membrane hydration and fluid metering
Jones, Daniel O.; Walsh, Michael M.
1999-01-01
A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).
Composite media for ion processing
Mann, Nick R [Blackfoot, ID; Wood, Donald J [Peshastin, WA; Todd, Terry A [Aberdeen, ID; Sebesta, Ferdinand [Prague, CZ
2009-12-08
Composite media, systems, and devices for substantially removing, or otherwise processing, one or more constituents of a fluid stream. The composite media comprise a plurality of beads, each having a matrix substantially comprising polyacrylonitrile (PAN) and supporting one or more active components which are effective in removing, by various mechanisms, one or more constituents from a fluid stream. Due to the porosity and large surface area of the beads, a high level of contact is achieved between composite media of the present invention and the fluid stream being processed. Further, the homogeneity of the beads facilitates use of the beads in high volume applications where it is desired to effectively process a large volume of flow per unit of time.
Evaluation of simplified stream-aquifer depletion models for water rights administration
Sophocleous, Marios; Koussis, Antonis; Martin, J.L.; Perkins, S.P.
1995-01-01
We assess the predictive accuracy of Glover's (1974) stream-aquifer analytical solutions, which are commonly used in administering water rights, and evaluate the impact of the assumed idealizations on administrative and management decisions. To achieve these objectives, we evaluate the predictive capabilities of the Glover stream-aquifer depletion model against the MODFLOW numerical standard, which, unlike the analytical model, can handle increasing hydrogeologic complexity. We rank-order and quantify the relative importance of the various assumptions on which the analytical model is based, the three most important being: (1) streambed clogging as quantified by streambed-aquifer hydraulic conductivity contrast; (2) degree of stream partial penetration; and (3) aquifer heterogeneity. These three factors relate directly to the multidimensional nature of the aquifer flow conditions. From these considerations, future efforts to reduce the uncertainty in stream depletion-related administrative decisions should primarily address these three factors in characterizing the stream-aquifer process. We also investigate the impact of progressively coarser model grid size on numerically estimating stream leakage and conclude that grid size effects are relatively minor. Therefore, when modeling is required, coarser model grids could be used thus minimizing the input data requirements.
A novel passive micromixer based on unbalanced splits and collisions of fluid streams
NASA Astrophysics Data System (ADS)
Ansari, Mubashshir Ahmad; Kim, Kwang-Yong; Anwar, Khalid; Kim, Sun Min
2010-05-01
A new passive micromixer based on the concept of unbalanced splits and cross-collisions of fluid streams is designed and fabricated. Experimental and numerical studies have been carried out on the micromixer at Reynolds numbers ranging from 10 to 80. The three-dimensional Navier-Stokes equations have been used to analyze the mixing and flow behavior of the micromixer, which is composed of two sub-channels of unequal widths which repeatedly undergo splitting and recombination. The difference between the mass flow rates in the two sub-channels creates an unbalanced collision of the two fluid streams. Mixing is mainly due to the combined effect of unbalanced collisions of the fluid streams and Dean vortices. The micromixer shows interesting mixing behavior for different ratios of the widths of the two split sub-channels. The sub-channels wherein the major sub-channel is twice as wide as the minor sub-channel exhibit the highest mixing performance at Reynolds numbers larger than 40. The results show the lowest mixing performance for the case of uniform width, where balanced collisions occur.
Mass flow sensor utilizing a resistance bridge
NASA Technical Reports Server (NTRS)
Fralick, Gustave C. (Inventor); Hwang, Danny P. (Inventor); Wrbanek, John D. (Inventor)
2004-01-01
A mass flow sensor to be mounted within a duct and measures the mass flow of a fluid stream moving through the duct. The sensor is an elongated thin quartz substrate having a plurality of platinum strips extending in a parallel relationship on the strip, with certain of the strips being resistors connected to an excitation voltage. The resistors form the legs of a Wheatstone bridge. The resistors are spaced a sufficient distance inwardly from the leading and trailing edges of the substrate to lie within the velocity recovery region so that the measured flow is the same as the actual upstream flow. The resistor strips extend at least half-way through the fluid stream to include a substantial part of the velocity profile of the stream. Certain of the resistors detect a change in temperature as the fluid stream moves across the substrate to provide an output signal from the Wheatstone bridge which is representative of the fluid flow. A heater is located in the midst of the resistor array to heat the air as it passes over the array.
Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert
2009-01-01
Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...
Methods of cracking a crude product to produce additional crude products
Mo, Weijian [Sugar Land, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Nair, Vijay [Katy, TX
2009-09-08
A method for producing a crude product is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce one or more crude products. At least one of the crude products has a boiling range distribution from 38.degree. C. and 343.degree. C. as determined by ASTM Method D5307. The crude product having the boiling range distribution from 38.degree. C. and 343.degree. C. is catalytically cracked to produce one or more additional crude products. At least one of the additional crude products is a second gas stream. The second gas stream has a boiling point of at most 38.degree. C. at 0.101 MPa.
Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James
2010-06-29
A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.
Methods of producing transportation fuel
Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB
2011-12-27
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.
Instabilities of Internal Gravity Wave Beams
NASA Astrophysics Data System (ADS)
Dauxois, Thierry; Joubaud, Sylvain; Odier, Philippe; Venaille, Antoine
2018-01-01
Internal gravity waves play a primary role in geophysical fluids: They contribute significantly to mixing in the ocean, and they redistribute energy and momentum in the middle atmosphere. Until recently, most studies were focused on plane wave solutions. However, these solutions are not a satisfactory description of most geophysical manifestations of internal gravity waves, and it is now recognized that internal wave beams with a confined profile are ubiquitous in the geophysical context. We discuss the reason for the ubiquity of wave beams in stratified fluids, which is related to the fact that they are solutions of the nonlinear governing equations. We focus more specifically on situations with a constant buoyancy frequency. Moreover, in light of recent experimental and analytical studies of internal gravity beams, it is timely to discuss the two main mechanisms of instability for those beams: (a) the triadic resonant instability generating two secondary wave beams and (b) the streaming instability corresponding to the spontaneous generation of a mean flow.
Axisymmetric plasma equilibria in a Kerr metric
NASA Astrophysics Data System (ADS)
Elsässer, Klaus
2001-10-01
Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.
Inviscid linear stability analysis of two fluid columns of different densities subject to gravity
NASA Astrophysics Data System (ADS)
Prathama, Aditya; Pantano, Carlos
2017-11-01
We investigate the inviscid linear stability of vertical interface between two fluid columns of different densities under the influence of gravity. In this flow arrangement, the two free streams are continuously accelerating, in contrast to the canonical Kelvin-Helmholtz or Rayleigh-Taylor instabilities whose base flows are stationary (or weakly time dependent). In these classical cases, the temporal evolution of the interface can be expressed as Fourier or Laplace solutions in time. This is not possible in our case; instead, we employ the initial value problem method to solve the equations analytically. The results, expressed in terms of the well-known parabolic cylinder function, indicate that the instability grows as the exponential of a quadratic function of time. The analysis shows that in this accelerating Kelvin-Helmholtz configuration, the interface is unconditionally unstable at all wave modes, despite the presence of surface tension. Department of Energy, National Nuclear Security Administration (Award No. DE-NA0002382) and the California Institute of Technology.
Streaming Visual Analytics Workshop Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kristin A.; Burtner, Edwin R.; Kritzstein, Brian P.
How can we best enable users to understand complex emerging events and make appropriate assessments from streaming data? This was the central question addressed at a three-day workshop on streaming visual analytics. This workshop was organized by Pacific Northwest National Laboratory for a government sponsor. It brought together forty researchers and subject matter experts from government, industry, and academia. This report summarizes the outcomes from that workshop. It describes elements of the vision for a streaming visual analytic environment and set of important research directions needed to achieve this vision. Streaming data analysis is in many ways the analysis andmore » understanding of change. However, current visual analytics systems usually focus on static data collections, meaning that dynamically changing conditions are not appropriately addressed. The envisioned mixed-initiative streaming visual analytics environment creates a collaboration between the analyst and the system to support the analysis process. It raises the level of discourse from low-level data records to higher-level concepts. The system supports the analyst’s rapid orientation and reorientation as situations change. It provides an environment to support the analyst’s critical thinking. It infers tasks and interests based on the analyst’s interactions. The system works as both an assistant and a devil’s advocate, finding relevant data and alerts as well as considering alternative hypotheses. Finally, the system supports sharing of findings with others. Making such an environment a reality requires research in several areas. The workshop discussions focused on four broad areas: support for critical thinking, visual representation of change, mixed-initiative analysis, and the use of narratives for analysis and communication.« less
Multiplexed operation of a micromachined ultrasonic droplet ejector array.
Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G
2007-10-01
A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk between the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of approximately 5 microm diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.
Multiplexed operation of a micromachined ultrasonic droplet ejector array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2007-10-15
A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk betweenmore » the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of {approx}5 {mu}m diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.« less
Free-Stream Boundaries of Turbulent Flows
NASA Technical Reports Server (NTRS)
Corrsin, Stanley; Kistler, Alan L
1955-01-01
Report presents the results of an experimental and theoretical study made of the instantaneously sharp and irregular front which is always found to separate turbulent fluid from contiguous "nonturbulent" fluid at a free-stream boundary. This distinct demarcation is known to give an intermittent character to hot-wire signals in the boundary zone. The overall behavior of the front is described statistically in terms of its wrinkle-amplitude growth and its lateral propagation relative to the fluid as functions of downstream coordinate.
Integration of plume and puff diffusion models/application of CFD
NASA Astrophysics Data System (ADS)
Mori, Akira
The clinical symptoms of patients and other evidences of a gas poisoning accident inside an industrial building strongly suggested an abrupt influx of engine exhaust from a construction vehicle which was operating outside in the open air. But the obviously high level of gas concentration could not be well explained by any conventional steady-state gas diffusion models. The author used an unsteady-state continuous Puff Model to simulate the time-wise changes in air stream with the pollutant gas being continuously emitted, and successfully reproduced the observed phenomena. The author demonstrates that this diffusion formula can be solved analytically by the use of error function as long as the change in wind velocity is stepwise, and clarifies the accurate differences between the unsteady- and steady-states and their convergence profiles. Also, the relationship between the Puff and Plume Models is discussed. The case study included a computational fluid dynamics (CFD) analysis to estimate the steady-state air stream and the gas concentration pattern in the affected area. It is well known that clear definition of the boundary conditions is key to successful CFD analysis. The author describes a two-step use of CFD: the first step to define the boundary conditions and the second to determine the steady-state air stream and the gas concentration pattern.
NASA Astrophysics Data System (ADS)
Jougnot, D.; Roubinet, D.; Linde, N.; Irving, J.
2016-12-01
Quantifying fluid flow in fractured media is a critical challenge in a wide variety of research fields and applications. To this end, geophysics offers a variety of tools that can provide important information on subsurface physical properties in a noninvasive manner. Most geophysical techniques infer fluid flow by data or model differencing in time or space (i.e., they are not directly sensitive to flow occurring at the time of the measurements). An exception is the self-potential (SP) method. When water flows in the subsurface, an excess of charge in the pore water that counterbalances electric charges at the mineral-pore water interface gives rise to a streaming current and an associated streaming potential. The latter can be measured with the SP technique, meaning that the method is directly sensitive to fluid flow. Whereas numerous field experiments suggest that the SP method may allow for the detection of hydraulically active fractures, suitable tools for numerically modeling streaming potentials in fractured media do not exist. Here, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid-flow and associated self-potential problems in fractured domains. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods due to computational limitations. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.
Li, Michelle W; Martin, R Scott
2007-07-01
Here we describe a reversibly sealed microchip device that incorporates poly(dimethylsiloxane) (PDMS)-based valves for the rapid injection of analytes from a continuously flowing stream into a channel network for analysis with microchip electrophoresis. The microchip was reversibly sealed to a PDMS-coated glass substrate and microbore tubing was used for the introduction of gas and fluids to the microchip device. Two pneumatic valves were incorporated into the design and actuated on the order of hundreds of milliseconds, allowing analyte from a continuously flowing sampling stream to be injected into an electrophoresis separation channel. The device was characterized in terms of the valve actuation time and pushback voltage. It was also found that the addition of sodium dodecyl sulfate (SDS) to the buffer system greatly increased the reproducibility of the injection scheme and enabled the analysis of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide. Results from continuous injections of a 0.39 nL fluorescein plug into the optimized system showed that the injection process was reproducible (RSD of 0.7%, n = 10). Studies also showed that the device was capable of monitoring off-chip changes in concentration with a device lag time of 90 s. Finally, the ability of the device to rapidly monitor on-chip concentration changes was demonstrated by continually sampling from an analyte plug that was derivatized upstream from the electrophoresis/continuous flow interface. A reversibly sealed device of this type will be useful for the continuous monitoring and analysis of processes that occur either off-chip (such as microdialysis sampling) or on-chip from other integrated functions.
Method and apparatus for continuously referenced analysis of reactive components in solution
Bostick, W.D.; Denton, M.S.; Dinsmore, S.R.
1979-07-31
A continuously referenced apparatus for measuring the concentration of a reactive chemical species in solution comprises in combination conduit means for introducing a sample solution, means for introducing one or more reactants into a sample solution, and a stream separator disposed within the conduit means for separating the sample solution into a first sample stream and a second sample stream. A reactor is disposed in fluid communication with the first sample stream. A reaction takes place between the reactants introduced and the reactive chemical species of interest, causing the consumption or production of an indicator species in the first sample stream. Measurement means such as a photometric system are disposed in communication with the first and second sample streams, and the outputs of the measurement means are compared to provide a blanked measurement of the concentration of indicator species. The apparatus is particularly suitable for measurement of isoenzymes in body tissues or fluids.
NASA Astrophysics Data System (ADS)
Gebreslase, A. K.; Abdul-Aziz, O. I.
2017-12-01
Dynamics of coastal stream water quality is influenced by a multitude of interacting environmental drivers. A systematic data analytics approach was employed to determine the relative linkages of stream dissolved oxygen (DO) with the hydroclimatic and biogeochemical variables across the Gulf Coast of U.S.A. Multivariate pattern recognition techniques of PCA and FA, alongside Pearson's correlation matrix, were utilized to examine the interrelation of variables at 36 water quality monitoring stations from USGS NWIS and EPA STORET databases. Power-law based partial least square regression models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to estimate the relative linkages of dissolved oxygen with the hydroclimatic and biogeochemical variables by appropriately resolving multicollinearity (Nash-Sutcliffe efficiency = 0.58-0.94). Based on the dominant drivers, stations were divided into four environmental regimes. Water temperature was the dominant driver of DO in the majority of streams, representing most the northern part of Gulf Coast states. However, streams in the southern part of Texas and Florida showed a dominant pH control on stream DO. Further, streams representing the transition zone of the two environmental regimes showed notable controls of multiple drivers (i.e., water temperature, stream flow, and specific conductance) on the stream DO. The data analytics research provided profound insight to understand the dynamics of stream DO with the hydroclimatic and biogeochemical variables. The knowledge can help water quality managers in formulating plans for effective stream water quality and watershed management in the U.S. Gulf Coast. Keywords Data analytics, coastal streams, relative linkages, dissolved oxygen, environmental regimes, Gulf Coast, United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Beaver, Justin M; BogenII, Paul L.
In this paper, we introduce a new visual analytics system, called Matisse, that allows exploration of global trends in textual information streams with specific application to social media platforms. Despite the potential for real-time situational awareness using these services, interactive analysis of such semi-structured textual information is a challenge due to the high-throughput and high-velocity properties. Matisse addresses these challenges through the following contributions: (1) robust stream data management, (2) automated sen- timent/emotion analytics, (3) inferential temporal, geospatial, and term-frequency visualizations, and (4) a flexible drill-down interaction scheme that progresses from macroscale to microscale views. In addition to describing thesemore » contributions, our work-in-progress paper concludes with a practical case study focused on the analysis of Twitter 1% sample stream information captured during the week of the Boston Marathon bombings.« less
Johnston, Allison; Runkel, Robert L.; Navarre-Sitchler, Alexis; Singha, Kamini
2017-01-01
We investigated the impact of acid mine drainage (AMD) contamination from the Minnesota Mine, an inactive gold and silver mine, on Lion Creek, a headwater mountain stream near Empire, Colorado. The objective was to map the sources of AMD contamination, including discrete sources visible at the surface and diffuse inputs that were not readily apparent. This was achieved using geochemical sampling, in-stream and in-seep fluid electrical conductivity (EC) logging, and electrical resistivity imaging (ERI) of the subsurface. The low pH of the AMD-impacted water correlated to high fluid EC values that served as a target for the ERI. From ERI, we identified two likely sources of diffuse contamination entering the stream: (1) the subsurface extent of two seepage faces visible on the surface, and (2) rainfall runoff washing salts deposited on the streambank and in a tailings pile on the east bank of Lion Creek. Additionally, rainfall leaching through the tailings pile is a potential diffuse source of contamination if the subsurface beneath the tailings pile is hydraulically connected with the stream. In-stream fluid EC was lowest when stream discharge was highest in early summer and then increased throughout the summer as stream discharge decreased, indicating that the concentration of dissolved solids in the stream is largely controlled by mixing of groundwater and snowmelt. Total dissolved solids (TDS) load is greatest in early summer and displays a large diel signal. Identification of diffuse sources and variability in TDS load through time should allow for more targeted remediation options.
Fast 2D Fluid-Analytical Simulation of IEDs and Plasma Uniformity in Multi-frequency CCPs
NASA Astrophysics Data System (ADS)
Kawamura, E.; Lieberman, M. A.; Graves, D. B.
2014-10-01
A fast 2D axisymmetric fluid-analytical model using the finite elements tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency argon capacitively coupled plasmas (CCPs). A bulk fluid plasma model which solves the time-dependent plasma fluid equations is coupled with an analytical sheath model which solves for the sheath parameters. The fluid-analytical results are used as input to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the wafer electrode. Each fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 minutes. The 2D multi-frequency fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel plate discharge, showing good agreement. Fluid-analytical simulations of a 2/60/162 MHz argon CCP with a typical asymmetric reactor geometry were also conducted. The low 2 MHz frequency controlled the sheath width and voltage while the higher frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. Adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge enhanced the plasma uniformity. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC000193, and in part by gifts from Lam Research Corporation and Micron Corporation.
Device for producing a fluid stream of varying composition
Moss, Owen R.; Clark, Mark L.; Rossignol, E. John
1982-01-01
A device for producing a fluid stream of varying composition comprises a chamber having an inlet at one end and outlet at the other. Between the inlet and outlet there are substantially planar pans or baffles positioned normal to the bulk flow of fluid between the inlet and the outlet. These pans are arranged in pairs. Each pan, except those of the pair most remote from the inlet, is spaced from the walls of the chamber to permit air to flow past it. The pans of each pair are also spaced from each other, in a direction parallel to their planes, leaving an empty space along the mid-plane of the chamber. This produces a circulation and mixing of fluid between the pairs of pans or baffles. A secondary stream of fluid is introduced between two pairs of baffles in the intermediate portion of the chamber, so that the composition of the fluid is different in the portion adjacent to the outlet and the portion adjacent to the inlet. In a specific embodiment, the device is an exposure chamber for experimental animals, and the pans or baffles are catch pans for excrement.
Device for measuring the total concentration of oxygen in gases
Isaacs, Hugh S.; Romano, Anthony J.
1977-01-01
This invention provides a CO equilibrium in a device for measuring the total concentration of oxygen impurities in a fluid stream. To this end, the CO equilibrium is produced in an electrochemical measuring cell by the interaction of a carbon element in the cell with the chemically combined and uncombined oxygen in the fluid stream at an elevated temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillen, Donna Post
2013-09-01
The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammablemore » hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.« less
An analytic description of electrodynamic dispersion in free-flow zone electrophoresis.
Dutta, Debashis
2015-07-24
The present work analyzes the electrodynamic dispersion of sample streams in a free-flow zone electrophoresis (FFZE) chamber resulting due to partial or complete blockage of electroosmotic flow (EOF) across the channel width by the sidewalls of the conduit. This blockage of EOF has been assumed to generate a pressure-driven backflow in the transverse direction for maintaining flow balance in the system. A parallel-plate based FFZE device with the analyte stream located far away from the channel side regions has been considered to simplify the current analysis. Applying a method-of-moments formulation, an analytic expression was derived for the variance of the sample zone at steady state as a function of its position in the separation chamber under these conditions. It has been shown that the increase in stream broadening due to the electrodynamic dispersion phenomenon is additive to the contributions from molecular diffusion and sample injection, and simply modifies the coefficient for the hydrodynamic dispersion term for a fixed lateral migration distance of the sample stream. Moreover, this dispersion mechanism can dominate the overall spatial variance of analyte zones when a significant fraction of the EOF is blocked by the channel sidewalls. The analysis also shows that analyte streams do not undergo any hydrodynamic broadening due to unwanted pressure-driven cross-flows in an FFZE chamber in the absence of a transverse electric field. The noted results have been validated using Monte Carlo simulations which further demonstrate that while the sample concentration profile at the channel outlet approaches a Gaussian distribution only in FFZE chambers substantially longer than the product of the axial pressure-driven velocity and the characteristic diffusion time in the system, the spatial variance of the exiting analyte stream is well described by the Taylor-Aris dispersion limit even in analysis ducts much shorter than this length scale. Copyright © 2015 Elsevier B.V. All rights reserved.
Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J
2009-03-15
Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols.
Propulsion of a Two-Sphere Swimmer.
Klotsa, Daphne; Baldwin, Kyle A; Hill, Richard J A; Bowley, R M; Swift, Michael R
2015-12-11
We describe experiments and simulations demonstrating the propulsion of a neutrally buoyant swimmer that consists of a pair of spheres attached by a spring, immersed in a vibrating fluid. The vibration of the fluid induces relative motion of the spheres which, for sufficiently large amplitudes, can lead to motion of the center of mass of the two spheres. We find that the swimming speed obtained from both experiment and simulation agree and collapse onto a single curve if plotted as a function of the streaming Reynolds number, suggesting that the propulsion is related to streaming flows. There appears to be a critical onset value of the streaming Reynolds number for swimming to occur. We observe a change in the streaming flows as the Reynolds number increases, from that generated by two independent oscillating spheres to a collective flow pattern around the swimmer as a whole. The mechanism for swimming is traced to a strengthening of a jet of fluid in the wake of the swimmer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garn, Troy G; Law, Jack D; Greenhalgh, Mitchell R
A composite media including at least one crystalline aluminosilicate material in polyacrylonitrile. A method of forming a composite media is also disclosed. The method comprises dissolving polyacrylonitrile in an organic solvent to form a matrix solution. At least one crystalline aluminosilicate material is combined with the matrix solution to form a composite media solution. The organic solvent present in the composite media solution is diluted. The composite media solution is solidified. In addition, a method of processing a fluid stream is disclosed. The method comprises providing a beads of a composite media comprising at least one crystalline aluminosilicate material dispersedmore » in a polyacrylonitrile matrix. The beads of the composite media are contacted with a fluid stream comprising at least one constituent. The at least one constituent is substantially removed from the fluid stream.« less
Swimming using surface acoustic waves.
Bourquin, Yannyk; Cooper, Jonathan M
2013-01-01
Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel.
Radionuclide detection devices and associated methods
Mann, Nicholas R [Rigby, ID; Lister, Tedd E [Idaho Falls, ID; Tranter, Troy J [Idaho Falls, ID
2011-03-08
Radionuclide detection devices comprise a fluid cell comprising a flow channel for a fluid stream. A radionuclide collector is positioned within the flow channel and configured to concentrate one or more radionuclides from the fluid stream onto at least a portion of the radionuclide collector. A scintillator for generating scintillation pulses responsive to an occurrence of a decay event is positioned proximate at least a portion of the radionuclide collector and adjacent to a detection system for detecting the scintillation pulses. Methods of selectively detecting a radionuclide are also provided.
Method and turbine for extracting kinetic energy from a stream of two-phase fluid
NASA Technical Reports Server (NTRS)
Elliott, D. G. (Inventor)
1979-01-01
An axial flow separator turbine is described which includes a number of nozzles for delivering streams of a two-phase fluid along linear paths. A phase separator which responsively separates the vapor and liquid is characterized by concentrically related annuli supported for rotation within the paths. The separator has endless channels for confining the liquid under the influence of centrifugal forces. A vapor turbine fan extracts kinetic energy from the liquid. Angular momentum of both the liquid phase and the vapor phase of the fluid is converted to torque.
Fluid manifold design for a solar energy storage tank
NASA Technical Reports Server (NTRS)
Humphries, W. R.; Hewitt, H. C.; Griggs, E. I.
1975-01-01
A design technique for a fluid manifold for use in a solar energy storage tank is given. This analytical treatment generalizes the fluid equations pertinent to manifold design, giving manifold pressures, velocities, and orifice pressure differentials in terms of appropriate fluid and manifold geometry parameters. Experimental results used to corroborate analytical predictions are presented. These data indicate that variations in discharge coefficients due to variations in orifices can cause deviations between analytical predictions and actual performance values.
Analytical solution of groundwater flow in a sloping aquifer with stream-aquifer interaction.
NASA Astrophysics Data System (ADS)
Liu, X.; Zhan, H.
2017-12-01
This poster presents a new analytical solution to study water exchange, hydraulic head distribution and water flow in a stream-unconfined aquifer interaction system with a sloping bed and stream of varying heads in presence of two thin vertical sedimentary layers. The formation of a clogging bed of fine-grained sediments allows the interfaces among a sloping aquifer and two rivers as the third kind and Cauchy boundary conditions. The numerical solution of the corresponding nonlinear Boussinesq equation is also developed to compare the performance of the analytical solution. The effects of precipitation recharge, bed slope and stage variation rate of two rivers for water flow in the sloping aquifer are discussed in the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karl Anderson, Steve Plimpton
2015-01-27
The FireHose Streaming Benchmarks are a suite of stream-processing benchmarks defined to enable comparison of streaming software and hardware, both quantitatively vis-a-vis the rate at which they can process data, and qualitatively by judging the effort involved to implement and run the benchmarks. Each benchmark has two parts. The first is a generator which produces and outputs datums at a high rate in a specific format. The second is an analytic which reads the stream of datums and is required to perform a well-defined calculation on the collection of datums, typically to find anomalous datums that have been created inmore » the stream by the generator. The FireHose suite provides code for the generators, sample code for the analytics (which users are free to re-implement in their own custom frameworks), and a precise definition of each benchmark calculation.« less
NASA Astrophysics Data System (ADS)
Boyraz, Uǧur; Melek Kazezyılmaz-Alhan, Cevza
2017-04-01
Groundwater is a vital element of hydrologic cycle and the analytical & numerical solutions of different forms of groundwater flow equations play an important role in understanding the hydrological behavior of subsurface water. The interaction between groundwater and surface water bodies can be determined using these solutions. In this study, new hypothetical approaches are implemented to groundwater flow system in order to contribute to the studies on surface water/groundwater interactions. A time dependent problem is considered in a 2-dimensional stream-wetland-aquifer system. The sloped stream boundary is used to represent the interaction between stream and aquifer. The rest of the aquifer boundaries are assumed as no-flux boundary. In addition, a wetland is considered as a surface water body which lies over the whole aquifer. The effect of the interaction between the wetland and the aquifer is taken into account with a source/sink term in the groundwater flow equation and the interaction flow is calculated by using Darcy's approach. A semi-analytical solution is developed for the 2-dimensional groundwater flow equation in 5 steps. First, Laplace and Fourier cosine transforms are employed to obtain the general solution in Fourier and Laplace domain. Then, the initial and boundary conditions are applied to obtain the particular solution. Finally, inverse Fourier transform is carried out analytically and inverse Laplace transform is carried out numerically to obtain the final solution in space and time domain, respectively. In order to verify the semi-analytical solution, an explicit finite difference algorithm is developed and analytical and numerical solutions are compared for synthetic examples. The comparison of the analytical and numerical solutions shows that the analytical solution gives accurate results.
Joule heating induced stream broadening in free-flow zone electrophoresis.
Dutta, Debashis
2018-03-01
The use of an electric field in free-flow zone electrophoresis (FFZE) automatically leads to Joule heating yielding a higher temperature at the center of the separation chamber relative to that around the channel walls. For small amounts of heat generated, this thermal effect introduces a variation in the equilibrium position of the analyte molecules due to the dependence of liquid viscosity and analyte diffusivity on temperature leading to a modification in the position of the analyte stream as well as the zone width. In this article, an analytic theory is presented to quantitate such effects of Joule heating on FFZE assays in the limit of small temperature differentials across the channel gap yielding a closed form expression for the stream position and zone variance under equilibrium conditions. A method-of-moments approach is employed to develop this analytic theory, which is further validated with numerical solutions of the governing equations. Interestingly, the noted analyses predict that Joule heating can drift the location of the analyte stream either way of its equilibrium position realized in the absence of any temperature rise in the system, and also tends to reduce zone dispersion. The extent of these modifications, however, is governed by the electric field induced temperature rise and three Péclet numbers evaluated based on the axial pressure-driven flow, transverse electroosmotic and electrophoretic solute velocities in the separation chamber. Monte Carlo simulations of the FFZE system further establish a time and a length scale over which the results from the analytic theory are valid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Trace level detection of analytes using artificial olfactometry
NASA Technical Reports Server (NTRS)
Wong, Bernard (Inventor); Lewis, Nathan S. (Inventor); Severin, Erik J. (Inventor)
2001-01-01
The present invention provides a device for detecting the presence of an analyte, wherein said analyte is a microorganism marker gas. The device comprises a sample chamber having a fluid inlet port for the influx of the microorganism marker gas; a fluid concentrator in flow communication with the sample chamber, wherein the fluid concentrator has an absorbent material capable of absorbing the microorganism marker gas and thereafter releasing a concentrated microorganism marker gas; and an array of sensors in fluid communication with the concentrated microorganism marker gas. The sensor array detects and identifies the marker gas upon its release from fluid concentrate.
Fuel cell membrane hydration and fluid metering
Jones, Daniel O.; Walsh, Michael M.
2003-01-01
A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).
Robinson, Mark R.; Ward, Kenneth J.; Eaton, Robert P.; Haaland, David M.
1990-01-01
The characteristics of a biological fluid sample having an analyte are determined from a model constructed from plural known biological fluid samples. The model is a function of the concentration of materials in the known fluid samples as a function of absorption of wideband infrared energy. The wideband infrared energy is coupled to the analyte containing sample so there is differential absorption of the infrared energy as a function of the wavelength of the wideband infrared energy incident on the analyte containing sample. The differential absorption causes intensity variations of the infrared energy incident on the analyte containing sample as a function of sample wavelength of the energy, and concentration of the unknown analyte is determined from the thus-derived intensity variations of the infrared energy as a function of wavelength from the model absorption versus wavelength function.
Analytical approach on the stiffness of MR fluid filled spring
NASA Astrophysics Data System (ADS)
Sikulskyi, Stanislav; Kim, Daewon
2017-04-01
A solid mechanical spring generally exhibits uniform stiffness. This paper studies a mechanical spring filled with magnetorheological (MR) fluid to achieve controllable stiffness. The hollow spring filled with MR fluid is subjected to a controlled magnetic field in order to change the viscosity of the MR fluid and thereby to change the overall stiffness of the spring. MR fluid is considered as a Bingham viscoplastic linear material in the mathematical model. The goal of this research is to study the feasibility of such spring system by analytically computing the effects of MR fluid on overall spring stiffness. For this purpose, spring mechanics and MR fluid behavior are studied to increase the accuracy of the analysis. Numerical simulations are also performed to generate some assumptions, which simplify calculations in the analytical part. The accuracy of the present approach is validated by comparing the analytical results to previously known experimental results. Overall stiffness variations of the spring are also discussed for different spring designs.
Ion processing element with composite media
Mann, Nick R.; Tranter, Troy J.; Todd, Terry A.; Sebesta, Ferdinand
2003-02-04
An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.
Ion processing element with composite media
Mann, Nick R [Blackfoot, ID; Tranter, Troy J [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Sebesta, Ferdinand [Prague, CZ
2009-03-24
An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.
Swimming Using Surface Acoustic Waves
Bourquin, Yannyk; Cooper, Jonathan M.
2013-01-01
Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel. PMID:23431358
NASA Astrophysics Data System (ADS)
Deng, Baoqing; Si, Yinbing; Wang, Jia
2017-12-01
Transient storages may vary along the stream due to stream hydraulic conditions and the characteristics of storage. Analytical solutions of transient storage models in literature didn't cover the spatially non-uniform storage. A novel integral transform strategy is presented that simultaneously performs integral transforms to the concentrations in the stream and in storage zones by using the single set of eigenfunctions derived from the advection-diffusion equation of the stream. The semi-analytical solution of the multiple-zone transient storage model with the spatially non-uniform storage is obtained by applying the generalized integral transform technique to all partial differential equations in the multiple-zone transient storage model. The derived semi-analytical solution is validated against the field data in literature. Good agreement between the computed data and the field data is obtained. Some illustrative examples are formulated to demonstrate the applications of the present solution. It is shown that solute transport can be greatly affected by the variation of mass exchange coefficient and the ratio of cross-sectional areas. When the ratio of cross-sectional areas is big or the mass exchange coefficient is small, more reaches are recommended to calibrate the parameter.
Active Mixing in Microchannels using Surface Acoustic Wave Streaming on Lithium Niobate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branch, Darren W.; Meyer, Grant D.; Bourdon, Christopher Jay
2005-11-01
We present an active method for mixing fluid streams in microchannels at low Reynolds number with no dead volume. To overcome diffusion limited mixing in microchannels, surface acoustic wave streaming offers an extremely effective approach to rapidly homogenize fluids. This is a pivotal improvement over mixers based on complex 3D microchannels which have significant dead volume resulting in trapping or loss of sample. Our micromixer is integrable and highly adaptable for use within existing microfluidic devices. Surface acoustic wave devices fabricated on 128° YX LiNbO 3 permitted rapid mixing of flow streams as evidenced by fluorescence microscopy. Longitudinal waves createdmore » at the solid-liquid interface were capable of inducing strong nonlinear gradients within the bulk fluid. In the highly laminar regime (Re = 2), devices achieved over 93% mixing efficacy in less than a second. Micro-particle imaging velicometry was used to determine the mixing behavior in the microchannels and indicated that the liquid velocity can be controlled by varying the input power. Fluid velocities in excess of 3 cm•s -1 were measured in the main excitation region at low power levels (2.8mW). We believe that this technology will be pivotal in the development and advancement of microfluidic devices and applications.« less
Apparatus for irradiating a continuously flowing stream of fluid. [For neutron activation analysis
Speir, L.G.; Adams, E.L.
1982-05-13
An apparatus for irradiating a continuously flowing stream of fluid is disclosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4..pi.. radiation geometry. The irradiation source, for example a /sup 252/Cf neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.
Apparatus for irradiating a continuously flowing stream of fluid
Speir, Leslie G.; Adams, Edwin L.
1984-01-01
An apparatus for irradiating a continuously flowing stream of fluid is diosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4.pi. radiation geometry. The irradiation source, for example a .sup.252 CF neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.
Integrative energy-systems design: System structure from thermodynamic optimization
NASA Astrophysics Data System (ADS)
Ordonez, Juan Carlos
This thesis deals with the application of thermodynamic optimization to find optimal structure and operation conditions of energy systems. Chapter 1 outlines the thermodynamic optimization of a combined power and refrigeration system subject to constraints. It is shown that the thermodynamic optimum is reached by distributing optimally the heat exchanger inventory. Chapter 2 considers the maximization of power extraction from a hot stream in the presence of phase change. It shows that when the receiving (cold) stream boils in a counterflow heat exchanger, the thermodynamic optimization consists of locating the optimal capacity rate of the cold stream. Chapter 3 shows that the main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. Chapter 4 addresses two basic issues in the thermodynamic optimization of environmental control systems (ECS) for aircraft: realistic limits for the minimal power requirement, and design features that facilitate operation at minimal power consumption. Several models of the ECS-Cabin interaction are considered and it is shown that in all the models the temperature of the air stream that the ECS delivers to the cabin can be optimized for operation at minimal power. In chapter 5 it is shown that the sizes (weights) of heat and fluid flow systems that function on board vehicles such as aircraft can be derived from the maximization of overall (system level) performance. Chapter 6 develops analytically the optimal sizes (hydraulic diameters) of parallel channels that penetrate and cool a volume with uniformly distributed internal heat generation and Chapter 7 shows analytically and numerically how an originally uniform flow structure transforms itself into a nonuniform one when the objective is to minimize global flow losses. It is shown that flow maldistribution and the abandonment of symmetry are necessary for the development of flow structures with minimal resistance. In the second part of the chapter, the flow medium is continuous and permeated by Darcy flow. As flow systems become smaller and more compact, the flow systems themselves become "designed porous media".
NASA Astrophysics Data System (ADS)
Shan, Zhendong; Ling, Daosheng
2018-02-01
This article develops an analytical solution for the transient wave propagation of a cylindrical P-wave line source in a semi-infinite elastic solid with a fluid layer. The analytical solution is presented in a simple closed form in which each term represents a transient physical wave. The Scholte equation is derived, through which the Scholte wave velocity can be determined. The Scholte wave is the wave that propagates along the interface between the fluid and solid. To develop the analytical solution, the wave fields in the fluid and solid are defined, their analytical solutions in the Laplace domain are derived using the boundary and interface conditions, and the solutions are then decomposed into series form according to the power series expansion method. Each item of the series solution has a clear physical meaning and represents a transient wave path. Finally, by applying Cagniard's method and the convolution theorem, the analytical solutions are transformed into the time domain. Numerical examples are provided to illustrate some interesting features in the fluid layer, the interface and the semi-infinite solid. When the P-wave velocity in the fluid is higher than that in the solid, two head waves in the solid, one head wave in the fluid and a Scholte wave at the interface are observed for the cylindrical P-wave line source.
Analytical solution of two-fluid electro-osmotic flows of viscoelastic fluids.
Afonso, A M; Alves, M A; Pinho, F T
2013-04-01
This paper presents an analytical model that describes a two-fluid electro-osmotic flow of stratified fluids with Newtonian or viscoelastic rheological behavior. This is the principle of operation of an electro-osmotic two-fluid pump as proposed by Brask et al. [Tech. Proc. Nanotech., 1, 190-193, 2003], in which an electrically non-conducting fluid is transported by the interfacial dragging viscous force of a conducting fluid that is driven by electro-osmosis. The electric potential in the conducting fluid and the analytical steady flow solution of the two-fluid electro-osmotic stratified flow in a planar microchannel are presented by assuming a planar interface between the two immiscible fluids with Newtonian or viscoelastic rheological behavior. The effects of fluid rheology, shear viscosity ratio, holdup and interfacial zeta potential are analyzed to show the viability of this technique, where an enhancement of the flow rate is observed as the shear-thinning effects are increased. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kawamura, E.; Lieberman, M. A.; Graves, D. B.
2014-12-01
A fast 2D axisymmetric fluid-analytical plasma reactor model using the finite elements simulation tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency capacitive argon discharges. A bulk fluid plasma model, which solves the time-dependent plasma fluid equations for the ion continuity and electron energy balance, is coupled with an analytical sheath model, which solves for the sheath parameters. The time-independent Helmholtz equation is used to solve for the fields and a gas flow model solves for the steady-state pressure, temperature and velocity of the neutrals. The results of the fluid-analytical model are used as inputs to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the target electrode. Each 2D fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 min. The multi-frequency 2D fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel-plate discharge, showing good agreement. We also conducted fluid-analytical simulations of a multi-frequency argon capacitively coupled plasma (CCP) with a typical asymmetric reactor geometry at 2/60/162 MHz. The low frequency 2 MHz power controlled the sheath width and sheath voltage while the high frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. We noticed that adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge can enhance the plasma uniformity. We found that multiple frequencies were not only useful for controlling IEDs but also plasma uniformity in CCP reactors.
Steinert, Roger F; Schafer, Mark E
2006-02-01
To evaluate and compare ultrasonic turbulence created by conventional and micropulse ultrasound technology. Sonora Medical Systems, Longmont, Colorado, USA. A high-resolution digital ultrasound probe imaged the zone around a phacoemulsification tip. Doppler analysis allowed determination of flow. The fluid velocity was measured at 4 levels of ultrasound power at a constant flow, comparing the ultrasonic conditions of continuous energy to WhiteStar micropulses. In addition to the normal baseline irrigation and aspiration, fluid movement was detected directly below the phaco tip, produced by a nonlinear effect known as acoustic streaming. Acoustic streaming increased with increased phacoemulsification power for both conditions. At each of the 4 levels of power, fluid velocity away from the tip was less with micropulse technology than with continuous phacoemulsification. The demonstrated decrease in acoustic streaming flow away from the phaco tip with Sovereign WhiteStar micropulse technology compared to conventional ultrasound provides an objective explanation for clinical observations of increased stability of nuclear fragments at the tip and less turbulence in the anterior chamber during phacoemulsification. This methodology can be used to examine and compare fluid flow and turbulence under a variety of clinically relevant conditions.
Schneider, William R.
1989-01-01
Methods and apparatus for removing a pollutant such as dust (33) from a fluid stream (34). A nested array of fibers (35) is provided in a substantially annular container (36) having openings in its inner (32) and outer (31) cylindrical sides of such size as to retain the fibers (35) within the container while permitting fluid (34) to pass through easily, and the pollutant-containing fluid stream (34) is passed through at least a substantial portion of the container (36) from a region (37) outside the outer side (31) to a region (38) inside the inner side (32). Thus a substantial fraction of the pollutant (33) is separated from the fluid stream (34) in a portion of the nested array (35) generally nearer to the outer side (31) of the container (36) than to the inner side (31). From time to time the container (36) is rotated about its axis to remove a substantial fraction of the separated pollutant (33) from the nested array (35), by tumbling action and by the force of gravity, through the openings in the outer side (31) of the container (36). To assist in this removal, purging fluid (41) may be directed back through the container (36) from the inner side (32) during the tumbling.
NASA Astrophysics Data System (ADS)
Rypina, I. I.; Pratt, L. J.; Lozier, M.
2011-12-01
Motivated by discrepancies between Eulerian transport estimates and the behavior of Lagrangian surface drifters, near-surface transport pathways and processes in the North Atlantic are studied using a combination of data, altimetric surface heights, statistical analysis of trajectories, and dynamical systems techniques. Particular attention is paid to the issue of the subtropical-to-subpolar intergyre fluid exchange. The velocity field used in this study is composed of a steady drifter-derived background flow, upon which a time-dependent altimeter-based perturbation is superimposed. This analysis suggests that most of the fluid entering the subpolar gyre from the subtropical gyre within two years comes from a narrow region lying inshore of the Gulf Stream core, whereas fluid on the offshore side of the Gulf Stream is largely prevented from doing so by the Gulf Stream core, which acts as a strong transport barrier, in agreement with past studies. The transport barrier near the Gulf Stream core is robust and persistent from 1992 until 2008. The qualitative behavior is found to be largely independent of the Ekman drift.
Characterization of steady streaming for a particle manipulation system.
Amit, Roni; Abadi, Avi; Kosa, Gabor
2016-04-01
Accurate positioning of biological cells or microscopic particle without directly contacting them is a challenging task in biomedical engineering. Various trapping methods for controlling the position of a particle have been suggested. The common driving methods are based on laser and ultrasonic actuation principles. In this work we suggest a design for a hydrodynamic particle manoeuvring system. The system operates using steady streaming in a viscous fluid media induced by high frequency vibration of piezoelectric cantilevers. A particle within the workspace of the system can be trapped and manipulated to a desired position by the fairly unidirectional flow field created by the beams. In this paper, the flow field in the particle manipulation system is characterized numerically and experimentally. We find that the flow field resembles the analytical solutions of a flow field created by an oscillating sphere. Furthermore, we validate numerically the quadratic relation between the steady streaming velocity and the vibration amplitude of the beam. The calibration of the piezoelectric actuator's oscillation amplitudes enables effective positioning of particles with a diameter of 20 um to 1 mm. We find that a 30X0.8X2 mm(3) piezoelectric beam vibrating at its first resonance frequency, 200 Hz, is able to move a particle at a typical flow velocity ranging between 0.05 mm/sec and 0.13 mm/s in 430 cSt Si oil (Re=0.2).
NASA Technical Reports Server (NTRS)
Campbell, J. F.
1972-01-01
An experimental and theoretical investigation was undertaken to study the trajectory and growth of thermal effluents having a range of discharge velocities and temperatures. The discharge of a turbulent effluent into a waterway was mathematically modeled as a submerged jet injection process by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the location and size of the effluent with respect to the discharge point. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the effluent were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.
Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis
NASA Astrophysics Data System (ADS)
Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O.
2017-04-01
A mathematical model is developed for electro-osmotic peristaltic pumping of a non-Newtonian liquid in a deformable micro-channel. Stokes' couple stress fluid model is employed to represent realistic working liquids. The Poisson-Boltzmann equation for electric potential distribution is implemented owing to the presence of an electrical double layer (EDL) in the micro-channel. Using long wavelength, lubrication theory and Debye-Huckel approximations, the linearized transformed dimensionless boundary value problem is solved analytically. The influence of electro-osmotic parameter (inversely proportional to Debye length), maximum electro-osmotic velocity (a function of external applied electrical field) and couple stress parameter on axial velocity, volumetric flow rate, pressure gradient, local wall shear stress and stream function distributions is evaluated in detail with the aid of graphs. The Newtonian fluid case is retrieved as a special case with vanishing couple stress effects. With increasing the couple stress parameter there is a significant increase in the axial pressure gradient whereas the core axial velocity is reduced. An increase in the electro-osmotic parameter both induces flow acceleration in the core region (around the channel centreline) and it also enhances the axial pressure gradient substantially. The study is relevant in the simulation of novel smart bio-inspired space pumps, chromatography and medical micro-scale devices.
Active micromixer using surface acoustic wave streaming
Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY
2011-05-17
An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.
Removing sulphur oxides from a fluid stream
Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan
2014-04-08
A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.
Study of microvascular non-Newtonian blood flow modulated by electroosmosis.
Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh
2018-05-01
An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.
HYDRAULIC ANALYSIS OF BASEFLOW AND BANK STORAGE IN ALLUVIAL STREAMS
This paper presents analytical solutions, which describe the effect of time-variable net recharge (net accretion to water table) and bank storage in alluvial aquifers on the sustenance of stream flows during storm and inter-storm events. The solutions relate the stream discharge,...
GUIDES TO POLLUTION PREVENTION: THE AUTO REPAIR INDUSTRY
Automotive maintenance and repair shops generate a variety of waste streams during activities such as replacing fluids (e.g., motor oil, radiator coolant, transmission fluid, brake fluid), replacing non-repairable parts (e.g., brake shoes/pads, shocks, batteries, belts, mufflers,...
Harnessing Active Fins to Segregate Nanoparticles from Binary Mixtures
NASA Astrophysics Data System (ADS)
Liu, Ya; Kuksenok, Olga; Bhattacharya, Amitabh; Ma, Yongting; He, Ximin; Aizenberg, Joanna; Balazs, Anna
2014-03-01
One of the challenges in creating high-performance polymeric nanocomposites for optoelectronic applications, such as bilayer solar cells, is establishing effective and facile routes for controlling the properties of interface and segregation of binary particles with hole conductor particles and electron conductor particles. We model nanocomposites that encompass binary particles and binary blends in a microchannel. An array of oscillating microfins is immersed in the fluid and tethered to the floor of the microchannel; the fluid containing mixture of nanoparticles is driven along the channel by an imposed pressure gradient. During the oscillations, the fins with the specific chemical wetting reach the upper fluid when they are upright and are entirely within the lower stream when they are tilted. We introduce specific interaction between the fins and particulates in the solution. Fins can selectively ``catch'' target nanoparticles within the upper fluid stream and then release them into the lower stream. We focus on different modes of fins motion to optimize selective segregation of particles within binary mixture. Our approach provides an effective means of tailoring the properties and ultimate performance of the composites.
A numerically efficient damping model for acoustic resonances in microfluidic cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, P., E-mail: hahnp@ethz.ch; Dual, J.
Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results aremore » fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.« less
HYDRAULIC ANALYSIS OF BASE-FLOW AND BANK STORAGE IN ALLUVIAL STREAMS
This paper presents analytical solutions, which describe the effect of time-variable net recharge (net accretion to water table) and bank storage in alluvial aquifers on the sustenance of stream flows during storm and inter-storm events. The solutions relate the stream discharge,...
Streaming data analytics via message passing with application to graph algorithms
Plimpton, Steven J.; Shead, Tim
2014-05-06
The need to process streaming data, which arrives continuously at high-volume in real-time, arises in a variety of contexts including data produced by experiments, collections of environmental or network sensors, and running simulations. Streaming data can also be formulated as queries or transactions which operate on a large dynamic data store, e.g. a distributed database. We describe a lightweight, portable framework named PHISH which enables a set of independent processes to compute on a stream of data in a distributed-memory parallel manner. Datums are routed between processes in patterns defined by the application. PHISH can run on top of eithermore » message-passing via MPI or sockets via ZMQ. The former means streaming computations can be run on any parallel machine which supports MPI; the latter allows them to run on a heterogeneous, geographically dispersed network of machines. We illustrate how PHISH can support streaming MapReduce operations, and describe streaming versions of three algorithms for large, sparse graph analytics: triangle enumeration, subgraph isomorphism matching, and connected component finding. Lastly, we also provide benchmark timings for MPI versus socket performance of several kernel operations useful in streaming algorithms.« less
Mechanochemical symmetric breaking in cell motility of slime mold
NASA Astrophysics Data System (ADS)
Guy, Robert; Zhang, Shun; Del Alamo, Juan Carlos
2016-11-01
The cytoplasm of the true slime mold Physarum polycephalum exhibits regular rhythmic periodic shuttle streaming though the cell in the direction of motion. The fluid motion is driven by the periodic contraction of an actin-myosin gel that is regulated by a calcium oscillation. When the organism is small (< 100 microns) there is no shuttle streaming, but beyond this size, regular back-and-forth streaming appears and the cell begins to migrate. In this talk we analyze a mechanochemical model of the cell which includes the intracellular fluid, the active contractile cytoskeleton, the adhesion to the substrate, and the dynamics of a chemical oscillator. We use this analysis along with experimental data to identify the instability related to the onset of streaming in order to bring insight into how contraction, flow, and adhesion are coordinated during locomotion.
Multiscale Models for the Two-Stream Instability
NASA Astrophysics Data System (ADS)
Joseph, Ilon; Dimits, Andris; Banks, Jeffrey; Berger, Richard; Brunner, Stephan; Chapman, Thomas
2017-10-01
Interpenetrating streams of plasma found in many important scenarios in nature and in the laboratory can develop kinetic two-stream instabilities that exchange momentum and energy between the streams. A quasilinear model for the electrostatic two-stream instability is under development as a component of a multiscale model that couples fluid simulations to kinetic theory. Parameters of the model will be validated with comparison to full kinetic simulations using LOKI and efficient strategies for numerical solution of the quasilinear model and for coupling to the fluid model will be discussed. Extending the kinetic models into the collisional regime requires an efficient treatment of the collision operator. Useful reductions of the collision operator relative to the full multi-species Landau-Fokker-Plank operator are being explored. These are further motivated both by careful consideration of the parameter orderings relevant to two-stream scenarios and by the particular 2D+2V phase space used in the LOKI code. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and LDRD project 17- ERD-081.
Influences of a temperature gradient and fluid inertia on acoustic streaming in a standing wave.
Thompson, Michael W; Atchley, Anthony A; Maccarone, Michael J
2005-04-01
Following the experimental method of Thompson and Atchley [J. Acoust. Soc. Am. 117, 1828-1838 (2005)] laser Doppler anemometry (LDA) is used to investigate the influences of a thermoacoustically induced axial temperature gradient and of fluid inertia on the acoustic streaming generated in a cylindrical standing-wave resonator filled with air driven sinusoidally at a frequency of 308 Hz. The axial component of Lagrangian streaming velocity is measured along the resonator axis and across the diameter at acoustic-velocity amplitudes of 2.7, 4.3, 6.1, and 8.6 m/s at the velocity antinodes. The magnitude of the axial temperature gradient along the resonator wall is varied between approximately 0 and 8 K/m by repeating measurements with the resonator either surrounded by a water jacket, suspended within an air-filled tank, or wrapped in foam insulation. A significant correlation is observed between the temperature gradient and the behavior of the streaming: as the magnitude of the temperature gradient increases, the magnitude of the streaming decreases and the shape of the streaming cell becomes increasingly distorted. The observed steady-state streaming velocities are not in agreement with any available theory.
Apparatus for rapid measurement of aerosol bulk chemical composition
Lee, Yin-Nan E.; Weber, Rodney J.
2003-01-01
An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.
Apparatus for rapid measurement of aerosol bulk chemical composition
Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas
2006-04-18
An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.
Martin, Jeffrey D.; Eberle, Michael; Nakagaki, Naomi
2011-01-01
This report updates a previously published water-quality dataset of 44 commonly used pesticides and 8 pesticide degradates suitable for a national assessment of trends in pesticide concentrations in streams of the United States. Water-quality samples collected from January 1992 through September 2010 at stream-water sites of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program and the National Stream Quality Accounting Network (NASQAN) were compiled, reviewed, selected, and prepared for trend analysis. The principal steps in data review for trend analysis were to (1) identify analytical schedule, (2) verify sample-level coding, (3) exclude inappropriate samples or results, (4) review pesticide detections per sample, (5) review high pesticide concentrations, and (6) review the spatial and temporal extent of NAWQA pesticide data and selection of analytical methods for trend analysis. The principal steps in data preparation for trend analysis were to (1) select stream-water sites for trend analysis, (2) round concentrations to a consistent level of precision for the concentration range, (3) identify routine reporting levels used to report nondetections unaffected by matrix interference, (4) reassign the concentration value for routine nondetections to the maximum value of the long-term method detection level (maxLT-MDL), (5) adjust concentrations to compensate for temporal changes in bias of recovery of the gas chromatography/mass spectrometry (GCMS) analytical method, and (6) identify samples considered inappropriate for trend analysis. Samples analyzed at the USGS National Water Quality Laboratory (NWQL) by the GCMS analytical method were the most extensive in time and space and, consequently, were selected for trend analysis. Stream-water sites with 3 or more water years of data with six or more samples per year were selected for pesticide trend analysis. The selection criteria described in the report produced a dataset of 21,988 pesticide samples at 212 stream-water sites. Only 21,144 pesticide samples, however, are considered appropriate for trend analysis.
Jóźwik, Jagoda; Kałużna-Czaplińska, Joanna
2016-01-01
Currently, analysis of various human body fluids is one of the most essential and promising approaches to enable the discovery of biomarkers or pathophysiological mechanisms for disorders and diseases. Analysis of these fluids is challenging due to their complex composition and unique characteristics. Development of new analytical methods in this field has made it possible to analyze body fluids with higher selectivity, sensitivity, and precision. The composition and concentration of analytes in body fluids are most often determined by chromatography-based techniques. There is no doubt that proper use of knowledge that comes from a better understanding of the role of body fluids requires the cooperation of scientists of diverse specializations, including analytical chemists, biologists, and physicians. This article summarizes current knowledge about the application of different chromatographic methods in analyses of a wide range of compounds in human body fluids in order to diagnose certain diseases and disorders.
Sensors for detecting analytes in fluids
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor); Severin, Erik (Inventor)
1998-01-01
Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.
Sensors for detecting analytes in fluids
NASA Technical Reports Server (NTRS)
Severin, Erik (Inventor); Lewis, Nathan S. (Inventor)
2001-01-01
Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.
Sensors for detecting analytes in fluids
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor); Severin, Erik (Inventor)
1999-01-01
Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.
Sensor arrays for detecting analytes in fluids
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)
1996-01-01
Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g. electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.
Weitz, Karl K [Pasco, WA; Moore, Ronald J [West Richland, WA
2010-07-13
A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.
Experimental and analytical study on fluid whirl and fluid whip modes
NASA Technical Reports Server (NTRS)
Muszynska, Agnes
1994-01-01
Fluid whirl and fluid whip are rotor self-excited, lateral vibrations which occur due to rotor interactions with the surrounding fluid. There exist various modes of fluid whirl and fluid whip. These modes are close to rotor modes corresponding to free vibrations (based on the linear model). Small differences are due to nonlinearities in the system. This paper presents experimental and analytical results on the lowest modes of fluid whirls and fluid whip. Examples of rotors supported in fluid lubricated bearings show the variations of rotor deflection amplitudes and phases in the whirl and whip modes with changes of rotative speeds and/or changes in lumped mass locations along the shaft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, T.; Jones, H.; Wong, K.
The Marshall Islands Environmental Characterization and Dose Assessment Program has recently implemented waste minimization measures to reduce low level radioactive (LLW) and low level mixed (LLWMIXED) waste streams at the Lawrence Livermore National Laboratory (LLNL). Several thousand environmental samples are collected annually from former US nuclear test sites in the Marshall Islands, and returned to LLNL for processing and radiometric analysis. In the past, we analyzed coconut milk directly by gamma-spectrometry after adding formaldehyde (as preservative) and sealing the fluid in metal cans. This procedure was not only tedious and time consuming but generated storage and waste disposal problems. Wemore » have now reduced the number of coconut milk samples required for analysis from 1500 per year to approximately 250, and developed a new analytical procedure which essentially eliminates the associated mixed radioactive waste stream. Coconut milk samples are mixed with a few grams of ammonium-molydophosphate (AMP) which quantitatively scavenges the target radionuclide cesium 137 in an ion-exchange process. The AMP is then separated from the mixture and sealed in a plastic container. The bulk sample material can be disposed of as a non- radioactive non-hazardous waste, and the relatively small amount of AMP conveniently counted by gamma-spectrometry, packaged and stored for future use.« less
Methods and Apparatus for Deployable Swirl Vanes
NASA Technical Reports Server (NTRS)
Shah, Parthiv N. (Inventor)
2017-01-01
An aircraft control structure for drag management includes a nozzle structure configured to exhaust a swirling fluid stream. A plurality of swirl vanes are positioned within the nozzle structure, and an actuation subsystem is configured to cause the plurality of swirl vanes to move from a deployed state to a non-deployed state. In the non-deployed state, the plurality of swirl vanes are substantially flush with the inner surface of the nozzle structure. In the deployed state, the plurality of swirl vanes produce the swirling fluid stream.
The Gulf Stream and Density of Fluids
ERIC Educational Resources Information Center
Landstrom, Erich
2006-01-01
A few kilometers from the shores of Palm Beach County, Florida, is the Gulf Stream current--a remarkable "river" within an ocean. The current's journey across the Atlantic Ocean connects southeast Florida and southwest Great Britain as it streams steadily north at speeds of 97 km a day; moving 100 times as much water as all the rivers on…
Trapping of Embolic Particles in a Vessel Phantom by Cavitation-Enhanced Acoustic Streaming
Maxwell, Adam D.; Park, Simone; Vaughan, Benjamin L.; Cain, Charles A.; Grotberg, James B.; Xu, Zhen
2014-01-01
Cavitation clouds generated by short, high-amplitude, focused ultrasound pulses were previously observed to attract, trap, and erode thrombus fragments in a vessel phantom. This phenomenon may offer a noninvasive method to capture and eliminate embolic fragments flowing through the bloodstream during a cardiovascular intervention. In this article, the mechanism of embolus trapping was explored by particle image velocimetry (PIV). PIV was used to examine the fluid streaming patterns generated by ultrasound in a vessel phantom with and without crossflow of blood-mimicking fluid. Cavitation enhanced streaming, which generated fluid vortices adjacent to the focus. The focal streaming velocity, uf, was as high as 120 cm/s, while mean crossflow velocities, uc, were imposed up to 14 cm/s. When a solid particle 3-4 mm diameter was introduced into crossflow, it was trapped near the focus. Increasing uf promoted particle trapping while increasing uc promoted particle escape. The maximum crossflow Reynolds number at which particles could be trapped, Rec, was approximately linear with focal streaming number, Ref, i.e. Rec = 0.25Ref + 67.44 (R2=0.76) corresponding to dimensional velocities uc=0.084uf + 3.122 for 20 < uf < 120 cm/s. The fluidic pressure map was estimated from PIV and indicated a negative pressure gradient towards the focus, trapping the embolus near this location. PMID:25109407
Roads are a source of auto related pollutants (e.g. gasoline, oil and other engine fluids). When roads are near streams, rain can wash these pollutants directly into the stream, harming both water and habitat quality. This metric measured the length of roads within 30 meters of a stream. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.
Roads are a source of auto related pollutants (e.g. gasoline, oil and other engine fluids). When roads are near streams, rain can wash these pollutants directly into the stream, harming both water and habitat quality. This metric measured the length of roads within 30 meters of a stream. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.
Variable flexure-based fluid filter
Brown, Steve B.; Colston, Jr., Billy W.; Marshall, Graham; Wolcott, Duane
2007-03-13
An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.
Adjustment of pesticide concentrations for temporal changes in analytical recovery, 1992–2010
Martin, Jeffrey D.; Eberle, Michael
2011-01-01
Recovery is the proportion of a target analyte that is quantified by an analytical method and is a primary indicator of the analytical bias of a measurement. Recovery is measured by analysis of quality-control (QC) water samples that have known amounts of target analytes added ("spiked" QC samples). For pesticides, recovery is the measured amount of pesticide in the spiked QC sample expressed as a percentage of the amount spiked, ideally 100 percent. Temporal changes in recovery have the potential to adversely affect time-trend analysis of pesticide concentrations by introducing trends in apparent environmental concentrations that are caused by trends in performance of the analytical method rather than by trends in pesticide use or other environmental conditions. This report presents data and models related to the recovery of 44 pesticides and 8 pesticide degradates (hereafter referred to as "pesticides") that were selected for a national analysis of time trends in pesticide concentrations in streams. Water samples were analyzed for these pesticides from 1992 through 2010 by gas chromatography/mass spectrometry. Recovery was measured by analysis of pesticide-spiked QC water samples. Models of recovery, based on robust, locally weighted scatterplot smooths (lowess smooths) of matrix spikes, were developed separately for groundwater and stream-water samples. The models of recovery can be used to adjust concentrations of pesticides measured in groundwater or stream-water samples to 100 percent recovery to compensate for temporal changes in the performance (bias) of the analytical method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji-Hyung
A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperaturesmore » derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji Hyung
A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperaturesmore » derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.« less
Actinide and lanthanide separation process (ALSEP)
Guelis, Artem V.
2013-01-15
The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA).
Streaming Potential In Rocks Saturated With Water And Oil
NASA Astrophysics Data System (ADS)
Tarvin, J. A.; Caston, A.
2011-12-01
Fluids flowing through porous media generate electrical currents. These currents cause electric potentials, called "streaming potentials." Streaming potential amplitude depends on the applied pressure gradient, on rock and fluid properties, and on the interaction between rock and fluid. Streaming potential has been measured for rocks saturated with water (1) and with water-gas mixtures. (2) Few measurements (3) have been reported for rocks saturated with water-oil mixtures. We measured streaming potential for sandstone and limestone saturated with a mixture of brine and laboratory oil. Cylindrical samples were initially saturated with brine and submerged in oil. Saturation was changed by pumping oil from one end of a sample to the other and then through the sample in the opposite direction. Saturation was estimated from sample resistivity. The final saturation of each sample was determined by heating the sample in a closed container and measuring the pressure. Measurements were made by modulating the pressure difference (of oil) between the ends of a sample at multiple frequencies below 20 Hz. The observed streaming potential is a weak function of the saturation. Since sample conductivity decreases with increasing oil saturation, the electro-kinetic coupling coefficient (Pride's L (4)) decreases with increasing oil saturation. (1) David B. Pengra and Po-zen Wong, Colloids and Surfaces, vol., p. 159 283-292 (1999). (2) Eve S. Sprunt, Tony B. Mercer, and Nizar F. Djabbarah, Geophysics, vol. 59, p. 707-711 (1994). (3) Vinogradov, J., Jackson, M.D., Geophysical Res. L., Vol. 38, Article L01301 (2011). (4) Steve Pride, Phys. Rev. B, vol. 50, pp. 15678-15696 (1994).
Farber, Paul S.; Huang, Hann-Shen
2001-01-01
A method for analyzing metal in a fluid is provided comprising maintaining a first portion of a continuous filter media substrate at a temperature coinciding with the phase in which the metal is to be analyzed; contacting the fluid to a first portion of said substrate to retain the metal on the first portion of said substrate; preventing further contact of the fluid to the first portion of substrate; and contacting the fluid to a second portion of said substrate to retain metal on the second portion of the said substrate while simultaneously analyzing the first portion for metal. Also provided is a device for the simultaneous monitoring and analysis of metal in a fluid comprising a continuous filter media substrate; means for maintaining a first portion of said filter media substrate at a temperature coinciding with the phase in which the metal is to be analyzed; a means for contacting the fluid to the first portion of said substrate; a means for preventing further contact of the fluid to the first portion of substrate; a means for contacting the fluid to a second portion of said substrate to retain metal on the second portion of the said substrate; and means for analyzing the first portion for metal.
NASA Astrophysics Data System (ADS)
Huang, Yibin; Zhan, Hongbin; Knappett, Peter S. K.
2018-04-01
Past studies modeling stream-aquifer interaction commonly account for vertical anisotropy in hydraulic conductivity, but rarely address horizontal anisotropy, which may exist in certain sedimentary environments. If present, horizontal anisotropy will greatly impact stream depletion and the amount of recharge a pumped aquifer captures from the river. This scenario requires a different and somewhat more sophisticated mathematical approach to model and interpret pumping test results than previous models used to describe captured recharge from rivers. In this study, a new mathematical model is developed to describe the spatiotemporal distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model is used to estimate four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. In order to approve the efficacy of the new model, a MATLAB script file is programmed to conduct a four-parameter inversion to estimate the four parameters of concern. By comparing the results of analytical and numerical inversions, the accuracy of estimated results from both inversions is acceptable, but the MATLAB program sometimes becomes problematic because of the difficulty of separating the local minima from the global minima. It appears that the new analytical model of this study is applicable and robust in estimating parameter values for a horizontally anisotropic aquifer laterally bounded by a stream. Besides that, the new model calculates stream depletion rate as a function of stream-bank pumping. Unique to horizontally anisotropic and homogeneous aquifers, the stream depletion rate at any given pumping rate depends closely on the horizontal anisotropy ratio and the direction of the principle transmissivities relative to the stream-bank.
A streaming birefringence study of the flow at the junction of the aorta and the renal arteries
NASA Astrophysics Data System (ADS)
Rankin, G. W.; Sabbah, H. N.; Stein, P. D.
1989-11-01
Streaming birefringence with an organic dye (Milling Yellow) was used to investigate the flow near the junction of the renal arteries and the descending aorta in a model of human vessels. The dye concentration was adjusted to give fluid rheological properties, typical of blood. Steady and pulsatile flow were investigated at branch-to-trunk flow ratios of 0.050 0.350. The flow ratio range over which flow separation and simple secondary flows were identified during systole near the renal ostia are reported. Streaming birefringence has the advantage of allowing visualization of the entire flow field. Also, the fluid rather than suspended particles are observed. An important disadvantage, however, is that three-dimensional flows make interpretation difficult.
Analytic studies of the hard dumbell fluid
NASA Astrophysics Data System (ADS)
Morriss, G. P.; Cummings, P. T.
A closed form analytic theory for the structure of the hard dumbell fluid is introduced and evaluated. It is found to be comparable in accuracy to the reference interaction site approximation (RISA) of Chandler and Andersen.
NASA Astrophysics Data System (ADS)
Shan, Zhendong; Ling, Daosheng; Jing, Liping; Li, Yongqiang
2018-05-01
In this paper, transient wave propagation is investigated within a fluid/saturated porous medium halfspace system with a planar interface that is subjected to a cylindrical P-wave line source. Assuming the permeability coefficient is sufficiently large, analytical solutions for the transient response of the fluid/saturated porous medium halfspace system are developed. Moreover, the analytical solutions are presented in simple closed forms wherein each term represents a transient physical wave, especially the expressions for head waves. The methodology utilised to determine where the head wave can emerge within the system is also given. The wave fields within the fluid and porous medium are first defined considering the behaviour of two compressional waves and one tangential wave in the saturated porous medium and one compressional wave in the fluid. Substituting these wave fields into the interface continuity conditions, the analytical solutions in the Laplace domain are then derived. To transform the solutions into the time domain, a suitable distortion of the contour is provided to change the integration path of the solution, after which the analytical solutions in the Laplace domain are transformed into the time domain by employing Cagniard's method. Numerical examples are provided to illustrate some interesting features of the fluid/saturated porous medium halfspace system. In particular, the interface wave and head waves that propagate along the interface between the fluid and saturated porous medium can be observed.
Low frequency vibration induced streaming in a Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costalonga, M., E-mail: maxime.costalonga@univ-paris-diderot.fr; Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13; Brunet, P.
When an acoustic wave propagates in a fluid, it can generate a second order flow whose characteristic time is much longer than the period of the wave. Within a range of frequency between ten and several hundred Hz, a relatively simple and versatile way to generate streaming flow is to put a vibrating object in the fluid. The flow develops vortices in the viscous boundary layer located in the vicinity of the source of vibrations, leading in turn to an outer irrotational streaming called Rayleigh streaming. Because the flow originates from non-linear time-irreversible terms of the Navier-Stokes equation, this phenomenonmore » can be used to generate efficient mixing at low Reynolds number, for instance in confined geometries. Here, we report on an experimental study of such streaming flow induced by a vibrating beam in a Hele-Shaw cell of 2 mm span using long exposure flow visualization and particle-image velocimetry measurements. Our study focuses especially on the effects of forcing frequency and amplitude on flow dynamics. It is shown that some features of this flow can be predicted by simple scaling arguments and that this vibration-induced streaming facilitates the generation of vortices.« less
Electrohydrodynamic and flow induced tip-streaming
NASA Astrophysics Data System (ADS)
Collins, Robert
2008-11-01
A liquid subjected to a strong electric field emits thin fluid jets from conical structures (Taylor cones) that form at its surface. Such behavior has both practical and fundamental implications, e.g. for raindrops in thunderclouds and in electrospray mass spectrometry. Theoretical analysis of the temporal development of such electrohydrodynamic (EHD) tip- streaming phenomena has been elusive given the large disparity in length scales between the macroscopic drops/films and the microscopic (nanoscopic) jets. Here, simulation and experiment are used to investigate the mechanisms of EHD tip-streaming from a film of finite conductivity. In the simulations, the full Taylor-Melcher leaky-dielectric model, which accounts for charge relaxation, is solved. Simulations show that tip- streaming does not occur for perfectly conducting or perfectly insulating liquids. Scaling laws for sizes of drops produced from the breakup of the thin jets is developed. Further, simulations demonstrate the critical role played by electrically induced surface shear stresses in the inception of tip-streaming. This invites a comparison to flow focusing, i.e. tip-streaming induced by co-flowing two fluids. The latter phenomenon is also investigated by simulation. In collaboration with Ronald Suryo, Exxon-Mobil; and Jeremy Jones, Michael Harris, and Osman Basaran, Purdue University.
Martin, Jeffrey D.; Norman, Julia E.; Sandstrom, Mark W.; Rose, Claire E.
2017-09-06
U.S. Geological Survey monitoring programs extensively used two analytical methods, gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry, to measure pesticides in filtered water samples during 1992–2012. In October 2012, the monitoring programs began using direct aqueous-injection liquid chromatography tandem mass spectrometry as a new analytical method for pesticides. The change in analytical methods, however, has the potential to inadvertently introduce bias in analysis of datasets that span the change.A field study was designed to document performance of the new method in a variety of stream-water matrices and to quantify any potential changes in measurement bias or variability that could be attributed to changes in analytical methods. The goals of the field study were to (1) summarize performance (bias and variability of pesticide recovery) of the new method in a variety of stream-water matrices; (2) compare performance of the new method in laboratory blank water (laboratory reagent spikes) to that in a variety of stream-water matrices; (3) compare performance (analytical recovery) of the new method to that of the old methods in a variety of stream-water matrices; (4) compare pesticide detections and concentrations measured by the new method to those of the old methods in a variety of stream-water matrices; (5) compare contamination measured by field blank water samples in old and new methods; (6) summarize the variability of pesticide detections and concentrations measured by the new method in field duplicate water samples; and (7) identify matrix characteristics of environmental water samples that adversely influence the performance of the new method. Stream-water samples and a variety of field quality-control samples were collected at 48 sites in the U.S. Geological Survey monitoring networks during June–September 2012. Stream sites were located across the United States and included sites in agricultural and urban land-use settings, as well as sites on major rivers.The results of the field study identified several challenges for the analysis and interpretation of data analyzed by both old and new methods, particularly when data span the change in methods and are combined for analysis of temporal trends in water quality. The main challenges identified are large (greater than 30 percent), statistically significant differences in analytical recovery, detection capability, and (or) measured concentrations for selected pesticides. These challenges are documented and discussed, but specific guidance or statistical methods to resolve these differences in methods are beyond the scope of the report. The results of the field study indicate that the implications of the change in analytical methods must be assessed individually for each pesticide and method.Understanding the possible causes of the systematic differences in concentrations between methods that remain after recovery adjustment might be necessary to determine how to account for the differences in data analysis. Because recoveries for each method are independently determined from separate reference standards and spiking solutions, the differences might be due to an error in one of the reference standards or solutions or some other basic aspect of standard procedure in the analytical process. Further investigation of the possible causes is needed, which will lead to specific decisions on how to compensate for these differences in concentrations in data analysis. In the event that further investigations do not provide insight into the causes of systematic differences in concentrations between methods, the authors recommend continuing to collect and analyze paired environmental water samples by both old and new methods. This effort should be targeted to seasons, sites, and expected concentrations to supplement those concentrations already assessed and to compare the ongoing analytical recovery of old and new methods to those observed in the summer and fall of 2012.
Culture-Sensitive Functional Analytic Psychotherapy
ERIC Educational Resources Information Center
Vandenberghe, L.
2008-01-01
Functional analytic psychotherapy (FAP) is defined as behavior-analytically conceptualized talk therapy. In contrast to the technique-oriented educational format of cognitive behavior therapy and the use of structural mediational models, FAP depends on the functional analysis of the moment-to-moment stream of interactions between client and…
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.; Jones, William Prichard; Huerta, Robert H.
1961-01-01
Reported here are the results of a systematic study of a model of the direct-current electromagnetic pump. Of particular interest is the motion imparted to the electrically conducting fluid in the rectangular duct by the body forces that result from applied electric and magnetic fields. The purpose of the investigation is to associate the observed fluid motion with the characteristics of the electric and magnetic fields which cause them. The experiments were carried out with electromagnetic fields that moved a stream of copper sulphate solution through a clear plastic channel. Ink filaments injected into the stream ahead of the region where the fields were applied identify the motion of the fluid elements as they passed through the test channel. Several magnetic field configurations were employed with a two-dimensional electric current distribution in order to study and identify the magnitude of some of the effects on the fluid motion brought about by nonuniformities in the electromagnetic fields. A theoretical analysis was used to guide and evaluate the identification of the several fluid motions observed. The agreement of the experimental data with the theoretical predictions is satisfactory. It is found that sizable variations in the velocity profile and pressure head of the output stream are produced by the shape of the electric and magnetic fields.
Process for off-gas particulate removal and apparatus therefor
Carl, D.E.
1997-10-21
In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, M.S.; Gent, C.A.; Bradley, L.A.
1989-01-01
A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho
Cytoskeletal Dynamics and Fluid Flow in Drosophila Oocytes
NASA Astrophysics Data System (ADS)
de Canio, Gabriele; Goldstein, Raymond; Lauga, Eric
2015-11-01
The biological world includes a broad range of phenomena in which transport in a fluid plays a central role. Among these is the fundamental issue of cell polarity arising during development, studied historically using the model organism Drosophila melanogaster. The polarity of the oocyte is known to be induced by the translocation of mRNAs by kinesin motor proteins along a dense microtubule cytoskeleton, a process which also induces cytoplasmic streaming. Recent experimental observations have revealed the remarkable fluid-structure interactions that occur as the streaming flows back-react on the microtubules. In this work we use a combination of theory and simulations to address the interplay between the fluid flow and the configuration of cytoskeletal filaments leading to the directed motion inside the oocyte. We show in particular that the mechanical coupling between the fluid motion and the orientation of the microtubules can lead to a transition to coherent motion within the oocyte, as observed. Supported by EPSRC and ERC Advanced Investigator Grant 247333.
40 CFR 63.166 - Standards: Sampling connection systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fluid to a process; or (3) Be designed and operated to capture and transport the purged process fluid to a control device that complies with the requirements of § 63.172 of this subpart; or (4) Collect... of subpart G of this part applicable to group 1 wastewater streams. If the purged process fluid does...
40 CFR 63.166 - Standards: Sampling connection systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fluid to a process; or (3) Be designed and operated to capture and transport the purged process fluid to a control device that complies with the requirements of § 63.172 of this subpart; or (4) Collect... of subpart G of this part applicable to group 1 wastewater streams. If the purged process fluid does...
Numerical study of fluid motion in bioreactor with two mixers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheleva, I., E-mail: izheleva@uni-ruse.bg; Lecheva, A., E-mail: alecheva@uni-ruse.bg
2015-10-28
Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.
Stegmann, Benedikt; Dörfelt, Anett; Haen, Ekkehard
2016-02-01
For psychostimulants, a marked individual variability in the dose-response relationship and large differences in plasma concentrations after similar doses are known. Therefore, optimizing the efficacy of these drugs is at present the most promising way to exploit their full pharmacological potential. Moreover, it seems important to examine oral fluid as less invasive biological matrix for its benefit in therapeutic drug monitoring for patients with hyperkinetic disorder. A high-performance liquid chromatography method for quantification of methylphenidate (MPH), dexamphetamine (DXA), and atomoxetine in serum and oral fluid has been developed and validated. The analytical procedure involves liquid-liquid extraction, derivatization with 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride as a label and chromatographic separation on a Phenomenex Gemini-NX C18 analytical column using gradient elution with water-acetonitrile. The derivatized analytes were detected at 330 nm (excitation wavelength) and 440 nm (emission wavelength). To examine the oral fluid/serum ratios, oral fluid samples were collected simultaneously to blood samples from patients with hyperkinetic disorder. The method allows quantification of all analytes in serum and oral fluid within 16 minutes under the same or similar conditions. Oral fluid/serum ratios for MPH and DXA were highly variable and showed an accumulation of these drugs in oral fluid. The developed method covers the determination of MPH, DXA, and atomoxetine concentrations in serum and oral fluid after the intake of therapeutic doses. Oral fluid samples are useful for the qualitative detection of MPH and DXA.
Computational Fluid Dynamics (CFD) simulations of a Heisenberg Vortex Tube
NASA Astrophysics Data System (ADS)
Bunge, Carl; Sitaraman, Hariswaran; Leachman, Jake
2017-11-01
A 3D Computational Fluid Dynamics (CFD) simulation of a Heisenberg Vortex Tube (HVT) is performed to estimate cooling potential with cryogenic hydrogen. The main mechanism driving operation of the vortex tube is the use of fluid power for enthalpy streaming in a highly turbulent swirl in a dual-outlet tube. This enthalpy streaming creates a temperature separation between the outer and inner regions of the flow. Use of a catalyst on the peripheral wall of the centrifuge enables endothermic conversion of para-ortho hydrogen to aid primary cooling. A κ- ɛ turbulence model is used with a cryogenic, non-ideal equation of state, and para-orthohydrogen species evolution. The simulations are validated with experiments and strategies for parametric optimization of this device are presented.
A coin vibrational motor swimming at low Reynolds number
NASA Astrophysics Data System (ADS)
Quillen, Alice C.; Askari, Hesam; Kelley, Douglas H.; Friedmann, Tamar; Oakes, Patrick W.
2016-12-01
Low-cost coin vibrational motors, used in haptic feedback, exhibit rotational internal motion inside a rigid case. Because the motor case motion exhibits rotational symmetry, when placed into a fluid such as glycerin, the motor does not swim even though its oscillatory motions induce steady streaming in the fluid. However, a piece of rubber foam stuck to the curved case and giving the motor neutral buoyancy also breaks the rotational symmetry allowing it to swim. We measured a 1 cm diameter coin vibrational motor swimming in glycerin at a speed of a body length in 3 seconds or at 3 mm/s. The swim speed puts the vibrational motor in a low Reynolds number regime similar to bacterial motility, but because of the oscillations of the motor it is not analogous to biological organisms. Rather the swimming vibrational motor may inspire small inexpensive robotic swimmers that are robust as they contain no external moving parts. A time dependent Stokes equation planar sheet model suggests that the swim speed depends on a steady streaming velocity V stream Re s 1/2 U 0 where U 0 is the velocity of surface oscillations, and streaming Reynolds number Re s = U 0 2 /( ων) for motor angular frequency ω and fluid kinematic viscosity ν.
Improved understanding of the relationship between hydraulic properties and streaming potentials
NASA Astrophysics Data System (ADS)
Cassiani, G.; Brovelli, A.
2009-12-01
Streaming potential (SP) measurements have been satisfactorily used in a number of recent studies as a non-invasive tool to monitor fluid movement in both the vadose and the saturated zone. SPs are generated from the coupling between two independent physical processes oc-curring at the pore-level, namely water flow and excess of ions at the negatively charged solid matrix-water interface. The intensity of the measured potentials depends on physical proper-ties of the medium, including the internal micro-geometry of the system, the charge density of the interface and the composition of the pore fluid, which affects its ionic strength, pH and redox potential. The goal of this work is to investigate whether a relationship between the intensity of the SPs and the saturated hydraulic conductivity can be identified. Both properties are - at least to some extent - dependent on the pore-size distribution and connectivity of the pores, and there-fore some degree of correlation is expected. We used a pore-scale numerical model previously developed to simulate both the bulk hydraulic conductivity and the intensity of the SPs gener-ated in a three-dimensional pore-network. The chemical-physical properties of both the inter-face (Zeta-potential) and of the aqueous phase are computed using an analytical, physically based model that has shown good agreement with experimental data. Modelling results were satisfactorily compared with experimental data, showing that the model, although simplified retains the key properties and mechanisms that control SP generation. A sensitivity analysis with respect to the key geometrical and chemical parameters was conducted to evaluate how the correlation between the two studied variables changes and to ascertain whether the bulk hydraulic conductivity can be estimated from SP measurements alone.
A perspective on stream-catchment connections
Bencala, Kenneth E.
1993-01-01
Ecological study of the hyporheic zone is leading to recognition of a need for additional hydrologic understanding. Some of this understanding can be obtained by viewing the hyporheic zone as a succession of isolated boxes adjacent to the stream. Further understanding, particularly relevant to catchment-scale ecology, may come from studies focussed on the fluid mechanics of the flow-path connections between streams and their catchments.
El-Dib, Yusry O; Ghaly, Ahmed Y
2004-01-01
The present work studies Kelvin-Helmholtz waves propagating between two magnetic fluids. The system is composed of two semi-infinite magnetic fluids streaming throughout porous media. The system is influenced by an oblique magnetic field. The solution of the linearized equations of motion under the boundary conditions leads to deriving the Mathieu equation governing the interfacial displacement and having complex coefficients. The stability criteria are discussed theoretically and numerically, from which stability diagrams are obtained. Regions of stability and instability are identified for the magnetic fields versus the wavenumber. It is found that the increase of the fluid density ratio, the fluid velocity ratio, the upper viscosity, and the lower porous permeability play a stabilizing role in the stability behavior in the presence of an oscillating vertical magnetic field or in the presence of an oscillating tangential magnetic field. The increase of the fluid viscosity plays a stabilizing role and can be used to retard the destabilizing influence for the vertical magnetic field. Dual roles are observed for the fluid velocity in the stability criteria. It is found that the field frequency plays against the constant part for the magnetic field.
Inertial migration of elastic particles in a pressure-driven power-law fluid
NASA Astrophysics Data System (ADS)
Bowie, Samuel; Alexeev, Alexander
2016-11-01
Using three-dimensional computer simulations, we study the cross-stream migration of deformable particles in a channel filled with a non-Newtonian fluid driven by a pressure gradient. Our numerical approach integrates lattice Boltzmann method and lattice spring method in order to model fluid structural interactions of the elastic particle and the surrounding power fluid in the channel. The particles are modeled as elastic shells filled with a viscous fluid that are initially spherical. We focus on the regimes where the inertial effects cannot be neglected and cause cross-stream drift of particles. We probe the flow with different power law indexes including both the shear thickening and thinning fluids. We also examine migration of particles of with different elasticity and relative size. To isolate the non-Newtonian effects on particle migration, we compare the results with the inertial migration results found in the case where the channel is filled with a simple Newtonian fluid. The results can be useful for applications requiring high throughput separation, sorting, and focusing of both synthetic particles and biological cells in microfluidic devices. Financial support provided by National Science Foundation (NSF) Grant No. CMMI1538161.
A commercialized, continuous flow fiber optic sensor for trichloroethylene and haloforms
NASA Technical Reports Server (NTRS)
Wells, James C.; Johnson, Mark D.
1994-01-01
Purus, Inc. has commercialized a fiber optic chemical sensor using technology developed by Lawrence Livermore National Laboratory and licensed from The University of California. The basis for the sensor is the development of color within a reagent when exposed to an analyte. The sensor consists of an optrode, reagent delivery and recover system, fiber optic transmitter-receiver, controller, and display. Reagent is pumped through the optrode. Analyte diffuses across a gas permeable membrane and reacts with the reagent to form a colored product. The colored product is detected by measuring the absorbance of light from a 568 nm diode. Reagents are currently available for TCE and trihalomethanes. Initial reagent chemistry is based on the Fujiwara alkaline pyridine reaction. The optrode contacts only gas streams, but the volatility of the current analytes also allows measurements of aqueous streams, without being affected by aqueous interferents that are non-volatile. Sensitivity of the sensor has been demonstrated to 5 ppb aqueous solutions and 0.1 ppmv in flowing gas streams.
Linear nozzle with tailored gas plumes
Leon, David D.; Kozarek, Robert L.; Mansour, Adel; Chigier, Norman
2001-01-01
There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.
Linear nozzle with tailored gas plumes and method
Leon, David D.; Kozarek, Robert L.; Mansour, Adel; Chigier, Norman
1999-01-01
There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.
Linear nozzle with tailored gas plumes
Kozarek, Robert L.; Straub, William D.; Fischer, Joern E.; Leon, David D.
2003-01-01
There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.
Workflow-Oriented Cyberinfrastructure for Sensor Data Analytics
NASA Astrophysics Data System (ADS)
Orcutt, J. A.; Rajasekar, A.; Moore, R. W.; Vernon, F.
2015-12-01
Sensor streams comprise an increasingly large part of Earth Science data. Analytics based on sensor data require an easy way to perform operations such as acquisition, conversion to physical units, metadata linking, sensor fusion, analysis and visualization on distributed sensor streams. Furthermore, embedding real-time sensor data into scientific workflows is of growing interest. We have implemented a scalable networked architecture that can be used to dynamically access packets of data in a stream from multiple sensors, and perform synthesis and analysis across a distributed network. Our system is based on the integrated Rule Oriented Data System (irods.org), which accesses sensor data from the Antelope Real Time Data System (brtt.com), and provides virtualized access to collections of data streams. We integrate real-time data streaming from different sources, collected for different purposes, on different time and spatial scales, and sensed by different methods. iRODS, noted for its policy-oriented data management, brings to sensor processing features and facilities such as single sign-on, third party access control lists ( ACLs), location transparency, logical resource naming, and server-side modeling capabilities while reducing the burden on sensor network operators. Rich integrated metadata support also makes it straightforward to discover data streams of interest and maintain data provenance. The workflow support in iRODS readily integrates sensor processing into any analytical pipeline. The system is developed as part of the NSF-funded Datanet Federation Consortium (datafed.org). APIs for selecting, opening, reaping and closing sensor streams are provided, along with other helper functions to associate metadata and convert sensor packets into NetCDF and JSON formats. Near real-time sensor data including seismic sensors, environmental sensors, LIDAR and video streams are available through this interface. A system for archiving sensor data and metadata in NetCDF format has been implemented and will be demonstrated at AGU.
NASA Astrophysics Data System (ADS)
Araya, F. Z.; Abdul-Aziz, O. I.
2017-12-01
This study utilized a systematic data analytics approach to determine the relative linkages of stream dissolved oxygen (DO) with the hydro-climatic and biogeochemical drivers across the U.S. Pacific Coast. Multivariate statistical techniques of Pearson correlation matrix, principal component analysis, and factor analysis were applied to a complex water quality dataset (1998-2015) at 35 water quality monitoring stations of USGS NWIS and EPA STORET. Power-law based partial least squares regression (PLSR) models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to reliably estimate the relative linkages by resolving multicollinearity (Nash-Sutcliffe Efficiency, NSE = 0.50-0.94). Based on the dominant drivers, four environmental regimes have been identified and adequately described the system-data variances. In Pacific North West and Southern California, water temperature was the most dominant driver of DO in majority of the streams. However, in Central and Northern California, stream DO was controlled by multiple drivers (i.e., water temperature, pH, stream flow, and total phosphorus), exhibiting a transitional environmental regime. Further, total phosphorus (TP) appeared to be the limiting nutrient for most streams. The estimated linkages and insights would be useful to identify management priorities to achieve healthy coastal stream ecosystems across the Pacific Coast of U.S.A. and similar regions around the world. Keywords: Data analytics, water quality, coastal streams, dissolved oxygen, environmental regimes, Pacific Coast, United States.
Nelson, Kjell E.; Foley, Jennifer O.; Yager, Paul
2008-01-01
We describe a novel microfluidic immunoassay method based on the diffusion of a small molecule analyte into a parallel-flowing stream containing cognate antibody. This interdiffusion results in a steady-state gradient of antibody binding site occupancy transverse to convective flow. In contrast to the diffusion immunoassay (Hatch et al. Nature Biotechnology,19:461−465 (2001)), this antibody occupancy gradient is interrogated by a sensor surface coated with a functional analog of the analyte. Antibodies with at least one unoccupied binding site may specifically bind to this functionalized surface, leading to a quantifiable change in surface coverage by the antibody. SPR imaging is used to probe the spatial distribution of antibody binding to the surface and, therefore, the outcome of the assay. We show that the pattern of antibody binding to the SPR sensing surface correlates with the concentration of a model analyte (phenytoin) in the sample stream. Using an inexpensive disposable microfluidic device, we demonstrate assays for phenytoin ranging in concentration from 75 to 1000 nM in phosphate buffer. At a total volumetric flow rate of 90 nL/sec, the assays are complete within 10 minutes. Inclusion of an additional flow stream on the side of the antibody stream opposite to that of the sample enables simultaneous calibration of the assay. This assay method is suitable for rapid quantitative detection of low-molecular weight analytes for point-of-care diagnostic instrumentation. PMID:17437332
NASA Astrophysics Data System (ADS)
Gulamali, M. Y.; Saunders, J. H.; Jackson, M. D.; Pain, C. C.
2009-04-01
We present results from a new computational multi-fluid dynamics code, designed to model the transport of heat, mass and chemical species during flow of single or multiple immiscible fluid phases through porous media, including gravitational effects and compressibility. The model also captures the electrical phenomena which may arise through electrokinetic, electrochemical and electrothermal coupling. Building on the advanced computational technology of the Imperial College Ocean Model, this new development leads the way towards a complex multiphase code using arbitrary unstructured and adaptive meshes, and domains decomposed to run in parallel over a cluster of workstations or a dedicated parallel computer. These facilities will allow efficient and accurate modelling of multiphase flows which capture large- and small-scale transport phenomena, while preserving the important geology and/or surface topology to make the results physically meaningful and realistic. Applications include modelling of contaminant transport in aquifers, multiphase flow during hydrocarbon production, migration of carbon dioxide during sequestration, and evaluation of the design and safety of nuclear reactors. Simulations of the streaming potential resulting from multiphase flow in laboratory- and field-scale models demonstrate that streaming potential signals originate at fluid fronts, and at geologic boundaries where fluid saturation changes. This suggests that downhole measurements of streaming potential may be used to inform production strategies in oil and gas reservoirs. As water encroaches on an oil production well, the streaming-potential signal associated with the water front encompasses the well even when the front is up to 100 m away, so the potential measured at the well starts to change significantly relative to a distant reference electrode. Variations in the geometry of the encroaching water front could be characterized using an array of electrodes positioned along the well, but a good understanding of the local reservoir geology will be required to identify signals caused by the front. The streaming potential measured at a well will be maximized in low-permeability reservoirs produced at a high rate, and in thick reservoirs with low shale content.
Emergence of kinetic behavior in streaming ultracold neutral plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuillen, P.; Castro, J.; Bradshaw, S. J.
2015-04-15
We create streaming ultracold neutral plasmas by tailoring the photoionizing laser beam that creates the plasma. By varying the electron temperature, we control the relative velocity of the streaming populations, and, in conjunction with variation of the plasma density, this controls the ion collisionality of the colliding streams. Laser-induced fluorescence is used to map the spatially resolved density and velocity distribution function for the ions. We identify the lack of local thermal equilibrium and distinct populations of interpenetrating, counter-streaming ions as signatures of kinetic behavior. Experimental data are compared with results from a one-dimensional, two-fluid numerical simulation.
NASA Technical Reports Server (NTRS)
Bellan, J.
1999-01-01
A critical review of recent investigations in the real of supercritical (and subcritical) fluid behavior is presented with the goal of obtaining a perspective on the peculiarities of high pressure observations.
Isotope specific arbitrary material flow meter
Barty, Christopher P. J.; Post, John C.; Jones, Edwin
2016-10-25
A laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.
Method and apparatus for jet-assisted drilling or cutting
Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz
2012-09-04
An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.
Method and apparatus for jet-assisted drilling or cutting
Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz
2013-07-02
An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.
Cutting fluid mists that are generated during machining processes represent a significant waste stream as well as a health hazard to humans. Epidemiological studies have shown a link between worker exposure to cutting fluid mist and an increase in respiratory ailments and seve...
Gas powered fluid gun with recoil mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubelich, Mark C.; Yonas, Gerold
A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided by a cavitating venturi that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated.
Sensor arrays for detecting analytes in fluids
NASA Technical Reports Server (NTRS)
Freund, Michael S. (Inventor); Lewis, Nathan S. (Inventor)
2000-01-01
A sensor array for detecting an analyte in a fluid, comprising at least first and second chemically sensitive resistors electrically connected to an electrical measuring apparatus, wherein each of the chemically sensitive resistors comprises a mixture of nonconductive material and a conductive material. Each resistor provides an electrical path through the mixture of nonconductive material and the conductive material. The resistors also provide a difference in resistance between the conductive elements when contacted with a fluid comprising an analyte at a first concentration, than when contacted with an analyte at a second different concentration. A broad range of analytes can be detected using the sensors of the present invention. Examples of such analytes include, but are not limited to, alkanes, alkenes, alkynes, dienes, alicyclic hydrocarbons, arenes, alcohols, ethers, ketones, aldehydes, carbonyls, carbanions, polynuclear aromatics, organic derivatives, biomolecules, sugars, isoprenes, isoprenoids and fatty acids. Moreover, applications for the sensors of the present invention include, but are not limited to, environmental toxicology, remediation, biomedicine, material quality control, food monitoring and agricultural monitoring.
NASA Astrophysics Data System (ADS)
Wu, Haiqing; Bai, Bing; Li, Xiaochun
2018-02-01
Existing analytical or approximate solutions that are appropriate for describing the migration mechanics of CO2 and the evolution of fluid pressure in reservoirs do not consider the high compressibility of CO2, which reduces their calculation accuracy and application value. Therefore, this work first derives a new governing equation that represents the movement of complex fluids in reservoirs, based on the equation of continuity and the generalized Darcy's law. A more rigorous definition of the coefficient of compressibility of fluid is then presented, and a power function model (PFM) that characterizes the relationship between the physical properties of CO2 and the pressure is derived. Meanwhile, to avoid the difficulty of determining the saturation of fluids, a method that directly assumes the average relative permeability of each fluid phase in different fluid domains is proposed, based on the theory of gradual change. An advanced analytical solution is obtained that includes both the partial miscibility and the compressibility of CO2 and brine in evaluating the evolution of fluid pressure by integrating within different regions. Finally, two typical sample analyses are used to verify the reliability, improved nature and universality of this new analytical solution. Based on the physical characteristics and the results calculated for the examples, this work elaborates the concept and basis of partitioning for use in further work.
Body fluid matrix evaluation on a Roche cobas 8000 system.
Owen, William E; Thatcher, Mindy L; Crabtree, Karolyn J; Greer, Ryan W; Strathmann, Frederick G; Straseski, Joely A; Genzen, Jonathan R
2015-09-01
Chemical analysis of body fluids is commonly requested by physicians. Because most commercial FDA-cleared clinical laboratory assays are not validated by diagnostic manufacturers for "non-serum" and "non-plasma" specimens, laboratories may need to complete additional validation studies to comply with regulatory requirements regarding body fluid testing. The objective of this report is to perform recovery studies to evaluate potential body fluid matrix interferences for commonly requested chemistry analytes. Using an IRB-approved protocol, previously collected clinical body fluid specimens (biliary/hepatic, cerebrospinal, dialysate, drain, pancreatic, pericardial, peritoneal, pleural, synovial, and vitreous) were de-identified and frozen (-20°C) until experiments were performed. Recovery studies (spiking with high concentration serum, control, and/or calibrator) were conducted using 10% spiking solution by volume; n=5 specimens per analyte/body fluid investigated. Specimens were tested on a Roche cobas 8000 system (c502, c702, e602, and ISE modules). In all 80 analyte/body fluid combinations investigated (including amylase, total bilirubin, urea nitrogen, carbohydrate antigen 19-9, carcinoembryonic antigen, cholesterol, chloride, creatinine, glucose, potassium, lactate dehydrogenase, lipase, rheumatoid factor, sodium, total protein, triglycerides, and uric acid), the average percent recovery was within predefined acceptable limits (less than ±10% from the calculated ideal recovery). The present study provides evidence against the presence of any systematic matrix interference in the analyte/body fluid combinations investigated on the Roche cobas 8000 system. Such findings support the utility of ongoing body fluid validation initiatives conducted to maintain compliance with regulatory requirements. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Arsenic in rocks and stream sediments of the central Appalachian Basin, Kentucky
Tuttle, Michele L.W.; Goldhaber, Martin B.; Ruppert, Leslie F.; Hower, James C.
2002-01-01
Arsenic (As) enrichment in coal and stream sediments has been documented in the southern Appalachian basin (see Goldhaber and others, submitted) and is attributed to interaction of rocks and coal with metamorphic fluids generated during the Allegheny Orogeny (late Paleozoic). Similarly derived fluids are expected to affect the coal and in the Kentucky Appalachian Basin to the north as well. In addition, similar processes may have influenced the Devonian oil shale on the western margin of the basin. The major goals of this study are to determine the effect such fluids had on rocks in the Kentucky Appalachian basin (fig. 1), and to understand the geochemical processes that control trace-metal source, residence, and mobility within the basin. This report includes data presented in a poster at the USGS workshop on arsenic (February 21 and 22, 2001), new NURE stream sediment data3 , and field data from a trip in April 2001. Although data for major and minor elements and all detectable trace metals are reported in the Appendices, the narrative of this report primarily focuses on arsenic.
Pattern-formation under acoustic driving forces
NASA Astrophysics Data System (ADS)
Valverde, Jose Manuel
2015-07-01
Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.
Relativistic centrifugal instability
NASA Astrophysics Data System (ADS)
Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.
2018-03-01
Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.
Enabling fluorescent biosensors for the forensic identification of body fluids.
Frascione, Nunzianda; Gooch, James; Daniel, Barbara
2013-11-12
The search for body fluids often forms a crucial element of many forensic investigations. Confirming fluid presence at a scene can not only support or refute the circumstantial claims of a victim, suspect or witness, but may additionally provide a valuable source of DNA for further identification purposes. However, current biological fluid testing techniques are impaired by a number of well-characterised limitations; they often give false positives, cannot be used simultaneously, are sample destructive and lack the ability to visually locate fluid depositions. These disadvantages can negatively affect the outcome of a case through missed or misinterpreted evidence. Biosensors are devices able to transduce a biological recognition event into a measurable signal, resulting in real-time analyte detection. The use of innovative optical sensing technology may enable the highly specific and non-destructive detection of biological fluid depositions through interaction with several fluid-endogenous biomarkers. Despite considerable impact in a variety of analytical disciplines, biosensor application within forensic analyses may be considered extremely limited. This article aims to explore a number of prospective biosensing mechanisms and to outline the challenges associated with their adaptation towards detection of fluid-specific analytes.
VPipe: Virtual Pipelining for Scheduling of DAG Stream Query Plans
NASA Astrophysics Data System (ADS)
Wang, Song; Gupta, Chetan; Mehta, Abhay
There are data streams all around us that can be harnessed for tremendous business and personal advantage. For an enterprise-level stream processing system such as CHAOS [1] (Continuous, Heterogeneous Analytic Over Streams), handling of complex query plans with resource constraints is challenging. While several scheduling strategies exist for stream processing, efficient scheduling of complex DAG query plans is still largely unsolved. In this paper, we propose a novel execution scheme for scheduling complex directed acyclic graph (DAG) query plans with meta-data enriched stream tuples. Our solution, called Virtual Pipelined Chain (or VPipe Chain for short), effectively extends the "Chain" pipelining scheduling approach to complex DAG query plans.
Acoustic-Structure Interaction in Rocket Engines: Validation Testing
NASA Technical Reports Server (NTRS)
Davis, R. Benjamin; Joji, Scott S.; Parks, Russel A.; Brown, Andrew M.
2009-01-01
While analyzing a rocket engine component, it is often necessary to account for any effects that adjacent fluids (e.g., liquid fuels or oxidizers) might have on the structural dynamics of the component. To better characterize the fully coupled fluid-structure system responses, an analytical approach that models the system as a coupled expansion of rigid wall acoustic modes and in vacuo structural modes has been proposed. The present work seeks to experimentally validate this approach. To experimentally observe well-coupled system modes, the test article and fluid cavities are designed such that the uncoupled structural frequencies are comparable to the uncoupled acoustic frequencies. The test measures the natural frequencies, mode shapes, and forced response of cylindrical test articles in contact with fluid-filled cylindrical and/or annular cavities. The test article is excited with a stinger and the fluid-loaded response is acquired using a laser-doppler vibrometer. The experimentally determined fluid-loaded natural frequencies are compared directly to the results of the analytical model. Due to the geometric configuration of the test article, the analytical model is found to be valid for natural modes with circumferential wave numbers greater than four. In the case of these modes, the natural frequencies predicted by the analytical model demonstrate excellent agreement with the experimentally determined natural frequencies.
Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method
Bruno, Thomas J; Allen, Samuel
2013-01-01
One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC. PMID:26401423
Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method.
Bruno, Thomas J; Allen, Samuel
2013-01-01
One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC.
Kang, Yungmo
2005-10-04
An annular heat recuperator is formed with alternating hot and cold cells to separate counter-flowing hot and cold fluid streams. Each cold cell has a fluid inlet formed in the inner diameter of the recuperator near one axial end, and a fluid outlet formed in the outer diameter of the recuperator near the other axial end to evenly distribute fluid mass flow throughout the cell. Cold cells may be joined with the outlet of one cell fluidly connected to the inlet of an adjacent downstream cell to form multi-stage cells.
Effective discharge analysis of ecological processes in streams
Doyle, Martin W.; Stanley, Emily H.; Strayer, David L.; Jacobson, Robert B.; Schmidt, John C.
2005-01-01
Discharge is a master variable that controls many processes in stream ecosystems. However, there is uncertainty of which discharges are most important for driving particular ecological processes and thus how flow regime may influence entire stream ecosystems. Here the analytical method of effective discharge from fluvial geomorphology is used to analyze the interaction between frequency and magnitude of discharge events that drive organic matter transport, algal growth, nutrient retention, macroinvertebrate disturbance, and habitat availability. We quantify the ecological effective discharge using a synthesis of previously published studies and modeling from a range of study sites. An analytical expression is then developed for a particular case of ecological effective discharge and is used to explore how effective discharge varies within variable hydrologic regimes. Our results suggest that a range of discharges is important for different ecological processes in an individual stream. Discharges are not equally important; instead, effective discharge values exist that correspond to near modal flows and moderate floods for the variable sets examined. We suggest four types of ecological response to discharge variability: discharge as a transport mechanism, regulator of habitat, process modulator, and disturbance. Effective discharge analysis will perform well when there is a unique, essentially instantaneous relationship between discharge and an ecological process and poorly when effects of discharge are delayed or confounded by legacy effects. Despite some limitations the conceptual and analytical utility of the effective discharge analysis allows exploring general questions about how hydrologic variability influences various ecological processes in streams.
System for adding sulfur to a fuel cell stack system for improved fuel cell stability
Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G
2013-08-13
A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munson, Matthew S.; Karp, Eric M.; Nimlos, Claire T.
Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment.more » As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.« less
Munson, Matthew S.; Karp, Eric M.; Nimlos, Claire T.; ...
2016-09-27
Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment.more » As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.« less
Courtade-Saïdi, Monique; Fleury Feith, Jocelyne
2015-10-01
The pre-analytical step includes sample collection, preparation, transportation and storage in the pathology unit where the diagnosis is performed. The pathologist ensures that pre-analytical conditions are in line with expectations. The lack of standardization for handling cytological samples makes this pre-analytical step difficult to harmonize. Moreover, this step depends on the nature of the sample: fresh liquid or fixed material, air-dried smears, liquid-based cytology. The aim of the study was to review the different practices in French structures of pathology on the pre-analytical phase concerning cytological fluids such as broncho-alveolar lavage (BALF), serous fluids and urine. A survey was conducted on the basis of the pre-analytical chapter of the ISO 15189 and sent to 191 French pathological structures (105 public and 86 private). Fifty-six laboratories replied to the survey. Ninety-five per cent have a computerized management system and 70% a manual on sample handling. The general instructions requested for the patients and sample identification were highly correctly filled with a short time routing and additional tests prescription. By contrast, information are variable concerning the clinical information requested and the type of tubes for collecting fluids and the volumes required as well as the actions taken in case of non-conformity. For the specific items concerning BALF, serous fluids and urine, this survey has shown a great heterogeneity according to sample collection, fixation and of clinical information. This survey demonstrates that the pre-analytical quality for BALF, serous fluids and urine is not optimal and that some corrections of the practices are recommended with a standardization of numerous steps in order to increase the reproducibility of additional tests such as immunocytochemistry, cytogenetic and molecular biology. Some recommendations have been written. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
ON THE HYDRAULICS OF STREAM FLOW ROUTING WITH BANK STORAGE
Bank storage is a process in which volumes of water are temporally retained by alluvial stream banks during flood events, and gradually released to partially sustain baseflow. This process has important hydrologic and ecological implications. In this paper, analytical solutions a...
From Streaming Data to Streaming Insights: The Impact of Data Velocities on Mental Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; Pike, William A.; Cook, Kristin A.
The rise of Big Data has influenced the design and technical implementation of visual analytic tools required to handle the increased volumes, velocities, and varieties of data. This has required a set of data management and computational advancements to allow us to store and compute on such datasets. However, as the ultimate goal of visual analytic technology is to enable the discovery and creation of insights from the users, an under-explored area is understanding how these datasets impact their mental models. That is, how have the analytic processes and strategies of users changed? How have users changed their perception ofmore » how to leverage, and ask questions of, these datasets?« less
Lossless droplet transfer of droplet-based microfluidic analysis
Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Smith, Richard D [Richland, WA
2011-11-22
A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.
Vibratory pumping of a free fluid stream
Merrigan, M.A.; Woloshun, K.A.
1990-11-13
A vibratory fluid pump is described having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments. 3 figs.
Song, Hongjun; Wang, Yi; Pant, Kapil
2011-01-01
This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection–diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability. PMID:22247719
Song, Hongjun; Wang, Yi; Pant, Kapil
2012-01-01
This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection-diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability.
Influence of a Large Free Stream Disturbance Level on Dynamics of a Jet in a Cross Flow
NASA Technical Reports Server (NTRS)
Foss, J. J.; Wark, C. E.
1983-01-01
An experiment to study the physical agents that are responsible for the jet turning into the streamwise direction, and the mixing of the jet and the cross stream fluid in the case of a jet in a cross flow is discussed.
An overview on current fluid-inclusion research and applications
Chi, G.; Chou, I.-Ming; Lu, H.-Z.
2003-01-01
This paper provides an overview of some of the more important developments in fluid-inclusion research and applications in recent years, including fluid-inclusion petrography, PVTX studies, and analytical techniques. In fluid-inclusion petrography, the introduction of the concept of 'fluid-inclusion assemblage' has been a major advance. In PVTX studies, the use of synthetic fluid inclusions and hydrothermal diamond-anvil cells has greatly contributed to the characterization of the phase behaviour of geologically relevant fluid systems. Various analytical methods are being developed and refined rapidly, with the Laser-Raman and LA-ICP-MS techniques being particularly useful for volatile and solute analyses, respectively. Ore deposit research has been and will continue to be the main field of application of fluid inclusions. However, fluid inclusions have been increasingly applied to other fields of earth science, especially in petroleum geology and the study of magmatic and earth interior processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorbanalilu, M.; Physics Department, Azarbaijan Shahid Madani University, Tabriz; Sadegzadeh, S.
2014-05-15
The existence of Weibel instability for a streaming electron, counterstreaming electron-electron (e-e), and electron-positron (e-p) plasmas with intrinsic temperature anisotropy is investigated. The temperature anisotropy is included in the directions perpendicular and parallel to the streaming direction. It is shown that the beam mean speed changes the instability mode, for a streaming electron beam, from the classic Weibel to the Weibel-like mode. The analytical and numerical solutions approved that Weibel-like modes are excited for both counterstreaming e-e and e-p plasmas. The growth rates of the instabilities in e-e and e-p plasmas are compared. The growth rate is larger for e-pmore » plasmas if the thermal anisotropy is small and the opposite is true for large thermal anisotropies. The analytical and numerical solutions are in good agreement only in the small parallel temperature and wave number limits, when the instability growth rate increases linearly with normalized wave number kc∕ω{sub p}.« less
A three-dimensional model of co-rotating streams in the solar wind. 2: Hydrodynamic streams
NASA Technical Reports Server (NTRS)
Pizzo, V. J.
1979-01-01
Theoretical aspects of corotating solar wind dynamics on a global scale are explored by means of numerical simulations executed with a nonlinear, inviscid, adiabatic, single-fluid, three-dimensional (3-D) hydrodynamic formulation. A simple, hypothetical 3-D stream structure is defined on a source surface located at 35 solar radius and carefully documents its evolution to 1 AU under the influence of solar rotation. By manipulating the structure of this prototype configuration at the source surface, it is possible to elucidate the factors most strongly affecting stream evolution: (1) the intrinsic correlations among density, temperature, and velocity existing near the source; (2) the amplitude of the stream; (3) the longitudinal breadth of the stream; (4) the latitudinal breadth of the stream; and (5) the heliographic latitude of the centroid of the stream.
Role of dielectric constant in electrohydrodynamics of conducting fluids
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.
1992-01-01
Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.
NASA Astrophysics Data System (ADS)
Hahn, K. E.; Turner, E. C.; Kontak, D. J.; Fayek, M.
2018-02-01
Ancient carbonate rocks commonly contain numerous post-depositional phases (carbonate minerals; quartz) recording successive diagenetic events that can be deciphered and tied to known or inferred geological events using a multi-pronged in situ analytical protocol. The framework voids of large, deep-water microbial carbonate seep-mounds in Arctic Canada (Mesoproterozoic Ikpiarjuk Formation) contain multiple generations of synsedimentary and late cement. An in situ analytical study of the post-seafloor cements used optical and cathodoluminescence petrography, SEM-EDS analysis, fluid inclusion (FI) microthermometry and evaporate mound analysis, LA-ICP-MS analysis, and SIMS δ18O to decipher the mounds' long-term diagenetic history. The six void-filling late cements include, in paragenetic order: inclusion-rich euhedral dolomite (ED), finely crystalline clear dolomite (FCD), hematite-bearing dolomite (HD), coarsely crystalline clear dolomite (CCD), quartz (Q), replacive calcite (RC) and late calcite (LC). Based on the combined analytical results, the following fluid-flow history is defined: (1) ED precipitation by autocementation during shallow burial (fluid 1; Mesoproterozoic); (2) progressive mixing of Ca-rich hydrothermal fluid with the connate fluid, resulting in precipitation of FCD followed by HD (fluid 2; also Mesoproterozoic); (3) precipitation of hydrothermal dolomite (CCD) from high-Ca and K-rich fluids (fluid 3; possibly Mesoproterozoic, but timing unclear); (4) hydrothermal Q precipitation (fluid 4; timing unclear), and (5) RC and LC precipitation from a meteoric-derived water (fluid 5) in or since the Mesozoic. Fluids associated with FCD, HD, and CCD may have been mobilised during deposition of the upper Bylot Supergroup; this time interval was the most tectonically active episode in the region's Mesoproterozoic to Recent history. The entire history of intermittent fluid migration and cement precipitation recorded in seemingly unimportant void-filling mineral phases spans over 1 billion years, and was decipherable only because of the in situ protocol used. The multiple-method in situ analytical protocol employed in this study substantially augments the knowledge of an area's geological history, parts of which cannot be discerned by means other than meticulous study of diagenetic phases, and should become routine in similar studies.
Tripathi, Dharmendra; Pandey, S K; Siddiqui, Abdul; Bég, O Anwar
2014-01-01
A theoretical study is presented for transient peristaltic flow of an incompressible fluid with variable viscosity in a finite length cylindrical tube as a simulation of transport in physiological vessels and biomimetic peristaltic pumps. The current axisymmetric analysis is qualitatively similar to two-dimensional analysis but exhibits quantitative variations. The current analysis is motivated towards further elucidating the physiological migration of gastric suspensions (food bolus) in the human digestive system. It also applies to variable viscosity industrial fluid (waste) peristaltic pumping systems. First, an axisymmetric model is analysed in the limit of large wavelength ([Formula: see text]) and low Reynolds number ([Formula: see text]) for axial velocity, radial velocity, pressure, hydromechanical efficiency and stream function in terms of radial vibration of the wall ([Formula: see text]), amplitude of the wave ([Formula: see text]), averaged flow rate ([Formula: see text]) and variable viscosity ([Formula: see text]). Subsequently, the peristaltic flow of a fluid with an exponential viscosity model is examined, which is based on the analytical solutions for pressure, wall shear stress, hydromechanical efficiency and streamline patterns in the finite length tube. The results are found to correlate well with earlier studies using a constant viscosity formulation. This study reveals some important features in the flow characteristics including the observation that pressure as well as both number and size of lower trapped bolus increases. Furthermore, the study indicates that hydromechanical efficiency reduces with increasing magnitude of viscosity parameter.
Spreading of a ferrofluid core in three-stream micromixer channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhaomeng; Varma, V. B.; Ramanujan, R. V., E-mail: ramanujan@ntu.edu.sg
2015-05-15
Spreading of a water based ferrofluid core, cladded by a diamagnetic fluid, in three-stream micromixer channels was studied. This spreading, induced by an external magnetic field, is known as magnetofluidic spreading (MFS). MFS is useful for various novel applications where control of fluid-fluid interface is desired, such as micromixers or micro-chemical reactors. However, fundamental aspects of MFS are still unclear, and a model without correction factors is lacking. Hence, in this work, both experimental and numerical analyses were undertaken to study MFS. We show that MFS increased for higher applied magnetic fields, slower flow speed of both fluids, smaller flowmore » rate of ferrofluid relative to cladding, and higher initial magnetic particle concentration. Spreading, mainly due to connective diffusion, was observed mostly near the channel walls. Our multi-physics model, which combines magnetic and fluidic analyses, showed, for the first time, excellent agreement between theory and experiment. These results can be useful for lab-on-a-chip devices.« less
Spreading of a ferrofluid core in three-stream micromixer channels
NASA Astrophysics Data System (ADS)
Wang, Zhaomeng; Varma, V. B.; Xia, Huan Ming; Wang, Z. P.; Ramanujan, R. V.
2015-05-01
Spreading of a water based ferrofluid core, cladded by a diamagnetic fluid, in three-stream micromixer channels was studied. This spreading, induced by an external magnetic field, is known as magnetofluidic spreading (MFS). MFS is useful for various novel applications where control of fluid-fluid interface is desired, such as micromixers or micro-chemical reactors. However, fundamental aspects of MFS are still unclear, and a model without correction factors is lacking. Hence, in this work, both experimental and numerical analyses were undertaken to study MFS. We show that MFS increased for higher applied magnetic fields, slower flow speed of both fluids, smaller flow rate of ferrofluid relative to cladding, and higher initial magnetic particle concentration. Spreading, mainly due to connective diffusion, was observed mostly near the channel walls. Our multi-physics model, which combines magnetic and fluidic analyses, showed, for the first time, excellent agreement between theory and experiment. These results can be useful for lab-on-a-chip devices.
NASA Technical Reports Server (NTRS)
Parker, Ray O.
2012-01-01
The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to operate the near-infrared spectrometer and GC-MS instruments during ETU testing. Ray will be working with Modified Commercial off the Shelf (MCOTS) instruments and characterizing their analytical behavior for optimization. Ray will be offered the opportunity to suggest testing modifications or configuration changes at any time to improve the experimental effectiveness. He will gain many skills needed for working in a technical team setting requiring flexibility and critical thinking.
NASA Astrophysics Data System (ADS)
Moroney, Richard Morgan, III
We have observed numerous kinetic effects using ultrasonic flexural plate waves (FPWs) in 4mu -thick composite plates of low-stress silicon nitride, piezoelectric zinc oxide and aluminum. The wavelength is typically 100 mum, and the area 3 x 8 mm^2. A successful new surface micromachining fabrication process is presented here for the first time. FPWs have been used to move liquids and gasses with motion typically indicated by polysilicon blocks in air and polystyrene spheres in water; the velocity in air is 4.5 mm/s (with a zero-to-peak input of 3 V), and in water it is 100 mum/s (with an input of 7.8 V). Other observations include pumping of a liquid dye, and mixing near the FPW surface. All quantitative observations demonstrate that the kinetic effects of FPWs are proportional to the square of the wave amplitude. The amplitude for a typical device is 250 A at 9 V input; the power in a typical FPW is about 2 mW. The amplitude can be accurately measured using a laser diffraction technique. Experimental error is about +/-10%, and many of the results agree well with a simple theory to predict the FPW amplitude; extensions of the theory model the fluid loading of FPW devices, but experiment and theory disagree by about 15%. Pumping by flexural plate waves is an example of the phenomenon known as acoustic streaming. A common solution approach is the method of successive approximations, where the nonlinear equations are first linearized and solved. This "first-order" solution is then used to determine the inhomogeneous source terms in the linearized, "second -order" equations of motion. Theoretical predictions of streaming theory are in excellent agreement with experiment in the case where the FPW device contacts a half-space of fluid; predictions for flow in small channels encourage the development of integrated micropumps. Applications for microflow include thermal redistribution in integrated circuits and liquid movement in analytical instruments--particularly where a small dead volume is required. Capabilities of this technology and further applications are discussed. Microflow systems that integrate transport of fluids and solids with sensing, mixing and other useful tasks may become a new market-leading application for the sensor and actuator field.
Spiral wound extraction cartridge
Wisted, Eric E.; Lundquist, Susan H.
1999-01-01
A cartridge device for removing an analyte from a fluid comprises a hollow core, a sheet composite comprising a particulate-loaded porous membrane and optionally at least one reinforcing spacer sheet, the particulate being capable of binding the analyte, the sheet composite being formed into a spiral configuration about the core, wherein the sheet composite is wound around itself and wherein the windings of sheet composite are of sufficient tightness so that adjacent layers are essentially free of spaces therebetween, two end caps which are disposed over the core and the lateral ends of the spirally wound sheet composite, and means for securing the end caps to the core, the end caps also being secured to the lateral ends of the spirally wound sheet composite. A method for removing an analyte from a fluid comprises the steps of providing a spirally wound element of the invention and passing the fluid containing the analyte through the element essentially normal to a surface of the sheet composite so as to bind the analyte to the particulate of the particulate-loaded porous membrane, the method optionally including the step of eluting the bound analyte from the sheet composite.
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Shoaib, M.; Tripathi, Dharmendra; Bhushan, Shashi; Bég, O. Anwar
2018-04-01
The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes (SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse (i.e., high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT-nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT-nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pumps.
NASA Astrophysics Data System (ADS)
Sengupta, Tapan K.; Sharma, Nidhi; Sengupta, Aditi
2018-05-01
An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional (2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This problem admits a time-dependent analytical solution as the base flow, whose instability is traced here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes turbulent, but an explanation for this transition has not been advanced so far. The deviation of the numerical solution from the analytical solution is studied here using a high accuracy compact scheme on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numerical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolution equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes equation, as described in the work of Sengupta et al., "Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003), and (b) the creation of rotationality via the enstrophy transport equation in the work of Sengupta et al., "Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow," Comput. Fluids 88, 440-451 (2013).
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Shoaib, M.; Tripathi, Dharmendra; Bhushan, Shashi; Bég, O. Anwar
2018-03-01
The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes (SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse (i.e., high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT-nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT-nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pumps.
McNair, James N; Newbold, J Denis
2012-05-07
Most ecological studies of particle transport in streams that focus on fine particulate organic matter or benthic invertebrates use the Exponential Settling Model (ESM) to characterize the longitudinal pattern of particle settling on the bed. The ESM predicts that if particles are released into a stream, the proportion that have not yet settled will decline exponentially with transport time or distance and will be independent of the release elevation above the bed. To date, no credible basis in fluid mechanics has been established for this model, nor has it been rigorously tested against more-mechanistic alternative models. One alternative is the Local Exchange Model (LEM), which is a stochastic advection-diffusion model that includes both longitudinal and vertical spatial dimensions and is based on classical fluid mechanics. The LEM predicts that particle settling will be non-exponential in the near field but will become exponential in the far field, providing a new theoretical justification for far-field exponential settling that is based on plausible fluid mechanics. We review properties of the ESM and LEM and compare these with available empirical evidence. Most evidence supports the prediction of both models that settling will be exponential in the far field but contradicts the ESM's prediction that a single exponential distribution will hold for all transport times and distances. Copyright © 2012 Elsevier Ltd. All rights reserved.
Identification of the Viscous Superlayer on the Low-Speed Side of a Single-Stream Shear Layer
NASA Astrophysics Data System (ADS)
Foss, John; Peabody, Jason
2010-11-01
Image pairs (elevation/plan views) have been acquired of a smoke streakline originating in the irrotational region on the low-speed side of a high Re single-stream shear layer of Morris and Foss (2003). The viscous superlayer (VSL) is identified as the terminus of the streak; 1800 such images provide VSL position statistics. Hot-wire data acquired concurrently at the shear layer edge and interior are used to investigate the relationship between these velocity magnitudes and the large-scale motions. Distinctive features (plumes) along the streakline are tracked between images to provide discrete irrotational region velocity magnitudes and material trajectories. A non-diffusive marker, introduced in the separating (high speed) boundary layer and imaged at x/θo=352, has revealed an unexpected bias in the streak-defined VSL locations. The interpretation of this bias clarifies the induced flow patterns in the entrainment region. The observations are consistent with a conception of the large-scale shear layer motions as "billows" of vortical fluid separated by re-entrant "wedges" of irrotational fluid, per Phillips (1972). Morris, S.C. and Foss, J.F. (2003). "Turbulent Boundary Layer to Single Stream Shear Layer: The Transition Region." Journal of Fluid Mechanics. Vol. 494, pp. 187-221. Phillips, O. M. (1972). "The Entrainment Interface." Journal of Fluid Mechanics. Vol. 51, pp. 97-118.
Finite element analysis of acoustic streaming in a Kundt tube with bended wall
NASA Astrophysics Data System (ADS)
Wada, Yuji; Yuge, Kohei
2018-07-01
Acoustic streaming near artificially prescribed ridges is simulated and discussed to understand the mechanism of Kundt tube powder-ridge generation. A viscoacoustic harmonic finite element analysis (FEA) and a static-fluid FEA are coupled using an acoustic streaming driving force to derive acoustic streaming. The half-wavelength mode is excited in an acoustic tube where the calculation mesh is distorted to form a sinusoidal bottom stick wall. Consequently, intense Schlichting streaming is obtained when the height and interval of the ridge agree with those in the literature. The mechanism underlying the regular ridge interval is related to the conversion of mainstream particle velocity into ridge-localized velocity, which produces an inlet or outlet vertical streaming in ridge valleys.
NASA Technical Reports Server (NTRS)
Hoffmann, Jon A.
1988-01-01
The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.
NASA Technical Reports Server (NTRS)
Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.
1989-01-01
The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.
NASA Technical Reports Server (NTRS)
Shyam, Vikram (Inventor); Poinsatte, Philip (Inventor); Thurman, Douglas (Inventor)
2017-01-01
One or more embodiments of techniques or systems for shaped recess flow control are provided herein. A shaped recess or cavity can be formed on a surface associated with fluid flow. The shaped recess can be configured to create or induce fluid effects, temperature effects, or shedding effects that interact with a free stream or other structures. The shaped recess can be formed at an angle to a free stream flow and may be substantially "V" shaped. The shaped recess can be coupled with a cooling channel, for example. The shaped recess can be upstream or downstream from a cooling channel and aligned in a variety of manners. Due to the fluid effects, shedding effects, and temperature effects created by a shaped recess, lift-off or separation of cooling jets of cooling channels can be mitigated, thereby enhancing film cooling effectiveness.
NASA Technical Reports Server (NTRS)
Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.
1991-01-01
An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.
NASA Astrophysics Data System (ADS)
Jougnot, D.; Guarracino, L.
2016-12-01
The self-potential (SP) method is considered by most researchers the only geophysical method that is directly sensitive to groundwater flow. One source of SP signals, the so-called streaming potential, results from the presence of an electrical double layer at the mineral-pore water interface. When water flows through the pore space, it gives rise to a streaming current and a resulting measurable electrical voltage. Different approaches have been proposed to predict streaming potentials in porous media. One approach is based on the excess charge which is effectively dragged in the medium by the water flow. Following a recent theoretical framework, we developed a physically-based analytical model to predict the effective excess charge in saturated porous media. In this study, the porous media is described by a bundle of capillary tubes with a fractal pore-size distribution. First, an analytical relationship is derived to determine the effective excess charge for a single capillary tube as a function of the pore water salinity. Then, this relationship is used to obtain both exact and approximated expressions for the effective excess charge at the Representative Elementary Volume (REV) scale. The resulting analytical relationship allows the determination of the effective excess charge as a function of pore water salinity, fractal dimension and hydraulic parameters like porosity and permeability, which are also obtained at the REV scale. This new model has been successfully tested against data from the literature of different sources. One of the main finding of this study is that it provides a mechanistic explanation to the empirical dependence between the effective excess charge and the permeability that has been found by various researchers. The proposed petrophysical relationship also contributes to understand the role of porosity and water salinity on effective excess charge and will help to push further the use of streaming potential to monitor groundwater flow.
NASA Astrophysics Data System (ADS)
Buddendorf, B.; Fabris, L.; Malcolm, I.; Lazzaro, G.; Tetzlaff, D.; Botter, G.; Soulsby, C.
2016-12-01
Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Stream hydrodynamics have a strong influence on habitat quality and affect the distribution and density of juvenile salmon. As stream hydrodynamics directly relate to stream flow variability and channel morphology, the effects of hydroclimatic drivers on the spatial and temporal variability of habitat suitability can be assessed. Critical Displacement Velocity (CDV), which describes the velocity at which fish can no longer hold station, is one potential approach for characterising habitat suitability. CDV is obtained using an empirical formula that depends on fish size and stream temperature. By characterising the proportion of a reach below CDV it is possible to assess the suitable area. We demonstrate that a generic analytical approach based on field survey and hydraulic modelling can provide insights on the interactions between flow regime and average suitable area (SA) for juvenile salmon that could be extended to other aquatic species. Analytical functions are used to model the pdf of stream flow p(q) and the relationship between flow and suitable area SA(q). Theoretically these functions can assume any form. Here we used a gamma distribution to model p(q) and a gamma function to model SA(q). Integrating the product of these functions we obtain an analytical expression of SA. Since parameters of p(q) can be estimated from meteorological and flow measurements, they can be used directly to predict the effect of flow regime on SA. We show the utility of the approach with reference to 6 electrofishing sites in a single river system where long term (50 years) data on spatially distributed juvenile salmon densities are available.
1990-10-01
adsorption/incineration * Membrane vapor separation/condensation * Supercritical fluid oxidation • UV/ozone destruction * Molten salt combustion process...separation/ separate air stream contaminants 9 Oxygenated solvents condensation * Chlorinated hydrocarbons Supercritical fluid * Technology utilizing high...testing or full-scale unit capacity; they are: * Supercritical fluid oxidation • UV/ozone destruction * Molten salt incineration * Infrared incineration
Pressurized-Flat-Interface Heat Exchanger
NASA Technical Reports Server (NTRS)
Voss, F. E.; Howell, H. R.; Winkler, R. V.
1990-01-01
High thermal conductance obtained without leakage between loops. Heat-exchanger interface enables efficient transfer of heat between two working fluids without allowing fluids to intermingle. Interface thin, flat, and easy to integrate into thermal system. Possible application in chemical or pharmaceutical manufacturing when even trace contamination of process stream with water or other coolant ruins product. Reduces costs when highly corrosive fluids must be cooled or heated.
Ultrasonic analyte concentration and application in flow cytometry
Kaduchak, Gregory; Goddard, Greg; Salzman, Gary; Sinha, Dipen; Martin, John C.; Kwiatkowski, Christopher; Graves, Steven
2014-07-22
The present invention includes an apparatus and corresponding method for concentrating analytes within a fluid flowing through a tube using acoustic radiation pressure. The apparatus includes a function generator that outputs a radio frequency electrical signal to a transducer that transforms the radio frequency electric signal to an acoustic signal and couples the acoustic signal to the tube. The acoustic signal is converted within the tube to acoustic pressure that concentrates the analytes within the fluid.
Ultrasonic analyte concentration and application in flow cytometry
Kaduchak, Gregory [Los Alamos, NM; Goddard, Greg [Los Alamos, NM; Salzman, Gary [White Rock, NM; Sinha, Dipen [Los Alamos, NM; Martin, John C [Los Alamos, NM; Kwiatkowski, Christopher [Los Alamos, NM; Graves, Steven [San Juan Pueblo, NM
2008-03-11
The present invention includes an apparatus and corresponding method for concentrating analytes within a fluid flowing through a tube using acoustic radiation pressure. The apparatus includes a function generator that outputs a radio frequency electrical signal to a transducer that transforms the radio frequency electric signal to an acoustic signal and couples the acoustic signal to the tube. The acoustic signal is converted within the tube to acoustic pressure that concentrates the analytes within the fluid.
Ultrasonic analyte concentration and application in flow cytometry
Kaduchak, Gregory; Goddard, Greg; Salzman, Gary; Sinha, Dipen; Martin, John C.; Kwiatkowski, Christopher; Graves, Steven
2015-07-07
The present invention includes an apparatus and corresponding method for concentrating analytes within a fluid flowing through a tube using acoustic radiation pressure. The apparatus includes a function generator that outputs a radio frequency electrical signal to a transducer that transforms the radio frequency electric signal to an acoustic signal and couples the acoustic signal to the tube. The acoustic signal is converted within the tube to acoustic pressure that concentrates the analytes within the fluid.
Energy recovery system using an organic rankine cycle
Ernst, Timothy C
2013-10-01
A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.
Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.
Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco
2014-08-06
The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-stream modeling of plasmaspheric refilling
NASA Technical Reports Server (NTRS)
Guiter, S. M.; Gombosi, T. I.; Rasmussen, C. E.
1995-01-01
Plasmaspheric refilling on an L = 4 flux tube was studied by using a time-dependent, hydrodynamic plasmaspheric flow model in which the ion streams from the two hemispheres are treated as distinct fluids. In the model the continuity, momentum, and energy equations of a two-ion (O(+) and H(+)), quasi-neutral, currentless plasma are solved along a closed geomagnetic field line; diffusive equilibrium is not assumed. collisions between all stream pairs and with neutral species are included. The model includes a corotating, tilted dipole magnetic field and neutral winds. Ionospheric sources and sinks are accounted for in a self-consistent manner. Electrons are assumed to be heated by photoelectrons. The model flux tube extends from a 200-km altitude in one hemisphere to a 200-km altitude in the other hemisphere. Initially, the upwelling streams pass through each other practically unimpeded. When the streams approach the boundary in the conjugate ionosphere, a shock develops there, which moves upward and dissipates slowly; at about the same time a reverse shock develops in the hemisphere of origin, which moves upward. After about 1 hour, large shocks develop in each stream near the equator; these shocks move toward the equator and downward after crossing the equator. However, these shocks are probably artificial, because counterstreaming flows occur in each H(+) fluid, which the model can only handle by creating shocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Jeffrey S., E-mail: jeffm@cems.uvm.edu; Wu, Junru
A computational study is reported of the acoustic streaming flow field generated by a Gaussian ultrasound beam propagating normally toward the end wall of a cylindrical container. Particular focus is given to examining the effectiveness of the acoustic streaming flow for fluid mixing within the container, for deposition of particles in suspension onto the bottom surface, and for particle suspension from the bottom surface back into the flow field. The flow field is assumed to be axisymmetric with the ultrasound transducer oriented parallel to the cylinder axis and normal to the bottom surface of the container, which we refer tomore » as the impingement surface. Reflection of the sound from the impingement surface and sound absorption within the material at the container bottom are both accounted for in the computation. The computation also accounts for thermal buoyancy force due to ultrasonic heating of the impingement surface, but over the time period considered in the current simulations, the flow is found to be dominated by the acoustic streaming force, with only moderate effect of buoyancy force.« less
NASA Astrophysics Data System (ADS)
Marshall, Jeffrey S.; Wu, Junru
2015-10-01
A computational study is reported of the acoustic streaming flow field generated by a Gaussian ultrasound beam propagating normally toward the end wall of a cylindrical container. Particular focus is given to examining the effectiveness of the acoustic streaming flow for fluid mixing within the container, for deposition of particles in suspension onto the bottom surface, and for particle suspension from the bottom surface back into the flow field. The flow field is assumed to be axisymmetric with the ultrasound transducer oriented parallel to the cylinder axis and normal to the bottom surface of the container, which we refer to as the impingement surface. Reflection of the sound from the impingement surface and sound absorption within the material at the container bottom are both accounted for in the computation. The computation also accounts for thermal buoyancy force due to ultrasonic heating of the impingement surface, but over the time period considered in the current simulations, the flow is found to be dominated by the acoustic streaming force, with only moderate effect of buoyancy force.
Combined free and forced convection heat transfer in magneto fluid mechanic pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, R.A.; Lo, Y.T.
1977-01-01
A study is made of fully developed, laminar, free-and-forced convection heat transfer in an electrically conducting fluid flowing in an electrically insulated, horizontal, circular pipe in a vertical transverse magnetic field. The normalized magnetofluidmechanic and energy equations are reduced to three coupled partial differential equations by the introduction of a stream function of the secondary flow. A perturbation solution is generated in inverse powers of the Lykoudis number, Ly = M/sup 2//..sqrt..Gr, which yields the influence of the magnetic field on the stream function of the secondary flow, axial velocity profiles, temperature profiles, and Nusselt number. 6 figures, 1 table.
Learning Analytics Platform, towards an Open Scalable Streaming Solution for Education
ERIC Educational Resources Information Center
Lewkow, Nicholas; Zimmerman, Neil; Riedesel, Mark; Essa, Alfred
2015-01-01
Next generation digital learning environments require delivering "just-in-time feedback" to learners and those who support them. Unlike traditional business intelligence environments, streaming data requires resilient infrastructure that can move data at scale from heterogeneous data sources, process the data quickly for use across…
Recovering hydrocarbons from hydrocarbon-containing vapors
Mirza, Zia I.; Knell, Everett W.; Winter, Bruce L.
1980-09-30
Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.
Aquifer response to stream-stage and recharge variations. II. Convolution method and applications
Barlow, P.M.; DeSimone, L.A.; Moench, A.F.
2000-01-01
In this second of two papers, analytical step-response functions, developed in the companion paper for several cases of transient hydraulic interaction between a fully penetrating stream and a confined, leaky, or water-table aquifer, are used in the convolution integral to calculate aquifer heads, streambank seepage rates, and bank storage that occur in response to streamstage fluctuations and basinwide recharge or evapotranspiration. Two computer programs developed on the basis of these step-response functions and the convolution integral are applied to the analysis of hydraulic interaction of two alluvial stream-aquifer systems in the northeastern and central United States. These applications demonstrate the utility of the analytical functions and computer programs for estimating aquifer and streambank hydraulic properties, recharge rates, streambank seepage rates, and bank storage. Analysis of the water-table aquifer adjacent to the Blackstone River in Massachusetts suggests that the very shallow depth of water table and associated thin unsaturated zone at the site cause the aquifer to behave like a confined aquifer (negligible specific yield). This finding is consistent with previous studies that have shown that the effective specific yield of an unconfined aquifer approaches zero when the capillary fringe, where sediment pores are saturated by tension, extends to land surface. Under this condition, the aquifer's response is determined by elastic storage only. Estimates of horizontal and vertical hydraulic conductivity, specific yield, specific storage, and recharge for a water-table aquifer adjacent to the Cedar River in eastern Iowa, determined by the use of analytical methods, are in close agreement with those estimated by use of a more complex, multilayer numerical model of the aquifer. Streambank leakance of the semipervious streambank materials also was estimated for the site. The streambank-leakance parameter may be considered to be a general (or lumped) parameter that accounts not only for the resistance of flow at the river-aquifer boundary, but also for the effects of partial penetration of the river and other near-stream flow phenomena not included in the theoretical development of the step-response functions.Analytical step-response functions, developed for several cases of transient hydraulic interaction between a fully penetrating stream and a confined, leaky, or water-table aquifer, are used in the convolution integral to calculate aquifer heads, streambank seepage rates, and bank storage that occur in response to stream-stage fluctuations and basinwide recharge or evapotranspiration. Two computer programs developed on the basis of these step-response functions and the convolution integral are applied to the analysis of hydraulic interaction of two alluvial stream-aquifer systems. These applications demonstrate the utility of the analytical functions and computer programs for estimating aquifer and streambank seepage rates and bank storage.
Magnetic field advection in two interpenetrating plasma streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryutov, D. D.; Kugland, N. L.; Levy, M. C.
2013-03-15
Laser-generated colliding plasma streams can serve as a test-bed for the study of various astrophysical phenomena and the general physics of self-organization. For streams of a sufficiently high kinetic energy, collisions between the ions of one stream with the ions of the other stream are negligible, and the streams can penetrate through each other. On the other hand, the intra-stream collisions for high-Mach-number flows can still be very frequent, so that each stream can be described hydrodynamically. This paper presents an analytical study of the effects that these interpenetrating streams have on large-scale magnetic fields either introduced by external coilsmore » or generated in the plasma near the laser targets. Specifically, a problem of the frozen-in constraint is assessed and paradoxical features of the field advection in this system are revealed. A possibility of using this system for studies of magnetic reconnection is mentioned.« less
Analytical modeling and experimental validation of a magnetorheological mount
NASA Astrophysics Data System (ADS)
Nguyen, The; Ciocanel, Constantin; Elahinia, Mohammad
2009-03-01
Magnetorheological (MR) fluid has been increasingly researched and applied in vibration isolation devices. To date, the suspension system of several high performance vehicles has been equipped with MR fluid based dampers and research is ongoing to develop MR fluid based mounts for engine and powertrain isolation. MR fluid based devices have received attention due to the MR fluid's capability to change its properties in the presence of a magnetic field. This characteristic places MR mounts in the class of semiactive isolators making them a desirable substitution for the passive hydraulic mounts. In this research, an analytical model of a mixed-mode MR mount was constructed. The magnetorheological mount employs flow (valve) mode and squeeze mode. Each mode is powered by an independent electromagnet, so one mode does not affect the operation of the other. The analytical model was used to predict the performance of the MR mount with different sets of parameters. Furthermore, in order to produce the actual prototype, the analytical model was used to identify the optimal geometry of the mount. The experimental phase of this research was carried by fabricating and testing the actual MR mount. The manufactured mount was tested to evaluate the effectiveness of each mode individually and in combination. The experimental results were also used to validate the ability of the analytical model in predicting the response of the MR mount. Based on the observed response of the mount a suitable controller can be designed for it. However, the control scheme is not addressed in this study.
Coiner, R.L.; Pope, L.M.; Mehl, H.E.
2010-01-01
An assessment of energetic compounds (explosive and propellant residues) and associated semi-volatile organic compounds (SVOCs) and trace elements in streambed sediment and stream water from streams draining munitions firing points and impact areas at Fort Riley, northeast Kansas, was performed during 2007-08 by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army. Streambed sediment from 16 sampling sites and stream-water samples from 5 sites were collected at or near Fort Riley and analyzed for as many as 17 energetic compounds, 65 SVOCs, and 27 trace elements. None of the energetic compounds or SVOCs were detected in streambed sediment collected from sites within the Fort Riley Military Reservation. This may indicate that these compounds either are not transported from dispersal areas or that analytical methods are not sensitive enough to detect the small concentrations that may be transported. Concentrations of munitions-associated trace elements did not exceed sediment-quality guidelines recommended by the U.S. Environmental Protection Agency (USEPA) and are not indicative of contamination of streambed sediment at selected streambed sampling sites, at least in regards to movement from dispersal areas. Analytical results of stream-water samples provided little evidence of contamination by energetic compounds, SVOCs, or associated trace elements. Perchlorate was detected in 19 of 20 stream-water samples at concentrations ranging from an estimated 0.057 to an estimated 0.236 ug/L (micrograms per liter) with a median concentration of an estimated 0.114 ug/L, substantially less than the USEPA Interim Health Advisory criterion (15 ug/L), and is in the range of documented background concentrations. Because of these small concentrations and possible natural sources (precipitation and groundwater), it is likely that the occurrence of perchlorate in stream water is naturally occurring, although a definitive identification of the source of perchlorate in stream water at Fort Riley is difficult. The only SVOCs detected in stream-water samples were bis(2-ethylhexyl) phthalate and di-n-butyl phthalate but at concentrations substantially less than the most stringent aquatic-life criteria established by the Kansas Department of Health and Environment. All trace element concentrations in stream-water samples were less than the most stringent aquatic-life criteria. The implication of these stream-water results is that contamination arising from firing-range activities, if it exists, is so small as to be nondetectable with current analytical methods or is not distinguishable from background concentrations for constituents that also are naturally occurring. Overall, the munitions-related constituents analyzed in streambed sediment and stream water, when detected, were at concentrations that were less than regulatory criteria
A New Model for Temperature Jump at a Fluid-Solid Interface
Shu, Jian-Jun; Teo, Ji Bin Melvin; Chan, Weng Kong
2016-01-01
The problem presented involves the development of a new analytical model for the general fluid-solid temperature jump. To the best of our knowledge, there are no analytical models that provide the accurate predictions of the temperature jump for both gas and liquid systems. In this paper, a unified model for the fluid-solid temperature jump has been developed based on our adsorption model of the interfacial interactions. Results obtained from this model are validated with available results from the literature. PMID:27764230
Microscopic and low Reynolds number flows between two intersecting permeable walls
NASA Astrophysics Data System (ADS)
Egashira, R.; Fujikawa, T.; Yaguchi, H.; Fujikawa, S.
2018-06-01
Two-dimensional Navier–Stokes equations are solved in an analytical way to clarify characteristics of low-Re flows in a microscopic channel consisting of two intersecting permeable walls, the intersection of which is supposed to be a sink or a source. Such flows are, therefore, considered to be an extension of the so-called Jeffery–Hamel flow to the permeable wall case. A set of nonlinear forth-order ordinary differential equations are obtained, and their solutions are sought for the small permeable velocity compared with the main flow one by a perturbation method. The solutions contain the solutions found in the past, such as the flow between two parallel permeable walls studied by Berman and the Jeffery–Hamel flow between the impermeable walls as special cases. Velocity distribution and friction loss in pressure along the main stream are represented in the explicit manner and compared with those of the Jeffery–Hamel flow. Numerical examples show that the wall permeability has a great influence on the friction loss. Furthermore, it is shown that the convergent main flow accompanied with the fluid addition through the walls is inversely directed away from the origin due to the balance of the main flow and the permeable one, while the flow accompanied with fluid suction is just directed toward the origin regardless of conditions.
NASA Astrophysics Data System (ADS)
Mandelker, Nir; Padnos, Dan; Dekel, Avishai; Birnboim, Yuval; Burkert, Andreas; Krumholz, Mark R.; Steinberg, Elad
2016-12-01
Massive galaxies at high redshift are predicted to be fed from the cosmic web by narrow, dense streams of cold gas that penetrate through the hot medium encompassed by a stable shock near the virial radius of the dark-matter halo. Our long-term goal is to explore the heating and dissipation rate of the streams and their fragmentation and possible breakup, in order to understand how galaxies are fed, and how this affects their star formation rate and morphology. We present here the first step, where we analyse the linear Kelvin-Helmholtz instability (KHI) of a cold, dense slab or cylinder in 3D flowing supersonically through a hot, dilute medium. The current analysis is limited to the adiabatic case with no gravity. By analytically solving the linear dispersion relation, we find a transition from a dominance of the familiar rapidly growing surface modes in the subsonic regime to more slowly growing body modes in the supersonic regime. The system is parametrized by three parameters: the density contrast between stream and medium, the Mach number of stream velocity with respect to the medium and the stream width with respect to the halo virial radius. A realistic choice for these parameters places the streams near the mode transition, with the KHI exponential-growth time in the range 0.01-10 virial crossing times for a perturbation wavelength comparable to the stream width. We confirm our analytic predictions with idealized hydrodynamical simulations. Our linear estimates thus indicate that KHI may be effective in the evolution of streams before they reach the galaxy. More definite conclusions await the extension of the analysis to the non-linear regime and the inclusion of cooling, thermal conduction, the halo potential well, self-gravity and magnetic fields.
40 CFR 63.1012 - Compressor standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... in the referencing subpart. (b) Seal system standard. Each compressor shall be equipped with a seal..., except as provided in § 63.1002(b) and paragraphs (e) and (f) of this section. Each compressor seal...-loop system that purges the barrier fluid directly into a process stream. (c) Barrier fluid system. The...
40 CFR 63.1012 - Compressor standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... in the referencing subpart. (b) Seal system standard. Each compressor shall be equipped with a seal..., except as provided in § 63.1002(b) and paragraphs (e) and (f) of this section. Each compressor seal...-loop system that purges the barrier fluid directly into a process stream. (c) Barrier fluid system. The...
40 CFR 63.1012 - Compressor standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... in the referencing subpart. (b) Seal system standard. Each compressor shall be equipped with a seal..., except as provided in § 63.1002(b) and paragraphs (e) and (f) of this section. Each compressor seal...-loop system that purges the barrier fluid directly into a process stream. (c) Barrier fluid system. The...
NASA Astrophysics Data System (ADS)
Walker, E.; Tardif, E.; Glover, P. W.; Ruel, J.; Hadjigeorgiou, J.
2009-12-01
Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient Cs is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of CO2. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our intention to complete the testing of the cell and to use it to measure the electrokinetic properties of porous rocks in the DC regime in order to provide sufficient data to improve the theories and models of DC streaming potentials.
NASA Astrophysics Data System (ADS)
Walker, Emilie; Tardif, Eric; Glover, Paul; Ruel, Jean; Lalande, Guillaume; Hadjigeorgiou, John
2010-05-01
Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of carbon dioxide. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our intention to complete the testing of the cell and to use it to measure the electrokinetic properties of porous rocks in the DC regime in order to provide sufficient data to improve the theories and models of DC streaming potentials.
Thompson, Michael W; Atchley, Anthony A
2005-04-01
Laser Doppler anemometry (LDA) with burst spectrum analysis (BSA) is used to study the acoustic streaming generated in a cylindrical standing-wave resonator filled with air. The air column is driven sinusoidally at a frequency of approximately 310 Hz and the resultant acoustic-velocity amplitudes are less than 1.3 m/s at the velocity antinodes. The axial component of fluid velocity is measured along the resonator axis, across the diameter, and as a function of acoustic amplitude. The velocity signals are postprocessed using the Fourier averaging method [Sonnenberger et al., Exp. Fluids 28, 217-224 (2000)]. Equations are derived for determining the uncertainties in the resultant Fourier coefficients. The time-averaged velocity-signal components are seen to be contaminated by significant errors due to the LDA/BSA system. In order to avoid these errors, the Lagrangian streaming velocities are determined using the time-harmonic signal components and the arrival times of the velocity samples. The observed Lagrangian streaming velocities are consistent with Rott's theory [N. Rott, Z. Angew. Math. Phys. 25, 417-421 (1974)], indicating that the dependence of viscosity on temperature is important. The onset of streaming is observed to occur within approximately 5 s after switching on the acoustic field.
Methods and apparatus for carbon dioxide removal from a fluid stream
Wei, Wei; Ruud, James Anthony; Ku, Anthony Yu-Chung; Ramaswamy, Vidya; Liu, Ke
2010-01-19
An apparatus for producing hydrogen gas wherein the apparatus includes a reactor. In one embodiment, the reactor includes at least two conversion-removal portions. Each conversion-removal portion comprises a catalyst section configured to convert CO in the stream to CO.sub.2 and a membrane section located downstream of and in flow communication with the catalyst section. The membrane section is configured to selectively remove the CO.sub.2 from the stream and to be in flow communication with a sweep gas.
Analytical and numerical study of the electro-osmotic annular flow of viscoelastic fluids.
Ferrás, L L; Afonso, A M; Alves, M A; Nóbrega, J M; Pinho, F T
2014-04-15
In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Oil Based Drilling Fluid Waste: An Overview on Environmentally Persistent Pollutants
NASA Astrophysics Data System (ADS)
Siddique, Shohel; Kwoffie, Lorraine; Addae-Afoakwa, Kofi; Yates, Kyari; Njuguna, James
2017-05-01
Operational discharges of spent drilling fluid, produced water, and accumulated drill cuttings from oil and gas industry are a continuous point source of environmental pollution. To meet the strict environmental standard for waste disposal, oil and gas industry is facing a numerous challenges in technological development to ensure a clean and safe environment. Oil and gas industry generates a large amount of spent drilling fluid, produced water, and drill cuttings, which are very different in every drilling operation in terms of composition and characterisation. This review article highlights the knowledge gap in identifying the different sources of waste streams in combined drilling waste. This paper also emphasises how different chemicals turn into environmentally significant pollutants after serving great performance in oil and gas drilling operations. For instance, oil based drilling fluid performs excellent in deeper drilling and drilling in the harsh geological conditions, but ended with (produces) a significant amount of persistent toxic pollutants in the environment. This review paper provides an overview on the basic concepts of drilling fluids and their functions, sources and characterisation of drilling wastes, and highlights some environmentally significant elements including different minerals present in drilling waste stream.
McCormick, Kathryn E.; Gaertner, Bryn E.; Sottile, Matthew; Phillips, Patrick C.; Lockery, Shawn R.
2011-01-01
This article describes the fabrication and use of microfluidic devices for investigating spatial orientation behaviors in nematode worms (Caenorhabditis elegans). Until now, spatial orientation has been studied in freely moving nematodes in which the frequency and nature of encounters with the gradient are uncontrolled experimental variables. In the new devices, the nematode is held in place by a restraint that aligns the longitudinal axis of the body with the border between two laminar fluid streams, leaving the animal's head and tail free to move. The content of the fluid streams can be manipulated to deliver step gradients in space or time. We demonstrate the utility of the device by identifying previously uncharacterized aspects of the behavioral mechanisms underlying chemotaxis, osmotic avoidance, and thermotaxis in this organism. The new devices are readily adaptable to behavioral and imaging studies involving fluid borne stimuli in a wide range of sensory modalities. PMID:22022437
The Boundary Layer Flows of a Rivlin-Ericksen Fluid
NASA Astrophysics Data System (ADS)
Sadeghy, K.; Khabazi, N.; Taghavi, S. M.
The present work deals with the two-dimensional incompressible, laminar, steady-state boundary layer equations. First, we determine a family of velocity distributions outside the boundary layer such that these problems may have similarity solutions. We study the Falkner-Skan flow of a viscoelastic fluid governed by second order model, as the Reynolds number Re→ ∞. We obtain an ordinary forth order differential equation to obtain the stream function, velocity profile and the stress. The stream function is then governed by a generalized Falkner-Skan equation. In comparison with Newtonian Falkner-Skan equation that has two coefficients this new one has four coefficients that two of them represent elastic properties of the fluid. The effects of the elastic parameter on the velocity filed have been discussed. As it is shown in the figure there is a good agreement between numerical results and previous special cases confirm the validity of the presented algorithm.
Mixing high-viscosity fluids via acoustically driven bubbles
NASA Astrophysics Data System (ADS)
Orbay, Sinem; Ozcelik, Adem; Lata, James; Kaynak, Murat; Wu, Mengxi; Huang, Tony Jun
2017-01-01
We present an acoustofluidic micromixer which can perform rapid and homogeneous mixing of highly viscous fluids in the presence of an acoustic field. In this device, two high-viscosity polyethylene glycol (PEG) solutions were co-injected into a three-inlet PDMS microchannel with the center inlet containing a constant stream of nitrogen flow which forms bubbles in the device. When these bubbles were excited by an acoustic field generated via a piezoelectric transducer, the two solutions mixed homogenously due to the combination of acoustic streaming, droplet ejection, and bubble eruption effects. The mixing efficiency of this acoustofluidic device was evaluated using PEG-700 solutions which are ~106 times more viscous than deionized (DI) water. Our results indicate homogenous mixing of the PEG-700 solutions with a ~0.93 mixing index. The acoustofluidic micromixer is compact, inexpensive, easy to operate, and has the capacity to mix highly viscous fluids within 50 ms.
Streaming and particle motion in acoustically-actuated leaky systems
NASA Astrophysics Data System (ADS)
Nama, Nitesh; Barnkob, Rune; Jun Huang, Tony; Kahler, Christian; Costanzo, Francesco
2017-11-01
The integration of acoustics with microfluidics has shown great promise for applications within biology, chemistry, and medicine. A commonly employed system to achieve this integration consists of a fluid-filled, polymer-walled microchannel that is acoustically actuated via standing surface acoustic waves. However, despite significant experimental advancements, the precise physical understanding of such systems remains a work in progress. In this work, we investigate the nature of acoustic fields that are setup inside the microchannel as well as the fundamental driving mechanism governing the fluid and particle motion in these systems. We provide an experimental benchmark using state-of-art 3D measurements of fluid and particle motion and present a Lagrangian velocity based temporal multiscale numerical framework to explain the experimental observations. Following verification and validation, we employ our numerical model to reveal the presence of a pseudo-standing acoustic wave that drives the acoustic streaming and particle motion in these systems.
Prudic, David E.
1989-01-01
Computer models are widely used to simulate groundwater flow for evaluating and managing the groundwater resource of many aquifers, but few are designed to also account for surface flow in streams. A computer program was written for use in the US Geological Survey modular finite difference groundwater flow model to account for the amount of flow in streams and to simulate the interaction between surface streams and groundwater. The new program is called the Streamflow-Routing Package. The Streamflow-Routing Package is not a true surface water flow model, but rather is an accounting program that tracks the flow in one or more streams which interact with groundwater. The program limits the amount of groundwater recharge to the available streamflow. It permits two or more streams to merge into one with flow in the merged stream equal to the sum of the tributary flows. The program also permits diversions from streams. The groundwater flow model with the Streamflow-Routing Package has an advantage over the analytical solution in simulating the interaction between aquifer and stream because it can be used to simulate complex systems that cannot be readily solved analytically. The Streamflow-Routing Package does not include a time function for streamflow but rather streamflow entering the modeled area is assumed to be instantly available to downstream reaches during each time period. This assumption is generally reasonable because of the relatively slow rate of groundwater flow. Another assumption is that leakage between streams and aquifers is instantaneous. This assumption may not be reasonable if the streams and aquifers are separated by a thick unsaturated zone. Documentation of the Streamflow-Routing Package includes data input instructions; flow charts, narratives, and listings of the computer program for each of four modules; and input data sets and printed results for two test problems, and one example problem. (Lantz-PTT)
EDITORIAL: The FDR Prize The FDR Prize
NASA Astrophysics Data System (ADS)
Funakoshi, Mitsuaki
2011-08-01
From the 56 papers published in 2010 in Fluid Dynamics Research the following paper has been selected for the fourth FDR prize: 'Baroclinic multipole formation from heton interaction' by M A Sokolovskiy and X J Carton, published in volume 42 (August 2010) 045501. Coherent vortices are a universal feature of fluids at moderate and large Reynolds number, and have particular relevance to the quasi-two-dimensional flows used to model phenomena in the atmosphere and ocean. The structure and interaction of such vortices have proved a fascinating area for the researchers of fluid dynamics, including thoreticians, observers and experimentalists, together with related problems of how they mix fluids and how they transport scalars such as temperature and salinity. In this paper 'hetons' are considered; they are vortices of dipolar structures in a multilayer rotating fluid, carry thermal anomalies, and are relevant to transport in flows such as the Gulf Stream. The paper is a comprehensive study of the structure, invariants and interactions of two opposite-signed hetons in a two-layer fluid for several initial configurations and for several values of the Rossby radius of deformation, using models based on point vortex dynamics and contour dynamics of finite-area vortex regions. Different types of coupling and interactions are isolated and discussed. Depending on the initial configuration and the value of the radius of deformation, the time evolutions toward horizonal dipoles, vertically tilted dipoles, L-shaped dipoles, and Z-shaped tripoles are observed in the case of finite-area vortices. Using point vortex dynamics a rigorous analysis based on trilinear coordinates is performed, and the appearance of similar structures is shown analytically, except for the L-shaped dipoles. The contribution of this paper to the important problem of heton interaction is both profound and substantial. The study will be of great interest to a wide variety of readers and is likely to inspire further numerical and experimental work, as well being helpful in the interpretation and analysis of observations. Overall, the paper will undoubtedly have a large impact on the fluid dynamics community.
Development of a second generation biofiltration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinheinz, G.T.; McGinnis, G.D.; Niemi, B.A.
1999-07-01
Biofiltration utilizes microbial processes which are immobilized on a solid support to biodegrade contaminants in air. Biofilters traditionally have been utilized in applications where there is a high volume of air containing low levels of compounds. There are several operational problems biofilters are currently encountering. Some of these problems include systems which are very large, microbial breakdown of the solid support, cycling of compounds onto the biofilters (uneven amounts of compounds in the air), and very short residence times in the biofiltration units. This project was undertaken to determine the feasibility of using physical/chemical methods to adsorb and then desorbmore » analytes to convert a dilute, high volume air stream to a more concentrated low volume air stream. The chemical/physical (adsorption/desorption) system will also serve to provide a relatively consistent air stream to the biofiltration units in order to alleviate the perturbations to the system as a result of uneven analyte concentrations. The ability to concentrate a dilute air stream and provide a constant stream of VOCs to the biofiltration unit will allow for smaller, more efficient, and more economical biofilters. Two years of laboratory studies and initial pilot-scale trials on these coupled systems have shown that they are indeed able to efficiently concentrate dilute streams, and the coupled biofilters are able to remove 90+% of the VOCs from the adsorption/desorption unit.« less
Permeation absorption sampler with multiple detection
Zaromb, Solomon
1990-01-01
A system for detecting analytes in air or aqueous systems includes a permeation absorption preconcentrator sampler for the analytes and analyte detectors. The preconcentrator has an inner fluid-permeable container into which a charge of analyte-sorbing liquid is intermittently injected, and a fluid-impermeable outer container. The sample is passed through the outer container and around the inner container for trapping and preconcentrating the analyte in the sorbing liquid. The analyte can be detected photometrically by injecting with the sorbing material a reagent which reacts with the analyte to produce a characteristic color or fluorescence which is detected by illuminating the contents of the inner container with a light source and measuring the absorbed or emitted light, or by producing a characteristic chemiluminescence which can be detected by a suitable light sensor. The analyte can also be detected amperometrically. Multiple inner containers may be provided into which a plurality of sorbing liquids are respectively introduced for simultaneously detecting different analytes. Baffles may be provided in the outer container. A calibration technique is disclosed.
Adjustment of Pesticide Concentrations for Temporal Changes in Analytical Recovery, 1992-2006
Martin, Jeffrey D.; Stone, Wesley W.; Wydoski, Duane S.; Sandstrom, Mark W.
2009-01-01
Recovery is the proportion of a target analyte that is quantified by an analytical method and is a primary indicator of the analytical bias of a measurement. Recovery is measured by analysis of quality-control (QC) water samples that have known amounts of target analytes added ('spiked' QC samples). For pesticides, recovery is the measured amount of pesticide in the spiked QC sample expressed as percentage of the amount spiked, ideally 100 percent. Temporal changes in recovery have the potential to adversely affect time-trend analysis of pesticide concentrations by introducing trends in environmental concentrations that are caused by trends in performance of the analytical method rather than by trends in pesticide use or other environmental conditions. This report examines temporal changes in the recovery of 44 pesticides and 8 pesticide degradates (hereafter referred to as 'pesticides') that were selected for a national analysis of time trends in pesticide concentrations in streams. Water samples were analyzed for these pesticides from 1992 to 2006 by gas chromatography/mass spectrometry. Recovery was measured by analysis of pesticide-spiked QC water samples. Temporal changes in pesticide recovery were investigated by calculating robust, locally weighted scatterplot smooths (lowess smooths) for the time series of pesticide recoveries in 5,132 laboratory reagent spikes; 1,234 stream-water matrix spikes; and 863 groundwater matrix spikes. A 10-percent smoothing window was selected to show broad, 6- to 12-month time scale changes in recovery for most of the 52 pesticides. Temporal patterns in recovery were similar (in phase) for laboratory reagent spikes and for matrix spikes for most pesticides. In-phase temporal changes among spike types support the hypothesis that temporal change in method performance is the primary cause of temporal change in recovery. Although temporal patterns of recovery were in phase for most pesticides, recovery in matrix spikes was greater than recovery in reagent spikes for nearly every pesticide. Models of recovery based on matrix spikes are deemed more appropriate for adjusting concentrations of pesticides measured in groundwater and stream-water samples than models based on laboratory reagent spikes because (1) matrix spikes are expected to more closely match the matrix of environmental water samples than are reagent spikes and (2) method performance is often matrix dependent, as was shown by higher recovery in matrix spikes for most of the pesticides. Models of recovery, based on lowess smooths of matrix spikes, were developed separately for groundwater and stream-water samples. The models of recovery can be used to adjust concentrations of pesticides measured in groundwater or stream-water samples to 100 percent recovery to compensate for temporal changes in the performance (bias) of the analytical method.
Simulating the consequences of land management.
Jonathan. Thompson
2007-01-01
How do you project the effects of management decisions made today on future conditions of riparian forests, stream habitat, and fish abundance in the streams and rivers of the interior Columbia Basin? Researchers at PNW Research Station have developed some novel analytical tools to help answer this question. Their work is part of the Interior Northwest Landscape...
Spiral wound extraction cartridge
Wisted, E.E.; Lundquist, S.H.
1999-04-27
A cartridge device for removing an analyte from a fluid comprises a hollow core, a sheet composite comprising a particulate-loaded porous membrane and optionally at least one reinforcing spacer sheet, the particulate being capable of binding the analyte, the sheet composite being formed into a spiral configuration about the core, wherein the sheet composite is wound around itself and wherein the windings of sheet composite are of sufficient tightness so that adjacent layers are essentially free of spaces therebetween, two end caps which are disposed over the core and the lateral ends of the spirally wound sheet composite, and means for securing the end caps to the core, the end caps also being secured to the lateral ends of the spirally wound sheet composite. A method for removing an analyte from a fluid comprises the steps of providing a spirally wound element of the invention and passing the fluid containing the analyte through the element essentially normal to a surface of the sheet composite so as to bind the analyte to the particulate of the particulate-loaded porous membrane, the method optionally including the step of eluting the bound analyte from the sheet composite. 4 figs.
Detecting the Disruption of Dark-Matter Halos with Stellar Streams.
Bovy, Jo
2016-03-25
Narrow stellar streams in the Milky Way halo are uniquely sensitive to dark-matter subhalos, but many of these subhalos may be tidally disrupted. I calculate the interaction between stellar and dark-matter streams using analytical and N-body calculations, showing that disrupting objects can be detected as low-concentration subhalos. Through this effect, we can constrain the lumpiness of the halo as well as the orbit and present position of individual dark-matter streams. This will have profound implications for the formation of halos and for direct- and indirect-detection dark-matter searches.
NASA Technical Reports Server (NTRS)
Akse, J. R.; Thompson, J. O.; Sauer, R. L.; Atwater, J. E.
1998-01-01
Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the elements of quantum (wave) mechanics to some special problems in the field of macroscopic fluid dynamics is discussed. Emphasis is placed on the flow of a viscous, incompressible fluid around a circular cylinder. The following subjects are considered: (1) the flow of a nonviscous fluid around a circular cylinder, (2) the restrictions imposed the stream function by the number of dimensions of space, and (3) the flow past three dimensional bodies in a viscous fluid, particularly past a circular cylinder in the symmetrical case.
Ground based studies of thermocapillary flows in levitated drops
NASA Technical Reports Server (NTRS)
Sadhal, Satwindar Singh; Trinh, Eugene H.
1994-01-01
Analytical studies along with ground-based experiments are presently being carried out in connection with thermocapillary phenomena associated with drops and bubbles in a containerless environment. The effort here focuses on the thermal and the fluid phenomena associated with the local heating of acoustically levitated drops, both at 1-g and at low-g. In particular, the Marangoni effect on drops under conditions of local spot-heating and other types of heating are being studied. With the experiments conducted to date, fairly stable acoustic levitation of drops has been achieved and successful flow visualization by light scattering from smoke particles has been carried out. The results include situations with and without heating. As a preliminary qualitative interpretation of these experimental results, we consider the external flow pattern as a superposition of three discrete circulation cells operating on different spatial scales. The observations of the flow fields also indicate the existence of a steady state torque induced by the streaming flows. The theoretical studies have been concentrated on the analysis of streaming flows in a gaseous medium with the presence of a spherical particle undergoing periodic heating. A matched asymptotic analysis was carried out for small parameters derived from approximations in the high frequency range. The heating frequency being 'in tune' with the acoustic frequency results in a nonzero time-averaged thermal field. This leads to a steady heat flow across the equatorial plane of the sphere.
NASA Technical Reports Server (NTRS)
Wang, Kon-Sheng Charles
1994-01-01
The design and development of an airborne flight-test experiment to study nonreacting gas jets injected transversely into transonic and supersonic crossflows is presented. Free-stream/crossflow Mach numbers range from 0.8 to 2.0. Planar laser-induced fluorescence (PLIF) of an iodine-seeded nitrogen jet is used to visualize the jet flow. Time-dependent images are obtained with a high-speed intensified video camera synchronized to the laser pulse rate. The entire experimental assembly is configured compactly inside a unique flight-test-fixture (FTF) mounted under the fuselage of the F-104G research aircraft, which serves as a 'flying wind tunnel' at NASA Dryden Flight Research Center. The aircraft is flown at predetermined speeds and altitudes to permit a perfectly expanded (or slightly underexpanded) gas jet to form just outside the FTF at each free-stream Mach number. Recorded gas jet images are then digitized to allow analysis of jet trajectory, spreading, and mixing characteristics. Comparisons will be made with analytical and numerical predictions. This study shows the viability of applying highly sophisticated groundbased flow diagnostic techniques to flight-test vehicle platforms that can achieve a wide range of thermo/fluid dynamic conditions. Realistic flow environments, high enthalpies, unconstrained flowfields, and moderate operating costs are also realized, in contrast to traditional wind-tunnel testing.
Molten salt destruction of energetic waste materials
Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.
1995-07-18
A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.
Molten salt destruction of energetic waste materials
Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.
1995-01-01
A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.
Thill, Patrick G; Ager, Duane K; Vojnovic, Borivoj; Tesh, Sarah J; Scott, Thomas B; Thompson, Ian P
2016-04-15
Hybrid approaches for the remediation and detoxification of toxic recalcitrant industrial wastewater were investigated. The focus was waste metalworking fluid, which was selected as a representative model of other waste streams that are toxic, recalcitrant and that require more sustainable routes of safe disposal. The hybrid approaches included biodegradation, electron beam irradiation and zero-valent nano iron advanced oxidation processes that were employed individually and in sequence employing a factorial design. To compare process performance operationally exhausted and pristine metalworking fluid were compared. Sequential hybrid electron beam irradiation, biological, nanoscale zero-valent iron and biological treatment lead to synergistic detoxification and degradation of both recalcitrant streams, as determined by complementary surrogates and lead to overall improved COD removal of 92.8 ± 1.4% up from 85.9 ± 3.4% for the pristine metalworking fluid. Electron beam pre-treatment enabled more effective biotreatment, achieving 69.5 ± 8% (p = 0.005) and 24.6 ± 4.8% (p = 0.044) COD reductions. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.
2016-05-01
Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.
Insights into the Streaming Instability in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Youdin, Andrew N.; Lin, Min-Kai; Li, Rixin
2017-10-01
The streaming instability is a leading mechanism to concentrate particles in protoplanetary disks, thereby triggering planetesimal formation. I will present recent analytical and numerical work on the origin of the streaming instability and its robustness. Our recent analytic work examines the origin of, and relationship between, a variety of drag-induced instabilities, including the streaming instability as well as secular gravitational instabilities, a drag instability driven by self-gravity. We show that drag instabilities are powered by a specific phase relationship between gas pressure and particle concentrations, which power the instability via pressure work. This mechanism is analogous to pulsating instabilities in stars. This mechanism differs qualitatively from other leading particle concentration mechanisms in pressure bumps and vortices. Our recent numerical work investigates the numerical robustness of non-linear particle clumping by the streaming instability, especially with regard to the location and boundary condition of vertical boundaries. We find that particle clumping is robust to these choices in boxes that are not too short. However, hydrodynamic activity away from the particle-dominated midplane is significantly affected by vertical boundary conditions. This activity affects the observationally significant lofting of small dust grains. We thus emphasize the need for larger scale simulations which connect disk surface layers, including outflowing winds, to the planet-forming midplane.
Edsberg, Laura E.; Wyffels, Jennifer T.; Ogrin, Rajna; Craven, B. Catharine; Houghton, Pamela
2015-01-01
Objective To determine whether the biochemistry of chronic pressure ulcers differs between patients with and without chronic spinal cord injury (SCI) through measurement and comparison of the concentration of wound fluid inflammatory mediators, growth factors, cytokines, acute phase proteins, and proteases. Design Survey. Setting Tertiary spinal cord rehabilitation center and skilled nursing facilities. Participants Twenty-nine subjects with SCI and nine subjects without SCI (>18 years) with at least one chronic pressure ulcer Stage II, III, or IV were enrolled. Outcome measures Total protein and 22 target analyte concentrations including inflammatory mediators, growth factors, cytokines, acute phase proteins, and proteases were quantified in the wound fluid and blood serum samples. Blood samples were tested for complete blood count, albumin, hemoglobin A1c, total iron binding capacity, iron, percent (%) saturation, C-reactive protein, and erythrocyte sedimentation rate. Results Wound fluid concentrations were significantly different between subjects with SCI and subjects without SCI for total protein concentration and nine analytes, MMP-9, S100A12, S100A8, S100A9, FGF2, IL-1b, TIMP-1, TIMP-2, and TGF-b1. Subjects without SCI had higher values for all significantly different analytes measured in wound fluid except FGF2, TGF-b1, and wound fluid total protein. Subject-matched circulating levels of analytes and the standardized local concentration of the same proteins in the wound fluid were weakly or not correlated. Conclusions The biochemical profile of chronic pressure ulcers is different between SCI and non-SCI populations. These differences should be considered when selecting treatment options. Systemic blood serum properties may not represent the local wound environment. PMID:24968005
Index of time-of-travel studies of the US Geological Survey
Boning, Charles W.
1973-01-01
This index identifies locations on streams where the U. S. Geological Survey has investigated the time of travel of a highly soluble material moving through a reach of stream channel. This index provides information only on the location of studied stream reaches; it contains no basic data. It does contain, however, a list of references to published data and analytical reports on time of travel and a list of U.S. Geological Survey offices where basic time-of-travel data are on file.
NASA Technical Reports Server (NTRS)
Storey, Jedediah M.; Kirk, Daniel; Gutierrez, Hector; Marsell, Brandon; Schallhorn, Paul; Lapilli, Gabriel D.
2015-01-01
Experimental and numerical results are presented from a new cryogenic fluid slosh program at the Florida Institute of Technology (FIT). Water and cryogenic liquid nitrogen are used in various ground-based tests with an approximately 30 cm diameter spherical tank to characterize damping, slosh mode frequencies, and slosh forces. The experimental results are compared to a computational fluid dynamics (CFD) model for validation. An analytical model is constructed from prior work for comparison. Good agreement is seen between experimental, numerical, and analytical results.
NASA Astrophysics Data System (ADS)
Trejos, Víctor M.; Santos, Andrés; Gámez, Francisco
2018-05-01
The interest in the description of the properties of fluids of restricted dimensionality is growing for theoretical and practical reasons. In this work, we have firstly developed an analytical expression for the Helmholtz free energy of the two-dimensional square-well fluid in the Barker-Henderson framework. This equation of state is based on an approximate analytical radial distribution function for d-dimensional hard-sphere fluids (1 ≤ d ≤ 3) and is validated against existing and new simulation results. The so-obtained equation of state is implemented in a discrete perturbation theory able to account for general potential shapes. The prototypical Lennard-Jones and Yukawa fluids are tested in its two-dimensional version against available and new simulation data with semiquantitative agreement.
NASA Astrophysics Data System (ADS)
Ahmed, M. H.; Abdul-Aziz, O. I.
2017-12-01
Chlorophyll-a (Chl-a) is a key indicator for stream water quality and ecological health. The characterization of interplay between Chl-a and its numerous hydroclimatic and biogeochemical drivers is complex, and often involves multicollinear datasets. A systematic data analytics methodology was employed to determine the relative linkages of stream Chl-a with its dynamic environmental drivers at 50 stream water quality monitoring stations across the continental U.S. Multivariate statistical techniques of principal component analysis (PCA) and factor analysis (FA), in concert with Pearson correlation analysis, were applied to evaluate interrelationships among hydroclimatic, biogeochemical, and biological variables. Power-law based partial least square regression (PLSR) models were developed with a bootstrap Monte Carlo procedure (1000 iterations) to reliably estimate the comparative linkages of Chl-a by resolving multicollinearity in the data matrices (Nash-Sutcliff efficiency = 0.50-87). The data analytics suggested four environmental regimes of stream Chl-a, as dominated by nutrient, climate, redox, and hydro-atmospheric contributions, respectively. Total phosphorous (TP) was the most dominant driver of stream Chl-a in the nutrient controlled regime. Water temperature demonstrated the strongest control of Chl-a in the climate-dominated regime. Furthermore, pH and stream flow were found to be the most important drivers of Chl-a in the redox and hydro-atmospheric component dominated regimes, respectively. The research led to a significant reduction of dimensionality in the large data matrices, providing quantitative and qualitative insights on the dynamics of stream Chl-a. The findings would be useful to manage stream water quality and ecosystem health in the continental U.S. and around the world under a changing climate and environment.
Reductant injection and mixing system
Reeves, Matt; Henry, Cary A.; Ruth, Michael J.
2016-02-16
A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.
Steady State Transportation Cooling in Porous Media Under Local, Non-Thermal Equilibrium Fluid Flow
NASA Technical Reports Server (NTRS)
Rodriquez, Alvaro Che
2002-01-01
An analytical solution to the steady-state fluid temperature for 1-D (one dimensional) transpiration cooling has been derived. Transpiration cooling has potential use in the aerospace industry for protection against high heating environments for re-entry vehicles. Literature for analytical treatments of transpiration cooling has been largely confined to the assumption of thermal equilibrium between the porous matrix and fluid. In the present analysis, the fundamental fluid and matrix equations are coupled through a volumetric heat transfer coefficient and investigated in non-thermal equilibrium. The effects of varying the thermal conductivity of the solid matrix and the heat transfer coefficient are investigated. The results are also compared to existing experimental data.
Lu, Ning; Ge, Shemin
1996-01-01
By including the constant flow of heat and fluid in the horizontal direction, we develop an analytical solution for the vertical temperature distribution within the semiconfining layer of a typical aquifer system. The solution is an extension of the previous one-dimensional theory by Bredehoeft and Papadopulos [1965]. It provides a quantitative tool for analyzing the uncertainty of the horizontal heat and fluid flow. The analytical results demonstrate that horizontal flow of heat and fluid, if at values much smaller than those of the vertical, has a negligible effect on the vertical temperature distribution but becomes significant when it is comparable to the vertical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ruili; Liu, Jian; Xiao, Jianyuan
2016-07-15
The two-stream instability is probably the most important elementary example of collective instabilities in plasma physics and beam-plasma systems. For a warm plasma with two charged particle species, the instability diagram of the two-stream instability based on a 1D warm-fluid model exhibits an interesting band structure that has not been explained. We show that the band structure for this instability is the consequence of the Hamiltonian nature of the warm two-fluid system. Interestingly, the Hamiltonian nature manifests as a complex G-Hamiltonian structure in wave-number space, which directly determines the instability diagram. Specifically, it is shown that the boundaries between themore » stable and unstable regions are locations for Krein collisions between eigenmodes with different Krein signatures. In terms of physics, this rigorously implies that the system is destabilized when a positive-action mode resonates with a negative-action mode, and that this is the only mechanism by which the system can be destabilized. It is anticipated that this physical mechanism of destabilization is valid for other collective instabilities in conservative systems in plasma physics, accelerator physics, and fluid dynamics systems, which admit infinite-dimensional Hamiltonian structures.« less
A framework for estimating potential fluid flow from digital imagery
NASA Astrophysics Data System (ADS)
Luttman, Aaron; Bollt, Erik M.; Basnayake, Ranil; Kramer, Sean; Tufillaro, Nicholas B.
2013-09-01
Given image data of a fluid flow, the flow field, ⟨u,v⟩, governing the evolution of the system can be estimated using a variational approach to optical flow. Assuming that the flow field governing the advection is the symplectic gradient of a stream function or the gradient of a potential function—both falling under the category of a potential flow—it is natural to re-frame the optical flow problem to reconstruct the stream or potential function directly rather than the components of the flow individually. There are several advantages to this framework. Minimizing a functional based on the stream or potential function rather than based on the components of the flow will ensure that the computed flow is a potential flow. Next, this approach allows a more natural method for imposing scientific priors on the computed flow, via regularization of the optical flow functional. Also, this paradigm shift gives a framework—rather than an algorithm—and can be applied to nearly any existing variational optical flow technique. In this work, we develop the mathematical formulation of the potential optical flow framework and demonstrate the technique on synthetic flows that represent important dynamics for mass transport in fluid flows, as well as a flow generated by a satellite data-verified ocean model of temperature transport.
NASA Technical Reports Server (NTRS)
Spradley, L. W.
1975-01-01
The effects on heated fluids of nonconstant accelerations, rocket vibrations, and spin rates, was studied. A system is discussed which can determine the influence of the convective effects on fluid experiments. The general suitability of sounding rockets for performing these experiments is treated. An analytical investigation of convection in an enclosure which is heated in low gravity is examined. The gravitational body force was taken as a time-varying function using anticipated sounding rocket accelerations, since accelerometer flight data were not available. A computer program was used to calculate the flow rates and heat transfer in fluids with geometries and boundary conditions typical of space processing configurations. Results of the analytical investigation identify the configurations, fluids and boundary values which are most suitable for measuring the convective environment of sounding rockets. A short description of fabricated fluid cells and the convection measurement package is given. Photographs are included.
Darcy Flow in a Wavy Channel Filled with a Porous Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Donald D; Ogretim, Egemen; Bromhal, Grant S
2013-05-17
Flow in channels bounded by wavy or corrugated walls is of interest in both technological and geological contexts. This paper presents an analytical solution for the steady Darcy flow of an incompressible fluid through a homogeneous, isotropic porous medium filling a channel bounded by symmetric wavy walls. This packed channel may represent an idealized packed fracture, a situation which is of interest as a potential pathway for the leakage of carbon dioxide from a geological sequestration site. The channel walls change from parallel planes, to small amplitude sine waves, to large amplitude nonsinusoidal waves as certain parameters are increased. Themore » direction of gravity is arbitrary. A plot of piezometric head against distance in the direction of mean flow changes from a straight line for parallel planes to a series of steeply sloping sections in the reaches of small aperture alternating with nearly constant sections in the large aperture bulges. Expressions are given for the stream function, specific discharge, piezometric head, and pressure.« less
Octanol-assisted liposome assembly on chip
Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees
2016-01-01
Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5–20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells. PMID:26794442
Octanol-assisted liposome assembly on chip.
Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E C; Dekker, Cees
2016-01-22
Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.
Octanol-assisted liposome assembly on chip
NASA Astrophysics Data System (ADS)
Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees
2016-01-01
Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.
NASA Astrophysics Data System (ADS)
Farsoiya, Palas Kumar; Dasgupta, Ratul
2017-11-01
When the interface between two radially unbounded, viscous fluids lying vertically in a stable configuration (denser fluid below) at rest, is perturbed, radially propagating capillary-gravity waves are formed which damp out with time. We study this process analytically using a recently developed linearised theory. For small amplitude initial perturbations, the analytical solution to the initial value problem, represented as a linear superposition of Bessel modes at time t = 0 , is found to agree very well with results obtained from direct numerical simulations of the Navier-Stokes equations, for a range of initial conditions. Our study extends the earlier work by John W. Miles who studied this initial value problem analytically, taking into account, a single viscous fluid only. Implications of this study for the mechanistic understanding of droplet impact into a deep pool, will be discussed. Some preliminary, qualitative comparison with experiments will also be presented. We thank SERB Dept. Science & Technology, Govt. of India, Grant No. EMR/2016/000830 for financial support.
Fluid Mechanics and Heat Transfer in Transitional Boundary Layers
NASA Technical Reports Server (NTRS)
Wang, Ting
2007-01-01
Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.
Formation and Control of Fluidic Species
NASA Technical Reports Server (NTRS)
Link, Darren Roy (Inventor); Marquez-Sanchez, Manuel (Inventor); Cheng, Zhengdong (Inventor); Weitz, David A. (Inventor)
2015-01-01
This invention generally relates to systems and methods for the formation and/or control of fluidic species, and articles produced by such systems and methods. In some cases, the invention involves unique fluid channels, systems, controls, and/or restrictions, and combinations thereof. In certain embodiments, the invention allows fluidic streams (which can be continuous or discontinuous, i.e., droplets) to be formed and/or combined, at a variety of scales, including microfluidic scales. In one set of embodiments, a fluidic stream may be produced from a channel, where a cross-sectional dimension of the fluidic stream is smaller than that of the channel, for example, through the use of structural elements, other fluids, and/or applied external fields, etc. In some cases, a Taylor cone may be produced. In another set of embodiments, a fluidic stream may be manipulated in some fashion, for example, to create tubes (which may be hollow or solid), droplets, nested tubes or droplets, arrays of tubes or droplets, meshes of tubes, etc. In some cases, droplets produced using certain embodiments of the invention may be charged or substantially charged, which may allow their further manipulation, for instance, using applied external fields. Non-limiting examples of such manipulations include producing charged droplets, coalescing droplets (especially at the microscale), synchronizing droplet formation, aligning molecules within the droplet, etc. In some cases, the droplets and/or the fluidic streams may include colloids, cells, therapeutic agents, and the like.
Song, Hongjun; Wang, Yi; Pant, Kapil
2013-01-01
This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.
Song, Hongjun; Wang, Yi; Pant, Kapil
2012-01-01
This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space. PMID:23554584
Heat recirculating cooler for fluid stream pollutant removal
Richards, George A.; Berry, David A.
2008-10-28
A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.
Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finster, Molly; Clark, Corrie; Schroeder, Jenna
2015-10-01
Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly dependingmore » on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management options for produced fluids that require additional treatment for these constituents are also discussed, including surface disposal, reuse and recycle, agricultural industrial and domestic uses, mineral extraction and recovery, and solid waste handling.« less
Han, Thomas Yong-Jin; Valdez, Carlos A; Olson, Tammy Y; Kim, Sung Ho; Satcher, Jr., Joe H
2015-04-21
In one embodiment, a system includes a plurality of metal nanoparticles functionalized with a plurality of organic molecules tethered thereto, wherein the plurality of organic molecules preferentially interact with one or more analytes when placed in proximity therewith. According to another embodiment, a method for detecting analytes includes contacting a fluid having one or more analytes of interest therein with a plurality of metal nanoparticles, each metal nanoparticle having a plurality of organic molecules tethered thereto, and detecting Raman scattering from an analyte of interest from the fluid, the analyte interacting with one or more of the plurality of organic molecules. In another embodiment, a method includes chemically modifying a plurality of cyclodextrin molecules at a primary hydroxyl moiety to create a chemical handle, and tethering the plurality of cyclodextrin molecules to a metal nanoparticle using the chemical handle. Other systems and methods for detecting analytes are also described.
Gold nanostructures and methods of use
Zhang, Jin Z [Santa Cruz, CA; Schwartzberg, Adam [Santa Cruz, CA; Olson, Tammy Y [Santa Cruz, CA
2012-03-20
The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.
Gold nanostructures and methods of use
Zhang, Jin Z.; Schwartzberg, Adam; Olson, Tammy Y.
2016-03-01
The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.
Markiewicz, B; Sajnóg, A; Lorenc, W; Hanć, A; Komorowicz, I; Suliburska, J; Kocyłowski, R; Barałkiewicz, D
2017-11-01
Amniotic fluid is the substantial factor in the development of an embryo and fetus due to the fact that water and solutes contained in it penetrate the fetal membranes in an hydrostatic and osmotic way as well as being swallowed by the fetus. Elemental composition of amniotic fluid influences the growth and health of the fetus, therefore, an analysis of amniotic fluid is important because the results would indicate abnormal levels of minerals or toxic elements. Inductively coupled plasma mass spectroscopy (ICP-MS) is often used for determination of trace and ultra-trace level elements in a wide range of matrices including biological samples because of its unique analytical capabilities. In the case of trace and ultra-trace level analysis detailed characteristics of analytical procedure as well as properties of the analytical result are particularly important. The purpose of this study was to develop a new analytical procedure for multielemental analysis of 18 elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Mg, Mn, Ni, Pb, Sb, Se, Sr, U, V and Zn) in amniotic fluid samples using ICP-MS. Dynamic reaction cell (DRC) with two reaction gases, ammonia and oxygen, was involved in the experiment to eliminate spectral interferences. Detailed validation was conducted using 3 certified reference mterials (CRMs) and real amniotic fluid samples collected from patients. Repeatability for all analyzed analytes was found to range from 0.70% to 8.0% and for intermediate precision results varied from 1.3% to 15%. Trueness expressed as recovery ranged from 80% to 125%. Traceability was assured through the analyses of CRMs. Uncertainty of the results was also evaluated using single-laboratory validation approach. The obtained expanded uncertainty (U) results for CRMs, expressed as a percentage of the concentration of an analyte, were found to be between 8.3% for V and 45% for Cd. Standard uncertainty of the precision was found to have a greater influence on the combined standard uncertainty than on trueness factor. Copyright © 2017 Elsevier B.V. All rights reserved.
Particle size analysis of amalgam powder and handpiece generated specimens.
Drummond, J L; Hathorn, R M; Cailas, M D; Karuhn, R
2001-07-01
The increasing interest in the elimination of amalgam particles from the dental waste (DW) stream, requires efficient devices to remove these particles. The major objective of this project was to perform a comparative evaluation of five basic methods of particle size analysis in terms of the instrument's ability to quantify the size distribution of the various components within the DW stream. The analytical techniques chosen were image analysis via scanning electron microscopy, standard wire mesh sieves, X-ray sedigraphy, laser diffraction, and electrozone analysis. The DW particle stream components were represented by amalgam powders and handpiece/diamond bur generated specimens of enamel; dentin, whole tooth, and condensed amalgam. Each analytical method quantified the examined DW particle stream components. However, X-ray sedigraphy, electrozone, and laser diffraction particle analyses provided similar results for determining particle distributions of DW samples. These three methods were able to more clearly quantify the properties of the examined powder and condensed amalgam samples. Furthermore, these methods indicated that a significant fraction of the DW stream contains particles less than 20 microm. The findings of this study indicated that the electrozone method is likely to be the most effective technique for quantifying the particle size distribution in the DW particle stream. This method required a relative small volume of sample, was not affected by density, shape factors or optical properties, and measured a sufficient number of particles to provide a reliable representation of the particle size distribution curve.
Forensics of subhalo-stream encounters: the three phases of gap growth
NASA Astrophysics Data System (ADS)
Erkal, Denis; Belokurov, Vasily
2015-06-01
There is hope to discover dark matter subhaloes free of stars (predicted by the current theory of structure formation) by observing gaps they produce in tidal streams. In fact, this is the most promising technique for dark substructure detection and characterization as such gaps grow with time, magnifying small perturbations into clear signatures observable by ongoing and planned Galaxy surveys. To facilitate such future inference, we develop a comprehensive framework for studies of the growth of the stream density perturbations. Starting with simple assumptions and restricting to streams on circular orbits, we derive analytic formulae that describe the evolution of all gap properties (size, density contrast, etc.) at all times. We uncover complex, previously unnoticed behaviour, with the stream initially forming a density enhancement near the subhalo impact point. Shortly after, a gap forms due to the relative change in period induced by the subhalo's passage. There is an intermediate regime where the gap grows linearly in time. At late times, the particles in the stream overtake each other, forming caustics, and the gap grows like √{t}. In addition to the secular growth, we find that the gap oscillates as it grows due to epicyclic motion. We compare this analytic model to N-body simulations and find an impressive level of agreement. Importantly, when analysing the observation of a single gap we find a large degeneracy between the subhalo mass, the impact geometry and kinematics, the host potential, and the time since flyby.
Nanoscale Surface Plasmonics Sensor With Nanofluidic Control
NASA Technical Reports Server (NTRS)
Wei, Jianjun; Singhal, Sameer; Waldeck, David H.; Kofke, Matthew
2013-01-01
Conventional quantitative protein assays of bodily fluids typically involve multiple steps to obtain desired measurements. Such methods are not well suited for fast and accurate assay measurements in austere environments such as spaceflight and in the aftermath of disasters. Consequently, there is a need for a protein assay technology capable of routinely monitoring proteins in austere environments. For example, there is an immediate need for a urine protein assay to assess astronaut renal health during spaceflight. The disclosed nanoscale surface plasmonics sensor provides a core detection method that can be integrated to a lab-on-chip device that satisfies the unmet need for such a protein assay technology. Assays based upon combinations of nanoholes, nanorings, and nanoslits with transmission surface plasmon resonance (SPR) are used for assays requiring extreme sensitivity, and are capable of detecting specific analytes at concentrations as low as picomole to femtomole level in well-controlled environments. The device operates in a transmission mode configuration in which light is directed at one planar surface of the array, which functions as an optical aperture. The incident light induces surface plasmon light transmission from the opposite surface of the array. The presence of a target analyte is detected by changes in the spectrum of light transmitted by the array when a target analyte induces a change in the refractive index of the fluid within the nanochannels. This occurs, for example, when a target analyte binds to a receptor fixed to the walls of the nanochannels in the array. Independent fluid handling capability for individual nanoarrays on a nanofluidic chip containing a plurality of nanochannel arrays allows each array to be used to sense a different target analyte and/or for paired arrays to analyze control and test samples simultaneously in parallel. The present invention incorporates transmission mode nanoplasmonics and nanofluidics into a single, microfluidically controlled device. The device comprises one or more arrays of aligned nanochannels that are in fluid communication with inflowing and outflowing fluid handling manifolds that control the flow of fluid through the arrays. The array acts as an aperture in a plasmonic sensor. Fluid, in the form of a liquid or a gas and comprising a sample for analysis, is moved from an inlet manifold through the nanochannel array, and out through an exit manifold. The fluid may also contain a reagent used to modify the interior surfaces of the nanochannels, and/or a reagent required for the detection of an analyte.
Charging Effects on Fluid Stream Droplets for Momentum Exchange Between Spacecraft
2009-01-01
DC705 have similar density; 1070 kg/m 3 for DC704 and 1097 kg/m 3 for DC705. The fluids differ chemically by a single methyl group, which is replaced...measured as a function of photon energy. The relative light intensity was monitored by the fluorescence of Sodium Salicylate . Division of the current by
Electrokinetic micro-fluid mixer
Paul, Phillip H.; Rakestraw, David J.
2000-01-01
A method and apparatus for efficiently and rapidly mixing liquids in a system operating in the creeping flow regime such as would be encountered in capillary-based systems. By applying an electric field to each liquid, the present invention is capable of mixing together fluid streams in capillary-based systems, where mechanical or turbulent stirring cannot be used, to produce a homogeneous liquid.
Device for cooling and humidifying reformate
Zhao, Jian Lian; Northrop, William F.
2008-04-08
Devices for cooling and humidifying a reformate stream from a reforming reactor as well as related methods, modules and systems includes a heat exchanger and a sprayer. The heat exchanger has an inlet, an outlet, and a conduit between the inlet and the outlet. The heat exchanger is adapted to allow a flow of a first fluid (e.g. water) inside the conduit and to establish a heat exchange relationship between the first fluid and a second fluid (e.g. reformate from a reforming reactor) flowing outside the conduit. The sprayer is coupled to the outlet of the heat exchanger for spraying the first fluid exiting the heat exchanger into the second fluid.
Ultrasonic Recovery and Modification of Food Ingredients
NASA Astrophysics Data System (ADS)
Vilkhu, Kamaljit; Manasseh, Richard; Mawson, Raymond; Ashokkumar, Muthupandian
There are two general classes of effects that sound, and ultrasound in particular, can have on a fluid. First, very significant modifications to the nature of food and food ingredients can be due to the phenomena of bubble acoustics and cavitation. The applied sound oscillates bubbles in the fluid, creating intense forces at microscopic scales thus driving chemical changes. Second, the sound itself can cause the fluid to flow vigorously, both on a large scale and on a microscopic scale; furthermore, the sound can cause particles in the fluid to move relative to the fluid. These streaming phenomena can redistribute materials within food and food ingredients at both microscopic and macroscopic scales.
Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons
NASA Astrophysics Data System (ADS)
Nasir Khattak, M.; Mushtaq, A.; Qamar, A.
2015-12-01
Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.
Synthesis of ordered L10-type FeNi nanoparticles
Pinkerton, Frederick E.
2015-09-22
Particles of iron and nickel are added to a flowing plasma stream which does not chemically alter the iron or nickel. The iron and nickel are heated and vaporized in the stream, and then a cryogenic fluid is added to the stream to rapidly cause the formation of nanometer size particles of iron and nickel. The particles are separated from the stream. The particles are preferably formed as single crystals in which the iron and nickel atoms are organized in a tetragonal L1.sub.0 crystal structure which displays magnetic anisotropy. A minor portion of an additive, such as titanium, vanadium, aluminum, boron, carbon, phosphorous, or sulfur, may be added to the plasma stream with the iron and nickel to enhance formation of the desired crystal structure.
Computational fluid dynamics study of viscous fingering in supercritical fluid chromatography.
Subraveti, Sai Gokul; Nikrityuk, Petr; Rajendran, Arvind
2018-01-26
Axi-symmetric numerical simulations are carried out to study the dynamics of a plug introduced through a mixed-stream injection in supercritical fluid chromatographic columns. The computational fluid dynamics model developed in this work takes into account both the hydrodynamics and adsorption equilibria to describe the phenomena of viscous fingering and plug effect that contribute to peak distortions in mixed-stream injections. The model was implemented into commercial computational fluid dynamics software using user-defined functions. The simulations describe the propagation of both the solute and modifier highlighting the interplay between the hydrodynamics and plug effect. The simulated peaks showed good agreement with experimental data published in the literature involving different injection volumes (5 μL, 50 μL, 1 mL and 2 mL) of flurbiprofen on Chiralpak AD-H column using a mobile phase of CO 2 and methanol. The study demonstrates that while viscous fingering is the main source of peak distortions for large-volume injections (1 mL and 2 mL) it has negligible impact on small-volume injections (5 μL and 50 μL). Band broadening in small-volume injections arise mainly due to the plug effect. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Hydrodynamic enhanced dielectrophoretic particle trapping
Miles, Robin R.
2003-12-09
Hydrodynamic enhanced dielectrophoretic particle trapping carried out by introducing a side stream into the main stream to squeeze the fluid containing particles close to the electrodes producing the dielelectrophoretic forces. The region of most effective or the strongest forces in the manipulating fields of the electrodes producing the dielectrophoretic forces is close to the electrodes, within 100 .mu.m from the electrodes. The particle trapping arrangement uses a series of electrodes with an AC field placed between pairs of electrodes, which causes trapping of particles along the edges of the electrodes. By forcing an incoming flow stream containing cells and DNA, for example, close to the electrodes using another flow stream improves the efficiency of the DNA trapping.
Reclamation of potable water from mixed gas streams
Judkins, Roddie R.; Bischoff, Brian L.; Debusk, Melanie Moses; Narula, Chaitanya
2016-07-19
An apparatus for separating a liquid from a mixed gas stream can include a wall, a mixed gas stream passageway, and a liquid collection assembly. The wall can include a first surface, a second surface, and a plurality of capillary condensation pores. The capillary condensation pores extend through the wall, and have a first opening on the first surface of the wall, and a second opening on the second surface of the wall. The pore size of the pores can be between about 2 nm to about 100 nm. The mixed gas stream passageway can be in fluid communication with the first opening. The liquid collection assembly can collect liquid from the plurality of pores.
Reclamation of potable water from mixed gas streams
Judkins, Roddie R; Bischoff, Brian L; Debusk, Melanie Moses; Narula, Chaitanya
2013-08-20
An apparatus for separating a liquid from a mixed gas stream can include a wall, a mixed gas stream passageway, and a liquid collection assembly. The wall can include a first surface, a second surface, and a plurality of capillary condensation pores. The capillary condensation pores extend through the wall, and have a first opening on the first surface of the wall, and a second opening on the second surface of the wall. The pore size of the pores can be between about 2 nm to about 100 nm. The mixed gas stream passageway can be in fluid communication with the first opening. The liquid collection assembly can collect liquid from the plurality of pores.
Free stream capturing in fluid conservation law for moving coordinates in three dimensions
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1991-01-01
The free-stream capturing technique for both the finite-volume (FV) and finite-difference (FD) framework is summarized. For an arbitrary motion of the grid, the FV analysis shows that volumes swept by all six surfaces of the cell have to be computed correctly. This means that the free-stream capturing time-metric terms should be calculated not only from a surface vector of a cell at a single time level, but also from a volume swept by the cell surface in space and time. The FV free-stream capturing formulation is applicable to the FD formulation by proper translation from an FV cell to an FD mesh.
Wagner, Chad R.; Tighe, Kirsten C.; Terziotti, Silvia
2009-01-01
StreamStats is a Web-based Geographic Information System (GIS) application that was developed by the U.S. Geological Survey (USGS) in cooperation with Environmental Systems Research Institute, Inc. (ESRI) to provide access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection sites and selected ungaged sites. StreamStats also allows users to identify stream reaches upstream and downstream from user-selected sites and obtain information for locations along streams where activities occur that can affect streamflow conditions. This functionality can be accessed through a map-based interface with the user's Web browser or through individual functions requested remotely through other Web applications.
Yu, Huidan; Chen, Xi; Wang, Zhiqiang; Deep, Debanjan; Lima, Everton; Zhao, Ye; Teague, Shawn D
2014-06-01
In this paper, we develop a mass-conserved volumetric lattice Boltzmann method (MCVLBM) for numerically solving fluid dynamics with willfully moving arbitrary boundaries. In MCVLBM, fluid particles are uniformly distributed in lattice cells and the lattice Boltzmann equations deal with the time evolution of the particle distribution function. By introducing a volumetric parameter P(x,y,z,t) defined as the occupation of solid volume in the cell, we distinguish three types of lattice cells in the simulation domain: solid cell (pure solid occupation, P=1), fluid cell (pure fluid occupation, P=0), and boundary cell (partial solid and partial fluid, 0
DIVE: A Graph-based Visual Analytics Framework for Big Data
Rysavy, Steven J.; Bromley, Dennis; Daggett, Valerie
2014-01-01
The need for data-centric scientific tools is growing; domains like biology, chemistry, and physics are increasingly adopting computational approaches. As a result, scientists must now deal with the challenges of big data. To address these challenges, we built a visual analytics platform named DIVE: Data Intensive Visualization Engine. DIVE is a data-agnostic, ontologically-expressive software framework capable of streaming large datasets at interactive speeds. Here we present the technical details of the DIVE platform, multiple usage examples, and a case study from the Dynameomics molecular dynamics project. We specifically highlight our novel contributions to structured data model manipulation and high-throughput streaming of large, structured datasets. PMID:24808197
Folger, H. W.
2000-01-01
The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management (BLM), began a study in 1996 to describe to the geochemistry of the Humboldt River Basin. The principal sample media evaluated are stream-sediment and soil samples retrieved from the National Uranium Resource Evaluation (NURE) archives located in Denver, Colorado. Samples were retrieved from the Wells, McDermitt, Vya, Lovelock, Winnemucca, Elko, Ely, Millett, Reno, and Tonopah 1? x 2? quadrangles in northern Nevada. The data are appropriate for large-scale reconnaissance resource evaluations and landscape geochemical-geoenvironmental evaluations. The analytical results are presented in this report.
Use telecommunications for real-time process control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zilberman, I.; Bigman, J.; Sela, I.
1996-05-01
Process operators design real-time accurate information to monitor and control product streams and to optimize unit operations. The challenge is how to cost-effectively install sophisticated analytical equipment in harsh environments such as process areas and maintain system reliability. Incorporating telecommunications technology with near infrared (NIR) spectroscopy may be the bridge to help operations achieve their online control goals. Coupling communications fiber optics with NIR analyzers enables the probe and sampling system to remain in the field and crucial analytical equipment to be remotely located in a general purpose area without specialized protection provisions. The case histories show how two refineriesmore » used NIR spectroscopy online to track octane levels for reformate streams.« less
Analyses of ACPL thermal/fluid conditioning system
NASA Technical Reports Server (NTRS)
Stephen, L. A.; Usher, L. H.
1976-01-01
Results of engineering analyses are reported. Initial computations were made using a modified control transfer function where the systems performance was characterized parametrically using an analytical model. The analytical model was revised to represent the latest expansion chamber fluid manifold design, and systems performance predictions were made. Parameters which were independently varied in these computations are listed. Systems predictions which were used to characterize performance are primarily transient computer plots comparing the deviation between average chamber temperature and the chamber temperature requirement. Additional computer plots were prepared. Results of parametric computations with the latest fluid manifold design are included.
Watts, R R; Langone, J J; Knight, G J; Lewtas, J
1990-01-01
A two-day technical workshop was convened November 10-11, 1986, to discuss analytical approaches for determining trace amounts of cotinine in human body fluids resulting from passive exposure to environmental tobacco smoke (ETS). The workshop, jointly sponsored by the U.S. Environmental Protection Agency and Centers for Disease Control, was attended by scientists with expertise in cotinine analytical methodology and/or conduct of human monitoring studies related to ETS. The workshop format included technical presentations, separate panel discussions on chromatography and immunoassay analytical approaches, and group discussions related to the quality assurance/quality control aspects of future monitoring programs. This report presents a consensus of opinion on general issues before the workshop panel participants and also a detailed comparison of several analytical approaches being used by the various represented laboratories. The salient features of the chromatography and immunoassay analytical methods are discussed separately. PMID:2190812
Variable Geometry Aircraft Pylon Structure and Related Operation Techniques
NASA Technical Reports Server (NTRS)
Shah, Parthiv N. (Inventor)
2014-01-01
An aircraft control structure can be utilized for purposes of drag management, noise control, or aircraft flight maneuvering. The control structure includes a high pressure engine nozzle, such as a bypass nozzle or a core nozzle of a turbofan engine. The nozzle exhausts a high pressure fluid stream, which can be swirled using a deployable swirl vane architecture. The control structure also includes a variable geometry pylon configured to be coupled between the nozzle and the aircraft. The variable geometry pylon has a moveable pylon section that can be deployed into a deflected state to maintain or alter a swirling fluid stream (when the swirl vane architecture is deployed) for drag management purposes, or to assist in the performance of aircraft flight maneuvers.
NASA Astrophysics Data System (ADS)
Kolodezhnov, V. N.
2018-03-01
This paper proposes a rheological model of a fluid having the Newtonian model applicability limit and a potential for further “addition” of the transverse viscosity factor. The dynamic equations for a fluid that has such rheological model are discussed, the analysis of which demonstrates the possibility of “generating” the cross stream velocity components. The transition to the dimensionless notation introduces four dimensionless complexes of local characterization for the transition conditions in the neighborhood of the flow region point in question. Based on such dimensionless complexes and using the known experimental data, the empiric conditions of “generating” the cross stream velocity components and starting the laminar-turbulent transition are proposed.
Durai-Swamy, Kandaswamy
1982-01-01
In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.
Analytical Model For Fluid Dynamics In A Microgravity Environment
NASA Technical Reports Server (NTRS)
Naumann, Robert J.
1995-01-01
Report presents analytical approximation methodology for providing coupled fluid-flow, heat, and mass-transfer equations in microgravity environment. Experimental engineering estimates accurate to within factor of 2 made quickly and easily, eliminating need for time-consuming and costly numerical modeling. Any proposed experiment reviewed to see how it would perform in microgravity environment. Model applied in commercial setting for preliminary design of low-Grashoff/Rayleigh-number experiments.
Sub-micron surface plasmon resonance sensor systems
NASA Technical Reports Server (NTRS)
Glazier, James A. (Inventor); Amarie, Dragos (Inventor)
2013-01-01
Wearable or implantable devices combining microfluidic control of sample and reagent flow and micro-cavity surface plasmon resonance sensors functionalized with surface treatments or coatings capable of specifically binding to target analytes, ligands, or molecules in a bodily fluid are provided. The devices can be used to determine the presence and concentration of target analytes in the bodily fluids and thereby help diagnose, monitor or detect changes in disease conditions.
An analytical poroelastic model for ultrasound elastography imaging of tumors
NASA Astrophysics Data System (ADS)
Tauhidul Islam, Md; Chaudhry, Anuj; Unnikrishnan, Ginu; Reddy, J. N.; Righetti, Raffaella
2018-01-01
The mechanical behavior of biological tissues has been studied using a number of mechanical models. Due to the relatively high fluid content and mobility, many biological tissues have been modeled as poroelastic materials. Diseases such as cancers are known to alter the poroelastic response of a tissue. Tissue poroelastic properties such as compressibility, interstitial permeability and fluid pressure also play a key role for the assessment of cancer treatments and for improved therapies. At the present time, however, a limited number of poroelastic models for soft tissues are retrievable in the literature, and the ones available are not directly applicable to tumors as they typically refer to uniform tissues. In this paper, we report the analytical poroelastic model for a non-uniform tissue under stress relaxation. Displacement, strain and fluid pressure fields in a cylindrical poroelastic sample containing a cylindrical inclusion during stress relaxation are computed. Finite element simulations are then used to validate the proposed theoretical model. Statistical analysis demonstrates that the proposed analytical model matches the finite element results with less than 0.5% error. The availability of the analytical model and solutions presented in this paper may be useful to estimate diagnostically relevant poroelastic parameters such as interstitial permeability and fluid pressure, and, in general, for a better interpretation of clinically-relevant ultrasound elastography results.
Giddings, Elise M.P.; Bell, Amanda H.; Beaulieu, Karen M.; Cuffney, Thomas F.; Coles, James F.; Brown, Larry R.; Fitzpatrick, Faith A.; Falcone, James A.; Sprague, Lori A.; Bryant, Wade L.; Peppler, Marie C.; Stephens, Cory; McMahon, Gerard
2009-01-01
This report documents and summarizes physical, chemical, and biological data collected during 1999-2004 in a study titled Effects of Urbanization on Stream Ecosystems, undertaken as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Data-collection methods and data processing are described in this report for streamflow; stream temperature; instream chemistry; instream aquatic habitat; and algal, macroinvertebrate, and fish communities. Data summaries prepared for analytical use are presented in downloadable data tables.
ERIC Educational Resources Information Center
Cowan, Christina E.
This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module deals specifically with concepts that are basic to fluid flow and…
NASA Technical Reports Server (NTRS)
Baughman, J. R.; Thys, P. C.
1973-01-01
A droplet monitoring system is disclosed for analysis of mixed-phase fluid flow in development of gas turbines. The system uses a probe comprising two electrical wires spaced a known distance apart and connected at one end to means for establishing a dc potential between the wires. A drop in the fluid stream momentarily contacting both wires simultaneously causes and electrical signal which is amplified, detected and counted.
Supercritical fluid regeneration of adsorbents
NASA Astrophysics Data System (ADS)
Defilippi, R. P.; Robey, R. J.
1983-05-01
The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.
NASA Astrophysics Data System (ADS)
Lekien, F.; Coulliette, C.
In this talk we will briefly describe the dynamical systems framework for Lagrangian transport. In particular, we will show how dynamical systems theory can now be uti- lized in the context of "real" problems, such as those derived from remote sensing observations or the input of a large scale numerical model. We will illustrate these ideas by two examples. Study of fluid transport near the Atlantic coast of Florida us- ing a velocity field observed experimentally from high frequency radar measurements reveals that dynamical systems theory can be used to reduce contaminant density in coastal areas. We also study intergyre transport in a quasigeostrophic model of the North Atlantic. We investigate the structure of eddies detaching from the Gulf Stream and prove that in a double gyre structure cyclonic rings cannot contain fluid from the other gyre. Only anticyclonic rings can contain "foreign" fluid coming from another gyre. This explains many phenomenons, such as why counter-clockwise rings South of the Gulf Stream contain colder fluid advected directly from the northern gyre, which has been illustrated in many observational studies.
Atkinson, David A.
2002-01-01
Methods and apparatus for ion mobility spectrometry and analyte detection and identification verification system are disclosed. The apparatus is configured to be used in an ion mobility spectrometer and includes a plurality of reactant reservoirs configured to contain a plurality of reactants which can be reacted with the sample to form adducts having varying ion mobilities. A carrier fluid, such as air or nitrogen, is used to carry the sample into the spectrometer. The plurality of reactants are configured to be selectively added to the carrier stream by use inlet and outlet manifolds in communication with the reagent reservoirs, the reservoirs being selectively isolatable by valves. The invention further includes a spectrometer having the reagent system described. In the method, a first reactant is used with the sample. Following a positive result, a second reactant is used to determine whether a predicted response occurs. The occurrence of the second predicted response tends to verify the existence of a component of interest within the sample. A third reactant can also be used to provide further verification of the existence of a component of interest. A library can be established of known responses of compounds of interest with various reactants and the results of a specific multi-reactant survey of a sample can be compared against the library to determine whether a component detected in the sample is likely to be a specific component of interest.
Method for separating disparate components in a fluid stream
Meikrantz, David H.
1990-01-01
The invention provides a method of separating a mixed component waste stream in a centrifugal separator. The mixed component waste stream is introduced into the separator and is centrifugally separated within a spinning rotor. A dual vortex separation occurs due to the phase density differences, with the phases exiting the rotor distinct from one another. In a preferred embodiment, aqueous solutions of organics can be separated with up to 100% efficiency. The relatively more dense water phase is centrifugally separated through a radially outer aperture in the separator, while the relatively less dense organic phase is separated through a radially inner aperture.
A millisecond micromixer via single-bubble-based acoustic streaming.
Ahmed, Daniel; Mao, Xiaole; Shi, Jinjie; Juluri, Bala Krishna; Huang, Tony Jun
2009-09-21
We present ultra-fast homogeneous mixing inside a microfluidic channel via single-bubble-based acoustic streaming. The device operates by trapping an air bubble within a "horse-shoe" structure located between two laminar flows inside a microchannel. Acoustic waves excite the trapped air bubble at its resonance frequency, resulting in acoustic streaming, which disrupts the laminar flows and triggers the two fluids to mix. Due to this technique's simple design, excellent mixing performance, and fast mixing speed (a few milliseconds), our single-bubble-based acoustic micromixer may prove useful for many biochemical studies and applications.
NASA Lewis Research Center low-gravity fluid management technology program
NASA Technical Reports Server (NTRS)
Aydelott, J. C.; Carney, M. J.; Hochstein, J. I.
1985-01-01
A history of the Lewis Research Center in space fluid management technology program is presented. Current programs which include numerical modeling of fluid systems, heat exchanger/radiator concept studies, and the design of the Cryogenic Fluid Management Facility are discussed. Recent analytical and experimental activities performed to support the Shuttle/Centaur development activity are highlighted.
King, Harley D.; Chaffee, Maurice A.
2000-01-01
INTRODUCTION In 1996-1998 the U.S. Geological Survey (USGS) conducted a geochemical study of the Bureau of Land Management's (BLM) 5.5 million-acre Northern and Eastern Colorado Desert Resource Area (usually referred to as the NECD in this report), Imperial, Riverside, and San Bernardino Counties, southeastern California (figure 1). This study was done in support of the BLM's Coordinated Management Plan for the area. This report presents analytical data from this study. To provide comprehensive coverage of the NECD, we compiled and examined all available geochemical data, in digital form, from previous studies in the area, and made sample-site plots to aid in determining where sample-site coverage and analyses were sufficient, which samples should be re-analyzed, and where additional sampling was needed. Previous investigations conducted in parts of the current study area included the National Uranium Resource Evaluation (NURE) program studies of the Needles and Salton Sea 1? x 2? quadrangles; USGS studies of 12 BLM Wilderness Study Areas (WSAs) (Big Maria Mountains, Chemehuevi Mountains, Chuckwalla Mountains, Coxcomb Mountains, Mecca Hills, Orocopia Mountains, Palen-McCoy, Picacho Peak, Riverside Mountains, Sheephole Valley (also known as Sheep Hole/Cadiz), Turtle Mountains, and Whipple Mountains); and USGS studies in the Needles and El Centro 1? x 2? quadrangles done during the early 1990s as part of a project to identify the regional geochemistry of southern California. Areas where we did new sampling of rocks and stream sediments are mainly in the Chocolate Mountain Aerial Gunnery Range and in Joshua Tree National Park, which extends into the west-central part of the NECD, as shown in figure 1 and figure 2. This report contains analytical data for 132 rock samples and 1,245 stream-sediment samples collected by the USGS, and 362 stream-sediment samples and 189 soil samples collected during the NURE program. All samples are from the Northern and Eastern Colorado Desert BLM Resource Area and vicinity. Included in the 1,245 stream-sediment samples collected by the USGS are 284 samples collected as part of the current study, 817 samples collected as part of investigations of the12 BLM WSAs and re-analyzed for the present study, 45 samples from the Needles 1? X 2? quadrangle, and 99 samples from the El Centro 1? X 2? quadrangle. The NURE stream-sediment and soil samples were re-analyzed as part of the USGS study in the Needles quadrangle. Analytical data for samples from the Chocolate Mountain Aerial Gunnery Range, which is located within the area of the NECD, were previously reported (King and Chaffee, 1999a). For completeness, these results are also included in this report. Analytical data for samples from the area of Joshua Tree National Park that is within the NECD have also been reported (King and Chaffee, 1999b). These results are not included in this report. The analytical data presented here can be used for baseline geochemical, mineral resource, and environmental geochemical studies.
NASA Astrophysics Data System (ADS)
Khan, Najeeb Alam; Saeed, Umair Bin; Sultan, Faqiha; Ullah, Saif; Rehman, Abdul
2018-02-01
This study deals with the investigation of boundary layer flow of a fourth grade fluid and heat transfer over an exponential stretching sheet. For analyzing two heating processes, namely, (i) prescribed surface temperature (PST), and (ii) prescribed heat flux (PHF), the temperature distribution in a fluid has been considered. The suitable transformations associated with the velocity components and temperature, have been employed for reducing the nonlinear model equation to a system of ordinary differential equations. The flow and temperature fields are revealed by solving these reduced nonlinear equations through an effective analytical method. The important findings in this analysis are to observe the effects of viscoelastic, cross-viscous, third grade fluid, and fourth grade fluid parameters on the constructed analytical expression for velocity profile. Likewise, the heat transfer properties are studied for Prandtl and Eckert numbers.
Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes
NASA Astrophysics Data System (ADS)
Walicka, A.
2018-02-01
In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.
Theoretical models for supercritical fluid extraction.
Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan
2012-08-10
For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.
Bradley, P.M.; Barber, L.B.; Kolpin, D.W.; McMahon, P.B.; Chapelle, F.H.
2007-01-01
Microbially catalyzed cleavage of the imadazole ring of caffeine was observed in stream sediments collected upstream and downstream of municipal wastewater treatment plants (WWTP) in three geographically separate stream systems. Microbial demethylation of the N-methyl component of cotinine and its metabolic precursor, nicotine, also was observed in these sediments. These findings indicate that stream sediment microorganisms are able to substantially alter the chemical structure and thus the analytical signatures of these candidate waste indicator compounds. The potential for in situ biotransformation must be considered if these compounds are employed as markers to identify the sources and track the fate of wastewater compounds in surface-water systems.
NASA Astrophysics Data System (ADS)
Sereda, T. G.; Kostarev, S. N.
2018-03-01
Theoretical bases of linkage of material streams of the machine-building enterprise and the automated system of decision-making are developed. The process of machine-building manufacture is submitted by the existential system. The equation of preservation of movement is based on calculation of volume of manufacture. The basis of resource variables includes capacities and operators of the equipment. Indignations such as a defect and failure are investigated in the existential basis. The equation of a stream of details on a manufacturing route is made. The received analytical expression expresses a condition of a stream of movement of details in view of influence of work of the equipment and traumatism of the personnel.
Computational Analyses of Offset Stream Nozzles for Noise Reduction
NASA Technical Reports Server (NTRS)
Dippold, Vance, III; Foster, Lancert; Wiese,Michael
2007-01-01
The Wind computational fluid dynamics code was used to perform a series of simulations on two offset stream nozzle concepts for jet noise reduction. The first concept used an S-duct to direct the secondary stream to the lower side of the nozzle. The second concept used vanes to turn the secondary flow downward. The analyses were completed in preparation of tests conducted in the NASA Glenn Research Center Aeroacoustic Propulsion Laboratory. The offset stream nozzles demonstrated good performance and reduced the amount of turbulence on the lower side of the jet plume. The computer analyses proved instrumental in guiding the development of the final test configurations and giving insight into the flow mechanics of offset stream nozzles. The computational predictions were compared with flowfield results from the jet rig testing and showed excellent agreement.
Multistream hydrodynamic modeling of interhemispheric plasma flow
NASA Technical Reports Server (NTRS)
Rasmussen, C. E.; Schunk, R. W.
1988-01-01
Interhemispheric plasma flow was simulated using one-stream and two-stream hydrodymic models in order to test the suggestion of Banks et al. (1971) and others that the collision of high-speed flows originating from the conjugate hemispheres will cause the formation of a pair of shocks. The single-fluid hydrodynamic equations were modified to include multiple ion streams, allowing for the possibility of counterstreaming flow. It was found that a counterstreaming of ion streams from conjugate hemispheres does occur during the early stages of the refilling of plamaspheric flux tubes, and that a pair of reverse shocks does form. These shocks form away from the equator, and their subsequent motion creates conditions similar to those predicted by the single-stream hydrodynamic models. The findings support the conclusion of earlier studies that the refilling of the plasmasphere occurs from the equatorial region downward.
Supercritical-fluid extraction and chromatography-mass spectrometry for analysis of mycotoxins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.D.; Udseth, H.R.
1982-07-01
The use of direct supercritical-fluid injection-mass spectrometry for the rapid analysis of mycotoxins of the tricothecene group is demonstrated. A solution containing diacetoxyscirpenol or T-2 toxin is injected into a fluid consisting primarily of pentane or carbon dioxide and is rapidly brought to supercritical conditions. Direct injection of the fluid stream into a chemical ionization source allows thermally labile compounds to be analyzed. Under these conditions trichothecene mass spectra showing significant (M + 1)/sup +/ ions and distinctive fragmentation patterns are obtained. Detection limits are in the subnanogram range. Direct analysis from complex substrates using selective supercritical-fluid extraction is proposed.more » 4 figures.« less
Curved film cooling admission tube
NASA Astrophysics Data System (ADS)
Graham, R. W.; Papell, S. S.
1980-10-01
Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.
Curved film cooling admission tube
NASA Technical Reports Server (NTRS)
Graham, R. W.; Papell, S. S. (Inventor)
1980-01-01
Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.
NASA Astrophysics Data System (ADS)
Grant, Stanley B.; Litton-Mueller, Rachel M.; Ahn, Jong H.
2011-05-01
Sediments are a pervasive source of fecal indicator bacteria (FIB) in rivers, lakes, estuaries, and oceans and may constitute a long-term reservoir of human disease. Previous attempts to quantify the flux of FIB across the sediment-water interface (SWI) are limited to extreme flow events, for which the primary mechanism of bacterial release is disruption and/or erosion of the sediment substrate. Here we report measurements of FIB flux across the SWI in a turbulent stream that is not undergoing significant erosion. The stream is formed by the steady discharge of bacteria-free disinfected and highly treated wastewater effluent to an earthen channel harboring high concentrations of FIB in the sediment from in situ growth. The flux j″ of FIB across the SWI, estimated from mass balance on FIB measurements in the water column, scales linearly with the concentration of bacteria in sediment pore fluids Cpore over a 3 decade change in both variables: ? The magnitude of the observed mass transfer velocity (? m s-1) is significantly larger than values predicted for either the diffusion of bacteria across a concentration boundary layer (? m s-1) or sweep and eject fluid motions at the SWI (? m s-1) but is similar to the flux of water between the stream and its hyporheic zone estimated from dye injection experiments. These results support the hypothesis that hyporheic exchange controls the trafficking of bacteria, and perhaps other types of particulate organic matter, across the SWI in turbulent streams.
Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection
NASA Astrophysics Data System (ADS)
Qin, Shijie; Chu, Ning; Yao, Yan; Liu, Jingting; Huang, Bin; Wu, Dazhuan
2017-03-01
To investigate the stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection, both experiments and simulations of bubble drag reduction (BDR) have been conducted in this paper. Drag reductions at various flow speeds and air injection rates have been tested in cavitation tunnel experiments. Visualization of bubble flow pattern is implemented synchronously. The computational fluid dynamics (CFD) method, in the framework of Eulerian-Eulerian two fluid modeling, coupled with population balance model (PBM) is used to simulate the bubbly flow along the flat plate. A wide range of bubble sizes considering bubble breakup and coalescence is modeled based on experimental bubble distribution images. Drag and lift forces are fully modeled based on applicable closure models. Both predicted drag reductions and bubble distributions are in reasonable concordance with experimental results. Stream-wise distribution of BDR is revealed based on CFD-PBM numerical results. In particular, four distinct regions with different BDR characteristics are first identified and discussed in this study. Thresholds between regions are extracted and discussed. And it is highly necessary to fully understand the stream-wise distribution of BDR in order to establish a universal scaling law. Moreover, mechanism of stream-wise distribution of BDR is analysed based on the near-wall flow parameters. The local drag reduction is a direct result of near-wall max void fraction. And the near-wall velocity gradient modified by the presence of bubbles is considered as another important factor for bubble drag reduction.
StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.
Li, Chenhui; Baciu, George; Han, Yu
2018-03-01
Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.
Evaporative concentration on a paper-based device to concentrate analytes in a biological fluid.
Wong, Sharon Y; Cabodi, Mario; Rolland, Jason; Klapperich, Catherine M
2014-12-16
We report the first demonstration of using heat on a paper device to rapidly concentrate a clinically relevant analyte of interest from a biological fluid. Our technology relies on the application of localized heat to a paper strip to evaporate off hundreds of microliters of liquid to concentrate the target analyte. This method can be used to enrich for a target analyte that is present at low concentrations within a biological fluid to enhance the sensitivity of downstream detection methods. We demonstrate our method by concentrating the tuberculosis-specific glycolipid, lipoarabinomannan (LAM), a promising urinary biomarker for the detection and diagnosis of tuberculosis. We show that the heat does not compromise the subsequent immunodetectability of LAM, and in 20 min, the tuberculosis biomarker was concentrated by nearly 20-fold in simulated urine. Our method requires only 500 mW of power, and sample flow is self-driven via capillary action. As such, our technology can be readily integrated into portable, battery-powered, instrument-free diagnostic devices intended for use in low-resource settings.
NASA Astrophysics Data System (ADS)
Oanta, Emil M.; Dascalescu, Anca-Elena; Sabau, Adrian
2016-12-01
The paper presents an original analytical model of the hydrodynamic loads applied on the half-bridge of a circular settling tank. The calculus domain is defined using analytical geometry and the calculus of the local dynamic pressure is based on the radius from the center of the settling tank to the current area, i.e. the relative velocity of the fluid and the depth where the current area is located, i.e. the density of the fluid. Calculus of the local drag forces uses the discrete frontal cross sectional areas of the submerged structure in contact with the fluid. In the last stage is performed the reduction of the local drag forces in the appropriate points belonging to the main beam. This class of loads is producing the flexure of the main beam in a horizontal plane and additional twisting moments along this structure. Taking into account the hydrodynamic loads, the results of the theoretical models, i.e. the analytical model and the finite element model, may have an increased accuracy.
Stream temperature investigations: field and analytic methods
Bartholow, J.M.
1989-01-01
Alternative public domain stream and reservoir temperature models are contrasted with SNTEMP. A distinction is made between steady-flow and dynamic-flow models and their respective capabilities. Regression models are offered as an alternative approach for some situations, with appropriate mathematical formulas suggested. Appendices provide information on State and Federal agencies that are good data sources, vendors for field instrumentation, and small computer programs useful in data reduction.
Study of Surface Wave Propagation in Fluid-Saturated Porous Solids.
NASA Astrophysics Data System (ADS)
Azcuaga, Valery Francisco Godinez
1995-01-01
This study addresses the surface wave propagation phenomena on fluid-saturated porous solids. The analytical method for calculation of surface wave velocities (Feng and Johnson, JASA, 74, 906, 1983) is extended to the case of a porous solid saturated with a wetting fluid in contact with a non-wetting fluid, in order to study a material combination suitable for experimental investigation. The analytical method is further extended to the case of a non-wetting fluid/wetting fluid-saturated porous solid interface with an arbitrary finite surface stiffness. These extensions of the analytical method allows to theoretically study surface wave propagation phenomena during the saturation process. A modification to the 2-D space-time reflection Green's function (Feng and Johnson, JASA, 74, 915, 1983) is introduced in order to simulate the behavior of surface wave signals detected during the experimental investigation of surface wave propagation on fluid-saturated porous solids (Nagy, Appl. Phys. Lett., 60, 2735, 1992). This modification, together with the introduction of an excess attenuation for the Rayleigh surface mode, makes it possible to explain the apparent velocity changes observed on the surface wave signals during saturation. Experimental results concerning the propagation of surface waves on an alcohol-saturated porous glass are presented. These experiments were performed at frequencies of 500 and 800 kHz and show the simultaneous propagation of the two surface modes predicted by the extended analytical method. Finally an analysis of the displacements associated with the different surface modes is presented. This analysis reveals that it is possible to favor the generation of the Rayleigh surface mode or of the slow surface mode, simply by changing the type of transducer used in the generation of surface waves. Calculations show that a shear transducer couples more energy into the Rayleigh mode, whereas a longitudinal transducer couples more energy into the slow surface mode. Experimental results obtained with the modified experimental system show a qualitative agreement with the theoretical predictions.
Critical review of analytical techniques for safeguarding the thorium-uranium fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakkila, E.A.
1978-10-01
Conventional analytical methods applicable to the determination of thorium, uranium, and plutonium in feed, product, and waste streams from reprocessing thorium-based nuclear reactor fuels are reviewed. Separations methods of interest for these analyses are discussed. Recommendations concerning the applicability of various techniques to reprocessing samples are included. 15 tables, 218 references.
Development of models of the magnetorheological fluid damper
NASA Astrophysics Data System (ADS)
Kazakov, Yu. B.; Morozov, N. A.; Nesterov, S. A.
2017-06-01
The algorithm for analytical calculation of a power characteristic of magnetorheological (MR) dampers taking into account the rheological properties of MR fluid is considered. The nonlinear magnetorheological characteristics are represented by piecewise linear approximation to MR fluid areas with different viscosities. The extended calculated power characteristics of a MR damper are received and they coincide with actual results. The finite element model of a MR damper is developed; it allows carrying out the analysis of a MR damper taking into account the mutual influence of electromagnetic, hydrodynamic and thermal fields. The results of finite element simulation coincide with analytical solutions that allows using them for design development of a MR damper.
Sinking bubbles in stout beers
NASA Astrophysics Data System (ADS)
Lee, W. T.; Kaar, S.; O'Brien, S. B. G.
2018-04-01
A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.
Analytical expressions for the correlation function of a hard sphere dimer fluid
NASA Astrophysics Data System (ADS)
Kim, Soonho; Chang, Jaeeon; Kim, Hwayong
A closed form expression is given for the correlation function of a hard sphere dimer fluid. A set of integral equations is obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with Percus-Yevick approximation. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of the individual correlation functions are obtained. By the inverse Laplace transformation, the radial distribution function (RDF) is obtained in closed form out to 3D (D is the segment diameter). The analytical expression for the RDF of the hard dimer should be useful in developing the perturbation theory of dimer fluids.
Analytical expression for the correlation function of a hard sphere chain fluid
NASA Astrophysics Data System (ADS)
Chang, Jaeeon; Kim, Hwayong
A closed form expression is given for the correlation function of flexible hard sphere chain fluid. A set of integral equations obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with the polymer Percus-Yevick ideal chain approximation is considered. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of individual correlation functions are obtained. By inverse Laplace transformation the inter- and intramolecular radial distribution functions (RDFs) are obtained in closed forms up to 3D(D is segment diameter). These analytical expressions for the RDFs would be useful in developing the perturbation theory of chain fluids.
DOT National Transportation Integrated Search
1974-10-01
The author has brought the review of published analytical methods for determining alcohol in body materials up-to- date. The review deals with analytical methods for alcohol in blood and other body fluids and tissues; breath alcohol methods; factors ...
Rocchitta, Gaia; Spanu, Angela; Babudieri, Sergio; Latte, Gavinella; Madeddu, Giordano; Galleri, Grazia; Nuvoli, Susanna; Bagella, Paola; Demartis, Maria Ilaria; Fiore, Vito; Manetti, Roberto; Serra, Pier Andrea
2016-01-01
Enzyme-based chemical biosensors are based on biological recognition. In order to operate, the enzymes must be available to catalyze a specific biochemical reaction and be stable under the normal operating conditions of the biosensor. Design of biosensors is based on knowledge about the target analyte, as well as the complexity of the matrix in which the analyte has to be quantified. This article reviews the problems resulting from the interaction of enzyme-based amperometric biosensors with complex biological matrices containing the target analyte(s). One of the most challenging disadvantages of amperometric enzyme-based biosensor detection is signal reduction from fouling agents and interference from chemicals present in the sample matrix. This article, therefore, investigates the principles of functioning of enzymatic biosensors, their analytical performance over time and the strategies used to optimize their performance. Moreover, the composition of biological fluids as a function of their interaction with biosensing will be presented. PMID:27249001
Scenario driven data modelling: a method for integrating diverse sources of data and data streams
Brettin, Thomas S.; Cottingham, Robert W.; Griffith, Shelton D.; Quest, Daniel J.
2015-09-08
A system and method of integrating diverse sources of data and data streams is presented. The method can include selecting a scenario based on a topic, creating a multi-relational directed graph based on the scenario, identifying and converting resources in accordance with the scenario and updating the multi-directed graph based on the resources, identifying data feeds in accordance with the scenario and updating the multi-directed graph based on the data feeds, identifying analytical routines in accordance with the scenario and updating the multi-directed graph using the analytical routines and identifying data outputs in accordance with the scenario and defining queries to produce the data outputs from the multi-directed graph.
The liquid fuel jet in subsonic crossflow
NASA Technical Reports Server (NTRS)
Nguyen, T. T.; Karagozian, A. R.
1990-01-01
An analytical/numerical model is described which predicts the behavior of nonreacting and reacting liquid jets injected transversely into subsonic cross flow. The compressible flowfield about the elliptical jet cross section is solved at various locations along the jet trajectory by analytical means for free-stream local Mach number perpendicular to jet cross section smaller than 0.3 and by numerical means for free-stream local Mach number perpendicular to jet cross section in the range 0.3-1.0. External and internal boundary layers along the jet cross section are solved by integral and numerical methods, and the mass losses due to boundary layer shedding, evaporation, and combustion are calculated and incorporated into the trajectory calculation. Comparison of predicted trajectories is made with limited experimental observations.
Analytical attractor and the divergence of the slow-roll expansion in relativistic hydrodynamics
NASA Astrophysics Data System (ADS)
Denicol, Gabriel S.; Noronha, Jorge
2018-03-01
We find the general analytical solution of the viscous relativistic hydrodynamic equations (in the absence of bulk viscosity and chemical potential) for a Bjorken expanding fluid with an ideal gas equation of state and a constant shear viscosity relaxation time. We analytically determine the hydrodynamic attractor of this fluid and discuss its properties. We show for the first time that the slow-roll expansion, a commonly used approach to characterize the attractor, diverges. This is shown to hold also in a conformal plasma. The gradient expansion is found to converge in an example where causality and stability are violated.
Passive micromixer using by convection and surface tension effects with air-liquid interface.
Ju, Jongil; Warrick, Jay
2013-12-01
This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15-20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation.
Passive micromixer using by convection and surface tension effects with air-liquid interface
Ju, Jongil; Warrick, Jay
2014-01-01
This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15–20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation. PMID:25104979
Fuel leak detection apparatus for gas cooled nuclear reactors
Burnette, Richard D.
1977-01-01
Apparatus is disclosed for detecting nuclear fuel leaks within nuclear power system reactors, such as high temperature gas cooled reactors. The apparatus includes a probe assembly that is inserted into the high temperature reactor coolant gaseous stream. The probe has an aperture adapted to communicate gaseous fluid between its inside and outside surfaces and also contains an inner tube for sampling gaseous fluid present near the aperture. A high pressure supply of noncontaminated gas is provided to selectively balance the pressure of the stream being sampled to prevent gas from entering the probe through the aperture. The apparatus includes valves that are operable to cause various directional flows and pressures, which valves are located outside of the reactor walls to permit maintenance work and the like to be performed without shutting down the reactor.
Solid oxide fuel cell power plant with an anode recycle loop turbocharger
Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.
2015-07-14
An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).
Solid oxide fuel cell power plant with an anode recycle loop turbocharger
Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.
2016-09-27
An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).
Electrohydrodynamic distortion of sample streams in continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.
1989-01-01
Continuous flow electrophoresis experiments were carried out, using an electrolyte and a sample both made of aqueous solutions of phosphate buffer (with polystyrene latex added for visibility), to investigate causes of the sample spreading in this procedure. It is shown theoretically that an electric field perpendicular to a circular filament of conducting fluid surrounded by a fluid of different conductivity produces an electrohydrodynamic flow, which distorts the filament into an ellipse. Experimental results were found to be fully consistent with theretical predictions. It was found that the rate of distortion of the sample stream into a ribbon was proportional to the square of the applied voltage gradient. Furthermore, the orientation of the ribbon depends on the ratios of dielectric constant and electrical conductivity between the buffer and the sample.
Trends in Analytical Scale Separations.
ERIC Educational Resources Information Center
Jorgenson, James W.
1984-01-01
Discusses recent developments in the instrumentation and practice of analytical scale operations. Emphasizes detection devices and procedures in gas chromatography, liquid chromatography, electrophoresis, supercritical fluid chromatography, and field-flow fractionation. (JN)
From flying wheel to square flow: Dynamics of a flow driven by acoustic forcing
NASA Astrophysics Data System (ADS)
Cambonie, Tristan; Moudjed, Brahim; Botton, Valéry; Henry, Daniel; Ben Hadid, Hamda
2017-12-01
Acoustic streaming designates the ability to drive quasisteady flows by acoustic propagation in dissipative fluids and results from an acoustohydrodynamics coupling. It is a noninvasive way of putting a fluid into motion using the volumetric acoustic force and can be used for different applications such as mixing purposes. We present an experimental investigation of a kind of square flow driven by acoustic streaming, with the use of beam reflections, in a water tank. Time-resolved experiments using particle image velocimetry have been performed to investigate the velocity field in the reference plane of the experiments for six powers: 0.5, 1, 2, 4, 6, and 8 W. The evolution of the flow regime from almost steady to strongly unsteady states is characterized using different tools: the plot of time-averaged and instantaneous velocity fields, the calculation of presence density maps for vortex positions and for the maximal velocity and vorticity crest lines, and the use of spatiotemporal maps of the waving observed on the jets created by acoustic streaming. A transition is observed between two regimes at moderate and high acoustic forcing.
Multiple capillary biochemical analyzer with barrier member
Dovichi, N.J.; Zhang, J.Z.
1996-10-22
A multiple capillary biochemical analyzer is disclosed for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal-to-noise ratio. 12 figs.
Multiple capillary biochemical analyzer with barrier member
Dovichi, Norman J.; Zhang, Jian Z.
1996-01-01
A multiple capillary biochemical analyzer for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal to noise ratio.
Fluid-Structure Interaction Study on a Pre-Buckled Deformable Flat Ribbon
NASA Astrophysics Data System (ADS)
Fovargue, Lauren; Shams, Ehsan; Watterson, Amy; Corson, Dave; Filardo, Benjamin; Zimmerman, Daniel; Shan, Bob; Oberai, Assad
2015-11-01
A Fluid-Structure Interaction study is conducted for the flow over a deformable flat ribbon. This mechanism, which is called ribbon frond, maybe used as a device for pumping water and/or harvesting energy in rivers. We use a lower dimensional mathematical model, which represents the ribbon as a pre-buckled structure. The surface forces from the fluid flow, dictate the deformation of the ribbon, and the ribbon in turn imposes boundary conditions for the incompressible Navier-Stokes equations. The mesh motion is handled using an Arbitrary Lagrangian-Eulerian (ALE) scheme and the fluid-structure coupling is handled by iterating over the staggered governing equations for the structure, the fluid and the mesh. Simulations are conducted at three different free stream velocities. The results, including the frequency of oscillations, show agreement with experimental data. The vortical structures near the surface of the ribbon and its deformation are highly correlated. It is observed that the ribbon motion exhibits deviation from a harmonic motion, especially at lower free stream velocities. The behavior of the ribbon is compared to swimming animals, such as eels, in order to better understand its performance. The authors acknowledge support from ONR SBIR Phase II, contract No. N0001412C0604 and USDA, NIFA SBIR Phase I, contract No. 2013-33610-20836 and NYSERDA PON 2569, contract No. 30364.
Group invariant solution for a pre-existing fracture driven by a power-law fluid in permeable rock
NASA Astrophysics Data System (ADS)
Fareo, A. G.; Mason, D. P.
2016-06-01
Group invariant analytical and numerical solutions for the evolution of a two-dimensional fracture with nonzero initial length in permeable rock and driven by an incompressible non-Newtonian fluid of power-law rheology are obtained. The effect of fluid leak-off on the evolution of the power-law fluid fracture is investigated.
Ma, Xianghong
2016-01-01
The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate–fluid interaction problem is developed on the basis of linearized Navier–Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions. PMID:27118914
Wu, Zhangming; Ma, Xianghong
2016-03-01
The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate-fluid interaction problem is developed on the basis of linearized Navier-Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions.
NASA Astrophysics Data System (ADS)
Roy, S. R.; Banerjee, S. K.
1992-11-01
A homogeneous Bianchi type VIh cosmological model filled with perfect fluid, null electromagnetic field and streaming neutrinos is obtained for which the free gravitational field is of the electric type. The barotropic equation of statep = (γ-1)ɛ is imposed in the particular case of Bianchi VI0 string models. Various physical and kinematical properties of the models are discussed.
Herrera Lara, Susana; Fernández-Fabrellas, Estrella; Juan Samper, Gustavo; Marco Buades, Josefa; Andreu Lapiedra, Rafael; Pinilla Moreno, Amparo; Morales Suárez-Varela, María
2017-10-01
The usefulness of clinical, radiological and pleural fluid analytical parameters for diagnosing malignant and paramalignant pleural effusion is not clearly stated. Hence this study aimed to identify possible predictor variables of diagnosing malignancy in pleural effusion of unknown aetiology. Clinical, radiological and pleural fluid analytical parameters were obtained from consecutive patients who had suffered pleural effusion of unknown aetiology. They were classified into three groups according to their final diagnosis: malignant, paramalignant and benign pleural effusion. The CHAID (Chi-square automatic interaction detector) methodology was used to estimate the implication of the clinical, radiological and analytical variables in daily practice through decision trees. Of 71 patients, malignant (n = 31), paramalignant (n = 15) and benign (n = 25), smoking habit, dyspnoea, weight loss, radiological characteristics (mass, node, adenopathies and pleural thickening) and pleural fluid analytical parameters (pH and glucose) distinguished malignant and paramalignant pleural effusions (all with a p < 0.05). Decision tree 1 classified 77.8% of malignant and paramalignant pleural effusions in step 2. Decision tree 2 classified 83.3% of malignant pleural effusions in step 2, 73.3% of paramalignant pleural effusions and 91.7% of benign ones. The data herein suggest that the identified predictor values applied to tree diagrams, which required no extraordinary measures, have a higher rate of correct identification of malignant, paramalignant and benign effusions when compared to techniques available today and proved most useful for usual clinical practice. Future studies are still needed to further improve the classification of patients.
NASA Astrophysics Data System (ADS)
Zlotnik, V. A.; Ledder, G.; Kacimov, A. R.
2014-12-01
Disposal of excessive runoff or treated sewage into wadis and ephemeral streams is a common practice and an important hydrological problem in many Middle Eastern countries. While chemical and biological properties of the injected treated wastewater may be different from those of the receiving aquifer, the density contrast between the two fluids can be small. Therefore, studies of the fluid interface for variable density fluids or water intrusion are not directly relevant in many Managed Aquifer Recharge (MAR) problems. Other factors, such as the transient nature of injection and lack of detailed aquifer information must be considered. The disposed water reaching the water table through the vadose zone creates groundwater mounds, deforms the original water table, and develops finite-size convex-concave lenses of treated water over receiving water. After cessation of infiltration, these mounds flatten, water levels become horizontal, and infiltrated water becomes fully embedded in the receiving aquifer. The shape of the treated water body is controlled by the aquifer parameters, the magnitude of ambient flow, and the duration, rate, and cyclicity of infiltration. In case of limited aquifer data, advective transport modeling offers the most appropriate tools for predicting plume shapes over time, but surprisingly little work has been done on this important 3D flow problem. We investigate the lateral and vertical spreading of infiltrated water combining techniques of spatial velocity analyses by Zlotnik and Ledder (1992, 1993) with particle tracking. This approach allows for evaluating the geometry of the plume and the protection zone, the flow development phases, and other temporal and spatial effects and results can be used in conditions of limited data availability and quality. (Funding was provided by the USAID, DAI Subcontract 1001624-12S-19745)
Kneisel, Stefan; Speck, Michael; Moosmann, Bjoern; Corneillie, Todd M; Butlin, Nathaniel G; Auwärter, Volker
2013-05-01
Serum and urine samples are commonly used for the analysis of synthetic cannabinoids in biofluids; however, their utilization as analytical matrices for drug abstinence control features some substantial drawbacks. While for blood collection invasive sampling is inevitable, the urinary analysis of synthetic cannabinoids is limited by the lack of available reference standards of the respective major metabolites. Moreover, the long detectability of synthetic cannabinoids in both matrices hampers the identification of a recent synthetic cannabinoid use. This article describes the development, validation and application of an LC/ESI-MS/MS method for the quantification of 28 synthetic cannabinoids in neat oral fluid (OF) samples. OF samples were prepared by protein precipitation using ice-cold acetonitrile. Chromatographic separation was achieved by gradient elution on a Luna Phenyl Hexyl column (50 × 2 mm, 5 μm), while detection was carried out on a QTrap 4000 instrument in positive ionization mode. The limits of detection ranged from 0.02 to 0.40 ng/mL, whereas the lower limits of quantification ranged from 0.2 to 4.0 ng/mL. The method was applied to authentic samples collected during two preliminary studies in order to obtain insights into the general detectability and detection windows of synthetic cannabinoids in this matrix. The results indicate that synthetic cannabinoids are transferred from the blood stream into OF and vice versa only at a very low rate. Therefore, positive OF samples are due to contamination of the oral cavity during smoking. As these drug-contaminations could be detected up to approximately 2 days, neat oral fluid appears to be well suited for detection of a recent synthetic cannabinoid use.
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2018-01-01
Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2016-01-01
Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
The aerodynamic characteristics of large angled cones with retrorockets
NASA Technical Reports Server (NTRS)
Jarvinen, P. O.; Adams, R. H.
1970-01-01
Analytical and experimental phases of the subject investigation are described. The analytical program for the single jet determines the terminal shock location, the jet boundary, the interface profile, the bow shock profile, the shear layer growth and the dead air region pressure. The experimental program described was conducted over the range from free stream Mach 0.4 to 2.0 at angles-of-attack up to 18 deg and at thrusting coefficients up to C sub T = T/q sub infinity A sub m = 30. Variables investigated included aeroshell angle, number of nozzles, engine thrust, size of nozzles, nozzle throttling and gas composition. The influence of these variables on the aeroshell stability, drag, and loads was determined by integrating pressure measurements on the aeroshell. The total system forces consist of components due to pure thrust and components due to pressure on the aeroshell arising from the jet-free stream interaction. Shadowgraphs provided flow field geometries which proved to be within 10% of those predicted analytically.
Effect of particle inertia on turbulence in a suspension.
L'vov, Victor S; Ooms, Gijs; Pomyalov, Anna
2003-04-01
We propose a one-fluid analytical model for a turbulently flowing dilute suspension, based on a modified Navier-Stokes equation with a k-dependent effective density of suspension rho(eff)(k) and an additional damping term proportional, variant gamma(p)(k), representing the fluid-particle friction (described by Stokes law). The statistical description of turbulence within the model is simplified by a modification of the usual closure procedure based on the Richardson-Kolmogorov picture of turbulence with a differential approximation for the energy transfer term. The resulting ordinary differential equation for the energy budget is solved analytically for various important limiting cases and numerically in the general case. In the inertial interval of scales, we describe analytically two competing effects: the energy suppression due to the fluid-particle friction and the energy enhancement during the cascade process due to decrease of the effective density of the small-scale motions. An additional suppression or enhancement of the energy density may occur in the viscous subrange, caused by the variation of the extent of the inertial interval due to the combined effect of the fluid-particle friction and the decrease of the kinematic viscosity of the suspensions. The analytical description of the complicated interplay of these effects supported by numerical calculations is presented. Our findings allow one to rationalize the qualitative picture of the isotropic homogeneous turbulence of dilute suspensions as observed in direct numerical simulations.
Microfluidic ultrasonic particle separators with engineered node locations and geometries
Rose, Klint A.; Fisher, Karl A.; Wajda, Douglas A.; Mariella, Jr., Raymond P.; Bailey, Christopher; Dehlinger, Dietrich; Shusteff, Maxim; Jung, Byoungsok; Ness, Kevin D.
2016-04-26
An ultrasonic microfluidic system includes a separation channel for conveying a sample fluid containing small particles and large particles, flowing substantially parallel, adjacent to a recovery fluid, with which it is in contact. An acoustic transducer produces an ultrasound standing wave, that generates a pressure field having at least one node of minimum pressure amplitude. An acoustic extension structure is located proximate to said separation channel for positioning said acoustic node off center in said acoustic area and concentrating the large particles in said recovery fluid stream.
Microfluidic ultrasonic particle separators with engineered node locations and geometries
Rose, Klint A; Fisher, Karl A; Wajda, Douglas A; Mariella, Jr., Raymond P; Bailey, Christopher; Dehlinger, Dietrich; Shusteff, Maxim; Jung, Byoungsok; Ness, Kevin D
2015-03-31
An ultrasonic microfluidic system includes a separation channel for conveying a sample fluid containing small particles and large particles, flowing substantially parallel, adjacent to a recovery fluid, with which it is in contact. An acoustic transducer produces an ultrasound standing wave, that generates a pressure field having at least one node of minimum, pressure amplitude. An acoustic extension structure is located proximate to said separation channel for positioning said acoustic node off center in said acoustic area and concentrating the large particles in said recovery fluid stream.
Microfluidic ultrasonic particle separators with engineered node locations and geometries
Rose, Klint A; Fisher, Karl A; Wajda, Douglas A; Mariella, Jr., Raymond P; Bailey, Christoppher; Dehlinger, Dietrich; Shusteff, Maxim; Jung, Byoungsok; Ness, Kevin D
2014-05-20
An ultrasonic microfluidic system includes a separation channel for conveying a sample fluid containing small particles and large particles, flowing substantially parallel, adjacent to a recovery fluid, with which it is in contact. An acoustic transducer produces an ultrasound standing wave, that generates a pressure field having at least one node of minimum pressure amplitude. An acoustic extension structure is located proximate to said separation channel for positioning said acoustic node off center in said acoustic area and concentrating the large particles in said recovery fluid stream.
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; ...
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less
CADDIS Volume 3. Examples and Applications: Analytical Examples
Examples illustrating the use of statistical analysis to support different types of evidence, stream temperature, temperature inferred from macroinverterbate, macroinvertebrate responses, zinc concentrations, observed trait characteristics.
Ball assisted device for analytical surface sampling
ElNaggar, Mariam S; Van Berkel, Gary J; Covey, Thomas R
2015-11-03
A system for sampling a surface includes a sampling probe having a housing and a socket, and a rolling sampling sphere within the socket. The housing has a sampling fluid supply conduit and a sampling fluid exhaust conduit. The sampling fluid supply conduit supplies sampling fluid to the sampling sphere. The sampling fluid exhaust conduit has an inlet opening for receiving sampling fluid carried from the surface by the sampling sphere. A surface sampling probe and a method for sampling a surface are also disclosed.
Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis
NASA Technical Reports Server (NTRS)
Morgan, Morris H.; Gilinsky, Mikhail M.
2001-01-01
Three connected sub-projects were conducted under reported project. Partially, these sub-projects are directed to solving the problems conducted by the HU/FM&AL under two other NASA grants. The fundamental idea uniting these projects is to use untraditional 3D corrugated nozzle designs and additional methods for exhaust jet noise reduction without essential thrust lost and even with thrust augmentation. Such additional approaches are: (1) to add some solid, fluid, or gas mass at discrete locations to the main supersonic gas stream to minimize the negative influence of strong shock waves forming in propulsion systems; this mass addition may be accompanied by heat addition to the main stream as a result of the fuel combustion or by cooling of this stream as a result of the liquid mass evaporation and boiling; (2) to use porous or permeable nozzles and additional shells at the nozzle exit for preliminary cooling of exhaust hot jet and pressure compensation for non-design conditions (so-called continuous ejector with small mass flow rate; and (3) to propose and analyze new effective methods fuel injection into flow stream in air-breathing engines. Note that all these problems were formulated based on detailed descriptions of the main experimental facts observed at NASA Glenn Research Center. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of finding theoretical explanations for experimental facts and the creation of the accurate numerical simulation technique and prediction theory for solutions for current problems in propulsion systems solved by NASA and Navy agencies. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analysis for advanced aircraft and rocket engines. The F&AL Team uses analytical methods, numerical simulations, and possible experimental tests at the Hampton University campus. We will present some management activity and theoretical numerical simulation results obtained by the FM&AL Team in the reporting period in accordance with the schedule of the work.
A Streaming Language Implementation of the Discontinuous Galerkin Method
NASA Technical Reports Server (NTRS)
Barth, Timothy; Knight, Timothy
2005-01-01
We present a Brook streaming language implementation of the 3-D discontinuous Galerkin method for compressible fluid flow on tetrahedral meshes. Efficient implementation of the discontinuous Galerkin method using the streaming model of computation introduces several algorithmic design challenges. Using a cycle-accurate simulator, performance characteristics have been obtained for the Stanford Merrimac stream processor. The current Merrimac design achieves 128 Gflops per chip and the desktop board is populated with 16 chips yielding a peak performance of 2 Teraflops. Total parts cost for the desktop board is less than $20K. Current cycle-accurate simulations for discretizations of the 3-D compressible flow equations yield approximately 40-50% of the peak performance of the Merrimac streaming processor chip. Ongoing work includes the assessment of the performance of the same algorithm on the 2 Teraflop desktop board with a target goal of achieving 1 Teraflop performance.
Nash, J.T.; Siems, D.F.
1988-01-01
The geochemical maps in this report are based on analytical results reported by Fairfield and others (1985), Hill and others (1986), and Siems and others (1986). These reports also describe the sample preparation and analytical methods and provide information on the location of the sample sites.
Bradley, Paul M; Barber, Larry B; Clark, Jimmy M; Duris, Joseph W; Foreman, William T; Furlong, Edward T; Givens, Carrie E; Hubbard, Laura E; Hutchinson, Kasey J; Journey, Celeste A; Keefe, Steffanie H; Kolpin, Dana W
2016-10-15
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem. Published by Elsevier B.V.
Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.
2016-01-01
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.
The Case for Assessment Analytics
ERIC Educational Resources Information Center
Ellis, Cath
2013-01-01
Learning analytics is a relatively new field of inquiry and its precise meaning is both contested and fluid (Johnson, Smith, Willis, Levine & Haywood, 2011; LAK, n.d.). Ferguson (2012) suggests that the best working definition is that offered by the first Learning Analytics and Knowledge (LAK) conference: "the measurement, collection,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Gautam S; Bhaduri, Budhendra L; Piburn, Jesse O
Geospatial intelligence has traditionally relied on the use of archived and unvarying data for planning and exploration purposes. In consequence, the tools and methods that are architected to provide insight and generate projections only rely on such datasets. Albeit, if this approach has proven effective in several cases, such as land use identification and route mapping, it has severely restricted the ability of researchers to inculcate current information in their work. This approach is inadequate in scenarios requiring real-time information to act and to adjust in ever changing dynamic environments, such as evacuation and rescue missions. In this work, wemore » propose PlanetSense, a platform for geospatial intelligence that is built to harness the existing power of archived data and add to that, the dynamics of real-time streams, seamlessly integrated with sophisticated data mining algorithms and analytics tools for generating operational intelligence on the fly. The platform has four main components i) GeoData Cloud a data architecture for storing and managing disparate datasets; ii) Mechanism to harvest real-time streaming data; iii) Data analytics framework; iv) Presentation and visualization through web interface and RESTful services. Using two case studies, we underpin the necessity of our platform in modeling ambient population and building occupancy at scale.« less
Hydraulic Fracturing Fluid Analysis for Regulatory Parameters - A Progress Report
This presentation is a progress report on the analysis of Hydraulic Fracturing Fluids for regulatory compounds outlined in the various US EPA methodologies. Fracturing fluids vary significantly in consistency and viscosity prior to fracturing. Due to the nature of the fluids the analytical challenges will have to be addressed. This presentation also outlines the sampling issues associated with the collection of dissolved gas samples.
NASA Astrophysics Data System (ADS)
Irving, D. H.; Rasheed, M.; Hillman, C.; O'Doherty, N.
2012-12-01
Oilfield management is moving to a more operational footing with near-realtime seismic and sensor monitoring governing drilling, fluid injection and hydrocarbon extraction workflows within safety, productivity and profitability constraints. To date, the geoscientific analytical architectures employed are configured for large volumes of data, computational power or analytical latency and compromises in system design must be made to achieve all three aspects. These challenges are encapsulated by the phrase 'Big Data' which has been employed for over a decade in the IT industry to describe the challenges presented by data sets that are too large, volatile and diverse for existing computational architectures and paradigms. We present a data-centric architecture developed to support a geoscientific and geotechnical workflow whereby: ●scientific insight is continuously applied to fresh data ●insights and derived information are incorporated into engineering and operational decisions ●data governance and provenance are routine within a broader data management framework Strategic decision support systems in large infrastructure projects such as oilfields are typically relational data environments; data modelling is pervasive across analytical functions. However, subsurface data and models are typically non-relational (i.e. file-based) in the form of large volumes of seismic imaging data or rapid streams of sensor feeds and are analysed and interpreted using niche applications. The key architectural challenge is to move data and insight from a non-relational to a relational, or structured, data environment for faster and more integrated analytics. We describe how a blend of MapReduce and relational database technologies can be applied in geoscientific decision support, and the strengths and weaknesses of each in such an analytical ecosystem. In addition we discuss hybrid technologies that use aspects of both and translational technologies for moving data and analytics across these platforms. Moving to a data-centric architecture requires data management methodologies to be overhauled by default and we show how end-to-end data provenancing and dependency management is implicit in such an environment and how it benefits system administration as well as the user community. Whilst the architectural experiences are drawn from the oil industry, we believe that they are more broadly applicable in academic and government settings where large volumes of data are added to incrementally and require revisiting with low analytical latency and we suggest application to earthquake monitoring and remote sensing networks.
On-orbit cryogenic fluid transfer
NASA Technical Reports Server (NTRS)
Aydelott, J. C.; Gille, J. P.; Eberhardt, R. N.
1984-01-01
A number of future NASA and DOD missions have been identified that will require, or could benefit from resupply of cryogenic liquids in orbit. The most promising approach for accomplishing cryogenic fluid transfer in the weightlessness environment of space is to use the thermodynamic filling technique. This approach involves initially reducing the receiver tank temperature by using several charge hold vent cycles followed by filling the tank without venting. Martin Marietta Denver Aerospace, under contract to the NASA Lewis Research Center, is currently developing analytical models to describe the on orbit cryogenic fluid transfer process. A detailed design of a shuttle attached experimental facility, which will provide the data necessary to verify the analytical models, is also being performed.
Exact analytical solution to a transient conjugate heat-transfer problem
NASA Technical Reports Server (NTRS)
Sucec, J.
1973-01-01
An exact analytical solution is found for laminar, constant-property, slug flow over a thin plate which is also convectively cooled from below. The solution is found by means of two successive Laplace transformations when a transient in the plate and the fluid is initiated by a step change in the fluid inlet temperature. The exact solution yields the transient fluid temperature, surface heat flux, and surface temperature distributions. The results of the exact transient solution for the surface heat flux are compared to the quasi-steady values, and a criterion for the validity of the quasi-steady results is found. Also the effect of the plate coupling parameter on the surface heat flux are investigated.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.
2014-01-01
Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.
Analytical and numerical study of electroosmotic slip flows of fractional second grade fluids
NASA Astrophysics Data System (ADS)
Wang, Xiaoping; Qi, Haitao; Yu, Bo; Xiong, Zhen; Xu, Huanying
2017-09-01
This work investigates the unsteady electroosmotic slip flow of viscoelastic fluid through a parallel plate micro-channel under combined influence of electroosmotic and pressure gradient forcings with asymmetric zeta potentials at the walls. The generalized second grade fluid with fractional derivative was used for the constitutive equation. The Navier slip model with different slip coefficients at both walls was also considered. By employing the Debye-Hückel linearization and the Laplace and sin-cos-Fourier transforms, the analytical solutions for the velocity distribution are derived. And the finite difference method for this problem was also given. Finally, the influence of pertinent parameters on the generation of flow is presented graphically.
On accelerated flow of MHD powell-eyring fluid via homotopy analysis method
NASA Astrophysics Data System (ADS)
Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul
2017-09-01
The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell-Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.
Critical Elements in Produced Fluids from Nevada and Utah
Simmons, Stuart
2017-07-27
Critical elements and related analytical data for produced fluids from geothermal fields in Nevada and Utah, Sevier thermal belt hot springs, Utah, and Uinta basin oil-gas wells, Utah are reported. Analytical results include pH, major species, trace elements, transition metals, other metals, metalloids and REEs. Gas samples were collected and analyzed from Beowawe, Dixie Valley, Roosevelt Hot Springs, and Thermo. Helium gases and helium isotopes were analyzed on samples collected at Patua, San Emido and two wells in the Uinta basin.
Capillary device refilling. [liquid rocket propellant tank tests
NASA Technical Reports Server (NTRS)
Blatt, M. H.; Merino, F.; Symons, E. P.
1980-01-01
An analytical and experimental study was conducted dealing with refilling start baskets (capillary devices) with settled fluid. A computer program was written to include dynamic pressure, screen wicking, multiple-screen barriers, standpipe screens, variable vehicle mass for computing vehicle acceleration, and calculation of tank outflow rate and vapor pullthrough height. An experimental apparatus was fabricated and tested to provide data for correlation with the analytical model; the test program was conducted in normal gravity using a scale-model capillary device and ethanol as the test fluid. The test data correlated with the analytical model; the model is a versatile and apparently accurate tool for predicting start basket refilling under actual mission conditions.
Simple, robust storage of drops and fluids in a microfluidic device.
Boukellal, Hakim; Selimović, Seila; Jia, Yanwei; Cristobal, Galder; Fraden, Seth
2009-01-21
We describe a single microfluidic device and two methods for the passive storage of aqueous drops in a continuous stream of oil without any external control but hydrodynamic flow. Advantages of this device are that it is simple to manufacture, robust under operation, and drops never come into contact with each other, making it unnecessary to stabilize drops against coalescence. In one method the device can be used to store drops that are created upstream from the storage zone. In the second method the same device can be used to simultaneously create and store drops from a single large continuous fluid stream without resorting to the usual flow focusing or T-junction drop generation processes. Additionally, this device stores all the fluid introduced, including the first amount, with zero waste. Transport of drops in this device depends, however, on whether or not the aqueous drops wet the device walls. Analysis of drop transport in these two cases is presented. Finally, a method for extraction of the drops from the device is also presented, which works best when drops do not wet the walls of the chip.
Dutta, Debashis
2017-01-01
Pressure-driven cross-flows can arise in free-flow isoelectric focusing systems (FFIEF) due to a non-uniform electroosmotic flow velocity along the channel width induced by the pH gradient in this direction. In addition, variations in the channel cross-section as well as unwanted differences in hydrostatic heads at the buffer/sample inlet ports can also lead to such pressure-gradients which besides altering the equilibrium position of the sample zones have a tendency to substantially broaden their widths deteriorating the separations. In this situation, a thorough assessment of stream broadening due to transverse pressure-gradients in FFIEF devices is necessary in order to establish accurate design rules for the assay. The present article describes a mathematical framework to estimate the noted zone dispersion in FFIEF separations based on the method-of-moments approach under laminar flow conditions. A closed-form expression has been derived for the spatial variance of the analyte streams at their equilibrium positions as a function of the various operating parameters governing the assay performance. This expression predicts the normalized stream variance under the chosen conditions to be determined by two dimensionless Péclet numbers evaluated based on the transverse pressure-driven and electrophoretic solute velocities in the separation chamber, respectively. Moreover, the analysis shows that while the stream width can be expected to increase with an increase in the value of the first Péclet number, the opposite trend will be followed with respect to the latter. The noted results have been validated using Monte Carlo simulations that also establish a time/length scale over which the predicted equilibrium stream width is attained in the system. PMID:28081900
ERIC Educational Resources Information Center
Lopez-Arias, T.
2012-01-01
We discuss a brief part of a famous paper on sound and light written by Thomas Young in 1800. We show that the proverbial intuition of this famous polymath leads to the discussion of several important and complex fluid dynamics phenomena regarding the behaviour of streams of air. In particular, we show that Young had already explained the adhesion…
Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids
Słomka, Jonasz; Dunkel, Jörn
2017-01-01
Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex growth exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry-breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present analytical and numerical evidence for the existence of an inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror symmetry. We show analytically that self-organized scale selection, a generic feature of many biological and engineered nonequilibrium fluids, can generate parity-violating Beltrami flows. Our simulations further demonstrate how active scale selection controls mirror-symmetry breaking and the emergence of a 3D inverse cascade. PMID:28193853
Evaluation of generic types of drilling fluid using a risk-based analytic hierarchy process.
Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil
2003-12-01
The composition of drilling muds is based on a mixture of clays and additives in a base fluid. There are three generic categories of base fluid--water, oil, and synthetic. Water-based fluids (WBFs) are relatively environmentally benign, but drilling performance is better with oil-based fluids (OBFs). The oil and gas industry developed synthetic-based fluids (SBFs), such as vegetable esters, olefins, ethers, and others, which provide drilling performance comparable to OBFs, but with lower environmental and occupational health effects. The primary objective of this paper is to present a methodology to guide decision-making in the selection and evaluation of three generic types of drilling fluids using a risk-based analytic hierarchy process (AHP). In this paper a comparison of drilling fluids is made considering various activities involved in the life cycle of drilling fluids. This paper evaluates OBFs, WBFs, and SBFs based on four major impacts--operations, resources, economics, and liabilities. Four major activities--drilling, discharging offshore, loading and transporting, and disposing onshore--cause the operational impacts. Each activity involves risks related to occupational injuries (safety), general public health, environmental impact, and energy use. A multicriteria analysis strategy was used for the selection and evaluation of drilling fluids using a risk-based AHP. A four-level hierarchical structure is developed to determine the final relative scores, and the SBFs are found to be the best option.
Estimation of stream depletion using values of capacitance
NASA Astrophysics Data System (ADS)
Baldenkov, Mikhail; Filimonova, Elena
2014-05-01
Compensation pumping is used to alleviate deficiencies in streamflow discharge during dry seasons. Short-term groundwater pumping can use aquifer storage instead of catchment-zone water until the drawdown reaches the edge of the stream. Stream-aquifer interactions are the key component of the hydrologic budgets and estimation of stream depletion has top-priority when evaluating the effectiveness of application of seasonal compensation pumping. Numerous analytical equations have been developed to assess the influence of groundwater pumping on nearby streams (C.V. Theis, R.E. Glover, C.G. Balmer, M.S. Hantush, C.T. Jenkins, B. Hunt, J. Bredehoeft, V.A. Zlotnik, E.L. Minkin, N.N. Lapshin, F.M. Bochever and other researchers). R.B. Wallace and Y. Darama obtained solution for cyclic conditions groundwater pumping. Numerical model approaches used in difficult hydrogeological conditions. It is offered to estimate stream depletion by seasonal pumping using values of capacitance (complex, dimensionless parameter of an aquifer system that defines the delayed effect on steamflow when there is groundwater pumping). Capacitance (C) is determined by the following equation: ( ) L* C = f( °---) , TS-Δt where S and T are the aquifer specific yield (or storage coefficient for a confined aquifer) and transmissivity, respectively; Δt is the pumping time inside one cycle, L* is the summarizing distance between the compensation well and stream edge; in some cases it can involve a function of the stream leakance and vertical leakance of the impermeable layer. Three typical hydraulic cases of compensation pumping were classified depending on their capacitance structure (i.e. the relationship between surface water and groundwater): (a) perfect hydraulic connection between the stream and aquifer; (b) imperfect hydraulic connection between the stream and aquifer; and (c) essentially imperfect hydraulic connection between the stream and the underlying confined aquifer. The form of capacitance was obtained for all three cases and is a function of aquifer hydraulic characteristics, pumping time and distance between the well and stream edge. The distance in the first and the second cases is the sum of the shortest distance between stream edge and the well and the stream leakance; in case; and in the third case, it is the sum of real distance, stream leakance and vertical leakance through the impermeable layer. A regression test between unit stream depletion (i.e. the ratio of stream reduction to pumping rate stream depletion and capacitance was performed, and power dependences were obtained in the form of Y = a + bC-0.5 The drained storage cannot be absolutely recovered by natural processes that cause 'residual' stream depletion (RSD) even in condition of perfect hydraulic connection between the stream and aquifer. The impact of various hydraulic characteristics and engineering factors on RSD was examined by numerical modeling. It was realized lack of correlation between capacitance and RSD, but exponential dependences between capacitance and the annual amplitudes of stream depletion (A) were obtained in the form of: A = 0.95 exp(- 0.776C ) Although this approach cannot assess stream-aquifer interactions to the same degree of accuracy as analytical equations of detail as a numerical model, it can provide forecast estimation with the level of primary available data.
Three-dimensional microbubble streaming flows
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha
2014-11-01
Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.
NASA Technical Reports Server (NTRS)
Langston, L. S.
1980-01-01
Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.
The Influence of Hydrofoil Oscillation on Boundary Layer Transition and Cavitation Noise.
1981-04-01
p., and V. are fluid density, reference free-stream AVERAGED static pressure and reference free-stream velocity, respec- ORSPL3. Lair tively. S3.1...of cavitation on a propeller in both uni- ly, the location of boundary layer transition with the foil in form and nonuniform flow. He concluded that...the presence of oscillation must be determined either theoretically or ex- sheet and bubble cavitation in nonuniform flow can be perimentally. Thirdly
Acoustic streaming in the cochlea under compressive bone conduction excitation
NASA Astrophysics Data System (ADS)
Aho, Katherine; Sunny, Megha; Nabat, Taoufik; Au, Jenny; Thompson, Charles
2012-02-01
This work examines the acoustic streaming in the cochlea. A model will be developed to examine the steady flow over a flexible boundary that is induced by compressive excitation of the cochlear capsule. A stokeslet based analysis of oscillatory flows was used to model fluid motion. The influence of evanescent modes on the pressure field is considered as the limit of the aspect ratio epsilon approaches zero. We will show a uniformly valid solution in space.
Electrokinetic instability micromixing.
Oddy, M H; Santiago, J G; Mikkelsen, J C
2001-12-15
We have developed an electrokinetic process to rapidly stir micro- and nanoliter volume solutions for microfluidic bioanalytical applications. We rapidly stir microflow streams by initiating a flow instability, which we have observed in sinusoidally oscillating, electroosmotic channel flows. As the effect occurs within an oscillating electroosmotic flow, we refer to it here as an electrokinetic instability (EKI). The rapid stretching and folding of material lines associated with this instability can be used to stir fluid streams with Reynolds numbers of order unity, based on channel depth and rms electroosmotic velocity. This paper presents a preliminary description of the EKI and the design and fabrication of two micromixing devices capable of rapidly stirring two fluid streams using this flow phenomenon. A high-resolution CCD camera is used to record the stirring and diffusion of fluorescein from an initially unmixed configuration. Integration of fluorescence intensity over measurement volumes (voxels) provides a measure of the degree to which two streams are mixed to within the length scales of the voxels. Ensemble-averaged probability density functions and power spectra of the instantaneous spatial intensity profiles are used to quantify the mixing processes. Two-dimensional spectral bandwidths of the mixing images are initially anisotropic for the unmixed configuration, broaden as the stirring associated with the EKI rapidly stretches and folds material lines (adding high spatial frequencies to the concentration field), and then narrow to a relatively isotropic spectrum at the well-mixed conditions.
Validation of the SINDA/FLUINT code using several analytical solutions
NASA Technical Reports Server (NTRS)
Keller, John R.
1995-01-01
The Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) code has often been used to determine the transient and steady-state response of various thermal and fluid flow networks. While this code is an often used design and analysis tool, the validation of this program has been limited to a few simple studies. For the current study, the SINDA/FLUINT code was compared to four different analytical solutions. The thermal analyzer portion of the code (conduction and radiative heat transfer, SINDA portion) was first compared to two separate solutions. The first comparison examined a semi-infinite slab with a periodic surface temperature boundary condition. Next, a small, uniform temperature object (lumped capacitance) was allowed to radiate to a fixed temperature sink. The fluid portion of the code (FLUINT) was also compared to two different analytical solutions. The first study examined a tank filling process by an ideal gas in which there is both control volume work and heat transfer. The final comparison considered the flow in a pipe joining two infinite reservoirs of pressure. The results of all these studies showed that for the situations examined here, the SINDA/FLUINT code was able to match the results of the analytical solutions.
Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Berry, C.J.; Adams, M.G.
2011-01-01
Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colo., has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colo., U.S.A. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring groundwater at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program was recently extended through the end of 2010 and is now completed. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream-bed sediment. Streams at the site are dry most of the year, so samples of stream-bed sediment deposited after rain were used to indicate surface-water runoff effects. This report summarizes analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed for 2010. In general, the objective of each component of the study was to determine whether concentrations of nine trace elements ("priority analytes") (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied (background). Previous analytical results indicate that the elemental composition of biosolids from the Denver plant was consistent during 1999-2009, and this consistency continues with the samples for 2010. Total concentrations of regulated trace elements remain consistently lower than the regulatory limits for the entire monitoring period. Concentrations of none of the priority analytes appear to have increased during the 12 years of this study.
Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Berry, C.J.; Adams, M.G.
2010-01-01
Since late 1993, Metro Wastewater Reclamation District of Denver, a large wastewater treatment plant in Denver, Colo., has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colo., U.S.A. In cooperation with the Metro District in 1993, the U.S. Geological Survey began monitoring groundwater at part of this site. In 1999, the Survey began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program has recently been extended through the end of 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream-bed sediment. Streams at the site are dry most of the year, so samples of stream-bed sediment deposited after rain were used to indicate surface-water effects. This report presents analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed for 2009. In general, the objective of each component of the study was to determine whether concentrations of nine trace elements ('priority analytes') (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied. Previous analytical results indicate that the elemental composition of biosolids from the Denver plant was consistent during 1999-2008, and this consistency continues with the samples for 2009. Total concentrations of regulated trace elements remain consistently lower than the regulatory limits for the entire monitoring period. Concentrations of none of the priority analytes appear to have increased during the 11 years of this study.